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Summary

This work addresses the control allocation problem for a nonlinear over-
actuated time-varying system where parameters a¢ ne in the actuator dy-
namics and actuator force model may be assumed unknown. Instead of
optimizing the control allocation at each time instant, a dynamic approach
is considered by constructing update-laws that represent asymptotically op-
timal allocation search and adaptation. A previous result on uniform global
asymptotic stability (UGAS) of the equilibrium of cascaded time-varying
systems, is in the thesis shown to also hold for closed (not necessarily com-
pact) sets composed by set-stable subsystems of a cascade. In view of this
result, the optimal control allocation approach is studied by using Lyapunov
analysis for cascaded set-stable systems, and uniform global/local asymp-
totic stability is guaranteed for the sets described by; the system dynamics,
the optimizing allocation update-law and the adaptive update-law.

The performance of the proposed control allocation scheme is demon-
strated throughout the thesis by simulations of a scaled-model ship ma-
noeuvred at low-speed. Furthermore, the application of a yaw stabilization
scheme for an automotive vehicle is presented. The stabilization strategy
consists of; a high level module that deals with the vehicle motion control
objective (yaw rate reference generation and tracking), a low level module
that handles the braking control for each wheel (longitudinal slip control
and maximal tyre road friction parameter estimation) and an intermedi-
ate level dynamic control allocation module. The control allocation mod-
ule generates longitudinal slip reference for the low level brake controller
and commands front wheel steering angle corrections, such that the actual
torque about the yaw axis tends to the desired torque calculated by the high
level module. The conditions for uniform asymptotic stability are given and
the scheme has been implemented in a realistic nonlinear multi-body ve-
hicle simulation environment. The simulation cases show that the control
strategy stabilizes the vehicle in extreme manoeuvres where the nonlinear
vehicle yaw dynamics otherwise become unstable in the sense of over- or
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understeering.
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This thesis contains research for my doctoral studies from September 2004
to February 2008 at the department of Engineering Cybernetics (ITK) at
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been Professor Tor Arne Johansen and the work has been sponsored by
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The aim of the thesis is to present ideas around a dynamic adaptive
control allocation scheme. Although the control allocation strategy is com-
pared with existing approaches, no attempts of comparing the practical
implementation results with existing methods are done.

The main chapters that present the theoretical results; Dynamic con-
trol allocation, Dynamic adaptive control allocation and Control allocation
with actuator dynamic are built up around the same cascaded set stability
approach. The idea is �rst to show stability of a perturbing system under
certain assumptions, then in a second step, the combined perturbing and
perturbed system cascade is analyzed. Furthermore, the main results are
founded on a set of global assumptions and the main focus has been on the
analysis in the global case. The reason for this is that the global proves
enables a fairly straight forward way to verify the local results when the
assumptions only hold locally.
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Chapter 1

Introduction

1.1 Motivation

In the control allocation philosophy the actuators and e¤ectors of a system
are combined in order to produce some desired e¤ect. For the (overactu-
ated) control problem, where a unique desired e¤ect on the system may
be produced by di¤erent actuator input constellations and settings, a con-
troller design involving the control allocation approach is bene�cial. A key
issue is the handling of redundancy in order to achieve dynamic recon-
�gurability and fault tolerance. Such designs o¤er a modular structure,
decoupling the high level controller (de�ning the desired e¤ect) from the
allocation problem.

The control allocation problem is commonly formulated as an optimiza-
tion problem systematically handling; redundant sets of actuators, actuator
constraints and minimizing power consumption, wear/tear and other unde-
sirable e¤ects. For mechanical systems with fast dynamics, the optimization
problem needs to be solved at a fast sampling rate which in general is a
demanding and sometimes safety-critical task, even with the state of the
art numerical optimization software available.

The main contribution of this thesis is to show that the instantaneous
control allocation problem, for classes of nonlinear and uncertain systems,
does not necessarily need to be solved exactly at each time instant. In order
to ensure convergence and stability properties for the closed-loop system,
a control allocation synthesis (with no iterative optimization loops) based
on Lagrangian parameters is proposed, and the stability of a corresponding
optimal set is pursued through the use of Lyapunov analysis. Furthermore,
parameter uncertainty related to disturbances or actuator failure, is treated
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in an adaptive allocation solution of the closed-loop control problem.

1.1.1 System description and motivating examples

The main motivation for using the control allocation approach, in the so-
lution of a control problem, is the simpli�cation it o¤ers in the design and
control synthesis. Typically, the dynamic model of a mechanical system is
based on Newton�s three laws of motion, such that the forces and moments
acting on the system occur a¢ nely in the model. Generally, we have the
plant motion dynamics (the high level model):

_x = f(t; x) + g(t; x)� ; (1.1)

where f(t; x) and g(t; x) de�nes the model dynamics, x 2 Rn is a vector of
size n; that denotes the plant motion states, t is the time and � 2 Rd is a
vector of size d; that denotes the generalized forces and moments acting as
the system input. These forces and moments can not be generated directly,
but may be manipulated through the actuators and e¤ectors. The static
actuator-force mapping model (the static actuator/e¤ector model) takes the
typical form

� = �(t; x; u);

�(t; x; u; �) := �0(t; x; u) + �� (t; x; u)�� +�u(t; x; u)�u; (1.2)

where u 2 Rr is the constrained input/control vector of size r, � :=
(�T� ; �

T
u )
T 2 Rm=m�+mu is a vector of size m containing parameters that

may be unknown. �u is related to the actuator model while �� only ap-
pear in the static actuator-force mapping. By assuming that the actuator
dynamics are much faster then the plant motion, u is commonly treated as
the plant input. In some cases the actuator dynamics cannot be neglected
and the dynamic actuator model (the low level model)

_u = fu0(t; x; u; ucmd) + fu�(t; x; u; ucmd)�u; (1.3)

is considered, where ucmd is the actuator input, and thus the only manip-
ulated input available to the plant.

Structurally the plant is described by Figure 1.1.

The control allocation concept

Based on the actuator-force mapping (1.2), neglecting the actuator dynam-
ics (1.3), the principle of the control allocation problem may be stated by
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Figure 1.1: The plant

the selection of u that satisfy:

�(t; x; u; �) = � c (1.4)

u � u � u; (1.5)

where u and u are the actuator constraints, and � c is a desired generalized
force generated by the high level control synthesis for (1.1). If a control
satisfying (1.4) and (1.5) is not unique, some optimization criterion may be
considered. When feasible controls does not exist, i.e. equation (1.4) is not
satis�ed for any u bounded by (1.5), the control allocation problem may be
formulated as a two step sequential problem:

u = argmin
u2


J(u)


 = arg min
u�u�u

j�(t; x; u; �)� � cj ;

by �rst minimizing the error between the desired and a feasible control, and
further optimizing the actuator e¤ort with respect to an optimizing crite-
rion. By considering actuator dynamics and parameter uncertainty in the
control/control allocation design, the closed loop structure will also consist
of a low level controller and adaptive parameter estimators, Figure 1.2. In
the following the control allocation strategy is presented and exempli�ed in
the framework of; aircraft, automotive and ship control.

Aircraft moment/torque allocation

The orientation of an aircraft is in airplane terminology described by the
three rotational degrees: yaw, pitch and roll. These rotational degrees are
controlled by the aircraft control surfaces. The control surfaces are any
object on the plane that can be manipulated in order to alter the air�ow
around the body and thus locally change the aerodynamic forces and create
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Figure 1.2: Block diagram of the cloosed loop control/adaptive optimizing
control allocation scheme

moments around the rotational axes. For a conventional aircraft, the aileron
surfaces are mainly designated to roll control, the elevators to pitch control
and the rudder to yaw control. Flaps and slats are wing altering shapes
that when deployed, increase lift. Spoilers which change lift, drag and roll
are also common on conventional airplanes. In order to make air travel
more safe, the concept of Propulsion Controlled Aircraft (PCA) has been
introduced Jonckheere and Yu [1999]. If the control surfaces on the aircraft
are disabled, the PCA system enables the pilot to control the aircraft pitch
and yaw by solely manipulating the engine thrust.

A pilot has in general, only direct control of the plane attitude and the
longitudinal motion. The task of an allocation algorithm is to determine
which and how much the control surfaces should be de�ected, based on some
desired e¤ect speci�ed by the pilot. The control allocation problem becomes
involved due to control surface redundancy and because a control surface
de�ection usually does not generate pure single axis moments (ailerons are
mainly used for roll moment generation, but they also have an e¤ect on
the yaw moment). Further complexity arises as propulsion manipulation
and additional control surfaces are added to the design in order to generate
airplanes with greater manoeuvrability and redundancy.

Normally the plane dynamics can be described by (1.1) where x may
be the translational positions (longitudinal, lateral and lift), the attitudes
(pitch, roll and yaw) and the velocities of these states. In this case x is a
twelve dimensional vector. u in (1.2) is a vector that contains the positions
of all the airplane thrusters and control surfaces, constrained by propulsion
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Figure 1.3: Airplane illustration. Photo courtesy: Axwel [2007]

saturation and maximal angle of de�ection. The generalized force vector
� represents the forces in �x; �y and �z direction (see Figure 1.3) and the
moments around the respective axes. Typically, the pilot speci�es rate
references for longitudinal speed, pitch, roll and yaw angular velocities.
These references are fed to a high level controller and desired forces and
moments (� c) are calculated. Moreover by the control allocation algorithm
the desired controls (ud) are manipulated in order to satisfy � = � c based
on some actuator constraints and costs. If the actuator dynamics is not
negligible, ud may be considered as a reference for the low level actuator
controls.

In case of in-�ight actuator malfunction or damage, the allocation al-
gorithm should adapt. This functionality can be included by the parame-
trization from (1.2) where �u can be treated as an e¤ect parameter, or it
can be handled by changing the actuator position constraints in order to
model a stuck, slow or ine¤ective control surface.

The dynamic of a high performance aircraft is fast, thus the closed loop
control system needs to be fast, and the speed and deterministic behavior
of the control allocation algorithm is crucial. An explicit control allocation
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scheme usually has the speci�c property of being fast and deterministic.
See Bordignon [1996] and Beck [2002] for an in-depth discussion of the

airplane control allocation problem.

Automotive safety control systems

In recent years, many new active driver assistance systems for increased
safety and vehicle handling has been designed and applied in the auto-
motive industry. The anti-lock braking system (ABS) that increases brake
performance, the brake assist (BA) aiding the driver in critical braking sit-
uations and the traction control system/antispin (TCS) preventing loss of
traction, are typical systems available in most modern cars. Active chassis
vehicle control systems, like yaw motion control incorporated in for ex-
ample; the electronic stability program (ESP), the vehicle dynamic control
(VDC), the electronic stability control (ESC) etc. and the rollover preven-
tion systems, may use ABS, BA and TCS as subsystem in order to increase
the manoeuvrability of the vehicle.

Figure 1.4: Vehicle illustration. Photo courtesy: Drive [2007]

In an automotive vehicle yaw stabilization scheme, the control problem
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consists of controlling the yaw rate (r) based on the driver steering angle
input (�) and the vehicle side slip (�), such that over- and understeering
is prevented. A high level controller is assigned to stabilize the yaw rate
error (which de�nes x in (1.1)), by calculating a desired torque (� c) around
the yaw axis. The allocation problem is then to determine and achieve
desired wheel-road forces that results in the desired moment. It is common
to use brake actuators and steering angle actuators (constrained by max-
imal steering angle de�ection and braking forces). But other approaches
where active damping and torque biasing are used as controls may also be
considered. In many ABS solutions dynamic wheel slip models are used in
the control synthesis. Similarly these models (1.3) may be used in braking
based yaw stabilization schemes. The tyre road friction model, incorporated
in (1.2) and (1.3) is essential in the control allocation approach. This model
is highly dependent on the tyre properties and the road conditions. The
road condition uncertainty may be parameterized in the friction model by
the maximal tyre road friction coe¢ cient (�u = �H). Since this parameter
change, corresponding to the road conditions, knowledge of this uncertain
parameter is crucial for the performance of the allocation algorithm.

By solving the control allocation problem dynamically (not necessarily
�nding the optimal solution at each sampling instant), a real-time imple-
mentation can be realized without the use of any numeric optimization
software. In general, this is an advantage since implementations on vehi-
cles with low-cost hardware may be considered.

Background on vehicle control systems can be found in Kiencke and
Nielsen [2000], and in Chapter 6 a detailed description of the yaw stabi-
lization problem is presented as an application of the main result of this
thesis.

Dynamic positioning of a scale model ship

Low-speed manoeuvring and station keeping of ships are commonly charac-
terized as problems of dynamic positioning (DP). DP systems are classi�ed
by rules based on IMO [1994], issued by the International Maritime Or-
ganization (IMO), describing DP system properties for class 1, 2 and 3.
Important elements in the classi�cation are fault handling, system redun-
dancy and �re/�ood proof properties of the components in the system. DP
systems are much used in the o¤shore industry and involves operations
like; loading, pipe and cable laying, trenching, dredging, drilling and tar-
get following. Normally the vessels used in high accuracy and reliability
operations like pipe laying and drilling are equipped with DP systems of
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class 2 and 3. Typically vessel actuators available for a DP system are;
the main aft propellers in conjuncture with rudders, tunnel thrusters going
through the hull of the vessel and azimuth thrusters that can rotate under
the hull and produce forces in di¤erent directions. Other actuators are wa-
ter jets and stabilizing �ns, but they are more often used in higher speed
regime control systems. Dependent on the vessels operational regime and

Figure 1.5: Model ship diagram

requirements for handling environmental disturbances, like thruster losses
due to; axial water in�ow, cross coupling drag, thruster-hull interactions,
propeller ventilation and thruster-thruster interaction (see Sørensen et al.
[1997] and Fossen and Blanke [2000] for details), the vessel thruster con�g-
urations vary. For example a typical supply vessel thruster con�guration
can consist of two main propellers, two tunnel thrusters and two azimuth
thrusters which give 8 control variables (6 rpm and 2 directional controls)
in total. In Figure 1.5 the actuator con�guration for a model ship is shown
(used in the following example). In safety critical and accuracy demand-
ing operations, the actuator redundancy and actuator degeneration/failure
detection, which motivate the adaptive structure, are of importance in the
making of a fault tolerant reliable DP system.

In addition, it is desired to minimize the use of actuators in order to
reduce maintenance costs due to wear, and to minimize fuel consumption.

Through out this thesis, the theoretical results will be exempli�ed on an
overactuated scaled-model ship moving at low-speed. A detailed description
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of the scale-model is presented in the following.

Figure 1.6: Ship illustration. Photo found in: Sørensen and Perez [2006]

The position of the scale model-ship is controlled while experiencing
disturbances caused by wind and current, and propellers trust losses. The
scenario is based on a 3 Degree Of Freedom (DOF) horizontal plane model:

_�e = R( )�;

_� = �M�1D� +M�1 (� + b) ; (1.6)

� = �(�; u; �);

where �e := (xe; ye;  e)
T := (xp � xd; yp � yd;  p �  d)

T is the north and
east positions and compass heading deviation. Subscript p and d denotes
the actual and desired states. � := (�x; �y; r)T is the body-�xed velocities
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in, surge, sway and yaw, � is the generalized force vector in surge, sway
and yaw, b := (b1; b2; b3)T is a disturbance vector due to wind, waves and

current and R( ) :=

0@ cos � sin 0
sin cos 0
0 0 1

1A is the rotation matrix function
between the body �xed and the earth �xed coordinate frame. M is the mass
matrix of the ship and D is the damping matrix. The example presented
is based on Lindegaard and Fossen [2003], and is also studied in Johansen
[2004]. In the considered model there are �ve force producing devices; the
two main propellers aft of the hull, in conjunction with two rudders, and one
tunnel thruster going through the hull of the vessel at the bow. !i denotes
the propeller angular velocity where j!ij � !max and �i denotes the rudder
de�ection, where j�ij � �max. i = 1; 2 denotes the aft actuators, while i = 3
denotes the bow tunnel thruster. The following notation and models are
introduced in order to rewrite the problem in the form of (1.1)-(1.3).

x := (�e; �)
T ; �1 := (�u1; �u2; �u3)

T ; �� := (��1; ��2; ��3)
T ; (1.7)

� := (�1; �2; �3)
T ; u := (!1; !2; !3; �1; �2)

T ; (1.8)

f :=

�
R( e +  d)�
�M�1D�

�
; g :=

�
0

M�1

�
; (1.9)

�(�; u; �) := Gu(u)

0@ T1(�x; !1; �u1)
T2(�x; !2; �u2)

T3(�x; �y; !3; �u3)

1A+R( p)�� ; (1.10)

Gu(u) :=

0@ (1�D1) (1�D2) 0
L1 L2 1
�31 �32 l3;x

1A ; (1.11)

�31(u) := �l1;y(1�D1(u) + l1;xL1(u));
�32(u) := �l2;y (1�D2(u) + l2;xL2(u)) :

The thruster forces are de�ned by:

Ti(�x; !i; �ui) := Tni(!i)� �i(!i; �x)�ui; (1.12)

Tni(!i) :=

�
kTpi!

2
i !i � 0

kTni j!ij!i !i < 0
; (1.13)
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�1(!1; �x) := !1�x; (1.14)

�2(!2; �x) := !2�x; (1.15)

�3(!3; �) :=
q
�2x + �

2
y j!3j!3; (1.16)

�u3 := kT�3 ; (1.17)

�u1 :=

�
kT�1(1� w) �x � 0

kT�1 �x < 0
; (1.18)

�u2 :=

�
kT�2(1� w) �x � 0

kT�2 �x < 0
; (1.19)

where 0 < w < 1 is the wake fraction number, �i(!i; �x)�ui is the thrust
loss due to changes in the advance speed, �a = (1�w)�x; and the unknown
parameters �ui represents the thruster loss factors. The rudder lift and drag
forces are:

Li(u) :=

�
(1 + kLni!i)(kL�1i + kL�2i j�ij)�i ; !i � 0
0 ; !i < 0

; (1.20)

Di(u) :=

�
(1 + kDni!i)(kD�1i j�ij+ kD�2i�2i ) ; !i � 0
0 ; !i < 0

: (1.21)

Furthermore it is clear from (1.12) that
�(�; u; �) = Gu(u)Q(u) + Gu(u)�(!; �x)�u + R( e)�� ; where �(!; �x) :=
diag(�1; �2; �3) and Q(u) represents the nominal propeller thrust and ��
represents unknown external disturbances, such as ocean current, that are
considered constant or slowly time-varying in the earth �xed coordinate
frame.

The High level controller

� c := �KiR
T ( )� �KpR

T ( )�e �Kd�; (1.22)

proposed in Lindegaard and Fossen [2003], stabilizes the equilibrium of the
system (1.6) augmented with the integrator

_� = �e; (1.23)

uniformly and exponentially, for some physically limited yaw rate.
The actuator dynamics for each propeller is based on the propeller

model presented in Pivano et al. [2007] and given by

Jmi _!i = �kfi (!i)�
Tni
aT
(!i) +

�i(!i; �x)�1i
aT

+ ucmdi; (1.24)
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where Jm is the shaft moment of inertia, kf is a positive coe¢ cient related
to the viscous friction, aT is a positive model constant Pivano et al. [2006]
and ucmd is the commanded motor torque. The rudder model is linearly
time-variant and the dynamics are given by:

mi
_� = ai�i + biucmd�i; (1.25)

where ai; bi are known scalar parameter bounded away from zero.
The parameters of the system are given in Table A.1 in Appendix A.5,

and the simulation results generated by setting � = � c is presented in Figure
A.1 and A.2, Appendix A.5. The control allocation problem, where the
desired thruster and rudder de�ection controls u are calculated based on the
virtual control � c and the minimization of the actuator power consumption,
is presented as examples in Chapter 3, 4 and 5.

1.2 Literature review

Since the �rst motorized aircraft were built at the beginning of the 20th
century, the problem of control allocation has been an important �eld of
research in the aviation society. Early �ight control system implementa-
tions were entirely mechanical, and closely connected to the design and
construction of the aircraft. In the 1950-60s �y-by-wire (electronically sig-
naled control system) technology was developed and as the hydraulic cir-
cuits had replaced the mechanical transmissions, computerized control and
allocation systems became available such that the control allocation designs
was no longer directly connected to the airplane construction. Through the
last decades, many di¤erent control allocation schemes have been proposed
and developed for air vehicle control systems, Virnig and Bodden [1994],
Enns [1998], Durham [1993], Bu¢ ngton and Enns [1996], Luo et al. [2007],
Härkegård [2002]. As the control allocation design advantages in general
apply for overactuated mechanical control systems, a variety of control al-
location schemes are proposed for automotive vehicle control systems, e.g.
Ackermann et al. [1995], Alberti and Babbel [1996], Wang and Longoria
[2006], Scho�eld et al. [2006], Piyabongkarn et al. [2006], and marine con-
trol systems due to requirements from redundancy and fault tolerance, e.g.
Lindfors [1993], Lindegaard and Fossen [2003], Johansen et al. [2004], Fos-
sen and Johansen [2006].

Mixing and blending systems are other processes where control alloca-
tion approaches could be applied. In Westerlund et al. [1979], a cement
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mixing plant is described, where the control objective is to maintain a de-
sired composition (speci�ed by three components, x) of the cement raw
meal, despite disturbances from the raw material silos (�ve raw materials,
u). In Johansen and Sbárbaro [2003] and Johansen and Sbarbaro [2005] an
optimizing color blending process is considered where the resulting color
mixture, measured in RGB values (vector of size 3), is governed by the
input of three or more colorants. Although the controller designs from
Westerlund et al. [1979] and Johansen and Sbárbaro [2003] do not have the
control allocation structure (separation of the control and allocation), the
redundancy of controls suggests that an optimizing scheme like the model
predictive control (MPC) could be applied directly or through a problem
reformulation incorporated with an observer scheme.

An overactuated system contains some available redundancy in the ac-
tuator design, such that given a desired virtual control � c; the control alloca-
tion problem is naturally formulated as an nonlinear programming problem
(NLP) subject to some actuator limits,

min
u�u�u

J(t; x; u) s:t: � c � �(t; x; u; �) = 0: (1.26)

The available degrees of freedom can be used to minimize the cost J(t; x; u);
which may contain terms that penalizes power consumption, wear/tear,
e¤ects related to actuator con�guration (e.g. singularity avoidance) and
safety critical e¤ects, e.g. forbidden sectors in a marine vessel supporting
diving operations or large side slip in an automotive vehicle. In the following
the control allocation method is characterized as either being implicit (the
solution of (1.26) is iterative) or explicit. If J = cTu and � = Bu, the
problem can be formulated as a standard linear programming (LP) problem,

min
u
cTu s:t: Bu = � c; u+ z1 = u; u� z2 = u; z1 � 0; z2 � 0:

Simplex (since the 1950s) and interior point (IP) methods (since 1980s),
both implicit methods, are today the most commonly used algorithms for
solving LP�s, Nocedal and Wright [1999]. The simplex methods, where the
search for optimality is done by visiting the vertices of the polytope de-
scribed by the constraints of the problem, are usually the practically most
e¢ cient algorithms. Interior point methods, where the optimality search
is done from the interior and/or exterior of the constraint polytope, has
better theoretical convergence properties, Nocedal and Wright [1999], and
are often preferred for large scale problem (> 10k variables) or when warm
state initialization based on the previous time step solution is not stored or
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found. By approximating the NLP with a piecewise linear representation, a
modi�ed simplex, Reklaitis et al. [1983] or a mixed integer method, Wolsey
[1998], may be used to solve the optimization problem. In Bolender and
Doman [2004], two such algorithms are implemented, compared and tested
for the closed loop performance of a re-entry vehicle. It was shown that
solving the simplex based approach is signi�cantly faster than solving the
same problem using a mixed-integer formulation. Advantages of control al-
location schemes that utilize online optimization are �exibility and ability
for online re-con�guration. The drawbacks with such algorithms are the
complexity of the implementation code, the variable number of iterations
and further complexity introduced by anti-cycling procedures. An in-depth
discussion on online optimization methods, with the conclusion that con-
strained optimization methods can realistically be considered for real-time
control allocation in �ight control systems, can be found in Bodson [2002].

The direct control allocation method, �rst posed in Durham [1993], is
a control allocation strategy based on geometric reasoning. The idea relies
on �nding the intersection between the boundary of the attainable controls
and the desired virtual control � c: The actuator controls are then scaled
down from this intersection. The problem can be formulated as an LP

max
u1;�

� s:t: Bu1 = �� c u � u1 � u;

proposed in Bodson [2002], and is implemented by; if � > 1; then u = 1
�u1

else u = u1. The facet searching algorithm from Durham [1993] and null
space interaction method in Bordignon and Durham [1995] are other meth-
ods suggested for solving the direct control allocation problem. Advantages
of the direct control allocation method are the maximum control utilization
and the existence of computationally fast implementations, Petersen and
Bodson [2002]. Di¢ culties with the direct allocation scheme, are rate-limit
implementation (the actuator constraint set should contain zero) and lack
of axis prioritization.

If the allocation problem is unconstrained (no actuator bounds) and the
cost function is quadratically dependent on the control input vector, J =
uTWu; (unconstrained least square problem) an explicit optimal solution
based on Lagrangian multipliers (�) is available. Based on the Lagrangian
function

L = uTWu� (� c �Bu)T �;
the explicit generalized inverse solution

u =W�1BT
�
BW�1BT

��1
� c
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can be derived by solving the algebraic equations for the optimal condition;
@L
@u = 0;

@L
@� = 0: By assuming u > 0; the generalized inverse solution is, in

Sørdalen [1997], used to solve the trust allocation problem for marine ves-
sels. And in Wang and Longoria [2006] it is used to distribute brake forces
in a automotive vehicle dynamic control scheme. A variety of explicit algo-
rithms based on the generalized inverse are in the literature posed for the
constrained least square problem. Daisy chain solutions; Durham [1993],
redistributed pseudoinverse solutions; Virnig and Bodden [1994] and Eber-
hardt and Ward [1999], and cascaded generalized inverse solutions; Durham
[1993] and Bordignon [1996], are examples of such algorithms.

In a Daisy chain control allocation strategy, the actuator controls (u)
are partitioned into groups such that if the virtual control demands are not
satis�ed by the �rst group of actuators, the remaining demands are passed
to the second group of actuators. If there still are virtual control demands
that are not satis�ed, those are passed to the third group etcetera. The
cascaded generalized inverse and redistributed pseudoinverse solutions are
multistep algorithms. If in the �rst step the control commands suggested
are not satis�ed and some actuator controls are saturated, then by multiple
steps the saturating controls are set to the limits and the remaining control
commands are allocated to the actuator controls which are not saturated.
The algorithms end when no more control freedom is available. Daisy chain
and multiple step methods are referred to as non-optimal or approximately
optimal solutions, because the allocated actuator controls are not obtained
from the entire attainable set, Beck [2002] and Petersen and Bodson [2006].
The advantages of such explicit algorithms are ease of implementation, fast
computations and �xed number of iteration. On the downside the optimal
solution is not necessarily found and large errors may occur.

In Petersen and Bodson [2006] an IP method, based on Vanderbei [1999],
is implemented in order to solve a quadratic program (QP, linear constraints
and second order polynomial cost function) exactly. The method is com-
pared with a �xed point, Burken et al. [1999], and an active set method,
Härkegård [2002]. The advantage of the IP method is uniform convergence
and knowledge of the relative distance to the optimal solution. The active
set method applied to a QP takes a similar form as the simplex method
for the LP. The actuator controls are divided into a saturated (active) set
and an unsaturated (free) set, and the updates of these sets are calculated
based on the pseudoinverse solution of the free set and the Lagrangian pa-
rameters re�ected by the active set (see Härkegård [2002] and Petersen and
Bodson [2006] for details). The active set algorithm converges to the opti-
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mum in a �nite number of steps and it is shown to be e¢ cient for problems
of small to medium size. But even though feasible suboptimal solutions are
produced at each iteration step, the relative distance to the optimum is not
known. An interesting application of the active set algorithm was shown
in Scho�eld [2006], where the algorithm was used to allocate wheel braking
commands in order to prevent vehicle rollover. The �xed point method is
a recursive algorithm similar to a gradient search. The algorithm has a
proven global convergence but may be slow when unattainable commands
are given. An advantage of the QP over the LP formulation for the control
allocation problem, is that a QP solution involve all the actuators that will
e¤ect the equality constraint in (1.26) since the cost function is quadratic,
while the nature of a LP solution relies on a smaller number of actuators
due to the linear cost function. This may reduce the degeneration of per-
formance, related to a QP solution compared with a LP solution, after an
actuator failure, since more actuators are used in a QP solution, Page and
Steinberg [2002].

Receding horizon control (RHC) or MPC, that �rst appeared in the six-
ties, is a powerful control method with applications to large scale multi vari-
able constrained systems of su¢ ciently slow dynamics, Qin and Badgewell
[1997] or where fast computation is available for small scale systems, Luo
et al. [2004]. The control action is calculated at each sample for a given
horizon, based on an open loop optimization. Since the process is repeated
at each sample a closed loop control is obtained. The RHC optimization
problem may be formulated in discrete-time setup by:

min
u2U

JE(x(k +N)) +
k+N�1X
i=k

J(x(i); u(i));

x(i) 2 X 8i 2 (k + 1; :::; k +N);
x(i+ 1) = f(x(i); u(i)) 8i 2 (k; :::; k +N � 1);

x(k) = x0;

where x0 is the initial state, X and U de�nes the constraints on x and u,
JE is terminal state cost, J is the stage cost and f(x(i); u(i)) represent
the model di¤erence equation. In Luo et al. [2005] and Luo et al. [2007]
a MPC program (implicit) is suggested in a control allocation approach
which accounts for actuator dynamics described by a linear time-varying
actuator model. Simulation studies of a reentry vehicle show signi�cant
performance improvement compared to static control allocation algorithms
in the presence of realistic actuator dynamics.
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In Bemporad et al. [2002a]/Bemporad et al. [2002b] it was shown that
the linear RHC (f(x(i); u(i)) := Ax(i) +Bu(i)) with quadratic/linear cost
can be formulated as a multiparametric QP (mpQP)/multiparametric LP
(mpLP) program. A multiparametric problem is generally formulated as

J�(p) := min
z
J(p; z) s:t: gJ(z; p) � 0; hJ(z; p) = 0;

where z is the optimization variable, p is a parameter vector, J is a cost
function, gJ is the inequality constraints and hJ is the equality constraints.
If J(p; z) := cTz; gJ(z; p) := z and hJ(z; p) := Az�Sp� b the problem has
a mpLP form. And it is called a mpQP if, J(p; z) = zTHz + pFp + cTp
and gJ(z; p) = �Az + b + Sp. H; F; A, S, c, b are matrices and vectors
de�ned according to the sizes of the vectors z and p: In Tøndel and Jo-
hansen [2005] an explicit piecewise linear (PWL) control allocation law is
constructed by a mpQP, based on a RHC formulation of a vehicle lateral
stabilization problem. In Johansen et al. [2005] an explicit PWL control
allocation law based on the o¤-line solution of mpQP, is veri�ed by ex-
perimental results for a scale model ship. The main advantage of a PWL
control is simple implementation, no need of real-time optimization soft-
ware and fast online control computations, Tøndel et al. [2003]. The worst
computation time can be stated a priori such that solutions are generated
within hard real-time bounds. Due to rapid growth of solution complexity
and memory requirements, as problem size increases, the explicit solutions
of a mpLP/mpQP are not available for typical large scale problems. Re-
con�guration of the optimization problem, due to for example sensor or
actuator failure, may also be more complicated and demand considerable
o¤-line computation time and real-time computer memory, compared with
an on-line optimization solution. An excellent review of multiparametric
programming and RHC can be found in Tøndel [2003].

In order for the allocation algorithm to perform in an optimal way, the
knowledge of the actuator-force mapping model �(t; x; u; �) is of impor-
tance. This model is dependent on environmental conditions and actuator
failures like; changing ground surfaces (environmental) and wheel lift o¤ or
brake power losses (actuator failures) for automotive vehicles, wind currents
and air conditions (environmental) and control surface or engine malfunc-
tion (actuator failure) for an aircraft, and currents and waves disturbances
(environmental) and thruster losses (actuator degradation) a¤ecting a ship.
In Davidson et al. [2001] a combined static (no actuator dynamic) nonlin-
ear control allocation and failure detection scheme is developed and imple-
mented in the simulation environment of a modi�ed Lockheed-Martin Inno-
vative Control E¤ector (LM-ICE) aircraft version. The aircraft�s degraded
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manoeuvrability and survivability is improved through the re-con�guration
of the allocation problem when subject to failure. For automotive vehicles
it is in Shim and Margolis [2001] shown that the knowledge of the friction
coe¢ cient o¤ers signi�cant improvement of the vehicle response during yaw
rate control.

The foundation of this thesis relies on the control allocation scheme pre-
sented in Johansen [2004], where the minimization problem (2.5) is solved
dynamically by de�ning update laws u and � and considering convergence
to the �rst order optimal solution described by the Lagrangian function

L(t; x; u; �) := J(t; x; u) + (� c � �(t; x; u; �))T�:

This leads to a solution, opposed to for example the developments, Enns
[1998], Bu¢ ngton et al. [1998], Sørdalen [1997], Johansen et al. [2005], Bod-
son [2002] and Härkegård [2002], where the control allocation problem is
viewed as a static or quasi-dynamic optimization problem that is solved in-
dependently of the dynamic control problem considering non-adaptive lin-
ear e¤ector models of the form � = Gu. The main feature of the presented
approach is that convergence to the optimal solution can be guaranteed
without solving the minimization problem (2.5) exactly for each sample.
This allows the construction of an e¢ cient algorithm by relatively simple
implementation, and the stability of the closed loop to be analyzed. The
core object of this work is to analyze the dynamic solutions through set
stability arguments and incorporate parameter uncertainty and actuator
dynamic in the control allocation design.

1.3 Contribution and outline

The results of this thesis relates to the over-actuated nonlinear control al-
location problem, with uncertainties in the actuator-force mapping (1.2)
and/or actuator model (1.3). The work is mainly based on ideas from Jo-
hansen [2004], where the control allocation is formulated in the context of
Lyapunov design, with the emphasis on extensions and assumption relax-
ation incorporating adaptation and actuator dynamics. Motivated by the
control allocation strategy from Johansen [2004], the contribution of the
thesis can be presented in three parts, where the Lyapunov design allow
the control allocation problem to be combined and analyzed together with
nonlinear control and parameter estimation; the theoretical results for dy-
namic control allocation, the development of a cascade analysis tool used
in the analysis of the control allocation schemes, and the implementation
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of the control allocation algorithm for controlling the yaw motion of an
automotive vehicle using brakes and active steering.

� A modular design approach is formalized by the construction of a cas-
cade lemma for set stable systems, Tjønnås et al. [2006]. This result
motivates a modular approach where the subsystems can be ana-
lyzed separately and conclusions about the properties of the cascaded
system may be drawn based on the interconnection term instead of
analyzing the cascade as one system, which in many cases induces
complexity. Roughly speaking, it is shown that if a set is uniform
global asymptotic stable (UGAS) with respect to a system, then the
composed set generated by a cascade of two such systems is itself
UGAS under the assumption that the solutions of the cascaded sys-
tem are UGB with respect to the composed set. The cascade result
is in the following presented in Subsection 1.4.3, together with some
corollaries that are important for local and not necessarily converging
cases.

� Dynamic nonlinear and adaptive control allocation designs are pro-
posed as direct update laws in, Tjønnås and Johansen [2008a] and
Tjønnås and Johansen [2005]. Actuator dynamics are considered in,
Tjønnås and Johansen [2007a] and Tjønnås and Johansen [2007b].
The ideas from Johansen [2004] are extend by utilizing the set-stability
result for cascaded systems established in Tjønnås et al. [2006] and the
result enables us to relax the assumptions in Johansen [2004] where
f(t; x); g(t; x) and �(t; x; u; �) from equation the system (1.1) and
(1.2) are assumed to be globally Lipschitz in x: Further the virtual
controller � c does only need to render equilibrium of (1.1) UGAS for
� = � c, not UGES as assumed in Johansen [2004]. The implemen-
tation of the adaptive law presented in Tjønnås and Johansen [2005]
depends directly on the Lyapunov function used in the analysis. In
Tjønnås and Johansen [2008a] the analysis and implementation are
separated, and although the Lyapunov functions in the analysis need
to satisfy certain requirements, the adaptive implementation does not
assume knowledge of these Lyapunov functions. The chapters 3, 4 and
5 present the theoretical results related to the control allocation.

� The proposed designs are veri�ed in an automotive case study by
realistic simulations in Tjønnås and Johansen [2008b] and Tjønnås
and Johansen [2006]. Based on the dynamic control allocation strat-
egy, the stabilization of automotive vehicles using active steering and
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adaptive braking has been formulated as a control allocation problem.
The stabilization strategy is based on two modules independent in de-
sign, a high level module that deals with the motion control objective
and a low level module that deals with the actuator control alloca-
tion. The high level module consists of yaw-rate reference generator
and high level controller that provides the low level control allocation
module with a desired torque about the yaw axis. The task of the low
level module is to command the individual brakes, the longitudinal
clamping force, such that the actual torque about the yaw axis tends
to the desired torque. These commands are generated by a dynamic
control allocation algorithm that also takes actuator constraints and
uncertainty in the tyre-road friction model into consideration. The
scheme has been implemented in a realistic nonlinear multi body vehi-
cle simulation environment. The control allocation scheme presented
in the framework of yaw stabilization is given in Chapter 6.

In Chapter 2 the control structure, the problem statement and main
assumptions are presented.

1.4 Notation, de�nitions and preliminaries

1.4.1 Notation

R and Rn denote the set of real numbers and the n-dimensional Euclidean
space. R�0 represent the set of real numbers which has a value greater or
equal to zero. ":=" and "=:" has the meaning of being de�ned by right
and left. "iff" has the meaning: "if and only if". Let x := (x1; :::; xn)T be
a n-dimensional column vector such that x 2 Rn, then the Euclidean norm
is de�ned by jxj :=

p
xTx: Furthermore the Euclidean metric is de�ned by

d(xa; xb) := jxa � xbj :=
q
(xa � xb)T (xa � xb); where xa; xb 2 Rn:

Let (D; d) be a metric space where D � Rn; if xa 2 D and r > 0 then
the open ball of radius r about xa is de�ned by

B(xa; r) := fxa 2 D : d(xb; xa) < rg:

The set O � Rn is open if for every x 2 O there exists a scalar r > 0
such that B(x; r) � O. O is closed if its complement (Rn=O) is open.
j�jO : Rq 7! R�0 denotes the distance from a point xa 2 Rn to a set O �Rn;
jxajO := inf fjxa � xbj : xb 2 Og : The induced matrix norm is de�ned by:
kAk := fjAxj : x 2 Rn; jxj � 1g:
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If f : X ! Y is a function, then X is the domain and f(X) is the
range. The function f is injective if f(xa) = f(xb) only when xa = xb;
surjective if f(X) = Y and bijective if it is both surjective and injective.
The function f is continuous if for every point xa 2 X; and � > 0 there
exists a � > 0 such that jxa � xbj < � ) jf(xa)� f(xb)j < �: If a function
f 2 C0 the function is continuous, if f 2 C1; then f and its �rst derivative
are continuous, etcetera. f is locally Lipschitz on the domain D � Rn if
each point xa 2 D has a neighborhood D0 there exists a constant L � 0;
where jf(xa)� f(xb)j � L jxa � xbj for xb 2 D0. If there exists a L > 0
such that, jf(xa)� f(xb)j � L jxa � xbj is satis�ed for D0 = D = Rn; then
f is globally Lipschitz.

Let � : R�0 7! R, then � 2 Lp if
�R1
0 j�(�)jp d�

� 1
p exists, and � 2 L1

if sup�>0 �(�) exists.
The function � : R�0 ! R�0 is a class K if it is continuous, strictly

increasing and �(0) = 0: � is of class K1 if in addition �(s) ! 1 as
s ! 1. � : R�0 � R�0 ! R�0 is a class KL function if, for each �xed t;
the mapping �(�; t) is of class K and for each �xed s the mapping �(s; �)
is continuous, decreasing and tends to zero as its argument tends to +1.
The function f is uniformly bounded by y; if there exist a function GF of
class K1 and a scalar c > 0 such that jF (t; y; z)j < Gf (jyj) + c for all y; z
and t.

The time derivatives of a signal x(t) are denoted _x := dx
dt ; �x :=

d2x
dt2
; :::

If the partial derivative of a function f(xa; xb) is written
@f
@xa

; it is de�ned

by @f
@xa

:= @f(s;xb)
@s

���
s=xa

: We say that a function V : Rq ! R�0 is smooth if
it is in�nitely di¤erentiable.

A matrix is strictly Hurwitz if all eigenvalues has a real part less then
zero.

1.4.2 De�nitions

De�nition 1.1 The signal matrix �(t) is Persistently Excited (PE) if,
there exist constants T and 
 > 0; such thatR t+T

t �(�)T�(�)d� � 
I ; 8t > t0: (1.27)

The de�nitions that follows are either motivated by, or can be found in
Teel et al. [2002] and Lin et al. [1996]. They pertain to systems of the form

_z = F (z) ; (1.28)



22 Introduction

where z := (p; xT)T; p is the time-state

_p = 1; p0 = t0: (1.29)

and F : D ! Rq is locally Lipschitz with D � Rq. In the following, if
referred to a set, it has the properties of being nonempty.

The solution of an autonomous dynamic system is denoted by z(t; x0)
where z0 = z(0; z0) is the initial state.

De�nition 1.2 The system (1.28) is said to be forward complete if, for
each z0 2 D, the solution z(�; z0) 2 D is de�ned on R�t0.

De�nition 1.3 The system (1.28) is said to be �nite escape time de-
tectable through j�jA, if any solution, z(t; z0) 2 D, which is right maximally
de�ned on a bounded interval [t0; T ); satis�es limt%T jz(t; z0)jA =1.

De�nition 1.4 If the system (1.28) is forward complete, then the closed
set A � D is:

� Uniformly Stable (US), if there exists a function, � 2 K, and a con-
stant, c > 0; such that, 8 jz0jA < c,

jz(t; z0)jA � �(jz0jA); 8t � 0 : (1.30)

� Uniformly Globally Stable (UGS), when D = Rq; if (1.30) is satis�ed
with, � 2 K1; and for any z0 2 Rq:

� Uniformly Attractive (UA) if there exists a constant c > 0 such that
for all jz0jA < c and any � > 0 there exists T = T (�) > 0; such that

jz0jA � c; t � T ) jz(t; z0)jA � �; (1.31)

� Uniformly Globally Attractive (UGA), when D = Rq, if for each pair
of strictly positive numbers (c; �) there exists T = T (�) > 0 such that
for all z0 2 Rq, (1.31) holds.

� Uniformly Asymptotically Stable (UAS) if it is US and UA.

� Uniformly Globally Asymptotically Stable (UGAS), when D = Rq, if
it is UGS and UGA.

When (1.28) is forward complete, UGAS is well known to be equiva-
lent to the following KL characterization (see e.g. Lin et al. [1996],
Teel and Praly [2000]): There exists a class KL function � such that,
for all z0 2 Rq, jz(t; z0)jA � �(jz0jA; t) 8t � t0.
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� Uniformly Globally Exponentially Stable (UGES), when D = Rq, if it
is UGS and if there exist numbers k; � > 0 such that for all z0 2 Rq;
jz(t; z0)jA � kjz0jAe�t 8t � t0.

From Khalil [1996], we adapt the de�nition of uniform boundedness of
solutions to the case when A is not reduced to the origin f0g.

De�nition 1.5 With respect to the closed set A � Rq; the solutions of
system (1.28) are said to be:

� Uniformly Bounded (UB) if there exist a positive constant c; such that
for every positive constant r < c there is a positive constant � = �(r);
such that

jz0jA � r ) jz(t; z0)jA � � ; 8t � 0 : (1.32)

� Uniformly Globally Bounded (UGB); if for every r 2 R�0, there is a
positive constant � = �(r) such that (1.32) is satis�ed.

De�nition 1.6 A smooth Lyapunov function for (1.28) with respect to a
non-empty, closed forward invariant set A �D is a function V : D! R that
satis�es: i) there exists two K functions �1 and �2 such that for any z 2 D;
�1(jzjA) � V (z) � �2(jzjA): ii) There exists a continuous and positive
de�nite/semide�nite function �3 such that for any z 2 DnA: @V@z (z)F (z) �
��3(jzjA).

1.4.3 Some set stability results

Theorem 1.1 Assume that the system (1.28) is �nite escape-time detectable
through jzjA : If there exists a smooth Lyapunov function for the system
(1.28) with respect to a nonempty, closed, forward invariant set O, then O
is UGS with respect to (1.28). Furthermore, if �3 is a positive de�nite func-
tion, then O is UGAS with respect to (1.28). Moreover, if �i(jzjO) = ki jzjrO
for i = 1; 2; 3 where ki and r are strictly positive values and r > 1; then O
is UGES with respect to (1.28).
Proof. The proof of this result can be found in Skjetne [2005]

Consider the cascaded system

_x1 = fc1(t; x1) + gc(t; x1; x2); (1.33)

_x2 = fc2(t; x2): (1.34)
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When the functions fc1, fc2 and gc are locally Lipschitz in all arguments,
this class of nonlinear time-varying systems can be represented by the fol-
lowing autonomous systems

_z1 = F1(z1) +G(z); (1.35)

_z2 = F2(z2); (1.36)

where z1 := (p; xT1 )
T 2 Rq1 , z2 := (p; xT2 )

T 2 Rq2 , z := (p; xT)T 2 Rq;
x := (xT1 ; x

T
2 )
T; F1(z1) := (1; fc1(p; x1)

T)T, G(z) := (0; gc(p; x)
T)T and

F2(z2) := (1; fc2(p; x2)
T)T. Based on the cascaded system formulation the

main results from Tjønnås et al. [2006] are.

Lemma 1.1 Let O1 and O2 be some closed subsets of Rq1 and Rq2 respec-
tively. Then, under the following assumptions, the set O := O1 � O2 is
UGAS with respect to the cascade (1.35)-(1.36).

A 1.1 The set O2 is UGAS with respect to the system (1.36) and that the
solution of the system (1.35)-(1.36) is UGB with respect to O:

A 1.2 The functions F1, F2 and G are locally Lipschitz.

A 1.3 The cascade (1.35)-(1.36) is forward complete.

A 1.4 There exist a continuous function G1 : R�0 ! R�0 and a class K
function G2 such that, for all z 2 Rq,

jG(z)j � G1(jzjO)G2(jz2jO2): (1.37)

A 1.5 There exists a continuously di¤erentiable function V 1 : Rq1 ! R�0,
class K1 functions �1, �2 and ��3, and a continuous function �&1 : R�0 !
R�0 such that, for all z1 2 Rq1,

�1(jz1jO1) � V 1(z1) � �2(jz1jO1); (1.38)

@V 1
@z1

(z1)F1(z1) � ���3(jz1jO1); (1.39)

����@V 1@x1
(z1)

���� � �& �jz1jO1� : (1.40)
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Proof. We start by introducing the following result, which borrows from
[Praly and Wang, 1996, Proposition 13], originally presented in Laksh-
mikantham and Leela [1969]. We have that under Assumption 4, for any
nonnegative constant c, there exists a continuously di¤erentiable Lyapunov
function V1 : Rq1 ! R�0, class K1 functions �1, �2, and a continuous
nondecreasing function & : R�0 ! R�0 such that, for all z1 2 Rq1,

�1(jz1jO1) � V1(z1) � �2(jz1jO1); (1.41)

@V1
@z1

(z1)F1(z1) � �cV1(z1); (1.42)����@V1@z1
(z1)

���� � &
�
jz1jO1

�
: (1.43)

Let the function �V1 of Assumption 4 generate a continuously di¤erentiable
function V1 with c = 1. In view of Assumption 3, the derivative of V1 along
the solutions of (1.35) then yields

_V1(z1) � �V1(z1) + &(jz1jO1)G1(jzjO)G2(jz2jO2) :

From the UGB property, there exist � � 0 and � 2 K1 such that, for all
z0 2 Rq,

jz(t; z0)jO � �(jz0jO) + � ; 8t � 0 : (1.44)

De�ning v(t; z0) := V1(z1(t; z0)) and v0 := V1(z10), we get that
1max fjz1jO1 ; jz2jO2g � jzjO.

_v(t; z0) � �v(t; z0) +B(jz0jO)G2(jz2(t; z20)jO2) ;

where B(�) := max
0�s��(�)+�

&(s)G1(�(�) + �). From the UGAS of (1.36) with

respect to O2, there exists �2 2 KL such that, for all z20 2 Rq2,

jz2(t; z20)jO2 � �2(jz20jO2 ; t) ; 8t � 0 : (1.45)

Accordingly, we obtain that

_v(t; z0) � �v(t; z0) + ~�(jz0jO; t) ; (1.46)

where ~�(r; t) := B(r)G2(�2(r; t)). Notice that ~� is a class KL function.
Using that ~�(jz0jO; t�0) � ~�(jz0jO; 0) and integrating (1.46) yields, through
the comparison lemma,

v(t; z0) � v0e
�t + ~�(jz0jO; 0) :

1This is done by noticing that max(jz1jO1 ; jz2jO2) � jzjA
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It follows that, for all t � 0,

jz1(t; z0)jO1 � ��11

�
�2(jz10jO1) + ~�(jz0jO; 0)

�
;

which, with the UGAS of O2 for (1.36), implies that

jz(t; z0)jO � �(jz0jO) ; 8t � 0 ; (1.47)

where �(�) :=
q
��11 (�2(�) + ~�(�; 0))2 + �2(�; 0)2 is a class K1 function.

UGS of O follows. To prove uniform global attractiveness, consider any
positive constants "1 and r such that "1 < r and let T1("1; r) � 0 be such
that2 ~�(r; T1) = "1

2 , then it follows from the integration of (1.46) from T1
to any t � T1 that, for any jz0jO � r,

v(t; z0)�v(T1; z0)e�(t�T1)+
Z t

T1

~�(jz20jO2 ; T1)e�(t�s)ds

� v(T1; z0)e
�(t�T1) + ~�(r; T1)

�
1� e�(t�T1)

�
:

Consequently, in view of (1.47),

v(t; z0) � �2 � �(jz0jO)e�(t�T1) +
"1
2
:

Letting T := T1+ln
�
2
"1

�
�2 � �(r) + ~�(r; 0)

��
gives v(t) � "1 for all t � T:

If we de�ne " := ��11 ("1), it follows that jz1(t; z10)jO � " for all t � T .
Since " is arbitrary and O2 is UGAS for (1.36), we conclude that O is
UGA, and the conclusion follows.

Corollary 1.1 Let O1 and O2 � D be closed subsets of Rq1 and Rq2 respec-
tively, and the assumptions A 1.2 - A1.5 be satis�ed. Then, with respect to
the cascade (1.35)-(1.36), the set O is:

� UGS, when D = Rq2 ; if O2 is UGS with respect to the system (1.36)
and that the solution of system (1.35)-(1.36) is UGB with respect to
O.

� US, if O2 is US with respect to the system (1.36).

� UAS, if O2 is UAS with respect to the system (1.36).

2 If ~�(r; 0) � "1
2
, pick T1 as 0
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Proof. Based on the proof of Lemma 1.1 the following can be stated:

� (UGS Proof) From the UGB and UGS property of O and O2, (1.47)
is satis�ed by noting that ~� in (1.46) is a class K1 function.

� (US Proof) We �rst prove that the solutions of the system (1.35)-
(1.36) are UB with respect to O := O1 �O2; then we use Lemma 1.1
to prove the stability result. From Mazenc and Praly [1996] Lemma
B.1 there exist continuous functions Bz1 : R�0 ! R�0 and Bz2 :
R�0 ! R�0; where Bz2(0) = 0; such that
&(jz1jO1)G1(jzjO)G2(jz2jO2) � Bz1(jz1jO1)Bz2(jz2jO2): From Bz1(jz1jO1)
being continuous, for any �1 > 0 there exists a �1 > 0 such that
jz1jO1 < �1 ) jBz1(jz1jO1)�Bz1(0)j � �1: Fix �1 and choose �2 such
that there exist a �2; by US of O2; that satisfy
���13 ((�1 +Bz1(0))Bz2(�2)) < �1 and �2 < �1. Then if ��3(jz10jO1) <
Bz1(jz10jO1)Bz1(�2) :

_�V1 � ���3(jz1jO1) +Bz1(jz1jO1)Bz2(jz2jO2)
� ���3(jz1jO1) + (�1 +Bz1(0))Bz2(�2);

such that
jz1(t)jO1 � ���13 ((�1 +Bz1(0))Bz2(�2)) ;

and jz(t)jO � c1 where

c1 := 2max(��
�1
3 ((�1 +Bz1(0))Bz2(�2)) ; �2):

Else for ��3(jz10jO1) � Bz1(jz10jO1)Bz1(�2) :
jz1(t)jO1 � ���11 (��2(�2));

and jz(t)jO � c2 where c2 := 2max(���11 (��2(�2)); �2): Thus for all
jz0jO � �2; jz(t)jO � c; where c(�2) := max(c1; c2); the solutions of
system (1.35)-(1.36) are UB with respect to O: From the UB and US
property of O and O2 there exist positive constants cz and cz2 such
that for all jz0jO � cz2 and jz20jO2 � cz2 ; (1.47) is satis�ed by noticing
that ~� in (1.46) is, in this case, a class K function.

� (UAS Proof) By the same arguments as in the proof of the US result,
the solutions of system (1.35)-(1.36) are UB with respect to O. UB
of set O and UAS of set O2 imply that there exists some positive
constants cz and cz2 ; such that the steps in the proof of Lemma 1.1
can be followed for some initial condition jz0jO � cz and jz20jO2 �
cz2.
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1.4.4 Important mathematical results

Theorem 4.6, Lyapunov equation, Khalil [1996] page 136

A matrix A is Hurwitz; that is Re�i < 0 for all eigenvalues of A; if and
only if for any given positive de�nite symmetric matrix Q there exists a
positive de�nite symmetric matrix P that satis�es the Lyapunov equation

PAT +AP = �Q: (1.48)

Moreover, if A is Hurwitz, then P is the unique solution of (1.48).

Barbalat�s Lemma, Krstic et al. [1995] page 491

Consider the function � : R�0 ! R: If � is uniformly continuous and lim
t!1R1

0 �(�)d� exists and is �nite, then

lim
t!1

�(t) = 0:

Corollary 1.2 Consider the function � : R�0 ! R: If �; _� 2 L1 and
� 2 Lp for some p 2 [1;1); then

lim
t!1

�(t) = 0:

Proposition 2.4.7, Abrahamson et al. [1988]

Let E and F be real Banach spaces, f : U � E ! F a C1 map, x; y 2 U and
c a C1 arc in U connecting x to y; i.e., c is a continuous map c : [0; 1]! U;
which is C1 on [0; 1], c(0) = x, and c(1) = y. Then

f(y)� f(x) =
Z 1

0

df(c(t))

dc

dc(t)

dt
dt:

If U is convex and c(t) = (1� t)x+ ty, then

f(y)� f(x) =
Z 1

0

df((1� t)x+ ty)
dc

dt(y � x):

Mean value theorem, Khalil [1996] page 651

Assume that f : Rn 7! R is continuously di¤erentiable at each point x of
an open set S � Rn: Let x and y be two points of S such that the line
segment L(x; y) � S: Then there exists a point z of L(x; y) such that

f(y)� f(x) = df(z)

dz
(y � x):
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Implicit function theorem, Adams [2002] page 769

Consider a system of n equations in n+m variables,

F1(xa; xb) = 0

...

Fn(xa; xb) = 0

where xa 2 Rm; xb 2 Rn; and a point P0 := (a; b); where a 2 Rm and
b 2 Rn; that satisfy the system. Suppose for each of the functions Fi has
continuous �rst partial derivatives with respect to each of the variables xa
and xb, near P0: Finally, suppose that

@(F1::Fn)
@(xb)

���
P0
6= 0: Then the system

can be solved for xb as a function of xa; near P0:
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Chapter 2

Objective, problem
statement and solution
strategy

Consider the system description (1.1), (1.2) and (1.3):

_x = f(t; x) + g(t; x)� ; (2.1)

� = �(t; x; u; �) := �0(t; x; u) + �� (t; x; u)�� +�u(t; x; u)�u; (2.2)

_u = fu0(t; x; u; ucmd) + fu�(t; x; u; ucmd)�u; (2.3)

where t � 0; x 2 Rn; u 2 Rr; � 2 Rd; � := (�Tu ; �T� )T; �u 2 Rmn ; �� 2 Rm� ;
ucmd 2 Rc:

The objective of this thesis is to present a control strategy for systems
of the form (2.1)-(2.3) with focus on the control allocation. This involves;
constructing control allocation and parameter estimate update laws, de�n-
ing a set of su¢ cient assumptions for closed loop uniform global asymptotic
stability, and presenting an analytical evaluation of the resulting closed loop
properties.

By rewriting equation (2.1) into

_x = f(t; x) + g(t; x)k(t; x)

+g(t; x)
�
�(t; x; ud; �̂)� k(t; x)

�
+g(t; x)

�
�(t; x; u; �̂)� �(t; x; ud; �̂)

�
+g(t; x)

�
�(t; x; u; �)� �(t; x; u; �̂)

�
; (2.4)
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the control problem can be modularized into a structure of the four follow-
ing sub-problems, see also Figure 2.1:

1. The high level control algorithm. The vector of generalized forces
� ; is treated as an available input to the system (2.1), and a virtual
control law � c = k(t; x) is designed such that the origin of (2.1) is
UGAS when � = � c.

2. The low level control algorithm. Based on the actuator dynamic
(2.3) a control law ucmd is de�ned such that for any smooth reference
ud; u will track ud asymptotically.

3. The control allocation algorithm (connecting the high and
low level control). The main objective of the control allocation
algorithm is to distribute a set of low level references (ud) to the
low level control, based on the desired virtual control � c: The static
actuator-force mapping �(t; x; u; �) from (2.2), represents the connec-
tion between the output of the low level system (2.3) and the input
to the high level system (2.1). And the control allocation problem is
formulated as the static minimization problem

min
ud

J(t; x; ud) s:t � c � �(t; x; ud; �̂) = 0; (2.5)

where J is a cost function that incorporates objectives such as min-
imum power consumption and actuator constraints (implemented as
barrier functions). Based on this formulation, the Lagrangian func-
tion

L�̂u(t; x; ud; ~u; �) := J(t; x; ud) + (k(t; x)� �(t; x; ud; �̂))T� (2.6)

is introduced, and update laws for the reference ud and the Lagrangian
parameter � are then de�ned such that ud and � converge to a set
de�ned by the time-varying optimality condition.

4. The adaptive algorithm. In order to cope with a possibly un-
known parameter vector � in the actuator and force-mapping models,
adaptive laws are de�ned for the estimate �̂. The parameter estimate
is used in the control allocation scheme and a certainty equivalent
adaptive optimal control allocation algorithm can be de�ned.

For each of these steps, Lyapunov based theory may be applied such that
for each subsystem some stability and convergence properties are achieved.
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Figure 2.1: The control allocation philosophy
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The closed loop system is analyzed by applying cascade theory, such that
based on the subsystem properties, the qualitative attributes of the closed
loop system can be speci�ed if the solutions are bounded. The cascade par-
titioning through out this thesis is based on the perturbed system, (2.4),
where the last three terms represent inputs from the perturbing system.
Since in this setting the perturbing system may be dependent on the per-
turbed system through the state x; the idea is to treat x as a time-varying
signal x(t) and show that the stability attributes of the perturbing system
holds as long as x exists, see Figure 2.2.

Figure 2.2: General representation of a time-variant cascade, where �1 is
the perturbed system that will be UGAS with respect to a set, O1; when
jz2jO2 = 0: �2 is the perturbing system. Note that �2 may be perturbed
indirectly by �1 since z1 may be considered as a time-varying signal, z1(t);
as long as this signal exists for all t.

2.1 Standing assumptions

In this section the standing assumptions used throughout the thesis are
presented. Although further assumptions will be de�ned later, they will be
speci�ed with respect to the following assumptions.

If in the following a function F is said to be uniformly bounded by y;
this means that there exist a function Gf of class K1 and a scalar c > 0
such that jF (t; y; z)j < Gf (jyj) + c for all y; z and t.

Assumption 2.1 (Plant assumptions)

a) The states x and u are known for all t:
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b) The function f is uniformly locally Lipschitz in x and uniformly bounded
by x: The function g is uniformly bounded and its partial derivatives
are bounded by x:

c) The function � is twice di¤erentiable and uniformly bounded by x and
u: Moreover its partial derivatives are uniformly bounded by x.

d) There exist constants %2 > %1 > 0, such that 8t, x, u and �

%1I�
@�

@u
(t; x; u; �)

�
@�

@u
(t; x; u; �)

�T
�%2I: (2.7)

Remark 2.1 Assumption 2.1 d) can be viewed as a controllability assump-
tion in the sense that: i) the mapping �(t; x; �; �) : Rr ! Rd is surjec-
tive for all t; x and � and ii) for all t; x and � there exists a continu-
ous function fu(t; x; �) such that �(t; x; fu(t; x; �); �) = k(t; x): The sur-
jective property can be seen by the Moore-Penrose pseudoinverse solution,

u1 =
@�
@u

��
uc

�
@�
@u

��
uc

@�
@u

��T
uc

��1
y; of the equation, y = @�

@u

��
uc
u1; which ex-

ists for any uc: Thus for every y there exists a solution �(t; x; u1; �) =
�(t; x; 0; �) + y by the Mean Value Theorem, where uc 2 (0; u1): ii) follows
from the Implicit Function Theorem by i) and Assumption 2.1 d).

Assumption 2.2 (Control algorithm assumption)

a) There exists a high level control � c := k(t; x); that render the equilibrium
of (2.1) UGAS for � = � c. The function k is uniformly bounded by x
and di¤erentiable. Its partial derivatives are uniformly bounded by x:

Hence there exists a Lyapunov function Vx : R�0 � Rn ! R�0 and K1
functions �x1; �x2; �x3 and �x4 such that

�x1(jxj) � Vx(t; x) � �x2(jxj); (2.8)

@Vx
@t

+
@Vx
@x

(f(t; x) + g(t; x)k(t; x)) � ��x3(jxj); (2.9)����@Vx@x
���� � �x4(jxj); (2.10)

for the system _x = f(t; x) + g(t; x)k(t; x) with respect to its origin.
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b) There exists a low-level control ucmd := ku(t; x; u; ud; _ud; �̂u) that makes
the equilibrium of

_~u = f~u(t; x; u; ud; �̂u; �u); (2.11)

where ~u := u� ud and

f~u(t; x; u; ud; �̂u; �u) := fu0(t; x; u; ku(t; x; u; ud; _ud(t); �̂u))

+fu�(t; x; u; ku(t; x; u; ud; _ud(t); �̂u))�u � _ud(t);

UGAS if �̂u = �u and x; ud; _ud exist for all t > 0.

c) There exists a K1 function �k : R�0 ! R�0; such that

�x4(jxj)�k(jxj) � �x3(jxj): (2.12)

Remark 2.2 If the origin of _x = f(t; x) + g(t; x)k(t; x) is UGES, then
Assumption 2.2 is generally satis�ed, with for example �x3 quadratic, �x4
linear and �k sublinear, and Vx does not need to be known explicitly in order
to verify Assumption 2.2 c).

Classical control nonlinear design tools, used to solve the feedback
control problem arising from Assumption 2.2, are; feedback linearization,
sliding mode control, backstepping and passivity-based control, see Khalil
[1996] and Krstic et al. [1995]. Analytically the choice of controller design
tool is not of importance, but Lyapunov based control methods like for
example backstepping, if the systems (2.1) and (2.3) are in strict-feedback
from, may be preferred since the Lyapunov control function (clf) can be
used directly in the veri�cation of Assumption 2.2.

Assumption 2.3 (Optimality assumptions)

a) The cost function J : R�t0 � Rn�r ! R is twice di¤erentiable and
J(t; x; ud)!1 as judj ! 1. Furthermore @J

@ud
, @2J
@t@ud

and @2J
@x@ud

are
uniformly bounded by x and ud.

b) There exist constants k2 > k1 > 0, such that 8 t; x; �̂; ~u and
�
uTd ; �

T�T =2
Oud�(t; x; ~u; �̂); where Oud�(t; x; ~u; �̂) :=

n
uTd ; �

T
���@L�̂u@ud

= 0;
@L�̂u
@� = 0

o
;

k1I �
@2L�̂u
@u2d

(t; x; ud; ~u; �; �̂) � k2I: (2.13)

If
�
uTd ; �

T�T 2 Oud�(t; x; ~u; �̂) the lower bound is replaced by @2L�̂u@u2d
� 0
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Remark 2.3 The second order su¢ cient conditions in Theorem 12.6 in
Nocedal and Wright [1999] are satis�ed for all t; x; u; � and � by Assump-
tion 2.1 and 2.3, thus the set Ou�(t; x) describes global optimal solutions of
the problem (2.5).

2.2 Problem statement

From the above assumptions the problem statement is divided into three
parts:

i) Consider the model (2.1)-(2.2), assume that � is known and that there
exist a high level controller satisfying Assumption 2.2 a), then de�ne
an update law _u := fu(t; x; u), such that the stability property of the
perturbed system (2.1) is conserved for the closed loop, and u(t) con-
verges to an optimal solution with respect to the static minimization
problem (2.5), where ud = u. (Chapter 3)

ii) Consider the model (2.1)-(2.2), assume that � is not known, then solve
Problem i) with � = �̂; _u := fu(t; x; u; �̂) and de�ne an adaptive

update-law _̂
� := f�̂(t; x; u; �̂); where �̂ 2 Rm is an estimate of �:

(Chapter 4)

iii) Consider the model (2.1)-(2.3), assume that � is not known and that
there exist high and low level controllers satisfying Assumptions 2.2

a) and b), then de�ne update laws _ud := fu(t; x; u; ud; �̂) and
_̂
� :=

f�̂(t; x; u; ud; �̂) such that some stability properties may be derived
for closed loop system, and ud(t) converges to an optimal solution
with respect to the static minimization problem (2.5): (Chapter 5)
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Chapter 3

Dynamic Control Allocation

In this chapter the update laws for the control input u, and the Lagrangian
multipliers �; are established, such that stability and convergence to the
time-varying �rst order optimal set de�ned by the optimization problem
(2.5) can be concluded, and the stabilizing properties of the virtual con-
troller from Assumption 2.2 a), are conserved for the closed loop. According
to Remark 2.3, �rst order optimality is su¢ cient for global optimality due
to the Assumptions 2.1 and 2.3.

The problem formulation in this chapter relies on the minimization
problem from (2.5), which without considering actuator dynamic and pa-
rameter uncertainty takes the form

min
u

J(t; x; u) s:t � c � �(t; x; u; �) = 0: (3.1)

Furthermore the Lagrangian function is given by

L(t; x; u; �) := J(t; x; u) + (k(t; x)� �(t; x; u; �))T�; (3.2)

and the dynamic equation (2.1), related to (2.4), may be rewritten by

_x = f(t; x) + g(t; x)k(t; x)

+g(t; x) (�(t; x; u; �)� k(t; x)) : (3.3)

3.1 Stability of the control allocation

In what follows, it will be proved that the time and state-varying optimal
set

Ou�(t; x) :=

8<:�uT; �T�T 2 Rr+d
������
 �

@L

@u

�T
;

�
@L

@�

�T!T
= 0

9=; ;
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in a certain sense is UGES with respect to the control allocation algorithm
based on the update-laws,

�
_u
_�

�
= ��H

�
@L
@u
@L
@�

�
� uff ; (3.4)

where H : =

 
@2L
@u2

@2L
@�@u

@2L
@u@� 0

!
; � is a symmetric positive de�nite matrix

and uff is a feed-forward like term:

uff := H�1
 

@2L
@t@u
@2L
@t@�

!
+H�1

 
@2L
@x@u
@2L
@x@�

!
f(t; x)

+H�1
 

@2L
@x@u
@2L
@x@�

!
g(t; x)�(t; x; u; �);

if det(@
2L
@u2
) � � and uff = 0 if det(@

2L
@u2
) < �; where kr1 > � > 0 and k1 is

de�ned in Assumption 2.3 b). By the Assumptions 2.1 and 2.3 the exis-
tence of the proposed update laws and the time-varying �rst order optimal
solution are guaranteed, i.e. for all t and x; Ou�(t; x) 6= ?.

Lemma 3.1 If Assumptions 2.1, 2.2 a) and 2.3 are satis�ed, then Ou� is
non-empty for all t; x and �: Further, for all t; x; � and (u; �) 2 Ou�; there
exists a continuous function &Ou� : R�0 ! R�0 such that:

��(uT ; �T)T�� � &Ou�

�����xT ; �T�T����

Proof. The boundary of the set Ou� and the time-varying �rst order opti-
mal solution is described by:

@L

@u
(t; x; u; �; �) =

@J

@u
(t; x; u)�

�
@�

@u
(t; x; u; �)

�T
�;

@L

@�
(t; x; u; �; �) = k(t; x)� �(t; x; u; �);
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By using theorem 2.4.7 in Abrahamson et al. [1988], it can be shown that

@L

@u
(t; x; u; �; �)� @L

@u
(t; x; uc; �; �) =

@2L

@u2

����
c

(u� uc);

@L

@u
(t; x; uc; �; �)�

@L

@u
(t; x; uc; �

�; �) =
@2L

@�@u

����
c

(�� ��);

@L

@u
(t; x; uc; �

�; �)� @L

@u
(t; x; u�; ��; �) =

@2L

@u2

����
�
(uc � u�);

@L

@�
(t; x; u; �; �)� @L

@�
(t; x; u�; �; �) =

@2L

@u@�

����
�
(u� u�);

@L

@�
(t; x; u�; �; �)� @L

@�
(t; x; u�; ��; �) = 0;

where @2L
@u2

���
c
:=
R 1
0
@2L
@u2
(t; x; (1� s)uc + su; �; �)ds;

@2L
@u2

���
�
:=
R 1
0
@2L
@u2
(t; x; (1� s)u� + suc; �; �)ds;

@2L
@�@u

���
c
:=
R 1
0

@2L
@�@u(t; x; uc; (1� s)�

� + s�; �)ds = �@�
@u

T
(t; x; uc; �)

and @2L
@u@�

���
�
:=
R 1
0

@2L
@u@�(t; x; (1� s)u

� + su; �; �)ds = �@�
@u (t; x; uc; �):

Since @L
@� (t; x; u

�; ��; �) = 0 and @L
@u (t; x; u

�; ��; �) = 0; we get

@L

@u
(t; x; u; �; �) =

@2L

@u2

����
c

(u� uc) +
@2L

@u2

����
�
(uc � u�)

�@�
@u

T

(t; x; uc; �)(�� ��); (3.5)

@L

@�
(t; x; u; �; �) = �@�

@u
(t; x; uc; �)(u� u�); (3.6)

and from uc := #(u� u�) + u� where # := diag(#i) and 0 < #i < 1 :

@2L

@u2

����
c

(u�uc)+
@2L

@u2

����
�
(uc�u�) = (1�#)

@2L

@u2

����
c

(u�u�)+# @2L

@u2

����
�
(u�u�):

From Assumption 2.3, @
2L
@u2

���
c
and @2L

@u2

���
�
are positive de�nite matrices, such

that P�c := (1�#) @
2L
@u2

���
c
+# @2L

@u2

���
�
is also a positive de�nite matrix. Further

�
@L

@u

�T@L
@u
+

�
@L

@�

�T@L
@�
=

�
u� u�
�� ��

�T
HT�H�

�
u� u�
�� ��

�
; (3.7)
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where H� =

 
P�c �@�

@u

T
(t; x; uc; �)

�@�
@u (t; x; uc; �) 0

!
: By Assumption 2.3

and 2.1 it can be seen that:

jdet(H�)j =
�����det(P�c)det

 
�@�
@u
(t; x;uc; �)P

�1
�c

�
@�

@u
(t; x;uc; �)

�T!�����
> 0; (3.8)

and H� is non-singular and there exist constants ��2 � ��1 > 0 such that
��1I � HT�H� � ��2I: Furthermore choose u = 0 and � = 0; such that��@L
@u (t; x; 0; 0; �)

�� � &@J(jxj) and
��@L
@� (t; x; 0; 0; �)

�� � G�(jxj) (1 + j�j)+&k(jxj)
from Assumption 2.1, 2.2 and 2.3.

Thus from (3.7)
����u�T ; ��T�T��� � &Ou�

�����xT ; �T�T����
where &Ou� (jsj) := ���11 (G�(jsj) (1 + jsj) + &k(jsj))2 + ���11 &@J(jsj)2

The idea of proving stability and convergence of the optimal set, Ou�;
relies on the construction of the Lyapunov-like function:

Vu�(t; x; u; �) :=
1

2

 �
@L

@u

�T @L
@u

+

�
@L

@�

�T @L
@�

!
:

It follows that, along the trajectories of (3.3) and (3.4), the time-derivative
of Vu� is given by:

_Vu� =

 �
@L

@u

�T @2L
@u2

+

�
@L

@�

�T @2L

@u@�

!
_u+

�
@L

@u

�T @2L

@�@u
_�

+

 �
@L

@u

�T @2L

@x@u
+

�
@L

@�

�T @2L

@x@�

!
_x

+

�
@L

@u

�T @2L

@t@u
+

�
@L

@�

�T @2L

@t@�

=

 �
@L

@u

�T
;

�
@L

@�

�T!
H
�
_uT; _�

T
�T
+

 �
@L

@u

�T
;

�
@L

@�

�T!
uff

= �
 �

@L

@u

�T
;

�
@L

@�

�T!
H�H

 �
@L

@u

�T
;

�
@L

@�

�T!T

� �c
 �

@L

@u

�T @L
@u

+

�
@L

@�

�T @L
@�

!
;

= �2cVu� (3.9)
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where c := inft �min (H�H) > 0, according to assumptions 2.1 and 2.3, as
long as the solutions of (3.4) are not in the interior of the set Ou�(t; x(t)):
The Lyapunov analysis and results are formalized, based on set-stability.

Proposition 3.1 Let Assumptions 2.1, 2.2 a) and 2.3 be satis�ed. If x(t)
exists for all t, then the optimal set Ou�(t; x(t)) is UGES with respect to
the system (3.4).
Proof. In order to prove this result, it will be shown that i) Ou�(t; x(t)) is
a closed forward invariant set with respect to system (3.4), ii) the system
(3.4) and (1.29) is �nite escape time detectable through jzu�jOu�, and that
iii) �Vu�(t; zu�) := Vu�(t; x(t); u; �); where zu� := (uT ; �T)T ; is a radially
unbounded Lyapunov function. From (3.9) and Theorem 1.1 it then follows
that Ou�(t; x(t)) is UGES with respect to the system (3.4)

i) De�ne G(t; x; u; �; �) :=
�
@L
@u

T
; @L@�

T
�T

: From Proposition 1.1.9 b) in

Bertsekas et al. [2003], G : Rq ! RqG is continuous i¤ G�1(U)
is closed in Rq for every closed U in RqG. From the de�nition of
Ou�, U = f0g ; and since G is continuous (by Assumption 2.1 -
2.3), Ou� is a closed set. The set is forward invariant if at t1;
G(t1; x(t1); u(t1); �(t1); �) = 0 and d(G(t;x;u;�))

dt = 0 8t � t1 with re-
spect to (3.3) and (3.4). Since there exists a continuous solution
of (3.4) as long as x exists, we only need to check this condition
on the boundary of Ou�(t; x(t)) (Note that det(H) 6=0 on the bound-
ary of Ou�(t; x(t)) by Assumption 1d) and 3b)). We get d@L

dt@� =
@2L
@t@� +

@2L
@x@� _x +

@2L
@u@� _u and

d@L
dt@u =

@2L
@t@u +

@2L
@x@u _x +

@2L
@u@u _u +

@2L
@�@u

_�;
thus �

d@L
dt@u
d@L
dt@�

�
= H

�
_u
_�

�
+

 
@2L
@x@u
@2L
@x@�

!
_x+

 
@2L
@t@u
@2L
@t@�

!

= �H�H
�

@L
@u
@L
@�

�
= 0:

ii) Since x(t) is assumed to be forward complete, it follows from Lemma

3.1 that there always exist a pair
�
u�T ; ��T

�T
that satisfy the time-

varying �rst order optimal conditions, and thus the system (3.4) and
(1.29) is �nite escape time detectable through jzu�jOu� :

iii) In the proof of Lemma 3.1, from (3.7)�
@L

@u

�T@L
@u
+

�
@L

@�

�T@L
@�
=

�
u� u�
�� ��

�T
HT�H�

�
u� u�
�� ��

�
;
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it follows that there exists constants �2 � �1 > 0 such that ��1 jzu�j2Ou� ���
@L
@u

�T @L
@u +

�
@L
@�

�T @L
@�

�
� ��2 jzu�j2Ou� ; since the matrix H

T
�H� is pos-

itive de�nite and bounded by Assumption 2.1 and 2.3. By a similar
argument, in (3.8) change P�c with @2L

@u2
, and it follows that H is

non-singular, hence the control allocation law (3.4) always exist and,
��1 jzu�jOu� � �Vu�(t; zu�) � ��2 jzu�jOu� ; such that �Vu�(t; zu�) is a ra-
dially unbounded Lyapunov function.

This result implies that the set Ou�(t; x(t)) is uniformly attractive and
stable, such that optimality is achieved asymptotically.

Remark 3.1 Provided that the gain matrix, � > 0; is bounded away from
zero, � may be chosen time-varying. If for example � = 
 (HH)�1 for some

 > 0; then �

_u
_�

�
= �
H�1

�
@L
@u
@L
@�

�
�H�1uff ;

where the �rst term is the Newton direction when L is considered the cost
function to be minimized. In case HH is poorly conditioned, one may choose
� = 
 (HH+�I)�1 for some � > 0; to avoid c in (3.9) from being small.

Remark 3.2 If in Assumption 2.3 the terms k2 and %2 are relaxed to con-
tinuous positive functions &k(jzu�jOu�) and &%(jzu�jOu�); then
�1 jzu�j2Ou� �

��
@L
@u

�T @L
@u +

�
@L
@�

�T @L
@�

�
� �

�
jzu�jOu�

�
where � 2 K1; and

by the proof of Proposition 3.1, an UGAS result is obtained.

Corollary 3.1 Let Assumptions 2.1, 2.2 a) and 2.3 be satis�ed and
jzu�0jOu� < r where r > 0: If x(t) exists for t 2 [t0; T ) where T � t0,
then there exists a positive constant B(r) > 0 such that for all t 2 [t0; T );
jzu�(t)jOu�(t;x(t)) � B(r).

Proof. Since _Vu� � 0; Vu�(t; x(t); u(t); �(t)) � Vu�(t0; x(t0); u(t0); �(t0))
for all t 2 [t0; T ): From iii) of the proof of Proposition 1 �1 jzu�j2Ou� �
Vu� � �2 jzu�j2Ou� for all t 2 [t0; T ); it follows that jzu�(t)jOu�(t;x(t)) �q

1
�1
Vu�(t; x(t); u(t); �(t)) �

q
1
�1
Vu�(t0; x(t0); u(t0); �(t0)) �q

�2
�1
jzu�0jOu� =: B(r)

The technical boundedness property of the solutions of system (3.4) with
respect to the set Ou�; given in Corollary 3.1, is useful when analyzing the
closed loop system, see the proof in the following section.
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3.2 Stability of the combined control and control
allocation

The optimal set for the combined control and control allocation problem is
de�ned by:

Oxu�(t) := Ox �Ou�(t; 0): (3.10)

The stability properties of this combined set is analyzed by using Lemma
1.1. In Figure 2.2 it is illustrated how the two time-varying systems can
interact with each other in a cascade. In this case the perturbed system
�1, is represented by (3.3), the perturbing system �2; is represented by
the update-laws for u and �; (3.4). Loosely explained, Lemma 1.1 is used
to conclude UGAS of the set Oxu� if, Ox and Ou� individually are UGAS
(which is established by Assumption 2.2 and the previous section) and the
combined system is UGB with respect to Oxu�.

The properties of the closed loop system, the plant, the virtual controller
and the dynamic control allocation law, are analyzed next.

Proposition 3.2 If Assumptions 2.1-2.3 are satis�ed, then the set Oxu�
is UGAS with respect to the system (3.3) and (3.4).
Proof. We prove boundedness and completeness of the system (3.3)-(3.4),
and use Lemma 1.1. For notational purpose, we de�ne zx := x, zu� :=�
uT ; �T

�T
and zxu� :=

�
xT ; uT ; �T

�T
: Let jzxu�0jOxu� � r; where r > 0;

and assume that jzx(t)jOx escapes to in�nity at T: Then for any constant
M(r) there exists a t 2 [t0; T ) such that M(r) � jzx(t)jOx. In what follows
we show that M(r) can not be chosen arbitrarily.

De�ne v(t; x) := Vx(t; x) such that

_v � ��x3(jzxjOx)�
@Vx
@x

g(t; x)(�(t; x; u; �)� k(t; x))

� ��x3(jzxjOx) +
����@Vx@x

���� jg(t; x)j ����@L@� (t; x; u)
����

� ��x3(jzxjOx) + �x4(jzxjOx)K�2 jzu�jOu� : (3.11)

From Corollary 3.1 there exists a constant B(r); such that for all t 2 [t0; T );
B(r) � B(jzu�0jOu�) � jzu�(t)jOu� : Further by Assumption 2.1 and 2.2 it
follows that

_v � ��x3(jzxjOx) + �x4(jzxjOx)K�2B(r)
� ��k(jzxjOx)�x4(jzxjOx) + �x4(jzxjOx)K�2B(r)
� ��x4(jzxjOx)

�
�k(jzxjOx)�K�2B(r)

�
(3.12)

� ��x4(jzxjOx)
�
�k(�

�1
x2 ((v)))�K�2B(r)

�
: (3.13)
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If jzx0jOx > ��1k (K�2B(r)); then from (3.12), v(t0; zx0) � v(t; zx(t)) and
jzx(t)jOx � ��1x1 (v(t0; zx0)) � ��1x1 (�x2(r)) else, jzx0jOx � ��1k (K�2B(r))

and from (3.13), v(t; zx(t)) � �x2
�
��1k (K�2B(r))

�
such that

jzx(t)jOx � ��1x1
�
�x2(�

�1
k (K�2B(r)))

�
. By choosing

M(r) := max
�
��1x1 (�x2(r)) ; �

�1
x1

�
�x2

�
��1k (K�2B (r))

���
;

the assumption of jzx(t)jOx = x(t) escaping to in�nity is contradicted, since
jzx(t)jOx � M(r). By proof of contradiction jzx(t)jOx is globally uniformly
bounded. From Proposition 3.1 and the Assumptions 2.1-2.2, the assump-
tions of Lemma 1.1 are satis�ed and the result is proved.

From Proposition 3.2, the optimal set Oxu�(t) is uniformly stable and
attractive, such that optimality is achieved asymptotically for the closed
loop.

Corollary 3.2 If for U � Rr there exists a constant cx > 0 such that for
jxj � cx the domain Uz � R�0 � Rn � U � Rd contain Oxu�; then if the
Assumptions 2.1-2.3 are satis�ed, the set Oxu� is UAS with respect to the
system (3.3) and (3.4).
Proof. Since Oxu� � Uz, there exists a positive constant r � jzxu�0jOxu�
such that jzx(t)jOx � cx0 where 0 < cx0 < cx; hence the domain Uu� �
R�0 � U � Rd contain Ou�: UAS of Ou� follows from the Lyapunov-like
function Vu�. UB follows from jzxu�0jOxu� � r, and the UAS property of
Oxu� follows from Corollary 1.1

3.3 Example: DP of a scale model ship

The model ship dynamics considered in this example are described in the
introduction chapter, Section 1.1.1, and the model parameters can be found
in Table A.1. The control allocation algorithm in this chapter relies on
Assumption 2.1, 2.2 a) and c), and 2.3. Furthermore, no actuator dynamic
is considered and all parameters are assumed to be known. This means that
the generalized force vector � is considered to be known, and the external
disturbance b should be handled by the high level controller (integrator
action), such that the model which the allocation algorithm is based upon,
takes the form (rewriting (1.6))

_�e = R( )�;

_� = �M�1D� +M�1 (� + b) ; (3.14)

� = �(�; u);
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where, �(�; u) := Gu(u) (T1(!1); T1(!2); T1(!3))
T ; and the propulsion forces

are de�ned by:

Ti(!i) :=

�
kTpi!

2
i ; !i � 0

kTni j!ij!i ; !i < 0
: (3.15)

Analytically the model does not satisfy Assumption 2.1 c) and d) for
u = 0: This means that the control allocation algorithm should be based
on an approximation of the model ship model. By replacing � from (3.14)
with �a = �(�; u)+�L(u); where �L(u) := &(!1+!2; !3; !1�!2+!3)T in
the control allocation algorithm, Assumption 2.1 d) is satis�ed for all & > 0:
Moreover, although � analytically is not twice di¤erentiable (not unique at
u = 0) and Assumption 2.1 c) is not satis�ed, a numerical implementation
of the partial derivatives will always yield unique solutions.

The cost function used in this simulation scenario is de�ned by:

J(u) :=
3X
i=1

ki j!ij!2i + ki2!2i +
2X
i=1

qi�
2
i ; (3.16)

j!ij � 18Hz; j�ij � 35 deg;
k1 = k2 = 0:01; k3 = 0:02; q1 = q2 = 500;

ki2 = 10
�3:

Assumption 2.3 is satis�ed locally since for bounded u and �; ki2 ensures
that @

2L
@u2

> 0: Based on the high level controller (1.22) and previous discus-
sion, the Assumptions 2.1-2.3 are satis�ed locally and from Corollary 3.2
an UAS result is obtained for this model ship control problem.

The gain matrices are chosen as follows:
Kp := M � diag(3:13; 3:13; 12:5)10�2; Kd := M � diag(3:75; 3:75; 7:5)10�1;
KI := M � diag(0:2; 0:2; 4)10�3 and � :=

�
HTWH+ "I

��1 where W :=
diag (1; 1; 1; 1; 1; 0:6; 0:6; 0:6) and " := 10�9: The weighting matrix W is
chosen such that the deviation of

��@L
@�

�� = jk(t; x)� �(t; x; u; �)j from zero, is
penalized more then the deviation of

��@L
@u

�� from zero, in the search direction.
Based on the wind and current disturbance vector b := (0:06; 0:08; 0:04)T;

the simulation results are presented in the Figures 3.1-3.3. The control
objective is satis�ed and the commanded virtual controls � c; are tracked
closely by the real, actuator generated forces, except for t � 400; where
the control allocation is suboptimal due to actuator saturation: see Figure
3.3. The simulations are carried out in the MATLAB environment with a
sampling rate of 10Hz:
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Figure 3.1: The ship; desired position (dashed), actual position (solid) and
velocities.
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Figure 3.2: The acutal propeller velocities and rudder de�ections.
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Figure 3.3: The desired virtual control forces (dashed) and the actual con-
trol forces (solid) generated by the actuators. The lagrangian parameters
are also shown.



Chapter 4

Dynamic Adaptive Control
Allocation

In this chapter an adaptive mechanism is include in the optimal control
allocation design in order to account for an unknown, but bounded, para-
meter vector �. A Lyapunov based indirect parameter estimation scheme
(see Krstic et al. [1995] for a systematic Lyapunov based procedure) is uti-
lized. And since the state space of (2.1) by Assumption 2.1 a) is assumed
to be known, the estimation model

_̂x = A(x� x̂) + f(t; x) + g(t; x)�(t; x; u; �̂); (4.1)

is considered in the construction of the adaptive law. This estimation model
has the same structure as a series parallel model (SP), Ioannou and Sun
[1996] and Landau [1979]. For analytical purpose, the �ltered error estimate
of the unknown parameter vector:

_� = �A�+ g(t; x)��(t; x; u)~�; (4.2)

where ��(t; x; u) :=
�
�� (t; x; u)

T;�u(t; x; u)
T
�
; ~� = � � �̂, � = x � x̂ and

(�A) is Hurwitz, will be used.

Remark 4.1 If the virtual control � can be measured, e.g. by accelerome-
ters and gyroscopes, the estimate (4.1) is not necessary and the construction
and analysis of the adaptive law becomes much simpler.

The analysis and design of the adaptive law can be carried out in several
ways. We consider the approach, with reference to Figure 2.2, where the
perturbing system (�2) is expanded with an adaptive law. An advantage
with this approach is that the adaptive law is independent of Vx.



52 Dynamic Adaptive Control Allocation

Remark 4.2 A di¤erent approach would be to expand the perturbed system
(�1) with an adaptive law. In this case the adaptive law will be dependent
on the initial Lyapunov function (similar to Tjønnås and Johansen [2005]),
but convergence results like, x(t) ! 0 as t ! 1; may be concluded even if
a persistence of excitation condition is not satis�ed.

4.1 Stability of the certainty equivalent control
allocation

In order to see the cascaded coupling between the system (3.3) and the
adaptive and optimal control allocation update-laws, equation (3.3) can be
rewritten by:

_x = f(t; x) + g(t; x)k(t; x)

+g(t; x)
�
k(t; x)� �(t; x; u; �̂)

�
+g(t; x)��(t; x; u)~�: (4.3)

Based on the perturbing system (�2, expanded with estimation and adap-
tation dynamic, in Figure 2.2), we consider the estimated optimal solution
set

Ou�~�(t; x) :=
n
(uT; �T; �T; ~�

T
)T 2 Rnu�~�

���fOu�~�(t; zxu�~�) = 0o (4.4)

where nu�~� := r + d + n + m; zxu�~� :=
�
xT; uT; �T; �T; ~�

T
�T
, fOu�~� :=��

@L
�̂

@u

�T
;
�
@L�̂
@�

�T
; �T; ~�

T
�
and

L�̂(t; x; u; �; �̂) := J(t; x; u) + (k(t; x)� �(t; x; u; �̂))T�:

The task will be to show that the following certainty equivalent control al-
location algorithm ensures stability, in a certain sense, of the set Ou�~�(t; x);
with respect to (4.2), (4.5) and (4.6):�

_u
_�

�
= ��H�̂

 
@L�̂
@u
@L�̂
@�

!
�H�1

�̂
uff�̂; (4.5)

_̂
� = ��1

�̂
(��(t; x; u))

T (g(t; x))T
 
���+

�
@2L�̂
@x@u

�T
@L�̂
@u

!

+ ��1
�̂
(��(t; x; u))

T (g(t; x))T
�
@2L�̂
@x@�

�T
@L�̂
@�

; (4.6)
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where H�̂ : =

 
@2L�̂
@u2

@2L�̂
@�@u

@2L�̂
@u@� 0

!
; the matrices �; �� and ��̂; are symmetric

positive de�nite and uff�̂ is a feed-forward like term given by:

uff�̂ :=H
�1
�̂

0@ @2L
@t@u
@2L
@t@�

!
+

 
@2L
@x@u
@2L
@x@�

!
f(t; x)+

0@ @2L�̂
@�̂@u
@2L�̂
@�̂@�

1A _̂�
1A

+H�1
�̂

 
@2L
@x@u
@2L
@x@�

!
g(t; x)�(t; x; u; �̂);

or uff�̂ := 0 if det(@
2L
@u2
) < �; where (k1)

r > � > 0: �� is uniquely de�ned

by the solution of the Lyapunov equation Q� = 1
2(A

T�� + ��A); where Q�
is a positive de�nite design matrix. As before a Lyapunov-like function is
considered:

Vu�~�(t; x; u; �; �;
~�) :=

1

2

 �
@L�̂
@u

�T @L�̂
@u

+

�
@L�̂
@�

�T @L�̂
@�

!
+
�T���

2
+
~�
T
��̂
~�

2
:

(4.7)
And its time derivative along the trajectories of the closed loop system is:

_Vu��̂ =

 �
@L�̂
@u

�T@2L�̂
@u2

+

�
@L�̂
@�

�T @2L�̂
@u@�

!
_u

+

�
@L�̂
@u

�T @2L�̂
@�@u

_�+

 �
@L�̂
@u

�T @2L�̂
@x@u

+

�
@L�̂
@�

�T @2L�̂
@x@�

!
_x

�
 �

@L�̂
@u

�T @2L�̂
@�̂@u

+

�
@L�̂
@�

�T @2L�̂
@�̂@�

!
_~�

+

�
@L�̂
@u

�T @2L�̂
@t@u

+

�
@L�̂
@�

�T @2L�̂
@t@�

+ �T _�+ ~�
T
��̂
_~�:

Further by inserting (4.2), (4.5) and (4.6)

_Vu��̂ = �
 �

@L�̂
@u

�T
;

�
@L�̂
@�

�T!
H�̂�H�̂

 �
@L�̂
@u

�T
;

�
@L�̂
@�

�T!T
��T 1

2
(AT�� + ��A)� (4.8)

� �c�̂

 �
@L�̂
@u

�T @L�̂
@u

+

�
@L�̂
@�

�T @L�̂
@�

!
� �TQ��; (4.9)
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where c�̂ := inft �min
�
H�̂�H�̂

�
> 0.

Proposition 4.1 Let Assumptions 2.1, 2.2 a) and 2.3 be satis�ed. Then if
x(t) exists for all t, the set Ou�~�(t; x(t)) is UGS with respect to the system
(4.1), (4.2), (4.5) and (4.6), and

�
�;
@L�̂
@u ;

@L�̂
@�

�
converges asymptotically to

zero.

Proof. De�ne G(t; x; u; �; ~�) :=
�
�; ~�;

@L�̂
@u

T
;
@L�̂
@�

T
�T

;

�Vu�~�(t; zu�~�) := Vu�~�(t; x(t); u; �; �;
~�) and change L with L�̂ such that (3.7)

become�
@L�̂
@u

�T @L�̂
@u

+

�
@L�̂
@�

�T@L�̂
@�

=

�
u� u�
�� ��

�T
HT
�̂�H�̂�

�
u� u�
�� ��

�
; (4.10)

then the proof of this result follow with the same steps as in the proof
of Proposition 3.1. I.e. there exist constants ��2 � ��1 > 0 such that

��1 jzu�j2Ou� �
��
@L�̂
@u

�T @L�̂
@u +

�
@L�̂
@�

�T @L�̂
@�

�
� ��2 jzu�j2Ou� since H

T
�̂�H�̂� is pos-

itive de�nite and bounded from Assumption 2.1 and 2.3. By a similar ar-

gument, in (3.8) change P�c with
@2L�̂
@u2

, H�̂ is non-singular, hence the con-
trol allocation law (4.5) always exist and, �1

��zu�~���Ou�~� � �Vu�~�(t; zu�~�) �
�2
��zu�~���Ou�~� ; where �1 := 1

2 min(��1;��;��̂) �2 :=
1
2 max(��2;��;��̂); such

that �Vu�~�(t; zu�~�) is a radially unbounded Lyapunov function.
Since (4.9) is negative semide�nite, UGS of the set Ou�~� can be con-

cluded by Theorem 1.1. The convergence result follows by Barbalat�s lemma:

min(c�̂; �min(Q�)) limt!1

Z t

t0

������(s); @ �L�̂@u
(s);

@ �L�̂
@�

(s)

�����2 ds �

lim
t!1

Z t

t0

_�Vu�~�(s; zu�~�(s))ds �

�Vu�~�(t0; zu�~�(t0)) < 1

where
@ �L�̂
@u (t) :=

@L�̂
@u (t; x(t); u(t); �(t); �̂(t)) and

@ �L�̂
@� (t) :=

@L�̂
@�

�
t; x(t); u(t); �(t); �̂(t)

�
such that

�
�(s);

@ �L�̂
@u (s);

@ �L�̂
@� (s)

�
2 L2

and L1 (due to the UGS result); and thus
�
��(s);

@ �L�̂
@u (s);

@ �L�̂
@� (s)

�
! 0 as

s!1

Assumption 4.1 (Persistence of Excitation) The signal matrix

�g(t) := g(t; x(t))��(t; x(t); u(t));
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is persistently excited, which with respect to De�nition 1.1 means that there
exist constants T and 
 > 0; such thatR t+T

t �g(�)
T�g(�)d� � 
I ; 8t > t0:

Remark 4.3 The system trajectories x(t) de�ned by (2.1) typically repre-
sent the tracking error i.e. x := xs � xd; where xs is the state vector of
the system, and xd represents the desired reference for these states. This
means that PE assumption on �g(t) is dependent on the reference trajectory
xd; in addition to disturbances and noise, and imply that some "richness"
properties of these signals are satis�ed.

Proposition 4.2 Let x(t) be UGB, then if Assumption 4.1 and the as-
sumptions of Proposition 4.1 are satis�ed, the set Ou�~� is UGAS with re-
spect to system (4.1), (4.2), (4.5) and (4.6).

Proof. See Appendix A.1
Unless the PE condition is satis�ed for �g; only stability of the optimal

set is guaranteed. Thus in the sense of achieving asymptotic optimality,
parameter convergence is of importance.

4.2 Stability of the combined control and certainty
equivalent control allocation

In this section the properties of the combined control and the certainty
equivalent control allocation set

Oxu�~�(t) := Ox(t)�Ou�~�(t; 0) (4.11)

is investigated. In the framework of cascaded systems, the system de�ned
by (4.5), (4.6) together with (4.2) is considered to be the perturbing system
�2; while (3.3) represents the perturbed system �1: Before establishing the
main results of this section, an assumption on the interconnection term be-
tween the two systems is stated. We start by stating the following property:

Lemma 4.1 By Assumption 2.1 and Lemma 3.1 there exist continuous
functions &x; &xu, &u : R�0 ! R�0; such that

j��(t; x; u)j � &x(jxj)&xu(jxj) + &x(jxj)&u(
��zu�~���Ou�~�):

Proof. From Mazenc and Praly [1996]�s lemma B.1: Since j��(t; x; u)j �
G�

�����xT ; uT�T���� ; there exist continuous functions &x,�&u : R�0 ! R�0
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such that G�
�����xT ; uT�T���� � &x(jxj)�&u(juj): Further juj �

����uT ; �T�T��� ���zu�~���Ou�~� + &Ou�(jxj) (triangular inequality) such that
�&u(juj) � max

0�s�jzu�~�jO
u�~�

+&Ou� (jxj)
�&u(s)

� &u(
��zu�~���Ou�~�) + &xu(jxj);

where &u(
��zu�~���Ou�~�) := max

0�s�2jzu�~�jO
u�~�

�&u(s) and &xu(jxj) := max
0�s�2&Ou� (jxj)

�&u(s)

Assumption 2.2 (Continued)

d) The function, �k, from Assumption 2.2 c) has the following additional
property:

��1k (jxj)�x3(jxj) � �x4(jxj)&xmax(jxj) , (4.12)

where &xmax(jxj) := max(1; &x(jxj); &x(jxj)&xu(jxj)):

Remark 4.4 If there exists a constant K > 0 such that &xmax(jxj) � K 8x;
which is common in a mechanical system, Assumption 2.2 d) is satis�ed.

Proposition 4.3 If Assumptions 2.1-2.3 are satis�ed, then the set Oxu�~�
is UGS, with respect to system (4.2), (4.3), (4.5) and (4.6). If in addition
Assumption 4.1 is satis�ed, then Oxu�~� is UGAS with respect to (4.2),
(4.3), (4.5), (4.6).
Proof. As before the main part of this proof is to prove boundedness and
completeness and invoke Lemma 1.1. Let

��zxu�~�0��Oxu�~� � r; where r > 0,

and assume that jzx(t)jOx escapes to in�nity at T: Then for any constant
M(r) there exists a t 2 [t0; T ) such that M(r) � jzx(t)jOx. In what follows
we show that M(r) can not be chosen arbitrarily. De�ne v(t; zx) := Vx(t; x)
such that

_v � ��x3(jzxjOx) +
@Vx
@x

g(t; x)
�
k(t; x)� �(t; x; u; �̂)

�
+
@Vx
@x

gx(t; x)��(t; x; u)~� (4.13)

� ��x3(jzxjOx) +
����@Vx@x

���� jg(t; x)j ����@L�̂@�
(t; x; u; �̂)

����
+

����@Vx@x
���� jgx(t; x)j �����(t; x; u)~����

� ��x3(jzxjOx) (4.14)

+�x4(jzxjOx)K(�2+j��(t; x; u)j)
��zu�~���Ou�~� : (4.15)
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By the same arguments as in the proof of Proposition 3.2 and the use of
Corollary 3.1 there exists a positive constant B(r) � 0; for all t 2 [t0; T );
such that for

��zu�~�0��Ou�~� � r,
��zu�~�(t)��Ou�~� � B(

��zu�~�0��Ou�~�) � B(r). From

Assumption 2.1 and 2.2,

_v � ��x3(jzxjOx)
+�x4(jzxjOx)K (�2 + j��(t; x; u)j)B(r)

� ��k(jzxjOx)�x4(jzxjOx)&xmax((jzxjOx)
+�x4(jzxjOx)K (�2 + j��(t; x; u)j)B(r)

� ��x4(jzxjOx)�k(jzxjOx)&xmax(jzxjOx)
+�x4(jzxjOx)K�2B(r)
+�x4(jzxjOx)K&x(jzxjOx)&xu(jzxjOx)B(r)
+�x4(jzxjOx)K&x(jzxjOx)&u(B(r))B(r) (4.16)

� ��x4(jzxjOx)�k(�
�1
x2 (v))&xmax(jzxjOx)

+�x4(jzxjOx)K�2B(r)
+�x4(jzxjOx)K&x(jzxjOx)&xu(jzxjOx)B(r)
+�x4(jzxjOx)K&x(jzxjOx)&u(B(r))B(r): (4.17)

Thus, if
jzx0jOx > ��1k (K (�2 + 1 + &u(B(r)))B(r))

then from (5.19),
v(t0; zx0) � v(t; zx(t)) and jzx(t)jOx � ��1x1 (v(zx0)) � ��1x1 (�x2(r)) ; else,

jzx0jOx � ��1k (K (�2 + 1 + &u(B(r)))B(r))

and from (5.20), v(t; zx(t)) � �x2(�
�1
k (K (�2 + 1 + &u(B(r)))B(r)))

such that

jzx(t)jOx� ��1x1
�
�x2
�
��1k (K (�2+1+&u(B(r)))B(r))

��
:

By choosing

M(r) := max
�
��1x1 (�x2(r)) ; �

�1
x1

�
�x2
�
��1k (K (�2+1+&u(B(r)))B(r))

���
;

the assumption of jzx(t)jOx escaping to in�nity is contradicted, sinceM(r) >
jzx(t)jOx and j�jOx is �nite escape time detectable. Furthermore Ox is UGB.
From Propositions 4.1 and 4.2 and the assumptions of these propositions,
the assumptions of Lemma 1.1 and Corollary 1.1 are satis�ed and the result
is proved
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Proposition 4.3 implies that the time-varying optimal set Oxu�~�(t) is
uniformly stable, and in addition uniformly attractive if Assumption 4.1 is
satis�ed. Thus optimal control allocation is achieved asymptotically for the
closed loop. A local version of this result can be proven using Corollary 1.1
and arguments similar to the proof of Corollary 3.2.

Corollary 4.1 If for U � Rr there exist constant cx > 0 such that for
jxj � cx the domain Uz � R�0 � Rn � U � Rd+n+m contain Oxu�~�; then if
the Assumptions 2.1-2.3 are satis�ed, the set Oxu�~� is US with respect to
the system (4.2), (4.3), (4.5) and (4.6). If in addition Assumption 4.1 is
satis�ed, Oxu�~� is UAS with respect to the system (4.2), (4.3), (4.5) and
(4.6).
Proof. The result follows by Corollary 1.1 and arguments similar to the
ones given in the proof of Corollary 3.2

Since the set with respect to system �2 may only be US, due to actua-
tor/e¤ector constraints and parameter uncertainty, only US of the cascade
may be concluded. But if the PE property is satis�ed on �g, a UAS result
may be achieved with both optimal and adaptive convergence.

4.3 Example: DP of a scale model ship continued

In this section the example from Chapter 3 is continued with the assump-
tion of uncertainty in the force generation model. This uncertainties can be
viewed as thrust losses and are in the following denoted by � := (�u1; �u2)

T :
The high level dynamics are given by (3.14) and based on the model pre-
sented in 3, the rewritten parameterized actuator-force mapping model
takes the following form:

�(�; u; �) :=

0@ (1�D1)T1(!1) + (1�D2)T2(!2) 0
L1T1(!1) + L2T2(!2) T3(!3)
�31T1(!1) + �32T2(!2) l3;xT3(!3)

1A� �u1
�u2

�
;

(4.18)
where the thruster forces are de�ned by (3.15).

Note that �u2 is also related to the parameters kTp3 and kTn3 in a multi-
plicative way, which suggests that the estimate of �u2 gives a direct estimate
of the tunnel thruster loss factor. In order to keep �̂ from being zero, due
to a physical consideration, a projection algorithm can be used. I.e. from
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(4.5)

_̂
� =

8<: ��1
�̂
� (i)

��1
�̂
� + ��1

�̂

(1;1)T (1;1)

(1;1)��1
�̂
(1;1)T

��1
�̂
� (ii) ;

where (i) is used if �̂ 2 S0 or � 2 �(S) and
�
��1
�̂
�
�T
(1; 1)T � 0; and (ii) is

used otherwise. Further

� := ��(u)
Tgx

T

 
���+

@2L�̂
@x@u

T
@L�̂
@u

+
@2L�̂
@x@�

T
@L�̂
@�

!
;

S :=

�
�̂ 2 R2

�����mini f�̂ig � �̂min

�
; S0 is the interior of S and �(S) is the

boundary of S and �̂min > 0.
The high level controller and allocation algorithm parameters are given

in Chapter 3, and the adaptive parameters are de�ned by: A� := I9�9;
Q� := diag(1; 1); Q� := diag(a; 150�(100; 100; 1)T); and a := (1; 1; 1; 1; 1; 1)T.
The loss related parameters are given by � := (0:8; 0:9)T and the simula-
tion results are presented in the Figures 4.1-4.4. Due to the disturbance
and reference change, the parameter update law for �u1 is exited on the
whole time scale of the simulation since the aft propellers are counteracting
the external forces acting the ship. But the update law for estimating �u2 is
only exited at t � 200 and t � 400 since the tunnel thruster is only used to
counteract initial transients due to position reference changes. As before,
the control objective is satis�ed with the exceptions at t � 200 and t � 400
where the control allocation is suboptimal due to actuator saturation.
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Figure 4.1: The ship; desired position (dashed), actual position (solid) and
velocities.
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Figure 4.2: The actual propeller velocities and rudder de�ections.
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Figure 4.3: The desired virtual control forces (dashed) and the actual con-
trol forces (solid) generated by the actuators. The lagrangian parameters
are also shown.
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Chapter 5

Control Allocation with
Actuator Dynamics

When actuator dynamics is considered, the task of the dynamic control
allocation algorithm is to connect the high and low level controls by taking
the desired virtual control � c as an input and computing the desired actu-
ator reference ud as an output. Based on the minimization problem (2.5)
the Lagrangian function from (5.1)

L�̂u(t; x; ud; �) := J(t; x; ud) + (k(t; x)� �(t; x; ud; �̂))T�; (5.1)

is introduced. The idea is then to de�ne update laws for the actuator refer-
ence ud and the Lagrangian parameter �, based on a Lyapunov approach,
such that ud and � converges to a set de�ned by the �rst-order optimal
condition for L�̂u.

Since the parameter vector � from the actuator and the actuator-force
mapping models (2.3) and (2.2) are unknown, an adaptive update law for
�̂ is de�ned. The parameter estimates are used in the Lagrangian function
(5.1) and a certainty equivalent adaptive optimal control allocation can be
de�ned. The following observers, similar to the one given in Chapter 4, are
used in order to support estimation of the parameters:

_̂u =Ax(u� û) + fu0(t; x; u; ucmd) + fu�(t; x; u; ucmd)�u;
_̂x =Ax(x� x̂) + f(t; x) + g(t; x)�(t; x; u; �̂):

where (�Au) and (�Ax) are Hurwitz matrices. For analytical purpose, the
error dynamics are given by:
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_�u = �Au�u + �fu�(t; x; ud; ~u; �̂)~�u; (5.2)

_�x = �Ax�x +��� (t; x; u)~�� +��u(t; x; u)~�u: (5.3)

5.1 Stability of the control allocation and actua-
tor dynamics

Based on equation (2.4) the considered high level system can be represented
by:

_x = f(t; x) + g(t; x)k(t; x)

+g(t; x)
�
�(t; x; ud; �̂)� k(t; x)

�
+g(t; x)

�
�(t; x; u; �̂)� �(t; x; ud; �̂)

�
+g(t; x)��(t; x; u; �)~�: (5.4)

In the following, the system (5.4) is, with reference to Figure 2.2, the per-
turbed system denoted �1; and the idea is to construct update laws for ud,
� and �̂ such that the last three parts of the equation converges to zero
in a stabile sense. As from the presentations in Chapter 3 and 4 the idea
is then: i) by de�ning a Lyapunov like function Vud�~u�~�; show that there

exist appropriate update-laws for ud, � and �̂; the perturbing part, such
that _Vud�~u�~� � 0: And ii) use the cascade Lemma 1.1 to prove convergence
and boundedness of the closed loop system �1 and �2; where �2 is de�ned
by the allocation update laws, the parameter estimate errors and the low
level dynamics.

For �2 the stability and convergence arguments are related to the set:

Oud�~�(t; x(t)) :=
n
zud�~�2R

3r+d+n+m
���fOu�~�(t; x; zud�~�)=0o ; (5.5)

where zud�~� :=
�
uTd ; �

T; ~uT; �Tu ; �
T
x ;
~�
T
�T

and

fOu�~�(t; x; zud�~�) :=

��
@L�̂u
@u

�T
;
�
@L�̂u
@�

�T
; ~uT; �Tu ; �

T
x ;
~�
T
�
. Consider the

Lyapunov like function
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Vud�~u�~�(t;x; ud; �; ~u; �u; �x) := V~u(t; ~u) +
1

2
�Tu�u�u +

1

2
�Tx�x�x

+
1

2

 
@LT

�̂u

@ud

@L�̂u
@ud

+
@LT

�̂u

@�

@L�̂u
@�

!
+
1

2
~�
T
u��u

~�u +
1

2
~�
T
� ���

~�� (5.6)

The time derivative of Vud�~u�~� along the trajectories of (5.2), (5.3) and (5.4)
is:

_Vud�~u�~� =
_V~u �

@V~u
@~u

fu�(t; x; u; ud; ucmd)~�u � �Tu
1

2

�
ATu�u + �uAu

�
�u

+ �Tu�ufu�(t; x; u; ud; ucmd)
~�u + �

T
x�x��� (t; x; u)

~��

+ �Tx�x��u(t; x; u)
~�u+~�

T
� �~��

_~��+~�
T
u�~�u

_~�u��Tx
1

2

�
ATx�x+�xAx

�
�x

+

 
@LT

�̂u

@ud

@2L�̂u
@u2d

+
@LT

�̂u

@�

@2L�̂u
@ud@�

!
_ud +

@LT
�̂u

@ud

@2L�̂u
@�@ud

_�

+
@LT

�̂u

@ud

@2L�̂u
@x@ud

�
f(t; x) + g(t; x)�(t; x; u; �̂)

�
+
@LT

�̂u

@�

@2L�̂u
@x@�

�
f(t; x) + g(t; x)�(t; x; u; �̂)

�
+
@LT

�̂u

@ud

@2L�̂u
@x@ud

g(t; x)
�
��� (t; x; u)

~�� +��u(t; x; u)
~�u

�
+
@LT

�̂u

@�

@2L�̂u
@x@�

g(t; x)
�
��� (t; x; u)

~�� +��u(t; x; u)
~�u

�
�
 
@LT

�̂u

@ud

@2L�̂u
@�̂@ud

+
@LT

�̂u

@�

@2L�̂u
@�̂@�

!
_~� +

@LT
�̂u

@ud

@2L�̂u
@t@ud

+
@LT

�̂u

@�

@2L�̂u
@t@�

;

(5.7)

Equation (5.7) gives rise to the following allocation algorithm:�
_ud
_�

�
= ��H�̂u

 
@L�̂u
@ud
@L�̂u
@�

!
� u�̂uff ; (5.8)

where H�̂u : =

0@ @2L�̂u
@u2d

@2L�̂u
@�@ud

@2L�̂u
@ud@�

0

1A ; the matrices �; ��u ; ��� ; �x; and �u

are symmetric positive de�nite weighting matrices and uff is a feed-forward



68 Control Allocation with Actuator Dynamics

like term:

u�̂uff := H
�1
�̂u

 
@2L�̂u
@t@ud
@2L�̂u
@t@�

!
+H�1

�̂u

 
@2L�̂u
@x@ud
@2L�̂u
@x@�

!
f(t; x)

+H�1
�̂u

 
@2L�̂u
@x@ud
@2L�̂u
@x@�

!
g(t; x)�(t; x; u; �̂) +H�1

�̂u

0@ @2L�̂u
@�̂@ud
@2L�̂u
@�̂@�

1A _̂
�;

if det(
@2L�̂u
@u2d

) � � and u
�̂uff

:= 0 if det(
@2L�̂u
@u2d

) < �; where (k1)
r > � >

0: �u and �x are uniquely de�ned by the Lyapunov equations; Qu :=:
1
2

�
ATu�u + �uAu

�
and Qx :=:

1
2

�
ATx�x + �xAx

�
; where Qu and Qx are

positive de�nite design matrices. By inserting the trajectories from (5.8)
in (5.7), _Vud�~u�~� is given by:

_Vud�~u�~� = ��
T
uQu�u � �~u3(j~uj)� �TxQx�x

�
 
@L�̂u
@ud

T

;
@L�̂u
@�

T
!
H�̂u�H�̂u

 
@L�̂u
@ud

T

;
@L�̂u
@�

T
!T

+
_~�Tu�~�u

~�u

+

�
@V~u
@~u

+ �Tu��

�
fu�(t; x; u; ud; ucmd)~�u +

_~�T� �~��
~��

+

 
�Tx�x +

@LT
�̂u

@ud

@2L�̂u
@x@ud

+
@LT

�̂u

@�

@2L�̂u
@x@�

!
g(t; x)��u(t; x; u)

~�u

+

 
�Tx�x +

@LT
�̂u

@ud

@2L�̂u
@x@ud

+
@LT

�̂u

@�

@2L�̂u
@x@�

!
g(t; x)��� (t; x; u)

~�� ;

(5.9)

which motivate the following adaptive laws:

_̂
�Tu =

�
@V~u
@~u

+ �Tu�u

�
fu�(t; x; u; ud; ucmd)�

�1
�u

+

 
�Tx�x +

@LT
�̂u

@ud

@2L�̂u
@x@ud

+
@LT

�̂u

@�

@2L�̂u
@x@�

!
g(t; x)��u(t; x; u)�

�1
�u

(5.10)

and

_̂
�T� =

 
�Tx�x +

@LT
�̂u

@ud

@2L�̂u
@x@ud

+
@LT

�̂u

@�

@2L�̂u
@x@�

!
g(t; x)��� (t; x; u)�

�1
��
; (5.11)
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such that

_Vud�~u�~� = ��
T
uQu�u � �~u3(j~uj)� �TxQx�x

�
 
@L�̂u
@ud

T

;
@L�̂u
@�

T
!
H�̂u�H�̂u

 
@L�̂u
@ud

T

;
@L�̂u
@�

T
!T

� ��TuQu�u � �~u3(j~uj)� �TxQx�x

� c�̂

 
@L�̂u
@ud

T @L�̂u
@ud

T

+
@L�̂u
@�

T @L�̂u
@�

T
!
; (5.12)

where c�̂ := inft �min
�
H�̂u�H�̂u

�
> 0.

Proposition 5.1 If the assumptions 2.1, 2.2 and 2.3 are satis�ed, and
x(t) exists for all t; then the set Oud�~�(t; x(t)) is UGS with respect to sys-
tem (5.2), (5.3), (5.4), (5.8), (5.10) and (5.11).

Furthermore
�
@L�̂u
@ud

;
@L�̂u
@� ; �u; �x; ~u

�
will converge to zero as t ! 1. If in

addition fp(t) := fu�(t; x(t); u(t); ud(t); ucmd(t)) and
�g(t) := g(t; x(t))��� (t; x(t); u(t)) are PE, then the set Oud�~�(t; x(t)) is
UGAS with respect to the system (5.2), (5.3), (5.4), (5.8), (5.10) and
(5.11).
Proof. Existence of solutions, forward invariance of the set Oud�~� and
�nite escape time detectability

���zud�~����Oud�~� follows by the same arguments
as given in Proposition 3.1. Furthermore it follows that there exist class

K1 functions ��1 and ��2 such that ��1(
���zud�~����Oud�~�) � �Vud�~u�~�(t; zud�~�) �

��2(
���zud�~����Oud�~�) where,
��1(
���zud�~����Oud�~�) := min

 
�1
2

���zud�~����2Oud�~� ; 12�~u1(
���zud�~����Oud�~�)

!
; (5.13)

��2(
���zud�~����Oud�~�) := k2

���zud�~����2Oud�~� + �~u2(
���zud�~����Oud�~�); (5.14)

and �1 := 1
2 min(�min�u; �min�x; �min��u ; �min��� ; ��1),

�2 := max(�max�u; �max�x; �max��u ; �max��� ; ��2): �2 � �1 > 0 since there
exist positive constants ��2 � ��1 such that
��1

����uT ; �T�T���2
Ou�

�
��

@L�̂u
@u

�T @L�̂u
@u +

�
@L�̂u
@�

�T@L�̂u
@�

�
� ��2

����uT ; �T�T���2
Ou�
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from the equation:�
@L�̂u
@u

�T @L�̂u
@u

+

�
@L�̂u
@�

�T@L�̂u
@�

=

�
u� u�
�� ��

�T
HT
�̂u�H�̂u�

�
u� u�
�� ��

�
; (5.15)

where HT
�̂u�H�̂u� can be shown to be a bounded positive de�nite matrix by

following the same steps as in the proof of Proposition 3.1. ��1 is of class
K1 since in general: Let s1 � s2 � 0; then s21 +�~u1(s2) � s21 �

�
s1+s2
2

�2 �
min

��
s1+s2
2

�2
; �~u1(

s1+s2
2 )

�
and the same argument can be made for s2 >

s1: ��1 is obviously a K1 since it is a sum of two K1 functions.
Moreover the arguments from the proof of Proposition 4.1 applies to

the case UGS and convergence of
�
@L�̂u
@ud

;
@L�̂u
@� ; �u; �x; ~u

�
. The UGAS proof

follows by the same steps as given in the proof of Proposition 4.2

Proposition 5.1 implies that the time-varying �rst order optimal set
Oud�~�(t) is uniformly stable, and in addition uniformly attractive if a PE
assumption is satis�ed.

5.2 Stability of the closed loop control allocation

In the following the solutions of the closed loop certainty equivalent control
allocation procedure are de�ned with respect to the set:

Oxud�~� := Ox(t)�Oud�~�(t; 0):

Formally the theoretical achievements are given in the following proposi-
tions.

Proposition 5.2 If Assumptions 2.1-2.3 are satis�ed, then the set Oxud�~�
is UGS, with respect to system (5.2), (5.3), (5.4), (5.8), (5.10) and (5.11).
If in addition fp(t) := fu�(t; x(t); u(t); ucmd(t)) and
�g(t) := g(t; x(t))��� (t; x(t); u(t)) are PE, then Oxud�~� is UGAS with re-
spect to (5.2), (5.3), (5.4), (5.8), (5.10), (5.11).
Proof. As before the main part of this proof is to prove boundedness and
completeness and invoke Lemma 1.1. Let

��zxu�~�0��Oxu�~� � r; where r > 0,

and assume that jzx(t)jOx escapes to in�nity at T: Then for any constant
M(r) there exists a t 2 [t0; T ) such that M(r) � jzx(t)jOx. In what follows
we show that M(r) can not be chosen arbitrarily. De�ne v(t; zx) := Vx(t; x)
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such that

_v � ��x3(jzxjOx) +
@Vx
@x

g(t; x)
�
�(t; x; ud; �̂)� k(t; x)

�
+
@Vx
@x

g(t; x)
�
�(t; x; u; �̂)� �(t; x; ud; �̂)

�
+
@Vx
@x

g(t; x)��(t; x; u)~� (5.16)

� ��x3(jzxjOx) +
����@Vx@x

���� jg(t; x)j ����@L�̂u@�
(t; x; ud; �̂)

����
+

����@Vx@x
���� jg(t; x)j �����(t; x; u; �̂)� �(t; x; ud; �̂)���� j~uj (5.17)

+

����@Vx@x
���� jg(t; x)j �����(t; x; u)~����

� ��x3(jzxjOx)

+�x4(jzxjOx)K (%2 + �2 + j��(t; x; u)j)
���zud�~����Oud�~� : (5.18)

There exists a positive constant B(r) � 0; for all t 2 [t0; T ); such that for��zu�~�0��Ou�~� � r,
��zu�~�(t)��Ou�~� � B(

��zu�~�0��Ou�~�) � B(r) (similar argument

as given in Proposition 3.2 and 4.3). From Assumption 2.1 and 2.2,

_v � ��x3(jzxjOx)
+�x4(jzxjOx)K (%2 + �2 + j��(t; x; u)j)B(r)

� ��k(jzxjOx)�x4(jzxjOx)&xmax((jzxjOx)
+�x4(jzxjOx)K (%2 + �2 + j��(t; x; u)j)B(r)

� ��x4(jzxjOx)�k(jzxjOx)&xmax(jzxjOx)
+�x4(jzxjOx)K (%2 + �2)B(r)
+�x4(jzxjOx)K&x(jzxjOx)&xu(jzxjOx)B(r)
+�x4(jzxjOx)K&x(jzxjOx)&u(B(r))B(r) (5.19)

� ��x4(jzxjOx)�k(�
�1
x2 (v))&xmax(jzxjOx)

+�x4(jzxjOx)K (%2 + �2)B(r)
+�x4(jzxjOx)K&x(jzxjOx)&xu(jzxjOx)B(r)
+�x4(jzxjOx)K&x(jzxjOx)&u(B(r))B(r): (5.20)

Thus, if
jzx0jOx > ��1k (K (%2 + �2 + 1 + &u(B(r)))B(r))
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then from (5.19),
v(t0; zx0) � v(t; zx(t)) and jzx(t)jOx � ��1x1 (v(zx0)) � ��1x1 (�x2(r)) ; else,

jzx0jOx � ��1k (K (%2 + �2 + 1 + &u(B(r)))B(r))

and from (5.20),
v(t; zx(t)) � �x2(�

�1
k (K (%2 + �2 + 1 + &u(B(r)))B(r))) such that

jzx(t)jOx� ��1x1
�
�x2
�
��1k (K (%2 + �2+1+&u(B(r)))B(r))

��
:

By choosing

M(r) :=max
�
��1x1 (�x2(r))�

�1
x1

�
�x2
�
��1k (K (%2+�2+1+&u(B(r)))B(r))

���
;

the assumption of jzx(t)jOx escaping to in�nity is contradicted, sinceM(r) >
jzx(t)jOx and j�jOx is �nite escape time detectable. Furthermore, Ox is
UGB. From Propositions 4.1 and 4.2 and the assumptions of these propo-
sitions, the assumptions of Lemma 1.1 and Corollary 1.1 are satis�ed and
the result is proved.

Proposition 5.2 implies that the time-varying optimal set Oxud�~�(t) is
uniformly stable, and in addition uniformly attractive if the signals fp(t)
and �g(t) are PE. Thus optimal control allocation is achieved asymptot-
ically for the closed loop. A local version of this result can be proved by
using Corollary 1.1.

Corollary 5.1 If for U � Rr there exists a constant cx > 0 such that for
jxj � cx the domain Uz � R�0 � Rn � U � Rd+n+m contain Oxud�~�; then
if the Assumptions 2.1-2.3 are satis�ed, the set Oxud�~� is US with respect
to the system (5.2), (5.3), (5.4), (5.8), (5.10) and (5.11). If in addition
Assumption 4.1 is satis�ed, Oxud�~� is UAS with respect to the system (5.2),
(5.3), (5.4), (5.8), (5.10) and (5.11).
Proof. The result follows by Corollary 1.1 and arguments similar to the
ones given in Corollary 3.2.

Remark 5.1 The structure of the perturbed system from equation (2.4),
can also be written in the form:

_x = f(t; x) + g(t; x)k(t; x)

+g(t; x)
�
�(t; x; ud + ~u; �̂)� k(t; x)

�
+g(t; x)��(t; x; u; �)~�: (5.21)
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This formulation motivates an adaptive control allocation algorithm that
provides desired actuator control references, based on the actual given gen-
eralized forces. The minimization problem can be expressed as:

min
ud

J(t; x; ud) s:t � c � �(t; x; ud + ~u; �̂) = 0; (5.22)

and the Lagrangian function becomes:

L�̂~u(t; x; ud; ~u; �; �̂) := J(t; x; ud) + (� c � �(t; x; ud + ~u; �̂))T�: (5.23)

The allocation algorithm is obtained by replacing L�̂u with L�̂~u in the Lya-
punov function (5.6) and the update laws (5.8) and (5.11). In addition the
estimate of �̂u is given by:

_̂
�Tu =

�
@V~u
@~u

+ �Tu�u

�
fu�(t; x; u; ucmd)�

�1
�u

+

 
@LT

�̂~u

@ud

@2L�̂~u
@~u@ud

+
@LT

�̂~u

@�

@2L�̂~u
@~u@�

!
fu�(t; x; u; ud; ucmd)�

�1
�u

+

 
�Tx�x +

@LT
�̂~u

@ud

@2L�̂~u
@x@ud

+
@LT

�̂~u

@�

@2L�̂~u
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and the feed forward term u�̂~uff takes the following form:

u�̂~uff := H
�1
�̂u

 
@2L�̂~u
@t@ud
@2L�̂~u
@t@�

!
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!
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!
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+H�1
�̂u
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@~u@ud
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@~u@�

!
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0@ @2L�̂~u
@�̂@ud
@2L�̂~u
@�̂@�

1A _̂
�:

A disadvantage of this algorithm is that more complexity is introduced, but
the transient performance, introduced to the closed loop by the actuator
dynamics, may be improved.

5.3 Example: DP of a scale model ship continued

The detailed description of a ship model including the actuator dynamics
and the actuator-force mapping model, presented in the introducing chap-
ter, is here considered. Furthermore, the high level controller de�ned
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in the introduction, and implemented in the examples of Chapter 3 and 4,
is together with the cost function from Chapter 3 used in the following.

The actuator error dynamics for each propeller are based on the pro-
peller model from (5.25) and the error dynamic is given by:

Jmi _~!i =� kfi (~!i + !di)�
Tni
aT
(~!i + !di)

+
�i(!i; �x)�1i

aT
+ ucmdi � Jmi _!di (5.25)

where ~!i := (!i � !id); Jm is the shaft moment of inertia, kf is a positive
coe¢ cient related to the viscous friction, aT is a positive model constant,
Pivano et al. [2006], and ucmd is the commanded motor torque. By the

quadratic Lyapunov function V! :=
~!2i
2 ; it can be seen that the control law

ucmdi :=�K!p(~!i)�
�i(!i; �x)�̂1i

aT
+ Jmi _!di

+
Tni(!di)

aT
+ kfi!di (5.26)

makes the origin of (5.25) UGES when �̂1i = �1i; since
_V! = � 1

Jmi

�
kfi +

Tni
aT
+K!p

�
~!2i . The rudder model is linearly time-

variant and the error dynamics, based on (5.27), are given by:

mi
_~� = ai(t)

�
~� + �di

�
+ biucmd�i �mi

_�di; (5.27)

where ~� := �i � �di and ai; bi are known scalar parameters bounded away
from zero. Furthermore the controller

biucmd�i := �K�
~� � ai(t)

�
~� + �di

�
+mi

_�di (5.28)

makes the origin of (5.27) UGES. The parameters for the actuator model
and controllers are: aT = 1; Jmi = 10�2; kfi = 10�4; ai = �10�4; bi =
10�5, mi = 10

�2; K!p = 5 � 10�3 and K� = 10
�3: The following simulation

results are obtained with the basis in the model and high level controller
parameterization presented in Chapter 3 and Table A.1 in Appendix A.5.
As before, the control objective is satis�ed and the commanded virtual
controls are tracked closely by the forces generated by the adaptive control
allocation law: see Figure 5.4. Note that there are some deviations since
! saturates at ca. 220s and 420s: Also, note that the parameter estimates
only converge to the true values when the ship is moving (the thrust loss is
not zero).
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Figure 5.1: The ship; desired position (dashed), actual position (solid) and
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Chapter 6

Stabilization of automotive
vehicles using active steering
and adaptive brake control
allocation

6.1 Introduction

Some of the major advances in automotive technology in the past decade
have been in the area of safety, and most modern passenger vehicles are
now equipped with an active safety system. Important components in
these systems are Anti-lock Braking Systems (ABS), Traction Control Sys-
tems/Antispin (TCS) and recently Electronic Stability Program (ESP).
ABS and TCS are systems designed to maximize the contact-force between
the tyres and the road during braking and acceleration, while ESP is in-
troduced in order to control the yaw motion and to prevent over- and/or
understeering. There are several ways of controlling the yaw dynamic of a
vehicle, for example the torque-biasing system on a four-wheel drive vehi-
cle, where the motor torque may be transferred from the front to the rear
axle and between the left and right wheels through an electronic-controlled
limited slip di¤erential (ELSD), Piyabongkarn et al. [2006]. But most ve-
hicle stability systems are controlled by active steering; Ackermann et al.
[1995], Ackermann et al. [1999], Ackermann and Bünte [1997], Mammer
and Koenig [2002] and Ackermann and Bünte [1998], active braking; van
Zanten et al. [1995], Alberti and Babbel [1996] or by a combination of ac-
tive steering and braking; Wang and Longoria [2006], Guvenc et al. [2003]
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and Yu and Moskwa [1994].

The solution to the yaw motion control problem is in Piyabongkarn
et al. [2006] and Wang and Longoria [2006] presented in the structure of
a typical control allocation architecture, where a high level controller cal-
culates a desired yaw moment. This yaw moment is then passed to an
allocation/distribution block and mapped to desired references for the low
level actuator controllers. The advantage of this structure is the modularity
of separating the high and low level controls through the introduction of the
allocation/distribution algorithm. It is in Shim and Margolis [2001], shown
that the knowledge of the friction coe¢ cient o¤ers signi�cant improvement
of the vehicle response during yaw rate control. By utilizing vehicle mo-
tion information, typical friction coe¢ cient estimation approaches consider
either longitudinal or lateral motion measurements, see Rajamani et al.
[2006] and references therein. Moreover, depending on sensors, the algo-
rithms in Rajamani et al. [2006] provide estimates of the tyre-road friction
parameters individually for each wheel, which is useful information for the
yaw stabilizing schemes when the road conditions are unknown and non
uniform.

In Tøndel and Johansen [2005] an explicit piecewise linear approximate
solution is created by using multiparametric programming and solving the
optimization problem o¤-line, while in Tjønnås and Johansen [2006] a yaw
stabilization scheme for an automotive vehicle using brakes, based on the
dynamic optimizing control allocation approach from Johansen [2004] and
Tjønnås and Johansen [2005] was presented by the authors. This strat-
egy o¤ers the bene�ts of a modular approach combining convergence and
stability properties for yaw rate tracking (high level control), optimality of
the allocation problem and adaptation of the averaged maximal tyre-road
friction parameter.

The following work is based on the control strategy from Tjønnås and
Johansen [2006] and rely on the dynamic control allocation law from Chap-
ter 5, which extends the results from Tjønnås and Johansen [2005] by con-
sidering actuator dynamics in the control architecture. Furthermore, the
yaw stabilizing algorithm presented here include active front wheel steering
in combination with low level control of the longitudinal wheel slip and
an adaptive law that estimates the maximal tyre-road friction parameter
for each wheel. In addition to the measurements (yaw rate, steering wheel
angle, absolute velocity of the vehicle and wheel side slip) that was nec-
essary in the algorithm from Tjønnås and Johansen [2006], the algorithm
presented in this work require measurements (estimates) of the velocity and
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angular velocity from each wheel.
In Hattori et al. [2002] and Plumlee et al. [2004] the quasi-static control

allocation problem is solved by a real-time optimizing program. The fol-
lowing approach solves the control allocation problem dynamically (by not
necessarily �nding the optimal solution at each sampling instant), such that
a real-time implementation can be realized without the use of numeric op-
timization software. In general, this is an advantage since implementations
on vehicles with low-cost hardware may be considered. The main bene�ts
of this approach are the low memory requirement, the low computational
complexity and stability conservation due to the asymptotic optimality ap-
proach. By including adaptive laws for estimating the maximal tyre-road
friction parameter for each wheel, the yaw stabilizing scheme takes vari-
able road conditions into account, and ultimately the control allocation
algorithm will perform better.

The chapter is composed as follows: In Section 6.2 the control structure
is presented. The high level model and controller are derived in section 6.3,
while the low level model and controller, along with the qualitative behavior
of the tyre-road friction model and the main design assumptions are given in
section 6.4. The dynamic control allocation strategy is presented in Section
6.5 and in Section 6.6 the simulation scenarios are presented and discussed.

6.2 Control structure

In this section the control scheme and its intrinsic modular structure as
a solution to the yaw stabilization problem is shown. The main result
demonstrates how the computationally e¢ cient dynamic control allocation
algorithm, from Chapter 3 and 5, may be applied as a part of this solution.

The variables and parameters used in the following are described in
Figure 6.2 and Table 6.1

The control inputs are in addition to controlling the brake pressure
for each wheel, Tjønnås and Johansen [2006], an allied correction of the
steering angles of the front wheels (��1 := ��2 := ��u). This means that
in total �ve actuators are available for the control allocation algorithm to
manipulate. No steering on the rear wheels is assumed (�3 := �4 := 0) :

The control allocation approach structurally consists of the following
modules (also shown in Figure 6.1):

1. The high level yaw rate motion control algorithm. Based on
the vehicle motion model and the driver input � := (�1; �2; 0; 0)

T; a
yaw rate reference rref is de�ned and the high level dynamics of the
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yaw rate error ~r := r � rref is described. By treating the virtual
control torque M as an available input to the yaw rate system, a
virtual control law Mc is designed such that the origin of the error
system is Uniformly Globally Asymptotically Stable (UGAS) when
M =Mc.

2. The low level braking control algorithm. From the dynamics
describing the longitudinal wheel slip �x := (�x1; �x2; �x3; �x4)

T; a
control law for the clamping force Tb := (Tb1; Tb2; Tb3; Tb4)T is de�ned
such that for any smooth reference �xd := (�x1d; �x2d; �x3d; �x4d)

T;
then �x will track �xd asymptotically. The steering dynamics are as-
sumed to be neglectable and therefore no low level steering control law
is considered. In order to cope with the possibly unknown maximal
tyre-road friction parameter vector �H := (�H1; �H2; �H3; �H4)

T; ap-
pearing in the e¤ector and actuator models, an adaptive law for online
estimation of �H is de�ned.

3. The dynamic control allocation algorithm (connecting the
high and low level controls). The main objective of the control
allocation algorithm is to distribute the desired steering angle correc-
tion �� := (��u;��u; 0; 0)T and the desired low level reference (�xd)
to the low level control, based on the desired virtual control (Mc): The
static torque mapping M= �M (�; �x; �; �H) (see equation (6.28) for
de�nition) represents the connection between the output of low level
system and the input to the high level system. The control allocation
problem can be formulated as the static minimization problem

min
ud

J(t; ud) s:t: Mc � �M(t; ud; �̂H) = 0 , (6.1)

where ~u := u � ud; ud := (�xd;��u), �M(t; ud; �̂H) := M(�(t) +
��; �xd; �(t); �̂H) and � := (�1; �2; �3; �4)

T: The cost function J
is de�ned such that minimum braking and actuator constraints are
incorporated. Based on this formulation, the Lagrangian function

L := J(t; ud) + (Mc � �M(t; ud; �̂H))�; (6.2)

is introduced and update-laws for, the steering actuator ��u, the
longitudinal wheel slip reference �xd and the Lagrangian parameter
� are de�ned according to the dynamic control allocation algorithm
in Chapter 5.
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Figure 6.1: Adaptive control allocation design philosophy
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The bene�ts of this modular control structure are independence in de-
sign and tuning, and support of fault tolerant control (e.g. if one actuator
fails, the allocation module handle the re-con�guration and changed con-
straints by modifying cost function parameters, without a direct e¤ect on
the high level implementation).

Except from the procedure of estimating the tyre road friction parame-
ter, no observer dynamics are included in the analysis or synthesis presented
in this paper. This means that all states and variables used in the algo-
rithm are viewed as sampled sensor measurements. However, due to cost
and reliability issues, vehicle velocity and side slip angle are rarely mea-
sured directly and observers based on yaw rate, wheel speed, acceleration
and steering angle measurements are needed. Simulations of the controlled
system using the nonlinear observers presented in Imsland et al. [2006] and
Imsland et al. [2007] have been carried out and the results are promising,
but left for further work and analysis.

6.3 High level vehicle model and control design

The dynamic control allocation approach involves modeling of the vehicle
over three stages: the high level vehicle motion dynamics, the tyre force
model and the low level longitudinal wheel slip dynamics.

The high level vehicle motion dynamics0@ _�
_�
_r

1A = �

0@ 0
r
0

1A+
0@ 1

m cos(�)
1
m sin(�) 0

� 1
m� sin(�)

1
m� cos(�) 0

0 0 1
Jz

1A0@ fx
fy
M

1A ; (6.3)

are based on a horizontal plane two-track model that can be found in
Kiencke and Nielsen [2000], and serves as the basis for the high level con-
troller design. The parameters are described in Figure 6.2 and Table 6.1.

6.3.1 Vehicle yaw stabilization

The control objective is to prevent the vehicle from over- and/or under-
steering, i.e. the yaw rate r, of the vehicle should be close to some desired
yaw rate rref , de�ned by the commanded steering angle. In order to gener-
ate this reference the steady-state of the side slip dynamics are considered.
Thus from the model (6.3)

_� = �r + � sin�fx + cos�fy
m�

,
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i Subscript for each wheel i 2 [1; 2; 3; 4]
� Absolute speed at the vehicle CG
�i Absolute speed at the wheel CG
�xi Wheel velocity in the vertical wheel plane
�yi Wheel velocity perpendicular to the vertical wheel plane
� Vehicle side slip angle
 Yaw angle
r Yaw rate ( _ )
rref Desired Yaw rate
Fxi Friction force on wheel in longitudinal wheel direction
Fyi Friction force on wheel in lateral wheel direction
Fzi Vertical force on ground from each wheel
�i Steering angle (�3 := �4 := 0)
��u Steering angle actuator
��i Steering angle correction (��1 := ��2 := ��u;��3 := ��4 := 0)
fx Force at vehicle CG in longitudinal direction
fy Force at vehicle CG in lateral direction
M Torque about the yaw axis
Mc Desired torque about the yaw axis
m Vehicle mass
mwi Vehicle mass distributed on each wheel i
Jz Vehicle moment of inertia about the yaw axis
J! Wheel moment of inertial
�Hi Maximum tyre road friction coe¢ cient
�yi Lateral tyre road friction coe¢ cient
�xi Longitudinal tyre road friction coe¢ cient
�i Wheel side slip angle
�xi Wheel slip in longitudinal wheel direction
�xid Desired longitudinal wheel slip
!i Angular velocity of wheel i
Tbi Braking torque on each wheel i
R Radius of the wheels
�i Vehicle construction parameter
hi Wheel distance from the CG

Table 6.1: Model variables
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Figure 6.2: Vehicle schematic

the desired reference is generated by letting _� = � = 0 and �x = 0; such
that:

rref :=
fy(�; �x = 0; �; �nH)

m�
; (6.4)

where �nH is a tuning parameter for the virtual maximal tyre-road friction,
i.e. if the vehicle follows this yaw rate reference, the driver will experience
a yaw motion related to a virtual surface described by �nH :

Remark 6.1 Note that at � = 0 the yaw rate reference generation has
a singularity, which means that (6.4) is not suitable for low speeds. This
problem is avoided by introducing a threshold �T > 0 such that the algorithm
is only active at � > �T : This is formally stated in Assumption 6.2 and a
common limitation of wheel slip control, see e.g. Johansen et al. [2003a].

For safe driving such as rollover prevention and vehicle controllability
conservation, Kiencke and Nielsen [2000], the side-slip angle should be lim-
ited by

j�j � 10� � 7� �2

(40[m=s])2
. (6.5)

Although this bound is not explicitly enforced in this scheme, simulations
show that due to the yaw reference tracking, the side slip angle satis�es
(6.5).
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Figure 6.3: Quarter car model

The high level control design is based on the reduced model from (6.3):

_r =
M

Jz
. (6.6)

Let ~r := r � rref denote the yaw rate error such that a virtual tracking PI
controller can be described by

Mc(t; ~r; er) := �KP ~r �KIer + Jz _rref (6.7)

where

_er = ~r (6.8)

_~r =
M

Jz
� _rref

= �KP

Jz
~r � KI

Jz
er +

M �Mc

Jz
. (6.9)

With M =Mc the linear tracking error dynamics become:

_er = ~r (6.10)

_~r = �KP

Jz
~r � KI

Jz
er, (6.11)

and clearly the equilibrium (~r; er) = 0 of (6.10)-(6.11) is Uniformly Globally
Exponentially Stable (UGES) for KP ;KI > 0.
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6.4 Low level model and controller

In the literature the wheel slip de�nitions vary. For example, in Burckhardt
[1993] the longitudinal wheel slip is de�ned in the wheel absolute velocity
direction, while in Reimpell and Sponagel [1995] it is de�ned in the wheel
vertical plane. The de�nitions also vary based on drive or braking modes.
The following longitudinal and lateral wheel slip de�nitions are used here:

�xi :=
�xi � !iR

�i
; �yi := sin(�i); (6.12)

�i =
q
�2xi + �

2
yi: (6.13)

Furthermore the longitudinal wheel slip is given in the wheel vertical plane.
Based on the wheel slip de�nitions and the horizontal quarter car model:

mwi _�yi = Fyi; (6.14)

mwi _�xi = Fxi; (6.15)

J! _!i = �RFxi � Tbisign(!i); (6.16)

the low level longitudinal wheel slip dynamics is derived, see Appendix A.2:

_�xi =
R

�iJ!
(sign(!i)Tbi � �t(�xi; �i; �Hi; �xi; �i)) ; (6.17)

where

�t(�xi;�i; �Hi;�xi;�i):=�
J!

Rmwi
sin(�i)�xiFyi(�xi; �i; �Hi)

�

0@J!
�
1� �xi �xi�i

�
Rmwi

+R

1AFxi(�xi; �i; �Hi): (6.18)

The parameters are described in Figures 6.2 and 6.3, and Table 6.1. Note
that the low level wheel slip model also has a singularity at �i = 0; but since
in principal a yaw stabilizing algorithm is not needed in a region around
this singularity, a threshold will be introduced in order to switch o¤ the
algorithm, see Assumption 2. The model of the forces generated at the
contact point between the tyre and the road, represented by Fxi and Fyi;
are considered in the following.
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6.4.1 Tyre-road friction model

The longitudinal and lateral friction forces acting on the tyres are described
by the product between the normal forces and the friction coe¢ cients:

Fxi := �Fzi�xi(�xi; �i; �Hi)
Fyi := �Fzi�yi(�xi; �i; �Hi):

The presented control allocation approach, do not rely strongly on the
detailed structure of the tyre road friction model, but certain qualitative
properties are required. These properties are summarized in the following
assumptions and ensure constraint de�nitions, tuning possibilities and con-
vergence (via Persistence of Excitation (PE) arguments) of the allocation
algorithm.

Assumption 6.1 (Friction model assumptions)

a) There exist a limit �Tri(�i; �Hi) > 0 such that for any �xed j�ij < �
2 ;

�Hi 2 [0:1; 1] and jsj � j�Drij < �Tri(�i; �Hi); then
@�xi(s;�i;�Hi)

@s > 0;
where �Dri is a design parameter.

b) There exist a limit �Txi > 0 such that for any �xed s1 and s2 2
[0:1; 1]; j�ij < �

2 and �xi � �Axi � �Txi; then
@�xi(�xi;�i;�Hi)

@�Hi
> 0;

@�yi(�xi;�i;�Hi)

@�Hi
> 0,

���@2�xi(�xi;�i;s2)@s22

���� ���@�xi(�xi;�i;s1)@s1

��� and���@2�yi(�xi;�i;s2)@s22

��� � ���@�yi(�xi;�i;s1)@s1

��� ; where �Axi is a design parameter
(adaptive switch). The same is true for

@�yi(�xi;�i;�Hi)

@�Hi
:

c) Let the map (�xi; �i; �Hi) 7! �xi(�xi; �i; �Hi) be such that all of its �rst
and second partial derivatives are uniformly bounded by �xi and �Hi,
and let the same be true for the map (�xi; �i; �Hi) 7! �yi(�xi; �i; �Hi):

In Figure 6.4 and 6.5 typical friction coe¢ cients are shown with de-
pendence on the longitudinal wheel slip, the maximal tyre-road friction
parameter and the wheel side slip angle.

6.4.2 Wheel slip dynamics

In this section the main model assumptions and properties of the wheel
slip dynamics are stated. These assumptions are either directly related
to the parameters and the qualitative behavior of the model presented, or
deals with the limitations of this yaw stabilization approach (domain/state
restriction).
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Figure 6.4: The e¤ect of changing the maximal tyre road friction coe¢ cient
�Hi; in the mapping from the longitudinal wheel slip �xi to the forces in
longitudinal �xi and lateral �yi direction: � = 3[deg]

Assumption 6.2 (Model and domain assumptions)

a) mwi; Fzi; R; and J! > 0: Furthermore J! � mwiR
2:

b) �xi(t) > � > 0 8t > t0; i.e. j�i(t)j < �
2 8t > t0:

c) !i(t) > 0 8t > t0, i.e. �xi 2 (�1; 1): Moreover the longitudinal wheel
slip is assumed to have the lower bound: �xi � �1:

d) ��u 2 [���max;��max]:

e) �Hi 2 [0:1; 1]:

By Assumption 6.2 the analysis and control design are limited to the
cases where; the vehicle always has forward speed b), the wheels are never
rotating in reverse and are always �xed on the ground a) and c), the steering
angle correction are constrained around the nominal angle set by the driver
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Figure 6.5: The e¤ect of changing the wheel side slip coe¢ cient �i; in the
mapping from longitudinal wheel slip �xi to forces in longitudinal �xi and
lateral �yi direction: �Hi = 0:8

d), the road conditions may vary from icy surface to dry asphalt. Further-
more, Assumptions 6.1 and 6.2 lead to the following approximations, which
simplify the control design, the allocation algorithm and the analysis:

Approximation 6.1 (Longitudinal wheel slip dynamic simpli�cation) From
Assumption 6.2;

J!

�
1� �xi �xi�i

�
Rmwi

� R:

Furthermore, �xi�yi(�xi; �i; �Hi) and �xi(�xi; �i; �Hi) are in the same order
of magnitude and approach zero as �xi ! 0, such that:

�(�xi; �i; �Hi) := RFzi�xi(�xi; �i; �Hi)

imply
�(�xi; �i; �Hi) � �t(�xi; �i; �Hi; �xi; �i):
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From Approximation 6.1 the low level longitudinal wheel slip dynamic
may be simpli�ed such that it is no longer dependent on the lateral friction
coe¢ cient.

Approximation 6.2 (A¢ ne maximal tyre-road friction parameter) From
the truncated Taylor series expansion

�(�xi; �i; �Hi) = �(�xi; �i; �̂Hi) +
@�(�xi; �i; si)

@si

����
si=�̂Hi

~�Hi

+
@2�(�xi; �i; si)

@s2i

����
si=�̂Hi+&~�Hi

~�2Hi;

where ~�Hi := �Hi � �̂Hi and 1 > & > 0; and the function

��(�xi; �i; �̂Hi) :=
@�(�xi; �i; si)

@si

����
si=�̂Hi

;

it follows by Assumption 6.1 b) and 6.2, that

��(�xi; �i; �̂Hi)~�Hi � �(�xi; �i; �Hi)� �(�xi; �i; �̂Hi):

This approximation allows a control strategy based on the adaptive
control allocation design presented in Chapter 5, but it is not necessary in
order to conclude robust stability of the low level controller, see Remark
6.2.

Moreover, the following properties are incorporated in the longitudinal
wheel slip dynamics:

Property 6.1 (Properties of the wheel slip dynamics)

a) Let �xi; �yi and !i be treated as time-varying signals �xi(t); �yi(t) and
!i(t), then if Assumption 6.2 is satis�ed, the equilibrium �xi = 0 of
the unforced system (6.17) is asymptotically stable. The same is true
for the approximated system

_�xi = �
R

�iJ!

�
�(�xi; �i; �̂Hi) +

��(�xi; �i; �̂Hi)~�Hi � Tbi
�

(6.19)

b) For any j�xrij � �Dri (de�ned in Assumption 6.1) and any �xed !i;
�i; �i and �xi satisfying Assumption 6.2; there exists a Tbi such that
�xi = �xri is an unique equilibrium point of the system (6.17) and the
system (6.19).

Property 1 b) is useful in de�ning the constraints on the references in
the dynamic control allocation problem.
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6.4.3 Low level wheel slip control

In the control synthesis, the low level system is described by the longitudinal
wheel slip dynamic such that slip control laws developed for anti-lock brake
systems (ABS) may be used. When the ABS is active, its main purpose
is to maximize the friction force between the road and the tyres. For any
given �Hi and �i these maximal forces are uniquely de�ned by the �xed
desired longitudinal wheel slip. In a yaw stabilizing scheme the desired
longitudinal wheel slip is not �xed and a reference tracking controller is
needed.

The low level control objective is based on the longitudinal wheel slip
error dynamics derived from the approximation (6.19):

_~�xi = �
R

�iJz

�
�(�xi; �i; �̂Hi) +

��(�xi; �i; �̂Hi)~�Hi � Tbi
�
� _�xid; (6.20)

where ~�xi := �xi � �xid: Many di¤erent wheel slip control strategies can
be found in the literature; see for example Lyapunov based solutions Free-
man [1995], Yu [1997] and Johansen et al. [2003b], sliding-mode based con-
trollers Choi and Cho [1998], Wu and Shih [2001] and Schinkel and Hunt
[2002] and PID approaches Taheri and Law [1991], Jiang [2000] and Solyom
and Rantzer [2002]. Here we consider a standard Lyapunov approach with
adaptation and feed forward which allows a straight forward use of the
dynamic control allocation result from Tjønnås and Johansen [2007a].

When �Hi is not known, the following adaptive law and certainty equiv-
alent control law are suggested:

_̂�Hi = �
�1�i
R

�iJz
��(�xi; �i; �̂Hi)

�
~�xi + 
��i

��xi

�
(6.21)

Tbi := �(�xi; �i; �̂Hi) +
�iJz
R

_�xid �
�iJz
R
�P ~�xi; (6.22)

where ��xi := �xi � �̂xi and

_̂
�xi = A

�
�xi � �̂xi

�
+

R

�Jz
(Tbi � �(�xi; �i; �̂Hi)) : (6.23)

Proposition 6.1 Let Assumption 6.1 and 6.2 be satis�ed, then the equi-
librium (~�xi; ��xi; ~�Hi) = 0 for the system (6.20), (6.21) and (6.23) and the
controller (6.22) is US. If in addition ��i(t) := R

�i(t)Jz
��(�xi(t); �i(t); �̂Hi(t))

is persistently excited, i.e. there exist constants T and 
 > 0; such thatR t+T
t

��i(�)
T ��i(�)d� � 
I ; 8t > t0;
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then the equilibrium (~�xi; ��xi; ~�Hi) = 0 is UAS with respect to the system
(6.20), (6.21) and (6.23) and the controller (6.22).
Proof. Consider the quadratic Lyapunov function

V�i(~�xi; ��xi; ~�Hi) :=
1

2

�
~�
2
xi + 
��i

��
2
xi + 
�i~�

2
Hi

�
;

then along the trajectories of (6.20), (6.21) and (6.23):

_V�i =� ~�xi�P ~�xi � ~�xi
R

�iJz
��(�xi; �i; �̂Hi)~�H

� 
��i��xi
R

�iJz
��(�xi; �i; �̂Hi)~�H � 
�i~�H _̂�Hi

� 
��i��xiA��xi
=� ~�xi�P ~�xi � 
��i��xiA��xi:

and uniform stability is achieved. The asymptotic stability proof relies on
an extension of Matrosov�s theorem, Theorem 1 in Loria et al. [2005] given
in Appendix A.4. The result is used to prove that if ��(�) is PE then the
origin (~�xi; ��xi; ~�Hi) = 0 is UAS for system (6.20), (6.23) and 6.21. As US
is already con�rmed, we only need to �nd some bounded auxiliary functions
that will satisfy the Assumptions A.2-A.4. Choose:

Vaux1 := ���xi ��i(t)~�Hi

then

_Vaux1 = � _��xi ��g(t)~�Hi � ��xi
d
�
��i(t)~�Hi

�
dt

= �
�
�A��xi + ��i(t)~�Hi

�T ��i(t)~�Hi � ��xid ���i(t)~�Hi�dt

= �~�Hi ��i(t)T ��i(t)~�Hi + ��xiAT ��i(t)~�Hi � ��xi
d
�
��i(t)~�Hi

�
dt

� �~�THi ��i(t)T ��i(t)~�Hi + ��xi
aux1(t; ��xi; ~�Hi) (6.24)

where 
aux1(t; ��xi; ~�Hi) := ��xiA
T ��i(t)~�Hi � ��xi

d(��i(t)~�Hi)
dt : Furthermore,

choose

Vaux2 := �
Z 1

t
~�Hi ��i(�)

T ��i(�)~�Hie
�(��t)d�
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then

_Vaux2 =�
@

@t

�
et
Z 1

t
~�Hi ��i(�)

T ��i(�)~�Hie
��d�

�
+
@Vaux
@~�Hi

_~�Hi

=� et
Z 1

t
~�Hi ��i(�)

T ��i(�)~�Hie
��d� +

@Vaux
@~�Hi

_~�Hi

� et @
@t

�Z 1

t
~�Hi ��i(�)

T ��i(�)~�Hie
��d�

�
=Vaux2 + ~�

T
Hi
��i(t)

T ��i(t)~�Hi �
@Vaux
@~�Hi

_~�Hi: (6.25)

De�ne

Y1(~�xi; ��xi) := �P ~�
2
xi +A

��
2
xi

Y2(~�xi; �(t; ~�xi; ~�Hi)) := ��1(t; ~�xi; ~�Hi) + ��xi�2(t; ��xi; ~�Hi)
Y3(~�xi; ��xi; �(t; ~�xi; ~�Hi)) := Vaux2 + �1(t;

~�xi; ~�Hi)� �1(t; ~�xi; ~�Hi)

where

�(t; ~�xi; ��xi; ~�Hi) :=

��
~�Hi ��g(t)

T ��g(t)~�Hi
�T
; 
aux1(t;

��xi; ~�Hi);
@Vaux
@~�Hi

_~�Hi

�
:

With V�i,Vaux1; Vaux2; Y1; Y2; Y3 and �(t; ~�xi; ��xi; ~�Hi) the Assumptions A.3
and A.4 are satis�ed. Furthermore by Assumption 6.1 and 6.2, the As-
sumption A.2 is also satis�ed, and the result is proved

Remark 6.2 Since the equilibrium of system (6.20), (6.21) and (6.23),
controlled by (6.22) is UAS, arguments for local robust stability can be made,
see Loria et al. [2002] and similar arguments in Grip et al. [2006] and Ims-
land et al. [2006]. Moreover, without considering Approximation 2, it can be
shown that the controller (6.22) render the equilibrium (~�xi; ��xi; ~�Hi) = 0;
Uniformly Exponentially Stable (UES) with respect to system (6.20), (6.21)
and (6.23) where (6.20) is based on (6.17), see Appendix A.3. This suggests
that Approximation 2 may not be necessary for the closed loop-system (the
high and low level systems connected through the allocation algorithm). But
although arguments similar to the ones used in the analysis of the low level
control, excluding Approximation 2, may apply to the analysis of the alloca-
tion algorithm, they are more involved and at the moment not theoretically
founded.
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Remark 6.3 As long as @�(�xi;�i;si)
@si

> 0; a more general class of adaptive
update laws

_̂�Hi = 
~�i(t)
~�xi + 
��i(t)

��xi;

where 
~�i(t), 
��i(t) > 08t; may be suggested. This can be seen by apply-
ing �(�xi; �i; �Hi)��(�xi; �i; �̂Hi) =

@�(�xi;�i;si)
@si

���
si=�̂Hi+&~�Hi

~�Hi; from the

mean value theorem, in the analysis. With this algorithm the Approxima-
tion 6.2 is not necessary, but one may need to require technical bounds on

_
~�i(t); _
��i(t) and
d
dt

@�(�xi;�i;si)
@si

���
si=�̂Hi+&~�Hi

, which again leads to enforc-

ing bounds on Tbi: A way to deal with this may be to introduce a more
sophisticated approach with an anti-windup algorithm.

6.5 The control allocation algorithm

We have chosen a fairly straight forward Lyapunov based design both for the
high level yaw stabilizing controller and the low level longitudinal wheel slip
controller. Other controllers may be applied as long as uniform asymptotic
stability of the respective systems equilibrium is achieved. The performance
of the high and low level controllers are crucial in order to solve the yaw
stabilizing problem, but the main contribution of this work is to show how
the dynamic control allocation algorithm may be used for coordinating the
actuators without the use of additional optimizing software.

The static mapping from the tyre force (low level system) to the yaw
moment (high level system) can be found in Kiencke and Nielsen [2000] and
is given by:�

fx
fy

�
:=

4X
i=1

�
cos(�i) � sin(�i)
sin(�i) cos(�i)

��
Fxi
Fyi

�
(6.26)

M= �M (�; �x; �; �H) (6.27)

�M :=

4X
i=1

�
� sin(�i)
cos(�i)

�T
hi

�
cos(�i) � sin(�i)
sin(�i) cos(�i)

��
Fxi
Fyi

�
; (6.28)

where the parameters are described in Table 6.1.
The basis of the control allocation algorithm lies in �nding update laws

for the longitudinal wheel slip (�xid) and the steering angle correction (��u)
that asymptotically solves the optimization problem (6.1).

The instantaneous cost function is divided into two parts, J(ud) :=
J1(ud) + J2(ud), where the function J1(ud) represents the actuator penalty



6.5 The control allocation algorithm 99

and the J2(ud) is a barrier function representation of the actuator con-
straints.

J1(ud):=u
T
dWuud (6.29)

J2(ud):=�w�
4X
i=1

ln(�xid � �xmin)�w�
4X
i=1

ln(��xid+�xmax)

�w�
2X
i=1

ln(��i ���min)�w�
2X
i=1

ln(���i+��max) (6.30)

where �xmax = �Dri, �xmin; ��max; and ��min are wheel-slip and steering
angle manipulation constraints. Wu is a positive de�nite weighting matrix,
while w� and w� are positive parameters.

Let the high level dynamics be de�ned by x := (er; ~r)
T; g := (0; 1Jz )

T

and f(t; x) := (~r;�Kp~r � Kier)
T: Then based on; the Lagrangian func-

tion (6.2), the high level control law (6.7), the adaptive law (6.21) and
the certainty equivalent low level control law (6.22), the following certainty
equivalent dynamic control allocation algorithm is constructed with refer-
ence to Chapter 5:

�
_uTd ; _�

T�T = �
(t) �HTW�H
��1H� @L

@ud

T

;
@L

@�

T�T
�H�1udff (6.31)

_̂�H = ���1� ��T(�x; �; �H ; �)
�
~�xi + �

�1
��
��xi

�
+��1� ��TM (�; �x; �; �̂H)

@2LT

@x@�

@L

@�
;

(6.32)
where the feed-forward like term is given by:

udff :=

 
@2L

@t@ud

T

;
@2L

@t@�

T
!T

+

 
@2L

@x@ud

T

;
@2L

@x@�

T
!T

f(t; x)

+

�
@2LT

@x@ud
;
@2LT

@x@�

�T
g
1

Jz
�M +

�
@2LT

@~u@ud
;
@2LT

@~u@�

�T
�P ~�xi

+

�
@2LT

@�̂H@ud
;
@2LT

@�̂H@�

�T
��1�

�
~�xi + �

�1
��
��xi

�
��(�x; �; �H): (6.33)

Furthermore, ��(�x; �; �̂H) :=
R
�iJz

diag(��(�xi; �i; �̂Hi)); ��M (�; �x; �; �̂H) :=

@�M (�;�x;�;�̂H)
@�̂H

and H : =

 
@2L
@u2d

@2L
@�@ud

@2L
@ud@�

0

!
: The gain matrices are de�ned
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as ��1� := diag(
�1�i ), �
�1
��
:= diag(
�1��i ); W� > 0 and 
(t) = 
T(t): 
(t) is a

positive de�nite time-varying weighing matrix that ensures numerical fea-
sibility. Based on the cost function choice, (6.29) and (6.30), singularity of
H can be avoided for bounded � and appropriate choices of Wu and W�:

Remark 6.4 The �rst part of the algorithm (6.32) represents a typical
term arriving from the Lyapunov design. And the remaining part of the
update law (udff ) is a feed-forward like term that is designed to track the
time-varying equilibrium.

Let the optimal equilibrium set of the closed loop (6.8), (6.9), (6.20),
(6.23), (6.21) and (6.31) be de�ned by:

Oxud��H (t) := fx = 0g � Oud��H (t);

where

Oud��H (t) :=
��
uTd ;

~�
T
x ; �;

��
T
x ; ~�

T
H

�
2R18

�����@LT@ud
;
@LT

@�
; ~�
T
x;
��
T
x; ~�

T
H

�
=0

�
:

Proposition 6.2 Consider the Assumptions 6.1 and 6.2, the system (6.3),
(6.19) and (6.27), and the control and allocation laws (6.7), (6.22) and
(6.31), then the set Oxud��H (t) is UAS with respect to the system (6.8),
(6.9), (6.20), (6.23), (6.21) and (6.31).
Proof. The proof follows by noticing that with; the control laws (6.7),
(6.22), the control allocation law (6.31), the estimator (6.32), the cost
function design (6.29)-(6.30) and the Assumptions 6.1-6.2, then the As-
sumptions 2.1, 2.2 and 2.3 from Chapter 2 are satis�ed locally, and the
Corollary 5.1 in Chapter 5 can be used

From Proposition 6.2 we have a local solution where u converges as-
ymptotically to ud, ud converges asymptotically to the optimal solution of
problem (6.1) and �̂H converges asymptotically to �H , such that M con-
verges asymptotically toMc and �nally r converges to rref in a stable sense,
which is the main goal of this work. Furthermore, this result applies for
the special cases where the number of controlled actuators is reduced.

Consider the following sets:

Ox���H (t) := fx = 0g � O���H (t);

where

O���H (t) :=
��

�Txd;
~�
T
x ; �;

��
T
x ; ~�

T
H

�
2 R17

����� @LT@�xd
;
@LT

@�
; ~uT; ��

T
x ; ~�

T
H

�
= 0

�
;
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and

Ox��(t) := fx = 0g �
�
(��u; �) 2 R2

����� @LT

@��u
;
@LT

@�

�
= 0

�
;

then the following results hold.

Corollary 6.1 With the same argument as in Proposition 6.2 if:

� u := �x (only braking actuators available), the set Ox���H (t) is UAS
with respect to the system (6.8), (6.9), (6.20), (6.23), (6.21) and
(6.31).

� u := ��u (only steering actuator available), the set Ox��(t) is UAS
with respect to the system (6.8), (6.9), and (6.31).

6.6 Simulation results

In order to validate the yaw stabilization scheme, a test-bench based on
DaimlerChrysler�s proprietary multi-body simulation environment CAS-
CaDE (Computer Aided Simulation of Car, Driver and Environment) for
MATLAB, is considered. Three simulation scenarios are investigated:

� Understeering: The understeered motion is a "stable" but not de-
sired yaw motion of the vehicle. It is de�ned by the yaw rate being less
then the desired yaw rate i.e. jrj < jrref j : Typically such behavior ap-
pear on low friction surfaces during relatively fast but limited steering
maneuvers. In Figure 6.6 the initial conditions and the behavior of
the uncontrolled periodically understeered vehicle is presented under-
going a sinusoidal steering manoeuvre on a surface with the maximal
tyre-road friction �Hi = 0:3 for i 2 f1; 2; 3; 4g:

� Oversteering: The oversteered motion is an "unstable" vehicle mo-
tion, where the yaw rate is greater then the desired yaw rate i.e.
jrj > jrref j : In Figure 6.7 an uncontrolled oversteered manoeuvre is
created by a slowly increasing left-going steering wheel motion. The
maximal tyre-road friction is �Hi = 0:7 for i 2 f1; 2; 3; 4g:

� Fishhook: The Fishhook manoeuvre is motivated by a vehicle chang-
ing lanes. In this scenario, the maximal tyre-road friction is initially
�Hi = 0:9 for i 2 f1; 2; 3; 4g (dry asphalt), but at ca. 1:6s the maximal
tyre-road friction parameter changes to �Hi = 0:3 for i 2 f1; 2; 3; 4g
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Figure 6.6: The steering manoeuvre, and states of a periodically under-
steered vehicle (no active yaw stabilization). The dashed lines are given by
rref (6.4) and �max(6.5).
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Figure 6.7: The steering manoeuvre, and states of an oversteered vehicle
(no active yaw stabilization). The dashed lines are given by rref (6.4) and
�max(6.5).
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Figure 6.8: The �shhook steering manoeuvre and related vehicle states (no
active yaw stabilization). The dashed lines are given by rref (6.4) and
�max(6.5).
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(wet/snowy surface). The initial conditions are given in the Figure
6.8.

The vehicle measurements and the yaw stabilization algorithm are oper-
ated with a 50Hz sampling rate. Moreover, the brake pressure commands
are delayed with 0:02 seconds in order to simulate the e¤ect of communica-
tion and computer delays, and dynamics of the actuators. The algorithm
parameters used in the simulations are given by Table 6.2, where " ensures
singularity avoidance in (6.31), W� is a weighting matrix penalizing the

error of
��Mc � �M

�� against ��� @L@�xd ���, Wu de�nes the quadratic cost function of

problem (6.1) and w� and w� de�nes the steepness of the barrier function
(6.30). The control and adaptive algorithm parameters are tuned based on
simulations. The longitudinal wheel slip constraints are chosen with respect
to the system requirements (no wheel acceleration available) and Assump-
tion 6.1. ��max and the �fth element of Wu may be driver style dependent
parameters. A high value ��max and a low value of the �fth element of
Wu compared with the remaining elements of Wu; indicate that most of
the control e¤ort will rely on the steering angle manipulation and result in
a yaw stabilizing steer-by-wire algorithm. The steering wheel de�ection is
proportional to � with a proportionality constant of approximately 20 (i.e
if the steering wheel turns 20[deg], then � = 1[deg]).

The initial estimate of the maximal tyre-road friction parameter is
�̂Hi = 0:5 for i 2 f1; 2; 3; 4g so that the adaptive mechanism of the al-
gorithm is shown both for initial under and over estimation. The nominal
maximal tyre road friction coe¢ cient that describes the virtual reference
surface (6.4) is given by �nH = 0:7. In order to prevent the allocation up-
date law (6.31) from generating infeasible actuator commands, due to the
discretization of the system, 
 is chosen to be a diagonal matrix where each
element represents a positive step length that is made as small as necessary
to achieve feasibility.

The CASCaDEmodel (see Figure 6.9) control inputs are de�ned through
the steering angle (manipulated with ��) and the desired brake force (TbiR ),
provided by the low level wheel slip controller. The input to the control
algorithm is speci�ed through the measurement block, where the vehicle
states and variables are corrupted and delayed according to realistic vehi-
cle sensor characteristics. In the �gures and plots presented, only the real
actual states are given.

The results from simulation of the three scenarios mentioned above, are
shown in the Figures 6.10-6.12, 6.13-6.15 and 6.16-6.18, respectively.
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Allocation tuning parameters
W� diag(1; 1; 1; 1; 5)
Wu diag(3; 3; 3; 3; 7)103

w� 0:1
w� 0:1

High and low level control parameters
KP 15Jz
KI 50Jz
�P 500

Actuator constraints
�xmin �10�4
�xmax (�Dri) 0:10 + 10�4

��max 2[deg]

Adaptive algorithm

�i 1


��i 0:2
A 30
�Axi 0:006

Table 6.2: Algorithm parameters

From the plots it can be seen that the control objectives are satis�ed,
over- and understeering prevented and steerability conserved. It should be
noted that since the steering angle is used actively, less control forces are
commanded to the wheel brakes, which means that a controlled manoeuvre
will have less impact on the absolute velocity, but at the same time, slow
down the estimation of the maximal tyre-road friction parameter. Further-
more, the maximal tyre road friction parameters are adapted only when the
measured longitudinal wheel slips are high enough. Moreover, the indepen-
dence of the parameters estimates in the adaptive algorithm is shown from
the maximal tyre road friction parameter estimation plot in the �sh hook
scenario (6.16), where the maximal tyre road friction parameters associated
to the right side of the vehicle are estimated related to a surface with high
friction, while the ones on the left side are related to a low friction sur-
face. Also especi�cally note the transients at ca. 1:6s and 4:2s in yaw rate
and the longitudinal wheel slip plots from Figure 6.16 and 6.17. The �rst
transient is due to surface changes (see the scenario description), and the
second occurs because the yaw stabilizing algorithm is switched o¤ when
there is no steering action.
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Figure 6.9: Block diagram of the simulation setup



108
Stabilization of automotive vehicles using active steering and

adaptive brake control allocation

15

20

25

30

35

ν 
 [m

/s
]

­10

­5

0

5

10

β  
[d

eg
]

­10

­5

0

5

10

r  
[d

eg
/s

]

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

Figure 6.10: The understeering scenario with active yaw stabilization. Sys-
tem states: The dashed lines in plot 2 and 3 are given by �max (6.4) and rref
(6.4). In plot 4 the lines represent the following: solid-�̂H1, dotted-�̂H2,
dashdot-�̂H3, dashed-�̂H4
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Figure 6.11: The understeering scenario with active yaw stabilization. The
longitudinal wheel slip, the steering angle manipulation parameter and the
Lagrangian parameter. The dotted lines denote the desired longitudinal
wheel slip speci�ed by the control allocator
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Figure 6.12: The understeering scenario with active yaw stabilization. Yaw
torque: Mc-dashed, Mestimated-solid, Mreal-dotted.
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Figure 6.13: The oversteering scenario with active yaw stabilization. The
dashed lines in plot 2 and 3 are given by �max (6.4) and rref (6.4). In plot
4 the lines represent the following: solid-�̂H1, dotted-�̂H2, dashdot-�̂H3,
dashed-�̂H4
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Figure 6.14: The oversteering scenario with active yaw stabilization. The
longitudinal wheel slip, the steering angle manipulation parameter and La-
grangian parameter. The dotted lines denote the desired longitudinal wheel
slip speci�ed by the control allocator
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Figure 6.15: The oversteering scenario with active yaw stabilization. Yaw
torque: Mc-dashed, Mestimated-solid, Mreal-dotted.
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Figure 6.16: The �shhook test with active yaw stabilization. The dashed
lines in plot 2 and 3 are given by �max (6.4) and rref (6.4). In plot 4 the lines
represent the following: solid-�̂H1, dotted-�̂H2, dashdot-�̂H3, dashed-�̂H4
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Figure 6.17: The �shhook test with active yaw stabilization. The longitudi-
nal wheel slip, the steering angle manipulation parameter and Lagrangian
parameter. The dotted lines denote the desired longitudinal wheel slip
speci�ed by the control allocator
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Figure 6.18: The �shhook test with active yaw stabilization. Yaw torque:
Mc-dashed, Mestimated-solid, Mreal-dotted.
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Chapter 7

Conclusions

Based on a previous result about uniform global asymptotic stability (UGAS)
of the equilibrium of cascaded time-varying systems, a similar result for a
set-stable cascaded system is established (Lemma 1.1). The cascade result is
applied in the analysis of a dynamic optimizing control allocation approach,
�rst presented in Johansen [2004], and more general nonlinear systems may
be considered. Moreover, founded on a control-Lyapunov design approach,
adaptive optimizing nonlinear dynamic control allocation algorithms are
derived. Under certain assumptions on the system (actuator and actuator-
force model) and on the control design (growth rate conditions on the Lya-
punov function), the cascade result is used to prove closed-loop stability
and attractivity of a set representing the optimal actuator con�guration.
Typical applications for the control allocation algorithm are over-actuated
mechanical systems, especially systems that exhibit fast dynamics since the
algorithm is explicit and in general computational e¢ cient.

The most important advantages of the control allocation approach pre-
sented in this thesis are based on the cascaded structure that appears from
the optimizing problem formulation and the system model:

� On the theoretical level, as long as closed loop solution boundedness
can be proved, the cascade result enables a modular analysis approach
where UGAS of the closed loop equilibrium set can be concluded, if
the equilibrium sets of the sub systems are also UGAS. This means
that the sub systems can be analyzed separately. Since in most practi-
cal applications the actuators of a system are bounded, a local version
of the result is presented.

� The control allocation strategy is based on a Lyapunov design, in
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which the �rst order optimal solution is described by the Lyapunov
function when it is equal to zero. Through this approach an opti-
mizing control allocation algorithm, which does not solve the opti-
mization problem exactly at each time step, can be de�ned. Also
the Lyapunov approach o¤ers an analytical tool for; considering the
stability of the optimal solution directly, and incorporating Lyapunov
based estimation strategies and controller designs.

� The control allocation algorithms are not iterative and do not depend
on any optimizing software, such that implementation on inexpensive
hardware for fast (e.g. mechanical) systems can be considered.

The drawbacks and limitations of the algorithm are related to the as-
sumptions given in Chapter 2 and commented in the section of possible
further work.

� All states are assumed to be known. This means that measurements
and fast observers (in the case where no measurements are available)
are necessary in an implementation.

� Only the �rst order optimal solutions are incorporated in the pre-
sented Lyapunov design, this means that in the case of non-convex
problems with more local maxima and minima, the algorithm does
not distinguish between the extremum points.

� The control allocation algorithms contain matrix inversion, and the
constraints of the optimization problem are implemented with bar-
rier functions. This may introduce numerical problems that result in
suboptimal solutions and degeneration of the algorithm performance,
such that handling of the numerical aspects (e.g. singularity avoid-
ance) is of importance.

The cascade result presented by Lemma 1.1 in Chapter 1, may simplify
the stability analysis of the cascade by treating the subsystems separately
under the assumption of uniform global boundedness of the closed-loop so-
lution with respect to its equilibrium set. In most cases, when applying
Lemma 1.1, the hardest requirement to satisfy is the boundedness assump-
tion. In Chapter 3, 4 and 5 it is shown that the boundedness requirement
is satis�ed for the cascade consisting of the high level dynamics and the
control allocation dynamics. Also by utilizing the cascade analysis tool it is
shown in Chapter 3 that the system and high level controller assumptions
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presented in Johansen [2004] may be relaxed (see Section 1.3). In Chapter
4, parameter estimation is incorporated in the control allocation design,
such that uncertainties and losses in the actuator force model can be esti-
mated. In order for the control allocation algorithm to generate an actuator
constellation that converges to the optimal solution in a stable sense, it is
important that these force uncertainties and losses are accounted for. Re-
gressor signal persistency of excitation in this setting is of importance for
the optimal control allocation. By considering low level actuator dynamics
and parameter uncertainties both in the actuator force mapping model and
the actuator model, the algorithms in Chapter 5 extend the results from
Chapter 3 and 4, and compensate for that transients introduced by the
actuator dynamics.

The control allocation algorithms are veri�ed by simulating a model
ship undergoing DP control, and by presenting the yaw stabilizing problem
in the framework of a modular e¢ cient dynamic control allocation scheme.
The modularity of the approach was shown by de-coupling the high level
vehicle motion from the low level dynamics of the wheel slip with a control
allocation scheme commanding desired longitudinal wheel slip and steering
angle corrections. Furthermore, the scheme was tested in a highly realis-
tic proprietary simulation environment by DaimlerChrysler, and over- and
understeering of the vehicle was e¢ ciently prevented.

7.1 Some ideas for further work on the topics of
the thesis

� The main focus of further work related to the cascade Lemma 1.1,
may be to provide and formalize ways of guaranteeing UGB, as in
Theorem 1, Tjønnås et al. [2006], of the closed loop solutions with
respect to the cascaded set, possibly in the framework of Pantely
and Loria [2001]. Furthermore, work related to a generalized cascade
lemma where the cascade consists of more then two systems (possibly
represented by di¤erential inclusions) is of interest.

� An obvious drawback with the presented control allocation algorithms
is the assumption of a known state. In many applications, state mea-
surements are not available, such that observers or state estimators
are necessary. This means that the observer dynamic has to be ac-
counted for in the control allocation, and work related to de�ning
requirements on the observer properties, in order to conclude closed
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loop stability, is therefore of interest. A possibility may be to include
the observers in the existing Lyapunov design framework.

� Consider anti-windup strategies and possibly use slack variables in the
design of constrained control allocation (handling; infeasibility, phys-
ical actuator constraints to enable faster convergence, and actuator
constraints related to problem objectives where undesired regions are
prevented).

� Interesting further work related to the automotive application, in-
volves strategies with increased functionality (augmentation of rollover
prevention) and robustness (by including additional actuators, for
example through the pressure control of an active hydropneumatic
(AHP) suspension system). In the case of higher actuator redun-
dancy, both improved performance and increased robustness of this
yaw stabilizing system are expected.

� A comparison of the presented algorithm to the state of art avail-
able control allocation schemes is of interest, together with an exper-
imental implementation and an in-depth investigation of numerical
aspects, in order to evaluate and verify the practical signi�cance of
the algorithm.

� Implementation of the control allocation strategy on di¤erent process
plants which are not necessarily mechanical systems, such as blending
and mixing systems.

� Handling of non-convex problems.
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Appendix A

Proofs and simulation data

A.1 Proof of Proposition 4.2

The proof is divided into two parts: i) show that the integral of
�fOu�~�(t)

T �fOu�~�(t); where

�fOu�~�(t) := fOu�~�(t; x(t); u(t); �(t); �(t);
~�(t));

is bounded, by using the PE property; and ii) use the integral bound to
prove UGA by contradiction. The proof is based on ideas from Pantely
et al. [2001] and Teel et al. [2002].

i) First we establish a bound on _�g(t). We have

_�g(t) =
@gx(t; x)

@t
��(t; x; u) + gx(t; x)

@��(t; x; u)

@t

+

�
@gx(t; x)

@x
��(t; x; u) + gx(t; x)

@��(t; x; u)

@x

�
_x

+gx(t; x)
@��(t; x; u)

@u
_u;

thus from Assumption 2.1, system (4.3) and update-law (4.5), there exists

a bound
��� _�g(t)��� � &1x _�g(jxj) + &1x _�g(jxj)&u _�g(

��zu�~���Ou�~�) where
&1x _�g ; &1x _�g ,&1x _�g : R�0 ! R�0 are continuous functions. This can be seen
by following the same approach as in Lemma 4.1. From the assumption
that x is uniformly bounded, we use jxj � Bx: The integrability of ~�

T~� is
investigated by considering the auxiliary function:

V�aux1 := ��T�g(t)~�; (A.1)
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bounded by BV �aux1(Bx; r) � V�aux1 where r �
��zu�~�0��Ou�~� and r > 0: Its

derivative along the solutions of (4.2) and (4.6) is given by

_V�aux1 = �_�T�g(t)~� � �T _�g(t)~� � �T�g(t) _~�

= �~�T�g(t)T�g(t)~� + �T
�
AT�g(t)� _�g(t)

�
~�

+�T�g(t)�
�1
�̂
�g(t)

T� (A.2)

+�T�g(t)�
�1
�̂
�g(t)

T @
2
x
�L�̂

@u�
(t)
@ �L�̂
@u�

(t); (A.3)

where
@2x
�L�̂

@u� (t) :=

��
@2L�̂
@x@u

�T
;
�
@2L�̂
@x@�

�T�
(t; x(t); u(t); �(t); �̂(t)) and

@ �L�̂
@u�(t) :=��

@L�̂
@u

�T
;
�
@L�̂
@�

�T�T
(t; x(t); u(t); �(t); �̂(t)): From Young�s inequality, naTa+

1
nb
Tb � 2

��bTa��, we have
�T
�
AT�g(t)� _�g(t)

�
~�

� T

�
�T
�
AT�g(t)� _�g(t)

��
AT�g(t)� _�g(t)

�T
�

+
�

4T
~�
T~�; (A.4)

where a = ~�; b = �T
�
AT�g(t)� _�g(t)

�
and n = �

2T such that � and T are

positive scalars of desirable choice. Next

�T�g(t)�
�1
�̂
�g(t)

T @
2
x
�L�̂

@u�
(t)
@ �L�̂
@u�

(t)

� �T�g(t)�
T
g (t)�+

�
@ �L�̂
@u�

(t)

�T
KL�

@ �L�̂
@u�

(t)

for n = 1, a = �T�g(t) and b = ��1
�̂
�g(t)

T @
2
x
�L�̂

@u� (t)
@ �L�̂
@u�(t), where KL� :=
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@2x
�L�̂

@u� (t)�g(t)�
�T
�̂
��1
�̂
�Tg (t)

@2x
�LT
�̂

@u� (t): Hence

_V�aux1

� T

�
�T
�
AT�g(t)� _�g(t)

��
AT�g(t)� _�g(t)

�T
�

+�T�g(t)�
�1
�̂
�g(t)

T�� ~�T�g(t)T�g(t)~�

+
�

4T
~�
T~� + �T�g(t)�

T
g (t)�

+
@ �LT

�̂

@u�
(t)KL�

@ �L�̂
@u�

(t); (A.5)

and thus

~�(t)T
�
�g(t)

T�g(t)�
�

4T
I
�
~�(t)

� T

�
�T
�
AT�g(t)� _�g(t)

��
AT�g(t)� _�g(t)

�T
�

+�T�g(t)
�
��1
�̂
+ I
�
�Tg (t)�

� _V�aux1 +
@ �LT

�̂

@u�
(t)KL�

@ �L�̂
@u�

(t) . (A.6)

The solution of (4.5) can be represented by

~�(�) = ~�(t)�R�(t; �) , (A.7)

where R�(t; �) := �
�1
�̂

R �
t �

T
g (s)

�
�(s) +

@2x
�L�̂

@u� (s)
@ �L�̂
@u�(s)

�
ds, such that

~�(�)T
�
�g(�)

T�g(�)�
�

4T
I
�
~�(�)

= ~�(t)T
�
�g(�)

T�g(�)�
�

4T
I
�
~�(t)

+R�(t; �)
T
�
�g(�)

T�g(�)�
�

4T
I
�
R�(t; �)

�2~�(t)T
�
�g(�)

T�g(�)�
�

4T
I
�
R�(t; �): (A.8)

Again by Young�s inequality, �n1aT1 a1� 1
n1
bT1 b1 � �2

��bT1 a1�� and �n2aT2 a2�
1
n2
bT2 b2 � 2

��bT2 a2�� with a1 = �g(�)~�; a2 =
q

�
4T
~�; b1 = �g(�)R�(t; �);
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b2 =
q

�
4TR�(t; �) and n1 = n2 =

1
� ; such that

�2~�(t)T�g(�)T�g(�)R�(t; �)

� � 1
�
~�(t)T�g(�)

T�g(�)~�(t)

��R�(t; �)T�g(�)T�g(�)R�(t; �)

and

2
�

4T
~�(t)TR�(t; �)

� � 1
�

�

4T
~�(t)T�g(�)

T�g(�)~�(t)

�� �

4T
R�(t; �)

T�g(�)
T�g(�)R�(t; �)

which gives

~�(�)T
�
�g(�)

T�g(�)�
�

4T
I
�
~�(�)

� (1��)R�(t; �)T
�
�g(�)

T�g(�)�
(1 + �)

(1� �)
�

4T
I

�
R�(t; �)

+

�
1� 1

�

�
~�(t)T

 
�g(�)

T�g(�)�
�
1 + 1

�

��
1� 1

�

� �
4T

I

!
~�(t) (A.9)

for � > 1:

From Holder�s inequality,
R
jfgj �

�R
jf j2

� 1
2
�R
jgj2
� 1
2
; with g = 1 and

f = ��1
�̂
�Tg (s)�(s) we get�Z �

t

�����1
�̂
�Tg (s)�(s)

��� ds�2
�

Z �

t

�����1
�̂
�Tg (s)�(s)

���2 ds (� � t)
and by similar arguments�Z �

t

������1�̂ �Tg (s)@2x �L�̂@u�
(s)

@ �L�̂
@u�

(s)

���� ds�2
�

Z �

t

������1�̂ �Tg (s)@2x �L�̂@u�
(s)

@ �L�̂
@u�

(s)

����2 ds (� � t) ;
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such that

R�(t; �)
TR�(t; �)

� 2

�Z �

t

�����1
�̂
�Tg (s)�(s)

��� ds�2
+2

�Z �

t

������1�̂ �Tg (s)@2x �L�̂@u�
(s)

@ �L�̂
@u�

(s)

���� ds�2
� 2

Z �

t

�����1
�̂
�Tg (s)�(s)

���2 ds (� � t)
+2

Z �

t

������1�̂ �Tg (s)@2x �L�̂@u�
(s)

@ �L�̂
@u�

(s)

����2 ds (� � t)
= 2

Z �

t
�(s)T�g(s)�

�T
�̂
��1
�̂
�Tg (s)�(s)ds (� � t)

+2

Z �

t

@ �LT
�̂

@u�
(s)KL�

@ �L�̂
@u�

(s)ds(� � t):

LetB�T (Bx; r; T ) := �max

�
�g(t)

T�g(t)� (1+�)
(1��)

�
4T I
�
be the maximal eigen-

value of
�
�g(�)

T�g(�)� (1+�)
(1��)

�
4T I
�
and �maxKL� be the maximal eigen-

value of KL�; then from combining (A.6) and (A.9) and investigating the
integral over � ,

�
1�1

�

�
~�(t)T

Z t+T

t

 
�g(�)

T�g(�)�
�
1 + 1

�

��
1� 1

�

� �
4T

I

!
d�~�(t)

� B�T

Z t+T

t

�Z �

t
�(s)T�g(s)�

T
g (s)�(s)ds

�
(� � t)d�

+B�T�maxKL�

Z t+T

t

 Z �

t

�
@ �L�̂
@u�

(s)

�T
@ �L�̂
@u�

(s)ds

!
(� � t) d�

+V�aux1(t)�V�aux1(t+ T )

+�maxKL�

Z t+T

t

 �
@ �L�̂
@u�

(s)

�T
@ �L�̂
@u�

(s)

!
ds

+

Z t+T

t
�(�)T�g(�)

�
��1
�̂
+ I
�
�Tg (�)�(�)d�

+
T

�

Z t+T

t
�(�)T

�
AT�g(�)� _�g(�)

��
AT�g(�)� _�g(�)

�T
�(�)d� :
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Further Z t+T

t

�Z �

t
�(s)T�g(s)�

�T
�̂
��1
�̂
�Tg (s)�(s)ds

�
(� � t)d�

= T

Z t+T

t

�Z t+T

s
�(s)T�g(s)�

�T
�̂
��1
�̂
�Tg (s)�(s)d�

�
ds

� T

Z t+T

t

�Z t+T

t
�(s)T�g(s)�

�T
�̂
��1
�̂
�Tg (s)�(s)d�

�
ds

= T 2
Z t+T

t
�(s)T�g(s)�

�T
�̂
��1
�̂
�Tg (s)�(s)ds;

such that for

B�(Bx; r; T )

: = �max

��
AT�g(t)� _�g(t)

��
AT�g(t)� _�g(t)

�T
+

�g(t)
��
B�TT

2 + 1
�
��1
�̂
+ I
�
�g(t)

T
�

it follows that�
1� 1

�

�
~�(t)T

Z t+T

t

 
�g(�)

T�g(�)�
�
1 + 1

�

��
1� 1

�

� �
4T
I

!
d�~�(t)

�
Z t+T

t
�(s)TB��(s)ds+ V�aux1(t)� V�aux1(t+ T )

+�maxKL�

�
B�TT

2 + 1
� Z t+T

t

�
@ �L�̂
@u�

(�)

�T
@ �L�̂
@u�

(�)d�

� V�aux1(t)� V�aux1(t+ T )

+BV

Z t+T

t

 �
@ �L�̂
@u�

(�)

�T
HT
�̂
(�)�H�̂(�)

@ �L�̂
@u�

(�)+�(�)TA�(�)

!
d�

and

~�(t)T
Z t+T

t

 
�g(�)

T�g(�)�
�
1 + 1

�

��
1� 1

�

� �
4T

I

!
d�~�(t)

� 1�
1� 1

�

� (V�aux1(t)� V�aux1(t+ T ))
+BV

�
Vu��̂(T + t)� Vu��̂(t)

�
;
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where BV (Bx; r; T ) :=
�maxB�(t;T )+�maxKL�(B�TT 2+1)

(1� 1
� )�minA

: By the PE assump-

tion we can choose T; 
; � > 0 and � > 1 such that, B
 < 
 � (1+ 1
� )

(1� 1
� )

�
4 ,

where B
 > 0 i.e.

B
~�(t)
T~�(t)

� ~�(t)T
Z t+T

t

 
�g(�)

T�g(�)�
�
1 + 1

�

��
1� 1

�

� �
4T

I

!
d�~�(t)

� 1�
1� 1

�

�V�aux1(t)� V�aux1(t+ T )
+ BV

�
Vu��̂(T + t)� Vu��̂(t)

�
;

Z t0+TT

t0

(V�aux1(�)� V�aux1(� + T )) d�

=

Z t0+TT

t0

V�aux1(�)d� �
Z t0+TT

t0

V�aux1(� + T )d�

=

Z t0+TT

t0

V�aux1(�)d� �
Z t0+TT+T

t0+T
V�aux1(s)ds

=

Z t0+T

t0

V�aux1(�)d� �
Z t0+TT+T

t0+TT

V�aux1(�)d�

� 2TBV �aux1(Bx; r)

and Z t0+TT

t0

~�(�)T~�(�)d�

� 1

B

�
1� 1

�

� Z t0+TT

t0

(V�aux1(�)� V�aux1(� + T )) d�

+
BV
B


Z t0+TT

t0

�
Vu��̂(�)�Vu��̂(�+T )

�
d�

� 2T

B


 
BV �aux1(Bx; r)�

1� 1
�

� +BV Vu��̂(t0)

!
:

Thus ~�(�)T~�(�) is integrable. Let �minV be the minimum eigenvalue of
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(1;HT
�̂
�H�̂; A); then there exists a constant BfOu�~� (Bx; r; T ) > 0; such thatZ t0+TT

t0

�fOu�~�(�)
T �fOu�~�(�)d�

� lim
t!1

Z t

t0

�fOu�~�(�)
T �fOu�~�(�)d�

� 1

�minV

�
Vu��̂(t0)� Vu��̂(1)

�
+
2T

B


 
BV �aux1(Bx; r)�

1� 1
�

� +BV Vu��̂(t0)

!
� BfO

u�~�
; (A.10)

and the integral of �fOu�~�(t)
T �fOu�~�(t) is bounded.

ii) From The UGS property we have��zu�~�(t)��Ou�~� � �(
��zu�~�0��Ou�~�); 8t � t0

where � 2 K1: Fix r > 0; " > 0. De�ne 
 := �(r) and ! := min
�

; ��1(")

	
and note that BfO

u�~�
is given by ! and 
: De�ne TT =

2BfO
u�~�

!1
; where !1 is

speci�ed later, and assume that for all
��zu�~�0��Ou�~� � r; there exists t0 2

[t0; TT ] such that
��zu�~�(t0; zu�~�0)��A � ��1("): Thus

��zu�~�(t; zu�~�0)��Ou�~� �
�
���zu�~�(t0; zu�~�0)��Ou�~�� � �(��1(")) = " for

��zu�~�0��Ou�~� � r and t � TT+t0;

which satis�es de�nition 1.4: Suppose the assumption is not true, i.e., there
exists

��zu�~�0��Ou�~� � r such that
��zu�~�(t0; zu�~�0)��Ou�~� > ��1(") 8t0 2 [t0; TT ].

Thus
! �

��zu�~�(t0; zu�~�0)��Ou�~� � 
; 8t0 2 [t0; TT ]

which from radial unboundedness of Vu��̂; related to (4.7), imply that there
exist positive constants !1; and 
1 such that

!1 � �fOu�~�(t
0)T �fOu�~�(t

0) � 
1; 8t0 2 [t0; TT ]

Then Z t0+TT

t0

�fOu�~�(�)
T �fOu�~�(�)d� �

Z t0+TT

t0

!1d�

= !1TT

= 2BfO
u�~�
;

which contradicts (A.10), and the proposition is proved.
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A.2 Derivation of the longitudinal slip model

_�xi =
_�xi
�i
� �xi
�2i
_�i �

_!iR

�i
+
!iR

�2i
_�i (A.11)

=
1

�i

�
_�xi �

�xi
�i
_�i � _!iR+

�
vxi
�i
� �xi

�
_�i

�
=
1

�i

�
_�xi � _!iR� �xi

�xi _�xi + �yi _�yi
�i

�
=
1

�i

��
1� �xi

�xi
�i

�
_�xi � _!iR� �xi

�yi
�i
_�yi

�
=
1

�i

��
1� �xi

�xi
�i

�
Fxi
mwi

� (�RFxi � Tbisign(!i))
R

J!

�
+
1

�i
�xi sin(�i)

Fyi
mwi

=
1

�i

0@0@
�
1� �xi �xi�i

�
mwi

+
R2

J!

1AFxi +
R

J!
sign(!i)Tbi

1A
+
1

�i
�xi sin(�i)

Fyi
mwi

=
R

�iJ!

0@0@J!
�
1� �xi �xi�i

�
Rmwi

+R

1AFxi + sign(!i)Tbi

1A
+
1

�i
�xi sin(�i)

Fyi
mwi

=
R

�iJ!
(sign(!i)Tbi � �t(�xi; �i; �Hi; �xi; �i)) (A.12)

where

�t(�xi; �i; �Hi; �xi; �i) := �

0@J
�
1� �xi �xi�i

�
Rmwi

+R

1AFxi

� J

Rmwi
sin(�i)�xiFyi
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A.3 Proof of UES comment in Remark 6.2

Consider the Lyapunov function candidate

Vx = (�1 + c1�1)
x21
2
+ (�1 +

c1
�1
)
x23
2
+ c1x1x3

+ (�2 + c2�2)
x22
2
+ (�2 +

c2
�2
)
x23
2
+ c2x2x3 (A.13)

where �1; �2; c1; c2; �1; �2 > 0 and x := (x1; x2; x3)
T is given by the trans-

formation (x1; x2; x3)T = diag(
�i; 
�i

�1
��i
; 1)(~�xi; ��xi; ~�Hi)

T; such that

_x =

0@ �a1 0 �b(t)
0 �a2 �b(t)
�b(t) �b(t) 0

1Ax (A.14)

where a1 := �p
�i; a2 := A
�i

�1
��i
;�b(t) := R

�i(t)Jz
��(�xi(t); �i(t); �̂Hi(t)),

b(t) := R
�iJz

��n(�xi(t); �i(t); �̂Hi(t); ~�Hi(t)) and

��n(�xi; �i; �̂Hi; ~�Hi) :=
@�(�xi;�i;si)

@si

���
si=�̂Hi+&~�Hi

(from the mean value the-

orem): The derivative of (A.13) along the trajectories of (A.14) is given
by:

_Vx = �
�
(�1 + c1�1)a1 � c1�b(t)

�
x21 � c1b(t)x23

+

�
�(�1 + c1�1)b(t) + (�1 +

c1
�1
)�b(t)� c1a1

�
x1x3

�
�
(�2 + c2�2)a2 � c2�b(t)

�
x22 � c2b(t)x23

+

�
�(�2 + c2�2)b(t) + (�2 +

c2
�2
)�b(t)� c2a2

�
x2x3: (A.15)

By de�ning the variables �b(t) := b(t)� �b(t), k1(t) :=
���( 1�1 � �1)�b(t)� a1���

and k2(t) :=
���( 1�2 � �2)�b(t)� c2a2��� ; and applying Young�s inequality (�1x21+

1
�1
x23 � 2 jx1x3j):

_Vx � �
�
(�1 + c1�1)a1 � c1

�
�b(t) + k1(t)�1

��
x21

� (�1 + c1�1)�b(t)x1x3 � c1
�
b(t)� k1(t)

1

�1

�
x23

�
�
(�2 + c2�2)a2 � c2

�
�b(t) + k2(t)�2

��
x22

� (�2 + c2�2)�b(t)x2x3 � c2
�
b(t)� k2(t)

1

�2

�
x23:
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From Assumption 6.1 b) and c) there exist bounds Bl; Bh > 0; where

Bl < b(t) < Bh and Bl < �b(t) < Bh; such that for �1 >

����( 1�1��1)���Bh+a1�+�1
Bl

;

�2 >

����( 1�2��2)���Bh+a2�+�2
Bl

; �1 >
�1+c1

�
Bh+

����( 1�1��1)���Bh+a1��1�
a1

� c1�1 and

�2 >
�2+c2

�
Bh+

����( 1�2��2)���Bh+a2��2�
a2

� c2�2;

_Vx � ��1x21 � (�1 + c1�1)�b(t)x1x3 � c1�1x23
� �2x22 � (�2 + c2�2)�b(t)x2x3 � c2�2x23

which is negative de�nite if j�b(t)j is signi�cantly small and �1; �2; �1; �2 >
0: This leads to a Local UES result since for bounded b(t) and �b(t); x3 ! 0
imply �b(t)! 0 uniformly.

A.4 The Nested Matrosov Theorem, Loria et al.
[2005]

Under assumptions A.1-A.4 the origin of

_x = f(t; x) (A.16)

is UGAS.

Assumption A.1 The origin of (A.16) is UGS

Assumption A.2 There exist integers j;m > 0 and for each � > 0 there
exists

� a number � > 0;

� locally Lipschitz continuous functions Vi : R�0�Rn ! R; i 2 f1; ::; jg

� a function � : R�0 � Rn ! Rm;

� continuous function Yi : Rn � Rm ! R; i 2 f1; ::; jg;

� such that, for almost all (t; x) 2 R�0 � B(�), and all i 2 f1; ::; jg

maxfjVi(t; x)j ; j�(t; x)jg � � (A.17)
_Vi(t; x) � Yi(x; �(t; x)): (A.18)

Assumption A.3 For each integer k 2 f1; ::; jg; we have that
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A) fYi(z;  ) = 08i 2 f1; ::; k � 1g; and all (z;  ) 2 B(�) � B(�)g implies
that

B) fYk(z;  ) � 0; for all (z;  ) 2 B(�)� B(�)g:

Assumption A.4 We have that the statement

A) fYi(z;  ) = 08i 2 f1; ::; jg; and all (z;  ) 2 B(�)� B(�)g implies that

B) fz = 0g:

A.5 Model ship parameters and plots

Variable Value
M diag(25:8; 33:8; 2:76)

D

0@ 2 0 0
0 7 0:1
0 0:1 0:5

1A
k1Tp; k2Tp 3:74e�3

k1Tn; k2Tn 5:05e�3

k3Tp 1:84e�4

k3Tn 1:88e�4

k1Ln; k2Ln 2:10e�2

k1Ld1; k2Ld1 0:927

k1Ld2; k2Ld2 �0:557
k1Dn; k2Dn 9:64e�3

k1Dd1; k2Dd1 0:079

k1Dd2; k2Dd2 0:615

aT 1

Jmi 1e�2

kfi 1e�4

mi 1e�2

ai �1e�4
bi 1e�5

Table A.1: Model ship parameters
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Figure A.1: The ship; desired position (dashed), actual position (solid) and
velocities.
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Figure A.2: The control forces.


