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Pattern recognition reveals characteristic
postprandial glucose changes: Non-individualized

meal detection in diabetes mellitus type 1
Konstanze Kölle, Torben Biester, Sverre Christiansen, Anders Lyngvi Fougner, Øyvind Stavdahl

Abstract—Accurate continuous glucose monitoring (CGM) is
essential for fully automated glucose control in diabetes mellitus
type 1. State-of-the-art glucose control systems automatically
regulate the basal insulin infusion. Users still need to manually
announce meals to dose the prandial insulin boluses. An auto-
mated meal detection could release the user and improve the
glucose regulation.

In this study, patterns in the postprandial CGM data are
exploited for meal detection. Binary classifiers are trained to
recognize the postprandial pattern in horizons of the estimated
glucose rate of appearance and in CGM data. The appearance
rate is determined by moving horizon estimation (MHE) based
on a simple model. Linear discriminant analysis (LDA) is used
for classification. The proposed method is compared to methods
that detect meals when thresholds are violated.

Diabetes care data from twelve free-living pediatric patients
was downloaded during regular screening. Experts identified
meals and their start by retrospective evaluation.

The classification was tested by cross-validation. Compared
to the threshold-based methods, LDA showed higher sensitivity
to meals with a low rate of false alarms. Classifying horizons
outperformed the other methods also with respect to time of
detection.

The onset of meals can be detected by pattern recognition
based on estimated model states and consecutive CGM measure-
ments. No individual tuning is necessary. This makes the method
easily adopted in the clinical practice.

Index Terms—Artificial pancreas, Continuous glucose moni-
toring, Diabetes mellitus type 1, Meal detection, Moving horizon
estimation.

I. INTRODUCTION

MEAL detection can enable fully automated glucose
control in diabetes mellitus type 1. Meal ingestion is

followed by characteristic patterns in continuous glucose mon-
itoring (CGM) data that can be exploited for meal detection.
Recent clinical studies on closed-loop glucose control (using
subcutaneous glucose sensing and insulin administration) have
achieved a time in range of 60–80%. While hypoglycemia
accounts for only 2–4% of the time with exceeded glucose
control limits, 20–30% of the closed loop time is still spent
in hyperglycemia [1]. Meals are likely the main reason why
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the glucose concentration frequently exceeds the upper control
limit. Meal announcements are often used to resolve this issue.
The patient has to either estimate the size of the insulin bolus
directly or the amount of carbohydrates. This is an error-prone
challenge for many patients. Safety reasons permit preventive
insulin administration by fully automated systems based on
probabilities from historical data. Even in bi-hormonal control
with insulin and the antagonistic hormone glucagon, preven-
tive insulin administration seems inappropriate due to the risk
of system failure. It was demonstrated that meal detection
with subsequent insulin bolus administration can improve the
outcomes of fully automated closed-loop glucose control [2].

Meals should be detected as early as possible in order
to counteract the glucose rise by means of a timely insulin
administration. The latency between the administration of
insulin into the subcutaneous tissue and the glucose-decreasing
effect of insulin, which is also in new ultra-rapid analogues
at least 15 min [3], emphasizes the need for an early meal
detection. However, the ingestion of food is not the only reason
for rising glucose levels; other perturbations may lead to
similar glucose curves and, depending on the method, trigger
a false meal detection.

Meal detection received increasing attention during the past
years. The earlier methods detect a meal based on threshold
violations of (occasionally filtered) CGM values. Recently,
more complex methods using a model of the glucose-insulin
metabolism and data-driven methods were proposed. Most
approaches for meal detection utilize the measurements of one
CGM device. Meal detection by threshold checking has been
suggested with different combinations of checked variables;
the raw CGM data is either directly used or revised by
removing measurement noise using a linear noise model in
a Kalman filter (KF) [4], [5], [6]. Alternatively, the nonlinear
Bergman minimal model has been used to estimate the rate of
glucose appearance in plasma with an unscented KF (UKF),
and meals were detected when this estimate violated an upper
threshold [7], [2]. Two redundant glucose sensors were used
in a set-up to detect both faults and meals [8]. An UKF is
separately applied to the two sensor signals to predict multiple
steps of the CGM values; a meal is detected if both estimates
simultaneously indicate a positive deviation. Moreover, meal
detection based on the cross-covariance between two estimated
states of an UKF has been recently proposed [9], [10]. An
augmented version of the Bergman model appeared also in a
physiologically invariant method [11] where invariant statistics
are used to differentiate between effects that can be explained
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by the model with the (lumped) physiological parameters and
previous meals and those that must result from a more recent
meal. The data-driven fuzzy logic was used to categorize
segments of continuously monitored glucose data according
to their shape [12], [13].

Many methods for meal detection use combinations of
consecutive threshold violations of the sensed glucose concen-
tration and its rate of change as indication for a meal [4], [5],
[6]. These threshold-based methods require carefully chosen
thresholds. Individual thresholds might be necessary to achieve
the right compromise between sensitivity and specificity [14].
A safe tuning of these threshold-based methods is too time-
intensive for clinical practice. This might be the reason why
the most advanced, commercialized glucose control systems
still require manual user input regarding the timing and amount
of ingested carbohydrates, whereas basal insulin needs are
automated.

Previously suggested methods for meal detection consider
only a few of the most current glucose measurements, for
example those of the last 15 min [6]. In this paper, we
apply methods of pattern recognition to longer horizons of
measurements. The aim is to extract the characteristic changes
in CGM caused by the onset of meals. In particular, moving
horizon estimation (MHE) is used to estimate the rate of
glucose appearance [15]. Other estimators such as the Kalman
filter update the current estimate based on a single, most
recent measurement. The MHE considers a horizon of past
glucose measurements at each time step and estimates likewise
a horizon of the rate of glucose appearance. At each time step,
not only the most recent estimate, but the whole estimated
backward horizon is updated when more recent measurements
are available. The dynamical changes within the estimated
horizons are exploited in the pattern recognition [15]. Both
the rate of appearance of glucose in blood estimated with a
moving horizon estimation (MHE) and the CGM data directly
are used as inputs to the pattern recognition method. The
method showed promising performance in a simulation study
[15] and is validated on clinical data in this article.

II. CLINICAL DATA

Diabetes care data of twelve pediatric patients was included
in this study. The clinical data was downloaded at the Hospital
for Children and Adolescents “AUF DER BULT” in Hanover,
Germany, during regular visits. The regional ethical committee
(Ethikkommission der Medizinischen Hochschule Hannover)
approved the analysis of the anonymized data in this research.
Table I contains demographic information of the study pop-
ulation consisting of 8 males and 4 females. The data set
consists of CGM measurements from a subcutaneous sensor,
administered amounts of basal and bolus insulin, amounts of
carbohydrates entered by the patients into the bolus wizard
system, alarms, etc. All patients used devices by Medtronic:
Enlite 2 sensors, MiniLink or Guardian 2 Link transmitters,
and MiniMed pump models. Patients were not advised to
change their regular life routines for this study; the data was
instead included retrospectively. Therefore, the free-living data
shows the normal, non-restricted lifestyle of the patients.

Fig. 1. Raw versus smoothed CGM data. Example with smoothed outliers
around 16:45 and replaced missing value at 21:40. Self-monitored blood
glucose (SMBG) is also shown.

Since the data set that was not collected for this particular
study, meals had to be marked in retrospect based on CGM
data and logged information from the insulin infusion pumps.
Experienced diabetologists inspected the data and marked
meals including an estimation of the timing of prandial in-
sulin. The meals were distinguished into those with boluses
either administered before, at or after the meal start. In some
occasions, prandial boluses were omitted. A meal was assigned
to the pre-meal or post-meal bolus class if the closest meal-
related bolus was given within 1 h before or after the start of
the glucose increase. If no bolus was used within this period
of 2 h, the meal was assigned to have no bolus. The number
of marked meals in each class is presented in Table II for each
patient. The assessments of the two independent experts were
in good agreement with each other.

The amount of ingested carbohydrates at the marked meal
times is not reported because this patient-entered information
is uncertain. Moreover, the goal of this study was to detect
meals causing significant postprandial glucose excursions,
the actual amount of carbohydrates is less important in this
context.

A. Pre-processing

Missing values disturb the classification. Thus, the raw
CGM data has been smoothed using a Kalman filter (KF). The
KF implementation by [16] has been used without correction
based on finger prick measurements. Besides substituting the
missing values, the KF smooths the CGM data. This mainly
affects times with high-frequent changes and outliers. Partic-
ularly, faults such as spikes that suggest a sudden increase
of glucose could be mistaken as meals. The KF was applied
to remove non-physiological glucose changes from the data.
Such non-physiological changes would compromise the per-
formance of the classifier if they were included in the training
set. Figure 1 shows an example where the CGM measurements
spike to a value more than 100 mg/dL lower and return to the
previous range within one hour. The KF is able to reduce the



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2019.2908897, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. XX, MMM 2019 3

TABLE I
DEMOGRAPHIC INFORMATION OF THE STUDY POPULATION CONSISTING OF 12 CHILDREN (8 MALES, 4 FEMALES). REPORTED ARE MEAN VALUES WITH

STANDARD DEVIATION IN PARENTHESES. IU: INSULIN UNITS; BW: BODY WEIGHT.

Age [years] Diabetes duration [years] HbA1c [%] Weight [kg] Size [cm] BMI [kg/m2] Average daily insulin [IU/(kg BW)]
7.3 (4.7) 3.9 (3.1) 7.2 (0.8) 31.6 (21.1) 122.7 (34.3) 18.4 (2.6) 0.8 (0.1)

TABLE II
MARKED MEALS WITH TIMING OF INSULIN BOLUSES RELATIVE TO MEAL
ONSET. THE COLUMN ’TOTAL’ SUMMARIZES THE NUMBER OF MEALS FOR

EACH PATIENT. THE COLUMN ’INCLUDED’ REPORTS THE NUMBER OF
INCLUDED MEALS THAT DO NOT VIOLATE THE EXCLUSION CRITERIA.

Number of confirmed meals with
Patient Pre-meal At-meal Post-meal No Total Included

bolus bolus bolus bolus
1 7 17 45 16 85 48
2 4 25 10 12 51 41
3 14 19 39 16 88 57
4 24 11 16 26 77 45
5 6 9 9 42 66 34
6 1 12 14 38 65 29
7 5 5 14 38 62 44
8 4 15 26 41 86 48
9 6 12 23 40 81 56

10 18 19 11 31 79 38
11 9 18 14 16 57 25
12 3 4 7 29 52 27

Sum 101 166 228 345 849 492

spike, thereby reducing the risk of false meal detections caused
by such outliers.

B. Construction of training set

We focused on glucose excursions that were caused by
meals and that should have been mitigated by (a larger amount
of) insulin. These are the meals that should be targeted by an
automatic meal detection method. Small meals or snacks that
do not cause a significant increase of glucose do not need to be
detected because the nominal control system can be assumed
to be capable of mitigating their glucose-increasing effect in
a sufficient manner. In order to allow us to compare detection
times relative to the meal onset, the beginning of the marked
meals was adjusted: it was shifted to the first instance (in
close proximity to the marked time), where the CGM changed
with more than 1 mg/dL/min. If this rate of change was not
reached in the 15 min before or after the marked meal, the
meal was excluded. Along the same lines, meals that were
well compensated by the administered insulin were excluded.
Again, the reason for this exclusion is that those meals do
not reflect a situation in which an automatic meal detection is
needed. An automated method should instead be capable of
detecting meals that are not regulated, and also be designed
for that purpose. We defined that meals with an increase of
at least 40 mg/dL within the first two postprandial hours are
not (or only insufficiently) regulated meals. The last column
of Table II summarizes the number of included meals that do
not violate these criteria.

Classifiers require a comprehensive training set that rep-
resents the states to be classified. The classification task for
early meal detection is to differentiate between “meal onset”

and “no meal onset”. The class ”meal onset” is defined by
the marked meals. The class ”no meal onset” was assigned to
times when neither meals were confirmed nor the bolus wizard
has been used. Times with use of bolus wizard (that were not
marked as meal by the experts) were excluded because food
might have actually been taken. Therefore, an interval starting
30 min before and ending 60 min after the logged use of the
bolus wizard (with an entered carbohydrate amount unequal
0) was omitted.

III. METHODS

A. Methods for meal detection

Two methods using classification of horizons were com-
pared to two methods based on threshold violations. The four
implemented methods are:

1) Classification of estimated Ra horizons: The proposed
meal detection by classification is based on estimations of the
glucose rate of appearance Ra. A version of the Bergman
model [17] is used to estimate Ra with a moving horizon es-
timator. Linear discriminant analysis (Appendix B) is applied
to the Ra horizons from MHE. A more detailed description of
MHE and LDA can be found in Appendix A and Appendix B,
respectively.

The last 20 nodes of the estimated Ra horizons, i.e. a period
of the most current 100 min, are used for detection. A horizon
with a meal onset falling within the horizon’s most current
60 min, i.e. the horizon ends no later than 60 min after meal
onset, is designated to the class “meal onset”. All others are
assigned to the class “no meal onset”. Thus, the “meal onset”-
class does not cover the whole prandial period. That ensures
that the classification is trained to detect the onset of meals.
The training, validation and testing is topic of Section III-C.

2) Classification of CGM horizons: Meals are detected by
classifying the glucose measurements without running them
through an MHE. Not the raw measurements are used, but
the smoothed CGM values. The feature matrix with 100 min
long horizons is built in the same way as for the classification
of the Ra horizons (Appendix B). Also in this case, the
LDA classifier is trained following the procedure described
in Section III-C.

3) Threshold on current Ra estimate: Meal detection by
classification is compared to a method that checks the current
Ra estimate against a threshold. A meal is detected if the
most current Ra estimate exceeds the threshold. The current
estimate at each time step corresponds to the last value of the
horizon. In a previous study using the unscented Kalman filter
(UKF), meals of various glucose content were detected if the
estimated glucose rate of appearance exceeded 2 mg/dL/min
[7]. The value of this threshold was not fixed here but tuned
according to the protocol in Section III-C.
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4) GRID algorithm: The Glucose Rate Increase Detector
(GRID) by Harvey et al. [6] applies thresholds to the glucose
measurements and its rate of change. The training set of
the original study comprised 12 adults with a mean age
of 53 years. To adapt the GRID algorithm to the pediatric
population of this study, we tuned the thresholds as reported
in Section III-C.

B. Performance measures of meal detection

A meal detection is defined as a true positive (TP) when
the confirmed meal is detected within 60 min from its start.
A false negative (FN) detection occurs if the meal is not
detected within this period. Instances of detection out of the
first postprandial hour are regarded as false positives (FP) if
they do not fulfill at least one of the following criteria:

Use of bolus wizard
Occasionally, patients used the bolus wizard and
entered an amount of carbohydrates at times where
the physicians did not mark a meal. Samples in the
interval [−30,+60] min around such usage of the
bolus wizard were left out because it is uncertain
whether the carbohydrates were actually taken and
when, or if the bolus wizard was rather used to set
a correction bolus.

Marked by physicians
A detection of a meal that was marked by the experts
but excluded according to the criteria inSection III-C
is not counted as FP. The FP detection is paused for
30 min after such meal markers.

Missing CGM data
When CGM data has been missing for more than 2 h,
this period (plus 300 min to re-establish full MHE
horizons) was excluded. Shorter periods of missing
CGM data were included.

Consecutive TP samples are counted as a single TP instance.
Likewise, consecutive FPs are counted as one single FP
detection. The FP detections were compared per day. For that,
the number of FPs was divided by the number of days included
in the test data.

Based on TP and FN, the sensitivity S is calculated:

S =
TP

TP + FN
. (1)

It is unknown whether the patients ate at times beyond the
marked. Thus, the examination of true negative (TN) meal
detections is omitted and the specificity cannot be evaluated
either.

C. Training, validation and tuning procedure

The meal detection by the four different methods is tested
in 10 cross-validated Monte Carlo runs. In each run, the data
of the 12 subjects is randomly divided into three sets. Each set
contains the data of four subjects. The training and validation
sets are used to train and tune the methods, while the third
set is left out for testing. This test set is used to evaluate
the performance of meal detection according to the measures
described in Section III-B.

Train	
classifier

10	Monte	
Carlo	runs

Training	
set:	4

Validation	
set:	4

Test	set:
4

Validate	
classifier

Tuning

Test	
classifier

Fig. 2. Procedure of training, validation and testing of classification methods.
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Fig. 3. Illustration of the tuning method by grid search. This example
shows the grid search of the threshold tuning on the Ra estimate. The
maximum number of TPs is defined by the number of meals in the training
set (horizontal, dashed line).

1, 2) Classification of Ra and CGM horizons: The LDA
classifier is used to investigate meal detection by classification
of Ra and CGM horizons. Figure 2 illustrates the procedure of
training, validation and testing of the classifiers. The classifiers
are fitted to the training set and then applied to the validation
set. A grid search is conducted to find the parameters of the
LDA classifier that minimize the classification error of the
validation set. The classification error is rated by means of
the mean squared error between the real and the predicted
response vector. The classifier tuning that results in the lowest
mean squared error is chosen and tested on the test set.
The meal detection performance of these tests are eventually
compared to the meal detection by the other methods.

The parameters of the LDA classifier are varied as follows:
δ = 10[−15,−12,··· ,3], γ = [0, 0.1, · · · , 1].

3, 4) Threshold on Ra estimate and GRID algorithm: The
classification error is unsuited to evaluate the performance
of the other two methods because they are not trained to
fit the response vector. Instead, the goal during tuning is to
detect the meals in accordance with the measures defined in
Section III-B. The number of TP and FP meal detections are
used as criteria to find the best thresholds. An ideal meal
detection would detect all meals and not cause any false alarm
(maximum TP, no FP). The Euclidean distance between this
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Fig. 4. Number of true positive and false negative meal detections. One
marker indicates the results of one Monte Carlo run. The bold marker is the
average of the Monte Carlo runs.

ideal point and the one achieved with a particular tuning is
used to quantify the performance. Figure 3 illustrates that the
tuning with the minimum distance to the ideal point is chosen.
Both the training and the validation sets were combined for
the tuning of the Ra threshold and the parameters of the GRID
algorithm.

The following thresholds on the Ra estimate were tested:
[1.5, 1.6, . . . , 4] mg/dL/min.

Three parameters of the GRID algorithm were tuned:
the minimum glucose concentration (Gmin), the rate of
change over the last three measurements (∆Gmin,3/∆t)
and the rate of change over the last two measurements
(∆Gmin,2/∆t). The first tuning parameter that imposes a
minimum CGM value to trigger meal detection was varied
in the range [110, 120, . . . , 150] mg/dL. The two latter were
varied with a step size of 0.1 mg/dL/min; ∆Gmin,3/∆t be-
tween 1.2 and 1.7 mg/dL/min and ∆Gmin,2/∆t between 1.3
and 1.8 mg/dL/min. Should the current glucose concentration
exceed Gmin and change faster than defined by one of the rate
parameters, a meal is detected.

IV. RESULTS

Figure 4 presents the performance by means of sensitivity
towards meals and false alarms per day. Each cross-validated
Monte Carlo run is represented by one marker. The bold
markers in Fig. 4 indicate the average over all Monte Carlo
runs with the same method. Tables IV to VII in the appendix
contain the numerical values for each Monte Carlo run.

The sensitivity of classification of Ra horizons by LDA lies
above 0.88 with less than 2 false alarms per day. A similar
rate of false positive detections occurs when LDA is applied
to the CGM horizons. The sensitivity towards meals is also
similar compared to the classification of Ra horizons.

A decreased sensitivity is observed for the thresholding of
the most current Ra estimate. While the sensitivities spread
over a wider range, the thresholding of Ra results in an
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Fig. 5. Time of detection after meal start. One bar indicates the average time
over all Monte Carlo runs.

average sensitivity of 0.64 and up to 1.7 false alarms daily.
The sensitivity of the GRID algorithm to the meals in the test
set was 0.2 with 2.4 to 3.3 false positives per day. Thus, the
GRID algorithm showed overall the worst performance in this
study with the current set-up.

The time of detection from meal start is compared in Fig. 5.
One bar represents the average over the 10 Monte Carlo runs
with the particular method. The fastest average detection of
12 min was achieved by classifying CGM data by LDA. The
classification of Ra horizons by LDA follows with 19 min.
Meal detection by checking the most current Ra estimate
against a threshold resulted in an average detection time of
33 min. The GRID algorithm revealed meals on average within
43 min.

In total, both classification methods based on analyzing hori-
zons detected more meals in shorter time than the threshold-
based methods.

V. DISCUSSION

This study demonstrates that the classification of estimated
states or even CGM data can be used for fast meal detection.
The comparative methods are used here as representatives of
threshold-based methods. They were tuned to ensure compa-
rability but may perform better when tuned differently.

The classification of estimated Ra horizons combines ad-
vantages of model-based and data-driven methods. The under-
lying model forces the estimated rate of glucose appearance to
be physiologically meaningful (within the limits of the model),
while the classification avoids to define a single decisive
threshold. The estimator model should describe the general
dynamics of the BGL, but it does not need to accurately map
the glucose-insulin dynamics. Instead, the classification can
compensate for structural mismatch between model and the
real metabolism. Even if an estimated state does not conform
with its real equivalent, the estimates will be classified as
those in similar situations of the training data. MHE considers
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a whole horizon of original measurements in each iteration.
Other estimators such as the Kalman filter emphasize the most
current measurement and summarize the information of all
previous measurements in the covariance of the most current
estimate [18]. Moreover, constraints on states and parameters
are explicitly considered by the MHE.

The classification of CGM horizons was as sensitive to
meals as the classification of Ra horizons. Together with
slightly fewer false alarms and an on average 7 min faster
detection, the moving horizon estimation might be unnecessary
but time-consuming. Further studies should investigate the
benefits that an estimation step could add to the robustness
of the method. A different or adapted estimator model is one
possible attempt.

In practical use, threshold-based methods necessitate careful
tuning to fit the purpose. Moreover, a threshold used for
sensible decisions in diabetes management should be revised
on a regular basis to consider adaptations of lifestyle, weight
changes, or an overall improved or diminished diabetes ther-
apy. For safety reasons, this tuning should preferably be done
under supervision of a health care-provider. The classification
method (LDA), on the other hand, could adapt automatically:
The user would need to confirm the onset of meals occasion-
ally. This could be requested in a similar way as finger prick
measurements to calibrate the CGM. The effect of erroneous
inputs can be diminished by a large training set, whereas the
consequences of a poorly chosen threshold would be harder to
compensate. To restrict the training set to a practical size and
to keep it up to date, the oldest meals could be replaced after
a defined period. Although it is a strength if a method does
not require individualization, the performance might increase
if the method is trained using only data from the patient whose
meals shall be detected. Individual meal dynamics would be
considered in that way. To test this hypothesis, a sufficient
amount of data for one patient is needed.

The data was not particularly designed for this study
but originates from unrestricted, free-living conditions. Meals
were therefore marked retrospectively by experienced endocri-
nologists. Given the high variability among persons and within
the same patient [19], the timing of carbohydrate intake is
somewhat uncertain and may have led to a few false assess-
ments. This was considered by careful definition of meal-free
periods in the sets used to train and validate the classifiers
(Section II-B), as well as in the analysis of FP meal detections
(Section III-B). On the other hand, the free-living character of
the data set is a strength, as it shows the realistic variability of
clinical data and confirms the results of the previous simulation
study [15] on real data.

A data set collected under more controlled conditions should
be used to confirm the findings of this pilot study and further
evaluate meal detection by classification. In particular, a data
set with exact timing of the meal start and with information
about the type and amount of the ingested food should be
collected. One could also assess the possibility to estimate an
appropriate insulin bolus for the detected meal, or estimating
the meal type.

Other events leading to increased BGL may degrade the
performance of meal detection. Those situations, that require a

similar treatment as meals do, are not necessarily problematic.
For example, some of the patients used an insulin pump
function that suspends insulin infusion upon predicted hypo-
glycemia at normal BGL. Manual interference with this feature
by oral carbohydrate intake, intended to treat hypoglycemia,
during suspended insulin infusion may immediately lead to
higher BGL [20]. This is not a critical situation per se because
insufficient insulin has been administered compared to the
ingested carbohydrates. Contrary to this, an excursion that
appears like a meal in the beginning but is then followed by
a significant drop can be dangerous if insulin is automatically
dosed. A careful trade-off between early meal detection and
certainty about the actual presence of a meal is necessary.
Physical activity may be falsely classified as meal because
mixed and anaerobic exercises can result in rising BGL [21].
A reliable differentiation between meals and exercise should
be investigated. An activity monitor integrated into the system
could help to prevent such false meal detections [22].

The classification of meals can be extended to fault detec-
tion. The constraints on states and parameters in the MHE
force the Ra horizons to physiological values and changes. If
the method finds it physiologically impossible that an observed
change of glucose concentration was caused by a meal, no
solution will be found, or unusual dynamics of the states are
used to explain this situation. This might be exploited for
detection of system faults.

Furthermore, the robustness and safety of meal detection
could be increased by a voting scheme that requires two or
more consecutive samples to be classified as a meal. This more
conservative approach is safer but will delay the meal detection
time. Another option is to only trigger meal detection when
the glucose concentration exceeds a minimum value [6].

VI. CONCLUSION

The proposed meal detection by classification of horizons of
the estimated rate of glucose appearance or CGM data success-
fully revealed meals in a clinical data set. The classification
of horizons of the estimated rate leads to slightly more true
and fewer false detections, compared to the classification of
the CGM horizons. The time of detection after meal start is
promising at the same time.

The advantages of the proposed methods are:

• only the commonly available CGM data is used as input;
• no individual tuning is needed;
• adjustments to changing physiology can be done similar

to CGM calibrations;
• and the same method could be used for differentiation

between meal sizes if different classifiers are trained
accordingly.

APPENDIX

A. Moving Horizon Estimation (MHE)

The moving horizon estimator for meal detection has been
described previously [15].
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As a model-based technique, the MHE is based on a set
of ordinary differential equations (ODEs) that describe the
system:

ẋ(t) = f̃(x(t),u(t)) (2a)
y(t) = h(x(t)) (2b)

with the vectors of differential states x ∈ Rnx , inputs
u ∈ Rnu , and outputs y ∈ Rny .

An augmented version of the non-linear model by Bergman
et al. [17] was chosen to describe the glucose-insulin dy-
namics. The model has originally two states, the glucose
concentration in plasma G (mg/dL) and the action of insulin
X (1/min). The rate of appearance of glucose in plasma Ra
(mg/dL/min) and the insulin sensitivity SI (ml/U/min) are
added to the state vector. The glucose appearance in plasma Ra
is modeled by a first order Markov process, while the insulin
sensitivity SI is assumed constant. The resulting model for
the augmented states x = [G,X,Ra, SI ]

T is:

ẋ(t) =


−SGG(t)−X(t)G(t) + SGGb +Ra(t)

−p2X(t) + p2SI(t) (I(t)− Ib)
−Ra/τ

0

 (3)

y(t) = G(t) . (4)

The plasma glucose concentration G is the only measure-
ment y. Diffusion dynamics of glucose from plasma to the SC
tissue is not described in order to restrict the dimensionality
of the model. The SC measurements are instead substituted
for the plasma concentration in the measurement equation,
Eq. (4). Along the same lines, the absorption of insulin from
the SC tissue into the plasma is not modeled but the insulin
concentration in plasma I (pmol/L) remains as input.

The continuous equations in Eq. (2) must be discretized to
get a finite dimensional problem that can be solved. The direct
collocation method was used for discretization.

minimize
xj ,wj ,vj

J (5a)

s. t. xj+1 = f(xj ,uj) +wj (5b)
j = k −N + 1, ..., k − 1

yj = h(xj) + vj (5c)
j = k −N + 1, ..., k

xj,min ≤ xj ≤ xj,max (5d)
j = k −N + 1, ..., k .

All states and the measurements are subject to noise and dis-
turbances. This is indicated in the discretized model (Eq. (5))
where unknown disturbances are accommodated by the ad-
ditive process noise wj ∈ Rnx and the measurement noise
vj ∈ Rny .

The MHE solves the optimization problem by minimizing
the cost function J . At each time step k, a window of N
past measurements

{
yk−N+1, ...,yk

}
is provided to the MHE.

The MHE estimates the states {xk−N+1, ...,xk} that best
explain the given measurements. The optimized state values
xj must fulfill the process and measurement equations in (5b)
and (5c), respectively. The lower and upper bounds in (5d)
constrain the state estimates additionally. The control variables
{uk−N , ...,uk−1} are set to their known values at time k.

The objective function (Eq. (5a)) was chosen to explicitly
consider both process and measurement noise vectors, wj and
vj :

J = ‖xk−N+1 − x̄k−N+1‖2P−1
k−N+1

(6a)

+

k−1∑
j=k−N+1

‖wj‖2R−1 (6b)

+

k∑
j=k−N+1

‖vj‖2Q−1 . (6c)

The first term of Eq. (6a) represents the arrival cost which
considers the confidence in the initial estimate x̄k−N+1 (first
state within the estimation horizon) by means of the estimated
error covariance matrix Pk−N+1 ∈ Rnx×nx . The second and
third terms penalize deviations from the process f(xj ,uj)
(Eq. (6b)) and the measurement equations h(xk) (Eq. (6c)),
respectively.

As time passes, the confidence in the initial state may
change as well and the arrival cost needs to be updated.
Here, a smoothing update of the initial state x̄k−N+1 and its
covariance Pk−N+1 was chosen [23]. By tuning the matrices
R ∈ Rnx×nx and Q ∈ Rny×ny , the magnitudes of process
and measurement noise are weighted.

The non-linear problem was implemented with CASADi
[24] in Matlab and solved using IPOPT [25].

Estimation set-up: With the motivation of detecting meals,
it is assumed that the insulin infusion is close to the basal rate
that keeps the glucose concentration stable. On that assump-
tion, the actual value of I has minor impact on the estimation.
The basal glucose concentration Gb and the basal insulin
concentration Ib have been set to 36 mg/dL and 0 pmol/L,
respectively. The remaining parameters are not individualized
either. Descriptions of these generic parameters, the used
values and their origin are provided in Table III.

TABLE III
PARAMETER VALUES USED IN THE ESTIMATOR MODEL (EQ. (3)).

Parameter Description
SG 1.4 · 10−2 min−1 [26] Glucose effectiveness
p2 3.0 · 10−2 min−1 [26] Rate constant of insulin action
τ 40min [27] Meal absorption time constant
SI,nom 8.56 · 10−4 ml/U/min [28] Nominal insulin sensitivity

A sampling time of 5 min is chosen as it is the most
common sampling rate of CGM devices. The optimization
problem is constructed at time samples 5 min apart from each
other over the whole horizon. These samples are called nodes.
The number of nodes in a horizon of e.g. 300 min is thus
N = 300 min/5 min = 60.

The initial state (i.e. x̄k−N+1 and P−1
k−N+1 in (6) at k = 1)

was defined as x̄0 =
[
y0, 10−4, 0, SI,nom

]T
with an initial

covariance P0 = I . The covariance P of the initial state is
part of the arrival cost calculation; a smoothing update based
on an extended Kalman filter (EKF) was chosen [23]. The pro-
cess and measurement covariances used in this EKF scheme
were Q̃ = diag (10, 10, 1, 1) and R̃ = 100, respectively.
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The weighting matrices in the MHE cost function (6) were
Q = diag (50, 10, 10, 1)

2 for the process noise and R = 102

for the measurement noise. States and noise vectors were
bounded as xmin

wmin
vmin

 ≤
xw
v

 ≤
xmax
wmax
vmax

 , (7)

in which the inequalities should be interpreted elementwise,
with

xmin =
[
36,−10−2, 0, 0.5 · SI,nom

]T
, (8a)

xmax =
[
300, 10−2, 10, 2 · SI,nom

]T
, (8b)

wmin =
[
−10−4,−10−8, 0,−10−8]T , (8c)

wmax =
[
10−4, 10−8, inf, 10−8]T , (8d)

vmin = −108 and (8e)

vmax = 108 . (8f)

Constraints on the process noise ensure that the glucose
rate of appearance cannot be negative and that the insulin
sensitivity changes only slowly. The MHE has been tuned
to the data of one day for one subject different from those
included. The tuning aimed to minimize the error between the
measured and the estimated glucose concentration.

B. Classification using pattern recognition by linear discrim-
inant analysis

The goal of pattern recognition is to discriminate between
different classes within a data set. As we want to differentiate
between “meal onset” and “no meal onset”, we focus on binary
classification. Based on characteristic features, binary clas-
sification algorithms separate observations into two classes.
The pattern recognition methods apply supervised learning,
i.e. they are trained on a training set with known classes.

As features we use the estimated glucose rate of appearance
Ra and the CGM data, x ∈ {Ra, G}. One type of features is
arranged in the feature matrix X ∈ RL×N :

X =


x(k −N) . . . x(k − 1) x(k)

x(k −N − 1) . . . x(k − 2) x(k − 1)
...

. . .
...

...
x(k −N − L) . . . x(k − 1− L) x(k − L)

 .
(9)

Subsequent observations may overlap by L− 1.
An output vector Y ∈ RN defines the known classes by

assigning either 0 or 1 to the corresponding columns in Eq. (9).
A 0 indicates that the observation in X contains “no meal
onset”, while 1 indicates a “meal onset”:

Y = [0, 0, 0, 1, 1, 1, 1, 0, 0, . . .] . (10)

The example in Eq. (10) indicates a meal onset for the
observations 4–7, columns 4–7 of the feature matrix Eq. (9).

Linear discriminant analysis (LDA) is one of the standard
classification methods in pattern recognition. LDA applies
Bayes’ theorem to assign posterior probabilities that an obser-
vation with the features x belongs to the class “meal onset”.

A new observation is assigned to the class for which the linear
discriminant function is maximum [29].

The Matlab function fitcdiscr was used to train an LDA
model. The tuning of its parameters, the linear coefficient
threshold delta and the regularization parameter gamma, is
discussed in Section III-C.

C. Numerical results

TABLE IV
MEAL DETECTION BY CLASSIFICATION OF Ra HORIZONS. RESULTS OF

EACH MONTE CARLO RUN.

Monte Carlo Sensitivity False alarms Time of detection
run (Eq. (1)) per day after meal start [min]
1 0.91 1.40 19.17
2 0.92 1.82 19.62
3 0.93 1.31 17.78
4 0.91 1.72 17.68
5 0.93 1.51 18.35
6 0.93 1.80 18.82
7 0.91 1.04 19.70
8 0.93 1.51 19.86
9 0.94 1.27 17.06

10 0.88 1.64 17.87
Average 0.92 1.50 18.59

TABLE V
MEAL DETECTION BY CLASSIFICATION OF CGM HORIZONS. RESULTS OF

EACH MONTE CARLO RUN.

Monte Carlo Sensitivity False alarms Time of detection
run (Eq. (1)) per day after meal start [min]
1 0.88 1.26 13.15
2 0.95 1.56 13.36
3 0.89 1.11 11.52
4 0.90 1.63 9.29
5 0.92 1.43 10.92
6 0.90 1.76 11.19
7 0.87 1.02 12.73
8 0.94 1.41 13.41
9 0.89 1.14 11.10

10 0.85 1.40 11.12
Average 0.90 1.37 11.78

TABLE VI
MEAL DETECTION BY THRESHOLD ON CURRENT Ra ESTIMATE. RESULTS

OF EACH MONTE CARLO RUN.

Monte Carlo Sensitivity False alarms Time of detection
run (Eq. (1)) per day after meal start [min]
1 0.74 1.46 31.75
2 0.41 0.94 36.00
3 0.75 1.21 30.91
4 0.77 1.56 30.96
5 0.32 0.42 38.67
6 0.38 1.00 36.90
7 0.74 1.50 30.41
8 0.75 1.48 30.57
9 0.80 1.70 30.19

10 0.76 1.53 30.30
Average 0.64 1.28 32.67
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TABLE VII
MEAL DETECTION BY GRID ALGORITHM. RESULTS OF EACH MONTE

CARLO RUN.

Monte Carlo Sensitivity False alarms Time of detection
run (Eq. (1)) per day after meal start [min]
1 0.19 2.97 44.72
2 0.24 2.62 44.05
3 0.16 2.52 43.80
4 0.24 3.28 47.05
5 0.17 2.56 37.71
6 0.15 2.75 39.80
7 0.24 2.96 43.08
8 0.18 2.41 36.43
9 0.26 2.77 44.17

10 0.25 3.27 44.50
Average 0.21 2.81 42.53
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