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Abstract. This study presents a case-based reasoning (CBR) system
that makes use of general domain knowledge - referred to as a knowledge-
intensive CBR system. The system applies a Bayesian analysis aimed at
increasing the accuracy of the similarity assessment. The idea is to em-
ploy the Bayesian posterior distribution for each case symptom to modify
the case descriptions and the dependencies in the model. To evaluate the
system, referred to as BNCreek, two experiment sets are set up from a
"food" and an "oil well drilling" application domain. In both of the ex-
periments, the BNCreek is evaluated against two corresponding systems
named TrollCreek and myCBR with Normalized Discounted Cumulative
Gain (NDCG) and interpolated average Precision-Recall as the evalu-
ation measures. The obtained results reveal the capability of Bayesian
analysis to increase the accuracy of the similarity assessment.

Keywords: CBR · Bayesian Analysis · Similarity assessment.

1 Introduction

Knowledge-intensive case-based reasoning (CBR) enables cases to be matched
based on semantic rather than purely syntactic criteria. It captures and reuses
human experiences for complex problem-solving domains [1], and generates tar-
geted explanations for the user as well as for its internal reasoning process.

Although pure Case-based reasoning is an efficient method for complex do-
mains problem solving, it is not able to generate an explanation for the pro-
posed solution, beyond the cases themselves. Aamodt [2] combined CBR with a
semantic network of multi-relational domain knowledge, which allows the match-
ing process to compute the similarity based on semantic criteria, leading to a
capability of explanation generation. A challenge with that method was the lack
of a formal basis for the semantic network. It makes the inference processes
within the network difficult to develop and less powerful than desired. The pro-
cedural semantic inherent in that type of network allows for a large degree of
freedom in specifying the network semantics underlying the inferences that can
be made, such as the value propagation and various forms of inheritance [3].
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The disadvantage is that inference methods are implicit and hidden in the code,
hence difficult to interpret and compare to other inference methods. In the past
network a prototype-based semantic was implemented, as a way to handle un-
certainly. The need for a clearly defined semantic and a more formal treatment
of uncertainty led to some initial investigations into how a Bayesian Network
(BN) model could be incorporated [4], [5]. A Bayesian framework includes an
inference engine and builds probabilistic models without introducing unrealis-
tic assumptions of independencies. It enables the conditioning over any of the
variables and supports any direction of reasoning [7], [8], [6].

BNCreek, as a knowledge intensive system, provides a formal basis for the
causal inference within the knowledge model, based on Bayesian probability
theory.

2 Related work

Been et al. [9] integrated BN and CBR to model the underlying root causes and
explanations to bridge the gap between the machine learning methods and hu-
man decision-making strategies. They used case-based classifiers and BN as two
interpretable models to identify the most representative cases and important fea-
tures. Bruland et al. [10] studied reasoning under uncertainty. They employed
Bayesian networks to model aleatory uncertainty, which works by assigning a
probability to a particular state given a known distribution, and case-based rea-
soning to handle epistemic uncertainty, which refers to cognitive mechanisms
of processing knowledge. Houeland et al. [8] presented an automatic reasoning
architecture that employs meta reasoning to detect the robustness and perfor-
mance of systems, which combined case-based reasoning and Bayesian network.
Tran et al. [11] used a distributed CBR system to assist operators in feature solu-
tions for faults by determining the cases shareing common symptoms. Aamodt
et al. [4] focused on retrieval and reuse of past cases. They proposed a BN-
powered sub-model as a calculation method that works in parallel with general
domain knowledge. Kofod-Petersen et al. [5] investigated weaknesses of Bayesian
networks in structural and parametric changes by adding case based reasoning
functionality to the Bayesian network. Lacave [6] reviewed accomplished stud-
ies in Bayesian networks explanation and addressed the remaining challenges in
this regard. Koton [12] presented a system called CASEY in which, CBR and
a probabilistic causal model are combined to retrieve a qualified case. It takes
advantage of the causal model, as a second attempt, after trying a pure CBR to
solve the problem.

Aamodt [2] presented a knowledge intensive system called TrollCreek, which
is an implementation based on the Creek architecture for knowledge-intensive
case-based problem solving and learning targeted at addressing problems in open
and weak-theory domains. In TrollCreek, case-based reasoning is supported by a
model-based reasoning component that utilizes general domain knowledge. The
model of general knowledge constitutes a combined frame system and semantic
network where each node and each link in the network are explicitly defined in
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their own frame object. Each node in the network corresponds to a concept in
the knowledge model, and each link corresponds to a relation between concepts.
A concept may be a general definitional, prototypical concept or a heuristic rule
and describes knowledge of domain objects as well as problem solving methods
and strategies. Each concept is defined by its relations to other concepts repre-
sented by the set of slots in the concept’s frame definition. A case is also viewed
as a concept (a situation-specific concept), and hence it is a node in the network
linked into the rest of the network by its case features. The case retrieval process
in TrollCreek is a two-step process, in line with the two-step MAC- FAC model
[14]. The first step is a computationally cheap, syntactic matching process, and
the second step is a knowledge-based inference process attempts to create corre-
spondences between structured representations in the semantic network. In the
first step, cases are matched based on a weighed number of identical features,
while in the second step, paths in the semantic network represent relation se-
quences between unidentical features, are identified. Based on a specific method
for calculating the closeness between two features at the end of such a sequence,
the two features are given a local similarity score.

Some of the aforementioned research apply BN in different segments of CBR.
The research presented here has been inspired by TrollCreek and is partly based
on it. However, it aims to improve the accuracy of the retrieval by taking ad-
vantage of both BN and CBR. The main idea behind BNCreek is to inject the
Bayesian analysis into a domain ontology (semantic network) to assist the re-
trieve phase of a knowledge-intensive CBR system. BNCreek and TrollCreek
conceptually work on the same ontology and the difference between them stems
from the relational strengths, which in Trollcreek are static whereas in BNCreek
change dynamically. In the present paper, we investigate the effects of Bayesian
inference within the Creek architecture as a specific knowledge intensive CBR
system. In section 3, the structure of BNCreek and its retrieve process are pre-
sented. Section 4 evaluates our approach by NDCG and interpolated average
precision/recall measures. Section 5 discusses the obtained results and section 6
concludes the paper and names the future steps.

3 The BNCreek methodology

BNCreek is a knowledge-intensive system to address problems in uncertain do-
mains. The knowledge representation in BNCreek is a combination of a semantic
network, a Bayesian network, and a case-base, which together constitutes the
knowledge model of the system as a three-module structure. The semantic mod-
ule consists of the ontology nodes, which are connected by structural, causal, etc
relations (e.g., "subclass-of", "part-of", etc.). This module enables the system to
conduct semantic inference through various forms of inheritance. The Bayesian
module is a sub-model of the semantic module and consists of the nodes that
are connected by causal relations. That module enables the system to do the
Bayesian inferences within the knowledge model in order to extract extra knowl-
edge from the causes behind the observed symptoms and to utilize it for the
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case similarity assessment process. There is an individual module named Mirror
Bayesian network, which interacts with the Bayesian module and is responsible
for the Bayesian inference computational issues. The Mirror Bayesian network
is created to keep the implementation complexity low and provides scalability
for the system. The case base layer is connected to the upper layers through the
case features (features are nodes of the Bayesian or the semantic networks) each
possessing a relevance factor, which is a number that shows the importance of a
feature for a stored case [2].

Fig. 1. The graphical representation of BNCreek.

Fig. 1 illustrates the graphical representation of the system structure. Each
box illustrates one module of the BNCreek, and the inner boxes make up the
outer ones, i.e., "semantic network" and "Bayesian network" modules form
the "General domain knowledge model"; and the "General domain knowledge
model", "Case Base" and "Mirror Bayesian network" form the BNCreek system.
The solid arrows show the direction of connecting nodes inside and between mod-
ules and the dotted arrow indicates the information flow between the "semantic
network", "Bayesian network" and the "Mirror Bayesian network".

3.1 The retrieve process

The retrieve process in the current BNCreek system is the mature version of
the process earlier outlined for BNCreek1 [13]. In the version presented here, the
Bayesian analysis is integrated into the retrieve procedure and is an essential part
of it, in contrast with BNCreek1 in which the semantic and Bayesian analysis
were working in parallel and their results were combined.

The retrieve process in BNCreek is a master-slave process, which is triggered
by observing a new raw case, i.e. knowledge about a concrete problem situation
consisting of a set of feature names and features values [2]. In BNCreek the
features are of two types:
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1. Observed features that are entered into the case by the user (the raw case
features).

2. Inferred features that are entered into the case by the system.

Each of the Observed and Inferred features could have three types, i.e., the
symptom features (symptoms), the status features (status) and the failure fea-
tures (failures). Below the retrieve process is presented utilizing a run-through
example from the "food domain". The domain description and details can be
found in the "System evaluation" section.

Fig. 2. The upper cases are three sample raw cases from the food domain, and the
two lower cases are the corresponding pre-processed cases descriptions. "st." and "LC"
stand for status and long cooked, respectively.

As the run-through example, consider a "Fried chicken" dish with reported
"Juiceless food" and "Smelly food" symptoms as a raw input case. The case
is entered by a chef into BNCreek, to find the failures behind the symptoms.
The raw case description consists of the dish ingredients like "Enough salt" as a
status feature and the reported symptoms, illustrated on the upper left side of
Fig. 2.

The master phase is based on inferencing in the Bayesian module. It has
three steps.

The first step: The system utilizes the symptoms from the raw case descrip-
tion, i.e., "Juiceless food" and "Smelly food" and applies them to the Bayesian
network module. The Bayesian inference results in the network posterior dis-
tribution (Algorithm 1, lines 1 and 2) utilizing the Eq. 1, in which " θ", "p(θ)"
and "p(symptoms|θ)" stand for the parameter of distribution, prior distribution
and the likelihood of the observations, respectively. The Bayesian module poste-
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rior distribution is dynamic in nature, i.e., the probabilities of the dependencies
change as a new raw case is entered.

p(θ|symptoms) ∝ p(symptoms|θ)× p(θ) (1)

The second step: This step extracts informative knowledge from the knowl-
edge model and adds it to the case description.

BNCreek considers the network posterior distribution and extracts the causes
behind any of the case description symptoms. Due to the nature of the Bayesian
networks, the parent nodes cause the children. So there would be several causes
for any symptom that could be extracted. A threshold for the numbers of ex-
tracted causes will determine by the expert based on the knowledge model size.
In the given example, the symptoms’ causes are as follows: "Little oil" causes
"Juiceless food"; "LC chicken" causes "Juiceless food"; "Little milk" causes
"Juiceless food"; "Much flour" causes "Juiceless food" and "Not enough mari-
nated" causes "Smelly food".

Algorithm 1: Retrieve in BNCreek
Input : An input raw case.
Output: A sorted list of retrieved failure cases and graphical causal explanations

1 Utilize the symptoms of the input raw case from its case description.
2 In the Bayesian module compute the Bayesian layer posterior beliefs given the symptoms.
3 Extract the cause of the applied symptoms.
4 Modify the raw input case description by adding the extracted causes or adjusting the

features.
5 Pass the posterior beliefs from the Bayesian network module into the Semantic network

module.
6 Adjust the semantic network module causal strengths utilizing the posterior distribution

from the Bayesian network module.
7 while not all the case base is tested do
8 Consider one case from case base.
9 Compute the explanation strength between any pair of input and retrieved case features.

10 Compute the similarity between input and retrieved case.
11 end
12 List the matched cases.
13 Generate a graphical causal explanation for the input case.

Then the case description is modified based on the extracted causes and
forms what is referred to as a pre-processed case description. The pre-processed
case consists of Observed and Inferred features, e.g., "Enough salt" and "Not
enough marinated", respectively. Which the "Not enough marinated" is added
and the "Little oil" is adjusted from "Enough oil" in the modification process
(see the bottom left side of Fig. 2 and Algorithm1, lines 3 and 4).

The third step: The obtained posterior distribution from the Bayesian net-
work module is passed to the semantic network module (Algorithm1, line 5).

The slave phase is based on inferencing in the semantic network module.
This phase has two steps.

The first step: The semantic network causal strengths are adjusted dynam-
ically corresponding to the Bayesian posterior beliefs, in contrast to the other
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Fig. 3. Part of the Bayesian beliefs before (prior) and after (posterior) applying the
symptoms into the network.

relations in the semantic network module, which are fixed (Algorithm1, line 6).
Fig. 3 illustrates part of the Bayesian network prior and posterior distribution,
respectively. In which the posterior beliefs will be utilized to adjust the semantic
network strengths.

The second step: This step utilizes the adjusted causal strengths and the pre-
processed case description and computes the similarity between the input case
and the case base.

The similarity assessment in BNCreek follows an "explanation engine" (Fig. 4)
with an Activate-Explain-Focus cycle [2]. Activate finds the directly matched fea-
tures between input and retrieved cases then the Explain tries to account for the
not directly matched features of the input and retrieved cases. Focus applies the
preferences or external constraints to adjust the ranking of the cases.

Fig. 4. The retrieve explanation cycle.

BNCreek considers each of the case base members at the time and utilizes
Dijkstra’s Algorithm [15] to extract all possible paths in the knowledge model
that represent relation sequences between any features in the input case (fi) and
all the features in the retrieved case (fj).

Consider case 2 as a retrieved case. Here, the partial similarity degree cal-
culation between "LC shrimp", a feature from the retrieved case, and the "LC
chicken", a feature from the input case, are presented. See Fig. 2 for cases descrip-
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Fig. 5. All possible Paths between "LC chicken" and "LC shrimp" features from the
input and retrieved cases, respectively.

tions and Fig. 5 for the extracted paths between the two features. The various
causal strengths reveal the effect of Bayesian analysis.

To explain the similarity strength between any coupled features, Eq. 2 is ap-
plied. In Eq. 2 the EXPS(fi, fj) and RS stand for the explanation strength of
featurei and featurej and the relation strengths, respectively. R and P demon-
strate the number of relations and paths between fi and fj .

EXPS(fi, fj) = 1−
∏P
p=1(1−

∏R
r=1RSrp) (2)

To compute the EXPS(fi, fj), first, the strengths of each path relations is
multiplied to achieve the path strength. Then the path strengths are multiplied
to achieve the total EXPS(fi, fj).

Consider "LC chicken" as fi, "LC shrimp" as fj and Fig. 5 for possible paths
between them. The 1 − pathstrength for the first path in Fig. 5 is 1 − (0.9 ∗
0.9 ∗ 0.9 ∗ 0.9), which is 0.35 and for rest of the paths will be equal to 0.47,
0.71, 0.51, 0.71, 0.71. The multiplication of them is approximately 0.04. Finally
the strengths between considered fi and fj is 1 − 0.4, which is 0.96. For the
situations where the paired features are the same (exact matched features), the
explanation strength is considered as 1.

sim(CIN , CRE) =
∑n

i=1

∑m
j=1 EXPS(fi,fj)∗RFfj∑n

i=1

∑m
j=1 β(EXPS(fi,fj))∗RFfj

+
∑m

j=1 RFfj
(3)

In Eq. 3, the (CIN ) and the (CRE) stand for the input and the retrieved
cases. The explanation strength of the featurei and featurej is demonstrated
by EXPS(fi, fj) and the relevance factor of the featurej is demonstrated by
RFfj . The number of the features in the input and the retrieved cases are shown
by ’m’ and ’n’, respectively.

The similarity between the input case (CIN ) and the retrieved case (CRE)
is computed by summing up the the explanation strength between fi and fj
multiplied by the fj relevance factor. The result is divided into the summation
of the fj relevance factor multiplied by β(EXPS(fi, fj)). The function of β is a
binary function, which is equal to one when EXPS(fi, fj) is not zero. See Eq. 3.

The calculation of the total similarity between case6 and case2 are presented
here. For the numerator of Eq. 3, the explanation strength between any cou-
pled features from the input and retrieved cases (e.g. "LC chicken" and "LC
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shrimp") is multiplied to the relevance factor of the retrieved case feature (i.e.,
"LC shrimp"), which is 0.96*0.9 and is equal to 0.86. Then the numerator is
1∗0.9+1∗0.9+1∗0.9+0.9∗0.89+0.9∗0.59+0.9∗0.85+0.9∗0.47+0.9∗0.56+
0.9∗0.96+0.9∗0.67+0.9∗0.73+0.7∗0.84+0.7∗0.65+0.7∗0.89+0.7∗0.89, which is
rounded to 10. In the denominator, for each feature from the input case, the rele-
vance factors of the retrieved case will be multiplied by the binary function β and
add together. β for any explained coupled feature is 1. For the directly matched
couples, the relevance factors of the retrieved case will be summed up once. Due
to the cases descriptions, cases 6 and 2 have 3 direct matched and 6 explained
features. Then the denominator will be (1∗0.9+1∗0.7+1∗0.7+1∗0.9)∗6 for the
explained coupled features plus 1∗0.9+1∗0.9+1∗0.7+1∗0.9+1∗0.7+1∗0.9+1∗0.9
for the direct matched coupled features, which is 25. Finally, the total similarity
between case6 and case2 is 10/25 that is 0.4.

The system computes the similarity between the input case and all the cases
from the case base (Algorithm1 lines 7 to 11).

3.2 Explanations in BNCreek

There are two uses of explanations in the knowledge-based systems. One is the
explanation that a system may produce for the user’s benefit, e.g., to explain its
reasoning steps or to justify why a particular conclusion was drawn. The other
one is the internal explanation a system may construct for itself during problem-
solving. BNCreek provides internal explanations for solving the problems, which
are related to the "explanation strength" between two concepts in the model. A
graphical causal explanation is generated to show the causal chains behind the
observed symptoms for the benefit of the user.

Fig. 6. An explanation structure from which a causal explanation in the food domain
can be derived.

Fig. 6 demonstrates a graphical causal explanation structure for "Fried chicken
(case 6)". The explanation is the result of Bayesian analysis given the two ob-
servations, i.e., "Juiceless food" and "Smelly food". BNCreek considers the case
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features and browses into the network to find the related causal chain. The left
part of Fig. 6 explains the seven possible causes for "Juiceless food" in which
the "LC chicken", "Little oil", "Little milk" and "Much flour" are related to the
case 6 with causal strengths of 0.7, 0.5,0.64 and 0.73, respectively. The causal
strengths demonstrate that "LC chicken" and "Much flour" have the most ef-
fect on causing the "Juiceless food". The right part of Fig. 6 shows two causal
chains for "Smelly food", i.e., "Little garlic" causes "Not enough marinated"
causes "Smelly food" and "Little onion" causes "Not enough marinated" causes
"Smelly food" with causal strengths of 0.32 and 0.28, respectively (Algorithm1
line 13).

The generated explanation in more uncertain domains like oil well drilling,
plays a significant role in computing the similarity (by providing explanation
paths) and clarifies the proposed solution for the expert.

4 System evaluation

To evaluate our approach, we set up two sets of experiments. One from the
"food domain", a kind of initial toy-domain, and the other one from the "oil
well drilling domain" the main investigated domain. Both of the experiments
aim to measure the capability of the system to prevent the failures utilizing
the observations. The application domains are tested by TrollCreek (version:
0.96devbuild), myCBR (Version: 3.1betaDFKIGmbH) and our implementation
of BNCreek. The results from the systems are evaluated against the "ground-
truth": domain expert predictions. The evaluation measures in this study are
NDCG and Interpolated Average Precision-Recall.

Normalized Discounted Cumulative Gain (NDCG) as a ranked based infor-
mation retrieval measure, values the highly relevant items appearing earlier in
the result list. Usually, NDCG reports at rank cuts of 5, 10 or 20, i.e., nDCG@5,
nDCG@10 or nDCG@20. The higher NDCG value shows the better performance
of the system [16].

NDCG does not penalize for missing and not relevant cases in the results,
so we utilized the Interpolated Average Precision-Recall measure to evaluate the
relevance of the retrieved cases at 11 recall levels.

4.1 Food domain experiment

The main type of application domains for the presented system is complex and
uncertain domains. Using our system for the smaller and more certain domains
such as the utilized version of the "food domain" wouldn’t be justifiable. How-
ever, Due to the simple nature of the "food domain", which leads to a better
understanding of the system process, a run-through example from this domain
is utilized and a set of evaluating experiments is set up.

Setup The food domain knowledge model is inspired by "Taaable ontology".
Taaable is a CBR system that uses a recipe book as a case base to answer cooking
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queries[17]. Some modifications are made to fit the ontology to the BNCreek
structure, i.e., adding causal relations. The causal relations present the failures
of using an inappropriate amount of ingredients. Fifteen recipes are examined
and simplified to their basic elements (e.g., Gouda cheese simplified to cheese).
The resulted knowledge model consists of 130 food domain concepts and more
than 250 relations between them. Eleven failure cases are created and utilized as
the queries of the experiment. Each query applies to the case base in leave one
out evaluation manner, which results in 11 query sets. The upper side of Fig. 2
demonstrates three samples of raw food failure cases descriptions.

Fig. 7. NDCG values at cuts of 5 and 10 for food domain experiment

Food experiment results Utilizing the similarity scores of BNCreek, myCBR
and TrollCreek, the NDCG values are computed against the expert predictions
and reported at NDCG@5 and 10 in Fig. 7.

Fig. 7 illustrates that BNCreek with 0.8253 and 0.9186 values at NDCG@5
and 10 ranked the retrieved cases closer to the expert prediction in comparison
to the TrollCreek and myCBR with 0.7421, 0.8737 and 0.7635, 0.8791 values.

The overall performance of the three systems is high and not so different,
which can be explained by the fact that this experiment is set up on a small case
base. Besides that, the BNCreek showed a somewhat better performance than
the others in both cuts.

4.2 Oil well drilling domain experiment

The oil and gas domain is an uncertain domain with a weak theory in which
implementing ad hoc solutions frequently leads to a reemergence of the problem
and repetition of the cycle. These types of domains are the main application
domains addressed by BNCreek.

Setup In this experiment, we utilized an oil well drilling process knowledge
model created by Prof Paal Skalle [18]. The knowledge model consists of 350
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Fig. 8. Two samples of drilling cases description. RF stands for relevance factor.

drilling domain concepts and more than 1000 relationships between them, which
makes it a very detailed ontology. Forty five drilling failure cases are utilized as
the queries (input cases) in a leave-one-out evaluation to retrieve the matched
similar ones among the rest of 44 failure cases. Each of the failure cases in average
has 20 symptoms and one failure as the case solution that has been removed for
the query case. Fig. 8 shows two examples of drilling cases.

Fig. 9. NDCG values at cuts of 5 and 10

Oil well drilling experiment results We report on NDCG at ranks 5 and
10 in Fig. 9. The BNCreek NDCG@5 and 10 are reported as 0.7969 and 0.6713,
which significantly outperform TrollCreek with 0.6296, 0.5759 and myCBR with
0.3960, 0.5229, respectively. The ordering produced by BNCreek yields a better
NDCG value than the ordering produced by TrollCreek and myCBR at both
cuts. This shows the efficiency of the Bayesian inference in case ranking in com-
parison with the other systems, which do not utilize the Bayesian inference.
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Fig. 10 demonstrates the three systems interpolated average Precision at 11
Recall levels. In all recall levels, BNCreek has higher precision, which demon-
strates the efficiency of the system in retrieving the more similar cases comparing
to the other systems.

Fig. 10. Interpolated precision/recall graph for the results of BNCreek and TrollCreek

5 Discussion

The higher NDCG values in the two experiments, show the overall ability of
BNCreek in ranking the retrieved cases correctly in comparison to TrollCreek
and myCBR. The Interpolated Precision-Recall graph for the first experiment
would be 1 for all recall levels because we retrieve all 10 cases of the case base.
The Interpolated Precision-Recall graph for the second experiment illustrates
the higher performance of BNCreek to retrieve the relevant cases in all 11 recall
levels. Here we discuss the BNCreek ability to rank the cases in detail by an
example.

According to the system goal (finding the failure behind the reported/observed
symptoms), the most similar cases would be the cases carrying common symp-
toms. Then, the other features of the cases are irrelevant as long as they are not
failures of the symptoms. Then there are two types of challenging cases. The first
type has a similar overall case description but not the same symptoms, and the
second one is the cases with the same symptoms but not similar case description,
comparing to the input case. The first type should be categorized as not similar
and the second type should be categorized as a very similar case.

Fig. 11 demonstrates the expert, BNCreek, TrollCreek and myCBR similarity
assessment results for case 6 (the input case of the given run-through example)
and the case base of the food application domain.

Case 11, has a similar ingredient with the case 6 and their differences orig-
inated in "Ok chicken" being replaced by "Ok shrimp", "Enough salt" being
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Fig. 11. The expert, BNCreek, TrollCreek and myCBR similarity assessment results
for case 6 and the case base of the food application domain.

replaced by "Much salt" and their symptoms, which are not the same. Case 11
is categorized as the third most similar case by TrollCreek while, based on the
expert’s prediction, it is almost the least similar case to case 6. This problem
stems from similarity assessment mechanism in TrollCreek which incorporates
the raw case descriptions without considering the effect of different symptoms
on cases (e.g., a peppery sandwich is more similar to a peppery steak than to a
salty sandwich) which leads to a wrong categorizing of the cases such as case 11.
BNCreek ranked case 11 as the sixth similar case, which is a better ranking. BN-
Creek in its master phases, injects the effect of Bayesian analysis into the case
description and similarity assessment process. So it is eligible to incorporate the
effect of symptoms into the similarity assessment.

Case 2 symptoms are the same with the input case. It is categorised as a not
similar case by TrollCreek while, based on the expert’s prediction, it is the fourth
similar case. The problem with TrollCreek is originated in its similarity assess-
ment method that uses the static relation strengths to compute the similarity
which leads to a wrong categorizing the cases such as case 2. While BNCreek,
utilizes a dynamically adjusted ontology relations strengths based on the BN
posterior distribution given any input case.

myCBR ranked both of the case 2 and 11 as the sixth similar case. It ranks
the retrieved cases based on their common features and a fixed similarity table
which is determined by the expert. The similarity table could work like a pre
computed similarity explanations between the not identical coupled features,
if the expert knows all the coupled features similarity degrees, which rarely
happens in uncertain domains with several features. This explains the decreased
performance of myCBR from the small experiment of the food domain to the
drilling domain experiment.

6 Conclusion and Future work

We studied the effect of Bayesian analysis in the similarity assessment within a
knowledge-intensive system. We have developed a knowledge-intensive CBR sys-
tem, BNCreek, which employs the Bayesian inference method to retrieve similar
cases. The Bayesian analysis is incorporated to provide a formal and clear defined
inference method for reasoning in the knowledge model.

To evaluate the effectiveness of our approach, we set up two experiments and
employed the NDCG and Precision-Recall measures. Over two sets of experi-



Bayesian-Supported Retrieval in BNCreek 15

ments, we demonstrated that our approach has a better performance in ranking
the retrieved cases against the expert prediction compared with the results of
TrollCreek and myCBR. This indicates the Bayesian analysis efficiency for sim-
ilarity assessment, across several application domains.

Although BNCreek showed a better performance in comparison with the
other systems, in both of the examples it didn’t manage to rank the cases same
as the expert. Moreover, comparing the NDCG values in Fig. 7 and Fig. 9 shows
the decreased performance of the BNCreek by increasing the case base size. A
possible further step for this study is designing new metrics that help to rank
the cases more accurately in bigger case bases.
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