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Abstract
This dissertation contains new results on the design of dynamic positioning (DP)
systems for marine surface vessels.

A positioned ship is continuously exposed to environmental disturbances, and
the objective of the DP system is to maintain the desired position and heading
by applying adequate propeller thrust. The disturbances can be categorized into
three classes. First, there are stationary forces mainly due to wind, ocean currents,
and static wave drift. Secondly, there are slowly-varying forces mainly due to wave
drift, a phenomenon experienced in irregular seas. Finally there are rapid, zero
mean linear wave loads causing oscillatory motion with the same frequency as the
incoming wave train.

The main contribution of this dissertation is a method for better compensation
of the second type of disturbances, slowly-varying forces, by introducing feedback
from measured acceleration. It is shown theoretically and through model exper-
iments that positioning performance can be improved without compromising on
thruster usage. The specific contributions are:

• Observer design: Two observers with wave filtering capabilities was devel-
oped, analyzed, and tested experimentally. Both of them incorporate posi-
tion and, if available, velocity and acceleration measurements. Filtering out
the rapid, zero mean motion induced by linear wave loads is particularly im-
portant whenever measured acceleration is to be used by the DP controller,
because in an acceleration signal, the high frequency contributions from the
linear wave loads dominate.

• Controller design: A low speed tracking controller has been developed. The
proposed control law can be regarded as an extension of any conventional
PID-like design, and stability was guaranteed for bounded yaw rate. A
method for numerically calculating this upper bound was proposed, and for
most ships the resulting bound will be higher than the physical limitation.
For completeness, the missing nonlinear term that, if included in the con-
troller, would ensure global exponential stability was identified.

The second contribution of this dissertation is a new method for mapping controller
action into thruster forces. A low speed control allocation method for overactuated
ships equipped with propellers and rudders was derived. Active use of rudders,
together with propeller action, is advantageous in a DP operation, because the
overall fuel consumption can be reduced.

A new model ship, Cybership II, together with a low-cost position reference system
was developed with the aim of testing the proposed concepts. The acceleration
experiments were carried out at the recently developed Marine Cybernetics Lab-
oratory, while the control allocation experiment was carried out at the Guidance,
Navigation and Control Laboratory.

The main results of this dissertation have been published or are still under review
for publication in international journals and at international conferences.
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Chapter 1

Introduction

1.1 Positioning Control Overview

Automatic control of ships has been studied for almost a century. In 1911 Elmer
Sperry constructed the first automatic ship steering mechanism called “Metal
Mike”. Today, the range of marine vessels covers a huge diversity of vehicles
such as remotely operated vehicles (ROVs) and semi-submersible rigs. Automatic
control systems for heading and depth control, way-point tracking control, fin and
rudder-roll damping, dynamic positioning (DP), thruster assisted position mooring
(PM) etc. are commercial products.

The main purpose of a positioning control system is to make sure that a vessel
maintains a specified position and compass heading unaffected by the disturbances
acting upon it. The positioning control problem is thus one of attenuating these
disturbances by applying proper counteracting forces. There are two categories
of such control systems; DP and PM. A dynamically positioned vessel maintains
its position exclusively by means of active thrusters whilst for a moored vessel
thrusters are complementary to the anchor system. In the latter configuration the
majority of the environmental disturbances are compensated by the anchor lines
and the dimensioning requirements to the thruster system are generally signifi-
cantly lower than for a DP operated vessel.

The safety requirements upon a positioning system are high due to the high risk
for crew and equipment especially in severe weather. Rules and regulations are
enforced by international certification societies such as Lloyd’s Register of Ship-
ping, The American Bureau of Shipping (ABS) and Det Norske Veritas (DNV).
Sea trials are to be carried out under the supervision of representatives from the
classification issuer before a new installation can be put into service.

Dynamic positioning systems have been commercially available since the 1960s,
and today a DP system is a natural component in the delivery of many new
vessels. A modern DP system is not only capable of maintaining a single vessel
in a fixed position, and depending on the supported functionality we may crudely
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divide DP market into two segments. First, there is a high-end market demanding
tailor-made solutions and high operational safety. Typically, the high-end market
demands:

• Operational safety: The system has to be redundant, which in essence means
that no single-point failure is allowed to trigger a total system failure; the
operation is not to be aborted. This requires, from a DP manufacturer’s side,
a redundant sensor configuration, control computer system, control network,
operator panels etc. and a watchdog supervising the hardware. Figure 1.1
presents a schematic overview of a dual-class DP system. Furthermore, the
actions taken by the DP software should not cause failures elsewhere. As
an example, the DP system has to monitor available thruster power and
restrict, if necessary, the commanded propeller thrust so as to prevent power
blackouts.

Figure 1.1: The Kongsberg Maritime SDP-21 dual-redundant DP control system.
(Courtesy Kongsberg Maritime, Norway)

• Performance: Any operation must be performed as accurately as possible.
For instance, the positioning performance, the vessel’s ability to track or to
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stay in its desired position, should be high. The DP system is also expected
to apply thrust intelligently in order to keep the energy consumption down.

• Versatility: The DP system has to support a large range of operational
modes. Examples of such are manual joystick control, station keeping,
mixed manual and automatic control, change position and/or heading, low
speed tracking, and follow target. Among the more sophisticated operational
modes are weather optimal heading and position control. These basic oper-
ational modes together form the basis for performing advanced applications.

• Advisory systems: On-line advisory systems analyse the current status of
the vessel in order to identify possibly hazardous scenarios in case of a fail-
ure. The operator can thus take a priori actions to increase safety margins
during ongoing operations. By using off-line tools such as simulators, the
operator is given the opportunity to plan and train future operations in a
safe environment.

Approximately 200 high-end DP systems were sold world-wide in 2002. The costs
of such high-end systems depend heavily on the configuration and the number of
delivered sensors and position reference systems.

In the lower end of the spectrum, there are lightweight systems offering a selection
of the functionality available in the high-end brands. These systems typically
offer simple station keeping functionality, course-keeping autopilots, and manual
joystick control.

1.1.1 Control System Description

A positioning control system for marine vehicles can be separated into a set of
dedicated modules with designated tasks. The most significant modules, see Figure
1.2, are:

• Guidance system: The guidance system is used in planning the ship’s path
from one location to the destination. Advanced guidance systems usually
offer way-point tracking functionality and the possibility to interface with
external map systems. In a DP operation, the guidance module provides a
smooth reference trajectory from one position and heading to the next.

• Signal processing: The signal processing unit monitors the measured sig-
nals and performs quality tests identifying high variance, wild points, frozen
signals, and signal drift. Erroneous signals is to be rejected and not used
further in the sequence of operations. The signal processor should perform
signal voting and weighing based on the individual sensor tests when redun-
dant measurement are available. Roll and pitch compensation of position
measurements is also performed in this module. A typical DP vessel is
equipped with two or three gyro compasses and an equal amount of position
reference systems (POSREF). The individual POSREFs’ measurements are
transformed to a common point, e.g. the vessel’s centre of gravity. This
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Figure 1.2: Schematic overview of a ship control system and its major components.

requires knowledge of the vertical motion of the ship, because rolling and
pitching influence the measured positions greatly. Therefore, a vertical refer-
ence unit (VRU), which is an inertial sensor package measuring the heaving,
rolling, and pitching motions, will be needed.

• Observer: The main objective of the observer is to provide low-frequency
estimates of the vessel’s positions, heading, and velocities. The rapid, purely
oscillatory motion induced by linear wave loads has to be filtered out. Wave
frequency components in the applied thrust may harm the propulsion system
by causing excessive wear leading to shorter propulsion unit service intervals
and service life. The observer will also be needed to predict the motion
of the vessel in situations where position or heading measurements become
unavailable (dead reckoning).

• Controller: In a low speed application, the controller produces three de-
mands; desired surge and sway force and desired yaw moment. Depending
on the ongoing operation and selected modes, the controller considers the
estimated states of the system, the reference trajectory, and the measured
environmental conditions in the calculation of the demands. The internal
controller logic governs the mode transitions between different types of opera-
tion, and it is also responsible for issuing alarms and warnings. The demands
are usually the sum from a feedback controller and feed-forward terms. A
conventional feedback controller is of PD-type using the low-frequency posi-
tion and velocity estimates from the observer. Some kind of integral action
is required to compensate for static environmental disturbances. The con-
troller feed-forward normally consists of reference and wind feed-forward; the
former improves tracking performance, and the latter compensates for wind
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fluctuations and thus provides faster response to such disturbances.

• Thrust allocation: The allocation module maps the controller’s force and
moment demands into thruster set-points such as propeller speed, pitch ratio,
and azimuth and rudder angles. It is important that the produced set-points
do produce the expected demands and that this will be done in an “optimal”
manner. In this setting optimal could refer to minimum power consumption
or minimum azimuthing and rudder usage, objectives often in conflict which
each other. A definite requirement is the interface with the ship’s power
management system in order to prevent power black out caused by high
thrusting.

1.1.2 Background

While the history of ship autopilots dates back to the invention of the gyrocompass
in 1908, the development of positioning control systems had to await the introduc-
tion of a proper POSREF. A local POSREF measures the distance, typically range
and bearing relative to a certain fixed point. Integrated with the gyrocompass the
northing and easting are easily identified. A global POSREF provides position
measurements world wide.

A variety of local POSREFs exists based on different principles: There are mechan-
ical systems such as taut wires, radio navigation systems like Decca and Loran-C,
electromagnetic distance measuring systems such as Artemis, laser based systems
(Fan Beam), and hydro-acoustic position reference systems (HPR). Satellite nav-
igation systems such as GPS and GLONASS are global POSREFs. To increase
the accuracy of satellite navigation, third party vendors provide local differential
correction signals via radio or satellite link. By measuring the position of a known
location, it is possible to remove uncertainty of the measured GPS or GLONASS
position and obtain an accuracy of about 1 meter. This integration is commonly
referred to as DGPS or differential GLONASS.

Marine Positioning Control

The first DP systems originating back in the 1960’s relied on local POSREFs.
They were implemented using individual conventional linear controllers in each
degree of freedom combined with notch-filters to remove first order wave induced
motion. A de-coupled approach like this have several disadvantages. First of all,
uncritical notch-filtering introduce phase lag, and secondly integral action had to
be quite slow due to disregarded couplings in the model.

The perhaps most significant development came in the mid 1970’s with the appli-
cation of Kalman filters and linear quadratic optimal controllers. This was a model
based approach because the vessel’s mathematical model was used to predict and
estimate the motion. These systems were computationally demanding compared to
the computer resources then available. Nevertheless, the standard was set, and it
is fair to say that the leading manufacturers today still benefit from the results and
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experiences achieved back then. Two academic teams were particularly involved,
the norwegians led by Balchen (Balchen et al. 1976, Balchen et al. 1980, Sælid et
al. 1983) and a british group headed by Mike Grimble (Grimble et al. 1980, Fung
and Grimble 1983). Elaborations on those schemes are found in Sørensen et al.
(1996) and Fossen et al. (1996).

The research covering positioning systems gained momentum in the 1990’s. Re-
newed interest for the subject was shown by the application of alternative con-
trol strategies: Designs based on H∞-control (Katebi et al. 1997, Donha and
Tannuri 2001) was introduced, and controllers minimizing self-induced rolling
and pitching were proposed (Sørensen and Strand 2000). New control strate-
gies emerged in the wake of the progress made on nonlinear control, examples are
designs for better handling of the inherent nonlinear characteristics of the dynamic
model of the ship (Fossen and Grøvlen 1998, Fossen and Strand 1999, Aarset et
al. 1998, Strand and Fossen 1999), but also more advanced techniques such as
weather optimal position control (Fossen and Strand 2001) was proposed. Tan-
nuri et al. (2001) presented a two-layered controller for moored vessels dedicated
to minimize a general cost function punishing important operational parameters
such as rolling, riser traction and fuel consumption. A common advantage of the
nonlinear proposals is that the time required for tuning and calibration of a new
installation was reduced considerably, because the complexity of the model and
controller went down. Instead of performing online linearizations, the developed
control algorithms exploited nonlinear characteristics, and they are considered to
be simpler and more robust compared to their predecessors.

Thruster assisted PM systems based on Kalman filters and linear optimal control
was studied in Nakamura et al. (1994). The nonlinear techniques developed for DP
were in Sørensen et al. (1999) successfully applied to a full scale turret-anchored
FPSO. Aamo and Fossen (1999) suggested a method for hybrid thruster and line
tension control suited for oil exploration and production in deeper waters.

In the lower end of the scale, several manufacturers now offer manual joystick con-
trol systems with limited DP functionality (Källström and Theorén 1994, Terada
et al. 1996).

General Improvements

In addition to these more structural advances, the positioning control systems as
products have evolved significantly over the past two decades:

• Computer resources: During the past decades there has been a tremen-
dous development of computer hardware and software. As a result, today’s
DP systems have become lighter, less expensive, and more reliable. The
most striking feature is perhaps the improvements made on operator sta-
tions, graphical user interfaces, and on the advisory systems. A DP system
can be regarded as a computerized integrated platform with nearly complete
control over most parts of the ship.

• Control algorithms and strategies: Increased computational power has
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provided the opportunity to implement more sophisticated control algo-
rithms. More demanding control strategies such as model predictive control
and online numerical optimization techniques have been commercialized.

• Sensor technology: The introduction of differentially corrected satellite
navigation systems has made DP systems more versatile by expanding the
range of operations in which a DP vessel can take part. The next step is
the integration of inertial measurement units (IMU) and existing POSREF
technology such that together they offer a more accurate navigation system.
Such integrated systems are referred to as integrated navigation systems
(INS). Integration of inertial measurements, that is linear accelerations and
gyro rates, has received a great deal of attention lately. Another interesting
solution is the integration with hydroacoustic POSREFs. The speed of sound
in water is about 900m/s, and this means that HPR systems suffer from large
time delays in deep waters. Additionally, it is desirable to keep a low update
frequency in order to extend the battery life of the transponders on the sea
bottom. Aided by inertial measurements, however, high update frequency
and position accuracy almost comparable to DGPS can be expected. The
Kongsberg Maritime product HAINS is one such system.

1.2 Motivation

Since the design of positioning control systems for marine vehicles is a mature and
much studied subject, the present work has sought to improve existing designs by
taking advantage of recent developments in the surrounding technologies. It is no
longer sufficient to focus on maintaining a prescribed position or track. Modern
DP vessels must be able to solve various complicated operational tasks where the
control objectives differ depending on the particular kind of operation and outside
circumstances. For instance, depending on weather condition the objectives vary
significantly: In fine weather it is desirable to focus on fuel efficiency while in harsh
weather conditions the focus should be on positioning performance and safety for
the crew and the equipment. For drilling and oil producing vessels yet another
objective is to maintain production capability as long as possible by decreasing
the rolling and pitching motion. These individual goals are usually in conflict,
and the operator will have to settle for a trade-off between them. Intuitively, fuel
efficiency suffers with improved positioning performance and vice versa.

One important question is whether new and improved sensor technology may be
used to bridge, at least partially, some of these conflicting performance goals. Is it
possible to achieve better positioning performance without simultaneously increase
the propeller thrust? A positioned vessel is continuously exposed to time-varying
disturbances, and with more knowledge about those disturbances, is it possible
to better keep the desired position by applying thrust more wisely? An equally
important alternative is how thrusting, particularly the peaks, can be reduced
without sacrificing positioning performance. By reducing the peaks on propeller
thrust, the amount of required electrical power available at any time is relaxed.
Hence, the ship’s overall fuel consumption goes down.
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The main objective of this dissertation was to find an affirmative answer to those
questions, and the basic idea was to introduce inertial measurements that had
not been used actively in a marine control setting before. High performance iner-
tial measurement units IMUs are becoming increasingly affordable. INS platforms
integrating IMU and POSREF systems reproduce not only positions but also ve-
locities and linear accelerations with great accuracy. It is likely that these types
of systems will be delivered to future high-end DP vessels. However, practical
challenges remain to be addressed, because there will still be a trade-off between
increased performance on one side and increased cost due to instrument interfacing
and additional hardware expenses on the other. The industrial impact the pro-
posed methodology eventually would have depends on how well those challenges
are met. Consequently, the theoretical findings had to be tested experimentally,
and a new model ship had to be constructed for that particular purpose.

1.3 Contributions

The contribution of this dissertation is threefold:

1.3.1 Observer Design

The purpose of the observer is to reconstruct non-measured states of the system
and to filter out the induced motion from the first order wave loads. Traditional
designs cover position and heading measurements only since this is sufficient to
reconstruct all states, for instance velocities, within the system. New and improved
sensor technology calls for an update of the filter design: It should be possible to
integrate velocity and acceleration signals.

Based on the identification of a commutation property between the Earth-fixed
dynamics and the nonlinear kinematics, two model based observer designs based
on the successful design of Fossen and Strand (1999) was proposed and imple-
mented on the model ship Cybership II. The main feature of these observers is
that they handle nearly all sensor configurations. Partial velocity and acceleration
measurements can be exploited to improve the performance of the overall filter.
For the first one (Lindegaard and Fossen 2001a, Lindegaard and Fossen 2001b),
global exponential stability of the observer errors was proven by using a Lyapunov
function of a certain structure. The second one (Lindegaard et al. 2002) is a more
pragmatic approach relaxing the structural requirement by imposing a bounded-
ness requirement for the yaw rate instead.

1.3.2 Controller Design

The main control design contribution is the deduction of a dynamic PID-inspired
low speed tracking controller incorporating an additional acceleration term. This
particular controller can be seen as a extension of conventional DP control laws
with body-fixed gains. By showing that the kinematics can be removed from the
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analysis and thereby the controller gain assignment, any one linear design tool
can be used to find proper gains. In the implementation, the applied thrust is
then found as the product of the gain matrix and a separate matrix containing
the kinematics. The price paid is that the controllers are exponentially stable for
bounded yaw rate rmax. However, a conservative upper bound can be estimated
numerically, and it seems that for a well-behaving controller this limit by far
exceeds the physical limitations. Therefore, we could say that given proper gains,
all controllers derived are uniformly globally exponentially stable. In addition,
rmax can be included as a design criterion in the form of a linear matrix inequality
(LMI) in a variety of LMI based state-feedback schemes.

All controllers are derived under full state feedback, but it also shown that sub-
stituting the actual states with their respective estimates from an asymptotically
converging observer does not compromise stability.

It is shown that controllers utilizing measured acceleration are better suited than
PID/PD-designs in attenuating slowly varying disturbances. The main advantage
of acceleration feedback is that the closed-loop bandwidth can be kept constant
while the acceleration term of the feedback law manipulates the mass of the system
thus making it more inert, we are given an extra degree of freedom in the design.
Experiments with Cybership II demonstrated that the positioning accuracy was
increased when applying acceleration feedback without simultaneously increasing
applied propeller thrust.

This material has been published in Lindegaard and Fossen (2003) while Linde-
gaard and Fossen (2002) is still under review.

1.3.3 Control Allocation

A control allocation algorithm for low speed marine vessels using propellers and
rudders was derived by Lindegaard and Fossen (2003). Using rudders actively has
advantages in a low-speed operation by decreasing the need for propeller power
and fuel. However, at low speed a rudder is effective only for positive thrust.
This complicates the thrust allocation problem which can no longer be solved by
convex quadratic programming. In fact, the existence of local minima introduces
discontinuities in the commanded thruster signals even if the desired control force
is continuous. Discontinuous signals cause excessive wear on the thruster system
and must be avoided. An analytic, 2-norm optimal method ensuring continuity of
the solutions is proposed. Being analytic, however, its limitation is the capability
of handling only configurations where one single thrust device is subject to sector
constraints at a time. The fuel saving potential was illustrated experimentally
with Cybership II. For this particular ship, the energy consumption was cut in
half.
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Chapter 2

Modeling of Marine Vessels

2.1 Introduction

In this chapter we first summarize the properties of the common 6 DOF dynamic
model of craft at sea. In the first section the kinematics needed for studying
marine craft is summarized. After a brief presentation of the kinematics and
general notation, the low speed vessel model description of Fossen (1991) and
Sagatun (1992) will be summarized in 6 DOF together with a new formulation
of hydrostatic restoring forces. In addition, the 3 DOF model used in positioning
control operations will be derived from the general 6 DOF model. The remaining
sections discuss environmental forces experienced by a vessel in operation.

2.2 Notation and Kinematics

2.2.1 General Description

Dynamic motions have to be described with respect to some reference point or
coordinate system. Because we are primarily interested in the dynamics of the
vessel over a very limited area and operations where hydrodynamic and thruster
applied forces are dominant, we may neglect the effects of the Earth’s rotation and
let the local geographic frame approximate the inertial frame.

These are the reference frames that will be used:

NED (n-frame) This is called North-East-Down xnynzn that in its original defi-
nition is a tangent plane moving along with the vessel. Instead of the original
definition, we consider it as Earth-fixed and use it as the inertial frame. This
is also referred to as flat Earth navigation and is an approximation valid in
smaller areas.
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BODY (b-frame) The body frame xbybzb is fixed to the vessel and hence moving
along with it. Often, but not necessarily, is the b-frame located in the vessel’s
center of gravity.

VP (p-frame) The vessel parallel p-frame xpypzp is a body-fixed frame just like
the b-frame. Its orientation is horizontal like the n-frame but it has been
rotated an angle ψ around its z-axis. For 3 DOF planar motion, the b- and
p-frames coincide completely.

RP (d-frame) The reference parallel d-frame is fixed to the vessel with horizontal
orientation and rotated an angle ψd around the z-axis. The angle ψd is the
craft’s desired heading angle, hence the name reference parallel.

The following notation will be used for describing position, linear velocities and
angular velocities:

pacb − Distance (position) from point c to point b decomposed
in the a-frame.

θcb,qcb − The orientation of frame b relative to c given in Euler angles
and unit quaternions, respectively.

vacb − Linear velocity of point b relative to c decomposed in a.
ωacb − Angular velocity of point b relative to c decomposed in a.
fa − A linear force decomposed in a.
ma
b − The moment about the point b decomposed in a.

A unit quaternion q is a singularity free alternative to Euler angles defined as

H=
n
q | qTq =1,q = [ηq , εTq ]T , ηq ∈ R,εq ∈ R3

o
(2.1)

It might be convenient to use more than one body frame. Then, the body-fixed
frames are denoted bi where i is a positive scalar. Often we will skip using bi and
simply say i, such that vectors with only one subscript means “with respect to n”.
For example pni means the position of frame bi with respect to n decomposed in
n. Similarly, ωbi means the rotation rate of frame bi with respect to n decomposed
in bi.

The rotation from frame b to frame a is denoted Ra
b =R(θab) = R(qab) such that

for any vector decomposed in b, say cb, then decomposed in a becomes

ca =Ra
bc
b (2.2)

Observe that the rotation Ra
b implicitly takes the orientation θab as input. The

set of all 3× 3 rotations is referred to as SO(3), the Special Orthogonal group of
order three.

Property 2.1 (Rotation Matrix) A rotation matrix R ∈SO(3) satisfies
R−1 = RT (2.3)

kRk2 = det(R) = 1 (2.4)
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This property is fundamental for the analysis of the proposed observers in Chapter
4.

The cross-product of two vectors c,d ∈ R3 can be written
c× d = S(c)d = −S(d)c (2.5)

where S : R3 → R3×3 is a skew-symmetrical matrix

S(α) = −ST (α) =
 0 −α3 α2

α3 0 −α1
−α2 α1 0

 (2.6)

Property 2.2 (Time Derivative of a Rotation) The matrix differential equa-
tion of a rotation matrix Ra

b is

d

dt
(Rab )

4
= Ṙa

b = R
a
bS(ω

b
ab) (2.7)

In accordance with the literature, we follow the zyx-convention: The rotation
from the n-frame to the b-frame is performed in three successive principal rotations
about the z, y, and x-axis in terms of the Euler angles θnb = [φ, θ,ψ]T , respectively

Rn
b = R(θnb) = Rz,ψRy,θRx,φ ⇔ Rb

n = R
T (θnb) = R

T
x,φR

T
y,θR

T
z,ψ (2.8)

where, using c(·) = cos(·) and s(·) = sin(·),

Rx,φ =

 1 0 0
0 cφ −sφ
0 sφ cφ

 Ry,θ =

 cφ 0 sθ
0 1 0
−sθ 0 cθ

 Rz,ψ =

 cψ −sψ 0
sψ cψ 0
0 0 1


(2.9)

such that

Rnb =

 cψcφ sψcφ+ cψsθsφ sψsφ− cψsθcφ
−sψcφ cψcφ− sψsθsφ cψsφ+ sψsθcφ
sθ −cθsφ cθcφ

 (2.10)

2.2.2 Vessel Kinematics

Decomposed in the n-frame, the position of a body-fixed arbitrary point a is

pnna = p
n
nb +R

n
bp

b
ba (2.11)

where pnnb is the position of the vehicle and p
b
ba is the position of the point a

relative to the origin of the body. The time-derivative of pnna is the Earth-fixed
velocity vnna given by

ṗnna
4
= vnna = R

n
b v

b
nb −RnbS(pbba)ωbnb (2.12)

If pbba = 0 we get the usual linear velocity relation

ṗnna = R
n
b v

b
nb (2.13)
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Property 2.2 contains the differential equation determining relation between the
rotation rates in the n- and b-frames. However, in may applications it is convenient
to find the Euler angles θnb directly. It can be shown that the rotation rate relation
is (Fossen 2002)

θ̇nb = Tθω
b
nb (2.14)

where

Tθ =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 , θ 6= ±π

2
(2.15)

Observe that Tθ is singular for θ = ±90 degrees. By using e.g. unit quaternions
instead of Euler angles, the singularity can be avoided to the price of using 4
instead of 3 parameters.

Fossen (2002) suggests collecting the Earth-fixed position and orientation of a craft
in a vector η and the body-fixed velocities in a vector ν like this:

η =

·
pnnb
θnb

¸
, ν =

·
vbnb
ωbnb

¸
(2.16)

Using the above results
η̇ = J(θnb)ν (2.17)

where J : R3 → R6×6 is the block diagonal

J(θnb) = Diag(R
n
b (θnb),Tθ(θnb)) (2.18)

2.3 6 DOF LF Model

The six DOF model description after Fossen (1991) and Sagatun (1992) is a well
suited compact form of expressing marine vessel dynamics for control design. Using
the (η,ν)-notation defined in (2.16) and the kinematics (2.17)-(2.18), the complete
six DOF model can be written

η̇ = J(η)ν
Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ thr + τ env

(2.19)

where M ∈ R6×6 is the mass matrix, the sum of rigid-body mass and hydrody-
namic added mass

M =MRB +MA (2.20)

Expressed in the b-system, the rigid body mass is

MRB =M
T
RB =

·
mI −mS(rbbG)

mS(rbbG) Ib

¸
> 0 (2.21)

where m is the rigid body mass, rbbG is the center of gravity, and Ib = ITb is the
rigid body inertia tensor with respect to the origin of the b-frame.

Ib = I
T
b =

 Ix Ixy Ixz
Ixy Iy Iyz
Ixz Iyz Iz

 (2.22)
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2.3.1 Added Mass

In contrast to submerged volumes having constant added massMA, the hydrody-
namically added mass of surface vessels depends on the frequency of motion due
to water surface effects. Considering a low-frequency description, we assume that
MA is constant and given as the limit when the frequency approaches zero

MA = lim
ω→0MA(ω) (2.23)

For vessels symmetric about the xz-plane (port/starboard symmetry),

MA =


−Xu̇ 0 −Xẇ 0 −Xq̇ 0
0 −Yv̇ 0 −Yṗ 0 −Yṙ
−Zu̇ 0 −Zẇ 0 −Zq̇ 0
0 −Kv̇ 0 −Kṗ 0 −Kṙ
−Mu̇ 0 −Mẇ 0 −Mq̇ 0
0 −Nv̇ 0 −Nṗ 0 −Nṙ

 (2.24)

At low speed, ω → 0,MA =MT
A > 0 and consequently, the massM is symmetric

and positive definite.

2.3.2 Coriolis and Centripetal Terms

The C(·)-matrix contains nonlinear terms due to Coriolis and centripetal effects.
Coriolis and centripetal forces are workless forces in the sense that they neither
introduce nor dissipate energy. The C-matrix can always be formulated on a
skew-symmetric form (Sagatun and Fossen 1991)

C(ν) = −CT (ν) (2.25)

and a typical representation is

C(ν) =

·
0 −S(M11ν1 +M12ν2)

−S(M11ν1 +M12ν2) −S(MT
12ν1 +M22ν2)

¸
(2.26)

where Mij represents the 3× 3 partitions of M

M =

·
M11 M12

MT
12 M22

¸
(2.27)

2.3.3 Damping Forces

On the vectorial form (2.19), the damping or drag forces are expressed using the
matrix D(ν). This matrix is often expressed as a sum of a constant and some
velocity dependent term

D(ν) = DL +DN(ν) (2.28)

In this representation DL supports linear damping forces while the latter DN(ν)
represents nonlinear effects such as wave drift and turbulent viscous forces. A
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vessel operating around zero speed and subject to small, continuous accelerations
will experience potential damping proportional to the velocity. Therefore, for an
actively positioned ship or vessels exposed to incoming waves, it is reasonable to
assume that linear damping forces are indeed present and that DL dominates over
DN(ν) due to |ν| being small. An un-accelerated vessel in calm waters, more or
less regardless of speed, will mostly experience damping forces proportional to the
square of the velocity. Those drag forces are better described by DN(ν).

Even though finding a universal D(ν) is nontrivial, the damping forces are always
dissipative

νT
¡
D(ν) +DT (ν)

¢
ν > 0 , ∀ ν 6= 0 (2.29)

2.3.4 Restoring Forces

The term g(η) in (2.19) contains restoring forces. By restoring forces we mean
forces caused by a mooring system (Strand et al. 1998), mainly acting in the hori-
zontal plane, and gravity and hydrostatic forces. The former will not be considered
here, however, and therefore g(η) contains forces due to gravity and buoyancy only.

In Appendix C a new formulation of the restoring forces is developed, and those
results are repeated here. This new formulation is exact and does not rely on
any linearizations as long as the sides of the hull are vertical. For a typical rig
this will be true. It also takes into account cross-couplings between rolling and
pitching, an effect not considered by linearized approaches such as those based
on metacentric height (Fossen 2002) or righting arms, the so-called GZ-curves
(Gillmer and Johnson 1982).

Let the displaced volume in equilibrium be denoted V0. Observe that the vessel
mass m = ρV0 where ρ is the density of water. For convenience, let the xy-plane
of the b-frame coincide with the static water plane Awp, thus at equilibrium the
xy-planes of both the p- and b-frames coincide with Awp; see Figure 2.1. The
center of flotation, that is the geometric center of Awp, then is

rbbf =
1

Awp

 Sbx
Sby
0

 (2.30)

Sbx =

Z
Awp

xbbadS (2.31)

Sby =

Z
Awp

ybbadS (2.32)

where rbba is the distance to some arbitrary point on Awp. This means that r
b
bf is

the geometrical center of the static water plane surface Awp, that is xbbf = S
b
x/Awp

and ybbf = Sby/Awp describe the respective longships and atwarthships positions
relative to the origin of the b-frame.

The matrix Hb =
¡
Hb
¢T
is a constant matrix containing the moments of inertia
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Figure 2.1: An yz-plane intersection of a neutrually buoyant vessel.

of the static water plane surface Awp.

Hb =

Z
Awp

rbbs
¡
rbbs
¢T
dS =

 Sbxx Sbxy 0
Sbxy Sbyy 0
0 0 0

 (2.33)

Sbxx =

Z
Awp

¡
xbbs
¢2
dS (2.34)

Sbxy =

Z
Awp

xbbsy
b
bsdS (2.35)

Sbyy =

Z
Awp

¡
ybbs
¢2
dS (2.36)

The position of the center of gravity (CG) in vessel-fixed coordinates is called
rbbG. For rigid bodies, r

b
bG is a constant vector. The center of buoyancy (CB)

rbbB defined as the geometrical center of the instantaneous submerged volume V is
likely to change for surface vessels. For submerged vehicles, on the other hand, rbbB
will always be constant. Nevertheless, we choose to define rbbB as the geometrical
center of the statically displaced volume V0.

g(η) can be written as

g(η) = −
·

fb

mb

¸
(2.37)
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where (C.41)

fb = −ρgAwpR
b
pζζ

T

ζTRp
bζ

³
rnnb +R

p
br
b
bf

´
mb = mgS(r

b
bG − rbbB)Rb

pζ

+ ρg
ζTRp

b
ζ

³
S(Rbpζ)H

b −AwpS(rbbf )ζT rnnb
´
Rb
pζ

(2.38)

where ζ = [0, 0, 1]T . Consequently, it is the heave position znnb in r
n
nb = η1 and

the attitude θpb = [φ, θ, 0]T that determine fb and mb. Notice that θpb enters the
rotation from the vessel parallel p-frame to the b-frame, Rb

p = RT (θpb). From
(2.10) we get that

Rpb =R (θpb) =

 cosφ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ

 (2.39)

because
Rn
b = R(θnb) = Rz,ψR(θpb) (2.40)

A Linearization for Surface Vessels

For neutrally buoyant vessels, that is for zero roll and pitch angles at equilibrium,
a linearization of (2.38) can be derived for small inclinations, θpb ≈ 0. As shown
in Appendix C, the concept of metacentric heights is a result of this linearization.

More specifically, for a neutrally buoyant, xz-symmetric hull with approximately
vertical sides, a linearization of the gravity and hydrostatic forces can be written

g(η) =Gη (2.41)

where G ∈ R6×6 is partitioned as

G =

·
G11 G12

G21 G23

¸
(2.42)

and

G11 = ρgAwpdiag(0, 0, 1) (2.43)

G12 = ρg

 0 0 0
0 0 0
0 Sbx 0

 (2.44)

G21 = GT
12 (2.45)

G22 = ρgdiag(V0z
b
BG + S

b
yy, V0z

b
BG + S

b
xx, 0) (2.46)

Using the definitions of transverse and longitudinal metacentric heights, that is
GMT and GML, respectively

GMT
4
= zbGB +

1

V0
Sbyy =

¡
zbbG − zbbB

¢
+
1

V0
Sbyy (2.47)

GML
4
= zbGB +

1

V0
Sbxx =

¡
zbbG − zbbB

¢
+
1

V0
Sbxx (2.48)
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G22 can be rewritten as

G22 = ρgV0diag(GMT , GML, 0) (2.49)

2.3.5 Thruster Forces

By a thruster we mean a device delivering a force of a magnitude Fi and direction
αi in the vessel’s xy-plane. The force contributions along the x- and y-axis, denoted
uix and uiy respectively, constitute the extended thrust vector provided by thruster
i

ubi =

·
uix
uiy

¸
(2.50)

Considering also the tilting of the thruster, that is the angle between produced
force and the xy-plane of the b-frame, we get an extended thrust in three dimen-
sions

ūbi =

 uix
uiy
uiz

 = Fi cosµi
 cosαi
sinαi
tanµi

 (2.51)

where Fi is the generated force and µi 6= ±π/2 describes the tilt angle of the
thruster. µi = 0 means that force is produced along the x- and y-axis of the
b-frame.

For simplicity, assume µi = 0 for all i such that

ūbi =

 uix
uiy
0

 (2.52)

Assume further that thruster i is located at

rbbti =
£
xbbti ybbti zbbti

¤T
(2.53)

which is the distance from the origin of the b-frame to the location of thruster i.
Thus, the contribution τ i from each device is

τ i =

·
ūbi

rbbti × ūbi

¸
=

·
I

S(rbbti)

¸
ūbi (2.54)

Since the third element of ūbi is zero by assumption, we may instead consider

τ i =


1 0
0 1
0 0
0 −zbbti
zbbti 0
−ybbti xbbti


·
uix
uiy

¸

= B̄(rbbti)ui (2.55)
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Suppose that the z-coordinate of all thruster devices are identical, in other words
that the thrusters are placed at the same depth zbbt. Then,

τ =
nX
i=1

B(rbbti)ui (2.56)

=
£
B(rbbt1) · · · B(rbbti)

¤ ui
...
un

 (2.57)

where

B(rbbt1) =

·
1 0 0 0 zbbt −ybbti
0 1 0 −zbbt 0 xbbti

¸T
(2.58)

This implies that the thrust-induced moments in roll and pitch are given as

τ4 = −zbbtτ2 (2.59)

τ5 = zbbtτ1 (2.60)

As we do not intend to assign propeller thrust in roll, pitch, and heave, this
assumption is important because thrust generated roll and pitch moments are
linear functions of sway and yaw thrust respectively regardless of how the thrust
allocation modules operates. More precisely, for any τ 3DOF = [τ1, τ2, τ6]T the
resulting propeller thrusts and moments will be given by

τ = Buτu (2.61)

where

Bu =

 1 0 0 0 zbbt 0
0 1 0 −zbbt 0 0
0 0 0 0 0 1

T (2.62)

2.4 3 DOF LF Model

A model in the horizontal plane describes the surge, sway, and yaw dynamics of a
vessel. The motion in the vertical plane, that is heave, roll, and pitch, is neglected.
From the general 6 DOF vessel model (2.19) the model in the horizontal plane is
found by isolating the surge, sway and yaw elements and simultaneously setting
heave, roll and, pitch to zero. The resulting model is described in terms of the
position vector η = [x, y,ψ]T containing North and East positions and heading
respectively. Surge and sway velocity together with the yaw rate form the velocity
vector ν = [u, v, r]T . Then (Fossen 2002),

η̇ = R(ψ)ν (2.63)

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ thr + τ env (2.64)

where the rotation is performed about the z-axis

R(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (2.65)
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Assuming xz-symmetry, the individual components in the velocity equation are

M =MRB +MA =

 m−Xu̇ 0 0
0 m− Yv̇ mxbbg − Yṙ
0 mxbbg −Nv̇ Iz −Nṙ

 (2.66)

C(ν) = CRB(ν) +CA(ν)

=

 0 0 −m22v −m23r
0 0 m11u

m22v +m23r −m11u 0

 (2.67)

As for the inertia matrix M, surge is decoupled from sway and yaw

DL =

 −Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (2.68)

The restoring term g(η) here contains mooring forces only. Since heave, roll, pitch
are neglected, there will be no hydrostatic restoring forces.

2.5 Environmental Forces

This section describes the slowly-varying environmental forces τ env acting upon
a surface vessel These are forces and moments due to ocean currents, wind, and
wave drift. The latter effect will be described in detail using an approximation
after Newman (1974), while ocean current and wind forces will only be briefly
summarized. Rapid, purely oscillatory motion due to first order wave loads will
not be addressed.

2.5.1 Ocean Current

A two-dimensional ocean current model is characterized by its velocity Vc and the
Earth-fixed direction βc it is running. Decomposed in the b-frame it can be written

uc = Vc cos (βc − ψ) (2.69)

vc = Vc sin (βc − ψ) (2.70)

The vessel now has a velocity relative to the fluid

νr =
£
u− uc v − vc r

¤T
(2.71)

in a horizontal plane model. Consequently, the effects of ocean currents may be
included in the damping (drag) forces as functions of the relative velocity νr rather
than of ν alone. However, because currents are steady phenomena, they contribute
very little to the linear part of the drag so simply replacing D(ν)ν with D(νr)νr
would be inaccurate. Replacing ν with νr in the quadratic term is theoretically
better

D(ν,νr) =DLν +DN(νr)νr (2.72)
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2.5.2 Wind

Similar to current, wind is characterized by a velocity Vw and an Earth-fixed
propagation direction ψw. The Earth-fixed components are thus·

unw
vnw

¸
= Vw

·
cosψw
sinψw

¸
(2.73)

such that relative to the vessel itself, the onboard experienced wind is

ubr = Vw cos(ψw − ψ)− u (2.74)

vbr = Vw sin(ψw − ψ)− v (2.75)

The experienced incoming wind direction and velocity becomes

γr = tan−1(vbr/u
b
r) (2.76)

Vr =

q
(ubr)

2
+ (vbr)

2 (2.77)

While wind direction is slowly varying, or may even be constant for finite periods
of time, the wind velocity is usually represented as the sum of a stationary and a
rapidly fluctuating component with zero mean. The gust model is usually based
on spectral approximations, see Fossen (2002) for a more detailed description.

The forces generated by the relative wind (Vr, γr) are based on wind coefficients
obtained either analytically or experimentally. These coefficients are parameter-
ized by the relative angle γr such that the wind generated forces and moments can
be calculated as quadratic functions of the relative velocity. This horizontal plane
formulation serves as an illustration

τwind =
1

2
ρa

 Cu(γr)AT
Cv(γr)AL
Cr(γr)ALL

V 2r (2.78)

Here ρa is the density of air, AT and AL are the transvere and lateral projected
area, L is the ship length, and Cu, Cv, Cr : R → R are the wind coefficients in
surge, sway and yaw.

2.5.3 Higher Order Wave Loads - Wave Drift

The notion higher order wave loads encompasses forces whose magnitudes are pro-
portional to the square (or higher) of the waves’ amplitudes. Due to the relatively
low frequency content of these forces compared to the linear, purely oscillatory
loads which oscillate with the wave frequency, higher order loads are often called
drift forces. In this section we will briefly describe the source of such forces and
discuss the importance of the slowly-varying components.

Wave drift forces are related to a structure’s ability to cause waves (Faltinsen 1990).
For craft with large surface piercing structures, the largest contribution of the
horizontal drift forces is due to the relative vertical motion between the structure



2.5 Environmental Forces 23

and the waves (Aalbers et al. 2001). The incident waves are modified by the large
structure resulting in non-zero drift forces due to the larger wave height on the
upwind side of the hull. However, there are other contributions. One of them is the
quadratic term in Bernoulli’s equation, and for smaller surface piercing structures
like semi-submersibles viscous effects proportional to the cube of the wave height
will be significant (Faltinsen 1990).

The second order forces, static and slowly-varying, are often reconstructed in the
time-domain using second-order transfer functions. Those transfer functions de-
scribe gain and phase shift of two harmonic signals of different frequencies. For
instance, for i = 1, 2 let uk(t) = Re(Akejωkt) where Ak ∈ C describe magnitude
and phase offset. Then, the output of a second-order transfer function of difference
frequencies HSV : R2 → C is

y(t) = Re
³
A1A

∗
2HSV (ω1,ω2)e

j(ω1−ω2)t
´

(2.79)

For simplicity disregard wave propagation direction. Thus, for a spectrum of waves
represented by N frequencies the immediate wave height is

ζ(t) = Re
NX
k=1

Ake
jωkt (2.80)

and assuming ωk+1 > ωk for all k, the resulting slowly-varying drift force becomes

f bSV (t) = Re
NX
k=1

kX
l=1

AkA
∗
lHSV (ωk,ωl)e

j(ωk−ωl)t (2.81)

Typically N = 100 is sufficient to describe a given sea state. Newman sug-
gested that a reasonable approximation would be to replace HSV (ωk,ωl) with
HSV (ωk,ωk) provided that the differences |ωk−ωl| are sufficiently small (Newman
1974). As a consequence, the slowly-varying force fbSV can be adequately derived
from the more simply obtainable wave drift coefficients HW (ω) = HSV (ω,ω) such
that

fbSV (t) = Re
NX
k=1

kX
l=1

AkA
∗
lHW (ωk)e

j(ωk−ωl)t (2.82)

HW (ωk) for craft similar to the supply vessel used in the experiments is reproduced
in Figure 2.2.

An estimate of fbSV (t) based on Newman’s approximation, by numerically recon-
structing the wave conditions in the experiments presented in Chapter 6, can be
seen in Figure 2.3. The magnitude of fbSV (t) is seen to be slowly varying compared
to the incoming waves. This is verified by the power spectra in Figure 2.4 where
the required bandwidth of a typical DP system is indicated. With a high wave
group passing, as around t = 60 sec. in Figure 2.3, the drift force magnitude may
rise to a level three times higher than the static drift.
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Chapter 3

Inertial Measurements

3.1 Introduction

Over the years a variety of solutions and control strategies has been proposed to
the DP control problem. A significant industrial contribution was the application
of Kalman filters and optimal control (Balchen et al. 1976, Grimble et al. 1980,
Balchen et al. 1980). These model based strategies separated the rapid, purely
oscillatory (zero mean) motion caused by the first order, linear (i.e. proportional to
the instantaneous wave height and with a frequency content equal to the incoming
waves) wave loads, from the more slowly varying forces due to nonlinear wave
effects, so called wave drift forces, wind and ocean currents. The applied thrust was
then calculated from the estimated low-frequency motion thus reducing thruster
modulation and wear and tear.

The objective of the DP system is therefore to counteract constant and the slowly-
varying disturbances due to:

• Higher order wave loads (wave drift).

• Ocean currents.

• Wind forces (not wind gusts).

All these three components have stationary contributions, and some form of in-
tegral action will be required. Furthermore, the vessel’s desired heading angle
should be selected such that the power required to reject the constant force com-
ponents is minimized. This can be achieved automatically by controlling the x-
and y-positions provided that the vessel’s reference point is located at a minimum
distance fore of the centre of gravity (Pinkster and Nienhuis 1986). A more versa-
tile and sophisticated concept called weather optimal positioning control (WOPC)
was introduced by Fossen and Strand (2001).
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It is not required to estimate the varying disturbances in order to stabilize the
system. Disturbance feed-forward will be an optional feature attenuating devia-
tions caused by varying disturbances. However, not all disturbance components
are measurable. Estimating the dynamic wind forces can be done efficiently with a
wind sensor and the knowledge of the ship’s wind coefficients, and commercial DP
systems include this “wind feed-forward” option. On the other hand, producing an
estimate of the wave drift forces is non-trivial, and practical measures for handling
these particular dynamic forces have not been explicitly taken until very recently.
Even though PID-like control efficiently rejects constant disturbances, it is not
the best option for attenuating varying disturbances in a second order mechanical
system. This stems from the simple fact that a PID-controller, linear or nonlin-
ear, cannot cope with the varying force disturbance due to the phase lag involved.
After all, the control is calculated as a sum of the system’s positions, integrated
position errors and velocities. The resulting behavior will therefore be oscillatory
in contrast to the case where the varying disturbance is completely cancelled out
by an oppositely directed thrust force. Introducing more damping could theoret-
ically reduce the amplitudes of the resulting motion, but due to wave-frequency
residues in the low-frequency velocity estimate, increased damping simultaneously
contributes to thruster modulation. There is therefore a practical limit for the
derivative gain’s magnitude.

In Aalbers et al. (2001) the authors proposed two “wave feed-forward” techniques
to suppress the nonlinear wave effects. They illustrated the performance experi-
mentally with a model ship. The wave drift forces were estimated by measuring
the relative water motion around the waterline of the hull using ten probes. The
estimated drift forces were, together with estimated wind forces, used directly in
the PID feedback loop. For the same thrust power, the position deviations de-
creased. The method is, however, impractical because of the required number of
wave probes and their robustness and expected length of life. It seems that such
an installation could turn out to be expensive and somewhat unreliable.

An alternative method applicable to ships, or in fact to all mechanical systems, is
to measure the accelerations. Active use of measured acceleration for control can
be regarded as manipulating the system’s mass. Negative acceleration feedback
(AFB) increases the mass and positive feedback decreases it. By negative feedback
the system is made virtually heavier as seen from the disturbances, thus their
effects are attenuated and the positioning performance increases. In the opinion of
the author, it seems more attractive to employ measured acceleration in positioning
control of surface vessels to further suppress varying disturbances in general and
slowly varying wave drift in particular rather than implementing a wave feed-
forward approach (Aalbers et al. 2001) because:

• The sensor and engineering cost will be much lower. High-precision commer-
cial inertial measurement units (IMUs) are becoming increasingly affordable
and can be easily interfaced with existing control systems.

• The sensor equipment is intended for aerospace applications and is therefore
extremely solid, reliable and robust.
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• All kinds of slowly varying disturbances, not only wave drift, will be atten-
uated.

• Acceleration feedback is applicable to all kinds of vessels, in contrast to the
first force estimation method proposed by Aalbers et al. (2001) which is
primarily applicable to craft with large surface piercing structures such as
tankers.

Active use of measured acceleration is well known in aerospace applications (Blakelock
1991) but is rarely applied in other areas like robotics and ship control simply be-
cause it is in general superfluous in stabilizing such systems. If, on the other hand,
the system parameters are uncertain, the tracking performance and robustness may
suffer. This is particularly evident in feedback linearization designs. Employing
measured acceleration relaxes the need of an accurate model description because
the right-hand side of Newton’s second lawX

k

Fk =ma (3.1)

divided by the mass (and thereby the model itself) is actually being measured.
Consequently, it seems plausible to expect improved robustness, tracking perfor-
mance and disturbance rejection when AFB is constructively applied.

Using the acceleration in a feedback loop has been referred to as a direct approach
(de Jager 1994) as opposed to indirect where the acceleration signal is used in an
observer to improve the state estimates. de Jager (1994) recommended to consider
using measured acceleration either directly or indirectly, but not in combination,
and he reported increased tracking performance by counteracting uncertainty in
the inertia matrix of a 2D Cartesian manipulator.

For rigid robots, Luo and Saridis (1985) suggested using a decentralized (diagonal)
static linear controller for rigid robots assuming that joint positions, velocities and
accelerations were available. Stability in the sense of Lyapunov and performance
of this controller was later studied by Studenny and Bélanger (1984). In Kosuge
et al. (1989) the authors suggest using low-pass filtered acceleration to improve
the performance and robustness of a feedback linearization design of a two-link
planar robot. The “disturbance” due to inaccurate model parameters introduced
in the linearization was reduced in addition to the environmental disturbances.
Complete disturbance cancellation can only be achieved as the acceleration gain
tends towards infinity, and due to unmodeled dynamics, time delays, imperfect
measurements, and other practical limitations, there will be an upper bound on
the acceleration gain.

In low speed ship control, such as DP, a combined approach after de Jager’s de-
finition is almost inevitable due to the heavy notch filtering the observer has to
perform. First order wave loads dominate the measured acceleration signal and
direct application leads to thruster modulation and unbearable wear on the equip-
ment. We let the notch filtered acceleration signal update both the state estimates
and the control law. This particular combined approach proved to be successful.
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3.1.1 Motivation: AFB in Mass-Damper Systems

Neglecting couplings and considering one degree of freedom (DOF) at a time, a
ship at low speed can be regarded as a linear mass-damper system

mẍ = −dẋ+ u+w (3.2)

where x and v = ẋ are the states describing position and velocity,. u is the control
and w is a disturbance. Isolating the velocity equation and defining Tm = m/d we
get the transfer function

h(s) =
v

w
(s) =

1

d

1

(1 + Tms)
(3.3)

The idea is now to incorporate an acceleration term in the control u, that is let u
be the sum

u = −ha(s)v̇ + uPID (3.4)

where uPID is to be designed later and ha(s) is some dynamic system. The effect
of the negative acceleration term −ha(s)v̇ is increased mass, the system’s virtual
mass becomes ma(s) = m+ ha(s).

For attenuation of low-frequency disturbances, a suitable ha(s) could be a low-pass
filter with a gain specified as a fraction of the original mass m

ha(s) =
αm

1 + Tfs
(3.5)

For positive α’s the mass increases to (1 + α)m for frequencies below ωf = 1/Tf
thus making the system virtually heavier and less influenced by varying distur-
bances. For high frequencies the mass is left unaltered because |ha(jω)| → 0 for
ω À ωf . The resulting transfer function for the velocity dynamics becomes

v

uPID
(s) =

v

w
(s) =

1

d

1 + Tfs

(1 + Tms) (1 + Tfs) + αTms
(3.6)

≈ ωaωe
d

1 + Tfs

(s+ ωa) (s+ ωe)
(3.7)

where

ωa =
1

Tm

1

1 + α
, ωe =

1 + α

Tf
(3.8)

The asymptotic Bode plots from force to velocity (Figure 3.1) with and without
acceleration feedback show that, because the mechanical time constant has been
increased by feedback, the magnitude decreases for frequencies ωa < ω < ωe.

The “power”, as given by the L2-induced norm, of the velocity v has been reduced
for disturbances w in the frequency range ωa < ω < ωe. For frequencies lower
than ωa, no reduction can be expected.
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Figure 3.1: Top: Bode plot of vw (s) with (solid) and without (dashed) acceleration
feedback. Bottom: The magnitude of virtual mass ma(s) =m+ ha(s).

3.2 Inertial Measurements

3.2.1 Angular Rates

When using high-precision gyro measurements it is required to take the Earth’s
rotation into account, the n-frame can no longer be regarded as the inertial frame.
It is customary to express the rotations with respect to the ECI (Earth-centered
inertial) i-frame which by definition does not rotate. The ECEF (Earth-centered
Earth-fixed) frame is also located in the center of the Earth but rotates along with
it.

An assumed error free gyro measures the rotation of the b-frame relative to the
inertial ECI frame i.

ωbimu = ωbib = ωbie +ωben +ωbnb (3.9)

The second component can be ignored for marine applications, while the first can
be ignored if it is below the gyro noise level which means that for high-precision
gyros ωbie must be taken into consideration.

If the n-frame is fixed relative to the Earth, or as mentioned slowly-varying as in
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marine operations, the gyro measurement is reduced to

ωbimu = ωbie +ωbnb (3.10)

3.2.2 Linear Accelerations

Consider now the n-frame as the inertial frame. Suppose the IMU is located at
the distance pbbI from the origin of the body-fixed frame. In the inertial frame,
the position of the IMU is then

pnnI = p
n
nb +R

n
bp

b
bI (3.11)

and its velocity vnnI = ṗ
n
nI is

vnnI = ṗ
n
nb +R

n
bS(ω

b
nb)p

b
bI =R

n
b

¡
vbnb + S(ω

b
nb)p

b
bI

¢
(3.12)

where we used that Ṙnb = R
n
bS(ω

b
nb). The acceleration a

n
nI = p̈

n
nI is thus

annI = p̈nnb +R
n
b

³
S2(ωbnb) + S(ω̇

b
nb)
´
pbbI (3.13)

= Rn
b

¡
S(ωbnb)v

b
nb + v̇

b
nb

¢
+Rn

b

³
S2(ωbnb) + S(ω̇

b
nb)
´
pbbI (3.14)

To avoid handling angular accelerations ω̇bnb, let the accelerometer be located in
the origin of the b-frame, i.e. pbbI = 0. Since the acceleration measurements are
decomposed in the b-frame, the assumed error free acceleration measurement fbimu
consisting of the actual acceleration annb given by

abnb = R
b
na

n
nb = v̇

b
nb + S(ω

b
nb)v

b
nb (3.15)

and gravity is written

fbimu = a
b
nb −Rb

ng
n (3.16)

Here gn = [0, 0, g]T is the contribution from gravity. Notice the Coriolis effect
S(ωbnb)v

b
nb caused by the rotation of the b-frame relative to the inertial n-frame.

Observe that the gravity term could have been expressed using the vessel-parallell
p-frame such that on component form

gb = Rbng
n =Rb

pg
p =

 − sin θ
sinφ cos θ
cosφ cos θ

 g (3.17)

because gp = gn.

In terms of the ν-vector, the error-free measured acceleration can be written as

f bimu = ν̇1 + S(ν2)ν1 − gb = ν̇1 + ν2 × ν1 − gb (3.18)
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3.3 Compensators

The error-free measured acceleration (3.16) demonstrates that ybacc 6= ν̇1 = v̇bnb.
In order to construct a “measured” ν̇1 some kind of compensator has to be imple-
mented:

yν̇1 = f
b
imu − S(ω̂bnb)v̂bnb +R(θ̂pb)gp ≈ ν̇1 (3.19)

Even small roll and pitch angles will lead to gravity components in the acceleration
measurements along the surge and sway axes. Those components will, because
gravity is the dominating force acting upon the vessel, dominate. Consequently,
accurate measurements of surge and sway acceleration require good roll and pitch
measurements. An integrated navigation system estimates the position pnnb, the
orientation θnb and the velocities vbnb and ω

b
nb. The compensator (3.19) can thus

be realized using such systems.

An integrated navigation system is, however, not strictly required for gravity com-
pensation. Below two different types of g-compensation are proposed and dis-
cussed, one static and one dynamic. The static compensator uses only accelera-
tion measurements to remove the gravity forces, while the dynamic approach is
an attitude observer also utilizing gyro measurements. However, neither the static
nor the dynamic g-compensator is able to cancel the Coriolis component in

abnb = ν̇1 + ν2 × ν1 (3.20)

which means that unless the navigation system is able to accurately estimate
ν1 = vbnb, this Coriolis effect cannot be removed and therefore isolating ν̇1 is
generally speaking impossible and care must be taken when using the gravity
compensated acceleration measurement in the control design.

Still, in positioning operations at sea, the need for such integrated systems can be
relaxed as explained below.

3.3.1 Static Low-Speed Gravity Compensator

If we can assume that the velocities vbnb and ω
b
nb are small, the error-free measured

acceleration (3.16) can be approximated by

f bimu ≈ v̇bnb −Rb
pg
p (3.21)

If the vessel is at complete rest

fbimu = −Rb
pg
p (3.22)

from which can solve for the roll and pitch angles as follows

φ = arctan

µ
fy
fz

¶
, fz > 0 (3.23)

θ = arctan

 fxq
f2z + f

2
y

 (3.24)



34 Inertial Measurements

where we used the individual components of the measured signal fbimu = [fx, fy, fz]
T .

Provided the inclinations are small

φ ≈ −fy
g

θ ≈ fx
g

(3.25)

and consequently, the roll and pitch errors δφ and δθ exhibit a similar dependence
on the measurement errors δfx and δfy, that is

δφ ≈ −δfy
g

δθ ≈ δfx
g

(3.26)

A 1 mg accelerometer error thus gives a static roll and pitch accuracy of 1 mrad
≈ 0.06 deg.
A successful g-compensation relies on good roll and pitch estimates (measure-
ments). Suppose that the velocities are small in the sense that gravity forces dom-
inate S(ωbnb)v

b
nb such that (3.23)-(3.24) are reasonable approximations for roll and

pitch. The accelerometers are contaminated with an error ∆acc = [δfx, δfy, δfz]
T

due to various effects. The error-free measured acceleration f bimu and the actual
measured accelerations are

f bimu = ab −Rbpgp (3.27)

ybacc = fbimu +∆acc (3.28)

From the latter we can estimate ab using the estimated roll and pitch angles
θ̂pb = [φ̂, θ̂, 0]

T

âb = ybacc + R̂
b
pg
p (3.29)

The error ãb = ab − âb is thus

ãb = fbimu +R
b
pg
p −

³
fbimu +∆acc + R̂

b
pg
p
´

≈
³
I− S(θpb)−

³
I− S(θ̂pb)

´´
gp −∆acc

= S(g
p
)θ̃pb −∆acc (3.30)

The linear approximations of the rotation matrices are valid for small inclinations.
Taylor expansions of the roll and pitch components of the attitude error θ̃pb =
θpb − θ̂pb are

φ̃ ≈ δfy
g

θ̃ ≈ −δfx
g

Consequently, by inserting these errors into (3.30), we see that a g-compensator
not only cancels out the gravity components but also removes the accelerometer
error ∆acc on the x and y-axis

ãb ≈ − £ 0 0 δfz
¤T

(3.31)
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3.3.2 Dynamic Gravity Compensation

In order to measure dynamic roll and pitch accurately, a filter that integrates gyro
and accelerometer measurements must be designed. This is often referred to as
a vertical reference unit (VRU) and such can be implemented using a Kalman
filter or an observer. Here the observer developed in Vik and Fossen (2001) is
summarized and used as basis in a dynamic gravity compensation (DGC) scheme.

The “low-speed assumption” above that was required for using (3.23)-(3.24) as
roll-pitch measurements is no longer applicable for vessels exposed to incoming
waves. However, this requirement can be relaxed when employing angular velocity
measurements.

The observer is written (Vik and Fossen 2001):

˙̂q =
1

2
Tq̂(q̂)R(q̃)

h
ωbimu + b̂gyro +K1ε̃q sgn(η̃q)

i
− 1
2
Ξ(q̂)ωnin (3.32)

˙̂bgyro = −T−1gyrob̂gyro +
1

2
K2ε̃q sgn(η̃q) (3.33)

where q̂ ∈ H, is the four element unit quaternion
H=

n
q | qTq =1,q = [ηq , εTq ]T , ηq ∈ R,εq ∈ R3

o
(3.34)

ωimu ∈ R3 is the angular velocity vector measured by the gyros, b̂gyro ∈ R3 is the
gyro bias, and ωnin = ωnie +ωnen where ω

n
ie is the earth rate vector and ω

n
en is the

angular velocity due to the movement of the ship over the Earth. Computation of
ωnie requires knowledge of true north. Tgyro ∈ R3×3 is a diagonal time constant
matrix, and K1 ∈ R3×3 and K2 ∈ R3×3 are diagonal matrices. Finally,

Tq̂(q̂) =

· −ε̂Tq
η̂qI+ S(ε̂q)

¸
(3.35)

Ξ(q̂) =

· −ε̂Tq
η̂qI− S(ε̂q)

¸
(3.36)

ε̃q and η̃q are components of the quaternion error q̃, which is computed from the es-
timated quaternion and a measurement quaternion derived from the accelerometer
based attitude measurements (3.23)-(3.24). Since the accelerometer attitude mea-
surement only needs to prevent the integrated gyro signal from drifting, the gains
are usually chosen very small. The low gain means that horizontal accelerations
have little influence on the roll and pitch measurements. Thus, these measurements
can be used to compensate for the g-vector in the surge and sway acceleration mea-
surements. Moreover, since the accelerometers are used for attitude computation,
accelerometer bias will not influence the surge and sway measurements.

DGC is then carried out after (3.29), that is

âb = ybacc + R̂
b
pg
p

where R̂b
p now reflects it is being calculated based on the VRU’s attitude estimates

q̂.
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Figure 3.2 shows the measured and g-compensated acceleration in a static test
using the Litton LN-200.
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Figure 3.2: Measured and g-compensated accelerations. The noise level is about
120 µg (1σ), and the offset after compensation is a few µg on all three axes.

3.4 Positioning Control

In ship positioning, oscillatory motion caused by first order wave loads domi-
nate the vessel’s dynamic behavior. By separating the wave motion from the
low-frequency dynamics, the body-fixed velocities and linear accelerations can be
written as

νbnb = νbLF + νbWF (3.37)

ωbnb = ωbLF +ωbWF (3.38)

where the subscripts now identify the low-frequency and and wave frequency parts
instead of relative motion. The error-free acceleration measurement (3.16) can be
written as

fbimu = v̇bLF + v̇
b
WF + S(ω

b
LF +ωbWF )

¡
vbLF + v

b
WF

¢−Rbpgp
= v̇bLF + S(ω

b
LF )v

b
LF −Rb

pg
p + zbWF (3.39)
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where zbWF is a signal dominated by the linear wave induced motion

zWF = S(ω
b
LF )v

b
WF + S(ω

b
WF )

¡
vbLF + v

b
WF

¢
(3.40)

A reasonable assumption motivated by the small low-frequency velocities occurring
in a positioning operation is:

A1 The Coriolis terms from the low-frequency motion can be neglected, that is

S(ωbLF )v
b
LF ≈ 0 (3.41)

Hence, the measured acceleration can be approximated by

ybacc ≈ v̇bLF −Rbpgp + zbWF +∆acc (3.42)

which is the sum of the low-frequency acceleration, gravity contributions and some
signal zbWF of a significantly higher frequency content than v̇

b
LF . Therefore, using

a dynamic gravity compensator to remove gb and ∆acc together with a wave
filter (or observer) to remove the wave frequency components zbWF as depicted
in Figure 3.3, it is at least in a positioning operation possible to isolate v̇bLF =
ν̇1. Consequently, using ν̇1 in a low-speed control design is possible also without

Figure 3.3: Realization of a g-compensation system and observer for reconstruction
of the low-frequency body-fixed acceleration v̇bLF and angular velocity ω

b
nb.

utilizing an integrated navigation system.

3.5 Conclusions

The active use of negative acceleration feedback has been briefly introduced by
regarding it as a change of the system’s mass. In order to utilize measured lin-
ear accelerations on surface vessels, some kind of dynamic compensation or pre-
processing has to be performed in order to relate the measurement to the b-frame.
By separating the low freqency motion from the wave induced motion (of relative
high freqency content), it was demonstrated that a particular VRU with gravity
compensation serves this purpose well as long as the vessel itself operates at low
speed.
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Chapter 4

Observer Design

4.1 Introduction

An observer filters available measurements to provide online estimates of the mea-
sured and unmeasured states within a system. In ship control, the most commonly
needed states are the low-frequency (LF) parts of the positions, the heading, the
velocities and stationary (or slowly varying) disturbances due to wind, ocean cur-
rent and nonlinear wave effects. Based on those estimated states, the controller
calculates its thrust demand. The three main objectives for the observer are:

• State estimation: To produce the state estimates from which the controller
calculates its desired propeller thrust forces and moments.

• Wave filtering: The estimator should attenuate the fast, oscillatory motion
due to first-order wave loads. It is useless trying to compensate this sinu-
soidal (zero mean) behavior, and doing so will only lead to excessive thruster
system wear.

• Handling dead-reckoning: In the case of temporary sensor failure, the ob-
server must for a period of time be able to adequately predict the motion of
the ship such that the positioning operation can continue. This is a system
redundancy requirement which is mandatory with the classification societies
(Det Norske Veritas 1990).

The third objective implies that some kind of model based filter must be imple-
mented.

Classic solutions to the DP problem of surface vessels are output-feedback de-
signs using a state-estimator to filter out 1st-order wave induced motion from the
LF positions while reconstructing LF velocities (Balchen et al. 1976, Balchen et
al. 1980, Sælid et al. 1983, Grimble et al. 1980, Fung and Grimble 1983, Sørensen et
al. 1996). All these were realized using linear stochastic theory (Kalman Filters),



40 Observer Design

but also H∞-solutions been proposed (Katebi et al. 1997). Unfortunately, the lin-
earization of the nonlinear kinematics implies that the results are only valid locally.
However, if the nonlinearities satisfy a global Lipschitz-condition, a modification
(Reif et al. 1999) of the extended Kalman filter ensures global exponential stability.
Another approach with comparable performance is to utilize the model structure
and let the observer “linearize” itself about the measured compass heading. As
opposed to traditional extended Kalman-filters, the on-line explicit linearization
is avoided, and global stability properties are more easily established since the
nonlinear kinematics can be treated as a known time-varying block. Examples
are the passivation designs (Fossen and Strand 1999, Strand and Fossen 1999),
further extensions to higher order monotonic damping terms (Aamo et al. 2001),
and non-dissipative linear damping terms (Lindegaard and Fossen 2001b).

As discussed previously, using the measured accelerations, we are able to better
keep up with unmodeled disturbances like slowly varying wave forces which must
be counteracted by the control system. Slowly varying wave induced forces is a
phenomenon well known from nonlinear hydrodynamic theory (Faltinsen 1990),
yet they are difficult to express in a form suited for controller design. However,
feeding the measured accelerations uncritically into the closed loop system is not
recommended due to the high-frequency, large amplitude oscillations caused by
1st-order wave loads. Therefore, some kind of notch filtering of the measured
accelerations is required in order to remove the wave frequency components.

In this chapter we focus on extending the proven observer structure from Fossen
and Strand (1999). More specifically, the contributions are:

• Identification of structural conditions unifying linear and nonlinear observer
design for surface vessel at low speed: If some structural constraints are satis-
fied, the nonlinear kinematics can be disregarded in the stability analysis and
linear design tools may be applied. While previous nonlinear observer de-
signs either assumed a passive, and thus stable, vessel-fixed dynamics (Fossen
and Grøvlen 1998, Fossen and Strand 1999, Strand and Fossen 1999, Loría et
al. 2000, Aamo et al. 2001) or prescribed using non-diagonal observer gain
matrices to handle the possibly unstable sway-yaw dynamics (Robertsson
and Johansson 1998), we show that one can obtain uniform global exponen-
tial stability of the observer errors for all kinds of vessels using fixed, diagonal
observer gains.

• Optional inclusion of velocity and acceleration measurements.

Common for all previously mentioned designs is that they are derived under the
assumption that only the positions and compass heading were available for feed-
back. Today high performance inertial measurement units (IMU) are becoming
increasingly affordable, and integrated navigation systems (INS) integrating IMU
and GPS reproduce not only positions but also velocities and linear accelerations
with great accuracy to a reasonable price. This development in sensor technology
is reflected in the proposed designs.

Two different observers will be analyzed:
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1. The first observer (Lindegaard and Fossen 2001a, Lindegaard and Fossen
2001b) contains one single wave model generating accelerations, velocities
and positions. It requires position measurements, and the structure allows
the inclusion of velocity and acceleration. Without acceleration measure-
ments the resulting error dynamics is shown to be UGES provided that the
wave model and selected observer gains satisfy the structural properties.
With accelerations, a specific bound on the yaw rate ψ̇ must be imposed and
uniform semi-global exponential stability (USGES) can be guaranteed.

2. In the second observer (Lindegaard et al. 2002) the wave models for ac-
celeration, velocity and position and treated as separate phenomena. This
facilitates the tuning procedure significantly, and a particular tuning proce-
dure based on pole placement is proposed. A similar structural constraint
as for the first observer must also be assumed in this case, and USGES of
the error dynamics is shown.

4.2 Common Model Description

The two observers are quite similar, the main difference between the two being in
the implementation of the wave model used to filter out first order wave motion.
This section discusses the LF model description used in both designs.

We consider the dynamics of a vessel in three degrees of freedom, the horizontal
plane, and we choose to express the model in the Earth- and body-fixed coordinate
frames. The body-fixed frame coincides with the principal axes of the vessel and it
is rotated an angle ψy with respect to the Earth-fixed frame. This transformation
of coordinates is represented by the orthogonal rotation matrix

R(ψy) =

 cosψy − sinψy 0
sinψy cosψy 0
0 0 1

 (4.1)

and its time-derivative is Ṙ(α)
4
= d

dt(R(α)) = α̇SR(α) where the skew-symmetric
matrix S = −ST is given by

S =

 0 −1 0
1 0 0
0 0 0

 (4.2)

Let η = [x, y,ψ]T be the LF position vector where x and y are the North and East
positions respectively, and ψ being the LF heading. ν = [u, v, r]T contains the LF
body-fixed velocities, i.e. surge, sway, and yaw. The LF ship model is assumed to
satisfy:

A1 The orientation angle between the Earth-fixed and body-fixed frame is the
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measured heading ψy such that:

η̇ = R(ψy)ν

ḃ = −T−1b b+Ebwb
Mν̇ = −GRT (ψy)η −Dν + τ +RT (ψy)b

(4.3)

Here τ ∈ R3 is the applied thruster force, M =MT > 0 is the sum of rigid
body mass and hydrodynamic added mass, D ∈ R3×3 contains linear damp-
ing coefficients and G ∈ R3×3 describes the mooring forces. The bias forces
b ∈ R3 are modelled as Markov processes with a positive semi-definite diag-
onal matrix Tb ∈ R3×3 of time constants. wb ∈ R3 is a bounded disturbance
signal, and Eb ∈ R3×3 is a gain factor.

In the following we will frequently utilize a commutation property between the
Earth-fixed parameters and the rotation R(α).

Property 4.1 A matrix A ∈ R3×3 is said to commute with the rotation R(α) if

AR(α) = R(α)A (4.4)

Examples of matrices A satisfying Property 4.1 are linear combinations A =
a1R(θ)+a2I+a3k

Tk for scalars ai, θ and k = [0, 0, 1]T , the axis of rotation. Also
note that since R(α) is orthogonal, that is RT (α) =R−1(α), Property 4.1 implies
that

A = RT (α)AR(α) =R(α)ART (α) (4.5)

Furthermore, if A is nonsingular, A−1 commutes with R(α) too. That is

AR(α) = R(α)A
A is nonsingular⇐⇒ A−1R(α) = R(α)A−1 (4.6)

4.3 Observer With Consistent Wave Model

In Section 4.3.1 below we describe the vessel model and some of its properties with
attention given to how the individual measurements fit into the model framework.
Section 4.3.2 concerns the filter design and stability analysis. An important part of
this section is the discussion regarding structural properties: The structure of gain
matrices updating the Earth-fixed error dynamics can not be selected arbitrarily.
Section 4.3.3 presents some conclusions and remarks.

4.3.1 Complete Ship and Environment Models

The LF model is described by (4.3). Now, let xw ∈ R3nw describe the first order
wave-induced motion where nw denotes the number of states used to describe
the wave frequency motion in each degree of freedom (DOF). Here we let the
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WF model be expressed entirely in the Earth-fixed frame, and in accordance with
Fossen and Strand (1999), we employ a linear wave model on the form

ẋw =Awxw +Ewww (4.7)

where Aw is assumed Hurwitz, Ew ∈ R3nw×3 is a gain matrix, and ww ∈ R3 is
a zero-mean, bounded disturbance input. In a Kalman filter setting ww should
be a white, Gaussian process. We are ready to impose two additional model
assumptions:

A2a For D = {dij} i, j = 1, · · · , 3, the elements d11, d22 > 0.
A3a The bias time constant matrix Tb and each 3× 3 sub-block of Aw satisfies

Property 4.1.

Note in Assumption A2a that there are no restrictions on neither d23, d32 nor d33.
A2a is thus less restrictive than assuming D+DT > 0 (Fossen and Strand 1999)
and its interpretation is that separate surge and sway motions are dissipative.
It does, however, include cases with potentially unstable sway/yaw dynamics
(Robertsson and Johansson 1998). The last assumption, A3a, implies that the
mean wave motion period, relative damping, and bias time constants in the North
and East directions are identical. It should be emphasized that this is not as re-
strictive as it may sound since the dominating frequency of the first order wave
induced motions will be approximately the same in surge and sway.

First Order Wave Motion

A suitable linear representation of the oscillatory motion caused by the 1st-order
wave loads can be approximated by a set of three de-coupled linear transfer func-
tions

h(s) =
kwis

(s2 + 2ζiω0is+ ω20i)
2 (4.8)

in each of the 3 DOF. The motivation for using a function of fourth order instead
of other approximations, is that this choice ensures that the transfer functions
between the excitation and positions, velocities as well as accelerations, will be
strictly proper.

A minimal realization with xw ∈ R12 can in state-space be described by

ẋw =Awxw +Ewww (4.9)

Aw =


0 I 0 0
−Ω −Λ 0 I
0 0 0 I
0 0 −Ω −Λ

 , Ew =


0
0
0

diag (kw)


where Ω and Λ are diagonal matrices holding the the wave motion resonance
frequencies ωoi and relative damping factors ζi, i = 1, · · · , 3 for the North, East
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and heading respectively like this

Ω = diag(ω201,ω
2
02,ω

2
03) (4.10)

Λ = diag(2ζ1ω01, 2ζ2ω02, 2ζ3ω03) (4.11)

and kw = [kw1, kw2, kw3]
T is a gain vector. Assumption A3 requires ω01 = ω02

and ζ1 = ζ2. The Earth-fixed wave induced position, velocity and acceleration
can be extracted from xw as follows

pw = Cpxw, vw = Cvxw, aw = Caxw (4.12)

where Cp,Cv,Ca ∈ R3×12

Cp =
£
I 0 0 0

¤
(4.13)

Cv =
£
0 I 0 0

¤
(4.14)

Ca =
£ −Ω −Λ 0 I

¤
(4.15)

Since d
dt

¡
RTvw

¢
= d

dt

¡
RT
¢
vw +R

T v̇w = −ψ̇yRTSvw +RTaw, the experienced
wave induced velocities and accelerations will in the body frame be given as

vbw = RT (ψy)vw = R
T (ψy)Cvxw (4.16)

abw = RT (ψy)
³
Ca − ψ̇ySCv

´
xw (4.17)

The acceleration term depending on measured rotation rate ry = ψ̇y can be re-
garded as a Coriolis-like term.

Collect the Earth-fixed states in x1 ∈ R6+3nw and the body-fixed in x2 ∈ R3

x1 =
£
xTw ηT bT

¤T
(4.18)

x2 = ν (4.19)

and define the block diagonal transformation matrix

T(ψy) = Diag(R
T
¡
ψy
¢
, · · · ,RT ¡ψy¢ , I) (4.20)

On compact form using Assumption A3 we get with x = [xT1 ,x
T
2 ]
T and w =

[wTw,w
T
b ]
T

ẋ = TT (ψy)AT(ψy)x+Bτ +Ew (4.21)

where

A =


Aw 0 0 0
0 0 0 I
0 0 −T−1b 0
0 −M−1G M−1 −M−1D

 (4.22)

B =


0
0
0

M−1

 , E =


Ew 0
0 0
0 Eb
0 0

 (4.23)
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Measurements

We intend to cover all combinations of position, velocity and acceleration measure-
ments. The positions are usually given in an Earth-fixed reference frame, while
velocities and accelerations are given in a body-fixed coordinate system.

There might be cases where not all kinds of measurements are available, either due
to sensor failure, or simply because that particular vessel was not equipped with
that kind of instrument. Denote the measurements y. We have that y ∈ Rny where
3 ≤ ny ≤ 8 depending on the configuration. Define Υ2 and Υ3 as the projections
extracting the measured velocities and accelerations respectively from the actual
three DOF velocity and accelerations vectors. It is possible to measure all three
velocities pretty accurately, which means that quite often Υ2 = I. While linear
accelerations are easy to measure, the angular acceleration is not. Therefore, most
likely only the accelerations in surge and sway are available and hence ny3 = 2
and

Υ3 =

·
1 0 0
0 1 0

¸
(4.24)

Let y1 ∈ R3 contain the Earth-fixed positions and compass heading, y2 ∈ Rny2
the vessel-fixed velocities and y3 ∈ Rny3 accelerations. Then,

y1 = η + ηw = η +Cpxw (4.25)

y2 = Υ2
¡
ν +RTCvxw

¢
(4.26)

y3 = Υ3
¡
ν̇ + abw

¢
= Υ3M

−1
³
−GRTη +RTb−Dν

´
+Υ3R

T
³
Ca − ψ̇ySCv

´
xw (4.27)

Compactly written
y = Cy(ψy, ψ̇y)x+Dyτ (4.28)

where

Cy(ψy, ψ̇y) =

 Cp I
Υ2CvR

T (ψy) 0

Υ3(Ca − ψ̇ySCv)R
T (ψy) −Υ3M−1GRT (ψy)

0 0
0 Υ2

Υ3M−1RT (ψy) −Υ3M−1D


Dy =

£
0 0 M−TΥT3

¤T
(4.30)

When only positions are available, ny2 = ny3 = 0, the model is reduced to the
traditional DP observer problem.

In the stability analysis below it will be convenient to make an assumption on how
the velocity and acceleration feedback is configured:

A4a LetΠi =ΥTi Υi ∈ R3×3, i = 2, 3. Valid configurations are those which allow
Πi to commute with R(α), that is R(α)Πi =ΠiR(α) for all α ∈ R.
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Objective

For the model (4.21) with output (4.28)-(4.30), under Assumptions A1, A2a, and
A3a, we seek a deterministic, model based observer that is exponentially stable
for all possible sensor combinations satisfying Assumption A4a.

4.3.2 Observer Design

By copying the system dynamics (4.21), the following observer is proposed:

˙̂x = TT (ψy)AT(ψy)x̂+K(ψy)ỹ (4.31)

The estimated output is

ŷ = Cy(ψy, ψ̇y)x̂+Dyτ (4.32)

and hence when the estimation error is x̃ = x− x̂,

ỹ = y − ŷ = Cy(ψy, ψ̇y)x̃ (4.33)

Although it somewhat restricts the flexibility, we suggest not to update the Earth-
fixed estimates from the acceleration error ỹ3 at this stage, because this would in-
troduce transmission zeros. Therefore, this particular observer gain matrix K(ψy)
with constant K1i ∈ R12×3, K2i ∈ R3×3, K3i ∈ R3×3 and K4i ∈ R3×3 is suggested

K(ψy) =


K11 K12R(ψy)Υ

T
2 0

K21 K22R(ψy)Υ
T
2 0

K31 K32R(ψy)Υ
T
2 0

K41R
T (ψy) K42Υ

T
2 K43Υ

T
3

 (4.34)

where the following assumption is made:

A5 Each 3 × 3 sub-block of the gain matrices Kji, 1 ≤ j ≤ 3, i = 1, 2 commute
with R(α).

This implies that the gains in North and East must be identical. The body-fixed
gain matrices K4i, 1 ≤ i ≤ 3 can, however, be selected freely.

Error Dynamics

Since ψy is measured and the constant parameter matrix A is assumed known, we
obtain:

˙̃x = TT (ψy)AT(ψy)x̃−K(ψy)Cy(ψy, ψ̇y)x̃ (4.35)

which can be written:
˙̃x = TT (ψy)Ao(ψ̇y)T(ψy)x̃ (4.36)
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Assumptions A3a, A4a, and A5 are sufficient requirements for this. Moreover, it
can be shown that the resulting Ao can be written as

Ao(ψ̇y) =A0 + ψ̇yA1 (4.37)

A0 =

·
A0,11 A0,12

A0,21 A0,22

¸
A1 =

·
0 0

A1,21 0

¸
(4.38)

where A0,11 ∈ R18×18, A0,12 ∈ R18×3, A0,21 ∈ R3×18, A0,22 ∈ R3×3 and A1,21 ∈
R3×18. Denote K̄43 = I−K43Π3 such that K43Π3 = I− K̄43. Then:

A0,11 =

 Aw −K11Cp −K12Π2Cv −K11 0
−K21Cp −K22Π2Cv −K21 0
−K31Cp −K32Π2Cv −K31 −T−1b

 (4.39)

A0,12 =

 −K12Π2
I−K22Π2
−K32Π2

 (4.40)

A0,21 =

 −
¡
K41Cp +K42Π2Cv +

¡
I− K̄43

¢
Ca
¢T

− ¡K41 + K̄43M
−1G

¢T
− ¡K̄43M−1

¢T

T

(4.41)

A0,22 =
£−K42Π2 − K̄43M

−1D
¤

(4.42)

A1,21 =
¡
I− K̄43

¢
SCv (4.43)

Stability Analysis

The form of the observer error dynamics (4.36) is very attractive because the known
transformation T(ψy) can be eliminated from the analysis when Assumptions A3-
A5 are employed. Although the eigenvalues of TTAo(ψ̇y)T are identical to the
ones of Ao(ψ̇y) since T

T (s) = T−1(s) for all s, Re(λi(TTAoT)) < 0 ∀ψy if and
only if Ao is Hurwitz. In general, an eigenvalue analysis of a linear time-varying
system will not be sufficient to prove stability (Khalil 1996). We have to find a
Lyapunov function candidate to conclude on that.

The idea is to analyze the error-dynamics in the vessel-fixed coordinate system and
selecting a quadratic Lyapunov function candidate V = zTPz where the P-matrix
also satisfies some structural constraints. The following lemma will be useful in
that respect (Lindegaard and Fossen 2001b).

Lemma 4.1 Linear time-varying systems on the form

ξ̇1 = Ā11ξ1 +H(φ)Ā12ξ2 (4.44a)

ξ̇2 = Ā21H
T (φ)ξ1 + Ā22ξ2 (4.44b)
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ξ1 ∈ Rn1, ξ2 ∈ Rn2 interconnected by a rotation H : R → Rn1×n1 and where
φ : R≥0 → R is a known signal and

Ā11 =HĀ11H
T (4.45)

are uniformly globally exponentially stable (UGES) if there for a Q = QT > 0
exists a structurally constrained P = PT > 0

P =

·
P11 P12
PT12 P22

¸
,

P11Ḣ
TH = −HT ḢP11

HT ḢP12 = 0
(4.46)

such that
PĀ+ ĀTP ≤ −Q (4.47)

where Ā is the system matrix

Ā =

·
Ā11 Ā12

Ā21 Ā22

¸
(4.48)

The system matrix Ā must be Hurwitz, otherwise no such P can be found.

Proof. Define ξ = [ξT1 , ξ
T
2 ]
T . Because of the structural constrains (4.45) on Ā11

we may write
ξ̇ = TT (φ)ĀT(φ)ξ (4.49)

where

T(φ) =

·
HT (φ) 0
0 I

¸
(4.50)

Define z = T(φ)ξ. Since HT (φ) is a rotation, |z| = |ξ|. Now, abusing the notation
slightly, Ṫ(φ) = d

dt(T(φ)), we get

ż = Ṫ(φ)ξ +T(φ)ξ̇ =
³
Ṫ(φ) + ĀT(φ)

´
ξ

=
³
Ṫ(φ)TT (φ) + Ā

´
z (4.51)

such that differentiating V = zTPz along the trajectories yields

V̇ = zTPż+ zTPż

= zT
¡
PĀ+ ĀTP

¢
z+ zT

³
PṪT

T
+TṪ

T
P
´
z

≤ −zTQz+ zT
³
PṪT

T
+TṪ

T
P
´
z (4.52)

The structural constraints on P imply that the last term is zero and thus UGES
is proven.

Even though this lemma indeed provides sufficient conditions for the elimination
of the kinematics term and the dependence on the varying signal ψy, we still have
to deal with the time-varying signal ψ̇y. Physically ψ̇y describes the yaw rate
of the vessel, and intuitively this quantity will be bounded even when exposed
to incoming waves provided that the applied control is appropriate. Therefore,
if a set of simultaneous Lyapunov inequalities are satisfied at the minimum and
maximum of ψ̇y, the error dynamics (4.36) will be ULES. This is summarized in
the following theorem.
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Theorem 4.1 Consider the observer (4.31)-(4.34) and let the Earth-fixed ob-
server gains be selected according to Assumption A5. Assume that:

Ao(δ) =A0 + δA1 (4.53)

is Hurwitz for δ = 0. If there exists a P = PT > 0

P =

·
P11 P12
PT12 P22

¸
(4.54)

where there are structural constraints on P11 and P12

P11Ḣ
TH = −HT ḢP11 (4.55)

HT ḢP12 = 0 (4.56)

and an ε > 0 such that for δ = mint(ψ̇y) and δ̄ = maxt(ψ̇y) the simultaneous
Lyapunov inequalities are satisfied

PAo(δ) +A
T
o (δ)P ≤ −εI (4.57)

PAo(δ̄) +A
T
o (δ̄)P ≤ −εI (4.58)

the error-dynamics (4.36) is uniformly semi-globally exponentially stable (ULES).

Proof. Ao(0) =A0 being Hurwitz is a straightforward requirement, likewise is the
Lyapunov inequalities (4.57)-(4.58) sufficient for ensuring that for all δ ∈ [δ, δ̄] ⊂ R
since

f(δ) = xT
¡
PAo(δ) +A

T
o (δ)P

¢
x (4.59)

is linear in δ and thus convex such that if f(δ), f(δ̄) ≤ −ε, f(δ) ≤ −ε for any δ ∈
[δ, δ̄].

The rest of the proof consists of verifying that the error-dynamics can be expressed
as (4.44) such that Lemma 4.1 can be employed.

Remark 4.1 For configurations where only position and/or velocity feedback are
used, A1 = 0 and the assumption of ψ̇y being bounded is removed. The problem is
thus reduced to finding a suitable P = PT > 0 such that PA0 +A

T
0P ≤ −εI. In

those cases, the observer is UGES.

Remark 4.2 This approach to handling the varying ψ̇y is conservative in the
sense that it guarantees exponential stability for arbitrarily fast variations in ψ̇y,
i.e. as long as ψ̇y is bounded there is no bound on |ψ̈y|.

The simultaneous Lyapunov inequalities can be represented as an LMI feasibility
problem and hence solved using standard software packages: Find a P = PT > 0
in accordance with the structural requirements such that·

PAo(δ) +AT
o (δ)P 0

0 PAo(δ̄) +A
T
o (δ̄)P

¸
< 0 (4.60)
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4.3.3 Concluding Remarks

An existing nonlinear model-based observer with wave filtering capabilities for
surface vessels has been extended to optionally include velocity and acceleration
measurements. If the environmental model and some of the gain matrices sat-
isfy certain structural properties, global exponential stability of the filter error
dynamics can be concluded using a quadratic Lyapunov function with structural
constraints. Once these model and gain constraints are satisfied, stability is de-
termined by an eigenvalue analysis of the observer error’s system matrix Ao(δ).
Without feedback from acceleration, the observer error is globally exponentially
stable when Ao(0) = A0 is Hurwitz. With acceleration feedback, on the other
hand, the observer error will be exponentially stable semi-globally.

4.4 Simplified Observer

In the previous section we introduced a model based observer with wave filtering
capabilities for surface vessels at low speed. Although this observer was the first
model based integrated design that could incorporate partial velocity and accel-
eration measurements, there are two reasons why this design is unsuited from a
practical point of view. At the core of these problems is the suggested model of
first order wave induced motion:

1. The tuning procedure is much more complicated when velocity and/or accel-
eration measurements are included compared to the pole placement strategy
used for position measurements. This is due to the fact that in the general
case the observer gains enter non-affinely in the expressions describing the
eigenvalue of the observer error-dynamics. One solution is to solve an alge-
braic Riccati equation (Kalman gains or H∞-filtering techniques) either a
priori or on-line, but having complete control of the notch-effects is almost
impossible. As a consequence, it is very likely that the time spent tuning
the DP system during sea-trials will increase.

2. A common wave model for all state derivatives could be fatal for the stability
of the combined wave motion model if the individual measurements are out
of synchronization with respect to each other. This occurs e.g. if the time-
delays from the sensor system components are different.

Here we propose a model based observer where the wave models for position,
velocity, and acceleration measurements are considered separately. The main idea
is that wave induced acceleration is “uncorrelated” with the induced velocity, an
assumption that is motivated more from engineering experience rather than from
physics. Global exponential stability of the error dynamics may still be guaranteed
using a structured Pmatrix. Still, we chose to trade global results in order to relax
Assumption A2a and the need of a positive definite Tb. With a bounded yaw rate
the stability results will be valid only in a semi-global sense.
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4.4.1 Complete Ship and Environment Model

As for the previously proposed observer, the LF vessel and bias models are de-
scribed by (4.3). The by assumption uncorrelated wave induced positions, veloci-
ties, and accelerations respectively are given by

ṗw = Apwpw +Epwwpw (4.61)

v̇w = Avwvw +Evwwvw (4.62)

ȧw = Aawaw +Eawwaw (4.63)

where the order of each wave model number is arbitrary, but it is recommended
to keep the order fairly low. Second or fourth order linear models are sufficient.
Let mp, mv, ma denote the order of the position, velocity and acceleration wave
models respectively. Then pw ∈ R3mp ,vw ∈ Rny2 ·mv , aw ∈ Rny3 ·ma describe
the first order wave-induced positions, velocities and accelerations respectively.
Apw ∈ R3mp×3mp , Avw ∈ Rny2 ·mv×ny2 ·mv , Aaw ∈ Rny3 ·ma×ny3 ·ma are assumed
Hurwitz and describes the first order wave induced motion. The wave and bias
models are driven by disturbances of appropriate dimensions.

In order to make use of the commutation properties, we have to assume

A2b The bias time constant matrix Tb and each 3 × 3 sub-block of Apw satisfy
Property 4.1.

Now, collect all the Earth-fixed states in x1 ∈ R6+3mp and stack the body-fixed
ones into x2 ∈ R3+ny2 ·mv+ny3 ·ma

x1 =
£
pTw ηT bT

¤T
(4.64)

x2 =
£
vTw aTw νT

¤T
(4.65)

Let n denote the dimension of x = [xT1 ,x
T
2 ]
T and define the block diagonal trans-

formation matrix T : R→ Rn×n

T(ψy) = Diag(R
T (ψy), · · · ,RT (ψy), I3+ny2 ·mv+ny3 ·ma) (4.66)

On compact form using Assumption A2b and w = [wTpw,w
T
b ,w

T
vw,w

T
aw]

T we get

ẋ = TT (ψy)AT(ψy)x+Bτ +Ew (4.67)

where the parameters A have been separated from the rotation R(ψy). The model
parameters in (4.67) are

A =


Apw 0 0 0 0 0
0 0 0 0 0 I
0 0 −T−1b 0 0 0
0 0 0 Avw 0 0
0 0 0 0 Aaw 0
0 −M−1G M−1 0 0 −M−1D

 (4.68)
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B =


0
0
0
0
0

M−1

 , E =


Epw 0 0 0
0 0 0 0
0 Eb 0 0
0 0 Evw 0
0 0 0 Eaw
0 0 0 0

 (4.69)

Measurements

Position and heading measurements are always required, and the number of ve-
locity and acceleration measurements available are denoted 0 ≤ ny2 ≤ 3 and
0 ≤ ny3 ≤ 3, respectively. Let y1 ∈ R3, y2 ∈ Rny2 and y3 ∈ Rny3 describe the
position, velocity and acceleration measurement vectors. We define the measure-
ments as

y1 = η +Cpwpw (4.70)

y2 = Υ2ν +Cvwvw (4.71)

y3 = Υ3ν̇ +Cawaw (4.72)

where, Υ2 and Υ3 are projections isolating the components of the LF-model that
are actually measured. Written compactly,

y = Cy(ψy)x+Dyτ (4.73)

where

Cy(ψy) =

 Cpw I
Υ2CvR

T (ψy) 0

0 −Υ3M−1GRT (ψy)

0 0 0 0
0 Υ2 Cvw 0

−Υ3M−1RT (ψy) −Υ3M−1D 0 Caw


Dy =

£
0 0 M−TΥT3

¤T
(4.74)

Physically, however, it should be pointed out that the LF linear accelerations that
are being measured is not ν̇ as claimed in (4.72) since η̈ 6= ν̇ when the Earth-fixed
frame is considered as being the inertial frame. More specifically, considering the
LF dynamics

y3,LF = η̈ = ψ̇ySR(ψy)ν +R(ψy)ν̇ (4.75)

which means that (4.72) is approximately correct for small angular rates. For large
angular rates, however, an auxiliary pre-processor should be used to compensate
for the Coriolis effect ψ̇ySR(ψy)ν. The need for an external processing unit will
in fact always be there as discussed Section 3.3.
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4.4.2 Observer Design

By duplicating the model dynamics and introducing a low-pass filter in order to
achieve a certain roll-off effect, see (4.101), the following model based observer is
proposed

ȧf = T
−1
f (−af + ỹ3) (4.76)

˙̂x = TT (ψy)AT(ψy)x̂+Bτ +K(ψy)ỹ+Kfaf (4.77)

and its estimated output is

ŷ = Cy(ψy)x̂+Dyτ (4.78)

and hence when the estimation error is x̃ = x−x̂, the output error is ỹ = Cy(ψy)x̃.
A pragmatic selection of observer gain matrices K(ψy) and Kf reducing intercon-
nections is

K(ψy) =


K11 0 0
K21 0 0
K31 0 0
0 K42 0
0 0 K53

K61RT (ψy) K62 0

 (4.79)

Kf =
£
0 0 0 0 0 KT

a

¤T
(4.80)

In order to apply the concept of commutating matrices, we have to impose the
following requirement on some of the gains:

A3b Each and every 3×3 block of K11, K21 and K31 commute with the rotation
R(ψy) (Property 4.1).

A schematic drawing of this observer, without bias estimation, is given in Figure
4.1.

Stability Analysis

When Assumption A2b and A3b are satisfied, the rotations can be separated
from the parameters. The observer error-dynamics can hence be rewritten on the
compact form

˙̃x = TT (ψy)AoT(ψy)x̃+Kfaf +Eew (4.81)

ȧf = −T−1f af +T−1f C3T(ψy)x̃ (4.82)

Ao =

·
A11 A12

A21 A22

¸
(4.83)
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Figure 4.1: Observer with first order cut-off filter for acceleration. Bias estimation
is not shown.

A11 =

 Apw −K11Cpw −K11 0
−K21Cpw −K21 0
−K31Cpw −K31 −T−1b

 (4.84)

A12 =

 0 0 0
0 0 I
0 0 0

 (4.85)

A21 =

 0 0 0
0 0 0

−K61Cpw −M−1G−K61 M−1

 (4.86)

A22 =

 Avw −K42Cvw 0 −K42Υ2
0 Aaw −K53Caw −K53Υ3

−K62Cvw 0 −M−1D−K62Υ2

 (4.87)

C3 =
£
0 −Υ3M−1G Υ3M−1 −Υ3M−1D 0 Caw

¤
(4.88)

Stacking (4.81)-(4.82) together into z ∈ Rnz , more specifically z = [x̃T ,aTf ]T , we
then get

ż = TTz (ψy)AzTz(ψy)z+Ezw (4.89)

where Tz = Diag(T, Iny3 ) and

Az =

·
Ao Kf

T−1f C3 −T−1f

¸
, Ez =

·
Ee
0

¸
(4.90)

We now state a robustness-like theorem for the stability of this filter. The limiting
factor is the yaw rate ψ̇y = ry, and we could just as well repeat using a P-matrix of
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a certain structure that commutes with Tz(ψy) in a quadratic Lyapunov function
provided that Assumption A2b and A3b hold. Because the upper bound on |ry(t)|
is likely to be larger than the physical limit, we assign an arbitrary P. The
advantage of an arbitrarily selected P is that there are no longer any restrictions
on the selection of cross-terms. As a consequence we could have let kTbk → ∞,
then the bias is modelled as an open integrator and we obtain true integral action.

Before we state the theorem we need to introduce a skew-symmetric matrix Sz
that appears when the rotation Tz(ψy) is differentiated.

Ṫz
4
=
d

dt

¡
Tz(ψy)

¢
= ψ̇ySzTz(ψy) = ψ̇yTz(ψy)Sz (4.91)

In our case Sz = Diag(ST , ...,ST ,0nz−12xnz−12) where S is given by (4.2).

Theorem 4.2 The observer error dynamics (4.89) is exponentially stable for small
|ry(t)| < rmax (ULES) if and only if Az is Hurwitz. Suppose an rmax > 0 is explic-
itly given, then (4.89) is uniformly globally exponentially stable (UGES) if there
exists a matrix P = PT > 0 such that the following two LMIs are feasible for some
ε > 0

PAz +A
T
zP+ εI ≤ rmax

¡
PSz + S

T
z P
¢

PAz +A
T
zP+ εI ≤ −rmax

¡
PSz + S

T
z P
¢ (4.92)

Notice that stability can be characterized without dealing with the rotations
Tz(ψy). However, there is a bound on the rotation rate rmax making the observer
USGES due to observability.

Proof. Use the non-singular rotation Tz(ψy) as a mapping ξ = Tzz. Then,

ξ̇ = Ṫzz+Tzż

= ψ̇ySzTzz+TzT
T
zAzTzz

=
³
Az + ψ̇ySz

´
ξ (4.93)

Consider the Lyapunov function V = ξTPξ

V̇ = ξT
¡
PAz +A

T
zP
¢
ξ + ψ̇yξ

T
¡
PSz + S

T
zP
¢
ξ (4.94)

Since V̇ is linear in ψ̇y for fixed P and ξ it is also convex and it suffices to verify
that V̇ < 0 at the boundaries of ψ̇y, namely ±rmax since −rmax ≤ ψ̇y ≤ rmax by
assumption. We therefore have to make sure that

V̇1 = V̇
¯̄̄
ψ̇y=rmax

< 0 (4.95)

V̇2 = V̇
¯̄̄
ψ̇y=−rmax

< 0 (4.96)

Inserting the LMIs from (4.92) we get for k = 1, 2

V̇k ≤ −εI (4.97)
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For small enough rmax, there will always exist an ε > 0 if and only if Az is
Hurwitz.

This result could also be proven by the circle criterion, but the maximum allowable
rmax is likely to be smaller due to the required SPR-property.

Notice that stability can be proven also for the limiting case T−1b = 0. The
passive design (Fossen and Strand 1999) and our previous version (Lindegaard
and Fossen 2001a), on the other hand, require T−1b > 0.

4.4.3 Observer Tuning

In this section we suggest models for the first order wave loads and then we suggest
tuning rules that based on those models generate the desired frequency response
between the measurements and the LF estimates.

For position, velocity, and acceleration measurements, i = p, v, a, a cascade of
second order linear systems

Aiw =

·
0 I
−Ωi −Λi

¸
, Ciw =

£
0 I

¤
(4.98)

can be used to represent the wave induced motion whereby we obtain the desired
wave filtering capability. Treat each DOF separated from the others by setting

Ωi = diag(ω2i,1, ...,ω
2
i,nyi

) (4.99)

Λi = diag(2ζi,1ωi,1, ...,2ζi,nyiωi,nyi ) (4.100)

where ωi,k > 0 is the resonance frequency and ζi,k > 0 is the relative damping
factor which determines the width of the spectrum.

Depending on the number pi = mi/2, where i = p, v, a of second order models
in cascade, the desired transfer function between any measurement and the LF
estimate is

hdi(s) = ωc,k

³
s2 + 2ζi,kωi,ks+ ω2i,k

´pi³
s2 + 2δi,kζi,kωi,ks+ ω2i,k

´pi
(ωc,k + s)

i = p, v, a (4.101)

which is a notch-filter, with center frequency at ωi,k, the wave model resonance,
and notch “width” given by δi,k ≥ 1, in series with a low-pass filter that guarantees
a certain roll-off for frequencies larger than ωc,k. In order to achieve good perfor-
mance, the roll-off frequency ωc,k should be larger than the resonance frequency
of the notch-filter, that is ωc,k ≥ ωi,k.

Wave Model Gains

We apply a same pole-placement technique to find observer gains for position
and velocity innovation. If we were dealing with second order wave models, the
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tuning rules from Fossen and Strand (1999) apply. However, due to the increasing
power of the wave frequency components in the velocity and acceleration signal,
we suggest using a fourth order wave model, at least for acceleration, in order to
achieve satisfactory wave filtering capabilities. We were in fact unable to get good
results for acceleration using second order models. Below, we therefore present
the extension of Fossen and Strand (1999) to fourth order models.

Consider the surge dynamics being updated from position measurements. We aim
to find the elements to put in K11 and K31 in order to create the desired notch
and roll-off hdi(s) in (4.101)

η̂i
y1,i

(s) = hdi(s) (4.102)

This can be obtained one degree of freedom at the time by defining αp,i = ω2p,i > 0
and βp,i = 2ζp,iωp,i > 0 and letting

Apw,i =


0 1 0 0
−αp,i −βp,i 0 1
0 0 0 1
0 0 −αp,i −βp,i

 (4.103)

C̄pw,i =
£
1 0 0 0

¤
(4.104)

and selecting observer gains according to

k11,i = L−1i ci (4.105)

k31,i = ωc,i (4.106)

where

Li =


1 0 0 0

2βp,i 1 0 0

αp,i + β2p,i βp,i 0 1
βp,i 1 −1 0

 (4.107)

ci =


2βp,i (δp,i − 1)

β2p,i
¡
δ2p,i − 1

¢
+ 2βp,i (δp,i − 1) ωc,i

αp,iβp,i (δp,i − 1) + β2p,i
¡
δ2p,i − 1

¢
ωc,i

2βp,i (δp,i − 1)ωc,i

 (4.108)

ensures that the specified notch-effect and roll-off is indeed acquired. The gains
K31 and K61, the gains from position innovation which update the bias and LF
velocity, can be selected freely as long as Az remains Hurwitz.

The very same approach can be applied to assign values to K42, K62 in order to
obtain a notch-effect for the velocity measurements.

Acceleration Gains

The acceleration part of the filter possesses another feature as well. Measuring the
acceleration could be regarded as an alternative to using a model based observer
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because the model actually estimates the acceleration while an accelerometer mea-
sures it. The gain Kf serves as a weight factor determining how much emphasis
we should put on the model. When Kf = 0 we choose not to utilize acceleration
feedback to update the filter at all and when Kf = 1, the LF model description is
completely disregarded for low frequencies.

The low-pass filter between acceleration innovation ỹ3 and ˙̂ν takes care of the
roll-off. The filter constants Tf should therefore be selected as

T−1f = diag(ωc,1, ...,ωc,ny3 ) (4.109)

Next, to obtain the desired notch-filtering around the resonance frequency, select

K53 =

·
0

diag(δa,1, ..., δa,ny3 )

¸
(4.110)

4.4.4 Experiments

The experiment was carried out with “Cybership II”, and the dynamic compen-
sator scheme presented in Chapter 2 was implemented.

Based on the principle of certainty of equivalence, an observer-feedback PID-like
tracking controller on the form

ξ̇ = η̂ − ηd (4.111)

τ = −KiR
T (ψ̂)ξ −KpR

T (ψ̂) (η̂ − ηd)
−Kd (ν̂ − νd) (4.112)

was used to keep the boat on the position ηd = [−0.3, 0, 0]T , νd = 0. The controller
and the thrust allocation algorithm is described and analyzed in Lindegaard and
Fossen (2003).

From t ≈ 20 seconds and onwards, the model ship was exposed to JONSWAP-
distributed irregular head waves. The peak period and significant wave height
were set to Ts = 0.75 and H1/3 = 0.02 meters respectively.

Time series plots of the measured positions (dotted) and their respective LF esti-
mates are reproduced in Figure 4.2 together with the observer’s surge bias estimate.
Notice that the surge bias converges towards the controller’s I-term, that is the
mean of applied surge propeller force τ1. A large wave slammed into the vessel at
t ≈ 115 generating a temporary drift off in East and heading because the vessel
had a small offset angle at the time of the impact. The slow oscillations are due
to nonlinear wave effects and not to the first order induced motion. Figure 4.3
shows g-compensated measurements of the surge and sway accelerations. Here,
the wave frequency motion (first order wave loads) dominate the picture. But as
the empirical transfer functions (Figure 4.4) of the measured signals and the state
derivatives show, for low frequencies the estimated LF-accelerations are excellent,
because they follow the measured signals at frequencies below f = 0.1 Hz. As
required, frequency components around the wave frequency peak f = 1/Ts = 1.33
Hz have been successfully attenuated.
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Figure 4.2: Top left, measured (dotted) and LF estimated North position. Top
right, measured (dotted) and LF estimated East position. Bottom left, measured
(dotted) and LF estimated heading. Bottom right, estimated bias and mean of
applied thrust thrust τ1.

4.4.5 Concluding Remarks

A simple model based state estimator for surface vessels with wave filtering capa-
bilities has been proposed and analyzed along with an intuitive tuning procedure.
For bounded yaw rate, the observer error dynamics was shown to be exponentially
stable. Inertial measurements, that is linear accelerations and yaw rate, were in-
cluded in the filter to improve performance. Due to the acceleration measurement
ambiguity, a g-compensation system had to be utilized in order to remove gravity
components from the linear acceleration terms.

Experimental results with a model ship performing a DP operation as it was
exposed to incoming irregular waves illustrated the performance of the filter. Em-
pirically calculated frequency responses between available measurements and esti-
mated low frequency positions, velocities and accelerations documented that the
desired notch filtering of first order wave induced motion was achieved.
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Figure 4.3: g-compensated surge and sway accelerations. Measurements (dotted)
and LF estimates (solid).
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Figure 4.4: Top left, TF from measured North (solid) and East (dotted) position
to their respective LF estimates. Top right, TF from measured heading (solid) and
yaw rate (dotted) to LF estimates. Bottom left, TF from measured surge (solid)
and sway (acceleration) to LF estimates. Bottom left, TF from North position to
surge velocity (solid) and from East to sway (dotted).
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Chapter 5

Controller Design

5.1 Introduction

Problems of motion control can be classified into three groups (Encarnação and
Pascoal 2001):

• Point stabilization: The objective is to stabilize and keep a vehicle at a
specified point and orientation.

• Trajectory tracking: The task of making a vehicle track a reference trajectory
parameterized in time.

• Path following: The vehicle is required to converge to and follow a desired
path without an implicit speed assignment.

Trajectory tracking is the most commonly implemented control approach in com-
mercial DP systems today. This chapter focuses on both linear and nonlinear
control strategies for low speed tracking and positioning control (point stabiliza-
tion) of fully or overactuated surface vessels in the horizontal plane. Whenever
the desired velocities are zero, the desired trajectory collapses into a single point
and the tracking controller becomes a positioning controller. There are, however,
operations where starting time and encountered delays are of minor concern. An
intuitive example is way-point tracking, the task of following a path of specified
way-points in the horizontal plane. Furthermore, more typical DP operations like
pipe lying and dredging are also likely to benefit from a control strategy with less
attention to time constraints.

Path following is typically applied to underactuated ships in transit, and many
recent developments have been reported: In Zhang et al. (2000) the authors ad-
dressed the problem of following straight lines, and to achieve this a new output
combining the cross-track error and the heading angle was defined. Asymptotic
stability to the path was shown by the use of sliding mode control. Another redefi-
nition emulating that of an experienced helmsman was proposed by Pettersen and
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Lefeber (2001); the desired heading was defined as a function of the cross-track
error. A more flexible alternative is the introduction of a Serret-Frenet frame to
represent the cross-track and heading error (Encarnação et al. 2000, Encarnação
and Pascoal 2000, Skjetne and Fossen 2001). The advantage is that the path can
be regarded as a more general smooth curve in the plane rather than consist of
straight lines.

Underactuated trajectory tracking and stabilization has received a lot of attention,
see Do et al. (2002) and references therein. A natural consequence of the ship being
underactuated is that geometric restrictions apply on the reference trajectory.
More specifically, the desired yaw velocity must be persistently excitative.

A method combining trajectory tracking and path following was proposed in Hind-
man and Hauser (1996). Suppose a desired path ηd : R≥0 → Rn is given and that
it is a continuous function of the path variable θ ≥ 0. The basic idea is to determine
θ by projecting the current state of the vehicle onto the reference trajectory. This
returns the appropriate trajectory “time” given the current state of the system.
Under some geometrical path conditions, it is shown that feeding ηd(θ) instead
of ηd(t) into an already existing tracking controller guarantees convergence to the
path. This procedure, however, requires a path specification for the full state, and
it is applicable to feedback linearizable systems. An output maneuvering extension
to Hindman and Hauser (1996) was proposed in Encarnação and Pascoal (2001).
By employing backstepping (Krstíc et al. 1995), the need for time derivatives of
ηd, the full path specification, was relaxed. This approach is well suited for me-
chanical systems such as ships, but it is less fitted for systems of relative degree
higher than two due to the need of higher order derivatives of the path variable θ.
Recently, Skjetne et al. (2003) proposed a more general robust maneuvering design
for systems on strict feedback form which tackles the relative degree restriction.

Trajectory tracking is geometrically speaking relatively simple compared to path
following, and the above described methods unifying tracking and path following
promise increased flexibility of the controllers derived in this chapter. We extend
existing DP designs (Strand 1999, Berge 1999) and provide ideas and suggestions
to improve and facilitate the design and implementation of observer feedback po-
sitioning control systems. Ships suited for traditional dynamic positioning opera-
tions are usually overactuated. This means that the desired thrust τ can almost
always be satisfied. In fact, due to propeller rate and thrust magnitude constraints,
there are indeed practical limits, but it is assumed that these issues can be disre-
garded or at least addressed elsewhere. The control laws will be derived assuming
full state feedback. Later substituting the state variables with their respective low
frequency estimates, the so called principle of certainty of equivalence, we show
that the combination of an observer and controller stabilizes the entire closed loop
system. Results from the study of nonlinear cascaded systems will be used in the
analysis.

These are the main objectives of this chapter:

1. Derive a simple yet flexible framework for low speed trajectory tracking
of fully actuated surface vessels. First, a method separating the nonlinear



5.2 Trajectory Generation 65

kinematics from the otherwise linear closed-loop dynamics will be proposed.
This type of design, which has many similarities to more conventional PID-
compatible schemes, is attractive because one can apply any linear design
tool to shape the error-dynamics. Some examples will be given. The method
called commutating design will be described in Section 5.3. A generalization
to more nonlinear ship models (higher velocities) is given in Section 5.5.

2. To refine the already derived framework in order to incorporate acceleration
terms in the controller (Section 5.4).

5.2 Trajectory Generation

The desired position or trajectory of a DP vessel is usually given with respect to the
so called center of rotation (COR), about which any rotation of the vessel should
be conducted. The COR is a freely selectable fixed point inside or outside the
physical boundaries of the ship, and its coordinates will be assumed given relative
to the body-fixed b-frame. This section derives some basic kinematic relations
between the desired trajectory given in Earth-fixed coordinates (n-frame) and
the transformation into the b-frame which is the reference frame where the DP
controller operates.

Figure 5.1: Definition of the Earth-fixed position of center of rotation rnnr and its
relation to the position of the vessel rnnb.

Let rbbr = [xbbr, y
b
br]

T denote the position of the COR relative the the b-frame.
The desired Earth-fixed position and heading of the COR is given by ηdr(t) =
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[(drnnr(t))
T ,ψd(t)]

T where again drnnr = [dxnnr,
d ynnr]

T is the distance in the hori-
zontal plane from the n-frame to the desired position of the COR. Observe that
the desired heading ψd(t) of the COR is identical to the desired heading of the
ship. According to Figure 5.1 the desired position of the b-frame is given by

drnnb =
drnnr − R̄(ψd)rbbr (5.1)

where the rotation R̄(ψd) is defined as

R̄(ψd) =

·
cosψd − sinψd
sinψd cosψd

¸
(5.2)

Frequently, it is dersirable to let the vessel rotate about some other point than
CG. For instance when deploying a device on the sea bed using a crane, the ship
should rotate about the crane head rather than CG. Consider Figure 5.2 where
a 180 deg change of heading instructs the DP controller to move the vessel on a
circular arc while turning rather than revolving about the center of the b-frame.

Figure 5.2: Change of heading 180 deg about the COR: The ship is moved from
rnnb(t0) towards r

n
nb(tf ) while turning.

The Earth-fixed velocity and acceleration of the COR are denoted η̇dr(t) = [(
dṙnnr(t))

T , rd(t)]
T

and η̈dr(t) = [(
dr̈nnr(t))

T , ṙd(t)]
T respectively. Desired velocity and acceleration of
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the b-frame decomposed in the n-frame are found by differentiating drnnb.

dṙnnb = dṙnnr − rdR̄(ψd)S̄rbbr (5.3)
dr̈nnb = dr̈nnr − ṙdR̄(ψd)S̄rbbr − r2dR̄(ψd)S̄2rbbr

= dr̈nnr − ṙdR̄(ψd)S̄rbbr + r2dR̄(ψd)rbbr (5.4)

Here

S̄ =

·
0 −1
1 0

¸
(5.5)

The desired speed and acceleration along the trajectory should not exceed neither
the physical nor the imposed limitations of the ship. Considering these limita-
tions in an Earth-fixed setting is difficult, but the control will be regained when
expressing the trajectory in a reference parallell frame, the d-frame: When the
vessel tracks the desired trajectory perfectly, the velocities in the d-frame will be
exactly those of the vessel itself (b-frame). The desired velocity is

dvdnb
4
= R̄T (ψd)

dṙnnb
= R̄T (ψd)

dṙnnr − rdS̄rbbr
(5.6)

and for the acceleration we have

dv̇dnb =
d

dt

¡
dvdnb

¢
= R̄T (ψd)

dr̈nnr − rdR̄T (ψd)S̄dṙnnr − ṙdS̄rbbr (5.7)

The translation and rotation of the d-frame can thus be regarded as a virtual ship,
yet the motion does not need to be that of a numerical ship model.

To summarize, suppose the COR is located at rbbr = [xbbr, y
b
br, 0]

T , and once a
smooth, Earth-fixed reference trajectory for the COR is given, ηdr : R≥0 → R3,
η̇dr : R≥0 → R3, and η̈dr : R≥0 → R3, the desired trajectory for the orgin of the
vessel will be given by

ηd = ηdr −R(ψd)rbbr (5.8)

νd = RT (ψd)η̇dr − rdSrbbr (5.9)

ν̇d = RT (ψd)η̈dr − rdRT (ψd)Sη̇dr − ṙdSrbbr (5.10)

Observe that this trajectory satisfies η̇d =R(ψd)νd. The corresponding velocities
νd(t) = [ud, vd, rd]

T and accelerations ν̇d(t) = [u̇d, v̇d, ṙd]
T are thus decomposed

in the reference parallel d-frame.

5.3 Commutating Control

From a practical point of view it is important that the tuning procedure for the
DP controller is intuitive. There is usually little time available for detailed tuning,
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and still the adjustments made during a short sea trial have to perform well in
weather conditions ranging from calm sea to the more extreme. During the limited
time available personnel with limited theoretic background make decisions influ-
encing the vessel’s positioning performance for many years to come. Computer
simulations do provide an acceptable initial tuning, but some modifications are
almost always needed. If a controller gain adjustment does result in a predictable
behavior of the vessel, it is likely that the engineer is confident that the tuning
is acceptable, the overall procedure takes less time, and the customer eventually
gets satisfied.

Here we elaborate on nonlinear PID-like tracking controllers simply because such
controllers are readily interpreted and analyzed. Low speed vessel tracking and
positioning control can be accomplished with relatively simple means, such as
PID-control, and in a critical situation where understanding of physics is needed
experimenting with other approaches may not be advisable. The price we pay
for concentrating on such straightforward controllers is that stability can only be
guaranteed for bounded yaw rates. However, the resulting upper bound rmax for
a well-behaving controller usually exceeds the physical limitations for the ship.
A definite advantage is that we can incorporate static or dynamic feedback from
acceleration directly within the derived framework. The derived controllers are
linear in the sense that their respective terms are bounded linearly in the error
variables. They are nonlinear in the sense that the kinematics is included.

5.3.1 Full State Feedback PID Tracking Control

The motivation for studying PID or even PD in detail is to show how different
linear design techniques can be applied in DP control. Similarly to the observer
design, it is possible to separate the kinematics from the design procedure and
later include these rotations again when implementing the controller. Finding the
controller’s gains themselves is a task which may be performed without considering
the kinematics at all.

The objective is to track a given smooth trajectory (ηd(t),νd(t), ν̇d(t)). Let the
position error ηe be given in the Earth-fixed n-frame and the velocity and accel-
eration error in the b-frame, that is

ηe = η − ηd (5.11)

νe = ν −RT (ψe)νd (5.12)

ν̇e = ν̇ − ψ̇eS
TRT (ψe)νd −RT (ψe)ν̇d (5.13)

Observe that in DP νd = ν̇d = 0 such that

ηe = η − ηd
νe = ν

ν̇e = ν̇
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The low-speed ship model considered is

η̇ = R(ψ)ν (5.14)

Mν̇ +DLν = τ +RT (ψ)w (5.15)

where w = wb+R(ψ)wsv is an disturbance consisting of a constant bias wb and a
slowly varying term wsv. The former will be attenuated be integral action. During
the design we will, however, let w = 0 in order to simplify the stability analysis.

A controller with respective proportional, integral, and derivative gainsKp,Ki,Kd ∈
R3×3 can be formulated as

ξ̇ = ηe (5.16)

τ = −KiR
T (ψ)ξ −KpR

T (ψ)ηe −Kdνe + τ rff (5.17)

where ψe = ψ − ψd. Notice that the first three terms form the PID feedback
control while the latter term τ rff is the reference feed-forward given by

τ rff = DLR
T (ψe)νd +M

³
ψ̇eS

TRT (ψe)νd +R
T (ψe)ν̇d

´
(5.18)

Also note that the gains Ki and Kp have been put to the left of RT (ψ) making
them body-fixed gains. This makes more sense to an operator than having them on
the right ofRT (ψ) (Loría et al. 2000) because the compass heading ψ(t) should not
influence the convergence rates. The drawback of doing this is that energy-based
stability proofs can no longer be applied directly.

By inserting τ into (5.15) we get

M
³̇
ν − ψ̇eS

TRT (ψe)νd +R
T (ψe)ν̇ d́ =−KiR

T (ψ)ξ−KpR
T (ψ)ηe−(Kd +DL)νe

Consequently, the velocity error dynamics can be written

Mν̇e = −KiR
T (ψ)ξ −KpR

T (ψ)ηe − (Kd +DL)νe (5.19)

By collecting the states xe = [ξT ,ηTe ,ν
T
e ]
T and simultaneously considering the

slowly varying disturbancewsv only, we may now rewrite the closed-loop dynamics
on the compact form

ẋe = T
T (ψ)AcT(ψ)xe +Bwsv (5.20)

where T(ψ) is defined as the block-diagonal T(ψ) = Diag(RT (ψ),RT (ψ), I) and

Ac = A−BK =

 0 I 0
0 0 I

−M−1Ki −M−1Kp −M−1 (DL +Kd)

 (5.21)
B =

£
0 0 M−T

¤T
(5.22)

K =
£
Ki Kp Kd

¤
(5.23)

Due to the pair (B,A) being controllable, we have complete control over the
eigenvalues of Ac by assigning appropriate gains Kp, Ki, and Kd. Similarly to
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the observer design, the eigenvalues of TT (ψ)AcT(ψ) are constant for all ψ and
equal to the ones of Ac because TT (ψ) = T−1(ψ). The applied control τ is using
these definitions written as

τ = −KT(ψ)xe + τ rff (5.24)

where the gain K ∈ R3×9 is given by (5.23) and τ rff by (5.18).
We have deliberately left out a Coriolis term in the controller (5.24) compensating
for the time-derivative of R(ψ) that would have allowed us to establish global sta-
bility properties. The limiting factor is thus the rotation rate ψ̇ = r. Nevertheless,
uniform local exponential stability (ULES) can be verified for bounded r(t), that
is |r(t)| ≤ rmax. Notice also that limt→∞ xe(t) = 0 does not imply that ψ → 0 but
rather ψ → ψd even though ψ occurs in error dynamics ẋe = TT (ψ)AcT(ψ)xe.

Theorem 5.1 Consider the system (5.14)-(5.15) controlled by (5.24). Suppose
|r(t)| ≤ rmax and wsv = 0 for all t ≥ t0. The origin xe = 0 of (5.20) is uniformly
locally exponentially stable provided rmax > 0 is sufficiently small and if and only
if Kp,Kd,Ki ∈ R3×3 are chosen such that Ac as defined by (5.21) is Hurwitz. If
rmax is larger than any physical upper limit for |r(t)|, (5.20) is said to be uniformly
globally exponentially stable.

Proof. The necessity of Ac being Hurwitz is well known. For proving sufficiency,
define z = T(ψ)xe. By Ṫ(ψ) we hereby mean d

dt (T(ψ)). Then,

ż = Ṫxe +Tẋe = ṪT
T
z+AcTxe = (Ac + rST ) z (5.25)

where ST = Diag(ST ,ST , 0). If and only if Ac is Hurwitz there exists a P = PT >
0 such that

PAc +A
T
c P = −Q (5.26)

for a given Q =QT > 0.

Consider the radially unbounded storage function V (xe,ψ) = xTe T
T (ψ)PT(ψ)xe =

zTPz. Differentiated along the trajectories we get

V̇ = żTPz+ zTPż

= zT
¡
AT
c P+PAc + r

¡
PST + S

T
TP
¢¢
z

≤ −zTQz+ 2rmaxλmax(P) |z|2
= − (λmin(Q)− 2rmaxλmax(P)) |xe|2 (5.27)

which is negative definite provided that rmax is small enough.

If it is known a priori that r(t) ∈ L2 ∩ L∞, convergence to zero can be shown
no matter how large supt≥0 r(t) actually is. On the other hand, if we do not in
advance know that r(t)→ 0, an efficient but admittedly conservative method for
estimating rmax > 0 is solving a generalized eigenvalue problem (Boyd et al. 1994)
as explained in the following Corollary:
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Corollary 5.1 For a given Ac, a yaw rate bound rmax > 0 that guarantees expo-
nential stability of (5.20) can be found be solving the following generalized eigen-
value problem in the decision variables P and λ

minimize λ

subject to

 P = PT > 0, λ > 0
PST + S

T
TP < −λ ¡AT

c P+PAc

¢
−PST − STTP < −λ ¡AT

c P+PAc

¢ (5.28)

where rmax = 1/λ.

Proof. From the proof of Theorem 5.1 we note that if

g(r) = λmax
¡
AT
c P+PAc + r

¡
PST + S

T
TP
¢¢
< 0

for all t ≥ t0 then (5.20) is exponentially stable. As g(r) is linear in r it suffices
to show g(−rmax) < 0 and g(rmax) < 0, and the constraints in (5.28) therefore
ensures g(r) < 0 for all |r(t)| ≤ rmax.
Observe that Corollary 5.1 yields a conservative rmax because it allows infinitely
fast changes in r(t), that is unbounded |ṙ(t)|, as long as |r(t)| < rmax. Still, finding
this rmax given any Hurwitz Ac is a relatively simple task using available software
packages like Matlab’s LMI Toolbox (Gahinet et al. 1995).

5.3.2 LMI Control Strategies

Yet another feature of the LMIs given by Corollary 5.1 is that it may be combined
by LMI based control synthesis methods in order to provide state-feedback con-
trollers rendering the closed loop globally exponentially stable for any specified
rmax. This section briefly explores how LMI synthesis provides a state feedback
K resulting in a globally exponentially stable closed loop dynamics for any given
rmax.

First, we briefly summarize three common and widely applicable kinds of LMI
control strategies that may be used separately or in combination, those being H∞,
H2, and pole-clustering. When applied together, we say that the resulting control
is multiobjective. Using the more general description of a linear plant

H

 ẋ =Ax+Bu+Ew
z∞ = C∞x+D∞ww+D∞uu
z2 = C2x+D2uu

(5.29)

where z∞ ∈ Rn∞ and z2 ∈ Rn2 are the outputs used in the H∞ and H2 cost
criteria, respectively. Let A ∈ Rn×n and B ∈ Rn×m be the nominal model,
and without any further discussion on model scaling, we assume that E ∈ Rn×p,
C∞ ∈ Rn∞×n, D∞w ∈ Rn∞×p, D∞u ∈ Rn∞×m, C2 ∈ Rn2×n, and D2u ∈ Rn∞×m
are properly scaled. The control objective is to compute a state-feedback controller

u = −Kx (5.30)
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that fulfills certain specifications on the closed-loop behavior. These closed loop
design criteria can be cast as convex optimization problems satisfying certain LMIs.
The following summary is taken from a variety of sources (Boyd et al. 1994, Chilali
and Gahinet 1996, Scherer et al. 1997).

H∞-Control

Let Hwz∞(s) denote the closed loop realization between w and z∞. Minimization
of the H∞-gain γ from w to z∞ can be cast as an LMI optimization problem in
the matrix variables X∞ ∈ Rn×n and Y ∈ Rm×n (with X∞ = XT∞ > 0) and Y
while minimizing γ > 0 in the following LMI AX∞ +X∞AT +BY +YTBT E X∞CT∞ +YTDT∞u

ET −γ2I DT∞w
C∞X∞ +D∞uY D∞w −I

 < 0 (5.31)

This inequality is known as the bounded real lemma. Provided that (5.31) is
feasible, it is guaranteed that the H∞ gain is below γ, that is kHwz∞(s)k∞ < γ,
when applying the state-feedback matrix

K = −YX−1∞ (5.32)

A prerequisite for this method to complete successfully is that the pair (A,B)
is controllable and (A,C∞) is observable. This means that for the augmented
integral control to work, the augmented state ξ must be reflected in the output
matrix C∞. The H∞ performance is convenient to enforce robustness to model
uncertainty, and it is a direct measure for the L2 gain from disturbance w ∈L2 to
the respective output z∞∈L2.

H2-Control

LetHwz2(s) denote the closed loop realization betweenw and z2. Then, kHwz2(s)k2 <
ε if there exist X2 = X

T
2 < 0, Y ∈ Rm×n, and Z ∈ Rn×n2 such that the following

LMIs are feasible

·
AX2 +X2AT +BY +YTBT E

ET −I
¸

< 0· −X2 X2C
T
2

C2X2 −Z
¸

< 0

Trace(Z) < ε2

(5.33)

Consequently, the state-feedback u = −Kx, where K is defined similarly to (5.32)
as K = −YX−12 , guarantees that the H2-gain from w to z∞ is below ε.

Pole Clustering

Assigning closed loop poles of a linear system can be seen as a tool for specifying a
minimum decay rate. This technique may also be used to ensure a minimum closed
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loop damping factor or a maximum bandwidth in order to avoid fast dynamics and
high frequency gain in the controller.

In order to describe convex regions in the complex plane in which the poles are
supposed to be put, we follow the definitions of Chilali and Gahinet (1996):

Definition 5.1 A subset D of the complex plane C is called an LMI region if there
exist a symmetric matrix α ∈ RnD×nD and a matrix β ∈ RnD×nD such that

D = {z ∈ C : FD < 0} (5.34)

with
FD(z) = α+ zβ + z̄βT < 0 (5.35)

where z̄ is the complex conjugate of z.

An LMI region is convex and symmetric about the real axis. Furthermore, LMI
regions are invariant under set intersection: The intersection of two LMI regions
D1 and D2 is also an LMI region with the characteristic function

FD1∩D2(z) = Diag(FD1(z),FD2(z)) (5.36)

As a consequence, an arbitrary region consisting of the intersection of conic curves,
vertical strips, and/or horizontal strips can be expressed in terms of LMI regions.

Definition 5.2 A matrix A is said to be D-stable if all its eigenvalues lie in D.

We may now summarize this for control synthesis purposes by the following theo-
rem (Chilali and Gahinet 1996):

Theorem 5.2 Let α ∈ RnD×nD be a real symmetric matrix and β ∈ RnD×nD .
Then Acl = A−BK has all its eigenvalues in the LMI region (5.35) if and only
if a real, symmetric, positive definite X ∈ Rn×n and a real Y ∈ Rm×n exist such
that the LMI

α⊗X+ β ⊗V+ βT ⊗VT < 0 (5.37)

where ⊗ is the Kronecker product and
V = AX+BY (5.38)

K = −YX−1 (5.39)

is feasible.

Observe that this is a generalization of Lyapunov stability for linear systems, that
is the eigenvalues of Ac having negative real part (Hurwitz), because the left half
complex plane is described by α = 0 and β = 1. Then, Theorem 5.2 simply states
that

AcX+XA
T
c < 0 (5.40)

For more examples of various LMI regions and how to construct them, please refer
to Chilali and Gahinet (1996).
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Stability For a Prescribed rmax

Let us now recast the results from Corollary 5.1 into a set of LMIs that can be
included with other LMIs in a state feedback synthesis procedure. For the sake of
clarity, this result is formulated as a Theorem.

Theorem 5.3 Suppose the system (5.14)-(5.15) is to track a sufficiently smooth
trajectory ηd(t) = [xd(t), yd(t),ψd(t)]

T by using the controller (5.16)-(5.17). If
there for a specified rmax > 0 exist matrices X = XT > 0 and Y ∈ Rm×n such
that

AX+XAT +BY +YTBT + rmax

³
STX+XS

T
T

´
< 0

AX+XAT +BY +YTBT − rmax
³
STX+XS

T
T

´
< 0

(5.41)

is feasible, then the state feedback gain K = −YX−1 guarantees uniform (global)
exponential stability of xe.

Proof. Revisiting Theorem 5.1 we remember that the exponential stability of xe
is equivalent to the existence of a P = PT > 0 such that for all r(t) < rmax ∀t ≥ 0

(A−BK)T P+P (A−BK) + r ¡PST + STTP¢ < 0 (5.42)

Pre- and post-multiplying with P−1 and substituting Y = −KP−1 we get

AX+BY +XAT +YTBT + r
³
STX+XS

T
T

´
< 0 (5.43)

Negative definiteness is ensured by (5.41) since this inequality is convex in r.

As for the other LMI criteria above, in a control synthesis procedure we end up
searching for a X = XT > 0 and a Y. Consequently, (5.41) can be combined
with any suitable LMI design criterion, that being H∞, H2, pole clustering or
combinations of those, to obtain globally exponentially stable tracking controllers
for all rmax.

5.4 Acceleration Feedback

Having established the PID control framework we are now ready to expand the
state feedback control synthesis above with additional acceleration feedback. The
proposed controller and the certainty equivalence realization are particular contri-
butions of this thesis.

5.4.1 Dynamic Acceleration Feedback

First, let us consider the velocity and acceleration dynamics. Suppose that mea-
sured acceleration ya ∈ Rnya where 1 ≤ nya ≤ 3 is given in the b-frame and let



5.4 Acceleration Feedback 75

Π ∈ Rnya×3 be the projection extracting those available accelerations ya = Πν̇.
Let the applied control τ be

ȧf = Afaf +Bf
³
ya −Π

³
ψ̇eS

TRT (ψe)νd +R
T (ψe)ν̇d

´´
τ = τPID −Kaaf

(5.44)

where af ∈ Rna is the filtered acceleration error described by the Af ∈ Rna×na
and Bf ∈ Rna×nya matrices. τPID is to be determined shortly. The velocity error
dynamics can be written

Mν̇e = −Dνe + τPID −Kaaf +w (5.45)

At low frequencies af ≈ ya − Π
³
ψ̇eS

TRT (ψe)νd +R
T (ψe)ν̇d

´
= Πνe which

means that the acceleration feedback term Kaaf can be regarded as a change in
the system’s mass. Taking the position error dynamics into account, we get

η̇e = R(ψ)νe
(M+KaΠ) ν̇e = −Dνe + τPID +w

(5.46)

Next, we want to find a PID-like control law τPID for the system (5.46). As in
Section 5.3 integral action is obtained by integrating the position deviation and
assign gains Ki ∈ R3×3, Kp ∈ R3×3, Kd ∈ R3×3. Applying the very same PID-
controller as in (5.16)-(5.17), that is

ξ̇ = ηe
τPID = −KiR

T (ψ)ξ −KpR
T (ψ)ηe −Kdνe + τ rff

(5.47)

where the reference feed-forward τ rff is defined by (5.18). Collecting the states
into xe = [ξT ,ηTe ,ν

T
e ,a

T
f ]
T ∈ R9+na , we can by defining the block-diagonal T :

R→ R(9+na)×(9+na) as follows

T(α) = Diag(RT (α),RT (α), I3+na) (5.48)

and letting BM = BfΠM
−1 express the complete error-dynamics on the compact

form
ẋe = T

T (ψ)AcT(ψ)xe +Ew (5.49)

where

Ac =


0 I 0 0
0 0 I 0

−M−1Ki −M−1Kp −M−1 (D+Kd) −M−1Ka

−BMKi −BMKp −BM (D+Kd) Af −BMKa

 (5.50)

E =
£
0 0 I BTM

¤T
(5.51)

The system parameters and controller gains have been isolated in the matrix Ac,
and due to controllability the eigenvalues of Ac are freely assignable.

Theorem 5.1 and Corollary 5.1 can now be employed to establish stability prop-
erties for (5.49).
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5.4.2 Controller Tuning

One of the main objectives of this thesis was to illustrate that constructive use
of measured acceleration could improve performance of DP systems compared to
PID or PD designs irrespective of their design philosophy. A reasonable way to do
this is to assign more or less identical poles to the resulting closed-loop systems.
The method is described in this section.

Step 1: Acceleration Feedback.

A first-order low-pass filter was used to remove high-frequency noise components
from the two acceleration signals available, surge- and sway-acceleration. Thus,
we let Ka ∈ R3×2 and

Af = −Bf = diag(−1/Tf ,−1/Tf ) (5.52)

Π =

·
1 0 0
0 1 0

¸
(5.53)

where the filter constant Tf was selected so small

Tf ¿ min

µ
m11

d11
,
m22

d22

¶
(5.54)

that the acceleration feedback term could be regarded as a direct manipulation of
the mass (5.46), that is Ma =M+KaΠ.

Step 2: PID-control.

When the rotations are disregarded, we are left with finding a state-feedback
control u = −Kx to the system

ẋe =Axe +Bu (5.55)

where

A =

 0 I 0
0 0 I
0 0 M−1a D

 , B =

 0
0

M−1a

 (5.56)

When the gain matrix K ∈ R3×9 is partitioned as follows
K =

£
Ki Kp Kd

¤
(5.57)

the closed loop dynamics can be written as, remember that η ∈ R3 is the position
vector,

η̈ + 2ΛΩη̇ +Ω2η + K̄i

Z t

0

η(s)ds = w (5.58)

which we recognize as a second order dynamic system with integral action.

2ΛΩ = M−1a (D+Kd) (5.59)

Ω2 = M−1a Kp (5.60)

K̄i = M−1a Ki (5.61)
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If K̄i = 0 the matrices Ω,Λ ∈ R3×3 determine the natural frequency and rela-
tive damping respectively. In this study we de-coupled the individual degrees of
freedom by the following selection of gains

Ω = diag(ω1,ω2,ω3) (5.62)

Λ = diag(ζ1, ζ2, ζ3) (5.63)

K̄i = diag(ki1, ki2, ki3) (5.64)

Consequently, for a constant selection Ω, Λ and K̄i, acceleration feedback control
as defined in Step 1 does not influence the system’s tracking capabilities.

5.4.3 Output Feedback

This section discusses the extension of the state-feedback controller (5.44), (5.47)
to output-feedback by using an observer with wave filtering capabilities. Global
asymptotic stability of the complete system is established using Theorem A.2.
This analysis is valid for any commutating design following the algorithm outlined
in Section 5.3. For a more specific treatment of a simpler PID-controller please
see Lindegaard and Fossen (2003).

Observer review

The main objective of the implemented observer is to reconstruct the system’s LF
states and accelerations

xo = [η̂
T , ν̂T , ˆ̇ν

T
]T (5.65)

based on measured positions and other types of sensor data, that is in particu-
lar (partial) velocity and acceleration feedback. Note the difference between ˆ̇ν,
the estimated acceleration, and ˙̂ν, the differential equation used to update the
estimated velocity ν̂.

In Lindegaard et al. (2002) an observer for low-speed ship applications was pro-
posed and discussed. Based on the same stability arguments as the state-feedback
controller in Section four, that is for bounded yaw rate, the observer error

x̃o = xo − [ηT ,νT , ν̇T ]T (5.66)

was shown to converge exponentially to zero

|x̃o(t)| ≤ k |x̃o(0)| exp(−γt) , t ≥ 0 (5.67)

for some k, γ > 0.

Observer-Feedback Control

Based on the principle of certainty equivalence, an observer-feedback controller is
realized substituting the actual states in the state-feedback controller (5.44) and
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(5.47) by their estimated values η̂, ν̂, and ˆ̇ν . A new set of error variables following
the definitions (5.11)-(5.13) are thus

η̂e = η̂ − ηd (5.68)

ν̂e = ν̂ −RT (ψ̂e)νd (5.69)

ˆ̇νe = ˆ̇ν −
³
r̂eS

TRT (ψ̂e)νd +R
T (ψ̂e)ν̇d

´
= ˆ̇ν −

³
(r̂ − rd)STRT (ψ̂ − ψd)νd +R

T (ψ̂ − ψd)ν̇d
´

(5.70)

The proposed observer-feedback controller with dynamic acceleration feedback for
(5.14)-(5.15) is

ξ̇ = η̂e
ȧf = Afaf +BfΠˆ̇νe
τ̂ = −KiRT (ψ̂)ξ −KpRT (ψ̂)η̂e −Kdν̂e −Kaaf + τ̂ rff

(5.71)

where the reference feed-forward is given by

τ̂ rff =DLR
T (ψ̂e)νd +M

³
(r̂ − rd)STRT (ψ̂e)νd +R

T (ψ̂e)ν̇d

´
(5.72)

Notice that in the rotations we have substituted ψ with ψ̂ and consequently
state estimates appear non-affinely in the control τ̂ . Due to the linear bound
of kR(ψ)− Ik and the inherent linear characteristics of the system, using (5.71)
instead of (5.44) and (5.47) does not compromise the asymptotic stability estab-
lished for state-feedback control. This can be summarized as follows

Theorem 5.4 Consider the system (5.14)-(5.15) for which there exists an ob-
server whose errors x̃o(t) converge asymptotically to zero (5.67). The observer-
feedback control (5.71)-(5.72) will guarantee UGAS of xe = [ξ

T ,ηTe ,ν
T
e ,a

T
f ]
T pro-

vided that

1. The gains Ki,Kp,Kd,Ka are selected such that Ac as defined by (5.50) is
Hurwitz.

2. Maximum yaw rate rmax calculated by Corollary 5.1 does not exceed the phys-
ical bound, |r(t)| ≤ rmax.

The formal proof is given in Appendix B.1.

5.5 Nonlinear Control

The main objective of this section is to identify the lacking terms in the commu-
tation based controller that if included would have guaranteed global exponential
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stability of the tracking error. A second objective is to show the similarities be-
tween controllers formulated in a reference parallel frame and our two-frame based
design. Using integrator backstepping (Krstíc et al. 1995), we demonstrate that,
under some restrictions, reference parallel control (Strand 1999) is equal to body
fixed control (Berge 1999). Furthermore, the derived tracking controller

• Considers Coriolis, centripetal, and nonlinear damping terms, while it does
not directly cancel any of these forces.

• Handles smooth, time-varying trajectories.
• Implements “true” integral action in the sense that the position deviation
updates the controller’s integral action.

5.5.1 Model Description

Consider a 3 DOF model with Coriolis C(ν) = −CT (ν) and nonlinear damping
D(ν) = DL +DN(ν)

η̇ = R(ψ)ν
Mν̇ = −C(ν)ν −D(ν)ν + τ +w

(5.73)

A smooth reference trajectory is assumed given in the reference parallel d-frame
according to (5.8)-(5.10).

5.5.2 State Feedback Backstepping Control

Backstepping is a constructive design procedure for the control of nonlinear sys-
tems on feedback form. The original state variables are transformed into a new
set of variables, the errors z, for which a stabilizing controller is derived stepwise
together with a block diagonal Lyapunov function. There is, however, no dominat-
ing general method for obtaining controller integral action, yet this can be imple-
mented by introducing an additional ”step” (Aarset et al. 1998, Strand 1999) or
parameter adaptation (Godhavn et al. 1997, Berge 1999, Fossen et al. 2001). The
first alternative complicates the derived controller (backstepping controllers tend
to be comparatively complicated and an additional step increases the complexity
even more). In a parameter adaptation setting, the ”integrator” will be updated
by a combination of the states. For example, in mechanical systems this means
that the integral action is updated by a sum of the position and velocity errors
in contrast to conventional linear control where only position error is used. The
advantage of such designs is that the integral gain can be chosen arbitrarily large
due to a relative degree of one between the controller and the constructed output
updating this integrator. On the other hand, the close connection between a linear
controller and a backstepping controller becomes less obvious.

We suggest yet another method for obtaining integral action in the tracking of
ships: The idea is to augment the position error with an extra integrator such that
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two steps will be sufficient. As a result, ”true” integral action, in the sense of it is
being updated by the position error alone, is achieved At the same time controller
complexity is reduced, at least when expressed in the z-variables, compared to a
three step method.

The objective is to follow the sufficiently smooth reference trajectory ηd,νd, ν̇d :
R≥0 → R3 where η̇d =R(ψd)νd. Let the position error e be given in the d-frame

e = RT (ψd) (η − ηd) = RT (ψd)ηe (5.74)

such that

ė = −ψ̇dSRT (ψd)ηe +RT (ψd) (R(ψ)ν −R(ψd)νd)
= −ψ̇dSe+R(ψe)νe (5.75)

where the heading error is ψe = ψ − ψd. A kind of integral action performed in
the Earth-fixed frame can be augmented as follows:

ξ̇ = −Λξ +CT11R(ψd)e (5.76)

The matrix C11 ∈ R3×nξ is a projection used to isolate the components of e that
is subject to integral action. Λ ∈ Rnξ×nξ should be diagonal and contain the
inverse of some large time constants. The larger these constants are the closer we
get to true integral action in the sense that ξ becomes an open integrator. For the
purpose of a simpler analysis we let Λ be non-zero as this allows us to establish
exponential stability more easily.

Theorem 5.5 below confirms that the tracking error
£
eT ,νTe

¤
where νe = ν −

RT (ψe)νd is UGES. It also provides conditions on how the individual gain matri-
ces should be selected such that reference parallel (Strand 1999) control becomes
identical to body-fixed control (Berge 1999).

Theorem 5.5 Assume that there exist symmetric and positive definite ∆1 ∈
Rnξ×nξ , ∆2 ∈ R3×3 where ∆2 commutes with R(ψ) and C11∆1 is selected such
that

R(ψ)C11∆1 = C11∆1C
T
11R(ψ)C11 (5.77)

Applying the controller

ξ̇ = −Λξ +CT11R(ψd)e
τ = −Ki(ν)R

T (ψ)ξ −Kp(ν,ψ)R
T (ψe)e−Kdνe + τ rff

(5.78)

where the gains are

Ki(ν) =
³
C(ν) +D(ν) +C2 + rMS

T
´
∆−12 C11∆1C

T
11

−M∆−12 C11∆1ΛC
T
11 (5.79)

Kp(ν,ψ) = ∆2 + (C(ν) +D(ν) +C2)C12

+M∆−12 R
T (ψ)C11∆1C

T
11R(ψ) + rMC12S

T (5.80)

Kd = C2 +MC12 (5.81)
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and the reference feed-forward is

τ rff = (C(ν) +D(ν))R
T (ψe)νd +M

d

dt

¡
RT (ψe)νd

¢
(5.82)

yields uniform global exponential stability of xe =
h
ξT ,ηTe ,ν

T
e

iT
= 0 whenever

C12 ∈ R3×3, C2 ∈ R3×3, and Λ ∈ Rnξ×nξ are selected such that

∆1Λ+Λ
T∆1 > 0 (5.83)

∆2C12 +C
T
12∆2 > 0 (5.84)

D(ν) +DT (ν) +C2 +C
T
2 > 0 (5.85)

The proof is given in Appendix B.2.

If all positions are subject to integral action C11 = I, the gains are reduced to

Ki(ν) = (C(ν) +D(ν) +C2)∆
−1
2 ∆1 −M∆−12 ∆1Λ+ rM∆

−1
2 ∆1S

T (5.86)

Kp(ν) = ∆2 + (C(ν) +D(ν) +C2)C12 +M∆
−1
2 ∆1 + rMC12S

T (5.87)

Kd = C2 +MC12 (5.88)

Considering now the low speed model (5.15) and C11 = I, the following gains
should be used

Ki(r) = (DL +C2)∆
−1
2 ∆1 −M∆−12 ∆1Λ+ rM∆

−1
2 S

T∆1 (5.89)

Kp(r) = ∆2 + (DL +C2)C12 +M∆
−1
2 ∆1 + rMC12S

T (5.90)

Kd = C2 +MC12 (5.91)

and the same reference feed-forward as for the commutating designs (5.18). From
(5.89)-(5.90) the missing yaw rate dependent terms needed for establishing UGES
are clearly visible. Since RT (ψe)e =R

T (ψ)ηe and R(ψd)e = ηe, we immediately
recognize that (5.78) is the very same controller as (5.17) apart from that the gains
are selected according to a different strategy.

It is also worth emphasizing that the yaw rate dependendent gains, those are
M∆−12 ∆1ST and MC12ST in (5.89) and (5.90) respectively, can be kept small
while simultaneoulsy increasing the sum of the constant terms in Kp and Kd. In
other words, in accordance with the commutating controller (5.24), this leads to
higher bounds of rmax if the yaw rate components in Ki(r) and Kp(r) were to be
neglected.

5.5.3 Output Feedback

Even though the state feedback controller derived by backstepping guarantees
global exponential stability of the tracking error, it cannot be used directly in
a certainty equivalence kind of output feedback control setting. In fact, the re-
striction experienced with the commutation based designs, the bounded yaw rate
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|r(t)| ≤ rmax, is indeed relaxed, but the price paid is significant: The error in the
compass heading estimate ψ̃ in combination with the nonlinear terms of the pro-
portional and integral gains excludes employing the results on cascaded systems
in establishing asymptotic stability of the closed loop system. The interconnec-
tion term between the observer errors Σ2 and the tracking errors Σ1 is no longer
linearly bounded in the states of Σ1.

In Aarset et al. (1998) the authors used observer backstepping to avoid using
ψ̃ = 0, but this contradicts the separation principle in the sense that the resulting
controller tuning depends on the observer. Another approach is pursued for more
general Euler-Lagrange systems (Loría and Panteley 1999, Aamo et al. 2001) where
ψ is assumed measured and available for feedback. Neglecting the linearly wave
induced motion and thus using ψy (the measured heading angle) in the derived
controller (5.78), this procedure would be globally asymptotically stable here as
well. In the following we are, however, going to analyze a certainty equivalence
design to point out the ψ̃-dependency and then suppose ψ̃ = 0 to eliminate the
conflicting terms.

Prerequisites

First we summarize some of the properties of the Coriolis and damping matrices
needed in the forthcoming analysis.

• The Coriolis and centripetal matrix is linear in its argument, that is for
a,b ∈ R3

C(a+ b) = C(a) +C(b) (5.92)

As a consequence, it is bounded linearly in the argument as well: There exist
positive scalars cm,cM > 0 such that

cm |a| ≤ kC(a)k ≤ cM |a| (5.93)

• The damping is linear plus quadratic throughout the entire velocity range
D(ν) = DL +DN(ν). Then, for any a ∈ R3 there are bounds dm and dM
such that

dm |a| ≤ kDN(a)k ≤ dM |a| (5.94)

Assume furthermore that the error in DN defined as

Derr(a,b) = DN(a− b)−DN(a) (5.95)

is bounded linearly in b. More specifically for some derr > 0 the following
holds

kDerr(a,b)k ≤ derr |b| (5.96)

Remark 1 In the scalar case it is known that

|a− b|− |a| ≤ |b| ∀a, b ∈ R
which means that (5.96) at least covers any diagonal DN .
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Define

N(ν) = C(ν) +D(ν) (5.97)

Nerr(ν, ν̃) = Derr(ν, ν̃)−C(ν̃) (5.98)

then
N(ν̂) =N(ν) +Nerr(ν, ν̃) (5.99)

From the assumptions above we see that

|Nerr(ν, ν̃)| ≤ (derr + cM) |ν̃| (5.100)

Observe when disregarding Coriolis and quadratic damping that N(ν) = DL and
thus Nerr(ν, ν̃) = 0.

Observer-Feedback Control

The proposed observer feedback controller is obtained by substituting the state
variables with their estimated counterparts (certainty of equivalence), and without
loss of generality, integral action is applied in all three DOFs.

Let position and velocity error be defined by (5.68) and (5.69) respectively. The
position error decomposed in the reference parallel frame is thus

ê = RT (ψd)η̂e = e−RT (ψd)η̃ (5.101)

The controller reads

ξ̇ = −Λξ +R(ψd)ê
τ̂ = −Ki(ν̂)RT (ψ̂)ξ −Kp(ν̂)RT (ψ̂e)ê−Kdν̂e + τ̂ rff

(5.102)

where the reference feed-forward is

τ̂ rff =N(ν̂)R
T (ψ̂e)νd +M

³
r̂eS

TRT (ψ̂e)νd +R
T (ψ̂e)ν̇d

´
(5.103)

and the gains are

Ki(ν̂) = (N(ν̂) +C2)∆
−1
2 ∆1 −M∆−12 ∆1Λ+ r̂M∆

−1
2 ∆1S

T (5.104)

Kp(ν̂) = ∆2 + (N(ν̂) +C2)C12 +M∆
−1
2 ∆1 + r̂MC12S

T (5.105)

Kd = C2 +MC12 (5.106)

Theorem 5.6 Consider a sufficiently smooth reference trajectory ηd,νd, ν̇d : R≥0 →
R3 where η̇d = R(ψd)νd, and assume there exists an observer with asymptoti-
cally converging states xo. The controller (5.102)-(5.106) guarantees UGAS of the
tracking error

£
eT ,νTe

¤T
provided that ψ̃ = 0 and the gains are selected according

to Theorem 5.5.

The proof is given in Appendix B.3.
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Remark 2 Admittedly, by imposing bounds on the velocity vector ν and the es-
timated heading error ψ̃ it would be possible to establish asymptotic stability by a
completion of the squares in the derivative of the Lyapunov function derived under
state-feedback. This, however, contradicts the objective of obtaining UGAS under
observer feedback. Instead we settled for ψ̃ = 0 (ψ is perfectly measured).

Separating the linear control terms from the nonlinear ones can be done by intro-
ducing the following definitions:

Gi = C2∆
−1
2 ∆1 −M∆−12 ∆1Λ (5.107)

Xi1 = C2∆
−1
2 ∆1 (5.108)

Xi2 = M∆−12 ∆1S
T (5.109)

Gp = ∆2 +C2C12 +M∆
−1
2 ∆1 (5.110)

Xp = MC12S
T (5.111)

The gains are thus given as

Ki(ν̂) = Gi +N(ν̂)Xi1 + r̂Xi2 (5.112)

Kp(ν̂) = Gp +N(ν̂)C12 + r̂Xp (5.113)

Kd = C2 +MC12 (5.114)

where the Gi ∈ R3×3 and Gp ∈ R3×3 are the constant (linear control) gains. The
terms requiring ψ̃ = 0 are the nonlinear factors of Ki(ν̂) and Kp(ν̂). It should
be noted that even though τ̂ rff indeed contains N(ν̂), for this term alone it is not
necessary to assume ψ̃ = 0 because |νd| is known to be bounded.



Chapter 6

Experiments with
Acceleration Feedback

6.1 Introduction

This chapter deals with the theoretical expectations and the actual results from
the experimens conducted with Cybership II. The main objective of these exper-
iments was to use measured linear acceleration in order to better attenuate the
unknown slowly varying wave drift forces. As these forces significantly deteriorates
positioning performance, it was important to investigate theoretically and experi-
mentally that negative acceleration feedback (AFB) could serve as a suitable tool
to improve the performance without sacrifying thruster usage.

The chapter is organized as follows: First, we compare our acceleration augmented
controller (Section 5.4) with a traditional PID-controller assigning the very same
closed loop eigenvalues to either one of them. Possible theoretical improvements
are examined in a state-feedback setting in terms of operator norms such as induced
L2 and the ”energy to peak” norm. Due to the rotations being separated from
the otherwise linear closed loop model, tools applicable for linear system analysis
were used for this purpose. Next, the actual experiments are documented together
with the environmental conditions used. Finally we draw the conclusions.

6.2 State-Feedback Performance

The controller in Section 5.4 was implemented with three different acceleration
gains (Table 6.1). Otherwise the identical closed-loop performance characteristics,
that is Ω and Λ as defined (5.62)-(5.63) were kept constant.
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Ka rmax [deg/s]
Standard PID 0 670

Low AFB
·
γl1m11 0 0
0 γl2m22 0

¸T
780

High AFB
·
γh1m11 0 0
0 γh2m22 0

¸T
590

Table 6.1: Acceleration gains. The scalars mij indicate the entries of the mass
matrixM

Ω = diag(1.2, 0.7, 0.8) (6.1)

Λ = I (6.2)

Ki = 0.02I (6.3)

Notice that K̄i was not constant, but due to the integral gain’s small magnitude
this had no significant influence on the characteristics around the system’s band-
width. The resulting model-scale yaw rate bounds rmax calculated according to
Corollary 5.1 are also reproduced in Table 6.1, and those values exceed the physical
limit by a factor of 10.

The structure of M and D together with the separation of the kinematics mo-
tivates a separate analysis of the North-surge dynamics. Thus we are allowed
to compare the resulting North-surge motion of the three controllers in order to
illustrate performance. Figure 6.1 and 6.2 show the transfer functions hxw1(s)
and hτ1w1(s), those being the frequency responses from surge-disturbance w1 to
position x and applied surge thrust τ1 respectively. Here, as in the experiments,
we have used γl1 = 0.78, γh1 = 2.0. Figure 6.1 demonstrates that disturbances
having frequencies within the range ω ∈ (10−3, 2) rad/s are effectively attenuated
using acceleration feedback.

For the high gain acceleration controller disturbances was reduced by 66%, or −10
dB. Table 6.2 documents that the energy content of position as well as applied

khxw1k2 khτ1w1k2 khxw1k2∞ khτ1w1k2∞
Standard PID 1 1 1 1
Low AFB 0.56 0.95 0.56 1.30
High AFB 0.34 0.92 0.33 1.65

Table 6.2: Normalized induced gains from surge disturbance to surge position and
surge thrust.

thrust decreases (slightly) using acceleration feedback. Moreover, the worst case
peak of the position, and thereby velocity, also decreases. A drawback is that the
peak in applied thrust may increase as indicated by khτ1w1k2∞.
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Figure 6.1: Model scale Bode plot of hxw1(s) for the three implemented controllers.

6.3 Experimental Results

6.3.1 Environmental Conditions

No wind or current forces were applied during the experiments. Instead the
boat was exposed only to incoming waves after a JONSWAP distribution with
a significant wave height Hs = 2 cm and mean period Ts = 0.75 sec, that is
ω = 2π/Ts = 8.38 rad/s. In full-scale this corresponds to sea state code 4 (moder-
ate) Hs = 1.4 m and Ts = 0.75

√
70 ≈ 6.3 sec, that is fs = 0.16 Hz, see Figure 6.3.

Sea state code 4 is the most frequently experienced condition worldwide as well
as in the North Atlantic (Price and Bishop 1974). The lack of wind and current
forces ensures that the experienced slowly varying motion is excited by nonlinear
wave effects.

Due to the irregular wave pattern, it was impossible to exactly repeat the condi-
tions in two experiments in succession. The validity of the results is therefore based
on performing long test runs. The recorded test runs were 30 min, from which
we extracted 20 min for presentation purposes. In full-scale this corresponds to
analyzing time series up to 2 hours and 47 minutes long. In order to claim validity,
this seems sufficient.
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Figure 6.2: Model scale Bode plot of hτ1w1(s) for the three implemented con-
trollers.

6.3.2 Documented Performance

The ship was to maintain the desired position ηd = [0, 0, 0]
T while being exposed

to irregular, head waves. The incoming waves would be tangential to the centerline
of the vessel provided that its heading ψ = 0, and hence wave drift would be expe-
rienced mostly longships. Therefore, acceleration feedback was only implemented
in surge in order to attenuate those unknown slowly varying disturbances, and the
following acceleration gains (see Table 6.1) were used

Low AFB : γl1 = 0.78 γl2 = 0.0
High AFB : γh1 = 2.0 γh2 = 0.0

(6.4)

As commented above, comparing the time-series plots for the three individual ac-
celeration gain settings is useless. We therefore chose to reproduce a representative
time slot from the data recorded with the high gain AFB controller in full scale.
In Figure 6.4 the measured and LF estimate of the North position is plotted along
with the measured and LF estimated surge acceleration. Notice that since ψ ≈ 0
the position and acceleration are, as expected, 180 degrees out of phase. This
is most easily seen around t = 8000 sec. The large amplitudes of the measured
acceleration, due to the first order wave induced motion, still has little influence
on the LF estimate, which is an example of a well-functioning observer. Had the
observer estimates been corrupted with wave frequency components, it would have
caused thruster modulation immediately. The measured and LF estimated East
position are given in Figure 6.5 together with sway acceleration. Measured and
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Figure 6.3: Plot showing the full-scale equivalent JONSWAP wave spectrum for
Hs = 1.4 m, Ts = 6.3 sec, and peakedness γ = 3.3.

LF estimated heading and yaw rate are plotted in Figure 6.6.

For comparison of the energy content in recorded time-series data the RMS-gain
is a relevant performance parameter together with empirical mean ȳ and stan-
dard deviation sy. The experiments documented that by using the estimated
low-frequency acceleration in the output-feedback controller, the positioning per-
formance increased for practically the same amount of consumed surge thrust
power, see Table 6.3. A graphical illustration of the resulting performance en-
hancements are given in Figure 6.8: The ellipses to the left represent standard
deviation of the North and East-positions for the three implemented controllers.
The RMS-norms of the corresponding applied surge and sway thrust to the right
show that for approximately the some amount of thrust, the positioning accuracy
in North/surge improved significantly using acceleration feedback. As AFB was
not enabled in East/sway, the three controllers performed equally well.

sx kxkRMS sτ1 kτ1kRMS τ̄1
Standard PID 1.0 1.0 1.0 1.0 1.0
Low AFB 0.86 0.86 0.96 0.96 1.04
High AFB 0.83 0.82 0.99 0.99 1.02

Table 6.3: Empircal performance indicators normalized with respect to values
obtained with regular PID-control.

6.3.3 Comments

It may be argued that the position deviations are large for this moderate sea
state code. The amplitudes could have been made smaller if the controller had
applied more damping. But this in turn requires a greater accuracy in the ve-
locity estimates, and it can in fact degrade performance if the observer is loosely
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Figure 6.4: Top: Measured (dotted) and LF-estimated (solid) North position.
Bottom: Measured (dotted) and LF-estimated (solid) surge acceleration.

tuned. In fact, we found it difficult to add more damping without destabilizing the
surge-dynamics. However, since the closed loop relative damping was constant, a
comparison between the two could still be made.

From the empirical standard deviation sx we see that the idealized performance
enhancements found in the state-feedback analysis could not be reached. The
signal transmission delays and phase lag caused by the observer as well as by other
factors altogether degraded the performance. Nevertheless, the concept seems to
be promising since sx was reduced significantly using acceleration feedback while
kτ1kRMS was kept constant.

6.4 Conclusions and Recommendations

We have suggested using measured acceleration to increase the performance in
positioning operations of surface vessels. The advantages of this concept has been
motivated by and illustrated through state-feedback analysis of the low-frequency
dynamics of the vessel model. Theoretically it is possible to attenuate a dis-
turbance’s influence and obtain improved positioning and simultaneously lower
applied thrust force. As a consequence, the fuel consumption (and gas emission)
is likely to go down while the safety of the operation is improved.

Due to the purely oscillatory first order wave loads, a state-observer with wave
filtering capabilities is required in order to prevent thruster modulation. Although
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Figure 6.5: Top: Measured (dotted) and LF-estimated (solid) East position. Bot-
tom: Measured (dotted) and LF-estimated (solid) sway acceleration.

this somewhat deteriorates the performance, the experiments validate that the
positioning performance does improve with acceleration feedback for practically
the same applied thrust. It is likely to assume that further testing and alternative
controller structures can provide even better results.

Using measured acceleration actively in dynamic positioning operations is a cost
effective method to reduce operational cost and increase the safety and positioning
performance.
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Figure 6.6: Top: Measured (dotted) and LF-estimated (solid) heading Bottom:
Measured (dotted) and LF-estimated (solid) yaw rate.
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Chapter 7

Thrust Allocation with
Rudders

7.1 Introduction

The main contribution of this chapter is a thrust and rudder (control) allocation
algorithm for marine vessels. This is a challenging problem since a ship at zero
speed with a main propeller and a single rudder produces lift (sideforce) for pos-
itive propeller revolutions only. Rudder forces are approximately zero when the
propeller is reversed. The rudder force is also limited to a small sector due to
rudder angle saturation.

Optimal thrust allocation in station-keeping has been addressed previously (Jenssen
1981, Lindfors 1993, Sørdalen 1997a, Sørdalen 1997b, Berge and Fossen 1997),
while simultaneous thrust and rudder allocation for ships at zero speed has re-
ceived less attention. Since operating a rudder servo is relatively inexpensive
compared to operating a propeller, this gives a large fuel saving potential. This
solution is well known in practice since experienced captains use a non-zero rudder
angle (for positive thrust) in station-keeping and docking to produce additional
forces in the transverse direction. In this chapter a constrained rudder/propeller
control allocation algorithm is derived.

For ships with more control inputs than controllable degrees of freedom (DOF),
it is possible to find an “optimal” distribution of control forces F ∈ Rp provided
that the demand is attainable. Here p is the number of actuators/propulsive
devices which can be operated individually. The commanded generalized force
(forces and moments), τ c, is generated by a higher-level controller, for instance a
dynamic positioning system. In this context a higher-level controller may be any
arbitrary automatic control law (Figure 7.1) or, alternativly, a joystick operator
manually commanding surge and sway forces as well as a yaw moment (Figure
7.2). Regardless of the source of commanded forces, the control allocation (CA)
algorithm is responsible for calculating an “optimal” solution of actuator set-points
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that at all times satisfy the presumed attainable commanded generalized force
signal.
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Figure 7.1: Overview of an automatic ship control system with a high level con-
troller.
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Figure 7.2: Overview of a manual joystick control system.

In general, CA is a dynamic nonlinear optimization problem since there are sec-
tor limitations for operation of the rudders and the rotatable thrusters (azimuth
thrusters). This problem can be solved using nonlinear optimization techniques
(Nocedal and Wright 1999) e.g. quadratic programming (QP), see Lindfors (1993).
An alternative method using the singular value decomposition and a filtering
scheme to control the azimuth directions has been proposed in Sørdalen (1997b)
and, with results from sea trials, in Sørdalen (1997a). A similar technique using
the damped least squares algorithm has been reported in Berge and Fossen (1997).

Compared to advanced controller and filter design, the allocation part of ship con-
trol has received less attention (Sørdalen 1997b). This seems unfortunate, because
the performance of an automatic control system will suffer if the CA module is
poorly designed. Moreover, the design of the allocation module is the decisive
element determining the costs, in terms of energy consumption, of obtaining the
desired level of performance. A more efficient CA algorithms requires less power,
reduces fuel consumption, and decreases gas emissions.

While the mentioned CA schemes for ships perform an unconstrained optimization,
the aerospace community has addressed constrained CA methods for quite some
time. The two most frequently reported strategies are Durham’s tailor-made gen-
eralized inverses (Durham 1993, Durham 1994a, Durham 1994b, Durham 1999b,
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Durham 1999a, Bordignon and Durham 1995a) and actuator daisy chaining (Berg
et al. 1996, Buffington and Enns 1996, Buffington et al. 1998). The set of admis-
sible controls is usually an n-dimensional rectangle, as in the tailor-made inverses,
and the controls can be selected independently of each other. These methods do
not apply to ships with rotatable thrusters or rudders. Neither is the set of admis-
sible controls necessarily convex, nor will the controls be independent. Another
difference between an aircraft and a ship is how a universal cost criterion should
be defined. For a ship at low speed it is an obvious goal to minimize the total
thrust force (and thereby fuel consumption), while for a cruising airplane the cost
in terms of energy of using the passive control surfaces is of minor importance,
although drag minimization has been considered (Durham et al. 1996).

Force
Allocation

Force
Allocation

Inverse
Mapping
Inverse

MappingExtended
thrust

Commanded
force

Thruster
setpoints

Relative
velocity

d, dd, d

Figure 7.3: The thrust allocation problem seen as a two-step process.

The control allocation problem arises in cases where there are more actuators than
DOFs, or more precisely when the decision variables u outnumber the equality
constraints. An algorithm can be divided into two steps as described in Figure
7.3. In the first step, called force allocation, the commanded generalized force τ c is
distributed out to each one of the p available actuators. The decision made at this
stage determines how “good” the algorithm is. The second step deals with finding
which actuator set-points will generate the desired forces F. This step is called
“inverse mapping” because it must solve the inverse of the actuator models. The
vessel’s velocity relative to the fluid νr is considered an auxiliary signal that must
be accounted for since rudder forces greatly depend on surge velocity. Evidently,
the thrust models used in the second step influence the domain of u. For low speed
applications, as considered in this chapter, the ship’s relative velocity νr may be
neglected.

The thrust allocation problem is an optimization problem with several require-
ments to consider. For instance, the algorithm must take into account the capacity
of each thrust device and it must avoid “singular solutions” (Sørdalen 1997b, Jo-
hansen et al. 2003) that produce unacceptably large thrust magnitudes. Further-
more, finding a suitable solution must take a minimum of time and computational
effort because the implementation runs on a real-time platform often with lim-
ited resources. More sophisticated algorithms should include support for thrusters
with a preferred thrusting direction (many thrust devices are more effective when
producing positive thrust than negative) and also take into account the dynamic
constraints of the propulsion system, e.g. a rotatable thruster cannot rotate arbi-
trarily fast (rate saturation). Those issues will, however, not be addressed here.

A topic related to saturation handling is to the determine attainable thrust set
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(Durham 1993, Durham 1994a, Durham 1994b), that is all combinations of τ c that
the thruster system can provide. Limitations will be imposed by the maximum
capacity of each device (box constraints), but also by the amount of available
power on the power buses on which the thrusters are connected. If rate limita-
tions are to be handled, the current states influence the attainable thrust, too. By
analyzing the attainable set before sending the demand τ c to the force allocation
module (Figure 7.3), or at least taking it into account in the allocation itself, we
are given the opportunity to analyze and modify the demand in light of the limi-
tations. The desired τ c should be checked for attainability. If it is not attainable,
explicit action must be taken because if the actuators are individually limited af-
ter the inverse mapping, overall control of the resulting thrust may be lost. In
such cases one approach could be to give preference to some of the controllable
DOFs in the τ c-vector and to modify the other ones such that τ c eventually be-
comes attainable. In aerospace applications the set of attainable thrust is convex
(Durham 1994a, Durham 1994b) simplifying such priority considerations signifi-
cantly. This is, however, not the case for ships with sector restricted rotatable
thrusters or propeller-rudder pairs. Because of this non-convexity, we assume that
τ c is always attainable.

7.2 Problem Statement

7.2.1 Notation and Definitions

Consider a vessel with p actuators. Actuators denote rotatable or fixed propellers,
waterjets, and other devices capable of producing a propulsive force. A main
propeller equipped with a rudder is considered a rotatable device. Passive devices
such as standalone rudders and flaps are to be considered as actuators at non-zero
velocities, while at velocities near zero they should not.

Assume there are pr rotatable and pf fixed force devices such that p = pr + pf .
Notice that a rotatable actuator has two controls, one for the direction and one
for force amplitude. For the rotatable and fixed actuators this yields nr = 2pr and
nf = pf number of decision variables respectively. In sum there are n = nr + nf
decision variables. Let q denote the number of DOFs under consideration, and if
n > q the vessel is said to be overactuated. From now on we shall consider surge,
sway and yaw only, thus q = 3.

Each thruster k is located at

rk =
£
lk,x lk,y

¤T
(7.1)

with respect to the origin of the vessel-fixed coordinate system and can produce a
force Fk in a direction αk. The x-axis points forward and the y-axis to the right
(starboard). The difference between the rotatable thrusters numbered 1 ≤ k ≤ pr
and fixed thrusters pr + 1 ≤ k ≤ p is that the direction αk can be manipulated.

Let Fmaxk > 0 be the maximum thrust force such that the normalized thrust ρk
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defined as
ρk =

1

Fmaxk

Fk (7.2)

satisfies |ρk| ≤ 1 for all k. Define I as a subset of R
I = {x ∈ R |−1 ≤ x ≤ 1} (7.3)

Then ρk ∈ I and ρ ∈ Ip.
The sum of generalized forces on the vessel τ ∈ R3 is

τ = Ā(α)| {z }
configuration

matrix

F̄ρ|{z}
thrust

(7.4)

where

Ā(α) =

 cosα1 · · · cosαp
sinα1 sinαp

−l1,y cosα1 + l1,x sinα1 · · · −lp,y cosαp + lp,x sinαp

 (7.5)

F̄ = diag{Fmax1 , · · · , Fmaxp } (7.6)

The vessel is said to be in a singular configuration if Ā(α) looses rank due to a
poor selection of α.

Let u ∈ In denote the control vector where the normalized thrust ρk for each
thruster has been decomposed in the horizontal plane according to:

uk,x = ρk cosαk , uk,y = ρk sinαk (7.7)

The decomposition u is called extended thrust. LetΠk be a projection that extracts
the extended thrust vector uk of thruster k from u according to

uk =Πku (7.8)

For rotatable thrusters uk ∈ I2, 1 ≤ k ≤ pr and for fixed thrusters pr +1 ≤ k ≤ p
we have uk = ρk ∈ I.
Most likely an extended thrust uk is confined to a domain of I2 (or I), e.g. an
azimuth thruster could be restricted to thrust only inside a predefined sector. Let
each extended thrust uk be confined to the domain Dk, that is for k ∈ [1, pr] we
have Dk ⊂ I2, and for k > pr Dk ⊂ I.
Using the concept of extended thrust, the generalized thrust vector τ becomes

τ = BFuu (7.9)

where B ∈ R3×n consists of Br ∈ R3×nr and Bf ∈ R3×nf

B =
£
Br Bf

¤
(7.10)

Br =

 1 0 · · · 1 0
0 1 · · · 0 1
−l1,y l1,x · · · −lnr,y lnr,x

 (7.11)
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Bf =

 cosαpr+1 · · · cosαp
sinαpr+1 · · · sinαp

−lpr+1,y cosαpr+1 + lpr+1,x sinαpr+1 · · · −lp,y cosαp + lp,x sinαp


(7.12)

Notice that B is a constant matrix of rank q (here q = 3) whenever the craft is
overactuated. The matrix Fu ∈ Rn×n is a diagonal matrix with corresponding
values of Fmaxk along the diagonal. Define:

A = BFu (7.13)

A control vector u (extended thrust) is called feasible if the linear constraint

f =Au− τ c = 0 (7.14)

and each and every uk =Πku lies in its domain Dk.
Let the columns in the matrix N be an orthonormal basis of the null-space N (A).
Then, AN = 0. The null-space N (A) and row-space of A, denoted R(AT ), are
orthogonal subspaces of Rn.

The generalized inverse of a matrix A, using a symmetric and positive definite
weight matrixW =WT > 0, is defined as:

A† =W−1AT
¡
AW−1AT

¢−1
(7.15)

such that the unconstrained solution:

u∗ = A†τ c (7.16)

is the optimal solution, in a weighed 2-norm sense, that is

uT∗Wu∗ ≤ uTWu ∀ {u ∈ Rn |Au− τ c = 0} (7.17)

Moreover, u∗ ∈ R(W−1AT ).

IfW = I, we get the pseudo-inverse

A+ = AT
³
AAT

´−1
(7.18)

such that u∗ ∈ R(AT ). Without loss of generality, we use A+ instead of A† in
calculating the unconstrained solution.

7.2.2 Problem Introduction

The main objective is to find a feasible control vector u (extended thrust) that is
optimal with respect to some cost function quadratic in u.

Quadratic cost functions are attractive candidates because when the domains Dk
are described by linear inequalities the problem is a general quadratic program
(QP). Quadratic programs can be solved in a finite number of iterations and are
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consequently quite predictable which again makes them well suited for real-time
implementation. Unfortunately, a propeller-rudder device requires a non-convex
domain Dk because these propulsive devices are unable to produce lateral forces
without simultaneously generating significant longitudinal forces.

It is reasonable to assume that the rudder is capable of producing lift for positive
thrust force (forward). For negative longitudinal force the rudder can be regarded
as inactive, thus the attainable set shrinks to a thin line. Typically the physically
attainable thrust region resembles a twisted circular sector, represented by the
grid in Figure 7.4. Notice that the negative x-axis is also a part of the attainable
set. For convenience, the grid is approximated by an inscribed circular sector so
that the feasible set Dk is given by this sector element and the negative x-axis.

Figure 7.4: The physically attainable thrust region (grid) for a propeller-rudder
pair. An inscribed circular sector and the negative x-axis together serve as the
feasible region Dk.

Even though a sequential QP (SQP) or a sequential linearly constrained (SLC)
method does find a solution, careless utilization of any numerical method can lead
to unintended results:

1. An SQP method solves a sequence of QP problems and is therefore more
computationally demanding than a single QP. Moreover, if the iteration se-
quence is interrupted or preempted due to CPU time limitations, the current
solution may not be optimal.

2. The non-convex inequality constraints for the propeller-rudder couple intro-
duce a discontinuity in the mapping from τ c → u if the optimal solution is
to be used at all times. However, infinitesimal changes in τ c should never
lead to discontinuous extended thrust u.

This second situation is illustrated in Figure 7.5: The optimal unconstrained solu-
tion for thruster k, that is u∗,k, is marked with a cross and the dotted cost curves
illustrate the cost involved getting the solution into the feasible domain Dk. The
two circles mark feasible solutions with identical cost. Since the unconstrained
solution u∗,k lies slightly above the equicost line (dashed) the uppermost solution
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Figure 7.5: Illustration of a discontinuous mapping from τc to extended thrust
vector u.

is selected. Once u∗,k crosses the equicost, the lower solution becomes optimal.
Hence, the mapping is discontinuous and this will again cause undesired propeller
and rudder angle chattering. It is therefore of paramount importance to avoid
introducing this discontinuity.

7.3 Force Allocation

The proposed algorithm is analytic and requires no iterations whatsoever. This
means that some assumptions have to be made:

1. Only one thruster, thruster k, with sector constraints is supported.

2. Thrust force magnitude constraints (box constraints) are not considered.

Due to the feasible region being non-convex, problems may arise if re-allocation
is applied uncritically should one or more of the thrust devices saturate. Re-
allocating by looping through all possible configurations (Bordignon and Durham
1995b) can also be time-consuming. Still, our method is 2-norm optimal, it does
avoid rudder-chattering, and it does produce continuous solutions. The two latter
properties have, as far as we know, not been considered elsewhere, but any CA
algorithm for ships should, in our opinion, support them.

Assumption 1 is the key to handle sector constraints analytically and to ensure
continuity. The disadvantage is that for configurations where several thrusters are
subject to sector constraints, some sub-optimal modification must be made, for
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instance by handling one thruster at a time and keeping the others at a fixed angle.
This particular approach was pursued here since our ship model was equipped with
two propeller-rudder pairs. As a consequence, one rudder only could be used at
any one time.

Thruster saturation is not covered according to Assumption 2. Traditionally, it-
erative solvers distribute possible overshoot from the saturated thrusters onto the
remaining ones provided that the demand τ c is attainable. Without saturation
handling, however, we are not guaranteed to obtain the desired τ c even when it
is attainable. But as long as τ c is comparatively small with respect to the attain-
able set, no thruster should saturate and the box constraints can be disregarded.
It should be noted that explicit, non-iterative, off-line pre-computed schemes do
handle box-constraints (Johansen et al. 2002), but they do not support non-convex
constraints.

The algorithm for finding a feasible extended thrust vector u is solved in two steps
in order to maximize computational performance. First, an unconstrained solution
is found. If this 2-norm optimal solution lies outside the feasible domain D, we
need to determine the minimum accumulated cost translating the solution from
u∗ towards the domain D.

7.3.1 Unconstrained

The first step in the allocation of extended thrust u is achieved by simply employ-
ing the pseudo-inverse in order to minimize the 2-norm of u.

u∗ = A+τ c (7.19)

If u∗ /∈ D, Figure 7.5 indicates that simply projecting the u∗ onto D one is not
guaranteed to find the minimum cost u ∈ D. We have to consider the actual
cost accumulated of traversing the null-space N (A). This is the topic of the next
subsection.

7.3.2 Sector Constraints

Assume that thrust device k is restricted in a domain Dk ⊂ R2 as illustrated in
Figure 7.5 and that the pseudo-inverse solution u∗ has already been found. Since
u∗ satisfies the linear equality constraint (7.14), we may add any linear combina-
tion of the columns in N denoted δu = Nσ where σ is a vector of appropriate
dimension, and still have a solution satisfying the linear equality constraint.

u = u∗ + δu = u∗ +Nσ (7.20)

The objective is now to find the optimal σ which renders u feasible and minimizes
|u| ≥ |u∗|. We have

|u|2 = (u∗ +Nσ)T (u∗ +Nσ)
= |u∗|2 + |σ|2 (7.21)
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where we have used that u∗ ∈ R(AT ) such that NTu∗ = 0 and NTN = I since N
is an orthonormal basis. Consequently, we seek a vector σ with minimum 2-norm.

Consider device number k. We have to find an increment δuk such that uk ∈ Dk
uk = u∗,k + δuk, δuk =ΠkNσ (7.22)

Once again the pseudo-inverse is applicable because it minimizes the 2-norm.
Hence,

σ = (ΠkN)
+
δuk (7.23)

is the solution we are looking for, but we have yet to determine δuk.

Once uk enters the feasible region spanned by a1 and a2 (Figure 7.5), it is going to
be parallel to one linear boundary curve ai ∈ R2. Consequently, we have reached
the minimum when uk||ai, which can be rephrased as a linear constraint because
any ai is a design parameter. By letting a = ai and using the inner product we
get the constraint

fs = a
T
⊥uk = a

T
⊥ (u∗,k + δuk) = 0 (7.24)

where a⊥ is orthogonal to a, that is aTa⊥ = 0. Later, in Section 7.3.4 we focus
on determining which boundary vector a to use.

Define the Lagrangian

L =
1

2
σTσ + λfs

=
1

2
(δuk)

TWkδuk + λ
¡
aT⊥u∗,k + a

T
⊥δuk

¢
(7.25)

where it can be shown that

Wk =
³
ΠkNN

TΠk
´−1

(7.26)

is positive definite as long as dimN (A) ≥ 2. In other words, N must have at least
two columns. It must be pointed out that only the inverseW−1

k will be utilized
and notWk itself. Since we only have to calculate

W−1
k =ΠkNN

TΠk (7.27)

we may disregard the dimension of the null-space causing a singularWk.

If dimN (A) ≥ 2, this reduces to an unconstrained QP problem trivially solved
using the generalized inverse. The minimum solution is found by minimizing L

∂L

∂δuk
=Wkδuk + a⊥λ = 0 (7.28)

δuk = −W−1
k a⊥λ (7.29)

Since the constrained solution is parallel to a, by using (7.24)

λ =
¡
aT⊥W

−1
k a⊥

¢−1
aT⊥u∗,k (7.30)
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the optimal solution is

δuk = −W−1
k a⊥

¡
aT⊥W

−1
k a⊥

¢−1
aT⊥u∗,k (7.31)

For all thrust devices together, the optimal increment δu is obtained by combining
(7.20), (7.23) and (7.31)

δu =N (ΠkN)
+ δuk (7.32)

and hence for the modified extended thrust, assuming that u ∈ D

u = u∗ −N (ΠkN)+W−1
k a⊥

¡
aT⊥W

−1
k a⊥

¢−1
aT⊥u∗,k

=
³
I−NNTΠTk a⊥

¡
aT⊥W

−1
k a⊥

¢−1
aT⊥Πk

´
u∗ (7.33)

Note thatW−1
k , N and Πk are constant matrices. Even if the sector bound a, or

equivalently a⊥ varies in time, no time-consuming matrix operations need to be
performed on-line, because aT⊥W

−1
k a⊥ is a non-negative scalar.

7.3.3 Sector Constraint with Rudder Anti-Chat

In order to remove rudder chattering around zero, we propose to translate the
sector constraint a distance ro ∈ R2, or more specifically, slightly along the x-axis
as shown in Figure 7.6. This modification ensures that the rudder will not be
used unless the actuator thrust is above some positive threshold. Furthermore,
the transition from zero rudder angle to maximum deflection will be continuous,
because rudder will be applied gradually as the required thrust along the x-axis
increases.

The distance between the origin of the original O-frame and the origin of the
translated B-frame is denoted ro when it is decomposed in the O-frame. Then, a
point cb in the B-frame is in the O-frame given as co = ro+cb. Thus, the optimal
unconstrained solution decomposed in the B-frame is ub∗ = uo∗ − ro.
We may now perform the adjustment due to the sector constraint in the B-frame
instead of in the O-frame, because δubk = δuok since the coordinate systems are
linearly translated and not rotated with respect to each other. The basic results
from the previous section can therefore be applied. More specifically, the costWk

as given in (7.26) serves as the weight in the Lagrangian

L =
1

2

¡
δubk

¢T
Wkδu

b
k + λ

¡
aT⊥u

b
∗,k + a

T
⊥δu

b
k

¢
(7.34)

where it must be noted that a⊥ is now given in the B-frame. The minimum cost
adjustment is

δubk = −W−1
k a⊥

¡
aT⊥W

−1
k a⊥

¢−1
aT⊥u

b
∗,k (7.35)
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Figure 7.6: Translating the sector constraint of thruster k: Defintion of the B-
frame.

and the optimal constrained solution ub and uo given in the B- and O-frames are

ub = ub∗ +N (ΠkN)
+
δubk (7.36)

uo = uo∗ +N (ΠkN)
+
δubk (7.37)

A more detailed calculation reveals that

uo=
³
I−NNTΠka⊥

¡
aT⊥W

−1
k a⊥

¢−1
aT⊥Πk

´
u∗

+N (ΠkN)
+
W−1

k a⊥
¡
aT⊥W

−1
k a⊥

¢−1
aT⊥r

o (7.38)

where we notice that the first term is exactly the same as (7.33), that is when the
B-frame coincides with theO-frame, and that the contribution from the translation
ro appears as an additional linear term.

7.3.4 The Equicost Line

In case u∗,k /∈ Dk, we have to decide which of the two nearest boundaries of the
feasible domain Dk we should approach, see Figure 7.6. Assume that a1,a2 ∈ R2
are two vectors defining the boundaries ofDk. We seek the unit vector el describing
the equicost line. That is, for any point on el, say p = cel, where c ∈ R is an
arbitrary scalar, the costs of approaching a1 and a2 are identical.
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From the results in the two previous sections we know that

δp1 =W
−1
k (a1)⊥

¡
(a1)

T
⊥W

−1(a1)⊥
¢−1

(a1)
T
⊥p (7.39)

δp2 =W
−1
k (a2)⊥

¡
(a2)

T
⊥W

−1(a2)⊥
¢−1

(a2)
T
⊥p (7.40)

are the optimal steps towards a1 and a2 respectively. The costs involved are
i = 1, 2

Ji = (δpi)
TWkδpi

= pT
³
(ai)⊥

¡
(ai)

T
⊥W

−1(ai)⊥
¢−1

(ai)
T
⊥
´
p (7.41)

and in order to find the equicost line we require J1 = J2 or ∆J = J1 − J2 = 0.
Hence,

∆J = pTLp = 0 ⇔ eTl Lel = 0 (7.42)

where L = LT is given by

L =

·
L11 L12
L12 L22

¸
=

(a1)⊥(a1)T⊥
(a1)T⊥W

−1
k (a1)⊥

− (a2)⊥(a2)T⊥
(a2)T⊥W

−1
k (a2)⊥

Expanding this expression using el = [x, y]T we obtain the two linear curves where
the hyperbola z = eTl Lel intersects the xy-plane, that is

L11x
2 + 2L12xy + L22y

2 = 0 (7.43)

Using polar coordinates el = [cos θ, sin θ]T we get four solutions

θ = arctan

−L12
L22

±
sµ

L12
L22

¶2
− L11
L22

+ jπ (7.44)

where j = 0, 1. From this the correct solution is selected, namely the one lying in
the sector spanned by a1 and a2. Observe that for this method to be valid, |L22| >
0, the infeasible sector has to be less than 180 degrees wide. For propeller/rudder
pairs this will always be the case.

7.3.5 Restore Continuity

We have already predicted that crossing the equicost line could introduce a discon-
tinuity in ubk even if the commanded thrust force τ c is continuous. In this section,
we propose a remedy for this situation; a solution ubk that does not necessarily
minimize the 2-norm. The idea is outlined in Figure 7.7. If ub∗,k is situated inside
the sector surrounding the equicost line, we drive ubk to a point closer to the origin
(the intersection between a1 and a2). Unlike the procedure given above, we now
follow the solid arrows instead of the dotted lines. Consequently, if ub∗,k lies ex-
actly on the equicost, the desired ubk should be zero and continuity will be restored.
Figure 7.8 shows more details: Having already calculated the constrained optimal
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Figure 7.7: Translation of ub∗,k without loss of continuity.

solution ubk, marked with a circle, we now force it towards the origin increasing
the cost.

Decompose ub∗,k onto the unit vectors el and eδ. el is parallel to the equicost line
and

eδ =
δubk¯̄
δubk

¯̄ (7.45)

el and eδ define a (not necessarily orthogonal) basis for R2 such that

c = [el|eδ]−1 ub∗,k (7.46)

yields
ub∗,k = c1el + c2eδ (7.47)

The distance between the equicost line and ub∗,k is

b = ub∗,k + δubk − c1el (7.48)

so that the ratio
γ =

c2
|b| (7.49)

defines the location of ub∗,k along the line b. A γ close to zero means that ub∗,k is
close to the equicost line, and we need to force ubk toward the origin. The strategy
is: Introduce a design parameter 0 < γr < 1 and a continuous, non-decreasing
weighing function f : R≥0 → [0, 1]. Besides (7.35) we now use

∆ubk = (f (γ/γr)− 1)ub∗,k + f (γ/γr) δubk (7.50)

ubk = u
b
∗,k +∆u

b
k = f (γ/γr)

¡
ub∗,k + δubk

¢
(7.51)

The width of the sector is determined by γr. Outside of the sector, f (γ/γr) = 1
and ∆ubk = δubk. The optimal but discontinuous solution corresponds to γr → 0
or f(s) = 1 for all s ≥ 0. Figure 7.9 shows three weighing function alternatives.
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Figure 7.8: Detailed picture of restored continuity and definition of basis vectors
el and eδ.

Figure 7.9: Weighing functions: f1(s) = sat(s) (solid), f2(s) = tanh(2s) (dashed)
and f3(s) = erf(2s) (dotted).

7.3.6 Proposed Algorithm

The force allocation procedure can be summarized by the following sequence of
operations:

1. u∗ =A+τ c.

2. If u∗ ∈ D then terminate.
3. Approaching D.

• Assume thruster k such that u∗,k /∈ Dk.
• ub∗ = u∗ − ro.
• Find equicost line el and determine towards which boundary ai of Dk
we should go. Call it a.
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• δubk = −W−1
k a⊥

¡
aT⊥W

−1
k a⊥

¢−1
aT⊥u

b
∗,k

4. If dim(N (A)) > 1

• Restore continuity of the mapping τ c → ub

• eδ = δubk/
¯̄
δubk

¯̄
• c = [el|eδ]−1 ub∗,k
• b = ub∗,k + δubk − c1el
• γ = c2/ |b|
• ∆ubk = (f (γ/γr)− 1)ub∗,k + f (γ/γr) δubk

5. If dimN (A) = 1

• ∆ubk = δubk

6. For all thrusters

• ub = ub∗ +N (ΠkN)+∆ubk
• uo = ub + ro

If the dimension of the null-space of A is 1, it is futile to perform step 4 (Restore
continuity). Likewise, the concept of the equicost line does not apply.

7.4 Experimental Results

The experiment was performed in the Guidance, Navigation and Control (GNC)
Laboratory at NTNU with the model ship Cybership II (CS2). This vessel is
equipped with three propulsive devices: In the bow there is a small two-bladed
RPM-controlled tunnel-thruster capable to produce a sway force, and at the stern
there are two RPM-controlled main propellers with rudders. See Appendix E.2.2
for a complete description of the low speed model and thruster/rudder models for
CS2.

7.4.1 Output Feedback Control

The observer presented in Section 4.3 was implemented using position and heading
measurements only. Together with the PID-like controller

ξ̇ = η̂ − ηd
τ̂ = −KiRT (ψ)ξ +KpRT (ψ) (η̂ − ηd)

+Kd (ν̂ − νd) +Dνd +Mν̇d

(7.52)

asymptotic stability of the closed loop was guaranteed by Theorem 5.4.
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7.4.2 Experiment Description

The main objective of the experiments was to compare the energy consumption
with and without the active use of rudders during a positioning operation: Move
30 cm sideways while maintaining a fixed heading. This operation is particularly
energy consuming when the rudders are not to be used because the ship is unable
to produce lateral forces in the stern.

0 0.1 0.2 0.3
-0.1

0.1

East [m]

N
or

th
 [m

]

t=0 
t=10 

t=15 

t=40 
t=65 

0

Figure 7.10: Operation overview.

In order to emphasize the differences, at t = 2 the desired position changed from
ηd = [0, 0, 0]T to ηd = [0, 0.30, 0]T in a step-response fashion, see Figure 7.10.
In full-scale 30 cm corresponds to approximately 20 meters. The observer’s low
frequency estimate is the smooth mean of the measured position.

The applied step in desired position ηd suggested that the integral action should be
turned off,Ki = 0. Otherwise, the integrator would build up uncorrectly resulting
in a large overshoot. Furthermore, the proportional and derivative gains had to
be small enough to avoid magnitude saturation of the thrusters. The remaining
two gain matrices were selected as

Kp = diag(0.5, 0.8, 0.5) (7.53)

Kd = diag(8, 6, 1) (7.54)

Inwards rudder deflection was allowed. Consequently, the port propeller/rudder
pair was allowed to have a lateral component pointing port while the starboard
propeller/rudder had a component pointing in the starboard direction. Two so-
lutions were calculated at each sample. In the first one, u1, the port rudder was
allowed to be used while the starboard rudder was fixed at zero degrees, and in
the second one, u2, the starboard rudder was deflected and the port rudder set at
zero degrees. Finally, we selected the solution with minimum 2-norm, that is |ui|
for i = 1, 2.

The feasible sector was varied in four steps from zero to a maximum of 32 degrees,
more specifically

αmax =
£
0 10 20 32

¤T
[deg] (7.55)
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Figure 7.11: Propeller shaft speeds ωi for feasible sector widths αmax = 0 (dashed),
αmax = 10 (dash-dotted), αmax = 20 (dotted) and αmax = 32 deg (solid).

In order to attenuate rudder chattering around zero, the following ro was used for
both main propellers

ro =
£
1.5 0

¤T
[mN] (7.56)

Figure 7.11 shows the applied propeller revolution speed for all four test runs.
The dashed lines denote αmax = 0, the dash-dotted lines αmax = 10, the dotted
lines αmax = 20, and the solid lines represent αmax = 32 degrees. Figure 7.12 is
a close-up of Figure 7.11. The applied rudder angles are plotted in Figure 7.13.
Notice that since the rudders were deflected inwards, the port rudder is always
negative while the starboard rudder is always positive.

Absorbed hydrodynamic power is proportional to the cube of the shaft speed. We
assumed that the efficiency factor was constant so that applied electrical power
was proportional to hydrodynamic power. Figure 7.14 show normalized power,
in fractions of the maximum equal to 1, for all four test runs. Thus, we may
compare individual runs without having an exact power model available. The
main propellers’ energy consumption defined as the integral of normalized power
is reproduced in Figure 7.15, and the normalized power and energy consumption
for the bow thruster is plotted in Figure 7.16.

7.4.3 Comments

The responses in terms of tracking the desired position were very similar for all
four test runs, and consequently the applied thrust forces τ c were almost indistin-
guishable. Time series plots of the positions and thrust forces are not shown.
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Figure 7.12: Propeller shaft speeds ωi during the first 15 seconds of operation.
αmax = 0 (dashed), αmax = 10 (dash-dotted), αmax = 20 (dotted), αmax = 32 deg
(solid).

When the force allocation algorithm is allowed to use the rudders to generate
sway forces in the stern, the power and energy consumption for all three propellers
decrease significantly. For αmax = 32 degrees, the peak in required power for the
main propellers is being reduced to only 15% of that required for αmax = 0. The
peak of the bow thruster’s power consumption is reduced by around 50%. When
the ship approaches its new position, the differences are less pronounced.

The rudder anti-chattering option, this is a non-zero ro, works satisfactorily. If
this functionality is turned off, the rudder angle set-points would switch between
zero and maximum rudder deflection. Measurement noise residues in τ c spuriously
creates an impression of oscillatory rudder behavior (Figure 7.13).

7.5 Concluding Remarks

We have introduced a force allocation algorithm for a sector-restricted thrust de-
vice such as a propeller-rudder pair. Handling sector constraints is non-trivial,
because the optimization problem is no longer convex and local minima exist.
The proposed force allocation method is a three-step algorithm that avoids rud-
der chattering and ensures a continuous mapping between the commanded thrust
force and the extended thrust.

Experiments with a model ship confirmed that using rudders actively has a great
potential in terms of improving energy efficiency.
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Figure 7.13: Rudder angles. αmax = 0 (dashed), αmax = 10 (dash-dotted), αmax =
20 (dotted), αmax = 32 deg (solid).
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Figure 7.14: Normalized power consumption for the main propellers. αmax = 0
(dashed), αmax = 10 (dash-dotted), αmax = 20 (dotted), αmax = 32 deg (solid).
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Figure 7.15: Consumed energy for the main propellers, given as integrated nor-
malized power. αmax = 0 (dashed), αmax = 10 (dash-dotted), αmax = 20 (dotted),
αmax = 32 deg (solid).
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Figure 7.16: Normalized power and energy consumption of the bow thruster.
αmax = 0 (dashed), αmax = 10 (dash-dotted), αmax = 20 (dotted), αmax = 32
deg (solid).
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Appendix A

Notation and Mathematical
Results

This appendix is dedicated to establishing the notation used and various definitons,
lemmas and theorems needed and referred to throughout the text.

A.1 Notation

For vectors v ∈ Rn its Euclidean norm will be denoted |v|. For matricesA ∈ Rm×n
we use kAk = sup|x|=1 |Ax| = [λmax(ATA)]1/2. A square matrix A ∈ Rn×n is
said to be Hurwitz if its eigenvalues are in the open left-half plane, Re(λi(A)) < 0
where λi(A) is the i-th eigenvalue of A. For a square, symmetric matrix A =
AT ∈ Rn×n, λmin(A) = mini λi(A) and λmax(A) = maxi λi(A).

Let Lp be the set of all piecewise continuous functions u : [0,∞) → Rn being
p-integrable on [0,∞), that is R∞

0
|u(t)|p <∞. The norm on Lp is

ku(t)kp =
µZ ∞

0

|u(t)|p
¶ 1

p

(A.1)

and in the limit ku(t)k∞ = supt≥0 |u(t)|.
A dynamic system Σ described by

Σ :
ẋ = f(x,u)
y = h(x,u)

(A.2)

exited by an external input u and with output y is represented by the operator
Hyu. The L2-induced norm kHyuk2 is the ratio between the energy content of the
system’s output and input signals and is defined as

kHyuk2 = sup
0<kuk2<∞

kyk2
kuk2

(A.3)
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The induced L2-L∞-norm, the ”energy to peak” norm, is

kHyuk2∞ = sup
0<kuk2<∞

kyk∞
kuk2

(A.4)

If Σ is a linear system

ẋ = Ax+Bu (A.5)

y = Cx+Du (A.6)

we letHyu(s) describe the transfer matrixHyu(s) = C(sI−A)−1B+D. Then, the
L2-induced norm kHyuk2 is equivalent to the H∞-norm of Hyu(s), see Corollary
A.2.

Let y be a sequence of N entries, hence y ∈ RN . The empirical mean ȳ and
standard deviation sy are defined as

ȳ =
1

N

NX
k=1

yk (A.7)

sy =

Ã
1

N − 1
NX
k=1

(yk − ȳ)2
!1

2

(A.8)

and the RMS-gain of y is defined as

kykRMS =

Ã
1

N

NX
k=1

|yk|2
! 1

2

(A.9)

A.2 Lyapunov Stability

A continuous function α : R≥0 → R≥0 is said to be of class K (α ∈ K) if it is
strictly increasing and α(0) = 0. If in addition α(s)→∞ as s→∞ then α ∈ K∞.
Consider the time-varying nonlinear system

ẋ = f(t,x) + g(t,x)w (A.10)

where x ∈ Rn is the state and w : R≥0 → Rq is a disturbance. The standard Lya-
punov theorem on uniform global asymptotic stability (UGAS) and uniform global
exponential stability (UGES) for the nominal system ẋ = f(t,x) is characterized
by the following theorem (Khalil 1996).

Theorem A.1 Let x = 0 be an equilibrium point of the unperturbed (w = 0)
system (A.10). Suppose there exists a continuously differentiable function V :
R≥0×Rn → R≥0 and class K∞ functions α1,α2,α3 such that ∀ t ≥ 0, x ∈ Rn the
following holds

a1(|x|) ≤ V (t,x) ≤ α2(|x|) (A.11)
∂V

∂t
+

∂V

∂x
f(t,x) ≤ −α3(|x|) (A.12)
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Then x = 0 is UGAS. If α1(|·|) = c1|·|p, α2(|·|) = c2|·|p and α3(|·|) = c3|·|p for
some positive c1, c2, c3 and p, then x = 0 is UGES.

In proving stability of the proposed observer-feedback system we shall employ a
slightly modified version of Theorem 3 from Panteley and Loria (1998).

Theorem A.2 Consider the cascaded system

Σ1 : ẋ1 = f1 (t,x1) + g (t,x) (A.13)

Σ1 : ẋ2 = f2 (t,x2) (A.14)

where g (t, x) = 0 whenever x2 = 0 and the origin x1 = 0 of ẋ1 = f1(t,x1) is
UGAS. If the origin x2 = 0 of (A.14) is UGAS and the assumptions A1 and A2
below are satisfied, then the cascaded system (A.13)-(A.14) is UGAS.

A1 The function g (t,x) satisfies the following bound

|g (t,x)| ≤ θ1 (|x2|) + θ2 (|x2|) |x1| (A.15)

where θi : R≥0 → R≥0 for i = 1, 2 are continuous and θi(0) = 0.

A2 The nominal part of Σ1, ẋ1 = f1 (t,x1), is UGAS with a Lyapunov function
V (t,x1) satisfying the following: There exist functions α1,α2,α3 ∈ K∞ and
an α4 ∈ K such that

α1 (|x1|) ≤ V (t,x1) ≤ α2 (|x1|) (A.16)
∂V

∂t
+

∂V

∂x1
f1 (t,x1) ≤ −α3 (|x1|) (A.17)¯̄̄̄

∂V

∂x1

¯̄̄̄
≤ α4 (|x1|) (A.18)

where α4 (|x1|) is such that there exist constants b∗, k∗ > 0 and κ ≥ 0
satisfying

α4 (|x1|) |x1| ≤ b∗α1 (|x1|) ∀ |x1| ≥ κ (A.19)

k∗α4 (|x1|) |x1| ≤ α3 (|x1|) ∀x1 ∈ Rn (A.20)

Remark A.1 The formulation of Theorem A.2 differs from Theorem 3 in Pan-
teley and Loria (1998) in two ways. First, in Panteley and Loria (1998) the
authors used g(t,x)x2 instead of the more general form g(t,x) to point out its
x2-dependency. Secondly, inspired by Janković et al. (1996) we have used the
growth condition (A.15) instead of |g (t,x)| ≤ θ (|x2|) |x1|. These modifications
are straightforward, however, in the sense that they do not interfere with the orig-
inal result.
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A.3 Dissipativity

The definitions and theorems in this section is taken from Boyd et al. (1994) and
Scherer and Weiland (2000).

Consider a continuous, time-invariant dynamical system Σ described by (A.2)
where x takes on values in a state-space X ⊂ Rn, u is the input u ∈ U⊂ Rm and
y the output y ∈ Y⊂ Rp. Let x(t0) = x(0) be the initial state and assume that
the state x and output y are uniquely defined for all t ≥ t0 and that they depend
on u in a causal way. The system Σ generates outputs y from the inputs u and
the initial condition x(t0). Let

s : U×Y→ R (A.21)

be a mapping that is locally integrable in t. The mapping s will be referred to as
the supply function or the supply rate.

Definition A.1 (Dissipativity) The system Σ with supply rate s is said to be
dissipative if there exists a non-negative function V : X→ R such that

V (x(t0)) +

Z t1

t0

s(u(t),y(t))dt ≥ V (x(t1)) (A.22)

for all t0 ≤ t1 and all trajectories (u,x,y) which satisfy (A.2).

Definition A.2 (Passivity) A system Σ that is dissipative with respect to the
supply rate s = uTy+ yTu is said to be passive.

A.3.1 Linear Dissipative Systems with Quadratic Supply
Rates

Consider a linear system on compact form·
ẋ
y

¸
=

·
A B
C D

¸ ·
x
u

¸
(A.23)

with state space X ∈ Rn, input space U ∈ Rm and output space Y ∈ Rp. The
general quadratic supply function s : U×Y→ R is defined by

s(u,y) =

·
y
u

¸T
Q

·
y
u

¸
(A.24)

where

Q =

·
Qyy Qyu

QT
yu Quu

¸
(A.25)

is symmetric.

Theorem A.3 Suppose the system (A.23) is controllable and let the supply rate
s be defined by (A.24). Then, the following statements are equivalent:
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1. (Σ, s) is dissipative.

2. (Σ, s) admits a quadratic storage function V (x) = xTPx with P = PT ≥ 0.
3. There exists a P = PT ≥ 0 such that

F = −
·
PA+ATP PB
BTP 0

¸
+

·
C D
0 I

¸T ·
Qyy Qyu

QT
yu Quu

¸ ·
C D
0 I

¸
≥ 0

(A.26)

4. For all ω ∈ R with det(jωI−A) 6= 0, the transfer function H(jω) = C(jωI−
A)−1B+D satisfies·

H(jω)
I

¸∗ ·
Qyy Qyu
QT
yu Quu

¸·
H(jω)
I

¸
≥ 0 (A.27)

Moreover, if one of the above statements holds, then V (x) = xTPx is a quadratic
storage function if and only if P ≥ 0 and F(P) ≥ 0

We are primarily interested in ”passive” systems, and for those systems the supply
rate is defined to be s = yTu+ uTy, thus

Q =

·
Qyy Qyu

QTyu Quu

¸
=

·
0 I
I 0

¸
(A.28)

and applying the previous theorem to this type of systems yields the celebrated
”positive real lemma” or the ”Kalman-Yakubovich-Popov lemma”.

Corollary A.1 (Kalman-Yakubovich-Popov) Suppose Σ described by (A.23)
is controllable and has transfer function H(jω) = C(jωI −A)−1B + D and let
s = yTu+ uTy be a supply rate. The following statements are equivalent:

1. (Σ, s) is passive.

2. The system of linear matrix inequalities

P = PT ≥ 0 (A.29)·
PA+ATP PB−CT
BTP−C −D−DT

¸
≤ 0 (A.30)

is feasable.

3. For all ω ∈ R with det(jωI−A) 6= 0, H(jω) +H(jω)∗ ≥ 0.

Moreover, V (x) = xTPx is a quadratic storage function if and only if P satisfies
the above system of LMIs.

Remark 3 It is also worth noting that for strictly proper systems, D = 0, the
cross-term −PB+CT has got to be zero, i.e.

PB = CT (A.31)
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Corollary A.2 (Bounded Real) Suppose Σ described by (A.23) is controllable
and has transfer function H(jω) = C(jωI−A)−1B+D and let s = γ2uTu−yTy
be its supply rate. Then the following statements are equivalent:

1. (Σ, s) is dissipassive.

2. The system of linear matrix inequalities

P = PT ≥ 0 (A.32)·
PA+ATP+CTC PB+CTD
BTP+DTC DTD− γ2I

¸
≤ 0 (A.33)

is feasable.

3. For all u ∈ L2
sup
u∈L2

kyk2
kuk2

< γ (A.34)

4. The H∞-norm of H(ω) is bounded by γ

kHk∞ = sup
ω∈R

σmax(H(ω)) < γ (A.35)

5. For all ω ∈ R with det(jωI−A) 6= 0, H(jω)∗H(jω) ≤ γ2I.

Moreover, V (x) = xTPx is a quadratic storage function if and only if P satisfies
the above system of LMIs.



Appendix B

Detailed Proofs

B.1 Proof of Theorem 5.4

The proof is outlined as follows: First we show that under observer-feedback the
resulting closed loop system can be written on a cascaded form where Σ1 is the
state-feedback system perturbed by the observer-error dynamics Σ2. From The-
orem 5.1 we already have an LFC for the nominal Σ1, and consequently if the
perturbation g(t,x) satisfies the bounds given by Theorem A.2, the proof will be
complete.

Part 1:

To repeat, the proposed observer-feedback controller for (5.14)-(5.15) was given
by (5.71)-(5.72):

ξ̇ = η̂e
ȧf = Afaf +BfΠˆ̇νe
τ̂ = −KiRT (ψ̂)ξ −KpRT (ψ̂)η̂e −Kdν̂e −Kaaf + τ̂ rff

where

τ̂ rff =DLR
T (ψ̂e)νd +M

³
(r̂ − rd)STRT (ψ̂e)νd +RT (ψ̂e)ν̇d

´
The rotations involved are rewritten as

RT (ψ̂) = RT (ψ − ψ̃) =RT (ψ) +RT (ψ)
³
R(ψ̃)− I

´
(B.1)

RT (ψ̂e) = RT (ψ − ψ̃ − ψd) =R
T (ψe) +R

T (ψe)
³
R(ψ̃)− I

´
(B.2)

We are now ready to study the error variables η̂e, ν̂e, and ˆ̇νe further. The ob-
jective is to rewrite each one as the errors between the actual state and reference
trajectory, the very same error variables used in the original state-feedback con-
troller. To save space, subscripts denote function arguments for the rotations, that
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is Ra
4
= R(a). For position we get

η̂e = η̂ − ηd = η − η̃ − ηd = ηe − η̃ (B.3)

and for the velocity deviation

ν̂e = ν̂ −RT
ψ̂e
νd

= νe − ν̃ −RT
ψe

³
Rψ̃ − I

´
νd (B.4)

and finally for the acceleration we get

ˆ̇νe = ˆ̇ν −
³
r̂eS

TRT
ψ̂e
νd +R

T
ψ̂e
ν̇d
´

= ν̇ − ˜̇ν −
³
(r − rd − r̃)ST

³
RT
ψe
+RT

ψe
(Rψ̃ − I)

´
νd
´

−
³
RTψe +R

T
ψe
(Rψ̃ − I)

´
ν̇d

= ν̇ −
³
reS

TRT
ψe
νd +R

T
ψe
ν̇d
´

| {z }
ν̇e

− ˜̇ν

−
³
reS

TRT
ψe
(Rψ̃ − I)νd − r̃STRT

ψe
Rψ̃νd +R

T
ψe
(Rψ̃ − I)ν̇d

´
(B.5)

Consequently, for the feedback part τ̂ fb of τ̂ = τ̂ fb+τ̂ rff we get

τ̂ fb = −KiR
T
ψ̂
ξ −KpR

T
ψ̂
η̂e −Kdν̃e −Kaaf

= −Ki

³
RTψ +R

T
ψ(Rψ̃ − I)

´
ξ −Kp

³
RT
ψ +R

T
ψ(Rψ̃ − I)

´
(ηe − η̃)

−Kd

³
νe − ν̃ −RTψe(Rψ̃ − I)νd

´
−Kaaf

= −KiR
T
ψξ −KpR

T
ψηe −Kdνe −Kaaf

−KiR
T
ψ(Rψ̃ − I)ξ −KpR

T
ψ(Rψ̃ − I)ηe +Kp

³
RT
ψ +R

T
ψ(Rψ̃ − I)

´
η̃

+Kd

³
ν̃ +RT

ψe
(Rψ̃ − I)νd

´
= τ fb −KiR

T
ψ(Rψ̃ − I)ξ −KpR

T
ψ(Rψ̃ − I)ηe

+KpR
T
ψRψ̃η̃ +Kd

³
ν̃ +RT

ψe
(Rψ̃ − I)νd

´
(B.6)

The reference feed-forward τ̂ rff = τ̂vff + τ̂ aff enters both τ̂ and the af -dynamics.
The velocity and acceleration parts, denoted τ̂vff and τ̂ aff respectively, are

τ̂ vff = DLR
T
ψ̂e
νd

= DLR
T
ψe
νd +DLR

T
ψe
(Rψ̃ − I)νd

= τ vff +DLR
T
ψe
(Rψ̃ − I)νd (B.7)
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τ̂ aff = M
³
(r̂ − rd)STRTψ̂eνd +R

T
ψ̂e
ν̇d
´

= M
h
reS

T
³
RT
ψe
+RTψe(Rψ̃ − I)

´
νd − r̃ST

³
RT
ψe
+RT

ψe
(Rψ̃ − I)

´
νd

+
³
RTψe +R

T
ψe
(Rψ̃ − I)

´
ν̇d

i
= M

³
reS

TRT
ψe
νd +R

T
ψe
ν̇d
´

| {z }
τ aff

+M
³
reS

TRTψe(Rψ̃ − I)νd − r̃STRTψeRψ̃νd +R
T
ψe
(Rψ̃ − I)ν̇d

´
(B.8)

and for the af -dynamics

ȧf = Afaf +BfΠˆ̇νe

= Afaf +BfΠ
³
ν̇e − ˜̇ν −

h
reS

TRT
ψe
(Rψ̃ − I)νd

−r̃STRT
ψe
Rψ̃νd +R

T
ψe
(Rψ̃ − I)ν̇d

i´
= Afaf +BfΠν̇e (B.9)

−BfΠ
³
˜̇ν +

h
reS

TRTψe(Rψ̃ − I)νd − r̃STRTψeRψ̃νd +R
T
ψe
(Rψ̃ − I)ν̇d

i´

Summing it all up, the applied output feedback controller can be expressed as:

ξ̇ = ηe − η̃
ȧf = Afaf +BfΠν̇e

−BfΠ
³
˜̇ν + reS

TRTψe(Rψ̃ − I)νd − r̃STRTψeRψ̃νd +R
T
ψe
(Rψ̃ − I)ν̇d

´
τ̂ = τ −KiR

T
ψ(Rψ̃ − I)ξ −KpR

T
ψ(Rψ̃ − I)ηe +KpR

T
ψRψ̃η̃ +Kdν̃

+(DL +Kd)R
T
ψe
(Rψ̃ − I)νd

+M
³
reS

TRTψe(Rψ̃ − I)νd − r̃STRTψeRψ̃νd +R
T
ψe
(Rψ̃ − I)ν̇d

´
(B.10)

The errors made by introducing observer estimates in our dynamic feedback con-
troller can thus be seen as a perturbation connecting the vessel dynamics controlled
by state-feedback with the observer errors. More specifically,

ẋe = T
T (ψ)AcT(ψ)xe +Ew+ g(xe,xo,ηd,νd, ν̇d) (B.11)

where T(ψ) is defined in (5.48) and Ac is given by (5.50). The perturbation reads

g(xe, x̃o,ηd,νd, ν̇d) =
£
gT1 0 gT3 gT4

¤T
(B.12)



136 Detailed Proofs

where again the individual terms are

g1 = −η̃ (B.13)

g3 = −M−1
h
KiR

T
ψ(Rψ̃ − I)ξ +KpR

T
ψ(Rψ̃ − I)ηe −KpR

T
ψRψ̃η̃ −Kdν̃

i
+M−1 (DL +Kd)R

T
ψe
(Rψ̃ − I)νd

+reS
TRT

ψe
(Rψ̃ − I)νd − r̃STRTψeRψ̃νd +R

T
ψe
(Rψ̃ − I)ν̇d (B.14)

g4 = −BfΠ
³
˜̇ν + reS

TRT
ψe
(Rψ̃ − I)νd − r̃STRT

ψe
Rψ̃νd

´
−BfΠRT

ψe
(Rψ̃ − I)ν̇d (B.15)

Let w = 0, and use the transformation z = T(ψ)xe. Then the output-feedback
system can be regarded as the cascade

Σ1 : ż =
³
Ac + ṪT

T
´
z+ gz(t, z, x̃o)

Σ2 : ˙̃xo = f2(t, x̃o)
(B.16)

where the Σ2-system represents the observer error-dynamics. Theorem 5.1 asserts

the existence of a quadratic LFC for ż = (Ac + ṪT
T
)z ensuring exponential

stability of the nominal system when |r(t)| ≤ rmax. It is easy to see that this
particular V = zTPz provides us with α1(s) = λmin(P)s2, α2(s) = λmax(P)s2,
α3(s) = λmin(Q)s

2 and α4(s) = 2λmax(P)s for some Q = QT > 0 such that
PAc +A

T
c P ≤ −Q.

Part 2:

From Theorem 5.1 we already know that Σ1 is exponentially stable for bounded
rmax whenever g = 0 and w = 0 by employing a quadratic LFC. Hence, if it
can be shown that the perturbation g is bounded linearly in the state vector |xe|
Theorem A.2 proves exponential stability of xe = 0.

Since the trajectory is assumed to be sufficiently smooth, there are bounds

|νd| ≤ cνd ∀t ≥ t0 (B.17)

|ν̇d| ≤ cν̇d ∀t ≥ t0 (B.18)

The observer perturbation term g is now shown to be linearly bounded in xe
and xo such that Theorem A.2 can be employed. Using mm = λmin(M), the
perturbation is bounded by

|g| ≤ |η̃|+m−1m
³
2 kKik |ψ̃| |ξ|+ 2 kKpk |ψ̃| |ηe|+ kKpk |η̃|+ kKdk |ν̃|

´
+2m−1m kDL +Kdk |ψ̃| |νd|+ 2 |re| |ψ̃| |νd|+ |r̃| |νd|+ 2|ψ̃| |ν̇d|
+ kBfΠk

³¯̄̄
˜̇ν
¯̄̄
+ 2 |re| |ψ̃| |νd|+ |r̃| |νd|+ 2|ψ̃| |ν̇d|

´
≤

³
2m−1m (kKik+ kKpk) |ψ̃|+ 2|ψ̃| |νd|+ 2 kBfΠk |ψ̃| |νd|

´
|xe|

+
¡
1 +m−1m (kKpk+ kKdk+ 2 kDL +Kdk cνd)

¢ |x̃o|
+(cν + 2cν̇d + kBfΠk (1 + cνd + 2cν̇d)) |x̃o|

≤ θ1(|x̃o|) + θ2(|x̃o|) |xe| (B.19)
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where θi : R≥0 → R≥0, i = 1, 2, are linear functions

θ1(s) =
©
1 +m−1m (kKpk+ kKdk+ 2 kDL +Kdk cνd)
+ kBfΠk (1 + cνd + 2cν̇d) + cν + 2cν̇d} s (B.20)

θ2(s) = 2
¡
m−1m (kKik+ kKpk) + cνd + kBfΠk cνd

¢
s (B.21)

satisfying the continuity requirement. This completes the proof.

B.2 Proof of Theorem 5.5

First, backstepping will be applied in two consecutive steps. This provides a
coordinate transformation into the z-error variables, a control law parameterized
in z, and a diagonal, quadratic Lyapunov function also in z. Finally, the control
law will be rewritten in terms of ξ, e, and νe.

B.2.1 Backstepping

Step 1: Define the first error variable as

z1 =

·
ξ
e

¸
(B.22)

We can write the time derivative of z1 as follows

ż1 =

· −Λ CT11R(ψd)

0 −ψ̇dS
¸
z1 +

·
0 0
0 R(ψe)

¸ ·
0
I

¸
ν −

·
0
I

¸
νd (B.23)

or more compactly
ż1 = A1(ψd, ψ̇d)z1 +R0(ψe)Π

Tνe (B.24)

with R0(ψe) = Diag(0,R(ψe)) and

A1(ψ̇d) =

· −Λ CT11R(ψd)

0 −ψ̇dS
¸

, Π =
£
0 I

¤
(B.25)

Using νe as the virtual control, the desired control that avoids unnecessary can-
cellation of skew-symmetric terms is

α1 = −RT (ψe)∆
−1
2 R

T (ψd)C11∆1ξ −C12RT (ψe)e (B.26)

= −C1(ψ,ψd)z1 (B.27)

where

C1(ψ,ψd) =
£
RT (ψe)∆

−1
2 R

T (ψd)C11∆1 C12RT (ψe)
¤

(B.28)

such that the error-variable z2 = νe −α1 becomes
z2 = νe +C1(ψ,ψd)z1 (B.29)
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The z1-dynamics can be written as

ż1 =
³
S1(ψ̇d) +A1(ψ,ψd)

´
z1 +R0(ψe)Π

Tz2 (B.30)

where

S1(ψd, ψ̇d) =

·
0 CT11R(ψd)

−∆−12 RT (ψd)C11∆1 −ψ̇dS
¸

(B.31)

A1(ψ,ψd) =

· −Λ 0
0 −R(ψe)C12RT (ψe)

¸
(B.32)

Observe that the dimension of z2 is lower than the dimension of z1 due to the
augmented integrator ξ.

A1 Assume ∆2 =∆
T
2 > 0 commutes with R(α). Then,

∆2R(ψe)∆
−1
2 RT (ψe) = I (B.33)

ST∆2 +∆2S = 0 (B.34)

Employ the Lyapunov function V1 = 1
2ξ
T∆1ξ+

1
2e
T∆2e =

1
2z
T
1P1z1 where P1 =

Diag(∆1,∆2). Its time derivative V̇1 is

V̇1 = żT1P1z1 + z1P1ż1

= zT1
¡
P1A1 +A

T
1P1

¢
z1 + 2z

T
1P1R0(ψe)Π

T z2 (B.35)

because by assumption∆2 commutes withR such thatP1S1+ST1P1 = 0. Written
out,

P1S1 + S
T
1P1 =

·
0 0

0 −ψ̇d
¡
∆2S+ S

T∆2

¢ ¸ = 0 (B.36)

Consequently,

V̇1 = −zT1R1(ψe)Q1RT1 (ψe)z1 + zT2ΠRT
0 (ψe)P1z1 + z

T
1P1R0(ψe)Π

T z2 (B.37)

where

Q1 =

· −∆1Λ−ΛT∆1 0
0 ∆2C12 +C

T
12∆2

¸
(B.38)

can be rendered positive definite by proper selections of∆1 and∆2 whenever −Λ
is Hurwitz and C12 is positive. The conditions supplied by Theorem 5.5 ensure
that Q1 is positive definite.

The commutation assumption on ∆2 implies that C1 can be written as

C1(ψ,ψd) =
£
∆−12 R

T (ψ)C11∆1 C12RT (ψe)
¤

(B.39)

Step 2: The objective here is as follows: Do not cancel well-behaving terms
such as Coriolis and dissipative terms (damping) while deriving an exponentially
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stabilizing controller τ . This motivates using some kind of energy-based Lyapunov
function

V2 = V1 +
1

2
zT2Mz2 (B.40)

and consequently, the sought z2-dynamics should read

ż2 = −M−1ΠRT
0 (ψe)P1z1 −M−1 (C(ν) +D(ν) +C2) z2

= −M−1∆2R
T (ψe)e−M−1 (C(ν) +D(ν) +C2) z2 (B.41)

because the derivative of V2 along the trajectories of (z1, z2) becomes

V̇2 = V̇1 + z
T
2Mż2 + ż

T
2Mz2

= −zT1R1(ψe)Q1R
T
1 (ψe)z1 + z

T
2ΠR

T
0 (ψe)P1z1 + z

T
1P1R0(ψe)Π

Tz2

−zT2
³
M−1ΠRT

0 (ψe)P1z1 +M
−1 (C(ν) +D(ν) +C2) z2

´
−zT2

¡
CT (ν) +DT (ν) +CT2

¢
z2 − zT1

¡
P1R0(ψe)Π

T
¢
z2

= −zT1R1(ψe)Q1R
T
1 (ψe)z1 − zT2

¡
D(ν) +DT (ν) +C2 +C

T
2

¢
z2 (B.42)

< 0 ∀z1, z2 6= 0 (B.43)

The actual z2-dynamics is

ż2 = ν̇ − d

dt

¡
RT (ψe)νd

¢
| {z }

ν̇e

+ Ċ1(ψ,ψd)z1 +C1(ψ,ψd)ż1

= M−1 (τ − (C(ν) +D(ν))ν) + d

dt

¡
C1(ψ,ψd)z1 −RT (ψe)νd

¢
(B.44)

which means that in order to obtain the desired z2-dynamics, we should apply the
following thrust τ

τ = (C(ν) +D(ν))α1 −∆2R
T (ψe)e−C2z2

−M d

dt
(C1(ψ,ψd)z1) + τ rff (B.45)

τ rff = (C(ν) +D(ν))RT (ψe)νd +M
d

dt

¡
RT (ψe)νd

¢
(B.46)

because by the definition of z2

α1 +R
T (ψe)νd − ν = α1 − νe = −z2 (B.47)

and this means that cancellation of the nonlinear C(ν) +D(ν) has been avoided
by using z1 and τ rff .

Summary Closed Loop

The resulting closed loop can now rewritten as z =
£
zT1 , z

T
2

¤T
ż =Ac(ν,ψ,ψd)z (B.48)



140 Detailed Proofs

where the closed loop matrix Ac(z) can be decomposed into a negative block
diagonal matrix Az(ν,ψ,ψd) and the ”skew-symmetric” Sz(ν,ψ,ψd) as defined
below

Ac(ν,ψ,ψd, ψ̇d) = Az(ν,ψ,ψd) + Sz(ν,ψ,ψd, ψ̇d) (B.49)

Az(·) =

 −Λ 0 0
0 −RψeC12R

T
ψe

0

0 0 −M−1 (D(ν) +C2)

 (B.50)

Sz(·) =

 0 CT11Rψd 0

−∆−12 RTψdC11∆1 −ψ̇dS Rψe

0 −M−1∆2R
T
ψe
−M−1C(ν)

 (B.51)

Indeed, Sz(ν,ψ,ψd) itself is not skew-symmetric, but when employing the above
constructed Lyapunov function V2 = z

TPz with P = Diag(∆1,∆2,M) it is easy
to verify that PSz + STzP = 0 and V̇2 < 0 for all z 6= 0.

B.2.2 Rewriting (B.45)

We now study each individual term in (B.45). In the forthcoming it will be used
that C11∆1 and C11∆1Λ ”commute” with R, more specifically

R(ψ)C11∆1 = C11∆1RC11(ψ) (B.52)

R(ψ)C11∆1Λ = C11∆1ΛRC11(ψ) (B.53)

where
RC11(ψ) = C

T
11R(ψ)C11 (B.54)

Denote N(ν) = C(ν) +D(ν). Hence,

N(ν)α1 = −N(ν)C1(ψ,ψd)z1
= −N(ν) ¡∆−12 RT (ψ)C11∆1ξ +C12R

T (ψe)e
¢

= −N(ν) ¡∆−12 C11∆1R
T
C11
(ψ)ξ +C12R

T (ψe)e
¢

(B.55)

C2z2 = C2
¡
νe +∆

−1
2 C11∆1R

T
C11
(ψ)ξ +C12R

T (ψe)e
¢

(B.56)

Ċ1z1 =
£
ψ̇∆−12 S

TRT (ψ)C11∆1 C12ψ̇eS
TRT (ψe)

¤
z1

= ψ̇∆−12 S
TC11∆1R

T
C11
(ψ)ξ +C12ψ̇eS

TRT (ψe)e (B.57)

C1ż1 =
¡−∆−12 RT (ψ)C11∆1Λ−C12RT (ψe)∆−12 RT (ψd)C11∆1 ξ

+C12∆
−1
2 R

T (ψ)C11∆1

¢
ξ

+
¡
∆−12 R

T (ψ)C11∆1C
T
11R(ψd) +C12C12R

T (ψe) e

−C12
³
ψ̇dR

T (ψe)S+C12R
T (ψe)

´´
e

+C12νe

= −∆−12 C11∆1ΛRC11(ψ)ξ +C12νe

+
³
∆−12 R

T (ψ)C11∆1C
T
11R(ψ)− ψ̇dC12S

´
RT (ψe)e (B.58)
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Collecting terms we get

τ = − ¡N(ν)∆−12 C11∆1 +C2∆
−1
2 C11∆1 −M∆−12 C11∆1Λ

+ψ̇M∆−12 S
TC11∆1

´
RC11(ψ)ξ

− ¡N(ν)C12 +C2C12 +∆2 +M∆
−1
2 R

T (ψ)C11∆1C
T
11R(ψ)

+ψ̇MC12S
T
´
RT (ψe)e

− (C2 +MC12)νe + τ rff (B.59)

Thus, the control τ may be rewritten as a PID-controller with nonlinear (velocity
dependent) integral and proportional gains.

τ = −Ki(ν)R
T (ψ)C11ξ −Kp(ν)R

T (ψe)e−Kdνe + τ rff (B.60)

Here,

Ki(ν) =
³
N(ν) +C2 + rMS

T
´
∆−12 C11∆1C

T
11

−M∆−12 C11∆1ΛC
T
11 (B.61)

Kp(ν) = ∆2 + (N(ν) +C2)C12 + rMC12S
T

+M∆−12 R
T (ψ)C11∆1C

T
11R(ψ) (B.62)

Kd = C2 +MC12 (B.63)

and these are the gains stated in the theorem.

B.3 Proof of Theorem 5.6

This proof is very similar to the one given in Appendix B.1, and it too consists of
two parts: First it will be shown that output feedback is equal to state feedback
plus some perturbation term. The second part confirms that this perturbation is
bounded linearly in the actual states as long as ψ̃ = 0.

Part 1:

The control actually applied is

ξ̇ = −Λξ +CT11R(ψd)e−CT11η̃
τ̂ = − (Gi +N(ν̂)Xi1 + r̂Xi1)R

T (ψ̂)ξ

− (Gp +N(ν̂)C12 + r̂Xp)R
T (ψ̂e)ê−Kdν̂e + τ̂ rff

(B.64)

where

−GiR
T (ψ̂)ξ = −GiR

T (ψ)ξ +GiR
T (ψ)

³
I−R(ψ̃)

´
ξ (B.65)

−GpR
T (ψ̂e)ê = −GpR

T (ψe)e+GpR
T (ψe)

³
I−R(ψ̃)

´
e (B.66)

+GpR
T (ψ)R(ψ̃)η̃ (B.67)
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Let us first study the nonlinear terms in τ̂ . Then, for the integral contribution in
τ̂ we have

N(ν̂)Xi1R
T (ψ̂)ξ = (N(ν) +Nerr(ν, ν̃))Xi1R

T (ψ)
³
I+

³
R(ψ̃)− I

´´
ξ

= N(ν)Xi1R
T (ψ)ξ

+Nerr(ν, ν̃)Xi1R
T (ψ)R(ψ̃)ξ

+N(ν)Xi1R
T (ψ)

³
R(ψ̃)− I

´
ξ (B.68)

and

r̂Xi1R
T (ψ̂)ξ = (r − r̃)Xi2R

T (ψ)
³
I+

³
R(ψ̃)− I

´´
ξ

= rXi2R
T (ψ)ξ

−r̃Xi2R
T (ψ)R(ψ̃)ξ

+rXi2R
T (ψ)

³
R(ψ̃)− I

´
ξ (B.69)

For the P -term we get

N(ν̂)C12R
T (ψ̂e)ê = (N(ν) +Nerr(ν, ν̃))C12R

T (ψe)
³
I+

³
R(ψ̃)− I

´´
e

− (N(ν) +Nerr(ν, ν̃))C12R
T(ψ̂)η̃

= N(ν)C12R
T (ψe)e

+Nerr(ν, ν̃)C12R
T (ψe)R(ψ̃)e

−N(ν)C12RT(ψ̂)η̃ −Nerr(ν, ν̃)C12R
T(ψ̂)η̃

+N(ν)C12R
T (ψe)

³
R(ψ̃)− I

´
e (B.70)

and

r̂XpR
T (ψ̂e)ê = rXpR

T (ψe)e

−r̃XpR
T (ψe)R(ψ̃)e

−rXpR
T (ψ̂)η̃ + r̃XpR

T (ψ̂)η̃

+rXpR
T (ψe)

³
R(ψ̃)− I

´
e (B.71)

Observe that the first term in and every of (B.68)-(B.71) is identical to state-
feedback such that the remaining ones are the perturbations introduced using
observer estimates. Each of the last terms in all of these perturbations are not
linearly bounded in the system variables. They may be small for bounded ψ̃,
though, and they vanish completely when ψ̃ = 0.
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The reference feed-forward τ̂ rff contributes with

τ̂ rff = N(ν̂)RT
ψ̂e
νd +M

³
(r̂ − rd)STRTψ̂eνd +R

T
ψ̂e
ν̇d
´

= N(ν)RTψeνd +M
³
reS

TRT
ψe
νd +R

T
ψe
ν̇d
´

+N(ν)RT
ψe

³
Rψ̃ − I

´
νd +Nerr(ν, ν̃)R

T
ψe
Rψ̃νd

+M
³
reS

TRT
ψe
(Rψ̃ − I)νd − r̃STRT

ψe
Rψ̃νd +R

T
ψe
(Rψ̃ − I)ν̇d (́B.72)

and thus poses no threat to the stability since νd is presumed bounded.

Consequently,

τ̂ = − (Gi +N(ν)Xi1 + rXi2)R
T
ψξ− (Nerr(ν, ν̃)Xi1 − r̃Xi2)R

T
ψRψ̃ξ

+(Gi +N(ν)Xi1 + rXi2)R
T
ψ

³
I−Rψ̃

´
ξ

− (Gp +N(ν)C12 + rXp)R
T
ψe
e− (Nerr(ν, ν̃)C12 − r̃Xp)R

T
ψe
Rψ̃e

+(Gp +N(ν) +Nerr(ν, ν̃) + (r − r̃)Xp)R
T
ψRψ̃η̃

+(Gp +N(ν)C12 + rXp)R
T (ψe)

³
I−Rψ̃

´
e

−Kdν̂e +Kd

³
ν̃ +RT (ψe)

³
Rψ̃ − I

´
νd
´

+N(ν)RT (ψe)νd +M
³
reS

TRTψeνd +R
T
ψe
ν̇d

´
+N(ν)RT

ψe

³
Rψ̃ − I

´
νd

+Nerr(ν, ν̃)R
T
ψe
Rψ̃νd

+M
³
reS

TRTψe(Rψ̃ − I)νd − r̃STRTψeRψ̃νd +R
T
ψe
(Rψ̃ − I)ν̇d

´
(B.73)

Recognizing the state feedback control terms and substituting those with τ yields

τ̂ = τ − (Nerr(ν, ν̃)Xi1 − r̃Xi2)R
T
ψRψ̃ξ

− (Nerr(ν, ν̃)C12 − r̃Xp)R
T
ψe
Rψ̃e

+(Gp +N(ν) +Nerr(ν, ν̃) + (r − r̃)Xp)R
T
ψRψ̃η̃

+Kdν̃

+(N(ν) +Kd)R
T
ψe

³
Rψ̃ − I

´
νd +Nerr(ν, ν̃)R

T
ψe
Rψ̃νd

+M
³
reS

TRT
ψe
(Rψ̃ − I)νd − r̃STRT

ψe
Rψ̃νd +R

T
ψe
(Rψ̃ − I)ν̇d

´
+(Gi +N(ν)Xi1 + rXi2)R

T
ψ

³
I−Rψ̃

´
ξ

+(Gp +N(ν)C12 + rXp)R
T
ψe

³
I−Rψ̃

´
e (B.74)

Part 2:

The resulting closed loop can now rewritten as the nominal state feedback system
perturbed with the observer errors

ż =Ac(ν,ψ,ψd)z+ gz(t, z, x̃o,νd, ν̇d) (B.75)
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where Ac(ν,ψ,ψd) is given by (B.49) and

gz(z,xo,ηd,νd, ν̇d) =

 g1
0

g3 + n3

 (B.76)

where the terms of gz bounded in the state variables, that is g1 and g3, are

g1 = −η̃ (B.77)

g3 = −M−1 (Nerr(ν, ν̃)Xi1 − r̃Xi2)R
T
ψRψ̃ξ

−M−1 (Nerr(ν, ν̃)C12 − r̃Xp)R
T
ψe
Rψ̃e

+M−1 (Gp +N(ν) +Nerr(ν, ν̃) + (r − r̃)Xp)R
T
ψRψ̃η̃

+M−1Kdν̃

+M−1 (N(ν) +Kd)R
T
ψe
(Rψ̃ − I)νd +M−1Nerr(ν, ν̃)R

T
ψe
Rψ̃νd

+
³
reS

TRT
ψe
(Rψ̃ − I)νd − r̃STRT

ψe
Rψ̃νd +R

T
ψe
(Rψ̃ − I)ν̇d

´
+M−1GiR

T
ψ

³
I−Rψ̃

´
ξ +GpR

T
ψe

³
I−Rψ̃

´
e

However, n3 as given by

n3 = M−1 (N(ν)Xi1 + rXi2)R
T
ψ

³
I−Rψ̃

´
ξ

+(N(ν)C12 + rXp)R
T
ψe

³
I−Rψ̃

´
e (B.78)

is not linear in the states and this ruins our hope of using Theorem A.2.

Admittedly, by imposing bounds on the velocity ν and the estimated heading
error ψ̃ it would still be possible to establish asymptotic stability by completing
the squares. This, however, contradicts the objective of obtaining UGAS under
observer feedback. Instead we assume that ψ̃ = 0 (ψ is perfectly measured).
Thus, n3 = 0 since I−R(0) = 0. It now suffices to show that g1 and g3 is linearly
bounded in the states. For completeness, terms dependent on ψ̃ in g3 will not be
cancelled.

|gz| ≤ |η̃|+m−1m
³
((derr + cM) kXi1k+ kXi2k) |ν̃|+ 2|ψ̃| kGik

´
|ξ|

+m−1m
³
((derr + cM) kC12k+ kXpk) |ν̃|+ 2 kGpk |ψ̃|

´
|e|

+m−1m (kGp +DLk+ (derr + cM + kXpk) |ν̃|+ (dM + cM + kXpk) |ν|) |η̃|
+m−1m kKdk |ν̃|
+m−1m

³
2 ((dM + cM) |ν|+ kDL +Kdk) |ψ̃|cνd + (derr + cM) cνd |ν̃|

´
+2cνd (|ν|+ cνd) |ψ̃|+ cνd |ν̃|+ 2cν̇d |ψ̃| (B.79)

From the definition of z2 we get that

|ν| ≤ |z2|+ kC1(ψ,ψd)k |z1|+ cνd (B.80)
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such that

|gz|≤ |η̃|+m−1m
³
((derr + cM) kXi1k+ kXi2k) |ν̃|+ 2|ψ̃| kGik

´
|ξ|

+m−1m
³
((derr + cM) kC12k+ kXpk) |ν̃|+ 2 kGpk |ψ̃|

´
|e|

+m−1m (kGp +DLk+ (derr + cM + kXpk) |ν̃|) |η̃|
+m−1m (dM + cM + kXpk) (|z2|+ kC1(ψ,ψd)k |z1|+ cνd) |η̃|
+m−1m (kKdk+ (derr + cM) cνd) |ν̃|
+m−1m

³
2 ((dM + cM) (|z2|+ kC1(ψ,ψd)k |z1|+ cνd) + kDL +Kdk) |ψ̃|cνd

´
+2cνd (|z2|+ kC1(ψ,ψd)k |z1|+ cνd + cνd) |ψ̃|+ cνd |ν̃|+ 2cν̇d |ψ̃| (B.81)

Collecting the terms we get

|gz| ≤ θ1(|x̃o|) + θ2(|x̃o|) |z|

where

θ1(s) = s+m−1m (kGp +DLk+ (dM + cM) (1 + 2cνd) cνd + kKdk) s
+m−1m ((1 + derr + cM + kDL +Kdk+ 4cνd) cνd + 2cν̇d) s
+m−1m (derr + cM + kXpk) s2 (B.82)

θ2(s) = m−1m ((derr + cM) (kXi1k+ kC12k) + kXi2k) s
+m−1m (2 kGik+ 2 kGpk+ kXpk) s (B.83)

+m−1m (kXpk+ (1 + 2cνd) (dM + cM) (1 + kC1(ψ,ψd)k)) s
+2cνd (1 + kC1(ψ,ψd)k) s (B.84)

Since θi : R≥0 → R≥0 for i = 1, 2 are continuous and θi(0) = 0, the conditions of
Theorem A.2 are satisfied. This completes the proof.
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Appendix C

Restoring Forces

In this appendix a new formulation of gravitational and hydrostatic restoring forces
for ocean vehicles is derived.

C.1 Definitions

The Earth-fixed coordinate frame is denoted n while the vessel-fixed is called b.
The vector rnnb is the position vector similar to η1 (Fossen 2002) and the vector θnb
contains the Euler angles describing the orientation of frame b relative to frame n,
known as η2.

rnnb =
£
xnnb ynnb znnb

¤T
θnb =

£
φ θ ψ

¤T
rppb = 0 θpb =

£
φ θ 0

¤T (C.1)

The xy-plane of the b-frame is assumed to coincide with the static water plane
Awp, thus at equilibrium the xy-planes of both the p- and b-frames coincide with
Awp. Displaced volume in equilibrium will be denoted V0.

The center of flotation rbbf is the geometrical center of the static water plane surface
Awp

rbbf =
1

Awp

 Sbx
Sby
0

 (C.2)

Sbx =

Z
Awp

xbbadS (C.3)

Sby =

Z
Awp

ybbadS (C.4)

such that xbbf = Sbx/Awp and y
b
bf = S

b
y/Awp denote the respective longships and

atwarthships position relative to the origin of the b-frame. In the integrals rbba =
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[xbba, y
b
ba, 0]

T is the distance from the b-frame’s origin to some arbitrary point on
Awp.

The position of the center of gravity (CG) in vessel-fixed coordinates is called
rbbG. For rigid bodies, r

b
bG is a constant vector. The center of buoyancy (CB)

rbbB defined as the geometrical center of the instantaneous submerged volume V
is likely to change for surface vessels. For submerged vehicles, on the other hand,
rbbB will always be. Nevertheless, we choose to define r

b
bB as the geometrical center

of the constant displaced volume V0.

Remember also that the rotation from the b-frame to the vessel parallel p-frame
is given by

Rpb =R (θpb) =

 cosφ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ

 (C.5)

C.1.1 The Basic Assumption

For the moment we state only the most important assumption that will allow us
to deduce the general form of the buoyancy terms.

A1 At the static water line, the walls of the hull are approximately vertical.

This assumption will be used calculating the instantaneous submerged volume of
the vessel.

C.2 Gravity Forces and Moments

The gravity forces acts in the vessel’s center of gravity rbbG. In vessel-parallell and
in the Earth-fixed frames the gravity force is

fpG = f
n
G =

£
0 0 mg

¤T
(C.6)

Letting ζ be the unit vector in the z-direction, that is

ζ = ~k =
£
0 0 1

¤T
(C.7)

a compact form of fpG reads
fpG = mgζ (C.8)

Decomposed in the vessel-fixed frame b, the gravity forces and moments are·
fbG
mb
bG

¸
=

·
Rb
pf
p
G

rbbG ×Rb
pf
p
G

¸
= T(r

b
bG)R

b
pf
p
G (C.9)

where T (·) is a constant matrix given by

T(rbbG) = −
·

I

S(rbbG)

¸
(C.10)
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and S(·) is defined in (2.6).
On component form, the vessel fixed gravity forces and moments are

·
fbG
mb
bG

¸
= mg


− sin θ
sinφ cos θ
cosφ cos θ

ybbG cosφ cos θ − zbbG sinφ cos θ
−zbbG sin θ − xbbG cosφ cos θ
xbbG sinφ cos θ+ y

b
bG sin θ

 (C.11)

C.3 Buoyancy Forces

The buoyancy forces are found by integrating the hydrostatic pressure on the
instantaneous wetted surface SB.

fpB = −ρg
Z
SB

npaz
p
nadS (C.12)

Here, na is a surface normal on SB pointing outwards and zppa is the vertical
distance from the free surface to that point.

Note that Z
SB

npaz
p
padS =

Z
SB

npaz
p
padS (C.13)

because there is no contribution to the integral at zp = 0, see Figure 2.1. Thus,
we may utilize Gauss’ theorem on the volume V enclosed by SB. We get

fpB = −ρg
Z
V

∇zpnadV = −ρgζ
Z
V

dV (C.14)

which we recognize as Archimedes’ principle. However, the volume V is unknown,
so we utilize the common technique of separating the volume integral into two
parts.

From Figure C.1 we recognize that the volume V is the union V = V0 ∪ V1 where
V0 is the static displacement. Thus,

fpB = −ρgζ
µ
V0 +

Z
V1

dV

¶
(C.15)

By applying Assumption A1, we may approximate the integral
R
V1
dV as the vol-

ume between Awp and the free surface zp = 0.Z
V1

dV ≈
Z
Awp

zpwadS (C.16)

where zpwa is the distance between the plane z
p = 0 and some point a on Awp such

that (rbba)
T rbwa = 0.
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Figure C.1: A two-dimensional sketch showing the defintions of volumes and sur-
faces.

By examining Figure C.2, we see that

zpqa = ζTRp
b

 0
0
zbwa

 = ζTRp
bζz

b
wa (C.17)

and
zpqa = z

p
nb + ζTRp

br
b
ba (C.18)

When solving for zbwa we get

zbwa =
ζT

ζTRp
bζ

¡
rpnb +R

p
br
b
ba

¢
(C.19)

By inserting (C.19) into (C.16) we get the volume of the wedge V1:

V1 =

Z
V1

dV ≈
Z
Awp

zbwadS

=
ζT

ζTRp
bζ

Z
Awp

¡
rpnb +R

p
br
b
ba

¢
dS

= Awp
ζT

ζTRLBζ

¡
rpnb +R

p
br
b
bf

¢
(C.20)

On component form, the integral can be written as (cos θ 6= 0,cosφ 6= 0)Z
Awp

zbwadS =
1

cos θ cosφ

¡
zpnbAwp − Sbx sin θ + Sby cos θ sinφ+Awpzbbf cosφ cos θ

¢
(C.21)
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Figure C.2: Sketch illustrating how to approximate the volume integral in V1 by
a surface integral on Awp.

And the total buoyancy force is therefore

fpB = −ρgζ
Ã
V0 +Awp

ζT

ζTRp
bζ

³
rppb +R

p
br
b
bf

´!
(C.22)

and in a vessel fixed frame we get

fbB = R
b
pf
p
b = −ρgRb

pζ

Ã
V0 +Awp

ζT

ζTRp
bζ

¡
rpnb +R

p
br
b
bf

¢!
(C.23)

where Awp is the static waterplane area and rbbf is the vessel-fixed distance between
the center of the b-frame and the center of flotation f .

Remark 4 If the origin of vessel fixed frame b is placed in the center of flotation,
obviously rbbf = 0 and

f bB = −ρg
 − sin θ
sinφ cos θ
cosφ cos θ

µV0 + Awp
cos θ cosφ

zpnb

¶
(C.24)

However, if the b-frame is located somewhere else, Sbx and S
b
y are non-zero and

their contributions should be accounted for.
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C.4 Buoyancy Moments

In the vessel parallel frame, the buoyancy moments are

mp
pB = −ρg

Z
SB

¡
rpps × nps

¢
zpnsdS

= ρg

Z
V

∇× zpnarppadV

= ρg

Z
V

S (ζ) rppadV

= ρgS (ζ)Rp
b

Z
V

rbbadV (C.25)

And in vessel-fixed coordinates, we get

mb
bB = Rbpm

p
pB

= ρgRb
pS (ζ)R

p
b

Z
V

rbbadV

= ρgVRb
pS (ζ)R

p
br
b
bB

= −ρgV S(rbbB)Rb
pζ

= rbbB ×Rbp

 0
0

−ρgV

 = rbbB × fbB (C.26)

where S is defined in (2.6) and V is the immediate displaced volume with rbbB as
its geometric center. However, rbbB is unknown because of the changing volume V ,
so instead we split the volume integral into two parts just as we did for buoyancy
forces:

Z
V

rbbadV =

Z
V0

rbbadV +

Z
V1

rbbadV

= V0r
b
bB +

Z
V1

rbbadV (C.27)

where
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Z
V1

rbbadV ≈
Z
Awp

zbwar
b
bsdS

=

Z
Awp

rbbs
ζT

ζTRpbζ

¡
rpnb +R

p
br
b
bs

¢
dS

=
1

ζTRpbζ

Z
Awp

rbbs

³
zpnb + ζTRp

br
b
bs

´
dS

=
1

ζTRpbζ

Ã
zpnb

Z
Awp

rbbsdS +

Z
Awp

rbbsζ
TRp

br
b
bsdS

!

=
1

ζTRpbζ

Ã
zpnbAwpr

b
bf +

Z
Awp

rbbsζ
TRp

br
b
bsdS

!
(C.28)

By examining the last integrand, we simplify it as follows

rbbsζ
TRpbr

b
bs = r

b
bs

¡
rbbs
¢T
Rbpζ =

 − ¡xbbs¢2 sin θ + xbbsybbs sinφ cos θ
−xbBsybBs sin θ+

¡
ybBs

¢2
sinφ cos θ

0

 (C.29)

Now,

Z
Awp

zbwar
b
bsdS =

1

ζTRp
bζ

Ã
zpnbAwpr

b
bf +

Z
Awp

rbbs
¡
rbbs
¢T
Rb
pζdS

!

=
1

ζTRp
bζ

Ã
zpnbAwpr

b
bf +

ÃZ
Awp

rbbs
¡
rbbs
¢T
dS

!
Rb
pζ

!
=

1

ζTRL
Bζ

¡
Awpz

p
nbr

b
bf +H

bRb
pζ
¢

(C.30)

where the matrix Hb =
¡
Hb
¢T
contains the moments of inertia of the static water

plane surface Awp. Hb is defined in (C.31)-(C.34)

Hb =

Z
Awp

rbbs
¡
rbbs
¢T
dS =

 Sbxx Sbxy 0
Sbxy Sbyy 0
0 0 0

 (C.31)

Sbxx =

Z
Awp

¡
xbbs
¢2
dS (C.32)

Sbxy =

Z
Awp

xbbsy
b
bsdS (C.33)

Sbyy =

Z
Awp

¡
ybbs
¢2
dS (C.34)
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The moments due to buoyancy are in the p-frame given by

mp
pB = ρgV0S (ζ)R

p
br
b
bB + ρgS (ζ)Rpb

1

ζTRp
bζ

¡
Awpz

p
nbr

b
bf +H

bRbpζ
¢

= ρgS (ζ)Rpb

(
V0r

b
bB +

1

ζTRpbζ

¡
Awpz

p
nbr

b
bf +H

bRb
pζ
¢)

(C.35)

and trivially in the b frame we get,

mb
bB = ρgRb

pS(ζ)R
p
b

(
V0r

b
bB +

1

ζTRp
bζ

¡
Awpz

p
nbr

b
bf +H

bRbpζ
¢)

= ρgS(Rb
pζ)

(
V0r

b
bB +

1

ζTRp
bζ

¡
Awpz

p
nbr

b
bf +H

bRbpζ
¢)

= −ρgV0S(rbbB)Rbpζ+
ρg

ζTRp
bζ

³
S(Rb

pζ)H
b −AwpzpnbS(rbbf )

´
Rb
pζ (C.36)

C.5 Summary

The results are summarized as

fbG = mgRb
pζ (C.37)

mb
bG = mgS(rbbG)R

b
pζ (C.38)

f bB = −ρg
Ã
V0R

b
pζ +Awp

Rbpζζ
T

ζTRp
bζ

¡
rpnb +R

p
br
b
bf

¢!
(C.39)

mb
bB = −ρgV0S(rbbB)Rbpζ+

ρg

ζTRp
bζ

³
S(Rb

pζ)H
b −AwpznnbS(rbbf )

´
Rb
pζ (C.40)

The sum of gravity and buoyancy forces and moments is the complete restoring
force description

f b = −ρgAwpR
b
pζζ

T

ζTRp
bζ

³
rpnb +R

p
br
b
bf

´
mb = mgS(rbbG − rbbB)Rb

pζ

+ ρg
ζTRp

bζ

³
S(Rb

pζ)H
b −AwpS(rbbf )ζT rnnb

´
Rbpζ

(C.41)

C.5.1 Underwater Vehicles

For a completely submerged body the waterplane integrals are all zero and V0 is
the volume of the entire craft, so we get

fbB = −ρgV0Rb
pζ (C.42)

mb
bB = −ρgV0S(rbbB)Rb

pζ (C.43)
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where rbbB is the vessel-fixed center of buoyancy and V0 is the displacement. Grav-
ity forces and moments are the same as in the general case, see (C.37)-(C.38).

A closer look on mb
bB reveals that

mb
bB = r

b
bB ×Rb

pf
p
B = r

b
bB × fbB (C.44)

which is simply the cross product of the center of buoyancy with the buoyancy
force.

Equivalently, ·
fbB
mb
bB

¸
= −ρgV0T(rbbB)Rbpζ (C.45)

These expressions are equivalent to the ones in Fossen (2002) and Sagatun (1992).

C.6 Surface Vessels

In this section we provide two approximations of (C.41) for surface vessels that
show they are both special cases of the general nonlinear formulation. Further-
more, the concept of metacentric height is identified.

We consider vessels that are neutrally buoyant, which means that the pitch and
roll angles are zero at equilibrium. Moreover, V0 = m/ρ and ρgV0 = mg =W .

For vessels symmetric about the xz-plane

rbbf =
£
Sbx 0 0

¤T
(C.46)

rbbG =
£
xbbG 0 zbbG

¤T
(C.47)

rbbB =
£
xbbB 0 zbbB

¤T
(C.48)

Furthermore (Newman 1977), Sbxy = 0 such that the water plane inertia matrix
Hb is reduced to

Hb = diag(Sbxx, S
b
yy, 0) (C.49)

C.6.1 Linearization

The linearization is performed on a neutrally buoyant xz-symmetric vessel in order
to obtain the linear term Gη in the vessel-fixed dynamics. Consequently, the x-
and y-distances between CG and CB have to be zero

xbGB = xbbB − xbbG = 0 (C.50)

ybGB = ybbB − ybbG = 0 (C.51)

A3 Angular displacements can be considered small, θpb ≈ 0.
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This means that sinα = α, and cosα = 1 are appropriate approximations and we
can substitute Rp

b and R
b
p with their respective Taylor expansions

Rp
b ≈ I+ S(θpb) (C.52)

Rb
p ≈ I− S(θpb) (C.53)

Hence, the restoring forces become

fb = −ρgAwp
Rb
pζζ

T

ζTRp
bζ

¡
rpnb +R

p
br
b
bf

¢
≈ −ρgAwp (I− S(θpb)) ζζT

¡
rpnb + (I+ S(θpb)) r

b
bf

¢
= −ρgAwp

³
ζζT

¡
rpnb + (I+ S(θpb)) r

b
bf

¢− S(θpb)ζζT ¡rpnb + rbbf¢´
≈ −ρgAwp

³
ζζT

¡
rpnb + r

b
bf − S(rbbf )θpb

¢
+ S(ζζT rbbf )θpb

´
= −ρgAwpζζT

¡
rpnb + r

b
bf

¢− ρgAwp

³
ζζTS(rbbf )− S(ζζT rbbf )

´
θpb(C.54)

Substituting that rbbf =
£
Sbx, 0, 0

¤T
we get

f b ≈ −ρgAwpζζT rnnb + ρgAwp

³
S(ζζT rbbf )− ζζTS(rbbf )

´
θpb

= −G11r
n
nb −G12θpb (C.55)

where

G11 = ρgAwpdiag(0, 0, 1) (C.56)

G12 = ρg

 0 0 0
0 0 0
0 Sbx 0

 (C.57)

Now, for the restoring moments we employ

Rbpζ ≈ ζ − S(θpb)ζ =ζ + S(ζ)θpb
ζTRpbζ ≈ 1

(C.58)
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Hence, by using Hbζ = 0 we are disregarding all terms nonlinear in the state-
variables.

mb = mgS
¡
rbbG − rbbB

¢
Rb
pζ+

ρg

ζTRp
bζ

³
S(Rb

pζ)H
b −AwpznnbS(rbbf )

´
Rb
pζ

≈ mgS
¡
rbbG − rbbB

¢
(ζ + S(ζ)θpb)

+ρg
³
S(Rb

pζ)H
b −AwpznnbS(rbbf )

´
(ζ + S(ζ)θpb)

≈ mgS(rbbG − rbbB)ζ+mgS(rbbG − rbbB)S(ζ)θpb
+ρg

³
S(Rb

pζ)H
bS(ζ)θpb −AwpznnbS(rbbf )ζ

´
≈ mgS(rbbG − rbbB)ζ+mgS(rbbG − rbbB)S(ζ)θpb

+ρg
³
S(ζ + S(ζ)θpb)H

bS(ζ)θpb −AwpS(rbbf )ζζT rnnb
´

≈ mgS(rbbG − rbbB)ζ − ρgAwpS(r
b
bf )ζζ

T rnnb+mgS(r
b
bG − rbbB)S(ζ)θpb

+ρgS (ζ)HbS(ζ)θpb

= mb
0 −G21r

n
nb −G22θpb (C.59)

where

mb
0 = mgS(rbbG − rbbB)ζ (C.60)

G21 = −ρgAwpS(rbbf )ζζT (C.61)

G22 = −mgS(rbbG − rbbB)S(ζ)− ρgS (ζ)HbS(ζ) (C.62)

On component form we get

G21 = ρg

 0 0 0
0 0 Sbx
0 0 0

 (C.63)

G22 = −mgS(rbbG − rbbB)S(ζ)− ρgS (ζ)HbS(ζ)

= −mg
 −zbbG + zbbB 0 0

0 −zbbG + zbbB 0
xbbG − xbbB 0 0

+ ρg

 Sbyy 0 0
0 Sbxx 0
0 0 0


= ρgdiag(V0z

b
BG + S

b
yy, V0z

b
BG + S

b
xx, 0) (C.64)

where we recognize the transverse and longitudinal metacenters

GMT
4
= zbGB +

1

V0
Sbyy =

¡
zbbG − zbbB

¢
+
1

V0
Sbyy (C.65)

GML
4
= zbGB +

1

V0
Sbxx =

¡
zbbG − zbbB

¢
+
1

V0
Sbxx (C.66)

such that
G22 = ρgV0diag(GMT , GML, 0) (C.67)
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Keep in mind that the z-axis is positive down such that zbGB > 0 if CG is below
CB.

For the bias term

mb
0 = mgS(r

b
bG − rbbB)ζ (C.68)

= mg

 0 −zbbG + zbbB 0
zbbG − zbbB 0 −xbbG + xbbB

0 xbbG − xbbB 0

 0
0
1

 = 0 (C.69)



Appendix D

Thruster-Rudder Modeling

D.1 Introduction

For centuries rudders have been used to control the heading of ships in transit and
even today when rotatable propeller devices, so called PODs, are becoming more
and more common, a rudder will in many situations still be the natural choice for
steering a marine craft.

In contrast to a POD, or any other active device, a rudder looses its entire effect
as the velocity decreases. This means that rudders can not directly be used in
low speed operations such as dynamic positioning. The rudder will not be able
to produce any force neither laterally (lift) nor longitudinally (drag) unless it is
located in the induced jet from an active device, for instance a propeller. This
means that a pair consisting of a longships propeller and a rudder is unable to
produce a sideforce without simultaneously having a longships component: At
zero speed, the lateral force will be a function of the longitudinal force produced
by the propeller.

Rudders are usually placed in the propeller slipstream. This has several advantages
(Brix 1993):

1. A profiled rudder increases propeller efficiency.

2. In steady ahead motion, rudder forces will be typically two times higher
compared to a rudder outside the slipstream.

3. For a stationary or slowly moving vessel, substantial rudder forces may be
generated by propeller action.

We aim to use the latter advantage in low speed operations such as positioning
and docking. The objective is to devise a fundamental mapping H for a propeller-
rudder device that relates nominal propeller thrust T , rudder angle δ and forward
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speed u on one side and the produced surge and sway forces (Fx and Fy respec-
tively) on the other

(Fx, Fy) = H(T, δ, u) (D.1)

The mapping H must be ”suitable for control design”, which means that we focus
on

1. Structural accuracy. The mapping must be able to predict with acceptable
accuracy all dominating effects.

2. Structural simplicity. A ship controller will apply a specified force that has
to be distributed to the propulsion system. This means that we need the
”inverse” of H

(T, δ) = H−1(Fx, Fy, u) (D.2)

Therefore, we seek anH that is simple to invert or at least we seek a mapping
for which a reasonably simple approximation of the inverse exists.

Finding the inverse mappingH−1 is vital for the thrust allocation problem, which is
the mapping between commanded force τ c from the controller to thruster/rudder
set-points (typically pitch/RPM set-points and desired angles), see Chapter 7.
The majority of low-speed applications do not use rudders actively. This has two
explanations. First, vessels able to perform dynamic positioning are overactuated,
and using rudders in a positioning operation is thus superfluous. Consequently,
dealing with nonlinear and complex mappings H was unnecessary. Second, the
priority for most low-speed designs has been safety and controllability rather than
minimizing fuel consumption.

It is not apparent that advanced propeller-rudder models have an analytic solution
to the inverse (D.2) because of the complexity of the H(T, δ, u). Even though
numerical solvers could be applied relatively simple, analytical approximations
should do the job well enough because the mapping is, to some extent, uncertain. A
numerical, and thereby computationally more complicated, solution is not always
the best approach. We show that with a minimum of knowledge a smooth inverse
mapping can be derived.

Using the rudders actively in a positioning operation is purely beneficial; reducing
costs and gas emissions without compromising safety. Moreover, we obtain an
extra degree of freedom to generate forces that otherwise had to be produced by
a propeller. Also, active rudder usage can reduce the required number of tunnel
thrusters, which implies that ships meant for transit will be able to perform for
instance DP and automatic docking more easily. This entire refinement of control
systems technology relies on a propeller-rudder model ”suitable for control design”.

D.1.1 Previous Work

Due to the complex fluid flow patterns, propeller behavior is a science that de-
pends heavily on empirical results. However, some general results on propeller
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action can be described with rather simple physical laws like Rankine’s princi-
ple for conservation of momentum (consult Carlton (1994) for a historical review).
Rankine modelled the propeller as an ”impulse disc”. By using Bernoulli’s theorem
(White 1999) he was able to relate delivered propeller thrust forces to axial fluid
flow through a uniform propeller disc. Later R. E. Froude included fluid rotation,
and the synthesis is often called Rankine-Froude momentum theory. Rankine’s
momentum theory is fundamental material covered by most textbooks on naval
architecture (Gillmer and Johnson 1982) and fluid dynamics (White 1999). De-
spite its many shortcomings, the momentum theory can be used to describe a
variety of the observed phenomena, for instance force and axial flow velocity dur-
ing transient thrusting (Yoerger et al. 1990, Healey et al. 1995, Whitcomb and
Yoerger 1999, Bachmayer et al. 2000, Fossen and Blanke 2000, Blanke et al. 2000).
This is perhaps a bit surprising since the momentum theory is a valid for static
flows only.

The concept of an actuator disc has been extended to study the flow field around
propellers, see Breslin and Andersen (1994) and references therein. Greenberg
and Powers (Greenberg and Powers 1970, Greenberg 1972) computed streamlines
generated by actuator discs at low speed, so-called heavily loaded discs. They
found that the streamtube pattern was insensitive to applied propeller thrust when
the distribution of circulation was uniform across the disk. Considering also a
non-uniform radial distribution of thrust, which reduce the frictional losses (Munk
1922), they were able to show that higher thrusting levels resulted in a sharper
contraction of the slipstream.

Rudder modeling and design is closely related to the study of airfoils. In spite being
a three-dimensional problem, more convenient methods using two-dimensional flow
are sufficient for studying the phenomenon. The simplest three-dimensional wing
theory is that based on the concept of the lifting line (Prandtl 1923) where the
wing is replaced by a straight line along the span. The wing is constructed as the
spanwise integral of 2D wing sections. By separating the effects of the symmetric
(along the chord) thickness distribution from the effect caused by the mean camber
line, see e.g. Newman (1977) for a linearized proof, NACA systematized the
performance for a variety of 2D foil shapes (Abbot and von Doenhoff 1959). A
direct consequence is that the lift force generated by profiles without a camber,
such as rudders, can be analyzed by thin plates and therefore static rudder forces
may be fairly described by very simple models. Parameters can also be predicted
approximately, although exact parameters are still found through experiments and
curve-fitting. For instance, Brix (1993) suggests using trigonometric functions for
rudder lift and drag coefficients CL(α) and CD(α).

Compared to the vast amount of publications and textbooks on propellers and
airfoils, the field of propeller and rudder interaction is limited. One recent series
of wind tunnel experiments were conducted by Molland and co-workers in the early
1990s (Molland and Turnock 1993, Molland and Turnock 1996). Unfortunately,
due to the fact that it was a lifting line approach, the results were parameterized
using the advance number, that is the ratio between advance speed and propeller
shaft velocity, and are consequently hard to apply at zero speed. As pointed out
by Kracht commenting on Molland and Turnock (1993), this could have been
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circumvented using a different reference speed. However, there is not a universal
presentation format which accurately reflects the physics over the entire range of
operation and especially the bollard condition. In a follow-up paper (Molland and
Turnock 1994) the authors focused more on zero advance ratio.

The integration of advanced propeller rudder models, that is the mapping (D.1),
into ship simulators have been treated by several authors. In particular, Shouji et
al. (1990) used a model in six quadrants of operation and in Molland et al. (1996)
the authors suggest a two-regime algorithm for low and standard speed. Still, we
were unable to find any sophisticated ”inverse mappings” (D.2). This suggests
that this problem has not yet been properly addressed.

D.1.2 Outline

The next section is dedicated to standard hydrodynamic concepts such as momen-
tum theory and standard foil-theory to deduce a static mapping structure H of a
propeller-rudder pair that incorporates what is believed to be the most dominating
effects. In Section D.3 we discuss practical issues and suggest a pragmatic model
structure for thrust and rudder forces. Section D.3 discusses an inverse mapping
as well as an algorithm for allocation of desired forces the propeller rudder couple
should deliver. The conjecture introduced in Section D.3 enables us to explain the
experienced nonlinear increase in rudder lift and drag observed in bollard-pull test
of a model-ship reported in Section D.5. Concluding remarks are given in Section
D.6.

D.2 Modeling

First, we summarize Rankine’s theory on axial flow. Then, a few remarks about
fluid rotation is made.

D.2.1 Axial Flow

Figure D.1: Bernoulli tube with definitions of axial fluid velocity far upstream ua,
through the propeller up and far downstream uw.

Using Bernoulli’s equation on the linear flow upstream and downstream of the



D.2 Modeling 163

propeller disc (Figure D.1), we have that

pa +
1

2
ρu2a = pu +

1

2
ρu2p (D.3)

pa +
1

2
ρu2w = pd +

1

2
ρu2p (D.4)

where pa, pu and pd are the ambient pressure and the pressures upstream and
downstream of the propeller disc. Delivered thrust T is the pressure difference
multiplied with propeller disc area Ap

T = Ap (pd − pu) = 1

2
ρAp

¡
u2w − u2a

¢
(D.5)

By assumption the power absorbed by the propeller and the delivered thrust are
equal to the increase in kinetic energy of the slipstream per time unit and the
increase of axial momentum, respectively

PD =
1

2
ṁ
¡
u2w − u2a

¢
(D.6)

T = ṁ (uw − ua) (D.7)

where ṁ is the mass flow per time unit through the propeller disc, that is ṁ =
ρApup. We also know that the work per unit time by the propeller equals PD =
Tup such that the velocities through the disc and far downstream are

up =
1

2
(uw + ua) (D.8)

uw = 2up − ua (D.9)

which shows that the axial flow velocity through the disc is the mean of the
velocities far upstream and downstream in the wake.

Hence,
T = 2ρApup (up − ua) (D.10)

If the ship is surging at a certain forward velocity u, the ambient water velocity
ua can be expressed using the wake fraction number w

ua = (1−w)u (D.11)

From (D.10) we get that the mean velocity of the axial flow through the propeller
disc is

u2p − uaup −
T

2ρAp
= 0 (D.12)

up =
1

2

Ã
ua +

s
u2a +

2Tmax
ρAp

Trel

!
(D.13)

We use normalized thrust T = TmaxTrel. If ua = 0 we are left with

up|ua=0 =
1

2

s
2Tmax
ρAp

Trel (D.14)
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D.2.2 Slipstream Radius and Mean Velocity

The area of the propeller wake or the slipstream, will decrease downstream by the
principle of mass conservation. The mass-flow through two arbitrary cross-sections
i and j are related by

ρAiui = ρAjuj (D.15)

where ui and uj are the mean velocities through the respective sections. Evidently,
the radius of the wake far downstream becomes

rw =

r
Aw
π
=

s
Ap

up
uw

π
= rp

r
up

2up − ua (D.16)

Because the rudder is located quite close to the propeller, see Figure D.2, it is
not very likely that the wake has contracted completely, that is rp ≥ rr ≥ rw.
An approximation of the radius at an arbitrary point located x meters behind the
propeller disc is given as (Brix 1993)

r(x) = rp
0.14

³
rw
rp

´3
+ rw

rp

³
x
rp

´1.5
0.14

³
rw
rp

´3
+
³
x
rp

´1.5 (D.17)

Inserting (D.9) and (D.16) we get

r(x, up, ua) = rp

r
up

2up − ua
0.14

³
up

2up−ua

´
+
³
x
rp

´ 3
2

0.14
³

up
2up−ua

´ 3
2

+
³
x
rp

´ 3
2

(D.18)

At zero advance speed (ua = 0) the wake geometry becomes independent of thrust
T (equivalently up)

r(x)|ua=0 =
rp√
2

0.1412 +
³
x
rp

´1.5
0.14

¡
1
2

¢1.5
+
³
x
rp

´1.5 (D.19)

From the conservation of mass (D.15) the rudder flow velocity ur is proportional
to up and proportional to the square-root of the thrust T .

ur
ua=0

∝ up , u2r
ua=0

∝ T (D.20)

Remark 5 In practice, the radius will be somewhat larger due to turbulent mixing
with the surrounding fluid. A correction of the ideal radius can be approximated
by (Brix 1993)

r̂(x) = r(x) + 0.15
ux − ua
ux + ua

x (D.21)
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where ux is the mean velocity through the disc given by r(x)

ux(x) = up

µ
rp
r(x)

¶2
(D.22)

By conservation of mass (D.15), the corrected velocity û(x) ≤ ux(x) is

ûx(x) = up

µ
rp
r̂(x)

¶2
(D.23)

It must be remarked that r̂(x) and û(x) are local approximations only valid for
”small” distances x. For example, if ua = 0, we see that r̂(x) would grow linearly
in x.

What is important from a low-speed point of view, ua = 0 and |up| > 0, is that,
corrected for mixing or not, the formulas predict that the shape of the wake tube
is independent of thrust T .

D.2.3 Rudder Forces

The forces generated by a rudder in a fluid flow can be calculated using traditional
foil theory. In this section we focus primarily on rudder forces generated by the
propeller, that is when the propeller generates the passing flow. First, we will use
axial momentum theory to develop an expression for lift and drag forces on the
foil and then we will make a few comments on tangential flow effects.

Lift and Drag Forces

A foil submerged in a moving fluid will experience lift and drag forces. Kutta-
Joukowski’s theorem states that the lift is perpendicular to the incoming flow and
that drag is tangential to it. For 2D problems, cross-sections with span dz in a
uniform flow, the lift force dL and drag dD are proportional to the square of the
inflow velocity u

dL =
1

2
ρcC0L(α)u

2dz (D.24)

dD =
1

2
ρcC0D(α)u

2dz (D.25)

CL(α) and CD(α) are the lift and drag coefficients respectively parameterized as
function of the angle of attack α. The product of the chord length c and dx
becomes the locally projected area of the rudder that is being exposed to the flow.
The total lift L and drag D is obtained by integration along the span (z-axis)

L =

Z b
2

− b
2

dL =
1

2
ρ

Z b
2

− b
2

c(z)C0L(α, z)u
2(z)dz (D.26)

D =

Z b
2

− b
2

dD =
1

2
ρ

Z b
2

− b
2

c(z)C
0
D(α, z)u

2(z)dz (D.27)
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where b is the width of the foil, or equivalently the rudder height. We have also
assumed that streamtube radius rr is constant past the chord.

For a rudder situated in the propeller race, as in Figure D.2, two-dimensional
theory will provide a plausible approximation because the rudder is wider than
the wake tube. If the span is smaller than the slipstream radius rr, vortices will
be generated at the tips.

Figure D.2: Rudder located a distance xr downstream in the wake of a propeller.

D.2.4 The Influence of Tangential Velocity

A rotating propeller will induce not only an axial velocity component as described
in the previous section, but it will also force the passing fluid to rotate. The
Rankine-Froude momentum approach derive that, as for axial flow, the angular
fluid velocity through a propeller disc equals the mean of the far upstream and
downstream velocities. Let ωa, ωp and ωw denote angular velocities far upstream,
at the propeller disc and far downstream respectively. Then, it can be shown that

ωp =
1

2
(ωa + ωw) (D.28)

The angular velocity component does not contribute to the thrusting force; the
angular momentum is a loss factor. The increased fluid velocity in the propeller
race yields a lower pressure behind the disc and hence the pressure increase across
the disc forcing the vessel forward decreases. From a propeller blade section point
of view, the rotational velocity components reduce the local angle of attack, and
hence propeller blade lift forces are reduced also. On the other hand, it is well
documented that devices such as rudders placed in a propeller wake, or even
upstream to the propeller, will reduce ωp compared to the rotation the propeller
would have caused if the rudder was removed. This means that, neglecting the
rudder drag forces, the pressure behind the propeller disc will rise due to lower
fluid velocity. Again, this will increase the propeller efficiency rate (Brix 1993).

We shall not pursue this tangential velocity component further except pointing out
that induced lift force will be asymmetrically distributed along the rudder span.
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This is due to the rotation’s influence on the rudder’s effective angle of attack.
However, for rudder angles encountered in low speed vessel maneuvering, and if the
rudder is located in the center of the wake tube, the net sum is zero. Consequently,
the effect of rotation can be incorporated in the lift and drag coefficients CL(α)
and CD(α).

D.3 Pragmatic Model

Due to the small dimensions and thrust forces involved the experiments will expe-
rience scale effects because the flow regime will be laminar rather than turbulent.
This is supported by rough estimates of the Reynholds numbers Rn involved.
Again, this should motivate a more detailed description for propeller thrust and
rudder lift and drag. On the other, doing so constructively would for a number of
reasons be impossible with our equipment:

• The geometry was too complex (propeller and rudder are mounted on a hull).
• The pressure sensor and laboratory equipment in general were unsuited for
such studies.

• We had only a single propller and rudder available. The results could not be
generalized.

These limitations imposed taking a more pragmatic path towards identifying the
propeller rudder characteristics, and that is the topic of this subsection.

D.3.1 Ideal Model at Zero Advance Speed

When it is assumed that the velocoity profile inside the wake tube is independent
of applied thrust, the propeller induced lift and drag become

L =
1

2
ρACL(δ)u

2
r (D.29)

D =
1

2
ρACD(δ)u

2
r (D.30)

where A = crr is the area of the rudder exposed to the wake and CL(δ) and CD(δ)
are the resulting lift and drag coefficients incorporating the effect of the velocity
profile.

We suggest using a model quadratic in shaft speed for the propellers’ nominal
thrust

Ti =

½
kiTpω

2
i ω ≥ 0

kiTn|ωi|ωi ω ≤ 0 (D.31)

where kiTp and kiTn are to be determined empirically.
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D.3.2 Velocity Correction Factors

To handle variations in lift and drag caused by increasing Rn we introduce velocity
corrections ∆L(T ) and ∆D(T ) for lift and drag respectively such that

L(T, δ, u) =
1

2
ρACL(δ)u

2
r∆L(T ) (D.32)

D(T, δ, u) =
1

2
ρACD(δ)u

2
r∆D(T ) (D.33)

Theoretically they should be functions of Rn or ur, meaning that ∆L and ∆D
should be used around zero speed. Observe also that these corrections, ∆D(T ) in
particular, will incorporate the scale effects effecting the propeller as well. This
is the price paid for the simple quadratic thrust characteristics. Later we shall
discuss the shapes of CL(δ), CD(δ), ∆L(T ) and ∆D(T ).

D.4 Inverse Mapping

We have substantiated a structure for the mapping (D.1)·
Fx
Fy

¸
= H(T, δ, u) =

·
T −D(T, δ, u)
L(T, δ, u)

¸
(D.34)

Using the assumption that u2r ∝ T (at ua = 0 we have that u2r = kT for some
k ∈ R) we end up with

H =

·
T (1− kxCD(α)∆D(T ))
TkyCL(α)∆L(T )

¸
(D.35)

for some constants kx,ky ∈ R. If the velocity profile corrections∆L(T ) = ∆D(T ) =
1, that is independent of the thrusting T , the mapping H is affine in T and it is
possible to find an exact solution to the inverse mapping H−1 provided that the
inverse functions of of drag and lift coefficients CD(α) and CL(α) can be deter-
mined analytically. If on the other hand either ∆L(T ) 6= 1 or ∆D(T ) 6= 1, finding
H−1 becomes a non-trivial task. In order to regain suitability for control design
we therefore suggest an approximation Ĥ−1 of the actual inverse H−1 such that
for all T and δ that Ĥ−1 ≈ H−1.

D.4.1 Re-parameterized Profile Corrections

One way to deal with this problem is to approximate ∆L(T ) and ∆D(T ) in terms
of the commanded generalized force components Fx and Fy instead of nominal
thrust T . By doing so, we have made the mapping H linear in T . In other words,
we seek the approximationsd∆L(Fx, Fy) and d∆D(Fx, Fy) so that for all admissible
T and δ d∆L(Fx, Fy) ≈ ∆L(T ) (D.36)d∆D(Fx, Fy) ≈ ∆D(T ) (D.37)
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The idea is now to propose a plausible structure ford∆L and d∆D by assuming that
the actual ∆L(T ) and ∆D(T ) are known.

Small rudder angles 0 < |δ| < ε

Consider small rudder angles δ such that 0 < |δ| < ε. For some small ε > 0 the
longships force is close to nominal thrust, that is

Fx ≈ T (D.38)

And hence
∆L(T ) ≈ ∆L(Fx) (D.39)

This means that for small rudder angles, that is when Fy ≈ 0 we should use

d∆L(Fx, Fy) Fy≈0= ∆L(Fx) (D.40)

Constant δ and ∆D(T ) small

Now let the rudder angle δ > 0 be constant. Then, the lift Fy will depend on the
applied thrust T

∂Fy
∂T

= c1

µ
∆L(T ) + T

∂ (∆L(T ))

∂T

¶
(D.41)

where c1 = kyCL(α).

Suppose ∆L = 1 + k1
√
T + k2T . Then

∂Fy
∂T

= c1

µ
1 +

3

2
k1
√
T + 2k2T

¶
(D.42)

is possessing in terms of T -dependence the same structure as ∆L. The constant
parameters differ though. It can be shown that as long ∆L is a polynomial in
T , ∂Fy

∂T is a function in T with the same structure as ∆L(T ). Consequently, the
approximationd∆L(Fx, Fy) should increase with Fy in a linear fashion.
D.4.2 Approximation Summary

Considering the structure we proposed for small δ’s we now get

d∆L(Fx, Fy) = ∆L(Fx) + cFy |Fy| (D.43)d∆D(Fx, Fy) = ∆D(Fx) + cFx |Fy| (D.44)

where we have assumed that ∆D has the same structure as ∆L. The coefficients
cFy and cFx can be found using curve-fitting techniques once the ∆D and ∆L
are found. This analysis indicates that even very simple expressions fit the task,
although other forms ofd∆L and d∆D may of course be used as well.
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D.4.3 Algorithm

We assume that the lift and drag coefficients can be sufficiently approximated with
the second order polynomials

CL(δ) = cL1δ + cL2|δ|δ (D.45)

CD(δ) = cD1|δ|+ cD2δ2 (D.46)

The absolute functions indicate that the CL is symmetric around the origin and
CD around the y-axis.

Using d∆L and d∆D it is now trivial to find Ĥ−1. All that needs to be done is to
solve for T and δ in·

Fxd
Fyd

¸
=

"
T
³
1− kxCD(δ)d∆D(Fxd, Fyd)´

TkyCL(δ)d∆L(Fxd, Fyd)
#

(D.47)

where Fxd and Fyd are the desired generalized forces. The proposed algorithm is:

1. Use the known equivalent angle β

tanβ =
Fy
Fx

=
Fyd
Fxd

(D.48)

to eliminate nominal thrust T and solve for rudder angle δ. This yields a
quadratic expression in δ. Pick the solution that has the same sign as Fyd.

2. Once the correct δ has been found it is straightforward to find the matching
T from Fxd

T =
Fxd³

1− kxCD(δ)d∆D(Fxd, Fyd)´ (D.49)

D.5 Model Experiments

Bollard pull tests were conducted on CS2. In the bow there is a small RPM-
controlled tunnel-thruster producing a sway force, and at the stern there are two
RPM-controlled main propellers with rudders.

The model ship was kept in a fixed position by two struts as illustrated in Figure
D.3. Longships and lateral effective propeller thrust forces were measured by a
freely rotatable pressure sensor with an amplifier scaling the measured voltage to
a range suited for using the onboard 12-bit analog to digital converter.

For positive shaft speed ωi, the main propeller-rudder pairs are able to generate
forces in sway, for 1 ≤ i ≤ 2 we get

Fxi = Ti −Di (D.50)

Fyi = Li (D.51)

while the bow thruster can thrust in sway only

Fx3 = 0 , Fy3 = T3 (D.52)
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Figure D.3: Bollard pull experiment setup.

D.5.1 Nominal Thrust
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Figure D.5: Bow-thruster nominal force T3 for positive n (solid) and negative n
(dashed) at ua = 0.

As it was easier to measure the sum of the surge forces produced rather than for
one thruster at a time, it was assumed that the two main-propeller couples have
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Figure D.4: Nominal static thrust Ti for the main propellers at ua = 0.

identical parameters.

Identification of nominal thrust was based on the already described structure
(D.31) for all three devices. For the main propellers, the bollard pull tests were
conducted at zero rudder deflection δi = 0. As a consequence, the constant rudder
drag, mainly due to viscous friction, is incorporated in the nominal thrust para-
meters. Moreover, the propulsive force regained by the rudder is also taken care
of by kiTp and kiTn.

Figure D.4 shows the quadratic response for the main propellers. We observed,
surprisingly, that the main propellers performed better in the reverse. One expla-
nation could be that in the reverse the rudder works as a large fin stabilizing the
fluid rotation induced by the propeller, effectively increasing the propeller blade
angle of attack.

The bow thruster response on the other hand, as shown in Figure D.5, was as
expected symmetric in the sense that k3Tp ≈ k3Tn.
The nominal thrust coefficients were identified using a least-squares fit (Table E.2).

A frequently used parametrization for static thrusters is to express the produced
force in terms of the KT constant

T = ρd4KT |ω|ω (D.53)

where KT is taken as a function of the advance number J . So called four quadrant
thrust characteristics are (empirical) static descriptions of the generated force for
all combinations of positive and negative values of J and ω. As we do not have any
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Parameter Value [Ns2]
k1Tp, k2Tp 3.74 · 10−3
k1Tn, k2Tn 5.05 · 10−3
k3Tp 1.84 · 10−4
k3Tn 1.88 · 10−4

Table D.1: Nominal thrust coefficient at zero advance speed

incoming velocity ua, the advance number being zero at all times, it suffices to find
KTp and KTn for positive and negative ω respectively. The non-dimensionalized
thrust coefficient KT is defined as follows

KT =
T

ρd4|ω|ω (D.54)

Re-parameterizing the results coefficients for the main propellers in Table E.2
yields

KT =

½
0.288 ω ≥ 0
0.390 ω < 0

(D.55)

Comparison with the B-series

The main propellers have a shape resembling that of the ”Wageningen B-series”
(van Lammeren et al. 1969). The propellers are four-bladed with a diameter of
d = 60 millimeters. It seemed that the P/D-ratio was rather small and that the
blade-area ratio was approximately 70 percent. Consequently, the data for a ”B
4-70” could serve as an indication of whether the nominal thrust coefficients are
reasonable.

Again it must be stressed that our results are not open water tests. Since the pro-
pellers were mounted on a hull, wake effects and thrust losses as well as propeller-
rudder interaction did influence the produced thrust force. With these effects in
mind it should be plausible to assume that in open water we would have had some-
thing around KT = 0.25 for positive ω. This value corresponds to a ”B 4-70” with
P/D ratio around 0.6 (van Lammeren et al. 1969, page 274), close to the manufac-
turer’s specification 0.5. Hence, the identified nominal thrust characteristics seem
to be reasonable.

D.5.2 Rudder Forces

The rudders used were so called ”Becker” rudders. A Becker rudder is equipped
with an extra flap on the trailing edge. The flap angle increases proportionally
to the rudder deflection, effectively cambering it. The result is a steeper increase
in rudder lift CL but also increased drag CD, and as a consequence the effective
angle β increases accordingly

β = arctan
Fy
Fx

= arctan
L

T −D (D.56)
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Figure D.6: Rudder lift force at zero advance speed ua = 0 parameterised by shaft
speed n.

Rudder Lift

For a range of shaft speeds, the port rudder (actuator 1) was turned inwards
producing a lift force in the negative y-direction (port). Several lift-approximations
were tried out:

L1a = T1k1Lα1δ1 (D.57)

L1b = T1 (1 + k1Lωω1) k1Lδ1δ1 (D.58)

L1c = T1 (1 + k1Lω1ω1 + k1Lω2 |ω1|ω) k1Lδ1δ1 (D.59)

L1d = T1 (1 + k1Lωω1) (k1Lδ1δ1 + k1Lδ2 |δ1|δ1) (D.60)

L1e = T1 (1 + k1Lω1ω1 + k1Lω2 |ω1|ω) (k1Lδ1δ1 + k1Lδ2 |δ1|δ1) (D.61)

In Figure D.6 the approximation L1d is plotted along with the measured forces
and the normalized lift coefficient

CL =
L

1
2ρAdd

2KT |ω|ω
(D.62)

Figure D.7 demonstrates that the lift forces increases faster than the square of ω,
an effect handled by the velocity correction factors.

The individual parameters were found by minimizing the squared error between
the measured response y(k) and the approximated curve

σi = min
NX
k=1

(y(tk)− L1i(ω1(tk),α1(tk)))2 (D.63)
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Figure D.7: Normalized rudder lift coefficient CL.

The approximation was done numerically using a line-search method. Table D.2
contains the results and with a low variance σi implying a better approximation.

Approx. k1Lδ1 k1Lδ2 k1Lω1 k1Lω2 σi
L1a 0.920 6.05
L1b 0.462 6.09 · 10−2 3.77
L1c 1.09 −5.42 · 10−2 2.66 · 10−2 3.35
L1d 0.927 −0.557 2.10 · 10−2 0.67
L1e 0.666 −0.406 8.22 · 10−2 −1.67 · 10−3 0.66

Table D.2: Rudder Lift Coefficients

Since σb is significantly lower than σa, employing a velocity distribution compen-
sation is required for an accurate force prediction. Using a higher order velocity
compensation k1Lω2 6= 0, as in L1c, does reduce the variance further, but the 10%
reduction is negligible compared to the improvement from L1a to L1b (Table D.2).

We could therefore conclude that the lift increases proportionally to T
³
1 + c

√
T
´

or equivalently
∂L1
∂T
≈ c1T + c2T 3

2 = c3ω
2 + c4ω

3 (D.64)

Approximation L1d suffices because it incorporates quadratic rudder angle depen-
dency which is more influential than quadratic ∆L-terms (Figure D.6). It seemed
that the nonlinear thrust dependency was more pronounced for our vessel than
what could have been expected from the results in Molland and Turnock (1994).
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Figure D.8: Rudder drag force D.

Rudder Drag

The drag component from the rudder is expected to have the same structure as
the lift. For thin plates, the drag is known to be proportional to the squared angle
of attack. The suggested approximations thus include linear and squared rudder
angle terms.

D1a = T1
¡
k1Dδ1 |δ1|+ k1Dδ1δ21

¢
(D.65)

D1b = T1 (1 + k1Dωω1)
¡
k1Dδ1 |δ1|+ k1Dδ1δ21

¢
(D.66)

D1c = T1 (1 + k1Dω1ω1 + k1Dω2 |ω1|ω)
¡
k1Dδ1 |δ1|+ k1Dδ1δ21

¢
(D.67)

The measured rudder drag D and the normalized rudder drag coefficient

CD =
D

1
2ρAdd

2KT |ω|ω
(D.68)

are reproduced in Figure D.8 and D.9 respectively. Figure D.8 shows that the drag
force increases with the rudder angle in a nonlinear fashion, and from Figure D.9
we see that CD, just like CL as shown above, increases proportionally with ω. This
behavior and the estimated parameters are summarized in Table D.3. Without
thrust corrections, that is k1Dωj = 0 the variance of the estimate is about 70%
greater than for approximation b and c. As for rudder lift force, it seems that a
linear thrust correction, approximation D1b is sufficient because the variance σc is
not significantly lower than σb.



D.5 Model Experiments 177

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

Rudder angle [deg]

C
D

Normalized rudder drag coefficient C D

n = 6.67 
n = 13.33
n = 20.0 

Figure D.9: Normalized rudder drag coefficient CD.

Approx. k1Dδ1 k1Dδ2 k1Dω1 k1Dω2 σi
D1a 0.093 0.727 0.18
D1b 0.079 0.615 9.64 · 10−3 0.11
D1c 0.079 0.615 2.19 · 10−2 −3.63 · 10−4 0.10

Table D.3: Rudder Drag Coefficients

D.5.3 Velocity Correction Factors

The parameters of the velocity distribution corrections are found in Tables D.2-
D.9. In particular, for correction terms linear in the shaft speed

∆L = 1 + k1Lω1ω = 1 +
k1Lω1p
k1Tp

√
T = 1 + 0.343

√
T (D.69)

∆D = 1 + k1Dω1ω = 1 +
k1Dω1p
k1Tp

√
T = 1 + 0.158

√
T (D.70)

The suggested crude approximations were on the form

d∆L(Fxd, Fyd) = ∆L(Fxd) + cL̂y|Fyd| = 1 +
k1Lω1p
k1Tp

p
Fxd + cL̂y|Fyd|(D.71)

d∆D(Fxd, Fyd) = ∆D(Fxd) + cD̂y|Fyd| = 1 +
k1Dω1p
k1Tp

p
Fxd + cD̂y|Fyd|(D.72)

that is proportional to
√
Fx and |Fy|. A least-square fit of parameters was per-

formed for this structure and for two other ones that seemed appropriate. Since
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the d∆L and d∆D were assumed to have the same structure only the suggested
functions ofd∆L are givend∆La(Fxd, Fyd) = 1 + cL̂x

p
Fxd + cL̂y|Fyd| (D.73)d∆Lb(Fxd, Fyd) = 1 + cL̂x

p
Fxd + cL̂y

q
|Fyd| (D.74)

d∆Lc(Fxd, Fyd) = 1 + cL̂x
p
Fxd +

cL̂y|Fyd|
1 + cL̂x2Fxd

(D.75)

Approx. cL̂x cL̂y cL̂x2 σid∆La 0.3396 0.0883 1.0d∆Lb 0.3189 0.0871 0.74d∆Lc 0.3341 0.4168 3.512 0.23

Table D.4: Inverse Mapping, Lift Velocity Corrections

Approx. cL̂x cL̂y cL̂x2 σid∆Da 0.1559 0.0405 1.0d∆Db 0.1464 0.0400 0.73d∆Dc 0.1529 0.1923 3.366 0.23

Table D.5: Inverse Mapping, Drag Velocity Corrections

It can be seen from the variance parameter that approximation c is the best can-
didate. More detailed proposals generate a better fit in terms of variance σi, yet
these simplified approximations show good agreement with the actual response.

Even though approximation a is significantly poorer than approximation c, it does
actually fit the identified correction model quite well (see the contour plot in Figure
D.10). The contours of the actual model are dashed while the approximationsd∆La
andd∆Lc are drawn as a solid line. The difference between approximation a and c
is that the slope of the contours as a function of Fy depends on the magnitude of
Fx.

The same pattern could be seen for drag d∆D, those plots are, however, not repro-
duced here.

D.6 Concluding Remarks

Based on classic momentum theory considerations, a simple polynomial mapping
for longships and lateral forces produced by a propeller-rudder pair at zero advance
speed has been proposed. The effects present at low Reynholds number were
incorporated by conjecturing the existence of so-called velocity corrections. These
corrections enabled us to express the non-linear behavior of the static rudder



D.6 Concluding Remarks 179

0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

1.2

Fy

F x

Approximation "a": Lift

1.15

1.2

1.25

1.3

1.3

1.35

1.35

1.4

1.4

1.4

(a) d∆La(Fxd, Fyd)
0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

1.2

1.4

Fy

F x

Approximation "c": Lift

1.15

1.2

1.25

1.3

1.3

1.35

1.35

1.4

1.4

1.4

(b) d∆Lc(Fxd, Fyd)
Figure D.10: Approximated Lift correctionsd∆L (solid )and actual∆L(T ) (dashed)
sideforce with great accuracy. Bollard pull tests with a model ship verified that
the presented structure predicted the recorded data well.

For full scale vessels it is believed that velocity corrections loose importance in
the sense that ∆L ≈ 1 and ∆D ≈ 1 due to increased Reynholds numbers. If so,
finding appropriate inverse mappings is trivial.
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Appendix E

Description of Cybership II

E.1 Introduction

In order to conduct more technically advanced and computationally demanding
ship maneuvering operations, a new model ship was built from scratch at the
Department of Engineering Cybernetics. Being the successor of ”Cybership”, its
official name became ”Cybership II” (CS2). The initial phase started early 2000
and the boat was considered finished late 2001 when the last sensor was satisfac-
torily integrated.

Figure E.1: Cybership II exposed to waves.
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A desired feature of CS2 was portability: It should be possible with a minimum
of effort to physically move the laboratory set-up from one facility to another. As
the ship was built and tested at the Department of Engineering Cybernetics, the
”Guidance, Navigation and Control Laboratory” (GNC-Lab) served as the test
basin. Later on, in December 2001 CS2 was moved to the ”Marine Cybernetics
Laboratory” (MCL-Lab) at Tyholt. Moreover, portability in terms of hardware
configuration was also stressed. This called for using standard off-the-shelf hard-
ware and software components.

In the next section we give a brief description of CS2 itself, the new camera system,
and the developed control system.

E.2 Cybership II

CS2 is a scaled replica of an offshore supply vessel. The overall length is LOA =
1.255 meters, and it is equipped with three propulsive devices: In the bow there is
a small two-bladed RPM-controlled tunnel-thruster producing a sway force, and
at the stern there are two RPM-controlled main propellers with rudders.

CS2 has an inboard micro PC powered by a 244 MHz Pentium clone running
QNX and it is connected to the local LAN through a BreezeCOM 2 Mbit wireless
Ethernet link. The control software was developed and tested a priori under
Matlab Simulink and Real Time Workshop on the host PC. Opal RT-Lab handles
the compilation of the code as well as any other communication with the target
system such as transmission of various signals during the experiments.

Figure E.2 is an illustration of the implemented system.

Internet

Camera
PC

Target

Host PC (NT 4.0)

RGB Camera

Basin

2 Mbit WLAN

Figure E.2: Overview of the GNC Laboratory.

During start-up, CS2 automatically logs on to the camera PC in order to receive
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position and attitude data. The six DOF positions and orientations (attitude) are
measured with two standard RGB cameras with the aid of two MagTrak ISA-cards.
This system first locates the three colored markers on CS2 using Tsai’s algorithm
(Tsai 1987). An alternative version of the QUEST algorithm (Shuster and Oh
1981) based on singular value decomposition instead of eigenvalues calculates the
ship’s attitude in unit quaternions and converts it to Euler angles, that is the roll,
pitch and heading angles. Once the orientation is found, determining the position
of the ship is a straightforward operation.

The Litton LN-200 IMU is what really distinguishes CS2 from other model ships.
To the best of our knowledge, this is the first model ship that actively utilizes
measured linear accelerations for control purposes. It is important to realize that
accelerometer output can not be used directly in planar control because as the ship
rolls and pitches, the measured surge and sway accelerations will be contaminated
with gravity components. In order to cancel gravity and calculate horizontal accel-
erations, it is required to have accurate estimates of roll and pitch angles available.
The filter that estimates roll and pitch by integration of gyro and accelerometer
measurements, a so called vertical reference unit (VRU), is described in Section
3.3.2. Successful use of measured acceleration relies on having a well performing
VRU.

E.2.1 Software Description

Operator Station and Modes

An operator station (OS) consisting of a graphical user interface (GUI) and a
three-axis joystick used for manual control was developed under LabView 6.0i
(Figure E.3). The user was allowed to monitor and operate the vessel in three
different modes:

DP Fully automatic positioning control, i.e. station keeping. The observer, con-
troller and thrust allocation modules were enabled and running.

Manual In manual mode the joystick was used to control each one of the three
DOFs independently. The controller was disabled but the observer and the
thrust allocation module were active.

Init In init mode neither the observer, controller nor the thrust allocation module
were active. The thrusters and rudders could however be controlled by set-
points given on the OS.

An additional feature of the OS was access to controller gains enabling the operator
to adjust the controller tuning and strategy (e.g. nonlinear control, acceleration)
online. Furthermore, estimation of accelerometer and gyro biases could be acti-
vated (Figure E.4). Typically, these biases were estimated during init mode and
frozen during the conducted experiments.
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Figure E.3: Main page of the operation station.

Camera System

The camera system is responsible for measuring the actual position and orientation
of the vessel. In order to be comparable with DGPS, which is the most commonly
used position reference system in the North Sea, the accuracy had to be around 1
cm. The sampling rate, the rate at which new measurements are available, should
be around 10 Hz. This rate is more realistic than the 50 Hz rate used by Cybership
(Strand 1999, Berge 1999).

Portability of the camera system imposed two requirements. First of all, the weight
and size of the camera system had to be low. Secondly, it must be easy to calibrate,
because a camera system needs calibration every time the equipment is moved.

The resulting system (Figure E.5) uses two standard video cameras with standard
RGB-signal output. Each camera is connected to a MagTrak prototype color
recognition card developed at the University of Girona, Spain. The MagTrak
cards are capable of detecting the pixel coordinates of up to three distinct colors
present in each grabbed frame. By employing Tsai’s algorithm (Tsai 1987), the
marker’s pixel coordinates from each of the two cameras are then converted to
three-dimensional positions relative to the origin of the ”Earth-fixed” frame, the
n-frame.

When the positions of the three markers pbj are known, it is straight-forward
to apply the QUEST-algorithm (Shuster and Oh 1981) to solve for the optimal
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Figure E.4: IMU page.

orientation of the vessel. QUEST determines the orientation in unit quaternions q
between a set of vectors in two different coordinate frames. In terms of the Euler
angles QUEST finds the optimal orientation θnb such that given m measurements,
the following performance index is minimized

min
θnb

mX
k=1

°°znk −R(θnb)zbk°°22 (E.1)

The actual marker positions on Cybership II are

pb1 =

 0.545
0.000
−0.155

 , pb2 =

 0.210
0.000
−0.770

 , pb3 =

 −0.6900.000
−0.060

 (E.2)

and as input to QUEST, the following data was used in order to remove the rn

dependency
zn1 = y

n
1 − yn3 zb1 = p

b
1 − pb3

zn2 = y
n
2 − yn3 zb1 = p

b
2 − pb3

zn2 = y
n
1 − yn2 zb1 = p

b
1 − pb2

(E.3)

Once the attitude θnnb is found, the optimal position r
n of the vessel can be found

from

rn =
1

3

3X
k=1

¡
ynk −R(θnb)pbk

¢
(E.4)
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Figure E.5: Camera system details

which is the minimum variance estimate of rn for the given Rn
b and y

n
k ’s.

E.2.2 Vessel Model Description

Low Speed Vessel Model

The following low speed model was considered

η̇ = R(ψ)ν

Mν̇ = −DLν + τ

and the actual parameters used in the mass and linear damping matrices

M =

 m−Xu̇ 0 0
0 m− Yv̇ mxbbG − Yṙ
0 mxbbG −Nv̇ Iz −Nṙ


DL =

 −Xu 0 0
0 −Yv −Yr
0 −Nv −Nr
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are listed in Table E.1

Parameter Value Unit
LOA 1.255 m
m 23.8 kg
Iz 1.76 kgm2

xbbG 0.0 m
Xu̇ -2.0 kg
Yv̇ -10.0 kg
Yṙ = Nv̇ 0.0 kgm
Nṙ -1.0 kgm2

Xu -2.0 kg/s
Yv -7.0 kg/s
Yr = Nv -0.1 kgm/s
Nr -0.5 kgm2/s

Table E.1: Vessel Parameters

Thruster and Rudder Models

For fixed pitch propellers the generated thrust force is more or less proportional
to the square of the propeller shaft speeds ωi. The low speed propeller/rudder
model for CS2 can conveniently be separated into two parts: The first one is the
nominal thrust (rudder angles δi = 0, i = 1, 2)

Ti =

½
kiTpω

2
i ωi ≥ 0

kiTn |ωi|ωi ωi ≤ 0 i ∈ [1, 3] (E.5)

and the second part gives additional rudder lift and drag forces, i = 1, 2,

Li =

½
Ti(1 + kiLωωi)(kiLδ1 + kiLδ2 |δi|)δi ωi ≥ 0
0 ωi < 0

(E.6)

Di =

½
Ti(1 + kiDωωi)(kiDδ1 |δi|+ kiDδ2δ2i ) ωi ≥ 0
0 ωi < 0

(E.7)

For the main propellers, i = 1, 2, the resulting surge and sway forces are

ui =

·
Ti −Di
Li

¸
(E.8)

The thruster and rudder parameters are given in Table E.2 and E.3, and the
positions of the individual thrusters relative to the b-frame are

rbbt1 =
£ −0.54 −0.075 ¤T (E.9)

rbbt2 =
£ −0.54 0.075

¤T
(E.10)

rbbt3 =
£
1.14 0.0

¤T
(E.11)

Figure E.6 shows the resulting feasible thrust domains.
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Table E.2: Nominal thrust parameters
Parameter Value [Ns2]
k1Tp , k2Tp 3.74·10−3
k1Tn , k2Tn 5.05·10−3
k3Tp 1.84·10−4
k3Tn 1.88·10−4

Table E.3: Rudder lift and drag parameters
Parameter Value Unit
k1Ln , k2Ln 2.10·10−2 s
k1Lδ1 , k2Lδ1 0.927 rad−1

k1Lδ2 , k2Lδ2 -0.557 rad−2

k1Dn , k2Dn 9.64·10−3 s
k1Dδ1 , k2Dδ1 0.079 rad−1

k1Dδ2 , k2Dδ2 0.615 rad−2

E.3 Inertial Sensor Feedback

The IMU was interfaced with CS2 over a 1 Mbit/s RS-485 synchronous serial
link. The six raw measurements, three accelerations and three gyro rates, were
received at a rate of 400 Hz. Especially the acceleration signals were contaminated
with extremely rapid oscillations of a large magnitude, and those fluctuations had
to be removed. None of the incoming measurements could be lost, because any
further processing of the data would introduce errors in the filtered signal. Hence,
a dedicated low-level driver buffering up these measurements was developed to
handle the high data rate and the inherent signal variations.

The input received by the low-level driver had to be processed by some kind of low-
pass filter, and it was decided to implement a low-pass FIR-filter. The advantage
of such filters is that they have no memory and the output is simply a weighed sum
of the last N inputs. In order to avoid phase lag, the filter algorithm was applied
twice; forwards on the incoming data and backwards on the temporary processed
filtered results. The sequence is illustrated in Figure E.7. Given an array of filter
coefficients Bj where 0 ≤ j ≤ N , the following operations formed the basis of the
filter.

Forwards : xk =
NX
j=1

Bjuk−N+j (E.12)

Backwards : yk =
NX
j=1

Bjxk−j+1 (E.13)

A 40th order low-pass filter (N = 40) with cut-off a frequency fc = 2 Hz seemed
appropriate for this purpose.

The price paid by re-applying the filter backwards is a signal delay of 10 ms. This,
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Figure E.6: Outline of Cybership II: Feasible thrust domains.

however, was not considered a problem, because the delay leads to the inertial
measurements being better synchronized with the measured position and heading.
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Figure E.7: Filtering of the IMU-measurements uk. Forwards into xk, and back-
wards into yk.
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âb
~ab n

b
=

ab n
b
¡
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