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SummaryComputational �uid dynamis CFD gives engineers and researhers the op-portunity to model aurately omplex physial proesses involving heattransfer and �uid �ow. At the same time, one wishes to be able to de-sign optimal model based ontrollers for suh systems, for whih no simpleanalytial solutions or ompat models exist. Typially these models havea number of unknowns that exeeds 10 000, and sometimes even millions.Model based ontroller design for systems of suh high dimensionality isinfeasible due to the high omputational requirements. Through the useof modern model order redution tehniques, one an bypass the high di-mensionality of the omputational �uid dynamis models during ontrollerdesign. This thesis ombines the sienti� disiplines of omputational �uiddynamis, model order redution and ontrol theory, as important stepstowards employing real-time, optimal and model based ontrol for systemsdesribed by high-dimensional models.The history of omputational �uid dynamis is reviewed and the proe-dure is demonstrated through an example using the �nite volume method.It is demonstrated how CFD models an be put in standard state-spaeform for analysis of system properties, suh as stability, and a CFD modelof an unstable system is stabilized through redued-order ontrol. Di�erentmodel redution tehniques are introdued, fousing on methods that arepartiularly suited for ontrol design and large-sale systems. A new wayof seleting snapshots for snapshot-based model redution is proposed.Some seleted topis from ontrol theory are inluded for ompleteness,in partiular model preditive ontrol and also the expliit solution of the



iimodel preditive ontrol problem based on multiparametri programming.This thesis proposes to use model redution in order to make expliit modelpreditive ontrol feasible for a larger number of systems, and it is shownthat a signi�ant redution in online ontroller omplexity an be ahieved,without ompromising performane and stability. Further, we onsideroutput-feedbak ontroller design based on redued-order models. Whenusing redued-order models to design model-based ontrollers for omplexsystems, there always arises a question of guaranteed losed-loop stabilityin presene of the unertainty introdued. Some important properties ofthe resulting losed-loop systems, and ontroller and observer riteria, forstability are established.Moreover, this thesis presents a novel design proedure for robust modelpreditive ontrol based on redued-order models. The proedure givesprovable losed-loop stability in the presene of the model approximationerror introdued in the model redution proess. To our knowledge, this isthe �rst time stability is proven for model preditive ontrol designed basedon redued-order models.Many physial systems in for instane mehatronis, miro-eletri me-hanial systems, rotating mahinery, aerodynamis and aoustis are bestdesribed by CFD models with a large number of states. At the same time,they are haraterized by very fast dynamis, suh that the ontrollers ap-plied are required to be equally fast. We develop fast model based ontrollerswith onstrained ontrol input, in ombination with state estimators in anoutput-feedbak struture. For the �rst time, redued-order models devel-oped using a model onstrained optimization-based redution tehnique areused for onstrained optimal ontrol, demonstrating signi�antly improvedperformane over ontrol design based on the standard methods for modelredution, suh as proper orthogonal deomposition, that is most frequentlyused for large-sale systems. This is an important step towards ahievingand atually implementing real-time, model based and onstrained optimalontrol for suh systems.
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Chapter 1Introdution�640k should be enough for anybody."-Bill Gates, 1981Contrary to what was envisioned in the opening quote, the world hasseen a formidable inrease in omputing power over the last deades.Beause of this, engineers and researhers take on greater and greater om-puting tasks.Computational �uid dynamis (CFD) has emerged as a powerful toolin many areas of industry and aademia. CFD is a joint designation fornumerial methods for solving and analyzing problems onerning �uid-,heat- and mass �ow by omputer simulation. These methods inlude gridgeneration, spatial and temporal disretization, solution of the resultingequations, and presenting the results to the user.The underlying phenomena in most CFD appliations are desribed bypartial di�erential equations, whih implies that the system state is in�nite-dimensional. A lot of e�ort has been put into designing ontrol laws forthese distributed parameter systems. Most of these solutions are restritedto problems with relatively simple geometries and �ows, for example for in-ompressible hannel �ows, pipe �ows and ylinder �ows. Moreover, manyphysial problems are multi-disiplinary, with several PDEs desribing dif-ferent e�ets within the problem domain. While this is very di�ult to1



2 Introdutionhandle with the theory of distributed parameter systems, it is relativelystraightforward to set up suh a problem in any ommerial CFD softwarepakage. This is indeed the �raison d'être" for CFD.Although CFD is a very useful tool for analyzing �ow phenomena, theomputational ost of solving CFD problems is high. It is not unusual thata CFD ode needs hours, and even days and weeks to solve a di�ult prob-lem, for instane if three spatial dimensions are onsidered for a omplexgeometry and �ow pattern. If optimization is to be performed based on aCFD model, for example to optimize a design, hundreds or even thousandsof solutions are needed before an optimal design is found.Moreover, sine CFD analysis often gives aurate solutions that anhelp us understand the behavior of a given system, it is desirable to designontrol laws based on CFD models. We then fae the following problems:CFD models
• are expensive to use for unsteady simulations,
• do not ouple well with other disiplines suh as ative ontrol and
• are too large for model based-, optimal- and robust ontrol design.Consequently, as engineers and researhers take on greater hallenges withthe inreasing use of CFD, they are inevitably faed with the �urse ofdimensionality".Generally, ontrollers are of the same order as the plant. Consequently,it is prohibitively expensive to ompute ommon ontroller strutures forlarge-sale systems. When the plant has high dimensionality, the ontrollersalso require extensive state information, are extremely di�ult to tune andare expensive to implement and maintain.To overome these problems, the theory of model order redution hasemerged over the last deades. The motivation is lear from the viewpointof a ontrol engineer: With a low-order model at hand that approximatesthe neessary behavior of the CFD model well, we regain the opportunityto apply our large ontrol system design toolbox.



1.1 Sope of Thesis 3Example 1. Optimal Control of ReservoirsOil and gas wells and reservoirs are usually desribed by omplex CFD mod-els with 103-106 dynami variables, and are ontrolled by engineers based onomplex simulation studies and the engineer's experiene. There is a greatpotential for improving the operation by introduing optimal ontrol strate-gies for the reservoirs (e.g. for water injetion strategies). With proper useof model order redution tehniques, one an envision that approximate, loworder models an be used to design model-based optimal ontrollers of loworder.1.1 Sope of ThesisFor systems with relatively simple �ow regimes and geometries, one anaim at designing ontrollers and stabilizing the underlying system of par-tial di�erential equations through the use of ontrollers designed based onmathematial analysis of the PDEs. For the broader speter of systems,this is not feasible as �ow regimes and geometries turn omplex. It is, how-ever, the great strength of CFD that one is able to desribe suh problemson a omputer, and obtain very aurate simulation results that annot beahieved by simplifying models and systems of partial di�erential equations.Through the use of model order redution tehniques, it is then possible todevelop models of low dimension that apture the essential dynamis. Thisway, one an ahieve improved performane and losed-loop stability forproblems that would otherwise be impossible to even model with onven-tional analytial tools.In this work, we onsider models that result from spatial (and temporal)disretization of partial di�erential equations by using CFD tehniques andsoftware. We onsider the problem of designing low order model-basedoptimal ontrol for the high-�delity CFD models. We fous on onstrainedontrol, sine meeting onstraints is important for systems in whih safeoperation is ritial. In partiular, we onsider model preditive ontrol, andthe expliit solution to the model preditive ontrol problem, and we striveto make these tehnologies appliable to systems desribed by CFD-models.



4 IntrodutionThis requires model redution, state estimation, handling of unertaintiesand ensuring robust stability.



Chapter 2Bakground Material
This hapter introdues the tools and tehniques that will be used insubsequent hapters to develop redued-order models and low orderontrollers. Setion 2.1 gives a brief introdution to CFD, Setion 2.2 de-sribes the system representations that we will onsider, Setion 2.3 givesan overview of the model redution methodology that will be used, andSetion 2.4 presents some ontrol preliminaries. In Setion 2.5 we disusssome issues that emerge when we apply ontrollers based on redued-ordermodels on the high-�delity model, and in Setion 2.6 we give a motivatingexample.2.1 Computational Fluid DynamisThis setion presents the fundamentals of CFD, provides some motivatingexamples and reviews the basis of the methodology.De�nition 1. Computational Fluid DynamisComputational Fluid Dynamis or CFD is the analysis of systems involving�uid �ow, heat transfer and assoiated phenomena by means of omputer-based simulation (Versteeg and Malalasekera, 1995).With the need for a better understanding of �ow phenomena, the aerospae5



6 Bakground Materialindustry beame the driving fore for the development of CFD tehniquesin the 1960s. The realization that CFD is heaper and faster than ex-periments quikly made CFD an important tool in the design, R&D andmanufaturing proesses of airraft and jet engines.Over the years, the development of CFD odes has been intimatelyoupled to advanes in omputer hardware apabilities, sine the solutionof ompliated �ow problems requires the manipulation of thousands oreven millions of numbers. Along with the exponential growth of proessingspeed and memory apaity1, CFD has beome a powerful and prominenttool that is subjet to massive researh, and is used within numerous areasof appliation, suh as
• reservoir evaluation and simulation,
• design optimization,
• �ow around vehiles, lift and drag omputation,
• marine engineering,
• ombustion modeling,
• fuel ell design and analysis,
• �ow inside rotating passages et.,
• hemial proess engineering,
• eletrial end eletroni engineering,
• wind loading and ventilation in buildings,
• weather predition,
• �ow in rivers and oeans,1Almost every measure of the apabilities of digital eletroni devies is linked toMoore's Law; the number of transistors that an be inexpensively plaed on an integratediruit is inreasing exponentially, doubling approximately every two years.



2.1 Computational Fluid Dynamis 7
• �ow in arteries and veins and
• earthquake modeling.Still, many CFD appliations require huge omputing resoures, and thesize of problems that an be solved on an ordinary omputer is quite lim-ited. The following example illustrates the potential and omputationalrequirements of state of the art CFD odes.Example 2. Earth Quake SimulationIn Akelik et al. (2003), the authors arry out 1 Hz simulations of the 1994Northridge earthquake in Los Angeles with 100 million grid points. Theirsimulations are among the largest unstrutured mesh omputations reportedto date, requiring multiple hours on thousands of proessors.Example 2 provides a stark ontrast to the prophey of the IBM hair-man in the early days of omputers:�I think there is a world market for maybe �ve omputers."-Thomas Watson, hairman of IBM, 19432.1.1 A Brief Introdution to CFDFrom a sienti� viewpoint, omputational �uid dynamis an be dividedinto three phases;1. pre-proessing,2. solving equations, and3. post-proessing.The main parts of these three elements will be summarized in the nextthree subsetions. Most of the material in this subsetion is based onVersteeg and Malalasekera (1995), but the literature on CFD is vast, and anumber of exellent books exist (Ferziger and Peri, 2002, Anderson, 1995,Wesseling, 2001).



8 Bakground MaterialPre-ProessingIn the pre-proessing phase, the problem is transformed into a format suit-able for the solver. In this step, the user must de�ne the omputationaldomain, the governing equations, �uid properties and whih phenomenathat need to be modeled. An important part of speifying CFD problems,as well as when solving partial di�erential equations in general, is spei�a-tion of appropriate boundary onditions (BC) and initial onditions (IC).Then omes gridding ; the sub-division of the omputational domaininto a number of small sub-domains. The result of the gridding proess isa grid (or mesh), onsisting of a (large) number of elements. The solutionto the governing equations is de�ned at nodes inside eah grid element.Consequently, the auray of the solution depends on the number of gridelements. Usually, the grid is �ner in areas where large variations our inthe �ow, and oarser in regions where little happens. Figure 2.1 shows agrid example for �ow around a ylinder. Several di�erent mesh types exist,suh as uniform and non-uniform, regular and unstrutured. A handbookof grid generation an be found in Thompson et al. (1998).
Figure 2.1: Example of a non-uniform, unstrutured grid with 5557 ele-ments, used for omputing the �ow around a ylinder loated at the left.The grid is �ner lose to the ylinder, sine this is where we have largegradients. The grid is generated with the ommerial software Comsol Mul-tiphysis.Solving EquationsA ommon CFD solver performs the following steps:



2.1 Computational Fluid Dynamis 9
• Approximation of unknown �ow variables by simple funtions.
• Disretization by substituting the approximations for the governingequations.
• Solution of the resulting algebrai equations.There are three di�erent diretions when it omes to approximation anddisretization; �nite di�erene, �nite element and spetral methods. The�nite volume method is demonstrated in Setion 2.6.Solvers inlude familiar algorithms from linear algebra, suh as Gauss-Seidel iteration, Krylov subspae methods and the onjugate gradient method.For large problems, the Multigrid method (Briggs and MCormik, 2000)has beome very popular in reent years.Post-ProessingThe post-proessing stage naturally deals with presenting to the user theresults provided by the solver in the previous step. The post-proessorusually provides a variety of plotting tools, partile traking and animations.Figure 2.2 shows a two-dimensional surfae plot for the veloity �eld aroundthe ylinder in Figure 2.1.

Figure 2.2: Flow around a ylinder. The solution is generated with theommerial software Comsol Multiphysis, using the grid in Figure 2.1.



10 Bakground Material2.2 System DesriptionIn this setion we disuss some properties of the types of systems that wewill onsider in later hapters.2.2.1 CFD ModelsModels that arise through spatial (and temporal) disretization of PDEsover the omputational domain, are subsequently referred to as CFD mod-els. The CFD models are assumed to be aurate representations of theunderlying PDEs, whih an be ahieved by seleting a proper grid andnumerial algorithm.When disretizing linear partial di�erential equations, or when lineariz-ing a nonlinear CFD system, we frequently end up with linear systems ingeneralized state-spae form
Eẋ = Ax + Bu (2.1a)

y = Cx, (2.1b)frequently referred to as desriptor systems. Here, x ∈ R
n represents thedesriptor variables, u ∈ R

m ontains the inputs and y ∈ R
p ontains theoutputs of the system, and E,A ∈ R

n×n, B ∈ R
n×m and C ∈ R

p×n. InCFD appliations, x ontains the n unknown �ow quantities in the ompu-tational grid. Many ommerial CFD software pakages allow the user toexport the CFD desriptions on the format (2.1). For nonlinear CFD odes,the linearization matries E,A,B,C are evaluated at steady-state �ow on-ditions. The state spae matries are typially sparse matries of very largedimension, e.g. n > 104. Although these matries ould be manipulated toobtain a smaller state-spae system, suh a proedure is often ompliatedand an destroy the sparsity of the system. The sparsity is useful in nu-merial methods used in e.g. model redution. The more general form (2.1)is therefore preferred. However, the state dimension of the system is stillprohibitively large for many appliations, suh as �ow ontrol design.In CFD appliations, it is ommon that the matrix E ontains somezero rows, whih arise from �ow boundary onditions. Consequently, the



2.2 System Desription 11matrix E an be singular. In this ase, (2.1) onsists of a ombination ofordinary di�erential equations and algebrai equations. Suh systems arereferred to as di�erential algebrai equations (DAEs). With a slight abuseof notation, we shall subsequently refer to x as the system state, also in thease of singular E.Assumption 1. It is assumed in the following that the matrix penil (A− λE)is regular, i.e. (A− λE) is singular only for a �nite number of λ.Assumption 1 is not restritive, and guarantees the existene and unique-ness of the solution of (2.1) for any spei�ed initial ondition.In the following we shall use the notation G (E,A,B,C) to refer tosystems of the form (2.1). If E = In, we use the notation G (A,B,C). Wewill also denote by G (s) and Gr (s) the transfer funtions of the high-�delityand redued-order models, respetively.2.2.2 Stability Properties of Desriptor SystemsThe following theorem establishes stability of desriptor models.Theorem 1. A desriptor model Eẋ = Ax is stable if all �nite eigenvalues
λ of (A− λE) are in the open left-half omplex plane.The generalized eigenvalues λ an be obtained by solving the equation

det(A− λE) = 0. (2.2)In the disrete-time ase, the system is stable if the generalized eigenvalueslie stritly inside the unit irle.Remark 1. Note that if A is negative de�nite while E is positive de�nite,the system Eẋ = Ax is stable. This is, however, a onservative riterion,sine a system may well be stable although this does not hold.



12 Bakground Material2.3 Model-Order RedutionThis setion de�nes the problem of model-order redution, gives a shortliterature overview and presents some fundamentals and algorithms thatare used in subsequent hapters.2.3.1 Introdution and Problem StatementModel-order redution has emerged over the last ouple of deades as animportant tool to analyze and design ontrollers for omplex systems.The literature on model redution is vast, partiularly for linear systems.A survey an be found in Antoulas et al. (2001), and the books Antoulas(2005a) and Benner et al. (2005) desribe many of these algorithms in detail.The monograph by Obinata and Anderson (2001) treats the appliation ofmodel redution tehniques for ontrol of linear systems, although large-sale systems are not overed spei�ally. For nonlinear systems, on theother hand, model redution is still very muh an open problem.The model redution problem an be stated as follows. For a systemmodeled by the nonlinear di�erential equation
ẋ = f (x, u) (2.3a)
y = g (x, u) , (2.3b)where x ∈ R

n is the system state, u ∈ R
m ontains the m inputs to thesystem and y ∈ R

p ontains the p outputs; �nd a new dynamial system
ẋr = f̂ (xr, u) (2.4a)
yr = ĝ (xr, u) , (2.4b)where xr ∈ R

r, u ∈ R
m, and yr ∈ R

p suh that r ≪ n and the followingriteria should be satis�ed:1. The approximation error is �small", preferably with a global errorbound.2. System properties, suh as stability and passivity, are preserved.



2.3 Model-Order Redution 133. The proedure is automati, numerially stable and e�ient.If the system is modeled by a linear time invariant model of the generalform (2.1), we seek an rth order approximation
ẋr = Arxr + Bru (2.5a)
yr = Crxr, (2.5b)where r ≪ n, xr ∈ R

r, yr ∈ R
p, Ar ∈ R

r×r, Br ∈ R
r×m, Cr ∈ R

p×r, andsubjet to the same riteria as above.Comment 1. An alternative to model-order redution as desribed above, isto develop a low-dimensional model by identifying the major harateristisand most important physial phenomena of an initially omplex model of thesystem at hand. Suh harateristis ould be time sales and spatial varia-tions, for example. Based on this, one an then tailor the low-dimensionalmodel so as to inorporate these harateristis. This proedure is not au-tomati, and it requires great knowledge about the system in question. Onthe other hand, one an ensure that spei� physial properties and relationsare handled properly in the simpli�ation proess. Suessful use of suh anapproah is demonstrated by Storkaas, Skogestad, and Godhavn (2003).Preservation of system properties suh as stability and passivity givesadvantages when it omes to ontroller design. For example, given a pas-sive system desribed by a passive high-order model2, a passivity preservingmodel redution proedure an be used to �nd a passive model of low order.Then, a (stritly) passive model based ontroller of low order an be de-signed. The losed loop onsisting of the plant and the low order ontrolleris then provably stable, using arguments from the theory of interonnetionsof passive systems. Preservation of passivity is partiularly important in ap-pliations suh as iruit design, where large iruits onsisting of passive2Although a given plant or system of partial di�erential equations is passive, thehigh-�delity CFD model designed to desribe the plant is not neessarily passive. Inorder to ensure this, a disretization sheme that preserves the passivity property shouldbe used (Kristiansen and Egeland, 2000).



14 Bakground Materialiruit elements are to be replaed by smaller iruits using a smaller numberof passive elements. Several researhers have studied this problem, amongothers Antoulas (2005b), Bai and Freund (2001), and Sorensen (2004). In�uid �ow appliations, however, the issue of passivity preservation is lessimportant, sine the systems enountered are rarely passive.Model redution for ontrol is somewhat di�erent from model redutionfor simulation purposes, and it is treated among others by Obinata and Anderson(2001) and Zhou et al. (1996). A redued-order model that gives good ap-proximation in open loop may not neessarily be a good approximation inlosed loop, sine the system dynamis hange one the feedbak loop islosed. If the ultimate objetive is the low-order ontroller (rather thanthe low order model), then it is essential that the losed-loop performaneobjetive be inorporated in the redution tehnique. A ommon approahis to use frequeny weighting in order to emphasize the importane of ap-proximation quality in the bandwidth of the losed-loop system. Anotherapproah is to use iterative plant- and ontroller redution in a losed-loopon�guration (see e.g. Wortelboer et al., 1999).Next, we will brie�y introdue some model redution tehniques thatwill be used in later hapters.2.3.2 Balaned TrunationBalaned trunation is a standard tehnique for model redution of sta-ble, linear systems, and an be found in many standard referenes onontrol (see e.g. Zhou et al., 1996). It was originally introdued to theontrol ommunity by Moore (1981). Although the method is omputa-tionally demanding when the system order is large, reent and ongoingresearh address the extension of these algorithms to large-sale settings(Sorensen and Antoulas, 2002, Gugerin and Antoulas, 2004, Li and White,2002, Benner et al., 2000). Modern numerial linear algebra tehniques hasallowed balaned trunation tehniques to be applied e�iently to systemsof order up to n = 106 (Benner, 2007).Loosely speaking, balaned trunation is done by trunating states thatgive the least ontribution to the input-output behavior. This motivates



2.3 Model-Order Redution 15onsidering the ontrollable and observable subspaes of the state spae.The ontrollable subspae ontains the set of states that an be reahedwith zero initial state and a given input u(t), while the observable subspaeomprises those states that, as initial onditions, an produe a non-zerooutput y(t) without external input. The ontrollability and observabilitygrammians P and Q are n×n matries whose eigenvetors span the ontrol-lable and observable subspaes, respetively. If the system is minimal, theGramians are positive de�nite. The following fundamental theorem givesonditions for the existene of the Gramians.Theorem 2. If G(A,B,C) is exponentially stable, then the ontrollabil-ity and observability Gramians P and Q exist, and are the unique positivede�nite solutions to the Lyapunov equations
AP + PAT + BBT = 0, (2.6)
ATQ+QA + CTC = 0. (2.7)A system is said to be balaned when the states that are exited most byinput are at the same time the states that produe the most output energy.In suh a realization, the grammians are both equal to a diagonal matrix,say Σ, with the elements σi on the diagonal in desending order,

P = Q = Σ. (2.8)The diagonal elements σi are alled the system's Hankel singular values.Model redution by balaned trunation proeeds by �rst obtaining the bal-aned system realization, and then trunating the states with small Hankelsingular values.The error introdued by balaned trunation is upper bounded by
‖G (s)− Gr (s)‖∞ ≤ 2

n∑

k=r+1

σk. (2.9)This means that the error is equal to twie the sum of the trunated Hankelsingular values. The error an also be represented in terms of a time-domain



16 Bakground Materialoutput error,
‖y (t)− yr (t)‖2 ≤ 2

n∑

k=r+1

σk ‖u (t)‖2 . (2.10)Remark 2. From Theorem 2 it is easily understood that balaned trunationis restrited to stable systems.Several extensions to balaned trunation exist. It is espeially worthmentioning LQG balaned trunation (Jonkheere and Silverman, 1983),that is spei�ally targeted at ontrol appliations by onsidering a losed-loop balaned realization, and is appliable to unstable systems, ontrary tothe standard implementation. Some nonlinear extensions also exist, see forexample Sherpen (1993) and Lall et al. (2002), and the referenes therein.2.3.3 Model Redution by ProjetionModel redution by projetion is a general framework that an be used todesribe many redution algorithms for large-sale systems. For a generalsystem, desribed as in equation (2.3), model redution by projetion worksas follows. It is assumed that the state x an be approximated by a linearombination of r basis vetors
x ≈ Φrxr, (2.11)where xr ∈ R

r is the redued state and Φr ∈ R
n×r is a projetion matrixontaining as olumns the r basis vetors φ1, φ2, . . . , φr. Substituting (2.11)into (2.3), and requiring the resulting residual to be orthogonal to the spaespanned by Φr gives the redued model

ẋr (t) = ΦT
r f (Φrxr (t) , u (t)) (2.12a)

yr (t) = g (Φrxr (t) , u (t)) , (2.12b)where xr ∈ R
r is the redued state and yr ∈ R

p is the output of the reduedmodel.



2.3 Model-Order Redution 17For linear systems, the redued state-spae model is given by
Erẋr = Arxr + Bru (2.13a)

yr = Crxr, (2.13b)where
Er = ΦT

r EΦr, (2.14)
Ar = ΦT

r AΦr, (2.15)
Br = ΦT

r B, (2.16)and
Cr = CΦr. (2.17)Several model redution algorithms use the general projetion frame-work just desribed; however, they di�er in the omputation of the proje-tion matrix Φr.2.3.4 Proper Orthogonal DeompositionFirst introdued independently by Karhunen (1946) and Loève (1946), properorthogonal deomposition (POD) is sometimes alled the Karhunen-Loèveexpansion. The method is also known as prinipal omponent analysis.When �rst applied in the ontext of �uid mehanis in Lumley (1967), itwas used to study turbulent �ows. Appliable even for very high-order sys-tems and non-linear problems, POD has beome the most popular methodwithin the �eld of model redution and ontrol for CFD appliations. Thisapproah has been onsidered for ative ontrol purposes by numerous au-thors (Kunish and Volkwein, 1999, Astrid et al., 2002, Ravindran, 2000,Benner and Saak, 2005, Atwell et al., 2001, Afanasiev and Hinze, 2001). How-ever, there are several limitations assoiated with using the POD; in par-tiular, POD-based redued models lak the quality guarantees of thosederived using more rigorous methods, suh as balaned trunation. Even inthe ase of stable LTI systems, redution via POD an lead to undesirableand unpreditable results, suh as unstable redued models.



18 Bakground MaterialPOD an be desribed in view of the projetion framework desribedin Setion 2.3.3. In the searh of the basis vetors Φr, the POD proedureproeeds as follows. Collet a �nite number of M samples x (ti) from (2.1)or (2.3), for t = t1, . . . tM , in a matrix of snapshots
X =

[
x1, x2, . . . , xM

]
= [x (t1) , x (t2) , . . . , x (tM )] , (2.18)where the olumns {X·, j}

M
j=1 an be thought of as the spatial oordinatevetors of the system at time step tj . The rows {Xi, ·}

n
i=1 desribe the timetrajetories of the system evaluated at di�erent loations in the spatialdomain (Kunish and Volkwein, 1999). The snapshots may be taken fromphysial experiments or from omputer (CFD) simulations.For a given number of basis vetors r, the POD basis is found by mini-mizing the error ∆ between the original snapshots and their representationin the redued spae, de�ned by

∆ =
M∑

i=1

[x (ti)− x̃ (ti)]
T [x (ti)− x̃ (ti)] , (2.19)where x̃ (ti) = ΦrΦ

T
r x (ti).The minimizing solution Φr an be found via the set of left singularvetors of the snapshot matrix X , whih is onveniently omputed usingthe singular value deomposition of X ,

X = ΦΣΨT , (2.20)where the olumns of Φ = [φ1, . . . , φM ] form the optimal orthogonal basisfor the spae spanned by X . Φ and Ψ are unitary matries (i.e. Φ−1 =
ΦT ,Ψ−1 = ΨT ) and Σ is a diagonal matrix with the singular values σi of Xon the diagonal. The r most signi�ant basis funtions are assoiated withthe r largest singular values σi, i = 1, . . . r, of X . If the singular values
σi fall of rapidly in magnitude, a redued-order model may be onstrutedby projetion using Φr onsisting of the r �rst olumns of Φ. These basisfuntions are the ones that apture the most salient harateristis of thesnapshot data X .



2.3 Model-Order Redution 19The redued-order model will apture only the dynamis present in thesnapshot data, and so the hoie of snapshots is ritial. Suitable inputsshould therefore be used to exite the system, so that the desired hara-teristis are present in the data. Frequently, snapshots are taken from theimpulse- or step responses of the CFD model. Moreover, some methods existfor adaptively deiding how many snapshots to inlude, and where to takethem, see for example Meyer and Matthies (2003) or Hinze and Volkwein(2005).Proper orthogonal deomposition is summarized in Algorithm 1.Algorithm 1. Proper Orthogonal Deomposition1. Simulate the state equations and reord snapshots X of the systemstate.2. Perform singular value deomposition of the snapshot data, as in (2.20).3. Extrat the r most signi�ant basis vetors Φr based on the singularvalues σi of the snapshot matrix X .4. Projet the governing equations onto the redued basis as in (2.12) or(2.14)-(2.17) to �nd the redued model.2.3.5 Goal-Oriented Model-Constrained RedutionGoal-oriented model-onstrained redution is a redution algorithm pro-posed in Bui-Thanh et al. (2007), that also uses the general projetionframework in Setion 2.3.3. In this proedure, a ost similar to (2.19) isused as an objetive funtion in an optimization formulation. The opti-mization problem seeks to �nd the rth-order basis Φr = [φ1, . . . , φr] ∈ R
n×rand the orresponding redued-order state solution xr(t) ∈ R

r so that the
L2-norm of the error between the full-order and redued-order output is



20 Bakground Materialminimized3. For the linear model (2.1), this an be formulated as
min
Φr ,x

1

2

S∑

l=1

∫ T

0

(

yl − yl
r

)T (

yl − yl
r

)

dt (2.21a)
+

β

2





r∑

j=1

(
1− φT

j φj

)2
+

r∑

i,j=1,i6=j

(
φT

i φj

)2



subjet to:
ΦT

r El
rΦrẋ

l
r = ΦT

r Al
rΦrx

l
r + ΦT

r Bl
ru

l, l = 1, . . . ,S (2.21b)
Φxl

r (0) = xl (0) , l = 1, . . . ,S (2.21)
yl

r = C lΦxl
r, l = 1, . . . ,S. (2.21d)The summation over l allows one to onsider a �nite set of S instantiationsof the governing equations (2.1) that ould arise from variations in theoe�ient matries E, A, B and C, the input u, or the initial state x0.The supersript l thus denotes the lth instane of the system, whih hasorresponding state xl (t), input ul (t), and output yl (t). For example,where (2.1) represents a spatially disretized PDE, these variations stemfrom hanges in the domain shape, boundary onditions, oe�ients, initialonditions or soures of the underlying PDEs.The two key di�erenes between the formulation (2.21) and the PODare that the model-onstrained optimization approah1. enfores the redued-order governing equations as onstraints, and2. minimizes the output error, while the POD minimizes the error ofstate predition over the entire domain.The former issue ensures that the error (y − yr)

T (y − yr) in (2.21a) is eval-uated for yr that are ahieved by simulating the redued-order model, and3If y and yr are taken to be the impulse response of G (s) and Gr (s), respetively,then ‖y − yr‖L2
is equal to the di�erene ‖G (s) − Gr (s)‖

H2
in H2-norm between the twosystem transfer funtions.



2.4 Control Preliminaries 21not just from projetion, as for x̃ in (2.19). By emphasizing the impor-tane of an aurate approximation of input-to-output behavior instead ofattempting to minimize the error over the entire state domain, it is hopedthat redued models are obtained that are e.g. more suitable for use in anoutput-feedbak implementation.The full-order output yl (t) is obtained from simulating the high-�delitymodel over a seleted set of inputs and the interval t ∈ [0, T 〉. The seondterm in the ost funtion (2.21a) is a regularization term to yield orthonor-mal basis vetors, with β as a regularization parameter.This approah retains appliability to nonlinear systems, but addressessome of the limitations of the POD by targeting the projetion basis tooutput funtionals of interest, and by bringing additional knowledge ofthe redued-order governing equations into the onstrution of the basis.Formulation of the problem of determining the basis as an optimal on-trol problem has also been onsidered for distributed parameter systems byBorggaard (2006).Determining the basis via the optimization proedure will in general bemore omputationally demanding than using POD. However, this additionalo�ine ost is a tradeo� that an be made, if neessary, to ahieve low ordermodels of aeptable quality.2.4 Control PreliminariesIn this setion, some preliminaries about the ontrol theory used subse-quently will be desribed.2.4.1 The Linear-Quadrati RegulatorThe linear-quadrati regulator (LQR) is a model-based optimal ontrolsheme. For a disrete-time linear system given by xk = Axk + Buk, thefeedbak ontrol law is found by minimizing the ost funtional de�ned by
J =

∞∑

k=0

(
xT

k Qxk + uT
k Ruk

) (2.22)



22 Bakground Materialwhere Q and R are design weighting matries that penalize deviation fromzero of the states, and use of ontrol energy, respetively. The feedbakontrol law that minimizes this ost is given by
u = −Klqx, (2.23)where Klq is found as (Kwakernaak and Sivan, 1972)

Klq = (R + BT PB)−1BT PA, (2.24)and P is found by solving the disrete-time algebrai Riati equation
P = Q + AT

(

P − PB
(
R + BTPB

)−1
BT P

)

A. (2.25)2.4.2 Model Preditive ControlModel preditive ontrol (MPC) poliies are optimization based ontrolpoliies that alulate the urrent ontrol input by solving a onstrainedoptimization problem, with a ost similar to (2.22), parameterized by theurrent system state. This strategy has been widely adopted in the in-dustrial proess ontrol ommunity and implemented suessfully in manyappliations. The greatest strength of MPC is the intuitive way in whihonstraints an be inorporated in a multivariable ontrol problem formula-tion. Here we will give a brief introdution to a standard MPC formulation.For further reading on MPC, there exists a number of books (Maiejowski,2001), (Allgöwer and Zheng, 2000) and tutorials (Rawlings, 2000).A Standard MPC FormulationModel preditive ontrol is formulated for a disrete-time state-spae model
xk+1 = Axk + Buk, (2.26a)

yk = Cxk, (2.26b)where k ∈ Z, and xk ∈ R
n, uk ∈ R

m and yk ∈ R
p denote the state, inputsand outputs, respetively, at time step k. The onstant matries A, B and
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C are of appropriate dimensions, and (A,B) is a ontrollable pair. Forthe regulator problem (regulating the system states to zero), the modelpreditive ontroller solves at time step k the optimization problem

min
Uk

{

xT
k+N |kPxk+N |k (2.27a)

+

N−1∑

i=0

(

xT
k+i|kQxk+i|k + uT

k+iRuk+i

)
}subjet to:

umin ≤ uk+i ≤ umax, i = 0, . . . , N − 1 (2.27b)
ymin ≤ yk+i ≤ ymax, i = 1, . . . , N (2.27)
uk+1 = Kxk+i|k , Nu ≤ i ≤ N − 1 (2.27d)
xk|k = xk (2.27e)
xk+i+1|k = Axk+i|k + Buk+i, i ≥ 0 (2.27f)
yk+i|k = Cxk+i|k, k ≥ 0, (2.27g)where P and Q are design weighting matries of appropriate dimensionsthat penalize deviation from zero of the states xk+i at the end of the pre-dition horizon N and over the entire horizon, respetively. In this work,the �nal ost matrix P and gain K are alulated from the algebrai Ri-ati equation, under the assumption that the onstraints are not ative for

k ≥ N . The weight R penalizes use of ontrol ation u. The notation
(·)k+i|k is used to emphasize that the preditions (·)k+i are made based onthe value at step k. Nu de�nes the ontrol horizon, whih is the numberof future ontrol moves to be optimized. In this work, we set Nu = N ,for onveniene. The sequene Uk =

[
uT

0 uT
1 . . . uT

Nu−1

]T ontains thefuture ontrol inputs that yield the best predited output with respet tothe performane riterion on the predition horizon. One this set has beenfound, the �rst ontrol input u0 is applied to the proess, before the wholeoptimization problem is re-solved at the next sample. The optimizationproblem is then slightly di�erent, having been updated by a new proess



24 Bakground Materialmeasurement, a new starting point and an additional time slie at the endof the time horizon.It is well established that implementing a linear model preditive on-troller requires solving a quadrati program (QP) in Uk at eah time step(Maiejowski, 2001). With some manipulations, the problem in (2.27) anbe written
min
Uk

{
1

2
UT

k HUk + xT
k FUk

} (2.28a)subjet to: GUk ≤W + Exk, (2.28b)where the matries H, F , G, W and E are funtions of the weighting matri-es P , Q, R and the bounds umin, umax, ymin and ymax. If the weighting ma-tries in (2.27a) satisfy P � 0, R ≻ 0 and Q � 0, then H ≻ 0 and the prob-lem is stritly onvex. The Karush-Kuhn-Tuker onditions (KKT) are thensu�ient onditions for optimality (Noedal and Wright, 1999, page 333),and the solution Uk an be shown to be unique (Bemporad et al., 2002).The assumptions on Q and R are usually met by hoosing Q and R tobe diagonal matries that appropriately penalize the relative importane ofstate or input values.This traditional MPC strategy requires signi�ant online omputation,limiting the use of this kind of ontroller to proesses with small system statedimension or relatively slow dynamis, sine the optimization problem thatis solved at eah sampling time an otherwise beome large.2.4.3 Soft ConstraintsWhen MPC is applied, a proess an operate near, or even at spei�edproess onstraints. In many ases this leads to the most ost e�etive op-eration for a given plant, sine onstraints are often diretly assoiated withost. But system onstraints sometimes ause problems with respet to thefeasibility of the optimization problem to be solved by the model preditiveontroller. Unexpetedly large disturbanes may our, foring the systemto a state from whih there is no way of keeping it within the spei�edlimits without breaking some set of onstraints. Feasibility problems may



2.4 Control Preliminaries 25also our due to modeling errors, espeially for linearized systems, or wheninitializing the system, potentially outside the intended region of operation.Preferably, infeasibility of the MPC optimization problem should beavoided at all osts. In Kerrigan and Maiejowski (2001, 2000a) methodsare presented that allows one to determine a priori whether or not an MPController has this desirable property, when the e�ets of the disturbaneshave been negleted in the design of the ontroller. The authors applyinvariant set theory to establish whih initial states guarantee feasibilityof the MPC ontroller for all time. Nevertheless, mehanisms should beimplemented that ensure that the ontrol system has a way of dealing withfeasibility problems. Several possible solutions for handling suh problemshave been proposed, ranging from simple, but sub-optimal approahes likeusing the same ontrol signal as in the previous time step, to more re�nedapproahes like that of Vada et al. (2001), where the onstraints are relaxedin an optimal manner subjet to a user-de�ned prioritization. The approahthat will be onsidered in this thesis is onstraint softening by means of slakvariables. One advantage with this approah is that the optimization to beperformed by the MPC ontroller at eah step remains a quadrati program.Constraints are normally divided into two di�erent lasses. Input on-straints, suh as atuator and valve limitations are typial examples of phys-ial limitations that will lead to hard onstraints. A hard onstraint is ab-solute, in that it an under no irumstanes be violated. A valve an onlybe opened to a ertain limit, and this limit annot be exeeded. Outputor state onstraints, however, are not neessarily absolute. For example, itmay be desirable for a given proess to operate within a spei� temper-ature range. But one might onsider allowing for the system temperatureto exeed the desired range, if this is the only way of keeping the systemwithin some level of ontrol. A onstraint that may be violated if required,is alled a soft onstraint.By introduing slak variables to the problem formulation the desiredonstraints an be softened e�etively. The slak variables are zero if no on-straints are violated. By penalizing the non-zero values of the slak variablesin the ost funtion, the onstraint violations are kept to a minimum.Penalty funtions that lead to onstraint violation and use of slak only if



26 Bakground Materialthe original problem is otherwise left infeasible are alled exat penalty fun-tions. Consequently, the onstraints will not be violated unneessarily if thepenalty funtion is exat. In order to ahieve an exat penalty funtion, the
1-norm or the ∞-norm must be used to penalize onstraint violations, andthe penalty weight must be su�iently large (Kerrigan and Maiejowski,2000b, Hovland, 2004).2.4.4 Expliit MPC via Quadrati ProgrammingIt has reently been shown that a great deal of the omputational e�ort intraditional MPC an be done o�ine. In Bemporad et al. (2002), the au-thors proposed solving multiparametri quadrati programs (mpQPs) thatare used to obtain expliit solutions to the MPC problem, suh that theontrol input an be omputed by evaluating a pieewise a�ne funtionof the urrent system state. Thus, the expliit model preditive ontroller(eMPC) aomplishes online MPC funtionality without solving an opti-mization problem at eah time step.In parametri programming, the solution to a mathematial program isfound expliitly for a range of parameter values. Mathematial programsthat ontain more than a single parameter are ommonly referred to asmultiparametri programs (Tøndel, 2003, page 1-2). The problem (2.28)an be viewed as an mpQP in Uk, where xk is a vetor of parameters.Following Bemporad et al. (2002), onsider (2.28), and de�ne

z , Uk + H−1F T xk. (2.29)Then, the problem in (2.28) an be transformed into
min

z

{
1

2
zT Hz

} (2.30a)subjet to: Gz ≤W + Sxk, (2.30b)whih is an mpQP in z, parameterized by xk. The matrix S is found as
S = E + GH−1F T . By onsidering the KKT onditions of this quadratiprogram in z, the solution z∗ is seen to remain optimal in a neighborhood



2.5 Low-Order Controllers for Large-Sale Systems 27of xk where the ative set remains optimal. The region in whih this ativeset remains optimal an be shown to be a polyhedron in the parameterspae (that is, the state spae) (Bemporad et al., 2002). The mpQP in zan be solved o�ine for the state spae area of interest. Computing theontrol input at a time step k then beomes a straightforward task: Giventhe system state xk, the optimal ontrol inputs Uk are obtained through ana�ne mapping,
Uk = Kixk + ki, i = 1, . . . , Np (2.31)where Np is the number of polyhedra and the subsript i denotes the itha�ne funtion. Ki and ki are onstant within eah polyhedron in the pa-rameter spae. The online e�ort is thus redued from solving a potentiallylarge optimization problem at eah time step to evaluating a pieewise a�nefuntion of the urrent state, by determining the region i in whih the ur-rent state xk resides.This has several advantages: Firstly, the online omputational time anbe redued to the miroseond-milliseond range, and seondly, MPC fun-tionality is ahieved with low omplexity, easily veri�able real-time ode.Further, exeution is deterministi, and there is no need for �oating pointarithmetis (no reursive numerial omputations). All these advantagesjustify the employment of eMPC in embedded and safety-ritial systems.Hegrenæs et al. (2005) onsider using eMPC for spaeraft attitude ontrol.In Johansen et al. (2006) the authors onsider hardware implementation ofeMPC, where memory requirements, omputational speeds and hardwarearhiteture design is studied using �eld programmable gate arrays (FPGA)and an appliation spei� integrated iruit (ASIC).2.5 Low-Order Controllers for Large-SaleSystemsIn this setion, we disuss some issues relevant to the task of developingmodel-based or optimal ontrollers of low order to a high-�delity model.



28 Bakground Material2.5.1 Di�erent Paths to a Low Order ControllerSimple ontrollers are normally preferred over omplex ontrollers, sine theomputational requirements are smaller, hardware design and implementa-tion is less omplex and error-prone, and they are more transparent to theuser. For this reason, low order ontrollers are preferred over high orderontrollers. Also, the need for real-time ontrol of many physial systemsneessitates ontrollers that are of low order. In general, model-based oroptimal ontrollers, suh as LQG and H∞ ontrollers, designed for a givenplant have roughly the same dimension as the plant. The need for omplex-ity redution is therefore evident whenever the plant model is large. Thereare several fundamentally di�erent approahes to designing ontrollers oflow order, as illustrated in Figure 2.3.
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Figure 2.3: Di�erent avenues for low order ontroller design.The di�erent proedures an be summarized as follows:1. Perform diret design of a low-order ontroller based on a high-ordermodel.2. Design an initial ontroller for the plant/high-order model, and thenredue the order of the ontroller.



2.5 Low-Order Controllers for Large-Sale Systems 293. Perform plant model redution and design a ontroller based on theredued-order plant model.Proedure 1 usually depends heavily on some properties of the plant, andrequires great omputations if the state dimension of the plant is large.The approah is outside the sope of this work and interested readers arereferred to the literature (Hsu et al., 1994, Bernstein and Haddad, 1989,Iwasaki and Skelton, 1993, Gu et al., 1993, Gu. et al., 1993). Proedure2 is very ommon for systems of medium size, for instane in the robustontrol ommunity, where tools suh as H∞ design are frequently used todesign an initial ontroller, followed by ontroller redution. This proedurehas been studied for CFD models by, among others, Atwell et al. (2001),Atwell and King (2005). The main drawbak of this approah is that it re-quires the design of an appropriate initial ontroller, whih is not feasible inmany appliations where the state dimension is large. This leaves us withthe third approah, albeit this proedure is often ritiized for introduingapproximation (and onsequently errors) at an earlier stage in the designproess, whih may propagate errors into the ontroller design. This an,however, be ompensated for by designing ontrollers robust to unertaintiesand modeling errors. Also, with a plant model with small state dimensionavailable, we may use our large toolbox for ontrol system design. Modelredution for ontrol of large-sale systems has been onsidered in a num-ber of settings (Kunish and Volkwein, 1999, Ravindran, 2000, Atwell et al.,2001, Afanasiev and Hinze, 2001, Ahuja et al., 2007, Cohen et al., 2006,Kunish and Volkwein, 2006, Willox and Megretski, 2005, Evans, 2003).One reently proposed approah that seems promising, is the OptimalitySystem POD method (Kunish and Volkwein, 2006), whih generates re-dued models for ontrol by iteratively omputing a POD basis that targetsthe losed-loop optimality system.An alternative to the approahes skethed in Figure 2.3, is to obtain alow-order model diretly by losed-loop identi�ation, where the identi�a-tion riterion takes the ontrol performane objetive into aount, and touse this model for ontroller design. Aording to Codrons et al. (1999), thequestion whether to use model redution or identi�ation is of seondary im-



30 Bakground Materialportane, whereas the ritial issue is to inlude losed-loop onsiderationsin the proess. In our opinion, however, if a high-�delity model is avail-able, one should make use of this knowledge when onstruting a low-ordermodel. We therefore prefer to use model redution rather that losed-loopidenti�ation, although both approahes are viable.2.5.2 Output-Feedbak Control with Redued-OrderModelWhen a ontroller is designed, we need to onnet the ontroller to the plantor high-�delity model. When we are using ontrollers designed based on aredued-order model, we need to ompute an estimate of the redued-orderstate variable xr, based on the output of the CFD model, using some sortof state estimator. The struture of the losed loop is illustrated in Figure2.4.
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Figure 2.4: Blok diagram of the redued-order output-feedbak setup. x̂ris an estimate of the redued state based on an observer, using the reduedmodel (ROM) and measurements y from the CFD model.Output feedbak ontrol ombined with model unertainty may lead tosystem instability, although the original model is stable and the ontroller



2.5 Low-Order Controllers for Large-Sale Systems 31stabilizes the redued model. The mere existene of ontrollers stabilizingthe redued-order model and not the plant (Linnemann, 1988) neessitatesstability analysis of the losed-loop system.2.5.3 Closed-Loop Stability of Linear CFD modelsIn this setion we will present an example of losed-loop stability analysisfor a simple ontrol struture.Consider a linear high-�delity model of the form (2.1), for whih we havederived a redued-order model of the form (2.5). Based on this model, wean design a ontroller using any model-based ontroller synthesis tool, suhas LQG, LQR, or a robust ontroller using tools suh as H∞ design. Theontroller, whih an also ontain a state observer, is given by the generalontroller state-spae model
ẋc = Acxc + Bcuc (2.32)
yc = Ccxc, (2.33)where xc ∈ R

r is the ontroller state, uc ontains the inputs to the ontroller,suh as the plant output, and the output of the ontroller is the input tothe plant, i.e. yc = u.The losed-loop system is given by
Eẋ = Ax + Bu = Ax + BCcxc (2.34)
ẋc = Acxc + Bcuc = Acxc + BcCx, (2.35)or

Ē ˙̄x = Āx̄, (2.36)where x̄ =
[
xT xT

c

]T ,
Ē =

[
E 0
0 Ir

] (2.37)and
Ā =

[
A BCc

BcC Ac

] (2.38)We then have the following result:



32 Bakground MaterialTheorem 3. The losed loop system onsisting of the full model (2.1) andthe output-feedbak ontroller (2.32) is stable, provided that the generalizedeigenvalues of (
Ā− λĒ

) are stable, i.e. λ
(
Ā, Ē

)
⊂ C

− ∪ {∞}, where
Ā =

[
A BCc

BcC Ac

]and
Ē =

[
E 0
0 Ir

]

.Proof. The result follows diretly from Theorem 1. �In the ase where E = In, it su�es to hek the eigenvalues of Ā.The following example illustrates the design proess for a partiularoutput-feedbak design.Example 3. Based on the ROM, we design the ontinuous-time LQR oun-terpart of Setion 2.4.1,
u = −Krxr. (2.39)We design an observer̂̇

xr = Arx̂r + Bru + Lr (y − Crx̂r) (2.40)
ŷr = Crx̂r, (2.41)suh that (Ar − LrCr) is Hurwitz, and we use feedbak from the estimatedredued state, i.e.

u = −Krx̂r. (2.42)Our ontrol struture takes the form of Figure 2.4. Now, the losed-loopsystem is stable provided that the generalized eigenvalues of (
Ā− λĒ

) arestable, where Ā and Ē are given by
Ā =

[
A −BKr

LrC (Ar −BrKr − LrCr)

]

, (2.43)
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Ē =

[
E 0
0 Ir

]

. (2.44)2.6 Order Redution and Stabilization of anUnstable CFD ModelThis setion serves as a motivating example, in whih we onsider stabiliza-tion of a omputational �uid dynamis model of an unstable proess model.We illustrate how to set ut a simple CFD model based on partial di�eren-tial equations and disretization via the �nite volume method. It is furthershown how the CFD model an be put in a standard state-spae form.A stabilizing ontroller is found based on optimal ontrol design for theredued-order model and then applied to the full model, where it is shownto stabilize the system. This setion is based on Hovland and Gravdahl(2006a,b,).2.6.1 IntrodutionWhile most of the CFD models in the redued-order ontrol literature usingPOD are nominally stable, we here extend the fous to unstable models inthis hapter. This ontribution demonstrates the possibility of designingstabilizing ontrollers to a lass of systems that would otherwise be veryomputationally demanding or maybe even infeasible, due to the large state-dimension of suh CFD models.2.6.2 Case Study: Heated PlateCFD ModelTo demonstrate how an unstable system an be stabilized using POD andfeedbak ontrol, we study heat ondution in a plate. The plate is 1m×1m,de�ning the two-dimensional omputational domain Ω = [0, 1] × [0, 1] de-pited in �gure 2.5. The plate is insulated along the boundaries, apart from



34 Bakground Materialthe enter of eah boundary, where four �ux atuators are loated. Thisde�nes Neumann boundary onditions on all boundaries.
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Figure 2.5: Sketh of plate with atuators on boundaries (bold lines).The temperature T (t, x, y) of the plate is governed by the unsteadylinear two-dimensional heat equation
ρcp

∂T

∂t
= k

∂2T

∂x2
+ k

∂2T

∂y2
+ S, (2.45)where ρ and cp are the density and spei� heat apaity of the plate, re-spetively, and k is the thermal ondutivity, that is assumed to be uniformover the omputational domain and independent of temperature. Note that

x now and in the following denotes a spatial oordinate and no longer thestate variable. The soure term S , Sc + ST is a term ontaining heatsinks and soures. In the present problem, onvetive heat transfer to thesurroundings gives rise to a sink term
Sc = hA (T − T∞) [W] , (2.46)



2.6 Order Redution and Stabilization of an Unstable CFDModel 35where h is the onvetive heat transfer oe�ient, A is the heat transfer areaof the surfae and T∞ is the ambient temperature. Due to eletri urrent,the plate is subjet to an internal temperature-dependent heat soure
ST = k1T

[
W /m3

]
, (2.47)where k1 > 0, at all points exept from the boundary. Intuitively, this pos-itive feedbak from the temperature to the soure may lead to a physiallyunstable system if the onvetive heat loss to the surroundings is not largeenough. An inrease in temperature will then lead to a stronger soure,whih again inreases the temperature, and so on.Disretizing the governing equation by the �nite volume method, (2.45)is integrated over eah ontrol volume (CV ) and over the time interval from

t to t + ∆t, to obtain (Versteeg and Malalasekera, 1995)
∫

CV

(∫ t+∆t

t

ρcp
∂T

∂t
dt

)

dV =

∫ t+∆t

t

∫

CV

(

k
∂2T

∂x2

)

dV dt

+

∫ t+∆t

t

∫

CV

(

k
∂2T

∂y2

)

dV dt +

∫ t+∆t

t

∫

CV

S dV dt,where the order of integration has been hanged for the �rst term. Using thenumerially unonditionally stable bakward Euler (fully impliit) temporaldisretization and n grid points over the spatial domain Ω, the system (2.45)an be written as a system of n equations of the form
aP TP = aW TW + aETE + aSTS + aNTN + a0

P T 0
P + Su, (2.48)where the a's are oe�ients and TP is the temperature at the grid point(point P ) under onsideration at time step k + 1. Su and SP arise fromdisretizing the soure term S as

∆V · S = Su + SP TP , (2.49)
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ρ cp k h T∞ k1

1000 1000 1000 100 293 1000Table 2.1: Numerial values of parameters.where SP is inluded in aP . Using the onvenient ompass notation, TW ,
TE , TS and TN are the temperatures at the west, east, south and northadjaent grid points, respetively, at time step k + 1.

T 0
P is the temperature at grid point P at time step k. Colleting thetemperature at all grid points in a row vetor T (k) ∈ R

n leads to a disretelinear system of the form
ET (k + 1) = ĀT (k) + B̄u (k) + V̄ ,

y (k) = C̄T (k) ,
(2.50)where E ∈ R

n×n is a penta-diagonal matrix ontaining the oe�ients ap,
aW , aE, aS and aN and Ā ∈ R

n×n is a diagonal matrix with a0
P on the maindiagonal.

B̄ ∈ R
n×m ontains the ontributions from the inputs, while the onstantsoure terms give rise to a onstant term V̄ ∈ R

n.To validate that the plate model is unstable, we ompute the generalizedeigenvalues λ of (A− λE), using the numerial parameter values in Table2.1, whih on�rms that the system has a pole outside the unit irle, at
λ = 1.0001.When the system matries are of very high order, designing a model-based stabilizing ontroller is a omputationally demanding task. This mo-tivates the searh for a redued-order model.Redued-Order ModelThe PDE (2.45) is disretized using 50 grid points in both the x- and y-diretion. This gives in total 2500 states in the CFD model. To onstruta model of redued order, we use proper orthogonal deomposition, as out-lined in Setion 2.3.4, Algorithm 1. The system (2.50) is simulated for
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M = 600 time steps, thus forming the matrix of snapshots X . During thissimulation the inputs are varied randomly taking moderate step hangesover a suitable range to exite as muh of the system dynamis as possi-ble. SVD of the snapshot matrix is performed, and the singular values areonsidered in order to form the POD basis Φr, as depited in �gure 2.6.
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Figure 2.6: Singular values σ of the snapshot matrix. The ∗'s indiatesingular values orresponding to the extrated basis funtions. Note thatthe ordinate axis is logarithmi.As an be seen from the �gure the singular values fall o� quite rapidly,and many of the singular values are lose to zero, indiating that the basisfuntions orresponding to those singular values an be omitted withoutloss of information. There is no systemati approah to establish how manybasis funtions that should be inluded in Φr. The heuristi riterion
P =

∑r
i=1 σ2

i
∑M

i=1 σ2
i

, (2.51)



38 Bakground Materialgives an indiation on how muh of the energy that is onserved in theredued-order model. If P ≈ 1 most of the energy is aptured in the�rst r basis funtions, indiating a fairly aurate redued-order model(Astrid et al., 2002). If we hoose r = 4 basis funtions, P = 99.99%.Moreover, if the redued-order model has four states the number of statesin the redued-order model is equal to the number of inputs. Consequently,the redued-order model is fully atuated, whih might be favorable whentraking a referene pro�le for the omplete state. The redued-order modelis seen to be ontrollable and hene also stabilizable.Using the projetion framework outlined in Setion 2.3.3 we get theredued-order model
ΦT

r EΦrTr (k + 1) = ΦT
r AΦrTr (k) + ΦT

r Bu (k) + ΦT
r V. (2.52)De�ning Er , ΦT

r EΦr allows us to write
Tr (k + 1) = E−1

r ΦT
r AΦrTr (k) + E−1

r ΦT
r Bu (k)

+ E−1
r ΦT

r V, (2.53)where Er is invertible sine E, ΦT
r and Φr are all nonsingular. This yieldsthe redued-order model on disrete state-spae form

Tr (k + 1) = ArTr (k) + Bru (k) + Vr (2.54a)
yr (k) = CrTr (k) , (2.54b)where Tr ∈ R

r, u ∈ R
m, yr ∈ R

p, Ar = E−1
r ΦT

r AΦr ∈ R
r×r, Br =

E−1
r ΦT

r B ∈ R
r×m, Vr = E−1

r ΦT
r V ∈ R

r and Cr ∈ R
p×r. In this exam-ple, r = m = 4. To ensure traking for the plate temperature, we set C tobe the n× n identity matrix. Consequently, Cr ∈ R

n×r.The redued-order model (2.54) is unstable sine
ρ (Ar) = 1.0001. (2.55)Remark 3. Note that the general POD proedure does not automatiallypreserve stability properties during the redution proess. Nominally stable



2.6 Order Redution and Stabilization of an Unstable CFDModel 39models may result in unstable redued-order models, and vie versa. Oneriterion for preserving stability properties in POD is presented in Prajna(2003). The result is however not appliable to models of very high order.The redued-order state Tr (k) is estimated online through a linear ob-server of the form
T̂r (k + 1) = (Ar − LCr)Tr (k) + Bru (k) + Vr + Ly (k) , (2.56)where y (k) is the output from the high-order CFD model and L is hosensuh that ρ (Ar − LCr) < 1.2.6.3 Controller DesignFeedbak ontrol is performed by use of heat �ux atuators on parts of theboundary of the domain, shown as the bold lines in �gure 2.5. The ontrolobjetive is to reah a onstant temperature referene T d while at the sametime rejeting disturbanes. The referene temperature T d is set to be auniform temperature of 300 ◦ K.Sine the full model is too large for ontroller design the redued-ordermodel is analyzed instead. The redued-order referene T d

r is found as T d
r =

ΦT
r T d. Given the unstable redued-order model (2.54), the ontrol objetiveis to stabilize the system around the referene temperature. De�ning thetraking error as

e (k) , T d
r − Tr (k) , (2.57)the ontrol input is hosen as

u = Ke = K
(

T d
r − Tr (k)

)

, (2.58)where K is hosen suh that ρ (Ar −BrK) < 1. The ontroller gain K istaken to be the solution to the linear quadrati regulator problem as de�nedin Setion 2.4.1.Using feedbak from the estimated temperature T̂r, we an onstrutthe losed-loop matries Ā and Ē as in (2.43) and (2.44). By omputingthe generalized eigenvalues of the losed-loop system, we an then onlude



40 Bakground Materialthat the losed-loop system is stable, sine the poles of the losed-loopsystems lie stritly inside the unit dis. The largest losed-loop eigenvaluelies at z = 0.9973. The will, however, be a steady state error, due to thedisturbane V .Taking into onsideration the disturbane V , the ontroller should in-lude integral ation in order to minimize the steady-state traking error.To do this in a straightforward way, we de�ne the augmented state
T̃ (k) ,

[
Tr (k)

u (k − 1)

]

∈ R
r+m, (2.59)giving an augmented state-spae model

T̃ (k + 1) = ÃT̃ (k) + B̃∆u (k) + Ṽ ,

ỹ (k) = C̃T̃ (k) ,
(2.60)where

Ã ,

[
A B
0 I

]

, C̃ ,
[
C 0

]
,

B̃ ,

[
B
I

]

, Ṽ ,

[
V
0

]

,

(2.61)and ∆u (k) = u (k)− u (k − 1). In this augmented state-spae model, inte-gral ation is built-in, and the input inrement ∆u (k) is found as
∆u (k) = K

(

T d
r − Tr (k)

)

,where K is the feedbak gain matrix found above.2.6.4 Numerial SimulationInitially, the plate temperature is at rest, and equal to the ambient temper-ature at 293K. At t = 0 the inner soure is swithed on. Without ontrolthe temperature of the plate is stritly inreasing. The plate temperatureis shown for four di�erent time instants in �gure 2.7.
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Figure 2.7: Plate temperature without ontrol, shown for t =
2400, 6000, 9000 and 12000 s. The temperature is stritly inreasing withtime.If the simulation is run for a longer period of time the temperatureontinues to inrease, illustrating the instability of the system.Now, the full CFD-model is simulated with the ontroller designed forthe redued-order model in setion 2.6.3. The weighting matries Q and Rare set to Q = 50 · Ir and R = 10−4 · Im. The system is stabilized, andit is simulated until steady-state is reahed, after approximately t = 100minutes. The largest steady-state error is lose to 3K, as shown in �gure2.8.It is seen that although the original CFD model is symmetri, the on-troller based on the redued-order model does not manage to exploit this
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Figure 2.8: Steady state temperature, shown here for t = 6000 s.symmetry, sine the symmetry is not preserved in the model-order redutionsheme.2.6.5 Conluding RemarksIn this setion we have demonstrated, using a ase study, that a CFD-modelof an unstable system an be stabilized through model-order redution anda ontroller designed for the redued-order model. This makes it possibleto design stabilizing ontrollers for systems that would otherwise be veryomputationally demanding.It should be noted that expansion into orthonormal basis funtion isonly appliable for square-integrable signals. Unstable systems generallyhave responses whih are not square-integrable, and onsequently the theory



2.6 Order Redution and Stabilization of an Unstable CFDModel 43of POD does not apply. In this work, however, the instability is slow, andso the responses do not blow up, and we are able to ollet meaningfulsnapshots and the subsequent POD expansion works well. However, oneshould take are when using POD on unstable systems, as these responsesmay blow up and make approximation by an orthonormal basis impossible.





Chapter 3Complexity Redution inExpliit MPC
In this hapter we propose to use model redution tehniques to makeexpliit model preditive ontrol possible for a larger number of applia-tions and for longer ontrol horizons. The material deviates slightly fromthe rest of the thesis, sine we mainly onsider models with a relativelylow number of states and, at this point, the results are not appliable tomost CFD-models. However, we present a design proedure that an proveessential for ahieving this goal eventually, as the �eld of expliit MPC andmultiparametri programming is further developed. The hapter is basedon Hovland and Gravdahl (2008).3.1 IntrodutionThe traditional MPC strategy presented in Setion 2.4.2 demands a signi�-ant amount of online omputation, limiting the use of this kind of ontrollerto proesses with relatively slow dynamis, sine an optimization problemis solved at eah sampling time. The expliit solution of the model predi-tive ontrol problem, presented in Setion 2.4.4, leads to online onstrainedoptimal ontrol without having to solve an optimization problem at eah45



46 Complexity Redution in Expliit MPCtime step.The main drawbak of eMPC is the large inrease in both o�ine andonline omplexity as the state dimension of the system model grows largerand the ontrol horizon and the number of onstraints are inreased. Forthis reason, the proedure is limited to models of relatively low order, typ-ially with less than 10 states. This has motivated the use of omplex-ity redution tehniques, suh as input parametrization, as disussed inTøndel and Johansen (2002).The main ontribution of this hapter is the ombination of eMPC andrigorous model redution tehniques with upper bounds on the approxima-tion error, thereby reduing the omplexity of eMPC. This makes the ontrolsheme attrative for a number of systems that would otherwise be exludeddue to the high omplexity of the resulting ontrollers. The proposed use ofmodel redution tehniques is demonstrated for several appliations, amongothers for ontrol of fuel ell breathing. In all appliations, a signi�ant re-dution in ontroller omplexity is ahieved.For larity, we use the basi balaned trunation algorithm presentedin Setion 2.3.2 to ompute redued-order models in this hapter, albeittehniques fousing on losed-loop approximation quality, suh as LQG bal-aned trunation or frequeny-weighted balaned trunation, are assumedto further improve performane in our results.3.2 Redued-Order MPCRedued-order models will be used to design output-feedbak eMPC on-trollers for the systems. The eMPC ontrol input is omputed based onthe redued state vetor xr (k) at every time step k, and xr must thereforebe estimated by an observer, based on measurements from the plant (orthe output of the original model). When we are dealing with output on-straints, it is partiularly important that the output of the redued-ordermodel is a good estimate of the plant output, in order to satisfy the outputonstraints for the plant. The observer(s) should therefore aount for theapproximation error in the redued model.



3.2 Redued-Order MPC 47A basi linear observer suh as the Luenberger observer, does not a-ount expliitly for unertainties, that are ampli�ed by the observer gainmatries. Consequently, the state estimate may not be aurate enough inthe presene of model perturbation. We therefore follow ommon pratiein the MPC literature (Astrid et al., 2002, Muske and Rawlings, 1993), anduse a Kalman �lter, whih is known to have desirable properties for systemswith noise in outputs and state equations. The Kalman �lter is here de�nedin terms of the disretized redued model with added noise,
x̂r (k + 1) = Arx̂r (k) + Bru (k) + Γw (k) (3.1a)

yr (k) = Crx̂r (k) + v (k) , (3.1b)where v (k) and w (k) are assumed to be zero mean white noise proesseswith ovariane matries Rk = RT
k ≻ 0 and Qk = QT

k ≻ 0, respetively, andwhere Γ de�nes the mapping between w and the di�erent states. In thissetup, the noise proesses are expeted to aount for unertainty in thestate equations through Γw (k), and the unertainty in the output through
v (k). The losed-loop system with Kalman �lter and expliit model pre-ditive ontroller takes the general form of Figure 2.4.A number of questions regarding robust stability, feasibility and robustonstraint ful�llment arises when the redued model is used to ontrol thehigh-order model. Sine the expliit MPC solution is equivalent to the stan-dard MPC solution, many methods for robust stability analysis developedfor standard MPC (see e.g. Bemporad and Morari, 1999) an be used toonlude stability for the redued-order eMPC in the presene of the uner-tainty introdued through the model redution proess. Some reent resultson MPC stability in the presene of model unertainty have been developed(Heath et al., 2005b, Heath and Wills, 2005, Heath et al., 2005a). Also,tests for robust MPC stability of input-onstrained systems with unstru-tured unertainty have reently been established by Løvaas et al. (2007b).In Chapter 4 we develop riteria for guaranteeing stability of MPC basedon redued-order models. In this hapter, however, we use the nominalmodel (the redued model) for ontroller design, and address ertain robust-ness issues during the design stage. While we do not expliitly analyze the



48 Complexity Redution in Expliit MPCrobustness of the redued model preditive ontroller in this hapter, goodperformane is ahieved by ad ho tuning based on exhaustive simulationsfor ranges of operating onditions. In many ases this approah leads to bet-ter performane than using robust MPC tehniques (Bemporad and Morari,1999). Choosing the right robust MPC tehnique is an art, and muh ex-periene is neessary to make it work.Given the unertainty introdued through the model redution proess,one annot guarantee that feasibility of the underlying optimization problemis maintained and that the onstraints on the states/outputs are ful�lled.This problem an be handled through the use of soft onstraints. Con-straints on the states/outputs often represent desirable operational limitsrather than fundamental operational onstraints. In addition, from a pra-tial point of view it does not make sense to use tight state onstraintsbeause of the presene of noise, disturbanes and numerial errors. Relax-ing the state onstraints in e�et removes the feasibility problem, at leastfor stable systems (Bemporad and Morari, 1999). Exat penalty funtionsan be used to allow onstraint violation only when absolutely neessary(Kerrigan and Maiejowski, 2000b).
3.3 Case StudiesThe proposed ontrol struture will be demonstrated using 6 di�erent ran-dom systems to illustrate the potential for omplexity redution, and twospei� examples to show performane when using redued-order eMPC.By implementing the pieewise a�ne funtion as a binary searh tree,the online omputational time is logarithmi in the number of polyhedrain the state spae partition (Tøndel et al., 2003). The online memory andproessing requirements inrease with the number of regions in the partition.This number is therefore used in the following as a measure of omplexityof the expliit model preditive ontroller, and a redution in the numberof regions is onsidered to be a redution in ontroller omplexity.



3.3 Case Studies 493.3.1 Example 1Without onsidering approximation quality and losed-loop performane,
6 di�erent random systems of order n = 6, with two inputs and two out-puts have been onsidered. For all six systems, the inputs and outputs areonstrained suh that

|ui| ≤ 1, i = 1, 2 (3.2)
|yi| ≤ 1, i = 1, 2 (3.3)and the ontrol horizon is �xed at Nu = 4. The resulting ontroller omplex-ity is tabulated in Table 3.1. The table shows that eMPC for the originalsystem is very demanding, with O

(
105

) polyhedra in the state spae parti-tion. But by trunating only one state, the ontroller omplexity is reduedto a manageable level, as the number of regions is redued by two orders ofmagnitude. System/r 3 4 5 6

1 603 1447 1487 117573
2 625 1549 1589 122675
3 519 1095 1145 109656
4 539 1125 1136 95896
5 537 1033 1755 116438
6 513 1461 2145 109711Table 3.1: Example 1: Controller omplexity (in terms of number of regionsin the state spae) for 6 random systems with two inputs and two outputs,with upper and lower bounds on inputs and outputs.3.3.2 Example 2For a random stable LTI system of order n = 15, the input is onstrainedsuh that |u| ≤ 5 and the output is onstrained suh that |y| ≤ 1. Figure 3.1ompares the omplexity of the eMPC solution for di�erent model orders
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r and di�erent ontrol horizons Nu for this example. For all r and Nu, weset Q = 103 ·CT

r Cr and R = 10−3. The �gure illustrates that the ontroller
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NuFigure 3.1: Example 2: Complexity in terms of number of regions in theeMPC solution, for di�erent model orders r and di�erent ontrol horizons

Nu. For r = 13, 14 and 15, no solutions have been found with ontrolhorizon Nu = 9, indiated by the dotted line and the question mark. Thesystem order should be redued to r = 7 or even r = 6 to obtain a signi�antredution in omplexity.omplexity inreases by over an order of magnitude as we inlude morestates in the redued model and inrease the ontrol horizon Nu. For r = 3,the number of regions ranges from 155 for Nu = 5 to 1287 for Nu = 10. Forthe original 15th order model, we are unable to ompute the state spae
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r Error bound
3 1.4× 10−1

4 7.4× 10−2

5 3.3× 10−2

6 6.7× 10−3

7 3.1× 10−3

8 1.5× 10−4

9 2.0× 10−6

10 3.5× 10−7

11 2.7× 10−8

12 4.5 × 10−10

13 5.5 × 10−14

14 4.3 × 10−17Table 3.2: Bound on model redution error for Example 2.partition for Nu > 8, due to the formidable omputational requirement.The state spae partition omprises 27442 regions for Nu = 8. For r = 12,the number of regions in the state spae partition is 55139 for Nu = 9.The model redution error bound (2.9) is shown in Table 3.2, and illus-trates the trade-o� that must be made between ontroller omplexity andquality of the redued model, and onsequently the quality of the resultingontroller.From Figure 3.1 it an be seen that by reduing the number of statesdown to 6, the ontroller omplexity remains relatively low for the ontrolhorizons onsidered. We therefore generate our expliit model preditiveontroller using 6 states in the redued model. For r = 6, the error boundis ‖G (s)− Gr (s)‖∞ ≤ 6.7 × 10−3. Still, the eMPC ontroller based on the
6th order redued model is su�ient for ontrol, as illustrated in Figure 3.2,where it an be seen that both the input and the output are kept withintheir bounds, when the plant is initialized with a representative non-zerostate vetor. The horizon length is Nu = 9 and the expliit MPC solutionbased on the redued-order model onsists of 7625 polyhedra. The �gure



52 Complexity Redution in Expliit MPCshows the performane with eMPC based on the full-order model, with aontrol horizon Nu = 8, for whih the ontroller onsists of 27442 regions.Although the error bound merely establishes a bound on the error be-tween the two transfer funtions in open loop, it does not guarantee perfor-mane, degree of sub-optimality and onstraint satisfation for the losedloop system. It is nevertheless an indiation that a great redution in om-plexity might be ahieved without ompromising the performane.
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Figure 3.2: Top: Output y of Example 2 with eMPC based on full ordermodel (FOM) with Nu = 8 and redued-order model with r = 6 and Nu = 9.The output is onstrained between ±1. Bottom: Control input, onstrainedbetween ±5.



3.3 Case Studies 533.3.3 Example 3This example is a saled, linearized model for ontrol of fuel ell breathing,as desribed in Pukrushpan et al. (2004). The model is a stable LTI systemwith one input (ompressor voltage), two performane variables z (systemnet power and oxygen exess ratio) and 8 states. Fousing on the method-ology presented above, we use a slightly simpli�ed version of the model inPukrushpan et al. (2004). In our simpli�ed model, we ignore disturbanes(stak urrent), and assume that the performane variables z are measured,whih amount to setting the output y = z. We disretize the model withsampling time Ts = 1ms, and derive redued-order models with r = 3 to
r = 7 states. For these redued models, we solve the eMPC o�ine problemfor eMPC horizons 1-5, with bounds on the input and outputs:

|u| ≤ 5, |y1| ≤ 0.03, |y2| ≤ 0.2. (3.4)We set the weight matries to be Q = 1000 × CT
r Cr and R = 1. Theomplexity of di�erent eMPC ontrollers for this example is shown in Table3.3, while the model redution error bound (2.9) is shown in Table 3.4. Itan be seen from Table 3.3 that the omplexity of the ontroller inreasesrapidly for the original model (r = 8), while the inrease is less pronounedfor r = 3 and r = 4. The tables also show that by trunating 4 states, theontroller omplexity is redued by an order of magnitude for Nu = 5, at theost of introduing an approximation error ‖G (s)− Gr (s)‖∞ ≤ 1.3× 10−4.If we redue the number of states down to r = 3, the number of regionsin the state spae partition is redued by over two orders of magnitudeompared to the original model, for Nu = 5. By trunating only one state,the number of regions is redued by 34% for Nu = 5.The simulation in Figure 3.3 shows the di�erene in losed loop behaviorwhen using the full-order model with 8 states, and redued-order modelswith 3 and 7 states.In this simulation, the eMPC horizon is Nu = N = 5, whih gives 105regions in the ontroller for r = 3, 9964 regions for r = 7 and 14999 regionsfor the full-order model with 8 states. Moreover, it an be seen that both
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r/Nu 1 2 3 4 5

3 7 19 41 69 105
4 7 51 237 740 1813
5 7 55 333 1472 5020
6 7 55 331 1575 6068
7 7 57 393 2186 9964
8 7 61 445 2695 14999Table 3.3: Controller omplexity for Example 3. r = 8 orresponds to nomodel trunation (r = n).

r Error bound
3 1.6 × 10−3

4 1.3 × 10−4

5 4.9 × 10−5

6 4.4 × 10−6

7 2.6 × 10−7Table 3.4: Bound on model redution error for Example 3.outputs remain within their bounds. The sub-optimality of the redued-order ontrollers is learly illustrated in the plot.3.4 Conluding RemarksIt has been demonstrated that the performane of eMPC based on redued-order models is of omparable quality to that of eMPC based on the originalsystems. It is possible to use longer ontrol horizons, while at the same timekeeping the ontroller omplexity low, at the ost of some ontroller sub-optimality. The degree of omplexity redution depends on the appliation,but is shown to be signi�ant in all our examples. For input-onstrainedand soft-onstrained systems, the approah is espeially attrative, sine therequirements to satisfy the output onstraints need not be met. However,
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Chapter 4Stability of MPC Based onRedued-Order Models
In this hapter, we present a novel, systemati proedure for obtaininglosed-loop stable output-feedbak model preditive ontrol based onredued-order models. The design uses linear state estimators, and appliesto open-loop stable systems with hard input- and soft state onstraints.Robustness against the model redution error is obtained by hoosing theost funtion parameters so as to satisfy a linear matrix inequality ondition.We also show by means of an example, that performane is maintained evenwhen the model redution error is relatively large. This hapter is based onHovland et al. (2008a,b).4.1 IntrodutionThe use of model redution tehniques along with MPC is desirable in manyappliations, in order to redue the online omplexity in implementationsthat would otherwise run too slowly. In Setion 3 we demonstrated howa signi�ant redution in omplexity ould be ahieved by trunating onlya few number of states, in partiular when the MPC horizons are large.The online omplexity redution ame at the ost of introduing an ap-57



58 Stability of MPC Based on Redued-Order Modelsproximation error in the losed-loop system. With the introdution of theapproximation error, questions onerning losed-loop stability and feasi-bility arise. These are very important issues to address, sine ontrollersdesigned based on redued-order models might stabilize the redued-ordermodel and not the plant (Linnemann, 1988).The results in this hapter are based on the previous work Løvaas et al.(2007a, 2008a,b) on robust output-feedbak MPC for systems with uner-tainties. Here, we speialize these results to the ase of redued-order mod-els. We ensure stability by hoosing the ost funtion parameters so as tosatisfy a linear matrix inequality (LMI) ondition, whih guarantees theexistene of a suitable Lyapunov funtion. To the best of our knowledge,this is the �rst result that deals systematially with the model redutionerror in model preditive ontrol. The results make MPC more attrativefor a number of systems that would otherwise be exluded due to the highomplexity of the assoiated full-order ontrollers.In order to guarantee feasibility of the MPC problem, we adopt the softonstraints formulation of Løvaas et al. (2008b), in whih an additional hori-zon is introdued into the well-known approah of Sokaert and Rawlings(1999) to redue the number of slak variables. Consequently, the size of theoptimization problem we onsider may be signi�antly smaller than whatan be ahieved using the approah of Sokaert and Rawlings (1999) in om-bination with the redued-order model. This extra feature �ts niely intoour design, sine our goal is to to make our MPC proedure more e�ientby introduing redued-order models.The traditional MPC strategy requires signi�ant online omputation,limiting the use of this kind of ontroller to proesses with small system statedimension or relatively slow dynamis, sine the optimization problem thatis solved at eah sampling time an otherwise beome too large. Remediessuh as �input bloking", short horizons et. are ommonly used to reduethe omplexity and online omputational times. Fast implementation ofmodel preditive ontrol in real-time systems has been onsidered, amongothers, by Bleris and Kothare (2005) and Pannohia et al. (2007). Also, itwas proposed in Bemporad et al. (2002) to solve multiparametri quadratiprograms (mpQPs) that an be used to obtain expliit solutions to the MPC



4.2 System Desription 59problem, suh that the ontrol input an be e�iently omputed by eval-uating a pieewise a�ne funtion of the system state. Nevertheless, evena moderate inrease in the model dimension may lead to a prohibitive in-rease in the omplexity of both the o�ine- and the online problem. Hene,to address the omplexity issue, we onsider the use redued-order modelsin this work.The hapter outline is as follows: In Setion 4.2 we desribe the sys-tem formulations that we will onsider. The nominal state-feedbak designpresented in Setion 4.3 lays the foundation for the redued-order MPCdesribed in Setion 4.4, of whih we prove stability in Setion 4.5. In Se-tion 4.6 we propose a proedure for synthesis of a robust MPC design, andwe demonstrate performane through a numerial example in Setion 4.7.Conluding remarks an be found in Setion 4.8.Throughout we use the following notation: ‖x‖2P denotes xT Px, [a, · · · , c]denotes [
aT · · · cT

]T and In denotes the n× n identity matrix.4.2 System DesriptionWe onsider a stable, linear, disrete-time plant, desribed by the knownmodel
xk+1 = Axk + Buk (4.1a)

yk = Cxk, (4.1b)where x ∈ R
n, u ∈ R

m and y ∈ R
p denote the state, input and output,respetively, and the matries A, B and C are of appropriate dimensions.It has not been onsidered whether the following theory an be extendedto desriptor models of the form (2.1). For desriptor models with non-singular mass matrix E, one an of ourse apply the theory by inverting Eand multiplying throughout the state equation. The system is subjet tothe following onstraints

V uk ≤ v, ∀k ≥ 0 (4.2a)
Hxk ≤ h, ∀k ≥ 0, (4.2b)



60 Stability of MPC Based on Redued-Order Modelswhere V ∈ R
nv×m, v ≥ 0, and H ∈ R

nh×n.The input onstraints (4.2a) are hard onstraints, that must be respetedat all time, whereas the state onstraints (4.2b) are soft onstraints, andwill be treated by penalizing onstraint violation in the MPC ost funtion.This is a natural assumption, sine input onstraints, suh as atuator- andvalve limitations are physial limitations that annot be exeeded. State-and output onstraints, on the other hand, often represent desirable, ratherthan absolute limitations.4.2.1 Redued-Order Nominal ModelThe plant model (4.1) is assumed to be of suh a dimension that the onlineomputational requirements on�it with the time available to ompute theontrol input. For the purpose of MPC design, we therefore generate aredued-order model (ROM), by reduing the order of (4.1) using an ap-propriate model redution tehnique, suh as any of the methods presentedin the previous hapters.The nominal model obtained by model redution is denoted by
xrk+1

= Arxrk
+ Bruk (4.3a)

yrk
= Crxrk

, (4.3b)where xr ∈ R
r suh that r < n, yr ∈ R

p, Ar ∈ R
r×r, Br ∈ R

r×m and
Cr ∈ R

p×r. The nominal model must respet the onstraints (4.2). Toenable this, we make the following assumption:Assumption 2. It is assumed that the onstraints (4.2b) apply to the out-puts of (4.1), and onsequently apply naturally to the outputs of (4.3). Thisan easily be ahieved by hoosing any states that should be onstrained asoutputs of the plant.Remark 4. Assoiated with the redued-order model is an approximationerror that an be quanti�ed in general terms as follows: When substituting(4.3) for (4.1), the minimum ahievable Hankel norm of the error systemis equal to the (r + 1)-st Hankel singular value of the original system (4.1)



4.3 Nominal Case with State Feedbak 61(Adamjan et al., 1971, Glover, 1984, Gu, 2005). This error needs to beaounted for in the ontroller design.4.3 Nominal Case with State FeedbakIn this setion we disregard the approximation error and present the soft-onstrained state-feedbak MPC poliy proposed in Løvaas et al. (2008b)for the nominal system (4.3), when disregarding the approximation error.The state-feedbak poliy will subsequently be used in Setion 4.4 to developan exponentially stable robust output-feedbak poliy for the system (4.1)based on the redued-order model (4.3).The following optimization problem leads to an MPC sheme with guar-anteed nominal stability:
[
PN,Nε

]
: J∗ (xr) = min

U,ε,e
J (xr, U, ε, e)

s.t.


xr0
= xr

xri+1
= Arxri

+ Brui

V ui ≤ v, ∀i ∈ {0, · · · , Nu − 1}
ui = 0, ∀i ≥ Nu

Hxri
≤ h + ǫi, ∀i ∈ {0, · · · , Nǫ − 1}

Hxri
≤ h + HAi−Nǫ

r e, ∀ ∈ i {Nǫ, · · · , N − 1}
TxrN

≤ t + TAN−Nǫ
r e,

(4.4)
Here,

U =






u0...
uNu−1




and

ε =






ǫ0...
ǫNǫ−1




are the sequenes of Nu inputs and Nǫ slak variables to be optimized overthe horizons Nu and Nǫ, and e ∈ R

r is an additional vetor of slak variables



62 Stability of MPC Based on Redued-Order Modelsthat has been introdued to summarize onstraint violation beyond thepredition time i = Nǫ − 1. N is the predition horizon. Further,
J (xr, U, ε, e) ,







xr

U
ε
e







T

P







xr

U
ε
e







(4.5)is the ost funtion, for some appropriate matrix P whose seletion will beexplained below, and the matrix T and the vetor t desribe a �terminalonstraint set". T and t an e.g. be hosen so that the terminal onstraintset equals the maximal output admissible set assoiated with the state on-straints (4.2b) (see e.g. Gilbert and Tan, 1991). We let U∗, ε∗ and e∗ denotethe optimal values of U , ε and e, resulting from [
PN,Nε

]. We let the set
S ,

{[
xr U ε e

]T
|
[
xr U ε e

]T satisfy [
PN,Nε

]}

, (4.6)suh that we an write the onstraints in [
PN,Nε

] as






xr

U
ε
e






∈ S. (4.7)Remark 5. Note that by hoosing the parameters in [

PN,Nε
] in an ap-propriate way (see Løvaas et al., 2008b), our formulation is equivalent tothe standard soft-onstrained MPC in Sokaert and Rawlings (1999). Somespeial features of our partiular formulation is however ruial in our questfor robustly stable MPC based on redued-order models.To help desribe various onditions on [

PN,Nε
] and on the ost funtionmatrix P , onsider the following autonomous predition system:







xrn+1

Un+1

εn+1

en+1







=







Ar [Br 0 · · · 0] 0 0
0 Γ (Nu, nu) 0 0
0 0 Γ (Nǫ, nh) H̄
0 0 0 Ar







︸ ︷︷ ︸

Ā0







xrn

Un

εn

en







, (4.8)



4.3 Nominal Case with State Feedbak 63where
H̄ =






0...
H




 ,and where Γ

(
N̄ , n̄

) is a matrix suh that, using
Ū =






ū0...
ūN̄−1




 ,we have

Γ
(
N̄ , n̄

)
Ū =








ū1...
ūN̄−1

0








,that is
Γ

(
N̄ , n̄

)
=












0 In̄ 0 · · · 0... 0 In̄
. . . ...... ... . . . . . . 0... 0 · · · 0 In̄

0 0 · · · 0 0












∈ R
N̄n̄×N̄n̄. (4.9)Remark 6. Note that if Nǫ = N and P satis�es

ĀT
0 PĀ0 − P + C̄T

0 diag [Q,R, S] C̄0 = 0, (4.10)where Ā0 is de�ned in (4.8), Q ∈ R
r×r, Q ≥ 0, R ∈ R

m×m, R > 0,
S ∈ R

nh×nh, S > 0, and where the matrix C̄0 is suh that
C̄0
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=





xr

u0

ǫ0



 ,



64 Stability of MPC Based on Redued-Order Modelsthen the ost funtion (4.5) satis�es
J (xr, U, ε, e) =

∥
∥xrNu

∥
∥2

PF
+

Nu−1∑

i=0

(

‖xri
‖2Q + ‖ui‖

2
R

)

+ ‖e‖2Π +
N−1∑

i=0

‖ǫi‖
2
S , (4.11)where

AT
r PF Ar − PF = −Qand

AT
r ΠAr −Π = −HTSH,and where xri

is given by [
PN,Nε

] (Løvaas et al., 2008b).Remark 7. Note that the set S is invariant for the system (4.8), namely
Ā0

[
xr U ε e

]T
∈ S, ∀

[
xr U ε e

]T
∈ S. (4.12)The state-feedbak MPC design proposed in Løvaas et al. (2008b) isbased on [

PN,Nǫ
] as follows:Algorithm 2. Nominal State-Feedbak MPCO�ine:1. Choose any integers N , Nu and Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥

1.2. Choose any matries Q ≥ 0, R > 0 and S > 0.3. Choose P that satis�es (4.10).4. Choose any T and t suh that the set XF , {xr|Txr ≤ t} satis�es
Arxr ∈ XF ,∀xr ∈ XF , XF ⊆ {xr|Hxr ≤ h} . (4.13)



4.3 Nominal Case with State Feedbak 65Online: At eah time step k ≥ 0, solve [
PN,Nε

], using xr = xrk
, then apply

uk =
[
I 0 · · · 0

]
U∗ (xr) to (4.3).Remark 8. Note that [

PN,Nε
] is always feasible, sine a partiular feasiblesolution is given by







xr

U
ε
e







= KF xr,where
KF =












0
H

HAr...
HANǫ−1

r

ANǫ
r












. (4.14)The following theorem establishes losed-loop stability when applyingAlgorithm 2 to the nominal system (4.3), disregarding the plant (4.1) alto-gether.Theorem 4. The losed-loop system under Algorithm 2 is globally expo-nentially stable. Moreover, the losed-loop trajetories satisfy
∞∑

k=0

‖xrk
‖2Q + ‖uk‖

2
R + ‖ǫ∗k‖

2
S ≤ J∗ (xr0

) , (4.15)where ǫ∗k denotes the �rst blok omponent of ε∗ (xrk
).Proof. This is theorem 3 in Løvaas et al. (2008b), where the proof an befound. �We have now established stability of the MPC design of Algorithm 2,when applied to (4.3) only. In other words, we have shown that the losed-loop system onsisting of only the redued-order model and the model pre-



66 Stability of MPC Based on Redued-Order Modelsditive ontroller is stable. In the next setion, we take the model approxi-mation errors into aount.4.4 Redued-Order MPC with Output FeedbakIn this setion, we propose an output-feedbak MPC proedure based onthe redued-order model (4.3), in whih we take into aount the errorintrodued through the model redution proess. We also prove losed-loopstability when applying this ontroller to the plant (4.1).The MPC ontrol input is omputed based on the redued-order statevetor xk at eah time step, and xk should therefore be estimated by anobserver, using measurements yk from the plant. We onsider a linear esti-mator of the form̂
xrk+1

= Arx̂rk
+ Bruk + L (yk − Crx̂rk

) , (4.16)where x̂rk
denotes the estimated redued state at time step k, and we hoose

L suh that (Ar − LCr) is Shur (i.e. the eigenvalues lie stritly inside theunit dis). (It seems possible to allow for other observer strutures, howeverthis possibility has not been explored in detail.)When unertainties are taken into aount, we will make use of thefollowing matrix funtion:
Σ{Q,R,S} (P ) , ĀT

0 PĀ0 − P + C̄T
0 diag [Q,R, S] C̄0. (4.17)The nominal ost funtion matrix, denoted by P0, is retrieved by solvingthe �Lyapunov equality� Σ{Q,R,S} (P ) = 0, that is, we have

Σ{Q,R,S} (P0) = 0. (4.18)Requiring Σ{Q,R,S} (P ) ≤ 0 implies P ≥ P0. We will use the onstraint
Σ{Q,R,S} (P ) ≤ 0 at a later stage to searh for a P that gives a ost funtionfor the robust ase that is an upper bound on the nominal ost.The proposed output-feedbak poliy for the system, onsidering theunertainties, an now be desribed as follows:



4.4 Redued-Order MPC with Output Feedbak 67Algorithm 3. Output-Feedbak MPC with Redued ModelO�ine:1. Generate a redued-order model (4.3).2. Design a state estimator (4.16) based on the redued-order model.3. Choose any integers N , Nu and Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥
1.4. Choose any matries Q ≥ 0, R > 0 and S > 0.5. Choose any matrix P satisfying Σ{Q,R,S} (P ) ≤ 0.6. Choose any T and t suh that the set XF = {xr|Txr ≤ t} satis�es(4.13).Online: At eah time step k ≥ 0, solve [

PN,Nε
] using xr = x̂rk

, then apply
uk =

[
I 0 · · · 0

]
U∗ (x̂rk

) to (4.1).Remark 9. Note that we an always �nd P suh that
Σ{Q,R,S} (P ) ≤ 0.This follows trivially from stability of (4.8), and by reognizing that

ĀT
0 PĀ0 − P + C̄T

0 diag [Q,R, S] C̄0is nothing more than a partiular disrete-time Lyapunov equation for sys-tem (4.8). Hene, sine
C̄T

0 diag [Q,R, S] C̄0 ≥ 0,there always exists a P suh that Σ{Q,R,S} (P ) = 0.In the following setion, we will prove stability of the proposed output-feedbak poliy.



68 Stability of MPC Based on Redued-Order Models4.5 Robust Stability TestNow, we propose an LMI ondition on the ost funtion matrix P whihis su�ient for losed-loop stability. To this end, we de�ne the augmentedstate
x̄ , [x, x̂r] , (4.19)where x is the plant state and x̂r is the estimated ROM state. The dynamisof x̄ in losed-loop are desribed by

x̄k+1 = Āx̄k + B̄µk, x̄0 = [x0, x̂r0
] (4.20)

x̂rk
= C̄x̄rk

, (4.21)where
Ā =

[
A 0

LC Ar − LCr

]

, (4.22)
B̄ =

[
BD1

BrD1

]

, (4.23)
C̄ =

[
0 I

]
, (4.24)and

D1 =
[
I 0 · · · 0

]is suh that
uk = D1µk,where

µk =





U∗
k

ε∗k
e∗k



 (4.25)ontains the minimizers of [
PN,Nε

] at time step k. The matrix L is the gainof the state estimator (4.16).For the purpose of stability analysis, we need to establish a feasiblesolution µF
k+1 to [

PN,Nε
] at time step k+1, based on the optimal solution µkat the previous time step k. The following lemma establishes the existenesuh a solution.



4.5 Robust Stability Test 69Lemma 1. Let Ā and B̄ be de�ned as in (4.22) and (4.23). Then
F1 = KF

[
LC −LCr

] (4.26)and
F2 =





Γ (Nu, nu) 0 0
0 Γ (Nǫ, nh) H̄
0 0 Ar



 , (4.27)are suh that
µF

k+1 = F1x̄k + F2µk (4.28)is a feasible solution to [
PN,Nε

] at time step k + 1, where, KF is as in(4.14).Proof. The losed-loop dynamis are given by (4.20) and (4.28), whih wean write [
x̄k+1

µk+1

]

=

[
Ā B̄
F1 F2

] [
x̄k

µk

]

. (4.29)We need to verify that
[

Ā B̄
F1 F2

] [
x̄k

µk

]

∈ R
n × S, ∀

[
x̄k

µk

]

∈ R
n × S, (4.30)where S is as in (4.6). Expanding (4.29) allows us to write





xk+1

x̂rk+1

µk+1



 =





Axk + BD1µk

Arx̂rk
+ BD1µk +

[
LC −LCr

]
x̄k

KF

[
LC −LCr

]
x̄k + F2µk



 . (4.31a)Now, it is straightforward to �nd a matrix G suh that the set S in (4.6)an be written as
S =

{[
xr µ

]T
|Gµ−GKF xr ≤ g

}

, (4.32)where g ,
[
v v . . . h . . . h t

]T
≥ 0. To verify (4.30) we thereforeneed to show that

Gµk+1 −GKF x̂rk+1
(4.33a)

= GF2µk −GKF (Arx̂rk
+ BD1µk) ≤ g. (4.33b)



70 Stability of MPC Based on Redued-Order ModelsNow, to see that inequality (4.33b) indeed holds, we note from (4.8) that
[
Arx̂rk

+ BD1µk

F2µk

]

= Ā0

[
x̂rk

µk

]

. (4.34)Consequently, the result follows from (4.12). �As the �nal step towards our stability result, we need to �nd a suitableost funtion matrix P . To this end we introdue the following de�nitions:
Ω (Ω0, P ) ,

[
Ω0 0
0 0

]

+ DT
P PDp, (4.35)with

DP =

[
C̄ 0
0 Inµ

]

, (4.36)and Ω0 ∈ R
(n+r)×(n+r).

Φ (Ω0, P ) ,

[
Ā B̄
F1 F2

]

Ω (Ω0, P )

[
Ā B̄
F1 F2

]

− Ω (Ω0, P ) . (4.37)The stability test for Algorithm 3 an now be stated as follows.Theorem 5. Assume that, for a given P , there exists a matrix Ω0 ∈
R

(n+r)×(n+r) suh that,
Ω (Ω0, P ) > 0 (4.38a)
Φ (Ω0, P ) < 0, (4.38b)where Ω (Ω0, P ) is as de�ned in (4.35) and Φ (Ω0, P ) is as de�ned in (4.37).Then the losed-loop system under Algorithm 3 is exponentially stable.Proof. Proving stability follows the well-known path (Mayne et al., 2000)of �rst showing reursive feasibility, and then showing that there exists aLyapunov funtion for the losed-loop system that dereases at eah time



4.5 Robust Stability Test 71step. Feasibility at eah time step has been established in Lemma 1. Now,onsider the Lyapunov funtion andidate
V (x̄, µ) ,

∥
∥
∥
∥

[
x̄
µ

]∥
∥
∥
∥

2

Ω(Ω0,P )

, (4.39)whih is positive de�nite in view of (4.38a), and where µ denotes the mini-mizers of [
PN,Nε

], as in (4.25). At time step k, we have
V ∗

k , V (x̄k, µk) =

∥
∥
∥
∥

[
x̄k

µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(4.40)
= ‖x̄k‖

2
Ω0

+

∥
∥
∥
∥

[
C̄x̄k

µk

]∥
∥
∥
∥

2

P

(4.41)
= ‖x̄k‖

2
Ω0

+

∥
∥
∥
∥

[
x̂rk

µk

]∥
∥
∥
∥

2

P

(4.42)
= ‖[x̄k]‖

2
Ω0

+ J∗
k , (4.43)where x̂r takes the plae of the nominal state. Similarly, at the next timestep k + 1, the Lyapunov funtion andidate is given by

V ∗
k+1 , V (x̄k+1, µk+1) =

∥
∥
∥
∥

[
x̄k+1

µk+1

]∥
∥
∥
∥

2

Ω(Ω0,P )

(4.44)
= ‖[x̄k+1]‖

2
Ω0

+ J∗
k+1. (4.45)Now µF

k+1, as in (4.28), an be used to derive a bound for V ∗
k+1. Sine

V F
k+1 , V

(
x̄k+1, µ

F
)

=

∥
∥
∥
∥

[
x̄k+1

F1x̄k + F2µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(4.46)
= ‖x̄k+1‖

2
Ω0

+
∥
∥
[
x̂rk+1

, UF
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
(4.47)and

V ∗
k+1 =

∥
∥
[
xk+1, x̂rk+1

]∥
∥2

Ω0
+ J∗

k+1, (4.48)



72 Stability of MPC Based on Redued-Order Modelswe have that
(δV )k+1 , V (x̄k+1, µk+1)− V

(
x̄k+1, µ

F
k+1

) (4.49)
= ‖x̄k+1‖

2
Ω0

+ J∗
k+1 − ‖x̄k+1‖

2
Ω0

(4.50)
−

∥
∥
[
x̂rk+1

, UF
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P

= J∗
k+1 −

∥
∥
[
x̂rk+1

, UF
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
, (4.51)and it follows that

(δV )k+1 ≤ 0, (4.52)sine µF
k+1 is feasible and

Jk+1

(
µF

k+1

)
≥ J∗

k+1.Obviously, this implies
V ∗

k+1 ≤ V F
k+1. (4.53)Now, it remains to show that

V F
k+1 − V ∗

k ≤ α‖x̄k‖
2, (4.54)for (some arbitrarily small) salar α > 0. For that purpose, we use theproperty (4.38b). At time step k, we have

[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

] (4.55)
=

[
x̄k

µk

]T [
Ā B̄
F1 F2

]T

Ω (Ω0, P )

[
Ā B̄
F1 F2

] [
x̄k

µk

]

− V ∗
k . (4.56)Now, note that

[
Ā B̄
F1 F2

] [
x̄k

µk

]

=

[
Āx̄k + B̄µk

F1x̄k + F2µk

] (4.57)
=

[
x̄k+1

µF
k+1

]

, (4.58)



4.6 Robust Design 73where µF
k+1 is the feasible solution, as de�ned in equation (4.28). By insert-ing (4.58) into (4.56), we have that

[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

] (4.59)
=

[
x̄k+1

µF
k+1

]T

Ω (Ω0, P )

[
x̄k+1

µF
k+1

]

− V ∗
k (4.60)

=

∥
∥
∥
∥

[
x̄k+1

µF
k+1

]∥
∥
∥
∥

Ω(Ω0,P )

− V ∗
k (4.61)

= V F
k+1 − V ∗

k (4.62)Sine the inequality (4.38b) is strit it then follows that (4.54) holds forsome α > 0. �Remark 10. We note that the stability test of the above theorem may be gen-eralized along the lines of Løvaas et al. (2007a), Løvaas (2008) to inludesum quadrati onstraints (and assoiated salar multipliers) that desribethe stati nonlinearity assoiated with the on-line optimization. However,whilst suh an approah leads to a less onservative stability test, it produesa bilinear matrix inequality (BMI) in the ost funtion matrix P . The result-ing non-onvex BMI ondition is useful for heking stability of a partiular
P (sine the relevant ondition then beomes an LMI), but problemati (andtherefore not exploited) when we next onsider the general synthesis problemof hoosing P subjet to stability.4.6 Robust DesignNote that, given P , it is a standard LMI feasibility problem to searh for Ω0that satis�es (4.38), thereby heking robust stability of a partiular design.Suh a P is, however, likely to give a onservative design. In this setion,we propose a semi-de�nite program (SDP) that may be used to omputea matrix P ≥ P0 that satis�es the stability riterion (28) and is as �lose�as possible to the nominal ost funtion matrix P0. The SDP is similar to



74 Stability of MPC Based on Redued-Order Modelsthose proposed in Løvaas et al. (2008a,b) and as follows:
inf

P1,P2,Ω0

trace (P1) + qtrace (P2) (4.63a)s.t.


P = diag{P1, P2}
Σ{Q,R,S} (P ) ≤ 0

Φ (Ω0, P ) < 0
Ω (Ω0, P ) > 0

(4.63b)where q > 0 is a salar, and where we have also added the strutural on-straint P = diag{P1, P2}, suh that the ost (4.5) takes the form J (x,U, ε, e) =
‖[x,U ]‖2P1

+ ‖[ε, e]‖2P2
. Regarding the feasibility of the above SDP, we havethe following strong result:Theorem 6. If the matries, A and Ar − LCr, are both stable, then theproblem (4.63) is feasible.Proof. To onstrut a feasible solution and thereby prove Theorem 6, wewill adapt the arguments used to prove Theorem 4.5 in Løvaas (2008). Tothis end, let Ω̂ be a �Lyapunov matrix� satisfying

ĀTΩ̂Ā− Ω̂ < 0.Note that, using Ω̂, any salar ǫ1 > 0 and some su�iently large salar
α1 > 0, the following inequality holds:

[
Ā B̄

]T
Ω̂

[
Ā B̄

]
−

[
I 0

]T
Ω̂

[
I 0

]

− diag{0, α1D
T
1 D1 + ǫ1I} < 0. (4.64)Also, de�ne matries, H1 and H2, satisfying the following two Lyapunovinequalities:

ΓT(Nu, nu)H1Γ(Nu, nu)−H1 < −α1D
T
1 D1,

[
Γ(Nǫ, nh) H̄

0 Ar

]T

H2

[
Γ(Nǫ, nh) H̄

0 Ar

]

−H2 < 0.



4.6 Robust Design 75Here, the various matries are as in the de�nition of F2 in (4.27), and thesalar α1 > 0 is as in (4.64). From the strit inequalities above and fromthe struture of the matrix F2, we note that the following inequality holds
[
F1 F2

]T
diag{H1, ǫ2H2}

[
F1 F2

]

−
[
0 I

]T
diag{H1, ǫ2H2}

[
0 I

]

+ diag{−ǫ2α2I, α1D
T
1 D1 + ǫ2I} ≤ 0, (4.65)using some su�iently large salar α2 > 0 and any su�iently small salar

ǫ2 > 0. By hoosing ǫ2 = ǫ1 > 0 small enough and adding (4.64) to (4.65)we obtain
Φ

(

Ω̂, P̂
)

< 0, P̂ , diag{0,H1, ǫ2H2}. (4.66)It an then be veri�ed that the following is a feasible solution to (4.63):
P = diag{P1, P2} = P0 + cP̂ , Ω0 = cΩ̂, (4.67)where c > 0 is some su�iently large salar. To see this, note from (4.18)and the de�nitions of H1, H2, that Σ{Q,R,S}(P0 + cP̂ ) ≤ 0, for any c > 0.Furthermore, using (4.67), we have

Φ(Ω0, P ) = cΦ(Ω̂, P̂ ) + Φ(0, P0).

�In the sequel, we denote by P ∗ a feasible and (near) optimal solution to(4.63).Remark 11. Sine Σ{Q,R,S} (P ∗) ≤ 0, we have that P ∗ ≥ P0, where P0 isas in (4.18).By use of P = P ∗ we obtain the following robust design.Algorithm 4. Robust Output-Feedbak Redued-Order MPCO�ine:



76 Stability of MPC Based on Redued-Order Models1. Choose any integers N , Nu and Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥
1.2. Generate a redued-order model.3. Choose any T and t suh that the set XF = {xr|Txr ≤ t} satis�es(4.13).4. Choose any observer gain suh that Ar − LCr is stable.5. Choose any matries Q ≥ 0, R > 0 and S > 0 and determine P = P ∗by solving (4.63).Online: At eah time step k ≥ 0, solve [

PN,Nε
] using xr = x̂rk

, then apply
uk =

[
I 0 · · · 0

]
U∗ (x̂rk

) to (4.1).We next address the important question of onservatism of the aboverobust redued-order design. Spei�ally, we show that, under a reasonableassumption, the proposed design is non-onservative in the sense that P ∗ ≈
P0 provided that the negleted dynamis ∆(z) , Cp(zI−Ap)

−1Bp−C(zI−
A)−1B are su�iently small.Consider the following assumption whih relates the plant model to theredued order model:Assumption 1. We have

A =

[
Ar A12

A21 A22

]

, B =

[
Br

B2

]

, C =
[
Cr C2

]
.Furthermore, the matrix A22 is stable.Remark 12. Note that Ar an be plaed in the upper left orner of A byusing a balaned realization of the plant model. Furthermore, the require-ment that A22 is stable, is always satis�ed when the redued order model isobtained using, for example, balaned trunation.



4.6 Robust Design 77Under the above assumption, we will show that Algorithm 4 onvergesto the assoiated nominal design obtained using P = P0 as the negleteddynamis goes to zero ∆(z) , C(zI − A)−1B − Cr(zI −Ar)
−1Br. To thisend, note that, replaing the matries A21, B2 in Assumption 1 by δA21,

δB2 using some salar δ (and thereby hanging the plant model) amountsto shrinking the negleted dynamis by a fator to obtain ∆(z) ← δ∆(z).Thus we shall be onerned with establishing the following theorem, whihshows that: if the matries A21, B2 are �small�, then P ≈ P0.Theorem 7. Suppose Assumption 1 holds. For any given ǫ > 0, there existsa δ > 0, suh that, if we make the assignments A21 ← δA21, B2 ← δB2,then
Trace (P ∗ − P0) ≤ ǫ.Proof. Let PI be the solution to Σ{0,0,0} (PI) + I = 0. For any given ǫ > 0,onsider

P = P0 + αPI , α =
ǫq̃

θ (PI)
> 0, (4.68)where q̃ , min{1, q} > 0 and where θ (diag{P1, P2}) , Trace (P1)+qTrace (P2)[see (4.63)℄. In view of (near) optimality of P ∗, it su�es to show that thereexists a δ > 0 suh that P in (4.68) is feasible provided we make the assign-ments A21 ← δA21, B2 ← δB2. Moreover, sine the inequality Φ (Ω0, P ) < 0in (4.63b) is strit, it su�es, by ontinuity arguments, to show that P isfeasible when A21 = 0, B2 = 0 (i.e., using δ = 0). To this end, let A21 ← 0,

B2 ← 0 and onsider the following matrix whih is similar to
[

Ā B̄
F1 F2

]



78 Stability of MPC Based on Redued-Order Models(when A21 = 0, B2 = 0):
Υ , [diag{T, I}]

[
Ā B̄
F1 F2

]

[diag{T, I}]−1

=







Ar − LCr A12 − LC2 0 0
0 A22 0 0

LCr LC2 Ar BrD1

KF LCr KF LC2 0 F2







, (4.69)where
T ,





Inx 0 −Inx

0 I(n−nx) 0

0 0 Inx



 , (4.70)and where have made use Assumption 1. Sine the matries, Ar−LCr, A22,are stable and Σ{Q,R,S} (P ) < 0, it follows by the struture of the matrix Υthat there exist some positive de�nite symmetri matrix X ∈ R
n suh that

ΥT diag{X,P}Υ − diag{X,P} < 0. (4.71)Sine the above inequality is equivalent to Φ (Ω0, P ) < 0 with Ω0 = TTXT ,the result follows. That is, hoosing Ω0 = TTXT and diag{P1, P2} =
P = P0 + αPI yields a feasible solution provided we make the assignments
A21 ← δA21, B2 ← δB2, using some su�iently small, but positive, salar
δ. �Theorem 7 shows that Algorithm 4 onverges to a ertainty equivaleneimplementation of the design of Sokaert and Rawlings (1999) as the modelunertainty tends to zero, provided that we make suitable hoies for T , t,
N and Nǫ. A numerial example illustrating this onvergene is presentedin the following setion.4.7 Numerial ExamplesIn this setion we will onsider two di�erent systems. The �rst is a randomnon-minimum phase 6th order plant with osillatory dynamis that we will



4.7 Numerial Examples 79use to illustrate the proedure. Sine this system is non-minimum phase,whih leads to a hallenging ontrol task, the example suggests that ourproedure an be used on systems that ontain omplex dynamis. Theseond example is a CFD model desribing the motion in a building, whihwill demonstrate the usefulness of the proedure in real-world problems.4.7.1 Random 6th-Order SystemWe onsider a 6th order plant given by
A =











0.2809 0.2505 −0.1990 −0.2232 0.0321 −0.5003
0.2505 −0.4756 0.3022 0.1714 −0.1126 −0.1190
−0.1990 0.3022 0.4621 0.0965 −0.0284 −0.0891
−0.2232 0.1714 0.0965 0.6050 −0.0633 0.1457
0.0321 −0.1126 −0.0284 −0.0633 0.4647 −0.1332
−0.5003 −0.1190 −0.0891 0.1457 −0.1332 −0.2399











,

B =
[
1.0159 0 0.5988 1.8641 0 −1.2155

]T
,and

C =
[
1.2920 0 0 0.2361 0.8428 0

]
.The system has a zero at z = 6.83, outside the unit irle, and is onse-quently non-minimum phase. The output yk is subjet to soft unit boundonstraints, and the input uk is subjet to hard unit bound onstraints. Wehoose Nu = N = 10, Nǫ = 2, Q = I, R = 0.1 and S = 1000I.First, we redue the system order from n = 6 to r = 5 and r = 4 usingbalaned redution (although other model redution methods ould havebeen used), and we impose the same onstraints on the redued-order mod-els. Redued-order models with r = 5 and r = 4 leads to model redutionerrors ‖∆(z)‖∞ = 6.9885 × 10−6 and ‖∆(z)‖∞ = 0.0221, respetively. Theplant is initialized at

x0 = [−0.9044, −9.1380, −2.5036, 0.6696, −0.0821, −4.0350]while the observer is initialized at x̂r0
= C+

r y0, where C+ denotes theMoore-Penrose pseudoinverse of Cr, and y0 is the initial plant output. The



80 Stability of MPC Based on Redued-Order ModelsSDP (4.63) is solved using MATLAB with YALMIP (Löfberg, 2004), Se-DuMi (Sturm, 1999) and Matlab Invariant Set Toolbox (Kerrigan, 2005).Figure 4.1 ompares the losed-loop responses of di�erent robust MPCdesigns omputed using Algorithm 4. The �gure also shows the responsewhen using the assoiated nominal design (NMPC), whih is algorithm 4but using P = P0 as in (4.18).
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Figure 4.1: Top: NMPC using the plant as the nominal model. Center:NMPC (dotted) and robust MPC (solid) using a ROM with r = 5. Bottom:NMPC (dotted) and robust MPC (solid) using a ROM with r = 4.For this initial ondition, the open-loop response overshoots the upper



4.7 Numerial Examples 81output onstraint signi�antly, and so the robust design is good at keepingits soft onstraints. Figure 4.1 suggests that the robust MPC is not overlyonservative when the model unertainty is relatively small.If we proeed by trunating to r = 3, the model redution error in-reases by an order of magnitude to ‖∆(z)‖∞ = 0.1373. In this ase, thenominal MPC design fails severely, as illustrated in Figure 4.2. In fat, theoutput for the nominal design osillates between its soft onstraints. Onthe other hand, the �robusti�ed" design obtained by applying Algorithm 4still performs well.
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Figure 4.2: NMPC (dotted) and robust MPC (solid) using a ROM with
r = 3.



82 Stability of MPC Based on Redued-Order Models4.7.2 Vibration Control of Hospital BuildingTo investigate the potential of using the design proedure for ontrol of CFDmodels, we onsider a model of the Los Angeles University Hospital building(Chahlaoui and van Dooren, 2002). The building has 8 �oors, eah with 3degrees of freedom; vertial and horizontal displaements, and rotation. TheCFD model of the building is given as an LTI, whih has 48 states, one inputand one output. The system is lightly damped, with long lasting osillationsin response to an impulse input (representing the building's response to, forexample, an earthquake).The relatively large number of states in this CFD model, ombinedwith the need for a fast ontroller in order to e�etively ounterat thevibrations, would rule out an MPC design based on the full-order modelwith 48 states. To generate redued-order models for this problem, we usebalaned trunation, and �rst obtain a model with 8 states, for whih themodel redution error ‖∆(z)‖∞ = 0.0755.Based on the redued-order model, model preditive ontrollers are de-signed. The ontroller objetive is to redue the magnitude and the dura-tions of the osillations. In open loop, the building keeps osillating for upto 15 seonds, as shown in Figure 4.3. The ontroller parameters are hosenas Nu = N = 10, Nǫ = 4, Q = 108Cr
T Cr, R = 0.001 and S = 1000I.From Figure 4.3 it an be seen that both the robust MPC and the nominalMPC are able to signi�antly redue the osillations present in the openloop response. The robust MPC is slightly onservative in this simulation.Now, we proeed by using 6, 5 and 4 states in the redued-order models.The impulse responses of the CFD model and the redued-order models inopen loop are ompared in Figure 4.4.Figure 4.5 shows the losed-loop performane of the di�erent ontrollers,where it an be seen that the nominal design fails for r = 5 and r = 4, whilethe robust design is still stable, as established in Theorem 5.
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Figure 4.3: Performane with robust MPC (top) and NMPC (bottom) de-signed based on a model with 8 states. The open loop response is shown asthe red, dashed line.



84 Stability of MPC Based on Redued-Order Models

0 5 10 15
−0.01

0

0.01

t

y

 

 

0 5 10 15
−0.01

0

0.01

t

y

 

 

0 5 10 15
−0.01

0

0.01

t

y

 

 

Figure 4.4: Impulse response from redued-order models with 6 states (topplot), 5 states (enter plot) and 4 states (lower plot)..
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86 Stability of MPC Based on Redued-Order Models4.8 Conluding RemarksIn this hapter we have developed a proedure for obtaining losed-loopstability of output-feedbak MPC based on redued-order models. Theproedure uses the information available in the original plant model in theo�ine phase of determining the ost funtion parameters. Sine our mainobjetive is to design an e�ient online ontroller, it is reasonable to putextra work into the o�ine stage.For large-sale systems, our proedure may be too omputationally de-manding, sine it requires solving LMIs involving the full-order system ma-tries. However, it seems possible to further develop the proedure desribedhere by treating parts of the dynamis as model unertainty.



Chapter 5Expliit MPC for Large-SaleSystems
In this hapter we present a framework for ahieving onstrained opti-mal real-time ontrol for large-sale systems with fast dynamis. Themethodology uses the expliit solution of the model preditive ontrol prob-lem ombined with model redution, in an output-feedbak implementa-tion. Redued-order models are derived using the goal-oriented, model-onstrained optimization formulation from Setion 2.3.5, that yields e�ientmodels tailored to the ontrol appliation at hand. The approah is illus-trated on a simple example for a 1D heat equation, and for a hallenginglarge-sale �ow problem that aims to ontrol the shok position in a super-soni di�user. We ompare the results with ontrol based on redued-ordermodels using POD. This hapter is based on Hovland et al. (2006, 2008).5.1 IntrodutionWith the inreasing interest in �uid �ow ontrol over the last deade, therearises a need for ontrol methodology that an ahieve onstrained opti-mal real-time ontrol of distributed systems with fast dynamis, suh ase.g. in mehatronis, MEMS, rotating mahinery and aoustis. Model87



88 Expliit MPC for Large-Sale Systemsredution ombined with MPC has been applied in proess ontrol sys-tems, suh as in Astrid and Weiland (2005), where the authors use PODto generate a redued-order model that is used to ontrol an industrialglass feeder. eMPC, however, has several advantages for implementationin real-time systems: 1) The online omputational time an be reduedto the miroseond�milliseond range, and 2) onstrained, optimal ontrolis ahieved with low omplexity, easily veri�able real-time ode, justifyingthe employment of eMPC in embedded and safety-ritial systems. How-ever, the use of eMPC is ritially dependent on having a system modelof low order, typially with a maximum of ten states. For CFD applia-tions, this motivates use of model order redution methodology appliablefor large-sale systems, that an provide redued models of very low order,that at the same time are suitable for ontrol. CFD models of systems suhas those mentioned above, typially have state dimensions exeeding 104,whih is prohibitive for model-based ontroller design. In order to ahievereal-time ontrol, the ontrol struture must be apable of omputing theontrol input faster than the sampling rate of the system. Therefore, weneed approximate simulation models that are of su�iently low order forontrol design, and a framework for oupling the ontroller with the plantbased on the approximate models, while aounting for the error inherentin the approximate model. Suh designs were also onsidered in Chapter3 and 4, but here we extend the methodology to large-sale systems, forwhih the model redution methods from Chapter 3 and 4 are too ompu-tationally demanding. We present a new framework for ahieving real-timeonstrained optimal ontrol for large-sale systems with fast dynamis thatexploits reent advanes in a goal-oriented model redution methodologyand eMPC.The ontribution of this hapter is twofold: 1) We propose an approahfor ahieving onstrained optimal ontrol in appliations that are desribedby models of high order, while being haraterized by fast sampling rates,by ombining a goal-oriented model redution method with the expliitsolution to the MPC problem. We attah the ontrol struture to the plantwith a Kalman �lter that aounts for the error introdued in the modelapproximation proess. 2) We demonstrate the performane of redued



5.2 Redued-Order MPC 89models obtained by goal-oriented optimization in ontrol system design.Demonstrating the feasibility of ahieving real-time onstrained optimalontrol for large-sale systems with fast dynamis is essential if redued-order modeling methods are to be adopted in appliations, suh as onboardatual aerospae systems. Even with the onsiderable reent progress inmodel redution to enable �ow ontrol, ahieving real-time ontrol in a on-strained setting has not previously been possible. It is only the appliationof the reently developed model redution methodology, whih targets theontrol problem to give models of very low dimension, that makes expliitMPC a feasible approah in this setting. To our knowledge, this is the �rsttime that model redution has been used in an expliit MPC setting toaddress the issue of onstraints.
5.2 Redued-Order MPCWe use the ontrol struture of Figure 2.4, and a Kalman �lter as in (3.1) toestimate the redued-order states based on the output of the CFD model,and we denote by x̂r the resulting estimate of the redued state xr.The framework for guaranteeing robust stability of redued-order MPCdesribed in Chapter 4 relies on solving LMIs that are of the same dimensionas the number of states in the CFD model. For large-sale systems suh asthose onsidered in this hapter, this is not feasible with the urrent setup,due to the large omputational requirements involved when solving LMIs.We therefore use the nominal model (the redued model) for ontrollerdesign, and address ertain robustness issues during the design stage.Given the unertainty introdued through the model redution proess,one annot guarantee that feasibility of the underlying optimization problemis maintained and that the onstraints on the states/outputs are ful�lled.This problem is handled through the use of soft onstraints. Relaxing thestate onstraints in e�et removes the feasibility problem, at least for stablesystems (Bemporad and Morari, 1999).



90 Expliit MPC for Large-Sale Systems5.2.1 Implementation of Model-Constrained RedutionWe will use the model-onstrained optimization approah desribed in Se-tion 2.3.5 to derive redued-order models.In pratie, the optimization problem (2.21) may not be tratable forlarge-sale problems. In a omputationally e�ient implementation of themethod (Bui-Thanh et al., 2007), the basis funtions are assumed to be alinear ombination of a �nite olletion of full-state snapshots X :
Φr = XΞ, (5.1)where Ξ ∈ R

M×r, M is the number of snapshots and r is the dimension of theredued state. Then, the elements of the matrix Ξ beome the optimizationvariables, and the number of optimization variables is redued from r × nto M × r. As a onsequene, neither the gradient omputation nor theoptimization step omputation (whih dominate the ost of an optimizationiteration) sale with the full system size n.If the model redution proedure is to be implemented on a omputerfor a partiular problem, a disrete formulation is required. Consequently,the integrals in equation (2.21a) are replaed by summation, whih leads tothe following formulation of the optimization problem:
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, ℓ = 1, . . . ,S, k = 1, . . . ,M, (5.2d)where the system matries E, A, B and C orrespond to the disrete-timestate-spae model.



5.2 Redued-Order MPC 91To solve the onstrained optimization problem (5.2), we hoose to elim-inate the state variables xr and state equations (5.2b)-(5.2d) and solve anequivalent unonstrained optimization problem in the Ξ-variables. The an-alyti gradient an be found through basi alulus of variations and use ofadjoint variables, and an unonstrained optimization algorithm that uses atrust-region-based Newton method (Coleman and Li, 1996) an be used todetermine the optimal basis. Sine the optimization problem is nonlinearand nononvex, it is important to generate a good initial guess. One possi-bility is to pik the POD basis as an initial guess. Alternatively, the initialguess for the ase of r basis vetors an be hosen to be the solution of theoptimization problem for r − 1 basis vetors plus an arbitrary rth vetor.This iterative proedure an be initialized at any value r ≥ 1 with the PODbasis vetors as an initial guess on the �rst iteration.5.2.2 ComplexityThe omplexity of the proposed ontrol sheme is given by the o�ine modelredution ost plus the ost of solving the eMPC problem o�ine for theredued model. The former is determined by the number of optimizationvariables in the optimization problem (5.2), whih is Mr, as well as the ostof solving the high-�delity model (to generate the snapshots and to omputethe gradient information required by the optimizer). The ost of solvingthe eMPC problem is problem dependent, but inreases rapidly with thenumber of parameters, the number of input steps to be optimized and thenumber of onstraints in the mpQP. For problems whose solutions onsist ofa large number of regions, one an easily run into numerial problems. Also,the memory required to store the eMPC solution online inreases rapidlyas the size of the solution grows. A large number of polyhedra in theonline solution requires a large searh tree with many nodes, whih entailsa longer searhing proess whih might ompromise real-time requirements.The sheme is therefore limited to ases where the redued models an bemade reasonably small, typially with around ten states.Further omplexity redution tehniques, suh as input bloking, anbe used to make the eMPC proedure more tratable in ases where the



92 Expliit MPC for Large-Sale Systemsproblem is large.In the next two setions, we will study in detail both model redutionand losed-loop results for two spei� model redution benhmarks.5.3 Case Study: Heat Di�usionTo investigate the implementation of the redued-order ontrol setup de-sribed above, we onsider a benhmark desribed by Chahlaoui and van Dooren(2002), desribing heat di�usion in a one-dimensional rod. In this benh-mark, disretization of the one-dimensional heat di�usion equation leads toa single-input single-output LTI of the form (2.1) with E = I. The modelhas 200 states, whih are the temperatures at di�erent loations in the rod.The input u is a heat soure loated at 1/3 of the rod length, and the output
y is the temperature reorded at 2/3 of the length.5.3.1 Model RedutionWe will ompare results using both POD and model redution by modelonstrained optimization. First, we disuss how to selet the snapshots forthe model redution proedure.Snapshot seletionDeiding how, how many and how often to pik snapshots is non-trivialin snapshot-based model redution shemes. Colleting a large number ofsnapshots for the method in Setion 2.3.5 leads to a large number of opti-mization variables, whih in turn inreases the omplexity of the optimiza-tion problem.Instead, we propose to use non-uniform time grids for the snapshots. Msnapshots an found in the interval t ∈ [0, T ], with the kth snapshot time
tk as

tk =
T (sk−1 − 1)

sM−1 − 1
, k = 1, 2, . . . ,M (5.3)



5.3 Case Study: Heat Di�usion 93where s > 0 is a onstant strething fator. T an be hosen by the user,for example based on the step response settling time, or the time to reahsteady-state, for the high-�delity model. While an inrease in M is expetedto inrease the quality of the redued-order models, it also leads to aninrease in the size of the optimization problem that must be solved todetermine the basis Φr. The hoie of M must re�et this trade-o� betweenredued model quality and redution ost. The e�et of s is to ensure thatthe snapshots are olleted more frequently when the response is hangingmore rapidly, and it an be tuned for the appliation at hand. The snapshotdistribution is more dense in the beginning of the interval t ∈ [0, T ] if s ishosen so that s > 1, and more dense at the end of the interval if s < 1.By tuning s, the user may pik snapshots to better �t the nature of theresponse for the appliation at hand.If we hoose M = 20 snapshots distributed uniformly in the interval t ∈
〈0, 60], the steady-state approximation is good, but the transient responseis inaurate, as shown in Figure 5.1.To further illustrate the di�erene in approximation quality with di�er-ent snapshot seletions, onsider Figure 5.2, where the redued-order modelsare derived using the optimization framework.The �gure ompares the step responses for two di�erent redued-ordermodels with the step response of the high-�delity model. The reduedmodel in the upper plot was found by solving the problem (5.2) for M = 20snapshots hosen uniformly over the interval t ∈ 〈0, 5] for a step input tothe large-sale model. The redued-order model approximates the transientresponse quite well, but there is evidently a steady-state error.For this partiular example, olleting snapshots the way desribedabove gives better results than uniform time grids while at the same timekeeping the number of snapshots low, whih is illustrated in the lower plotof Figure 5.2. The �gure also visualizes the non-uniform time grid used togenerate the redued-order model. The approximation quality is obviouslyhigher than for the model in the upper plot, using the same number ofsnapshots.
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Figure 5.1: Step response of high-�delity model and redued-order model oforder r = 4, generated using 20 snapshots uniformly distributed between 0and 60 s. The transient error is emphasized by zooming in the bottom plot.
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Figure 5.2: Step response of high-�delity model and redued-order models oforder r = 4, generated by solving optimization problem (5.2) by omparingsnapshots at time instants indiated by the blak irles. Top: 20 snapshotsuniformly distributed between 0 and 5 s. The steady-state error is evident.Bottom: Non-uniform time grid. Here, T = 60, M = 20 and s = 1.9.



96 Expliit MPC for Large-Sale SystemsModel Redution ResultsRedued-order models of order 1 to 10 are ompared in Table 5.1 in termsof the relative H2 norm of the orresponding error systems, de�ned as
He

2 ,
‖G (s)− Gr (s)‖H2

‖G (s)‖H2

. (5.4)The redued-order models are generated by omparing snapshots of the stepresponse of the high-�delity model at 20 time instants. It is seen that thegoal-oriented model based redution algorithm leads to a signi�ant inreasein approximation quality from POD in most ases for this metri, espeiallyfor low r.
r He

2 for GOMBR He
2 for POD1 0.6213 0.79592 0.0647 0.50233 0.0230 0.06924 0.0217 0.06275 0.02087 0.08416 0.02085 0.07427 0.0207 0.04688 0.0020 0.00209 0.0012 0.001210 8.6236 × 10−4 38× 10−4Table 5.1: Assessment of redued-order models of order 1 to 10, usingthe model-onstrained redution algorithm (GOMBR) and the POD. Theredued-order models with the optimized basis give a signi�ant redutionin the relative 2-norm of the error system, espeially for low orders.5.3.2 Closed-Loop ResultsTo ompare the performane of the redued-order models in losed loop,we �rst implement an output-feedbak in�nite horizon LQ-regulator based



5.3 Case Study: Heat Di�usion 97on the redued-order models. We onsider the objetive of regulating theoutput of the large-sale system to zero based on the redued-order models.The ontroller weights are hosen to re�et this objetive, by setting Q =
CT Q̃C, where Q̃ ∈ R

p×p is the weight on the output. The input omputedby the LQ regulator is given by u = −Kx̂r, where K is a onstant feedbakmatrix, and x̂r is the estimated redued state. The results are shown inFigure 5.3 and 5.4 for simulation of an optimized and a POD redued-ordermodel, respetively, with the same weights and r = 3. The �gures learlyillustrate that the redued-order model obtained with an optimized basisperforms muh better in losed loop than the one with a POD basis, andemphasizes the observation from Table 5.1, that the optimized redued-order models give a better approximation, partiularly for small r.In real-world ontrol problems there will always be some onstraints onthe state, input and/or output variables. To handle this, eMPC is a betterhoie than the unonstrained LQ regulator. To illustrate and visualize thesetup, we �rst onsider the ase where r = 2, that is we have only 2 statesin the redued-order model. We set the predition (and ontrol) horizon
N = 2. To demonstrate the ontroller's ability to enfore onstraints, weonstrain the ontrol input suh that |u| < 1000. First, the expliit solutionto the MPC problem is solved in an o�ine phase for the relevant area of theredued-order state spae. This solution is used to ontrol the high-�delitymodel in an output-feedbak setup. The system is initialized with a non-zero output. The resulting response is shown in Figure 5.5 for an optimizedbasis, where it is seen that the bound onstraint on the ontrol input isative during the �rst half seond. It an also be observed that the outputfrom the redued-order model onverges relatively slowly to the output ofthe high-�delity model, after about 0.5 s. The partition of the state spaeinto regions with onstant (Ki, ki) is shown in Figure 5.6, with the phaseplane trajetory of the redued state x̂r for the simulation in Figure 5.5indiated by the dotted line.
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Figure 5.3: Output-feedbak LQ regulator for the high-�delity model basedon a redued-order model with optimized basis for r = 3. Top: Estimatedoutput from the redued-order model ŷr vs output from the high-�delitymodel y. Bottom: Control input.
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Figure 5.4: Output-feedbak LQ regulator for the high-�delity model basedon a redued-order model with POD basis for r = 3. Top: Estimated outputfrom the redued-order model ŷr vs output from the high-�delity model y.Bottom: Control input.
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102 Expliit MPC for Large-Sale SystemsBased on simulations, the redued-order models generated with the op-timized basis perform better in losed loop than the POD models. For thisbenhmark, they are able to handle higher ontroller gains, the output isregulated faster to the origin and the ontrol ation is smoother. This is il-lustrated by Figure 5.7. The di�erene in performane may be attributed tothe way in whih the goal-oriented models are targeted to give an aurateapproximation of the output. For r = 5 it is also observed that the out-put from the redued-order models onverge to the true output an order ofmagnitude faster than for r = 2, resulting in a better losed-loop response.This is what one would expet; adding more states to the redued-ordermodel leads to better approximations.
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Figure 5.7: Performane omparison for r = 5 with eMPC horizon N =
10. Top: Output of the full model using redued-order ontrol based onoptimized- and POD basis. Bottom: Control input for the two di�erentases.



5.4 Case Study: Supersoni Di�user 1035.4 Case Study: Supersoni Di�userThis example is a hallenging model redution problem where the objetiveis to ontrol the position of a shok in a supersoni inlet. The problem isbased on an unsteady CFD formulation to simulate subsoni and supersoni�ows through a jet engine inlet that is designed to provide a ompressorwith air at the required onditions (Willox and Lassaux, 2005). Figure 5.8shows mah ontours in the di�user at nominal operation.
Figure 5.8: Steady-state mah ontours in di�user. A shok sits downstreamof the throat. (Willox and Lassaux, 2005)The ase onsidered has a steady-state Mah number of 2.2. The �owis assumed invisid and is modeled by the Euler equations. The underlyingCFD ode is nonlinear, and the model is linearized about a steady-statesolution, giving a stable ontinuous-time model of the form (2.1), where theontinuous-time state x(t) ontains the n = 11, 730 unknown perturbation�ow quantities at eah point in the omputational grid, and the matries A,
B, C and E result from the CFD spatial disretization of the Euler equa-tions1. The vetor u ∈ R

2 ontains the inputs to the system and y ∈ Rontains the system output. In this ase, the �ow state quantities are den-sity, �ow veloity omponents and enthalpy, and the output y is the averageMah number at the throat. There are 3, 078 grid points in the omputa-tional domain, giving a total of n = 11, 730 unknowns. The desriptormatrix E is sparse, and some rows ontain only zeros; onsequently, E issingular and the inlet model represents a general di�erential algebrai equa-1The system matries are available in the Oberwolfah Model Redution BenhmarkColletion; http://www.imtek.uni-freiburg.de/simulation/benhmark/ .

http://www.imtek.uni-freiburg.de/simulation/benchmark/


104 Expliit MPC for Large-Sale Systemstion system. The input u ontains bleed atuation b (manipulated variable)and an inoming density disturbane d, i.e.
u ,

[
b
d

]

. (5.5)A disrete-time system is obtaining by applying a bakward Euler timeintegration method.5.4.1 Model RedutionRedued-order models of order 1 to 10 are ompared in Table 5.2 in termsof the metri (5.4). The redued-order models are generated by omparingsnapshots of the step response of the high-�delity model at 20 time instants.It is seen that the goal-oriented model based redution algorithm leads toa signi�ant inrease in approximation quality from POD in most ases forthis metri, espeially for low r. The goal-oriented basis is optimized withthe POD basis as the initial guess. In all these ases, the redued-ordermodel obtained by POD is unstable, while the optimized redued-ordermodels are not.In order to better evaluate the redued-order models, we ompare time-domain and frequeny-domain responses for the CFD model with modelsof redued order obtained from an optimized basis. We onsider a reduedmodel with 10 states, whih was the lowest order that gave satisfatoryapproximation quality. The optimized basis is found by minimizing theoutput error for 200 samples in the time interval t ∈ (0, 2) s in response toa step in eah of the two inputs. That is, �rst we set b ≡ 1 and d ≡ 0and ollet 200 samples in the time interval, and then we re-initialize themodel, set b ≡ 0 and d ≡ 1 and ollet another 200 samples in the sametime interval. We use the POD basis vetors generated from the snapshotdata as an initial guess for the optimization algorithm.The transfer funtion
G1 =

y

b
, (5.6)from bleed b to output y, is shown in Figure 5.9 for the CFD model and theredued model obtained with an optimized basis. Figure 5.10 illustrates the
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r He

2 for GOMBR He
2 for POD1 0.6213 0.79592 0.0647 0.50233 0.0230 0.06924 0.0217 0.06275 0.02087 0.08416 0.02085 0.07427 0.0207 0.04688 0.0020 0.00209 0.0012 0.001210 8.6236 × 10−4 38× 10−4Table 5.2: Assessment of redued-order models of order 1 to 10, usingmodel-onstrained optimization (GOMBR) and the POD. The redued-order models with the optimized basis give a signi�ant redution in therelative 2-norm of the error system, espeially for low orders.same omparison for the transfer funtion

G2 =
y

d
, (5.7)from the disturbane input d to output y. The transfer funtion from thedisturbane to the output ontains a delay, and is onsequently more di�-ult for the redued-order model to approximate. The redued-order modelis aurate for low frequenies, but does not apture the disturbane re-sponse at higher frequenies. However, these higher frequenies are un-likely to our in typial atmospheri disturbanes (Willox and Megretski,2005); thus, the redued model performane shown in Figures 5.9 and 5.10 isdeemed aeptable for the purposes of ontroller design. Figure 5.11 showsthe time-domain responses to a step in bleed atuation and a Gaussian den-sity disturbane input. The frequeny ontent of this disturbane input isrepresentative of that expeted in pratial �ight onditions. It an be seenthat the redued model obtained by optimization aurately predits thetime-domain response, on�rming its suitability for onditions of pratial
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Figure 5.9: Bode diagram omparison of transfer funtion from bleed b toMah number y for the CFD model (11,730 states) and the redued modelof order r = 10.interest. It is interesting to note that the redued-order model obtainedby POD performs reasonably well within the range in whih the snapshotswere olleted, i.e. during the �rst 2 seonds. After that, the output of theredued-order model from POD diverges, illustrating the instability of themodel.
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Figure 5.10: Bode diagram omparison of transfer funtion from disturbane
d to Mah number y for the CFD model (11,730 states) and the reduedmodel of order r = 10.
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Figure 5.11: Top: Response in Mah number y to a step in bleed input bfor the CFD model (11,730 states) and the redued model of order r = 10.Bottom: Response in Mah number y to Gaussian disturbane input d forthe CFD model and a redued model of order r = 10.



5.4 Case Study: Supersoni Di�user 1095.4.2 Closed-Loop ResultsImplementing MPC or eMPC diretly on the high-�delity model is infeasiblein large-sale settings, for instane when working with models obtainedfrom CFD analysis. We therefore use redued-order ontrol, where redued-order models are used to design output-feedbak expliit model preditiveontrollers for the high-�delity model.The eMPC framework that uses the redued-order model was illustratedin Figure 2.4.The ontrol is implemented as shown in Figure 5.12. In nominal �owonditions, a strong shok sits downstream of the inlet throat. In order tostabilize the shok position in the presene of inoming �ow disturbanes,and thus prevent engine unstart, ative �ow ontrol is e�eted through �owbleeding upstream of the throat.
Figure 5.12: Ative �ow ontrol setup for the supersoni inlet(Willox and Lassaux, 2005).The high order of the inlet model is prohibitive for optimal and model-based ontrol, whih motivates the use of model redution. It should benoted that this benhmark is relatively di�ult to approximate. Variousmodel redution methods have been applied to this problem with varyingdegrees of suess. As shown by Willox and Megretski (2005), POD andKrylov-based methods yield redued models that are unstable, unless greatare is taken during the model redution proess. One reason for this maybe that there are inverse responses from the inputs to the output, suggestingnon-minimum phase. Non-minimum phase systems are harder to approxi-



110 Expliit MPC for Large-Sale Systemsmate than minimum phase systems (Antoulas et al., 2002). Balaned trun-ation is guaranteed to produe stable models, but is di�ult to apply in thisase due to the singular desriptor matrix E. Good results were shown us-ing the Fourier model redution approah in Willox and Megretski (2005);however, that method is appliable only to linear models, in ontrast to theoptimized-basis algorithm that we are using.The eMPC framework an be extended naturally to handle disturbanessuh as the density disturbane. In the ontroller, we obtain a redued-orderpredition model of the form
x̂rk+i+1

= Arx̂rk+i
+ Bb

rbk+i + Bd
r dk+i|k + L

(
y − ŷrk+i

) (5.8a)
ŷrk+i

= Crx̂rk+i
; i ≥ 0, (5.8b)where Bb

r and Bd
r are the olumns of Br orresponding to the inputs b and

d, respetively, and i = 1, . . . ,N is the ith step on the predition horizon.We assume that the disturbane dk is measured, and we use the notation
dk+i|k to emphasize that the disturbane dk+i, given the measured value attime step k, is predited based on an assumption on the future behaviorof the disturbane. If we assume that the disturbane is onstant over thepredition horizon, one straightforward way to implement the preditionmodel (5.8) is to augment the state vetor and the system matries asfollows:

x̂a
rk

=

[
x̂rk

dk

]

, (5.9)
Aa

r =

[
Ar Bd

r

0 1

]

, (5.10)and
Ca

r =
[
Cr 0

]
. (5.11)To avoid numerial di�ulties (the augmented system is marginally stableif we set dk+1 = dk), we replae the 1 in equation (5.10) with a salar δ,and typially hoose δ = 0.99.Now, the ontrol struture an be summarized as follows:
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1 0.01 2f2

0 5
2 0.02 2f2

0 5
3 0.04 2f2

0 5Table 5.3: Disturbane parameter values for di�erent simulation ases.
f0 = 3.426 is related to the steady-state for whih the nonlinear modelis linearized.
• The Mah number is measured using the output equation

yk = Cxk. (5.12)
• The redued state is estimated using a Kalman �lter based on theredued-order model and the output of the CFD model.
• The redued state estimate is fed to the expliit model preditiveontroller along with the measured disturbane, where the bleed input

bk is found as an expliit funtion of the augmented state (5.9).
• Control is e�eted through upstream bleed.For all results presented in the following, the inlet model is disretizedwith a time step of ∆t = 0.025 s. The ontrollers are veri�ed to be su�-iently fast for this example.The disturbane input is set to be a Gaussian distribution, whih isdesribed by its amplitude Λ, rise time α and peak time tp through therelation

d = ρ (t) = −Λρ0e
−α(t−tp)2 . (5.13)In the following, we address the ontroller robustness by tuning its per-formane for a set of disturbanes for whih the linear model is a goodrepresentation of the nonlinear CFD model. (The linearized CFD model isonly valid for small perturbations from steady-state onditions.) The pa-rameter values for the disturbane inputs are shown in Table 5.3, and the
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t[s]Figure 5.13: Magnitude of disturbane inputs used in Cases 1-3.di�erent disturbane ases are shown in Figure 5.13.The omputed ontrol input bk is in fat a perturbation about the nom-inal steady state bleed bss of 1% of the inlet mass �ow,
btotal = bss + bk. (5.14)We therefore require that the total bleed btotal is non-negative, i.e.

bk+i ≥ −0.01; i ≥ 0. (5.15)We also put an upper bound on the ontrol ation,
bk+i < bmax; i ≥ 0, (5.16)and we bound the Mah number at the throat

ymin < yrk+i
< ymax; i ≥ 0. (5.17)Sine our objetive is to prevent the shok from moving upstream ausingengine unstart, we will set ymin > 1, e.g. ymin = 1.1. The ontroller tun-ing parameters are the weighting matries, the predition horizon, and the



5.4 Case Study: Supersoni Di�user 113ontrol horizon in the MPC formulation. Good performane is obtained bysetting M = N = 10, Q = CT
r Cr, R = 0.05 and P to the solution to thealgebrai Riati equation. The resulting losed-loop performane is shownfor the di�erent disturbane ases in Figure 5.14. It is seen that the on-
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Figure 5.14: Unontrolled (dashed) and ontrolled (solid) Mah number forCase 1 (top), Case 2 (middle) and Case 3 (bottom).



114 Expliit MPC for Large-Sale Systemstroller gives good performane in all three ases. There are, however, someminor osillations in the losed-loop response, whih are attributed to fullmodel/redued model mismath and inexat modeling of the disturbanein the predition model. Reall that we assume that the disturbane isonstant over the predition horizon, while it in fat inreases or dereases,orresponding to the shape of the Gaussian distribution. Also, the hori-zon M = N = 10 is somewhat short, espeially sine there is an inverseresponse from inputs to output.In order to guarantee feasibility of the MPC problem, we soften theonstraints on the outputs.If we again onsider disturbane Case 3, we see from Figure 5.14 thatthe ontrolled Mah number falls below 1.36. Now, we set ymin = 1.36 asa soft onstraint, and penalize onstraint violation with an exat penaltyfuntion. The resulting Mah number is ompared to the simulation fromFigure 5.14 whih has a hard onstraint ymin = 1.1 in Figure 5.15. Theorresponding ontrol inputs are shown in Figure 5.16.To further address the question of robustness, we add noise to the mea-sured Mah number y. For that purpose we add Gaussian white noise ofdi�erent intensities to the output of the CFD model during the simulation,and study the e�et in losed loop.Figure 5.17 shows a simulation run without noise, ompared to threesimulation runs with Gaussian white noise. It an be seen that in the pres-ene of noise, partiularly at the two lower levels, the ontroller performaneremains good.
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118 Expliit MPC for Large-Sale Systems5.5 Conluding RemarksThis hapter presented a new framework for onstrained optimal ontrolof fast, large-sale systems, suh as those arising in aerospae �ow ontrolappliations. This is an important step towards ahieving and atuallyimplementing real-time, onstrained optimal, ontrol for suh systems. Themethodology, whih ombines eMPC with model redution, is demonstratedfor an example that onsiders ontrol of a supersoni inlet. This examplepresents a signi�ant hallenge to model redution methods. First, PODredued models su�er from instability and thus annot be used in a ontrolsetting. Further, obtaining models of very low dimensional is ritial inorder for the eMPC sheme to be viable for real-time ontrol. Using a goal-oriented redution methodology, we were able to derive a redued modelwith ten states that yields aeptable approximation quality and is withinthe apaity of the eMPC sheme.The proposed methodology is also appliable for more ompliated on-trol tasks, suh as nonlinear MPC and referene traking, for whih theexpliit solution of the MPC problem an still be found, although approxi-mately, in some ases.



Chapter 6Conlusions and Further WorkThe results presented in this thesis are a step towards ahieving advanedmodel-based real-time ontrol for systems desribed by CFD-models. Aframework is established for ahieving onstrained optimal ontrol for large-sale systems with fast dynamis, through the use of model redution, stateestimation and low order ontroller design. Even with the onsiderablereent progress in model redution to enable �ow ontrol, ahieving real-time ontrol in a onstrained setting�whih is ruial if these methods areto be adopted in atual systems�has not previously been possible. It is onlythe ombination of reently developed model redution methodology, alongwith state estimation and expliit model preditive ontrol, that makes theapproah feasible in this setting. To our knowledge, this is the �rst timethat model redution has been used in an expliit MPC setting to addressthe issue of onstraints.Moreover, it is demonstrated how model redution tehniques an sig-ni�antly redue the omplexity of expliit model preditive ontrol. This isessential, sine it allows the ontrol methodology to be applied for a largernumber of systems, and for a wider range of ontroller parameters.We develop a novel robust model preditive ontrol design proedurewhih failitates the design of model preditive ontrol based on redued-order models. The proedure guarantees losed-loop stability when the119



120 Conlusions and Further Workredued-order model preditive ontroller is attahed to the high-�delitymodel, and relies on solving a semi-de�nite program. The design uses theoriginal plant model in an o�ine phase of determining ost funtion param-eters, thereby making use of both the redued-order model and the originalmodel in the design. Sine the main objetive is to design an e�ient on-line ontroller, it is reasonable to put some extra work in the o�ine phase.For large-sale systems, however, this proedure is too omputationally de-manding. Future work should investigate the possibility of treating partsof the dynamis as model unertainty, or other ways to make the designappliable to larger systems.More general stability analysis of losed-loop systems onsisting of on-trollers based on redued-order models of CFD-models should also be on-sidered. In partiular, stability of expliit MPC based on redued-ordermodels would be an interesting result. Moreover, development of model-based redution methodology targeted at ontrol appliations for large-salesystems is needed. Many of the model redution methods that are used fre-quently to design low order ontrollers, do not take into aount the outputsof the system, but onsiders all states in the state spae.Further, model redution of nonlinear systems entailed by redued-orderontrol is still very muh an open researh �eld. More rigorous methods areneeded that are appliable to large-sale systems, and do not require anexessive amount of omputations. Nonlinear ontrol theory should thenbe applied, to ahieve robust nonlinear ontrol with low-order ontrollers.
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