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Abstract

This thesis addresses parametric time-domain modeling of radiation forces
in marine applications based on hydrodynamic computations, intended for
use in control and observer design for vessels. Marine applications where it is
of interest to accurately model the radiation forces include dynamically po-
sitioned offshore vessels, moored floating structures and wave power plants.
The radiation forces of marine structures describe interactions between the
floating body and the surrounding fluid. These radiation forces appear as
a consequence of the change in the momentum of the fluid and the waves
generated due to the motion of the body in the fluid. In the frequency do-
main the forces are proportional to the accelerations and velocities of the
body. The term proportional to the acceleration is referred to as the added
mass, and the term proportional to the velocities is referred to as the damp-
ing. Both the added mass and damping parameters are dependent on the
frequency of motion.

Several methods exist for obtaining the frequency dependent added mass
and damping parameters. One can either do full-scale experiments, model
testing, use scaled data sets from existing tests or use numerical hydrody-
namic software. As both full-scale and model-scale experiments are expensive
and time consuming, using numerical simulations in the design phase gives
flexibility. Also, as hydrodynamic software is becoming more accurate and
reliable, it represents an economically sound alternative to experiments. In-
spired by this, the frequency dependent added mass and damping parameters
will be obtained from hydrodynamic software.

The radiation forces are hydrodynamical forces, and the theory has been
developed by hydrodynamicists. As control systems become more common
in marine applications there is a need for analyzing the radiation forces from
a control theoretical perspective. The properties of the frequency dependent
added mass and damping parameters are used to show stability and passivity
of the radiation forces. In addition the frequency dependent added mass and
damping parameters are used to investigate the structure of the parametric
radiation forces model.
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Abstract

The impulse response of the radiation forces can be obtained either from
the frequency dependent added mass parameters or from the frequency de-
pendent damping parameters, whereas the frequency response of the radia-
tion forces are obtained as a combination of both types of parameters. Given
the impulse and frequency responses of the radiation forces both time do-
main and frequency domain identification can be used to obtain parametric
models. Both approaches are applied and compared. Existing algorithms in
the time domain and in the frequency domain are proposed for this use. The
methods can ensure stable systems, but passivity might not be preserved,
and it is of interest to investigate how often this occurs. It is important
that the identified models are passive in order to avoid nonphysical behavior
when used in simulations.

The identification schemes allow to either identify a low order model or
identify a high order model followed by model reduction. For a horizontal
3 degree of freedom (DOF) vessel model there are 9 modes which can be
identified representing a 3 × 3 multi-input multi-output (MIMO) system.
Three different approaches for identification are proposed; identification of
each mode as a single-input single-output (SISO) system; MIMO identifica-
tion of the overall system; identification of each mode as a SISO system with
reduction of the overall system as a MIMO system.

For model reduction, the focus in this thesis is on balanced truncation
methods which are well suited for systems of moderate size. A review of
existing methods is given, where the focus is on passivity preserving algo-
rithms. A new scheme for positive real balanced truncation is proposed. The
scheme is numerical efficient and shows good accuracy. Further, it is shown
that this result can be extended and an algorithm for positive real frequency
weighted truncation is suggested.

Two case studies are presented. First the modeling of a 3-DOF vessel
model where the frequency dependent added mass and damping parameters
are obtained by the use of the hydrodynamic software WAMIT. Subsequently
a lateral vessel model is obtained where the frequency dependent added mass
and damping parameters are obtained by using the hydrodynamic software
VERES. The proposed modeling approaches are compared in terms of model
order estimates, accuracy of fit, the use of available information, ease of
use and generation of positive real systems. It is shown that combining
identification and model reduction offers flexibility in the choice of model
complexity and accuracy.
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Chapter 1

Introduction

1.1 Motivation

This thesis discusses low order parametric modeling of radiation forces. The
radiation forces describe the radiative interaction of a floating body with
the surrounding fluid in the absence of incident waves. In the frequency
domain the forces are proportional to the velocities and accelerations of
the floating body, and are accordingly split in added mass and damping
forces. This thesis will address the modeling of floating bodies at zero speed
with arbitrary motion, not necessarily sinusoidal. Under these conditions
the added mass and damping forces are dependent on the frequencies of
excitation.

Several methods exist for obtaining the frequency dependent added mass
and damping parameters for floating bodies. One can either do full-scale
experiments, model testing, use scaled data sets from existing tests or use
numerical hydrodynamical software (Lewandowski, 2004; Faltinsen, 1990).
Both full-scale or model-scale experiments are expensive and time consuming
as advanced testing facilities are required. Obtaining the model data by use
of hydrodynamic software offers flexibility in the design phase as one can
avoid costly trial and error testing with either full-scale or scaled models.
This is illustrated in Figure 1.1. As the hydrodynamical software is becoming
more accurate and reliable it represents an economically sound alternative
to experiments. Inspired by this, the frequency dependent added mass and
damping parameters in this thesis will be obtained from hydrodynamical
software. Examples of hydrodynamical software which is possible to use for

1



1. Introduction

Figure 1.1: Obtaining the vessel model data by use of hydrodynamic soft-
ware (courtesy of Marintek, www.marintek.no) or by use of towing tank
experiments (courtesy of CeSOS, www.cesos.ntnu.no).

this purpose are WAMIT1 , Veres2 and Seaway3.
The easiest way of obtaining the models of the radiation forces is to ne-

glect the frequency dependence and approximate the added mass and damp-
ing parameters by constant matrices, discarding parts of the dynamics. The
impulse response of the radiation forces can be obtained either from the fre-
quency dependent added mass parameters or from the frequency dependent
damping parameters. The frequency response can be obtained as a com-
bination of the frequency dependent added mass and damping parameters.
Hence, time domain or frequency domain identification methods can be used
to obtain state-space models in the time domain or rational transfer func-
tions in the frequency domain to represent the radiation forces. Since the
models are intended for use in control system design and marine systems
simulators these formulations are attractive.

In this thesis different approaches for modeling the radiation forces will be
investigated in order to obtain accurate and efficient models in an economi-
cally sound way for use in simulators and control design. Several applications
exist where this is of interest and some examples are given below.

Dynamic Positioning (DP)

Dynamic positioning is a term used for control systems where the aim is to
automatically maintain a vessel’s position and heading by the use of actu-

1www.wamit.com
2www.marintek.no
3www.shipmotions.nl
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Motivation

ators such as propellers or thrusters. This type of system is usually used
in low-speed applications for station keeping. DP systems were introduced
in the 1960s, and today DP systems are common in the offshore industry.
A useful historical overview of the development of this type of system and
different applications is given in Fossen (2002). Examples of vessels where
DP systems can be used, are floating offshore platforms, drilling vessels and
FPSO (Floating Production Storage and Offloading) vessels.

Real-time simulators for marine systems

Numerical simulators have become important when dealing with marine sys-
tems and operations. Complex scenarios are faced including models of the
environment, the vessel and mooring lines (Smogeli et al., 2005). Real-time
simulators can be used for the training of personnel for ship operations and
handling in realistic but controlled environments. They can also be used for
failure detection and validation of new control system designs. Marine simu-
lators are beneficial for both the design engineers and the operators. Figure
1.2 presents an illustration of a marine simulator.

Figure 1.2: Example of vessel simulator. Courtesy of Lighthouse Interactive,
www.lighthouse-interactive.com.

3



1. Introduction

Offshore wave power plants

Energy demand is growing worldwide, and it is necessary to seek environ-
mentally sound sources to obtain energy. Wave power is a renewable energy
source with an estimated harvesting potential of 2000 TWh/yr (Thorpe,
1999).

As a response to the emerging oil crises in the 1970s research on wave
energy began. Several commercial and governmental research projects were
initiated and the technology was considerably advanced. Despite this, it
resulted in few commercial plants which were economically sound enough
to deliver supplies of electricity from wave energy (Trinnaman and Clarke,
2004).

By technology transfer from the offshore oil and gas industry during the
mid-1990s and up to today the technology has matured. Today several com-
mercial plants exist and promising projects are in the start phase (Trinnaman
and Clarke, 2004). An example of a wave power plant developed based on
technology from the offshore industry is the wave energy converter Pelamis
by Ocean Power Delivery Ltd, which is pictured in Figure 1.3. The device is
slack-moored and allows the segments to weave with respect to each other
when incoming waves are present. This actuates hydraulic cylinders which
are built into the joints, and pumps oil to drive a hydraulic generator.

Figure 1.3: Example of wave energy plant; the Pelamis wave energy converter
developed by Ocean Power Delivery. Courtesy of Ocean Power Delivery,
www.oceanpd.com.

4



Background Material

1.2 Background Material

The radiation forces and moments appear as a consequence of the change in
the momentum of the fluid and the waves generated due to the motion of
the body in the fluid (Faltinsen, 1990). In the frequency domain these forces
and moments are linearly related to the accelerations and the velocities of
the body. The term proportional to the accelerations is called added mass
and the term proportional to the velocities is called damping. Both the
added mass and the damping parameters are dependent on the frequency of
excitation.

The simplest approach to model this effect is to neglect the frequency
dependence, and approximate the added mass and damping with constant
matrices. This gives a set of 6×6 coupled 2nd order ordinary differential
equations. This type of simplification is valid for steady state harmonic
motion.

The first connection to transient time domain models was made by Cum-
mins (1962), who considered the behavior of the fluid and the structure in
the time domain. He obtained a description of the radiation forces including
a convolution integral from body velocity to force. The second-order linear
differential equations with constant coefficients could be replaced by integro-
differential equations. Time domain simulations of body motions in waves
could now be carried out by recalculating the convolution integral for every
time step. Takagi et al. (1984) gave a comparison between the equations of
motion containing convolution integrals and the simpler second-order linear
differential equations with constant coefficients. It was concluded that the
former representation gave a richer representation of the radiation forces.
Similar discussions are found in (Oortmerssen, 1976). The convolution rep-
resentation proposed by Cummins has been common in different marine ap-
plications e.g. time domain simulations of vessel motions in waves (Bishop
et al., 1973; Bishop and Price, 1979; Bailey et al., 1997, 2000; Ballard, 2002;
Tahar and Kim, 2003) and wave energy converters (Eidsmoen, 1996).

In the work of Ogilvie (1964) an extension to the understanding of Cum-
mins’ work was done. Here the connection between the frequency dependent
added mass and damping parameters and the time domain convolution rep-
resentation was presented. As a result of this, expressions were obtained for
the radiation forces’ impulse response and frequency response.

As control systems become more common in marine applications, there
is a need for models which are in accordance with the common formulations
within this field. The common formulations used in control design are state-
space models in the time domain. The convolution representation proposed
by Cummins can be approximated with a numerically more efficient state-

5



1. Introduction

space model. There are two approaches for the identification of the radiation
forces’ state-space model, either by the use of time domain identification of
the impulse response or by the use of frequency domain identification of the
frequency response.

The first attempt in this direction was done by Tick (1959) in the fre-
quency domain. He modeled the frequency dependent added mass and damp-
ing parameters by polynomial filters. Further, Schmiechen (1973) proposed
to use rational function filters in the frequency domain for the approxima-
tion of the radiation forces. He was the first to model the radiation forces as
state-space models in the time domain. These models were used for the prob-
lem of collision of ships, where the frequency excitations are broad-banded.
While Schmiechen was concerned with the identification of marine vessels,
Jeffreys modeled wave-energy converters by using state-space methods (Jef-
freys, 1980, 1984). A least squares fit in the frequency domain was used to
approximate the transfer function representing the radiation forces. It was
concluded that the transfer function representation introduced fewer errors
than the numerical calculation of the convolution kernel and subsequent in-
tegration of the resulting model. Several others followed in this direction and
did work on the identification of radiation forces in different marine applica-
tions; ship maneuvering in waves (McCreight, 1986), moored vessel (Jiang et
al., 1987; Jiang and Schelin, 1990; Jordán and Beltrán-Aguedo, 2004; Jordán,
2006), crane ships (Schelin et al., 1993), investigation of stability, bifurcation
and chaos of two-point mooring systems (Chung and Bernitsas, 1997), ship
rolling (Holappa and Falzarano, 1999), wave energy (Damaren, 2000, 2001).

McCabe et al. (2005) proposed to use invfreqs, implemented in MAT-
LAB in order to find a transfer function approximation from the frequency
response of the radiation forces. This is a least-squares based method to
identify the best model from the given data. Others have followed this ap-
proach (Lande, 2006).

Kaasen and Mo (2004) fitted the real part of the transfer function to the
frequency dependent damping parameters. An iterative least squares fitting
was used to fit the damping transfer function. The overall transfer function
was found by a relation between the residues and the poles of the damping
transfer function and the radiation force transfer function.

Instead of approximation from the frequency response, time domain ap-
proximation can be done based on the information from the impulse response
of the radiation forces. Yu and Maeda (1991) approximated the impulse
response of the radiation forces by a combination of trigonometric and ex-
ponential functions in the time domain. The radiation forces were to be
included in a model for a wave power system. Further in Yu (1992) and Yu
et al. (1993, 1994) a matrix exponential function was used to approximate

6



Background Material

the impulse response of the radiation forces. Yu and Falnes (1995) used
impulse response curve fitting in order to find the parameters in a state-
space model of the radiation force for a vertical cylinder in heave. This was
done by minimizing the error between the original impulse response and the
state-space matrices at chosen time instants. The state-space matrices were
chosen to be in observer companion form in order to reduce the parameters
to be decided. It was mentioned here that this type of representation could
be of use not only for wave energy converters, but also for vessels and other
dynamic systems in ocean engineering.

Another approach for the identification of state-space representations
from the impulse response was proposed by Duclos et al. (2001). In Duclos
et al. (2001); Babarit et al. (2004); Babarit and Clément (2006), Prony’s
method, due to de Prony (1795), was used to model the radiation forces in
a model for latching control of a wave energy device. The impulse response
of the radiation forces were approximated by a sum of exponential functions
found by Prony’s method. By differentiating this representation, and includ-
ing it in the overall model, the equations of motion could be represented in
state-space form.

Kristiansen and Egeland (2003) extended the approximation of the im-
pulse response of the radiation forces by state-space models to marine vessels.
A minimal state-space realization was obtained from the radiation forces
impulse response by use of Markov parameters. This routine (imp2ss) is
a built-in function in MATLAB and relies on singular value decomposition
(SVD) of the Markov parameters from the impulse response. This realiza-
tion procedure was proposed by Kung (1978). Further, this method has been
used and suggested used in different marine models, among others, DP ves-
sels, marine systems simulators, wave energy plants and hydroelastic marine
structures (Hjulstad et al., 2004; Hjulstad, 2004; Skaare, 2004; Fossen and
Smogeli, 2004; Kristiansen et al., 2005; Smogeli et al., 2005; Fossen, 2005;
Bjarte-Larsson et al., 2006; Taghipour et al., 2007).

The stability properties of the radiation forces have also been investi-
gated. Jeffreys (1984) showed that the radiation forces are bounded-input
bounded-output (BIBO) stable. He also showed that the relative degree
of the transfer functions representing the radiation forces should be one.
Further, Damaren (2000) showed that the radiation forces are passive and
suggests the model structure based on this. This point is also made by
Kristiansen et al. (2005). Jordán and Beltrán-Aguedo (2004) investigated
properties of the frequency response based on the added mass and damping
matrices and made suggestions on the model structure based on this.

7



1. Introduction

1.3 Contributions of this Thesis

The following are considered to be the main contributions of the thesis:

• Presentation and discussion of already existing approaches for model-
ing of radiation forces from different marine fields, i.e. wave energy
community and the offshore vessel community. In the beginning these
communities worked more separately, however in recent years more
interaction has been common.

• Investigation of the radiation forces from a control theoretical ap-
proach, where stability and passivity properties have been analyzed.
These stability and passivity results are given by the properties of
the frequency dependent added mass and damping parameters. Based
on information from the same data sets, appropriate model structures
have been suggested for state-space representation in the time domain
and transfer function representation in the frequency domain of the
radiation forces.

• One of the approaches for modeling the radiation forces includes model
reduction. For model reduction, balanced truncation methods have
been used, which are well suited for systems of moderate size. A re-
view of existing balanced truncation methods is given, where the focus
is on passivity preserving methods. A new scheme for positive real
truncation is proposed, together with conditions which have to be ful-
filled in order to get positive real truncated systems. These are used
in order to obtain an algorithm for positive real frequency weighted
truncation.

• Numerical studies of different ways of obtaining the radiation forces.
Here three approaches are investigated: SISO identification of each
mode; MIMO identification of the overall system; SISO identification
of each mode followed by MIMO order reduction of the overall model.
The identification can be done either in the time domain or in the
frequency domain. Existing identification algorithms are used in order
to compare the two approaches for the different modeling approaches.
The proposed modeling approaches are compared in terms of estimated
model order, accuracy of fit, use of available information, ease of use
and generation of positive real systems.

8
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1.4 Publications

The following is a complete list of the publications written during the work
contained in this thesis. This includes accepted papers.

Journal Paper

• K. Unneland, P. Van Dooren and O. Egeland, New Schemes for Positive
Real Truncation, in Modeling, Identification and Control (MIC), 2007,
Vol. 28, No. 3, pp. 53-66.

Conference Papers

• K. Unneland, T. Perez and O. Egeland, MIMO and SISO Identification
of Radiation Force Terms for Models of Marine Structures in Waves, in
Proceedings of the IFAC Conference on Control Applications in Marine
Systems 2007, Bol, Croatia, September 2007.

• G. Fanizza and K. Unneland, Low order radiation forces by analytic
interpolation with degree constraints, in Proceedings of the 46th IEEE
Conference on Decision and Control, New Orleans, USA, December
2007. Accepted

• K. Unneland, P. Van Dooren and O. Egeland, A Novel Scheme for Pos-
itive Real Balanced Truncation, in Proceedings of the 26th American
Control Conference, New York City, USA, July 2007.

• K. Unneland, T.I. Fossen, O. Egeland and P. Van Dooren, Low or-
der potential damping models for surface vessels, in Proceedings of the
7th IFAC Conference on Manoeuvering and Control of Marine Craft,
Lisbon, Portugal, September 2006.

• K. Unneland and O. Egeland, Positive real modeling of ships for dy-
namic positioning, in Proceedings of the 17th International Symposium
on Mathematical Theory of Networks and Systems, Kyoto, Japan, July
2006.

• K. Unneland, E. Kristiansen and O. Egeland, Comparative study of
algorithms obtaining reduced order state-space form of radiation forces,
in Proceedings of the OCEANS’05, Washington D.C., USA, September
2005.
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Posters

• G. Fanizza and K. Unneland, Low order radiation forces by analytic in-
terpolation with degree contstraints, at the European Research Network
System Identification Workshop 2007, Venice, Italy, October 2007.

• K. Unneland, O. Egeland and P. Van Dooren, Model Reduction in
Marine Applications, at the Interuniversity Attraction Pole V/22 Day
on Dynamical Systems and Control: Computation, Identification and
Modeling, Court St. Etienne, Belgium, May 2006.

• K. Unneland, O. Egeland and P. Van Dooren, Positive Realness and
Balanced Truncation, at the 2006 Conference of the Dutch-Flemish Nu-
merical Analysis Communities, Zeist, The Netherlands, October 2006.

1.5 Organization of Thesis

This thesis is organized as follows:

Chapter 2: Modeling of Marine Structures in Waves. The equa-
tions of motion with force and moment superpositioning are revisited
together with a definition of reference frames. The radiation forces
and moments are a part of these equations, and they consist of the
added mass and damping forces. Different approaches for modeling
of the radiation forces are investigated, giving representations both in
the time and in the frequency domains. Further, these representations
are related, giving expressions for the impulse response and frequency
response of the radiation forces based on the added mass and damping
parameters obtained from numerical software. Finally, a relation be-
tween the frequency dependent added mass and damping coefficients
is reviewed.

Chapter 3: Properties of Radiation Force Models. The stabil-
ity properties of the radiation forces are investigated. Based on the
properties of the added mass and damping matrices, stability and pas-
sivity of the radiation forces can be shown. Since expressions for the
impulse response and frequency response of the radiation forces exist,
state-space models in the time domain, and transfer functions in the
frequency domain, can be used to represent these forces. The struc-
tures of the state-space and transfer function models of the radiation
forces are investigated based on the available information.
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Organization of Thesis

Chapter 4: Identification Methods. Both the impulse response and
the frequency response of the radiation forces are given, hence both
time domain and frequency domain methods can be used to identify
the state-space or transfer function representations of the forces. In
this chapter a short overview over existing techniques in the time and
frequency domains will be given, intended for use in later chapters.

Chapter 5: Model Reduction. The identified models might be of high
order and hence it is of interest to use model reduction techniques
to obtain low order efficient models. A review of existing balanced
truncation methods will be given. A new algorithm which will keep the
positive real properties in the reduction process will be given. Further,
it is investigated which properties the reduction algorithms need to
satisfy in order to give reduced order positive real systems. Finally, this
result is used to develop positive real frequency weighted truncation,
to illustrate the use of this generalization.

Chapter 6: Case Studies. The radiation forces for two different ves-
sel models will be identified using different approaches both in the
time and in the frequency domains: SISO identification of every mode;
MIMO identification of all modes; SISO identification of every mode
with model reduction of the overall MIMO system. A discussion on
the different approaches follows.

Chapter 7: Final Remarks. This chapter presents the overall conclu-
sions to this thesis and presents some suggestions for further research.
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Chapter 2

Modeling of Marine Structures

in Waves

2.1 Introduction

Floating bodies (i.e. vessels, offshore platforms, wave energy converters)
operate under different speed regimes and environmental conditions. This
feature is reflected in the hydrodynamical modeling. Traditionally, vessel dy-
namics have been separated in maneuvering and seakeeping (Fossen, 2005).
In maneuvering it is common to assume absence of wave excitation, e.g. ves-
sel motion in sheltered waters or in a harbor. The model is developed under
a low-frequency assumption, such that the radiation forces can be repre-
sented by hydrodynamic derivatives. Seakeeping deals with all types of wave
excitation of vessels with constant speed and heading, including zero speed
which will be investigated in this thesis. In these models the radiation forces
are dependent on the frequency of the excitation, and it is not sufficient to
represent them by hydrodynamic derivatives.

In this chapter different approaches to the modeling of radiation forces
will be investigated. First, in Section 2.2 the different reference frames in
use will be presented together with the equations of motion intended for
use. The equations of motion include the radiation forces and moments,
and in Section 2.3 a frequency dependent representation valid for harmonic
motion will be reviewed. The radiation forces consist of added mass forces
and damping forces. Further, in Section 2.4 a time domain representation
valid for all types of low-amplitude motion will be presented. In Section
2.5 the frequency domain representation will be related to the time domain
representation. Finally, in Section 2.6 a relationship will be reviewed between
the added mass and the damping coefficients in the radiation forces model.
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2. Modeling of Marine Structures in Waves

2.2 Reference Frames and Equations of Motion

The equations of motion for a seagoing vessel are in general based on the
Newton-Euler equations of motion for rigid bodies and kinematic transfor-
mations (Fossen, 2002). Numerical software can be used to obtain the added
mass and damping matrices and other parameters used as a basis for the
equations of motion for a vessel. The coordinate frames used in numerical
hydrodynamics do not correspond to the coordinate frames used in the equa-
tions of motion for control, observers and simulators for vessels (Fossen and
Smogeli, 2004).

Three orthogonal reference frames are used to describe the motions of
the vessel in 6-DOF,

• Body-fixed frame ( b-frame )

• North-East-Down frame ( n-frame )

• Hydrodynamic frame (h-frame)

The equations of motion used for control and simulation of vessels can be ex-
pressed as a combination of n-frame and b-frame coordinates (Fossen, 2002).

• Body-fixed frame (b-frame; ob, ~xb, ~yb, ~zb)
The frame is assumed fixed to the vessel hull. The origin ob is de-
termined by letting the axes of this frame coincide with the principal
axes of inertia, with ~xb, ~yb, ~zb pointing respectively towards the bow,
starboard and down.

• North-East-Down frame (n-frame; on, ~xn, ~yn, ~zn) The frame is fixed rel-
ative to the Earth’s surface. The origin on is located on the mean water
free-surface, with ~xn, ~yn, ~zn pointing respectively towards North, East
and down from the Earth tangent plane.

The generalized position vector is defined in the n-frame as a combination
of the North-, East-, Down-positions, [n, e, d]T , and the Euler angles in roll,
pitch and yaw, [φ, θ, ψ]T :

η = [n, e, d, φ, θ, ψ]T (2.1)

The generalized velocity is defined in the b-frame. It is a combination of
the linear velocities surge, sway and heave in ob, and the angular velocities
roll, pitch and yaw of the moving vessel in the b-frame with respect to the
n-frame:

ν = [u, v,w, p, q, r]T (2.2)
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Reference Frames and Equations of Motion

The position vector η is related to the velocity vector ν through the velocity
transformation J(Θ) defined in (Fossen, 2002):

η̇ = J(Θ)ν (2.3)

The equations of motion in numerical hydrodynamics are usually expressed
in the h-frame. In this formulation of the equations of motion, the generalized
position vector ξ is defined in the h-frame. In this thesis the h-frame will
be defined as in the hydrodynamic software intended for use, i.e. WAMIT
(www.wamit.com, 2006) and VERES (Fathi, 2004):

• Hydrodynamic frame (h-frame; oh, ~xh, ~yh, ~zh) For a vessel operating at
zero forward speed the h-frame is fixed to the Earth. The positive
axes ~xh, ~yh and ~zh are pointing forward, port and upwards, whereas
the horizontal plane spanned by ~xh and ~yh correspond to the still water
plane and the plane spanned by ~xh and ~zh correspond to the center-
plane of the vessel. The origin oh is placed such that the ~zh axis is
placed on the same axis as the center of gravity (CG).

Here ξ represents the position and angles of the body

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]
T (2.4)

where ξi represents the displacements in ξ1-surge, ξ2-sway, ξ3-heave, ξ4-roll,
ξ5-pitch and ξ6-yaw. Note that other definitions of the h-frame exists (Perez,
2005; Perez and Fossen, 2007).

The models investigated and applied in this thesis will be developed in
the h-frame. The vessel models will be valid for vessels operating at zero
forward speed. In order to use these models in control design and synthesis
they can be transformed into the n− and b−frame formulations. A good
overview over the necessary transformations is given in Perez and Fossen
(2007), in addition to general linearity assumptions that the equations in
this thesis are based on.

The equations of motion for a seagoing vessel are based on the Newton-
Euler equations of motion for rigid bodies. Here, these are formulated in the
h-frame

MRB ξ̈(t) = τR + τH + τ visc + τ ext + τA (2.5)

Here MRB ∈ R
6×6 is the rigid-body system inertia matrix, τR ∈ R

6 repre-
sents the radiation forces and moments, τH ∈ R

6 represents the hydrostatic
forces and moments, τA ∈ R

6 represents the actuator forces and moments,
τ ext ∈ R

6 represents the external forces and moments and τ visc ∈ R
6 rep-

resents the viscous forces and moments. A more precise description of the
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2. Modeling of Marine Structures in Waves

forces is given below. In the following the forces and moments will just be
referred to as the forces, i.e. the radiation forces and moments will just be
written as radiation forces.

Hydrostatic forces

The hydrostatic forces are restoring forces due to gravity and buoyancy. By
assuming that the restoring forces are linear, it is a good approximation to
express them as proportional to the displacement ξ(t) of the vessel (Perez,
2005).

τH(t) = −Chξ(t) (2.6)

where Ch ∈ R
6×6 is the matrix of restoring forces. For vessels with port-

starboard and fore-aft symmetry where small angles are assumed, Ch can
usually be written as Ch = diag [0, 0, Ch33, Ch44, Ch55, 0].

Viscous forces

The viscous forces are nonlinear damping forces appearing due to nonlinear
non-conservative phenomena, and kinetic energy of the hull is transferred to
heat due to viscous effects (skin friction, flow separation and eddy making).
These forces depend on the relative velocities between the hull and the fluid
(Perez, 2005).

Actuator forces

For vessels, the actuator forces τA can be due to propellers or thrusters. In
other applications, such as wave energy plants, the actuator forces can be
generated by other devices.

External forces

The external forces τ ext can be composed of

• Time varying forces due to waves

• Time varying forces due to wind

• Restoring forces from mooring systems.
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Frequency Dependent Radiation Forces

Radiation forces

These forces appear as a consequence of the change in the momentum of the
fluid and the waves generated due to the motion of the hull. These forces
are linearly related to the accelerations and velocities of the vessel. The
focus in this thesis will be on the modeling of the radiation forces, and in
the following sections the focus will be on different approaches for modeling
the radiation forces.

2.3 Frequency Dependent Radiation Forces

The vessel body is considered to be a rigid body, and the irrotational flow
of an inviscid and incompressible fluid is assumed. Potential theory can be
used to describe the interactions between the fluid and the floating vessel
(Newman, 1977). The fluid flow around the vessel is completely defined by
a velocity potential. From this potential the velocity and the pressure in the
fluid can be obtained and the forces acting on the body can be calculated.
The radiation forces are due to forced harmonic motions in the absence of
incident waves.

Due to assumption of linearity, it is common to solve the equations for the
radiation forces based on potential theory in the frequency domain. Assume
that the motion occurs at one single frequency. Then the position, velocity
and accelerations of the vessel can be described by

ξ(t) = Re{ξ̂ejωt} (2.7)

ξ̇(t) = Re{jωξ̂ejωt} (2.8)

ξ̈(t) = Re{−ω2ξ̂ejωt} (2.9)

Here ξ̂ is the amplitude of the vessel oscillations. For an inviscid and in-
compressible fluid where the fluid is irrotational, the fluid velocity can be
expressed as the gradient of a velocity potential. Due to the forced oscilla-
tions of the vessel, this potential can be expressed as (Vugts, 1970)

ΦR(r, ω, t) = Re{ϕ̂T (r, ω)ξ̂ejωt} (2.10)

Here ϕ̂(r, ω) is the complex radiation potential due to the forced harmonic
oscillations of the vessel in each of its six degrees of freedom. The complex
radiation potential is dependent on the frequency ω, the position vector
of a point on the vessel hull surface r and has unit amplitudes. Certain
boundary conditions must be fulfilled by the radiation potential ΦR. These
are described in e.g. Ogilvie (1964) and Newman (1977).
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2. Modeling of Marine Structures in Waves

From the linearized Bernoulli equation the hydrodynamic pressure on the
surface of the vessel follows from

p = −ρ∂ΦR

∂t
(r, ω, t) (2.11)

= −ρ Re{jωϕ̂T (r, ω)ξ̂ejωt} (2.12)

where ρ is the water density. The oscillating hydrodynamic forces are (Kris-
tiansen et al., 2005):

τR(t) = ρ

∫

S

∫

f
ΦR

∂t
(r, ω, t) dS (2.13)

= ρ

∫

S

∫

f Re{jωϕ̂T (r, ω)ξ̂ejωt} dS (2.14)

Here, f is defined as,

f =

[

n

r × n

]

(2.15)

where n is the unit vector normal to the wet surface, S, pointing out to the
fluid, and r is the position vector of a point on the hull surface. Let now
ϕ̂(r, ω) be split into its real and imaginary parts, ϕ̂(r, ω) = ϕre(r, ω) +
jϕim(r, ω):

τR(t) = ρ

∫

S

∫

f Re{jω
(

ϕTre(r, ω) + jϕTim(r, ω)
)

ξ̂ejωt} dS (2.16)

=
ρ

ω

∫

S

∫

fϕTim(r, ω) dS Re{−ω2ξ̂ejωt}

+ ρ

∫

S

∫

fϕTre(r, ω) dS Re{jωξ̂ejωt} (2.17)

= −
[

− ρ

ω

∫

S

∫

fϕTim(r, ω) dS

]

ξ̈(t)

−
[

−ρ
∫

S

∫

fϕTre(r, ω) dS

]

ξ̇(t) (2.18)

= −A(ω)ξ̈(t) −B(ω)ξ̇(t) (2.19)

The frequency dependent matricesA(ω) ∈ R
6×6×R

+ andB(ω) ∈ R
6×6×R

+

can now be found from

A(ω) =

[

− ρ

ω

∫

S

∫

fϕTim(r, ω) dS

]

(2.20)

B(ω) =

[

−ρ
∫

S

∫

fϕTre(r, ω) dS

]

(2.21)
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Frequency Dependent Radiation Forces

The frequency dependent matrices A(ω) and B(ω) will vary depending on
the vessel form and frequency of oscillation. If there is no current the matrices
are symmetrical, (Faltinsen, 1990):

A(ω) = A(ω)T , B(ω) = B(ω)T (2.22)

The hydrodynamic coefficients in sway A22(ω) and B22(ω) for a S-175 tanker
are plotted in Figure 2.1. The matrix A(ω) contains added mass coefficients
and the matrix B(ω) contains damping coefficients. For a moving vessel,
energy is supplied to the fluid through generated waves. This is represented
by the damping forces, and in the frequency domain these forces are propor-
tional to the velocities of the vessel. When the vessel is accelerating it gets
added mass due to the inertia of the fluid surrounding the hull. In the fre-
quency domain this is represented by the added mass forces, and the forces
are proportional to the vessel accelerations. The damping matrix B(ω) is as-
sociated with energy dissipation by the radiated waves, hence (Lewandowski,
2004):

det(B(ω)) ≥ 0, ∀ ω (2.23)

From this one can see that the damping elements on the diagonal have to be
positive semidefinite

Bii(ω) ≥ 0, ∀ ω (2.24)

The off-diagonal terms Bij(ω) can be both positive and negative, as long as
the whole matrix is positive semidefinite. A similar result does not apply
for the added mass matrix A(ω), except at ω = ∞ where the added mass
matrix, MA = MT

A = A(∞), is positive definite (Fossen, 2002):

det(A(∞)) > 0 (2.25)

hence,
Aii(∞) > 0 (2.26)

The equations of motion obtained for the radiation forces (2.19) are pre-
sented here in the frequency domain only. In classical vessel motion theory,
the simplest way to approximate the radiation forces has been to approxi-
mate the frequency dependent added mass and damping in (2.19) by constant
matrices

τR(t) = −A(ωk)ξ̈(t) −B(ωk)ξ̇(t) (2.27)

where ωk is a fixed frequency. This approximation represents a description in
the frequency domain of an oscillating motion at the frequency of motion ωk.
However, this type of model does not describe the vessel dynamics accurately
enough when looking at transient responses (Holappa and Falzarano, 1999).
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(a) Frequency dependent added mass A22(ω) in sway.
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Figure 2.1: Hydrodynamic radiation coefficients in surge for a S-175 tanker.

In the next section it will be shown how to obtain time domain equations
which are valid for all types of motion at zero speed, and then this solution
is connected to the frequency dependent added mass and damping matrices.
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Radiation Forces in the Time Domain

2.4 Radiation Forces in the Time Domain

Let the ship motion in the time domain be given by ξ(t). If the vessel is
given an impulsive displacement, the surrounding water will start to move
and remain moving after the impulse. This gives the vessel a response lasting
much longer than the impulse. The radiated waves from the vessel implies
a time dependence of the fluid motion. This memory effect can be captured
in the description of a time domain radiation potential, ΦR(r, t), by using
a formula presented by Cummins (1962). A convolution integral is used to
describe how the fluid motion at a given time is dependent on the previous
history of motion

ΦR(r, t) = ψT (r)ξ̇(t) +

∫ t

0
χT (r, t− τ)ξ̇(τ)dτ (2.28)

A review on how this equation is obtained is given in Oortmerssen (1976).
Here r is the position vector of a point on the hull surface. The potential
ψ(r) ∈ R

6 represents the instantaneous response of the fluid due to the
vessel motion, whereas χ(r, t) ∈ R

6 × R
+ describes motion of the fluid

after an impulsive movement of the vessel; a fluid memory effect. The total
velocity potential (2.28) now adequately describes the fluid motions due to
arbitrary vessel motions. This makes the following equations valid for all
types of motions, not only harmonic motion. Following the same approach
as in the previous section, given the velocity potential, the pressure on the
vessel hull can be found from the linearized Bernoulli equation

p = −ρ∂ΦR

∂t
(r, t) (2.29)

where p represents the hydrodynamical pressure and ρ the water density.
Substituting the partial derivative of the radiation potential from (2.28) in
(2.29) gives

p = −ρ
(

ψ(r)T ξ̈(t) +

∫ t

0

∂χT (r, t− τ)

∂t
ξ̇(τ)dτ

)

(2.30)

Here f is defined as in (2.15). Integration of the pressure over the wet hull
surface, S, gives the forces acting on the body due to the the radiation forces
(Kristiansen et al., 2005)

τR(t) = ρ

∫

S

∫

f
∂ΦR(r, t)

∂t
dS (2.31)
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The integral (2.31) can be solved for different types of body geometries.
Inserting from (2.30) gives

τR(t)=ρ

∫

S

∫

fψ(r)T ξ̈(t)dS + ρ

∫

S

∫

f

∫ t

0

∂χT (r, t−τ)
∂t

ξ̇(τ)dτdS (2.32)

=−
[

−ρ
∫

S

∫

fψ(r)TdS

]

ξ̈(t)−
∫ t

0

[

−ρ
∫

S

∫

f
∂χT (r, t−τ)

∂t
dS

]

ξ̇(t) dτ (2.33)

= −MAξ̈(t) −
∫ t

0
k(t− τ)ξ̇(τ) dτ (2.34)

This result is due to Cummins (1962), and MA and k(t − τ) can now be
found from

MA =

[

−ρ
∫

S

∫

fψT (r) dS

]

(2.35)

k(t− τ) =

[

−ρ
∫

S

∫

f
∂χT (r, t− τ)

∂t
dS

]

(2.36)

where MA = MT
A ∈ R

6×6 and the impulse response function k(t) = kT (t) ∈
R

6×6 × R
+ is real and causal.

2.5 Relating Frequency and Time Domain

Solutions

Ogilvie (1964) showed how the time domain solution is related to the fre-
quency dependent added mass and damping matrices in (2.20) and (2.21).
The time domain equations (2.34) describe all types of motion, including
harmonic motions. Let the vessel perform simple harmonic motion with
frequency ω, ξ(t) = Re{ξ̂ejωt}, then (2.34) can be written as

τR(t) = −MAξ̈(t) −
∫ t

0
k(t− τ)ξ̇(τ) dτ (2.37)

= −MAξ̈(t) −
∫ t

0
k(τ)ξ̇(t− τ) dτ (2.38)

= −MA Re{−ω2ξ̂ejωt}−
∫ t

0
k(τ) Re{jωξ̂ejωte−jωτ} dτ (2.39)
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= −MA Re{−ω2ξ̂(cosωt+ j sinωt)}

−
∫ t

0
k(τ)Re{jωξ̂(cosωt+j sinωt)(cosωτ−j sinωτ)} dτ (2.40)

= ω2 cosωtMAξ̂ − ω cosωt

∫ t

0
k(τ)ξ̂ sinωτ dτ

+ ω sinωt

∫ t

0
k(τ)ξ̂ cosωτ dτ (2.41)

This expression can be related to (2.19)

τR(t) = −A(ω)ξ̈(t) −B(ω)ξ̇(t) (2.42)

= −A(ω) Re{−ω2ξ̂ejωt} −B(ω) Re{jωξ̂ejωt} (2.43)

= −A(ω) Re{−ω2ξ̂(cosωt+ j sinωt)}
− B(ω) Re{jωξ̂(cosωt+ j sinωt)} (2.44)

= ω2 cosωt A(ω)ξ̂ + ω sinωt B(ω)ξ̂ (2.45)

Comparing the parts depending on cosωt and sinωt in (2.41) and (2.45), the
following relations follow

A(ω) = MA − 1

ω

∫ t

0
k(τ) sinωτ dτ (2.46)

B(ω) =

∫ t

0
k(τ) cos ωτ dτ (2.47)

By using the Riemann-Lebesgue lemma (B.1)-(B.2), one gets the following
values for B(∞) and A(∞) (Ogilvie, 1964)

B(∞) = lim
ω→∞

B(ω) = lim
ω→∞

∫ t

0
k(τ) cos ωτ dτ = 0 (2.48)

ω(A(∞) −MA) = lim
ω→∞

ω(A(ω) −MA) = lim
ω→∞

−
∫ t

0
k(τ) sinωτ dτ = 0

(2.49)
The latter implies that (A(∞) −MA) goes to zero faster than ω tends to
∞, and in addition

MA = A(∞) ⇒MA = MT
A (2.50)

From now, let k(τ) be written as k(t). The Fourier transform (B.3) of the
kernel k(t) is

F {k(t)} = K(jω) =

∫ t

0
e−jωtk(t) dt (2.51)

=

∫ t

0
k(t)(cosωt− j sinωt) dt. (2.52)
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2. Modeling of Marine Structures in Waves

Let K(jω) be split in its real and imaginary parts, K(jω) = Kre(jω) +
jKim(jω) and compare (2.52) with (2.46) and (2.47)

Kre(jω) =

∫ t

0
k(t) cosωt dt = B(ω) (2.53)

Kim(jω) = −
∫ t

0
k(t) sinωt dt = ω(A(ω) −MA) (2.54)

K(jω) = B(ω) + jω(A(ω) −MA) (2.55)

We know from (2.22) that A(ω) = AT (ω) and B(ω) = BT (ω), hence

Kij(jω) = Kji(jω), i = (1, . . . , 6), j = (1, . . . , 6) (2.56)

or

K(jω) =

















K11(jω) K21(jω) K31(jω) K41(jω) K51(jω) K61(jω)
K21(jω) K22(jω) K32(jω) K42(jω) K52(jω) K62(jω)
K31(jω) K32(jω) K33(jω) K43(jω) K53(jω) K63(jω)
K41(jω) K42(jω) K43(jω) K44(jω) K54(jω) K64(jω)
K51(jω) K52(jω) K53(jω) K54(jω) K55(jω) K65(jω)
K61(jω) K62(jω) K63(jω) K64(jω) K65(jω) K66(jω)

















(2.57)
The magnitude, |Kij(jω)|, and the phase, ∠Kij(jω), of Kij(jω) can now be
expressed as

|Kij(jω)| =
√

(Bij(ω))2 + (ω(Aij(ω) −MAij))2 (2.58)

∠Kij(jω) = arctan

(

ω(Aij(ω) −MAij)

Bij(ω)

)

(2.59)

In Figure 2.2 the Bode plot of K22(jω) in sway for the S-175 tanker is
shown, and in Figure 2.3 the damping term B22(ω) and the added mass term
ω(A22(ω)−MA22)) is plotted. As we can see from the plots, when the phase
is zero, it is the damping term B22(ω) which dominates the dynamics, while
when the phase is +/−90 (deg) it is the added mass term ω(A22(ω)−MA22)
which dominates the dynamics. In Figure 2.4 it is illustrated how the phase
of Kij(jω) varies depending on the values of Bij(ω) and ω(Aij(ω) −MAij).
The impulse response k(t) can now be found from the added mass matrix
A(ω) or the damping matrix B(ω) either by inverse Fourier cosine transform
(B.6) or inverse Fourier sine transform (B.8)

k(t) = F−1
c [Kre(jω)] =

2

π

∫ ∞

0
B(ω) cosωt dω (2.60)

k(t) = F−1
s [Kim(jω)] = − 2

π

∫ ∞

0
ω(A(ω) −MA) sinωt dω (2.61)

24



Relating Frequency and Time Domain Solutions

100

120

140

160

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

−90

−45

0

45

90

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

Figure 2.2: Bode plot of the radiation transfer functionK22(jω) for the S-175
tanker.
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2. Modeling of Marine Structures in Waves

Figure 2.4: The phase of the frequency response Kij(jω) depending on the
values of Bij(ω) and ω(Aij(ω) −MAij).
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the S-175 tanker.

26



Relating Damping and Added Mass

The first integral tends to converge fastest sinceB(ω) tends to zero faster
than ω(A(ω) −MA), and it is common to use this equation for finding the
impulse response of the system. An overview of different methods to com-
pute the retardation function k(t) is given in Ballard (2002). The impulse
response function obtained from the damping matrix B(ω) in Figure 2.1 is
plotted in Figure 2.5.

2.6 Relating Damping and Added Mass

It can be shown that the real and imaginary parts of the Fourier transform
of k(t) are related since the function is causal. This is a well-known result
in probability, statistics and system theory (Bendat and Piersol, 2000), but
for the radiation forces it was first mentioned by Kotik and Mangulis (1962).
These authors showed that the real and imaginary parts of the frequency
response of the radiation forces are related through the Hilbert transform
(B.9). For the frequency response in (2.55) this gives

Kim(jω) = −H{Kre(jω)} = − 1

π

∫ ∞

−∞

Kre(ju)

ω − u
du (2.62)

This equals

ω (A(ω) −MA) = − 1

π

∫ ∞

−∞

B(u)

ω − u
du (2.63)

Further, the real part can be found from the inverse Hilbert transform (B.10)
of the imaginary part,

Kre(jω) = −H−1{Kim(jω)} =
1

π

∫ ∞

−∞

Kim(ju)

ω − u
du (2.64)

This equals

B(ω) =
1

π

∫ ∞

−∞

u(A(u) −MA)

ω − u
du (2.65)

Given the matrices A(ω) and B(ω), a way to determine whether K(jω)
represents a physically realizable causal system is to check if Kre(jω) =
B(ω) is the Hilbert transform of −Kim(jω) = −ω(A(ω) −MA). If only
one of the matrices A(ω) or B(ω) is available Kre(jω) or Kim(jω) can still
be found through (2.63) and (2.65).

2.7 Concluding Remarks

The radiation forces consist of added mass forces and damping forces. Fre-
quency dependent added mass and damping matrices can be obtained by
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2. Modeling of Marine Structures in Waves

using hydrodynamic software. In this chapter a review has been given of
how these matrices relate to the frequency response and impulse response of
the radiation forces.

Time domain simulation of the radiation forces can be done by convo-
luting the impulse response of the radiation forces with the vessel velocity.
The equations of motion describing the radiation forces by use of convolution
terms are not consistent with the common formulations in control engineer-
ing. The common formulations in control engineering are state-space models
in the time domain or transfer functions in the frequency domain. Hence, the
formulations of the impulse response and frequency response of the radiation
forces will be used in order to identify radiation force models. In the next
chapters radiation force models will be expressed in state-space form or as
transfer functions.
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Chapter 3

Properties of Radiation Force

Models

3.1 Introduction

When the models of radiation forces are to be included in marine applica-
tions, it is important that they reflect the dynamical properties of the sys-
tem. It is also important to develop models which are in accordance with the
common formulations in a field, e.g. for control purposes. The common for-
mulations used in control design are state-space representations in the time
domain or transfer function representations in the frequency domain. The
convolution representation in the time domain of the radiation forces from
Chapter 2 can be approximated by state-space representations. Further, the
frequency response representations of the radiation forces from Chapter 2
can be approximated by rational transfer functions in the frequency domain.
In this chapter the focus will be on what properties and structure these mod-
els should have, based on knowledge about the frequency dependent added
mass and damping coefficients from hydrodynamic software.

In Section 3.2 properties like stability and passivity of the given model
are investigated. It will be shown that the convolution part of the radia-
tion forces represents a stable system. Subsequently, it will be shown that
the radiation forces are passive, and that the overall vessel-water system is
passive. In Section 3.3 the structure of the state-space models and transfer
functions used for approximation of the radiation forces will be investigated.
Further, in Section 3.4 an alternative representation of the radiation forces
will be investigated. This representation introduces a convolution integral
containing the acceleration of the vessel instead of the velocity.
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3. Properties of Radiation Force Models

3.2 Stability Properties

In this section properties like stability and passivity from control theory will
be investigated. These properties are useful in numerical simulations and
control synthesis and design.

The time-domain equations for the floating body can be written

MRB ξ̈(t) +Chξ(t) = τR + τ visc + τ ext + τA (3.1)

where

τR(t) = −MAξ̈(t) −
∫ t

0
k(t− τ)ξ̇(τ)dτ (3.2)

Let the radiation forces be partitioned accordingly

τR(t) = −τR1(t) − τR2(t) (3.3)

τR1(t) = MAξ̈(t) (3.4)

τR2(t) =

∫ t

0
k(t− τ)ξ̇(τ)dτ (3.5)

Further it is known that a system is bounded-input bounded-output (BIBO)
stable if for every bounded input the system gives a bounded output (see
Theorem B.1). The following proposition can be stated

Proposition 3.1 The linear SISO systems represented by the impulse re-
sponses kij(t) in (3.5) are BIBO stable.

Proof. As time goes to infinity, the Riemann-Lebesgue lemma (B.2) can be
used to find the final value of the impulse response k(t). By the use of (B.2)
and (2.60) it can be seen that the impulse response tends towards zero as
time goes to infinity

lim
t→∞

k(t) = lim
t→∞

2

π

∫ ∞

0
B(ω) cos ωt dω = 0 (3.6)

hence,
lim
t→∞

kij(t) = 0, ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.7)

Since kij(t) is absolutely integrable
∫ ∞

0
|kij(t)| <∞, ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.8)

it can be concluded that the SISO systems represented by the impulse re-
sponses kij(t) are BIBO stable.

Related to BIBO stability is Lp input-output stability. The following
proposition can be stated,
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Stability Properties

Proposition 3.2 The linear SISO systems represented by the impulse re-
sponses kij(t) in (3.5) are Lp input-output stable for 1 ≤ p ≤ ∞.

Proof. For SISO systems, the L1 and the L∞ norms of the convolution
operator S : u 7→ y = S(u) = h ∗ u are the same and equal to

∫ ∞
0 |h(t)| dt

(Antoulas, 2005). By use of (3.8) and Proposition B.1 it can be concluded
that the SISO systems represented by the impulse responses kij(t) are Lp
input-output stable for 1 ≤ p ≤ ∞.

Passivity theory is useful in the design and analysis of control systems
(Lozano et al., 2000; Egeland and Gravdahl, 2002). It is important that
the mathematical model reflects this property to avoid nonphysical behavior
when it is used in simulations. Passivity characterizes useful properties of
the system which can be used in the modeling process. In Damaren (2000)
and Kristiansen et al. (2005) it is pointed out that the radiation forces are
passive because of the use of energy functions in the time domain. Here it
is proposed to show the same result in the frequency domain by using the
properties of the added mass matrix A(ω) and the damping matrix B(ω).

The Laplace transform (B.15) of the radiation forces is

−τR(s) = L{−τR(t)} (3.9)

=

∫ ∞

0

(

MAξ̈(t) +

∫ t

0
k(t− τ)ξ̇(τ)dτ

)

e−stdt (3.10)

= (MAs+K(s))ξ̇(s) (3.11)

= H̄(s)ξ̇(s) (3.12)

Where H̄(s) is a 6 × 6 MIMO system describing the motion in each mode.
From (Egeland, 1993) we know that a MIMO system is passive if it satisfies

λmin
[

H(jω) +HT (−jω)
]

≥ 0, ∀ ω (3.13)

where λmin is the smallest eigenvalue of the matrix H(jω)+HT (−jω). The
frequency response of H(jω) is H(s) along the jω axis.

Proposition 3.3 The mapping from ξ̇ 7→ −τR in (3.12) is passive.

Proof. Using the expression for K(jω) from (2.55) gives

H̄(jω) = MAjω +K(jω) (3.14)

= B(ω) + jωA(ω) (3.15)

31



3. Properties of Radiation Force Models

Using the properties from (2.22) and (2.23) gives

H̄(jω) + H̄
T
(−jω) (3.16)

= B(ω) + jωA(ω) +BT (ω) − jωAT (ω) (3.17)

= 2B(ω) (3.18)

=⇒ λmin

[

H̄(jω) + H̄
T
(−jω)

]

≥ 0 (3.19)

and it can be concluded that the mapping ξ̇ 7→ −τR is passive.
According to (B.13), the passivity of the mapping ξ̇ 7→ −τR implies that
there exists a matrix E1 ≥ 0 such that

∫ T

0
−ξ̇T (t)τR(t) dt ≥ −E1. (3.20)

This result also implies that the elements on the diagonal of H̄(s) satisfies

H̄(s) ≥ 0 ⇒ H̄ii(s) ≥ 0, i = (1, . . . , 6) (3.21)

The same arguments as above can be used for K(jω).

Proposition 3.4 The mapping from ξ̇ 7→ τR2 in (3.5) is passive.

Proof. Using the expression for K(jω) from (2.55) and the properties from
(2.22) and (2.23) gives

K(jω) +KT (−jω) (3.22)

= B(ω) + jω(A(ω) −MA) +BT (ω) − jω(AT (ω) −MT
A) (3.23)

= 2B(ω) (3.24)

=⇒ λmin
[

K(jω) +KT (−jω)
]

≥ 0 (3.25)

and it can be concluded that the mapping ξ̇ 7→ τR2 is passive.
According to (B.13), the passivity of the mapping ξ̇ 7→ τR2 there exists a
matrix E2 ≥ 0 such that

∫ T

0
ξ̇
T
(t)τR2(t) dt ≥ −E2 (3.26)

Also, the elements on the diagonal of K(s) satisfies

K(s) ≥ 0 ⇒ Kii(s) ≥ 0, i = (1, . . . , 6) (3.27)

In Figure 3.1 the Nyquist plot of the frequency response K22(jω) is shown
for the S-175 tanker. The plot indicates that the system should be described
by a positive real function.
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Figure 3.1: Nyquist plot of the radiation transfer function K22(jω) for the
S-175 tanker.

Further, the passivity of the vessel model will be investigated in the same
style as in Sørensen (1993) and Kristiansen et al. (2005). Combining (3.1)
and (3.2) gives the following equations of motion

Mξ̈(t) +

∫ t

0
k(t− τ)ξ̇(τ)dτ +Chξ(t) = τ visc(t) + τ ext(t) + τA(t), (3.28)

where M = MRB +MA. For marine structures, where the system inertia
and added mass matrix is positive definite,

M > 0 (3.29)

and the matrix of restoring forces is positive semidefinite,

Ch ≥ 0 (3.30)

the following proposition is valid.

Proposition 3.5 The vessel-water system in (3.28) with input τ = τ visc +
τA + τ ext and output ξ̇ is passive.

Proof. The total energy in the system consists of kinetic and potential
energy,

V = total energy = kinetic energy + potential energy (3.31)
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3. Properties of Radiation Force Models

Choose the energy function

V (t) =
1

2
ξ̇
T
(t)Mξ̇(t) +

1

2
ξT (t)Chξ(t) ≥ 0 (3.32)

The time derivative of the energy function is

V̇ (t) = ξ̇
T
(t)Mξ̈(t) + ξ̇

T
(t)Chξ(t) (3.33)

= ξ̇
T
(t)

(

τ (t) −
∫ t

0
k(t− τ)ξ̇(τ)dτ

)

(3.34)

= ξ̇
T
(t)τ (t) − ξ̇T (t)τR2(t) (3.35)

Taking (3.26) into consideration, and by use of (B.14) from Lozano et al.
(2000) it follows that the mapping τ (t) 7→ ξ̇(t) is passive.

3.3 Model Without Convolution Term

The time domain equations for the floating body are now,

Mξ̈(t) +

∫ t

0
k(t− τ)ξ̇(τ)dτ +Chξ(t) = τ visc(t) + τ ext(t) + τA(t). (3.36)

The formulation of the equations of motion for a floating body based on the
use of convolution terms is not in agreement with the common formulations
used in control engineering. A state-space representation of the impulse
response kernel k(t) is more efficient than a calculation based on the use of
convolution integrals. Let the convolution part of the equations of motion
in (3.36) be written as

τR2(t) =

∫ t

0
k(t− τ)ξ̇(τ)dτ (3.37)

It is known from the control literature (Chen, 1999; Kailath, 1980) that this
type of system can also be presented in the time domain in state-space form
by assuming that k(t) is realizable:

ẋ(t) = Ax(t) +Bξ̇(t) (3.38)

τR2(t) = Cx(t) +Dξ̇(t) (3.39)

Since A(∞) = MA is taken out from the frequency response of the radiation
forces and represented in (3.4), there is no direct throughput from ξ̇(t) to
τR2(t), hence D = 0

ẋ(t) = Ax(t) +Bξ̇(t) (3.40)

τR2(t) = Cx(t) (3.41)
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Model Without Convolution Term

By use of Theorem B.2 and Proposition 3.2 it can be concluded that A in
the realization in (3.40)-(3.41) should be Hurwitz. The associated transfer
function is

K(s) = C(sI −A)−1B (3.42)

where the rational transfer functions Kij(s) can be written

Kij(s) =
Nij(s)

Dij(s)
=

bn−1s
n−1 + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
(3.43)

The relative degree (see Definition B.2) of the transfer functions will be at
least 1 since D = 0.

The passivity or positive realness of K(s) implies that the approximated
transfer functions on the diagonal of Kii are positive real. From Egeland and
Gravdahl (2002) it is known that the relative degree of a positive real SISO
system can be +/−1 or 0. Due to (3.43) it can be stated that these will be of
relative degree 1. In the following it will be investigated if this is consistent
with information given by the frequency data given from hydrodynamical
software. The properties of the off-diagonal transfer functions will also be
investigated. Some of these results are presented in Jeffreys (1984) and
Jordán and Beltrán-Aguedo (2004).

Frequency response at ω = 0

The value of K(jω) as ω tends to zero is

lim
ω→0

K(jω) = lim
ω→0

(B(ω) + jω(A(ω) −MA)) = B(0) (3.44)

For a vessel with zero speed the frequency dependent matrix B(ω) is zero at
zero frequency (Faltinsen, 1990),

lim
ω→0

K(jω) = B(0) = 0 (3.45)

hence
lim
ω→0

Kij(jω) = 0, ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.46)

Take the same limit for the transfer function in (3.43)

lim
ω→0

Kij(jω) = lim
ω→0

bn−1(jω)n−1 + · · · + b1(jω) + b0
(jω)n + an−1(jω)n−1 + · · · + a1(jω) + a0

=
b0
a0

(3.47)

In order for this to be in accordance with (3.46) b0 must be equal to 0 in the
transfer functions. Then the transfer functions Kij(s) can be written

Kij(s) =
bn−1s

n−1 + · · · + b1s

sn + an−1sn−1 + · · · + a1s+ a0
(3.48)
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3. Properties of Radiation Force Models

Frequency response at ω = ∞

From (2.48) and (2.49) it can be seen that

lim
ω→∞

K(jω) = lim
ω→∞

(B(ω) + jω(A(ω) −MA)) = 0 (3.49)

hence
lim
ω→∞

Kij(jω) = 0, ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.50)

Let us now take the same limit for the transfer function in (3.48)

lim
ω→∞

Kij(jω) =
bn−1(jω)n−1 + · · · + b1(jω)

(jω)n + an−1(jω)n−1 + · · · + a1(jω) + a0
= 0 (3.51)

This is in accordance with (3.50).

Initial value of impulse response

B(ω) converges to zero for an ω1 far less than ∞. Hence we can split the
integral in (2.60) in two parts,

k(t) =
2

π

∫ ω1

0
B(ω) cos(ωt) dω +

2

π

∫ ∞

ω1

B(ω) cos(ωt) dω, (3.52)

where the latter part is zero. The following expression for k(t) at time zero
follows

k(t=0) =
2

π

∫ ω1

0
B(ω) dω (3.53)

It is known from (2.23) that det(B(ω)) ≥ 0, ∀ ω, then k(0) ∈ R
6×6 satisfies

det(k(0)) ≥ 0 (3.54)

Since B(ω) is positive semidefinite the following holds

kii(0) ≥ 0, ∀ i = (1, . . . , 6) (3.55)

while the off-diagonal terms kij(0) ∀ i = (1, . . . , 6), j = (1, . . . , 6), i 6= j, can
be both zero, positive and negative. Assume now that all the terms in kij(t)
are nonzero, and use the initial-value theorem (B.18) on (3.48)

lim
t→0+

kij(t) = lim
s→∞

sKij(s) = lim
s→∞

s(bn−1s
n−1 + · · · + b1s)

sn + an−1sn−1 + · · · + a1s+ a0
= bn−1

(3.56)
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Model Without Convolution Term

Writing this in matrix form gives

lim
t→0+

k(t) = lim
s→∞

sK(s) =







b11n−1
. . . b16n−1

...
. . .

...
b61n−1

. . . b66n−1






(3.57)

where bijn−1
represents the bn−1 parameters of each transfer function Kij(s)

in the matrix K(s). The degree n of each transfer function can vary, de-
pending on the accuracy needed to approximate the given data. Given the
nonzero initial value k(0) in (3.54), the parameters bijn−1

should satisfy







b11n−1
. . . b16n−1

...
. . .

...
b61n−1

. . . b66n−1






= k(0) (3.58)

From this it can be concluded that in the modes where kij(0) 6= 0 the transfer
function should be of relative degree 1.

Example 3.1 Given a transfer function

Kij(s) =
b1s

s2 + 2s + 4
, (3.59)

where b1 is given the values [1, 1.5, 2, 2.5] will have the impulse responses
given in Figure 3.2. This example illustrates how the initial value of the
impulse response of a transfer function of relative degree 1 varies with the
choice of bn−1, which in this example is b1.

Final value of impulse response

Use of the final-value theorem (B.17) on (3.48) gives

lim
t→∞

kij(t) = lim
s→0

sKij(s) = lim
s→0

s(bn−1s
n−1 + · · · + b1s)

sn + an−1sn−1 + · · · + a1s+ a0
= 0 (3.60)

This is in accordance with the result in (3.7).
The transfer functions representing the hydrodynamic actions can now

be written

Kij(s) =
bn−1s

n−1 + · · · + b1s

sn + an−1sn−1 + · · · + a1s+ a0
(3.61)

This formulation is in accordance with the values of the frequency responses
at ω = 0 and ω = ∞ in addition to the initial values and final values of the
impulse responses of the system.
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Figure 3.2: Initial value of impulse response depending on value of b1 in
(3.59)

Now, the convolution term in the equations of motion can be approxi-
mated by a state-space model in the time domain

Mξ̈(t) + τR2(t) +Chξ(t) = τ visc + τ ext(t) + τA(t) (3.62)

ẋ(t) = Ax(t) +Bξ̇(t) (3.63)

τR2(t) = Cx(t) (3.64)

where τR2 represents the hydrodynamic actions caused by added mass and
damping. By defining the state vector

z(t) =





ξ̇(t)
ξ(t)
x(t)



 (3.65)

this can be written on state-space form as





ξ̈(t)

ξ̇(t)
ẋ(t)



 =





−M−1Ch 0 −M−1C

I 0 0

B 0 A









ξ̇(t)
ξ(t)
x(t)



+





I

0

0



 (τ visc+τA+τ ext)

(3.66)
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Model Without Convolution Term

This vessel model is illustrated in Figure 3.3. It gives the following repre-
sentation in the Laplace domain

Mξ̈(s) +K(s)ξ̇(s) +Chξ(s) = τ visc(s) + τ ext(s) + τA(s) (3.67)

Figure 3.3: The vessel model

Exploiting symmetry properties

The 6-DOF equations of motion give 36 impulse response functions. Since
the matrices A(ω) and B(ω) are symmetric, this simplifies the identification
of the overall system. Different body symmetries simplify the realization.
Examples of some of the body symmetries are given below (Fossen, 2002).

1. xz-plane of symmetry (port/starboard symmetry)

K(jω) = KT (jω) =

















K11 0 K13 0 K15 0
0 K22 0 K24 0 K26

K13 0 K33 0 K35 0
0 K24 0 K44 0 K46

K15 0 K35 0 K55 0
0 K26 0 K46 0 K66

















(3.68)
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2. xy-plane of symmetry (bottom/top symmetry)

K(jω) = KT (jω) =

















K11 K12 0 0 0 K16

K21 K22 0 0 0 K26

0 0 K33 K34 K35 0
0 0 K34 K44 K45 0
0 0 K35 K45 K55 0
K16 K26 0 0 0 K66

















(3.69)

3. yz-plane of symmetry (fore/aft symmetry)

K(jω) = KT (jω) =

















K11 0 0 0 K15 K16

0 K22 K23 K24 0 0
0 K23 K33 K34 0 0
0 K24 K34 K44 0 0
K15 0 0 0 K55 K56

K16 0 0 0 K65 K66

















(3.70)

4. xz-and yz-planes of symmetry (port/starboard and fore/aft symme-
tries)

K(jω) = KT (jω) =

















K11 0 0 0 K15 0
0 K22 0 K24 0 0
0 0 K33 0 0 0
0 K24 0 K44 0 0
K15 0 0 0 K55 0
0 0 0 0 0 K66

















(3.71)

5. xz-,yz-and xy-planes of symmetry (port/starboard, fore/aft and bot-
tom/top symmetries)

K(jω) = KT (jω) = diag [K11,K22,K33,K44,K55,K66] (3.72)

Hence, the symmetry properties of a marine structure are important infor-
mation. This can be used in the identification process to reduce the number
of systems which need to be identified.

Based on what we have found in Section 3.2 and this Section, the follow-
ing identification criteria can be put up,

• The overall 6×6 transfer function matrix K(s) should be positive real.

• The transfer functions Kij(s) ∀ i = (1, . . . , 6), j = (1, . . . , 6) should be
strictly proper of relative degree 1 and stable.
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• The transfer functions Kii(s) ∀ i = (1, . . . , 6) should be positive real.

• Symmetry properties can be utilized to reduce the number of transfer
functions that need to be identified, since Kij(s) = Kji(s) and some
elements might be 0 due to body symmetry.

3.4 Alternative Convolution Representation

An alternative convolution representation of the radiation forces was pro-
posed by Wehausen (1971) and Falnes (2002)

τR(t) = −MAξ̈(t) −
∫ t

0
l(t− τ)ξ̈(τ) dτ (3.73)

τR1(t) = MAξ̈(t) (3.74)

τR2(t) =

∫ t

0
l(t− τ)ξ̈(τ) dτ (3.75)

where the kernel of the convolution can be found from (Falnes, 2002)

l(t) =
2

π

∫ ∞

0
(A(ω) −MA) cos(ωt) dω (3.76)

=
2

π

∫ ∞

0

B(ω)

ω
sin(ωt)dω (3.77)

The frequency response can be written as

L(jω) = (A(ω) −MA) +
B(ω)

jω
(3.78)

= (A(ω) −MA) − j
B(ω)

ω
(3.79)

In Falnes (2002) it is assumed that B(ω) tends sufficiently fast to zero at
ω → 0 to make L(jω) non-singular at ω = 0. The magnitude, |Lij(jω)|, and
the phase, ∠Lij(jω), of Lij(jω) are

|Lij(jω)| =

√

(Aij(ω) −MAij)
2 +

(

−Bij(ω)

ω

)2

(3.80)

∠Lij(jω) = arctan

( −Bij(ω)

ω(Aij(ω) −MAij)

)

(3.81)
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3. Properties of Radiation Force Models

Let the Laplace transform (B.15) of the radiation forces be written as

−τR(s) = L{−τR(t)} (3.82)

=

∫ ∞

0

(

MAξ̈(t) +

∫ t

0
l(t− τ)ξ̈(τ) dτ

)

e−stdt (3.83)

= (MA +L(s))ξ̈(s) (3.84)

= Ĥ(s)ξ̈(s) (3.85)

Using the expression for L(jω) from (3.79) gives

Ĥ(jω) = MA +L(jω) (3.86)

= A(ω) − j
B(ω)

ω
(3.87)

The two representations (3.12) and (3.85) for the radiation forces in the
Laplace domain exist

−τR(s) = H̄(s)ξ̇(s) (3.88)

= Ĥ(s)ξ̈(s) (3.89)

where the transfer function Ĥ(s) can be split into

Ĥ(s) = Ĥ(∞) + Ĥsp(s) (3.90)

Ĥ(∞) = MA (3.91)

Ĥsp(s) = L(s) (3.92)

where sp stands for strictly proper. Further the radiation forces can be
written out as

−τR(s) = (MAs+K(s))ξ̇(s) (3.93)

= (MA +L(s))ξ̈(s) (3.94)

= (MAs+ sL(s))ξ̇(s) (3.95)

hence

MAs+ sL(s) = MAs+K(s) (3.96)

⇓ (3.97)

L(s) =
1

s
K(s) (3.98)

Taking the inverse Laplace transform (B.19) gives the following relation be-
tween the two convolution representations

l(t) =

∫ t

0
k(τ) dτ (3.99)
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Using (3.61) together with (3.98) gives the following expressions for the trans-
fer function Lij(s),

Lij(s) =
bn−1s

n−2 + · · · + b2s+ b1
sn + an−1sn−1 + · · · + a1s+ a0

(3.100)

It was shown in Section 3.2 that the mapping from ξ̇ → −τR is passive. The
same general conclusion cannot be done for the mapping from ξ̈ → −τR.
Since we have strictly proper transfer functions of relative degree 2, the
mapping ξ̈ → −τR does not have the same positive real property as the
mapping ξ̇ → −τR.

As for the transfer functions Kij(s) the relative degree of the transfer
function Lij(s) can be confirmed by comparing it with the values of the
frequency responses at ω = 0 and ω = ∞ together with the initial and final
values of the impulse responses.

Frequency response at ω = 0

The value of L(jω) as ω tends to zero is

lim
ω→0

L(jω) = lim
ω→0

((A(ω) −MA) − j
B(ω)

ω
) = (A(0) −MA) (3.101)

hence

lim
ω→0

Lij(jω) = (Aij(0) −MAij), ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.102)

Let us now take the limit of the transfer function in (3.100):

lim
ω→0

Lij(jω) = lim
ω→0

bn−1(jω)n−2 + · · · + b2(jω) + b1
(jω)n + an−1(jω)n−1 + · · · + a1(jω) + a0

=
b1
a0

(3.103)

In order for this to be in accordance with (3.102)

(Aij(0) −MAij) =
b1
a0

(3.104)

Frequency response at ω = ∞

The value of the frequency response at ω = ∞ is

lim
ω→∞

L(jω) = lim
ω→∞

((A(ω) −MA) − j
B(ω)

ω
) = 0 (3.105)

hence

lim
ω→∞

Lij(jω) = 0, ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.106)
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3. Properties of Radiation Force Models

Let us now take the same limit for the transfer function in (3.100)

lim
ω→∞

Lij(jω) = lim
ω→∞

Lij(jω) =
bn−1(jω)n−2 + · · · + b2(jω) + b1

(jω)n + an−1(jω)n−1 + · · · + a1(jω) + a0
= 0

(3.107)
This is in accordance with the result in (3.106).

Initial value of impulse response

Use of the initial value theorem on (3.100) gives

lim
t→0+

lij(t) = lim
s→∞

sLij(s) = lim
s→∞

s(bn−1s
n−2 + · · · + b1)

sn + an−1sn−1 + · · · + a1s+ a0
= 0

(3.108)

Final value of impulse response

As time goes to infinity, the Riemann-Lebesgue lemma can be used to find
the final value of the impulse response l(t). By comparing (B.1) and (3.77),
one can see that the impulse response tends to zero as times goes to infinity

lim
t→∞

l(t) = lim
t→∞

2

π

∫ ∞

0

B(ω)

ω
sin(ωt) dω = 0 (3.109)

hence
lim
t→∞

lij(t) = 0, ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.110)

Use of the final-value theorem (B.17) on (3.100) gives

lim
t→∞

l(t) = lim
s→0

sLij(s) = lim
s→0

s(bn−1s
n−2 + · · · + b1)

sn + an−1sn−1 + · · · + a1s+ a0
= 0 (3.111)

This is in accordance with the result in (3.109). The transfer functions
representing the hydrodynamic actions can now be written

Lij(s) =
bn−1s

n−2 + · · · + b1
sn + an−1sn−1 + · · · + a1s+ a0

(3.112)

As for the convolution from velocity to force BIBO stability can be shown
and the following proposition can be stated,

Proposition 3.6 The linear SISO systems represented by the impulse re-
sponses lij(t) in (3.75) are BIBO stable.
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Proof. Since lij(t) is absolutely integrable
∫ ∞

0
|lij(t)| <∞, ∀ i = (1, . . . , 6), j = (1, . . . , 6) (3.113)

it can be concluded that the SISO systems represented by the impulse re-
sponses lij(t) are BIBO stable (see Theorem B.1).
Further, in the same manner as for the convolution from velocity to force Lp
input-output stability can be shown.

Proposition 3.7 The linear SISO systems represented by the impulse re-
sponses lij(t) in (3.75) are Lp input-output stable for 1 ≤ p ≤ ∞.

Proof. For SISO systems, the L1 and the L∞ norms of the convolution
operator S : u 7→ y = S(u) = h ∗ u are the same and equal to

∫ ∞
0 |h(t)| dt

(Antoulas, 2005). By use of (3.113) and Proposition B.1 it can be concluded
that the SISO systems represented by the impulse responses lij(t) are Lp
input-output stable for 1 ≤ p ≤ ∞.

When the SISO systems Lij(s) are represented by transfer functions of
relative degree two, the overall state-space system representing the hydro-
dynamic actions can be written

ẋ(t) = Ax(t) +Bξ̈(t) (3.114)

τR2(t) = Cx(t) (3.115)

or in the Laplace domain as

τR2(s) = L(s)ξ̈(s) (3.116)

L(s) = C(sI −A)−1B (3.117)

By use of Theorem B.2 and Proposition 3.7 it can be concluded that A in
(3.117) should be Hurwitz. Now, the convolution term in the equations of
motion can be replaced by the state-space model in the time domain

M ξ̈(t) + τR2(t) +Chξ(t) = τ visc + τ ext + τA (3.118)

ẋ(t) = Ax(t) +Bξ̈(t) (3.119)

τR2(t) = Cx(t) (3.120)

taking (3.84) into consideration, this can also be written as

MRB ξ̈(t) + τR(t) +Chξ(t) = τ visc + τ ext + τA (3.121)

ẋ(t) = Ax(t) +Bξ̈(t) (3.122)

τR(t) = Cx(t) +MAξ̈(t) (3.123)
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3. Properties of Radiation Force Models

This gives the following representation in the Laplace domain

(M +L(s))ξ̈(s) +Chξ(s) = τ visc(s) + τ ext(s) + τA(s) (3.124)

Figure 3.4 shows the vessel model with the acceleration convolution. Having

Figure 3.4: The vessel model with acceleration convolution

the defined state vector as in (3.65), one can see that the system in (3.118)-
(3.120) cannot be represented by a state-space system as compared to the
system in (3.62)-(3.64). Hence it is preferable to use the velocity convolution
compared to the acceleration convolution. Also the positive real property
of the velocity convolution gives a lot of information in the identification
process. Furthermore, positive realness of K(s) ensures the passivity of the
mapping from τ visc + τA + τ ext → ξ̇ because of the properties satisfied by
the matrices M and Ch (see (3.29) and (3.30)).

3.5 Concluding Remarks

In this chapter the stability properties of the radiation forces have been
investigated. It has been shown that the convolution part of the radiation
forces, as approximated by a state-space model, represents a stable system.
Further it has been shown that the radiation forces are passive. The inclusion
of passive radiation forces in the overall vessel model will give a passive
system from force input, τ visc + τ ext + τA, to the velocity output, ξ̇.

Further it has been shown that the convolution representation can be
approximated by a state-space representation. The structure of this type
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of model has been developed based on knowledge about the frequency de-
pendent added mass and damping, and the design criteria for the radiation
forces model have been discussed.

An alternative convolution representation for the radiation forces has also
been investigated. This convolution contains the vessel acceleration instead
of the velocity. The convolution containing velocity is passive, while the one
containing acceleration is not. Also the convolution containing velocity is
more appropriate for numerical simulations than the one containing accel-
eration. Hence, it is concluded to use the velocity convolution, and replace
this with a state-space representation.

The next chapter will give an overview of different identification methods
to approximate the radiation forces.

47





Chapter 4

Identification Methods

4.1 Introduction

The frequency dependent added mass matrix A(ω) and damping B(ω) are
given by the numerical hydrodynamic software. As seen in the previous
chapters, the frequency response of the radiation forces is given by

K(jω) = B(ω) + jω(A(ω) −MA) (4.1)

and the impulse response can be found from (2.60)

k(t) =
2

π

∫ ∞

0
B(ω) cos ωt dω (4.2)

Given the frequency domain description in (4.1) or the time domain descrip-
tion in (4.2) it is preferable to represent radiation forces as a state-space
model like in (3.63)-(3.64). This can be done either by time domain identi-
fication or by frequency domain identification as illustrated in Figure 4.1.

In this chapter, methods intended for use in the identification of the radi-
ation forces will be reviewed. Section 4.2 reviews a scheme for identification
from the impulse response. This is based on Markov parameter estimation,
and was first proposed by Kung (1978).

The frequency response is a nonparametric representation of the rela-
tionship between the inputs and outputs as a function of frequency. The
convolution kernel can be used in simulations, while for the frequency re-
sponse a parametric model has to be created. Two different frequency do-
main identification methods are reviewed in Section 4.3: a least squares and
a prediction-error minimization approach.
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Figure 4.1: Identification of the convolution term

4.2 Time Domain Identification

Given the impulse response k(t), we now want to find a state-space realiza-
tion (A,B,C,D) of the hydrodynamic actions. Kristiansen et al. (2005)
proposed to represent the state-space system of the radiation forces by the
use of Markov parameter estimation. This approach will be further explored
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in this section.
The overview here follows Antoulas (2005). Given a SISO transfer func-

tion H(s) it can be written as

H(s) = C(sI −A)−1B +D =
N(s)

D(s)
+D (4.3)

H(s) is then expanded in a Taylor series

H(s) = D +
1

s
CB +

1

s2
CAB + · · · + 1

sk
CAk−1B + · · · (4.4)

= h0 + h1
1

s
+ h2

1

s2
+ · · · + hk−1

1

sk
+ · · · (4.5)

The parameters hi are called the Markov parameters of the system,

M = (h0, h1, h2, . . . , hk−1, . . .) (4.6)

The Markov parameters can also be found from the impulse response of the
SISO system,

y(t) =

∫ ∞

0
h(t− τ)u(τ) dτ (4.7)

= h0u(t) +

∫ ∞

0
ha(t− τ)u(τ) dτ (4.8)

By assuming that ha(t) is an analytic function, ha(t) can be determined by
the coefficients of its Taylor series expansion around t = 0+

ha(t) = h1 +
t

1!
h2 + · · · + tk−2

(k − 2)!
hk−1 + · · · (4.9)

The Markov parameters of the radiation forces can be computed from the
integral

kij(t) =
2

π

∫ t

0
Bij(ω) cos(ωt) dω (4.10)

Hence, given a large set of Markov parameters of an unknown transfer func-
tion Kij(s) we want to find a minimal realization (A,B,C,D) whose trans-
fer function Kij(s) = C(sI−A)−1B+D, where the impulse response kij(t)
satisfies

kij(t) = CeAtB + δ(t)D, t ≥ 0 (4.11)

The Hankel singular value decomposition (SVD) method proposed by Kung
(1978) will be used. This method is implemented in the Robust Control
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Toolbox in MATLAB as imp2ss. The realization of the model is done in
discrete time, before a continuous time model is obtained via the inverse
Tustin transformation. Having the impulse response vector taken at the
intervals tk

kij(tk) (4.12)

the Markov parameters can be obtained

M = (kij(0), kij(t1), kij(t2), kij(t3), . . . , kij(t2n+1)) (4.13)

= (k0, k1, k2, . . . , k2n, k2n+1) (4.14)

where ts is the sampling time

ts = t2 − t1 (4.15)

The input to the function imp2ss are the Markov parameters in (4.14) and
the continuous time matrices (A,B,C,D) are returned. The algorithm is
written out sequentially below.

1. From the Markov parameters form the Hankel matrix

Hn+1 =











k1 k2 · · · kn
k2 k3 · · · kn+1
...

...
. . .

...
kn+1 kn+2 · · · k2n+1











(4.16)

2. Take the singular value decomposition of the Hankel matrix

Hn+1 = UΣV T (4.17)

here Σ = diag(σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0, . . . , 0) where k gives the
McMilan degree of the system.

3. Form the matrices

Ū = UΣ
1/2 (4.18)

V̄ = Σ
1/2V T (4.19)

where Σ
1/2 = diag(σ

1/2
1 , σ

1/2
2 , . . . , σ

1/2
k , 0, . . . , 0). Further, let

U
†
1 = Ū(1 : n, 1 : k) (4.20)

U2 = Ū(2 : n+ 1, 1 : k) (4.21)

U1 = Ū(1, 1 : k) (4.22)

V 1 = V̄ (1 : k, 1) (4.23)
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4. Compute the discrete-time system matrices in the transfer function
Hd(z) = Cd(zI −Ad)Bd +Dd

Ad = U
†
1U2 (4.24)

Bd = V 1 (4.25)

Cd = U1 (4.26)

Dd = k0 (4.27)

5. The continuous-time state-space matrices can now be obtained through
the bilinear Tustin transformation Hd(z)|

z=
2
ts

+s

2
ts

−s

→ H(s)

A =
2

ts
(Ad + I)−1(Ad − I) (4.28)

B =
2√
ts

(Ad + I)−1Bd (4.29)

C =
2√
ts
Cd(Ad + I)−1 (4.30)

D = Dd −Cd(Ad + I)−1Bd (4.31)

The continuous time state-space matrices are obtained through the bilinear
Tustin transformation. A discrete-time system is stable if the poles of its
transfer function are inside the unit circle in the complex z-plane. The bilin-
ear Tustin approximation ensures that stable state-space systems designed in
the discrete-time domain are converted to stable continuous time state-space
systems. The algorithm does not ensure a positive real realization. Because
of the conversion from discrete-time to continuous-time the D matrix in the
realization is nonzero. This type of realization can be used both for SISO
and MIMO identification.

4.3 Frequency Domain Identification

This section will investigate the identification of state-space models based
on the frequency response of the system. The problem can be formulated as
follows: given the n frequencies and frequency response pairs (ωk, K̄(jωk))
measured at the frequencies ωk, k = 1, . . . , n find the system transfer func-
tion K(s).

For the different SISO modes the complex frequency response obtained
at different frequencies can be written as

Z̄
N

= {K̄ij(jω1), . . . , K̄ij(jωN )} (4.32)
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From this a physically parameterized continuous time transfer function can
be obtained

Kij(s) =
Nij(s)

Dij(s)
=
bns

n + bn−1s
n−1 + · · · + b1s

sn + an−1sn−1 + a1s+ a0
(4.33)

by use of least squares curve fitting. Replacing s by jω, the latter equation
can be expressed as a function of frequency

Kij(jω) =
Nij(jω)

Dij(jω)
=
bnjω

n + bn−1jω
n−1 + · · · + b1jω

jωn + an−1jωn−1 + a1jω + a0
(4.34)

The transfer function Kij(s) can be found by use of the invfreqs function in
the MATLAB Signal Processing Toolbox. The algorithm is based on a least
squares approach (Levi, 1959)

min
b,a

N
∑

k=1

W (jωk)|K̄ij(jωk)Dij(jωk) −Nij(jωk)|2 (4.35)

in order to fit the best model to the given data. W is a weighting func-
tion over the different frequencies. This identification scheme ensures stable
systems, but positive realness of the identified system is not ensured. As
implemented in invfreqs the scheme only supports SISO identification.

Another approach is to use prediction-error minimization identification,
a function called pem is provided in the System Identification Toolbox in
MATLAB. This function supports both time and frequency domain identifi-
cation. Local optimization algorithms are used in prediction error minimiza-
tion methods. Given the original data set, a parameterized continuous time
model can be obtained for each mode

ẋij(t) = Aij(θ)xij(t) +Bij(θ)ξ̇i(t) (4.36)

yj(t,θ) = Cij(θ)xij(t) (4.37)

Here τR2j(t) is approximated by yj(t,θ). This corresponds to the following
frequency response

Kij(jω,θ) = Cij(θ)(jωI −Aij(θ))
−1Bij(θ) (4.38)

In the time domain, the prediction error associated with a certain choice of
parameters, θ∗ can be expressed as

ε(t,θ∗) = y(t) − y(t,θ∗) (4.39)
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The optimal choice of the parameters in θ can be done in different ways.
Given the time domain data set of the system

ZN = [y1, u1, y2, u2, . . . , yN , uN ] (4.40)

choose a cost function (this is just an example of a possible choice, a lot of
different criteria can be used)

VN (θ,ZN ) =
1

N

N
∑

t=1

1

2
ε(t,θ)2 (4.41)

pick the best model
θ̂N = arg min

θ∈Θ

VN (θ,ZN ) (4.42)

A similar expression can be found for the frequency domain approach. A
thorough overview over the different approaches in the time and frequency
domain is given in Ljung (1999). When frequency domain data are given,
the algorithm is initialized by the use of subspace approximation before an
iterative optimization search is done in order to find the best model fit. The
scheme ensures stable systems, but positive realness is not ensured. The
scheme supports both SISO and MIMO identification.

4.4 Concluding Remarks

A review of time and frequency identification methods has been given in this
chapter. One method is intended for identification of state-space models
from the impulse response of the radiation forces. This method is based on
Markov parameter estimation. Two frequency domain approaches have also
been investigated. One is based on a least squares curve fitting and the other
is based on prediction error minimization.

Both the time domain and frequency domain identification schemes pre-
sented here do not ensure positive realness of the overall model. It is out
of the scope of this thesis to deal with this subject. Relevant references are
among others Damaren et al. (1996) and Coelho et al. (2004).

In Chapter 6 the different methods presented in this chapter will be used
in order to obtain state-space models of radiation forces for inclusion in the
vessel models. The different identification schemes will be compared for this
use.
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Chapter 5

Model Reduction

5.1 Introduction

In simulation and control there is a need for efficient and compact mathe-
matical models. Model reduction is a tool for reducing the size of high order
mathematical models, where the focus is on approximating the most impor-
tant dynamical features of the original model. Model order reduction is used
in a wide variety of applications and different fields, such as very large-scale
integration (VLSI) chip design, simulation of micro-electro-mechanical sys-
tems (MEMS), image processing, financial models, weather and air quality
prediction and control design and synthesis.

This chapter gives an overview of already existing model reduction meth-
ods. First the focus is on order reduction by balanced truncation, which is
well suited and efficient for systems of moderate size (say, of an order of a
few thousands). Recent results have shown that this type of algorithms also
is promising for higher order systems, as more efficient algorithms are being
developed (Benner et al., 2005).

Positive real systems describe a class of systems which cannot generate
energy internally; they can store and dissipate energy, but they cannot pro-
duce energy. For such systems, it is important that any approximate model
reflects this property in order to avoid nonphysical behavior when used in
numerical simulations. This is a useful property, which we would like to
preserve in the model reduction process, and there are balanced truncation
methods that indeed preserve the positive realness of a system during the
reduction process. In this chapter a new algorithm in this class is presented,
which is computationally efficient.

An introduction to the most common balancing schemes is given in Sec-
tion 5.2, Lyapunov balancing and stochastic balancing. Based on these al-
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gorithms a novel algorithm, which constructs positive real reduced order
systems, is proposed. A numerical example is given, where the different
schemes are compared in terms of computational efficiency and accuracy. In
Section 5.3 properties are stated which are required in order to yield positive
real reduced order systems. Then this result is used to develop a method for
positive real frequency weighted truncation.

Figure 5.1: Order reduction by projection

5.2 Balanced Truncation

For an nth order minimal linear time invariant (LTI) system in state-space
form

ẋ(t) = Ax(t) +Bu(t) (5.1)

y(t) = Cx(t) +Du(t) (5.2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m, the associated
transfer function is given by

G(s) = C(sIn −A)−1B +D (5.3)

Model reduction deals with finding a reduced order system, with order r ≤ n,
which captures the main features of the original system, i.e. its dynamics,
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system stability, system passivity and possibly some structural properties.
The reduced model of order r ≤ n is written as

ẋr(t) = Arxr(t) +Bru(t) (5.4)

y(t) = Crxr(t) +Dru(t) (5.5)

where Ar ∈ R
r×r, Br ∈ R

r×m, Cr ∈ R
p×r and Dr ∈ R

p×m, and its associ-
ated transfer function is given by

Gr(s) = Cr(sIr −Ar)
−1Br +Dr (5.6)

Many different coordinate systems can be used to describe the dynamical
system in (5.1). Let T ∈ R

n×n be a nonsingular matrix, and let the system
undergo a state-space transformation

x̄(t) = Tx(t) (5.7)

˙̄x(t) = TAT−1x̄(t) + TBu(t) (5.8)

y(t) = CT−1x(t) +Du(t) (5.9)

The transformed system (5.8)-(5.9) has the same dynamics for any nonsingu-
lar matrix T . Model reduction can now be done by choosing T , in terms of
some physical measure, and discard the parts of the transformed state x̄(t)
which are less important in terms of that measure. Partitioning the matrices
TAT−1, TB, CT−1 accordingly

TAT−1 =

[

Ā11 Ā12

Ā21 Ā22

]

(5.10)

TB =

[

B̄1

B̄2

]

(5.11)

CT−1 =
[

C̄1 C̄2

]

(5.12)

the reduced order system can thus be written as

Ar = Ā11, Br = B̄1, Cr = C̄1, Dr = D (5.13)

This is illustrated in Figure 5.1. This procedure for reducing systems is
called projection-based model order reduction (PBMOR). Different classes
of PBMOR are obtained depending on which properties the PBMOR keeps
(e.g. stability or passivity) or on how T is chosen.

One important class of the PBMOR methods is balanced truncation,
where the coordinate transformation T in (5.7)-(5.9) is chosen such that
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two given positive definite matrices (say, M and N ) are transformed via
M̄ := TMT T , N̄ := T−TN (T−1) to become equal and diagonal:

M̄ = N̄ = Σ (5.14)

The resulting transformed system is then in a so-called balanced coordinate
system based on M and N . For instance, in order to obtain asymptotically
stable systems one chooses M and N as the solution of a Lyapunov equa-
tion; for positive real systems one chooses them as a solution of the positive
real lemma. The matrices M and N are then clearly related to the proper-
ties of the system (i.e. the Lyapunov equations, the positive real equations)
and will lead to different types of balancing and hence also to different types
of reduced order models. The idea of balanced systems was introduced by
Mullis and Roberts (1976) in digital filters, and later introduced to the sys-
tem and control community by Moore (1981). A comprehensive survey of
balanced truncation methods is given in Gugercin and Antoulas (2004).

5.2.1 Lyapunov Balancing

Lyapunov balanced truncation was introduced to the control community by
Moore (1981). It is based on the solution of two Lyapunov equations, defining
the controllability gramian P , and the observability gramian Q :

AP + PAT +BBT = 0 (5.15)

ATQ+QA+CTC = 0 (5.16)

Notice that the gramians are positive definite if the system is minimal. The
idea behind Lyapunov balancing is to transform the mathematical model to a
coordinate system where the states that are difficult to control are also hard
to observe. The reduced model is obtained by discarding the states which
have this property. In Table 5.1 an algorithm for finding the transformations
T and T−1 satisfying (5.7)-(5.9) is recalled. Lyapunov balanced truncation
then amounts to using the positive definite controllability and observability
gramians (P ,Q) for the matrices (M ,N ).

The physical interpretation of the Lyapunov balancing can be related to
the L2-norm of the input and the output of the system. The controllability
and observability gramians P and Q are related to the energy demanded to
control and observe the system (Glover, 1984). The controllability gramian
P is connected to the solution of the minimum L2-norm problem

min
u∈L2(−∞,0)

{
∫ 0

−∞
u(t)Tu(t) dt s.t. x(0) = x0

}

=xT0P
−1x0 (5.17)
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Table 5.1: Balanced Truncation Algorithm

1. Choose a pair of positive definite matrices (M ,N )

2. Compute the Cholesky factorizations of M and N
M = LML

T
M , N = LNL

T
N

3. Compute the SVD of LTMLN
LTMLN =UΣV T

4. Construct the balancing transformations
T =Σ

1/2UTL−1
M , T−1 =L−T

N V Σ
1/2

5. Construct the balanced realization
Ā = TAT−1, B̄ = TB, C̄ = CT−1,
yielding TMT T =T−TNT−1 =Σ

6. Truncate Ā, B̄, C̄ to form the reduced order system
Ar,Br,Cr

In this setting the size of the eigenvalues of P describes (in the L2-norm)
how much input energy is needed to control the associated state eigenvector.
The observability gramian Q is related to the L2-norm of the output. If the
system is released at x(0) = x0 with u(t) = 0,∀t ≥ 0, the following equality
holds

∫ ∞

0
y(t)Ty(t) dt = xT0Qx0 (5.18)

In this setting, the size of the eigenvalues of Q describes (in the L2-norm)
how much output energy is produced when the associated state eigenvector
is in free evolution.

The balanced system is based on the positive definite matrices (P ,Q)

Ā = TAT−1, B̄ = TB, C̄ = CT−1 (5.19)

where

TPT T = T−TQT−1 = Σ (5.20)

are now in a coordinate system where the observability and controllability
gramians are equal and diagonal. Here Σ represents the singular values of
the system

Σ = diag(σ1 ≥ σ2 ≥ . . . ≥ σn) (5.21)
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Since the system is in a balanced coordinate system, the singular values give a
measure of which states are difficult to control and observe, and can therefore
be discarded without affecting the input-output behavior too much. Hence,
looking at the singular values of a system provides a good way to measure
which states to keep and which ones to discard.

An attractive part of the Lyapunov balancing is that there is a well
defined error bound between the original and reduced order system (Glover,
1984)

||G(s) −Gr(s)||∞ ≤
n

∑

k=r+1

σk (5.22)

where n is the order of the original system and r is the order of the reduced
order system.

When applied to an asymptotically stable system, Lyapunov balancing
preserves the stability of the system, but a property like passivity might not
be preserved. We will call a state transformation T which guarantees that the
reduced order system is stable as well, a stable state-space transformation.

Definition 5.1 Let G(s) in (5.3) be a stable minimal realization, then T ∈
R
n×n is called a stable state transformation if all the truncated systems

Gr(s) = Cr(sI −Ar)
−1Br +Dr, r = (1, . . . , n− 1) (5.23)

obtained from the transformed system (5.7)-(5.9) are stable.

5.2.2 Stochastic Balancing

Stochastic balancing was first proposed by Desai and Pal (1984) where it
was used to balance stochastic systems; Harshavardhana et al. (1984) then
showed that it preserves the positive realness of the original system. In
Green (1988) it it shown how this can be applied to LTI systems. The idea
behind stochastic balancing leads to three different model order reduction
algorithms, as will be shown in this section.

Let Φ be the power spectrum of the positive real minimal degree transfer
function Z(s) = H(sIn − F )−1G+ J . Then we have the following relation
(Obinata and Anderson, 2001)

Φ = Z(s)+ZT (−s)=V (s)V T (−s)=W T (−s)W (s) (5.24)

Here Z(s) denotes the phase system, V (s) the left spectral factor of Z(s),
andW (s) the right spectral factor ofZ(s). The systemZ(s) = (F ,G,H ,J),
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which is positive real (PR), satisfies the positive real lemma equations

FR+RF T = −GlG
T
l (5.25)

RHT −G = −GlJ
T
l (5.26)

−J − JT = −J lJTl (5.27)

Here R = RT > 0, Gl and J l can be solved from these equations. A dual
pair of positive real equations can be obtained by pre- and post-multiplying
(5.25) by R−1, and pre-multiplying (5.26) by R−1. By defining;

O := R−1 (5.28)

Hr := −LTGT
l R

−1 (5.29)

J r := LTJTl (5.30)

where L is an arbitrary orthogonal matrix (i.e. LLT = I), the dual positive
real (DPR) equations are obtained, given by

F TO +OF = −HT
rHr (5.31)

OG−HT = −HT
r J r (5.32)

−J − JT = −JTr Jr (5.33)

Here O = OT > 0, Hr and J r can be solved from these equations, which
shows that the dual system ZT (−s) = GT (sI − F T )−1HT + JT of Z(s) is
positive real.

The solutions R and O of (5.25)-(5.27) and (5.31)-(5.33) form convex
sets (Willems, 1971)

0 < Rmin ≤ R ≤ Rmax (5.34)

0 < Omin ≤ O ≤ Omax (5.35)

Given the solution R to the PR equations, then O = R−1 is a solution to
the DPR equations, hence Rmin = O−1

max and Omin = R−1
max.

Let (R,Gl,J l) be the solution to the PR equations (5.25)-(5.27), then
the left spectral factor associated with (R,H l,J l) is

V (s) = H(sI − F )−1Gl + J l (5.36)

Let (O,Hr,J r) be the solution to the DPR equations in (5.31)-(5.33), then
the right spectral factor associated with (O,Hr,J r) is

W (s) = Hr(sI − F )−1G+ J r (5.37)
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A function F c can now be defined using F , Gl and Hr from (5.25) and
(5.31) such that (Obinata and Anderson, 2001)

[

Z(s) V (s)
W (s) F c(s)

]

=

[

H

Hr

]

(sI−F )−1
[

G Gl

]

+

[

J J l
Jh 0

]

(5.38)

By doing balanced truncation on F c(s) = Hr(sI − F )−1Gl based on its
controllability gramian and observability gramian,

FP +PF T +GlG
T
l = 0 (5.39)

F TQ+QF +HT
rHr = 0 (5.40)

induced truncations of the realizations Z(s), V (s) and W (s) are simultane-
ously obtained. Depending on whether one chooses the system G(s), which
is to be reduced, equal to Z(s), V (s) or W (s) one ends up with three differ-
ent order reduction algorithms; Riccati balancing (phase system balancing),
left spectral factor balancing and right spectral factor balancing.

Riccati balancing (phase system balancing)

By choosing the phase system equal to the system transfer function, Z(s) =
G(s), one obtains Riccati balancing, also called phase system balancing. It
is now assumed that G(s) = (A,B,C,D) is a minimal positive real transfer
function, hence the system will satisfy the PR equations (5.25)-(5.27) and
the DPR equations (5.31)-(5.33).

In Riccati balancing the minimal solution (Rmin,Omin) to (5.25)-(5.27)
and (5.31)-(5.33) is used. These can be obtained by rewriting (5.25)-(5.27)
and (5.31)-(5.33) as a dual pair of Riccati equations, and then solve for
R > 0 and O > 0;

FR+RF T + (RHT −G)(J + JT )−1(HR −GT ) = 0 (5.41)

F TO +OF + (OG−HT )(J + JT )−1(GTO −H) = 0 (5.42)

When Z(s) = G(s) this gives

AR+RAT + (RCT −B)(D +DT )−1(CR −BT ) = 0 (5.43)

ATO +OA+ (OB −CT )(D +DT )−1(BTO −C) = 0 (5.44)

By performing Riccati balancing the system is transformed to a basis where

R = O = Σ (5.45)
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Since these are the minimal solutions to (5.25)-(5.27) and (5.31)-(5.33) (An-
toulas, 2005)

Rmin = Omin = Σ (5.46)

In Green (1988) it is shown that since the minimal solutions Rmin and Omin

are balanced, O−1
min = Rmax ≥ Rmin the σi in (5.46) are all less than or

equal to 1, hence for Riccati balancing

Σ ≤ I (5.47)

When applied to positive real systems, this property is preserved in the
reduction process. We will refer to such a state transformation T given by
the balancing of (R,O) as a positive real state transformation:

Definition 5.2 Let G(s) in (5.3) be a positive real minimal realization, then
T ∈ R

n×n is called a positive real state transformation if all the truncated
systems

Gr(s) = Cr(sI −Ar)
−1Br +Dr, r = (1, . . . , n− 1) (5.48)

obtained from the transformed system (5.7)-(5.9) are positive real.

As with the Lyapunov balancing this also has a physical interpretation.
Another way of checking if a system is passive, is in terms of Lyapunov
theory and the use of storage functions (Willems, 1971). In these terms a
system is said to be passive if there exists a storage function, V (x(t)) > 0,
such that the following inequality holds

V (x(t)) ≤ V (x(0)) +

∫ t

0
s(u(t),y(t)) dt (5.49)

Here s(u(t),y(t)) is called the supply function, and describes the rate at
which power is supplied to the system. Two quantities can be defined from
the notion of a storage function (Willems, 1971): the required supply, Vr,
and the available storage, Va. The required supply, Vr, is defined as

0 ≤ Vr(x0) = inf
u(t)|x(0)=x0

[∫ 0

−∞
s(u(t),y(t)) dt

]

(5.50)

and it is the minimum amount of energy required in order to control the
system to state x0 at time 0. The solution of (5.41) is related to the required
supply (Phillips et al., 2003)

xT0R
−1x0 = Vr(x0) (5.51)
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In this setting, the size of the eigenvalues of R describes how much energy
is needed to control the associated state eigenvector. Small eigenvalues of R
imply that a large amount of energy is needed to reach the associated mode.
R can be regarded as an input energy gramian; we will refer to R as the
required supply gramian.

The available storage is defined as

0 ≤ Va(x0) = sup
x(0)=x0

−
[∫ ∞

0
s(u(t),y(t)) dt

]

(5.52)

and is the maximum amount of energy which can be extracted from the
system in free evolution (Lozano et al., 2000). The solution of (5.42) is
related to the available storage (Phillips et al., 2003)

xT0Ox0 = Va(x0) (5.53)

Here, the size of the eigenvalues of O describes how much energy can be
extracted from the system in free evolution. Small eigenvalues of O imply
that a small amount of energy can be extracted from the associated mode.
O can be interpreted as an output energy gramian; we will refer to O as the
available storage gramian.

By doing Riccati balancing, the system is balanced in terms of its re-
quired supply and available storage. States which are associated with a
small amount of available storage and large amounts of required supply will
be discarded. This balancing scheme is commonly used to reduce positive
real systems, and will preserve this property in the reduction process.

Left spectral factor balancing

Having the relation (5.24):

Z(s) +ZT (−s) = V (s)V T (−s) (5.54)

the left spectral factor V (s) can be found from the solution, (R,Gl,J l), to
the PR equations (5.25)-(5.27)

V (s) =H(sI − F )−1Gl + J l (5.55)

Let the left spectral factor be the transfer function to be reduced, V (s) =
G(s):

V (s) = H(sI − F )−1Gl + J l = C(sI −A)−1B +D = G(s) (5.56)
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Then there exists a positive real function Z(s)

Z(s) = H(sI − F )−1G+ J = C(sI −A)−1G+ J (5.57)

which is connected to V (s) through the PR equations in (5.25)-(5.27). They
can now be written as

AR+RAT = −BBT (5.58)

RCT −G = −BDT (5.59)

−J − JT = −DDT (5.60)

The controllability gramian R of the left spectral factor can be solved from
(5.58), hence it is the same as the required supply gramian, R, of the positive
real function Z(s). By first solving for R in (5.58), G in (5.59) can be solved
for

G = RCT +BDT (5.61)

The dual positive real equations for Z(s) in (5.57) are now

ATO +OA = −HT
rHr (5.62)

OG−CT = −HT
r J r (5.63)

−J − JT = −JrJTr (5.64)

Let this be rewritten as a Riccati equation, where J + JT has been substi-
tuted for DDT in (5.60)

ATO +OA+ (OG−CT )(DDT )−1(GTO −C) = 0 (5.65)

By balancing G(s) based on the solution matrices (R,O), left spectral bal-
ancing can be obtained. Given G(s), the equations which need to be solved
are (5.58), (5.61) and (5.65).

Right spectral factor balancing

As for the left spectral factor, when the relation (5.24) is given

Z(s) +ZT (−s) = W T (−s)W (s) (5.66)

the right spectral factor W (s) can be found from the solution (O,Hr,J r)
to the DPR equations (5.31)-(5.33)

W (s) = Hr(sI − F )−1G+ J r (5.67)

Let the right spectral factor be set equal to the transfer function of the
system W (s) = G(s)

W (s) = Hr(sI − F )−1G+ Jr = C(sI −A)−1B +D = G(s) (5.68)
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Table 5.2: Overview over the different balancing schemes.

Φ(s) = V (s)V T (−s) = Z(s) + ZT (−s) = WT (−s)W (s)

Left Spectral Factor Phase System Right Spectral Factor

V (s)=H(sI−F )−1Gl+Jl Z(s) = H(sI−F )−1G+ J W (s)=Hr(sI−F )−1G+Jr

G(s) = (A,B, C,D) given

Z(s) = G(s)

V (s) = C(sI −A)−1Gl + Jl Z(s) = C(sI −A)−1B +D W (s) = Hr(sI −A)−1B + Jr

Lyapunov Balancing: -solve for (P,Q) -balance (P,Q)

Controllability gramian, P :

AP + PAT + BBT = 0

×

Observability gramian, Q:

ATQ+QA+ CTC = 0

Riccati Balancing: -solve for (R,O) -balance (R,O)

Contr. gramian, R: ⇐ ⇒Req. supply gramian, R:

AR+ RAT +GlG
T

l
= 0 AR+RAT = −GlG

T

l

RCT −B = −GlJ
T

l

−D−DT = −JlJ
T

l

m

AR+RAT +(RCT −B)(D+DT)−1(CR−BT)=0

×

Av. storage gramian, O:⇐ ⇒Obs. gramian, O:

ATO +OA = −HT
r Hr ATO + OA+HT

r Hr = 0

OB−CT = −HT
r Jr

−D−DT = −JT
r Jr

m

ATO+OA+(OB−CT)(D+DT)−1(BTO−C)=0

Mixed Gramian Balancing: -solve for (P,O) or (R,Q) -balance (P,O) or (R,Q)

Controllability gramian, P :

AP + PAT + BBT = 0

×

Av. storage gramian, O:⇐ ⇒Obs. gramian, O:

ATO+OA+(OB−CT)(D+DT)−1(BTO−C)=0 ATO + OA+HT
r Hr = 0

or
Contr. gramian, R:⇐ ⇒Req. supply gramian, R:

AR+ RAT +GlG
T

l
= 0 AR+RAT+(RCT −B)(D+DT)−1(CR−BT)=0

×

Observability gramian, Q:

ATQ+QA+ CTC = 0 (Continued on next page)
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Φ(s) = V (s)V T (−s) = Z(s) + ZT (−s) = WT (−s)W (s)

Left Spectral Factor Phase System Right Spectral Factor

V (s)=H(sI−F )−1Gl+Jl Z(s) = H(sI−F )−1G+ J W (s)=Hr(sI−F )−1G+Jr

G(s) = (A,B, C,D) given

V (s) = G(s)

V (s) = C(sI − A)−1B +D Z(s) = C(sI −A)−1G+ J W (s) = Hr(sI − A)−1G+ Jr

Left Spectral Factor Bal.: -solve for (R,G,O) -balance (R,O)

Contr. gramian, R:⇐ ⇒Req. supply gramian, R:

AR+ RAT +BBT = 0 AR+ RAT = −BBT

G = RCT + BDT

−J−JT = −DDT

×

Av. storage gramian, O:⇐ ⇒Obs. gramian, O

ATO+OA+(OG−CT)(DDT)−1(GTO−C)=0 ATO +OA+HT
r Hr = 0

G(s) = (A,B, C,D) given

W (s) = G(s)

V (s) = H(sI − A)−1Gl + Jl Z(s) = H(sI − A)−1B + J W (s) = C(sI − A)−1B +D

Right Spectral Factor Bal.: -solve for (O,H,R) -balance (R,O)

Av. storage gramian, O:⇒ ⇐ Obs. gramian, O:

ATO + OA = −CTC ATO +OA+ CTC = 0

HT = OB + CTD

−J − JT = −DTD

×

Contr. gramian, R: Req. supply gramian, R:

AR+RAT +GlG
T

l
= 0 AR+RAT +(RHT −B)(DTD)−1(HR−BT )=0

Now there exists a positive real function Z(s)

Z(s) = H(sI − F )−1G+ J = H(sI −A)−1B + J (5.69)

which is connected to W (s) through the DPR equations in (5.31)-(5.33).
The DPR equations can now be written as

ATO +OA = −CCT (5.70)

OB −HT = −CTD (5.71)

−J − JT = −DTD (5.72)

The observability gramian O of the right spectral factor can be solved from
(5.70), hence it is the same as the available storage gramian O of the positive
real function Z(s). By first solving for O in (5.70), H in (5.71) can be solved
for

HT = OB +CTD. (5.73)
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The positive real equations for Z(s) given in (5.69) are now

AR+RAT = −GlG
T
l (5.74)

RHT −B = −GlJ
T
l (5.75)

−J − JT = −J lJTl (5.76)

Let this be rewritten as a Riccati equation where J+JT has been substituted
for DTD in (5.72)

AR+RAT + (RHT −B)(DTD)−1(HR −BT ) = 0 (5.77)

By balancing G(s) based on the solution matrices (R,O), right spectral bal-
ancing can be obtained. Given G(s), the equations which need to be solved
are (5.70), (5.73) and (5.77). In Table 5.2 an overview over the different
balancing schemes induced by balancing F c in (5.38) is given.

Equality of the balancing schemes

For SISO systems, the reduced order systems generated by the left spectral
factor balancing and the right spectral factor balancing will have the same
transfer function. The state-space representations of two systems are said to
be zero-state equivalent if they have the same transfer matrix (see Theorem
B.3) For SISO systems the transfer function G(s) = GT (s). Hence, for SISO
systems, the dual systemGT (s) is zero-state equivalent with the given system
G(s). Here, we propose

Proposition 5.1 For SISO systems, the reduced order systems Gr(s) given
by left spectral factor balancing and right spectral factor balancing of the
system G(s) are zero-state equivalent.

Proof. Substitute the system G(s) with the dual system GT (s) in (5.56):

V (s) = GT (s) = BT (sI −AT )CT +DT (5.78)

Left spectral factor balancing of the dual system GT (s) gives the following
equations

ATR+RA = −CTC (5.79)

G = RB +CTD (5.80)

−J − JT = DTD (5.81)

AO +OAT − (OG−BT )(DTD)−1(GTO −BT ) = 0 (5.82)
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Looking at Table 5.2, one can see that left spectral factor balancing of the
dual systemGT (s) is the same as right spectral factor balancing of the system
G(s). The same yields for right spectral factor balancing of the dual system
GT (s), which gives the same equations as for left spectral factor balancing
of G(s). Due to this duality the reduced order systems Gr(s) given by left
spectral factor balancing or right spectral factor balancing of G(s) will be
zero-state equivalent.
There is no similar physical interpretation to the left and right spectral factor
balancing schemes, as for the Lyapunov and Riccati balancing schemes. But
in Opdenacker and Jonckheere (1986) it is shown that these schemes give
reduced spectral factors such that their phases approximate the phases of
the original spectral factors. Hence, left spectral factor balancing and right
spectral factor balancing can be interpreted as phase matching reduction
algorithms. For positive real SISO systems the phase will be in the interval
[−90◦,+90◦], hence as long as the phase of the original system is well fitted
the positive real property will be preserved.

5.2.3 Mixed Gramian Balancing

So far, the only algorithm presented which will guarantee positive real re-
duced order systems is the Riccati balancing. When Riccati balancing is
used, the system is balanced based on the solution of two Riccati equations.
Since the balanced system satisfies the PR equations, this gives positive real
reduced order systems. However, the solution of two Riccati equations is
computationally demanding. In this section a mixed gramian balancing ap-
proach is proposed. The idea behind the mixed gramian balancing is to solve
one Riccati equation and one Lyapunov equation, which is less computation-
ally demanding. As long as one of the PR equations is satisfied, this also
holds for the balanced system, and hence for the reduced order system.

By taking the controllability gramian P

AP + PAT +BBT = 0 (5.83)

and the available storage gramian O

ATO +OA+ (OB −CT )(D +DT )−1(BTO −C) = 0 (5.84)

and balancing the systemG(s) by using (P ,O), a positive real reduced order
system is obtained. A similar result can be obtained if the pair (R,Q),
consisting of the required supply gramian and the observability gramian, is
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balanced:

AR+RAT + (RCT −B)(D +DT )−1(CR −BT ) = 0 (5.85)

ATQ+QA+CTC = 0 (5.86)

Definition 5.3 The positive real minimal systemG(s) is called mixed gramian
balanced if

P = O = Σ = diag(σ1Im1, . . . , σqImq) (5.87)

or

R = Q = Σ = diag(σ1Im1, . . . , σqImq) (5.88)

where σ1 > σ2 > . . . > σq > 0 and mi where i = (1, . . . , q) are the multiplic-
ities of σi and m1 + . . .+mq = n.

The following theorem can now be stated.

Theorem 5.1 Let the positive real and minimal system G(s) have the mixed
gramian balanced realization

G(s) =

[

A B

C D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 (5.89)

where

P = O = Σ = diag(Σ1,Σ2) (5.90)

or

R = Q = Σ = diag(Σ1,Σ2) (5.91)

with

Σ1 = diag(σ1Im1, . . . , σkImk) (5.92)

Σ2 = diag(σk+1Imk+1
, . . . , σqIq) (5.93)

Then the reduced order model

Gr(s) =

[

A11 B1

C1 D

]

(5.94)

obtained by truncation is positive real.
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Proof. We give a proof for the pair (P ,O). Since the system (A,B,C,D)
is balanced, the two gramians (P ,O) are equal and diagonal, P = O = Σ,
and satisfy one Lyapunov equation and one Riccati equation

AΣ + ΣAT +BBT = 0 (5.95)

AT
Σ + ΣA+ (ΣB −CT )(D +DT )−1(BT

Σ −C) = 0 (5.96)

Writing out the second equation in terms of its partitioned matrices gives
the following (1, 1) block

AT
11Σ1 + Σ1A11 + (Σ1B1 −CT

1 )(D +DT )−1(BT
1 Σ1 −C1) = 0 (5.97)

Since Σ1 > 0 the positive realness of the reduced order system (A11,B1,C1,D)
can be concluded. The same can be shown for the pair (R,Q).
Further it can be shown for SISO systems that the transfer function of the
reduced order system Gr(s) = (A11,B1,C1,D) will be the same if either
the gramian pair (P ,O) or the gramian pair (R,Q) is used as a basis for
the mixed gramian balanced truncation algorithm.

The dual of the system G(s) is written

GT (−s) =

[

AT CT

BT DT

]

(5.98)

Substituting the system G(s) with the dual system GT (−s) in the equations
(5.83)-(5.84) gives the following equations

ATP + PA+CTC = 0 (5.99)

AO +OAT + (OCT −B)(D +DT )−1(CO −BT ) = 0 (5.100)

Solving for these equations, where the original system G(s) has been substi-
tuted with its dual, GT (−s), is the same as solving for the required supply
gramian (5.85) and the observability gramian (5.86) of the original system
G(s).

Subsequently, G(s) is replaced with its dual GT (−s) in the equations
(5.85)-(5.86)

ATR+RA+ (RB −CT )(DT +D)−1(BTR−C) = 0 (5.101)

AQ+QAT +BBT = 0 (5.102)

Solving for these equations is the same as solving for the controllability
gramian and the available storage gramian of the original system G(s). Due
to this duality, which comes from the duality of the Lyapunov equations and
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5. Model Reduction

the Riccati equations, when the systems are reduced, the transfer function
Gr(s) = (A11,B1,C1,D) will be zero-state equivalent. An overview over
the different balancing schemes presented so far is given in Table 5.2. The
connections the different balancing schemes have to the spectral factor of the
system is also shown.

5.2.4 Numerical Example
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Figure 5.2: Computational time when reducing the original system of order
ni down to order 2 for the different balancing schemes.

In this section the different balancing schemes presented in the preceding
section will be compared in terms of computational time and accuracy. A
positive real SISO system of order 350 is given and 8 different truncated
systems are first constructed, respectively of orders 350, 300, 250, 200, 150,
100, 50 and 10. All these systems are reduced further to a system of order
2 by using the different balancing schemes presented in the Sections 5.2.1-
5.2.3. The computations were done on a Dell Latitude D800 Notebook with
Intel Centrino processor 2 GHz and 1 GB RAM running MATLAB under
Windows XP. The computing times are shown in Figure 5.2. As one can
see from this figure, the Lyapunov balancing is the most efficient in terms
of time. This is expected since it is faster to solve Lyapunov equations com-
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Figure 5.3: Bode plot of the difference between the original system of order
n = 10 and reduced order system of order n = 2 using the different balancing
schemes.

pared to Riccati equations, since the solution of Riccati equations involves
matrix inversions. The mixed gramian balancing lies between the Riccati
and Lyapunov balancing in computational time, this is expected since one
Lyapunov equation and one Riccati equation is solved. In this example the
left and right spectral factor balancing schemes use approximately the same
time as the Riccati balancing. The left and right spectral factor balancing
schemes are expected to use more time than the mixed gramian balancing.
Even though these algorithms also balance the solution of one Lyapunov and
one Riccati equation, more equations are to be solved than for the mixed
gramian balancing scheme. The errors between the system of order n = 10
and the reduced order system of n = 2 are given in Table 5.3. The Bode plots
of the original system and the different reduced order systems are shown in
Figure 5.3. The Lyapunov balancing has the best error-performance, but
looking at the Bode plot one can see that the reduced order system is not
passive since the phase of the reduced order system exceeds 90 deg. The
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5. Model Reduction

Table 5.3: || · ||∞-error between original and reduced order system of order
n = 10 and n = 2.

Balancing scheme: ||G(s) −Gr(s)||∞
Lyapunov 9.08 · 105

Riccati 3.53 · 107

Mixed gramian 2.71 · 106

Left/Right spectral factor 2.42 · 106

reduced order system using left/right spectral factor balancing is passive,
even though this might not be the case, and has the best error performance
for this system. The only algorithms which guarantee positive real reduced
order systems are Riccati and mixed gramian balancing. In this example,
the mixed gramian balancing can compete with the Riccati balancing both
in terms of computational time and reduction error.

5.3 Extending Balanced Truncation

Stable systems can be characterized by the solution of a Lyapunov equation
and positive real systems can be characterized by the solution of the positive
real lemma. In this section we show that as long as one of the gramians in
the balanced truncation scheme satisfies one of these equations the reduced
order system generated will be stable or positive real.

5.3.1 Stable Projection

A stable system is characterized by Theorem B.4. Let Y = Y T > 0 be an
arbitrary positive real matrix, and P = P T > 0 be the solution to (B.22).
By substituting (M ,N ) by the pair (P ,Y ) in the balanced truncation al-
gorithm in Table 5.1, it can be shown that the reduced order system will be
stable.

Theorem 5.2 Let the stable and minimal system G(s) have the balanced
realization

G(s) =

[

A B

C D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 (5.103)
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Extending Balanced Truncation

with P = Y = Σ = diag(Σ1,Σ2), where the pair (P ,Y ) comes from

arbitrary Y = Y T > 0 (5.104)

AP + PAT +Q = 0 (5.105)

P = P T > 0 (5.106)

Q = QT > 0 (5.107)

Then the associated state transformation T will be a stable state transforma-
tion and the reduced order model obtained by truncation is stable.

Proof. Since (A,B,C,D) is balanced, the two gramians (P ,Y ) are equal
and diagonal P = Y = Σ, and satisfy the following equations

P = Y = Σ =

[

Σ1 0

0 Σ2

]

> 0 (5.108)

AΣ + ΣAT +Q = 0 (5.109)

Writing out the latter equation in terms of its partitioned blocks gives

[

A11Σ1 + Σ1A
T
11 +Q11 A12Σ2 + Σ1A

T
21 +Q12

A21Σ1 + Σ1A
T
11 +Q21 A22Σ2 + Σ2A

T
22 +Q22

]

= 0 (5.110)

For the truncated system (A11,B1,C1,D) it follows that

Σ1 = Σ
T
1 > 0 (5.111)

Q11 = QT
11 > 0 (5.112)

A11Σ1 + Σ1A
T
11 +Q11 = 0 (5.113)

and stability of Gr(s) can be concluded.
In the next section this result will be extended to positive real systems, and
used as a tool for finding new types of algorithms.

5.3.2 Positive Real Projection

In this section we extend the results of Section 5.2.3. As long as one of
the gramians in the balanced truncation algorithm satisfies the PR or DPR
equations this will give positive real state transformations. Hence, only one of
the gramians in the balanced truncation algorithm must satisfy the positive
real lemma.
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5. Model Reduction

The positive real system G(s) = (A,B,C,D) will satisfy the positive
real equations

AR+RAT = −BlB
T
l (5.114)

RCT −B = −BlD
T
l (5.115)

−D −DT = −DlD
T
l (5.116)

where R = RT > 0, Bl and Dl are to be solved for. These equations can
be rewritten as a linear matrix inequality (LMI)

[

AR+RAT RCT −B
CR−BT −D −DT

]

= −
[

Bl

Dl

]

[

BT
l DT

l

]

≤ 0 (5.117)

where R is to be solved for. Having R and balancing this with an arbitrary
positive real symmetric matrix Y , R = Y = Σ will give a positive real state
transformation T . Associated with the positive real system G(s) is also a
pair of dual positive real equations

ATO +OA = −CT
r Cr (5.118)

OB −CT = −CT
rDr (5.119)

−D −DT = −DT
rDr (5.120)

whereO = OT > 0, Cr andDr are to be solved for. The LMI representation
of these equations is

[

ATO +OA OB −CT

BTO −C −D −DT

]

= −
[

CT
r

DT
r

]

[

Cr Dr

]

≤ 0 (5.121)

Balancing O with an arbitrary symmetric positive real matrix Y will also
give positive real state transformation T .

Theorem 5.3 Let the positive real and minimal system G(s) have the bal-
anced realization

G(s) =

[

A B

C D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 (5.122)

where

R = Y = Σ (5.123)

arbitrary Y = Y T > 0 (5.124)
[

AR+RAT RCT −B
CR −BT −D −DT

]

≤ 0 (5.125)

R = RT > 0 (5.126)
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or

O = Y = Σ (5.127)

arbitrary Y = Y T > 0 (5.128)
[

ATO +OA OB −CT

BTO −C −D −DT

]

≤ 0 (5.129)

O = OT > 0 (5.130)

Then the reduced order model

Gr(s) =

[

A11 B1

C1 D

]

(5.131)

obtained by truncation is positive real.

Proof. Since (A,B,C,D) are balanced, the two gramians (R,Y ) are equal
R = Y = Σ, and satisfy the following equations

Σ = Σ
T =

[

Σ1 0

0 Σ2

]

> 0 (5.132)

[

AΣ + ΣAT
ΣCT −B

CΣ −BT −D −DT

]

≤ 0 (5.133)

Writing out the last equation in terms of its partitioned blocks gives





A11Σ1 + Σ1A
T
11 A12Σ2 + Σ1A

T
21 Σ1C

T
1 −B1

A21Σ1 + Σ2A
T
12 A22Σ2 + Σ2A

T
22 Σ2C

T
2 −B2

C1Σ1 −BT
1 C2Σ2 −BT

2 −D −DT



 ≤ 0 (5.134)

For the system (A11,B1,C1,D)

Σ1 = Σ
T
1 > 0 (5.135)

[

A11Σ1 + Σ1A
T
11 Σ1C

T
1 −B1

C1Σ1 −BT
1 −D −DT

]

≤ 0 (5.136)

and positive realness of Gr(s) can be concluded. The same can be shown
for the pair (O,Y ).
By knowing these properties, it is now possible to develop new positive real
balanced truncation methods. In the next section this will be illustrated by
using these properties to develop an algorithm for positive real frequency
weighted truncation.
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5.3.3 Frequency Weighted Truncation

In this section the focus will be on SISO systems. The balancing methods
in Section (5.2.1)-(5.2.3) approximate the system G(s) over all frequencies.
For some systems it might be of interest to do an approximation only in a
certain range of frequencies. This is called frequency weighted truncation.
This can be done by weighting the error system by an input weight Wi(s)
or/and an output weight Wo(s),

||Wo(s)(G(s) −Gr(s))Wi(s)||∞ (5.137)

such that the weighted error is small. Most methods for frequency weighted
reduction have focused on keeping the stability properties of the system,
good overviews of different methods are given in Obinata and Anderson
(2001) and Antoulas (2005). In this section we will extend the frequency
weighting to positive real input weighted balancing and positive real output
weighted balancing.

Let the positive real minimal system G(s) be written as

G(s) =

[

A B

C D

]

(5.138)

and let the input weight be denoted by Wi(s), where

Wi(s) =

[

Ai Bi

Ci Di

]

(5.139)

The augmented system can now be written as

Ḡ(s) = G(s)Wi(s) =

[

Āi B̄i

C̄i D̄i

]

=





A BCi BDi

0 Ai Bi

C DCi DiD



 (5.140)

This gives the following weighted error system

||(G(s) −Gr(s))Wi(s)||∞ (5.141)

Assuming that Wi(s) is chosen such that the overall system Ḡ(s) is stable,
the controllability gramian for the overall system can be solved for

ĀiP̄ + P̄ Ā
T
i + B̄iB̄

T
i = 0 (5.142)

where P̄ = P̄
T
> 0 and

P̄ =

[

P P̄ 12

P̄ 21 P̄ 22

]

(5.143)

80



Extending Balanced Truncation

Expanding (5.142) gives the following (1,1) block

AP + PAT +BDiD
T
i B

T = 0 (5.144)

where P = P T > 0. Further, the available storage gramian is solved for the
unweighted system (5.138)

ATO +OA+ (OB −CT )(D +DT )−1(BTO −C) = 0 (5.145)

By combining (P ,O) from (5.144) and (5.145), input weighted positive real
reduced order systems can be obtained. Assuming that (P ,O) are balanced,
P = O = Σ, we obtain the following equations,

Σ = Σ
T =

[

Σ1 0

0 Σ2

]

> 0 (5.146)

AΣ + ΣAT +BDiD
T
i B

T = 0 (5.147)

AT
Σ + ΣA+ (ΣB −CT )(D +DT )−1(BT

Σ −C) = 0 (5.148)

Writing down the (1, 1) blocks of the two latter equations gives

A11Σ1 + Σ1A
T
11 +B1DiD

T
i B

T
1 = 0 (5.149)

AT
11Σ1 + Σ1A11 + (Σ1B1 −CT

1 )(D +DT )−1(BT
1 Σ1 −C1) = 0 (5.150)

where one can see that the reduced order system satisfies the Riccati equa-
tion and hence it will be positive real. By choosing the input weight Wi(s)
properly, the weighted error in (5.141) will be small.

This approach can also be used on output weighted systems. Let the
output weight of the system be denoted by Wo(s), where

Wo(s) =

[

Ao Bo

Co Do

]

(5.151)

The augmented output weighted system can now be written as

Ĝ(s) = Wo(s)G(s) =

[

Âo B̂o

Ĉo D̂o

]

=





A 0 B

BoC Ao BoD

DoC Co DoD



 (5.152)

with the associated weighted error system

||Wo(s)(G(s) −Gr(s))||∞ (5.153)
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Assuming that Wo(s) is chosen such that the overall system Ĝ(s) is stable,
then the observability gramian for the overall system can be solved for

Â
T
o Q̂+ Q̂Âo + Ĉ

T
o Ĉo = 0 (5.154)

where Q̂ = Q̂
T
> 0. Let Q̂ be written as

Q̂ =

[

Q Q̂12

Q̂21 Q̂22

]

(5.155)

Expanding (5.154) gives the following (1, 1) block

ATQ+QA+CTDT
oDoC = 0 (5.156)

where Q = QT > 0. Further, the required supply gramian is solved for the
unweighted system (5.138)

AR+RAT + (RCT −B)(D +DT )−1(CR −BT ) = 0 (5.157)

By combining (R,Q) from (5.156) and (5.157) output weighted positive
real reduced order systems can be obtained. When (R,Q) are balanced,
R = Q = Σ, we have the following equations

Σ = Σ
T =

[

Σ1 0

0 Σ2

]

>0 (5.158)

AΣ + ΣAT +CTDT
oDoC =0 (5.159)

AΣ + ΣAT + (ΣCT −B)(D +DT )−1(CΣ −BT ) =0 (5.160)

By writing down the (1, 1) blocks of the two latter equations

A11Σ1 + Σ1A
T
11 +CT

1D
T
oDoC1 =0 (5.161)

A11Σ1 + Σ1A
T
11 + (Σ1C

T
1 −B1)(D +DT )−1(C1Σ1 −BT

1 ) =0 (5.162)

one can see that the reduced order system satisfies a Riccati equation, and
hence it will be positive real.

5.4 Concluding Remarks

A survey of Lyapunov balancing and stochastic balancing has been given.
Based on these algorithms a new approach for obtaining positive real bal-
anced truncation has been suggested, which we called mixed gramian bal-
ancing. This approach is a combination of Lyapunov balancing and Riccati
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balancing and relies upon balancing the solution of one Lyapunov equation
and one Riccati equation. Riccati balancing relies upon the solution of two
Riccati equations, while the mixed balancing relies on the solution of one
Lyapunov equation and one Riccati equation. This is less computationally
demanding.

Further it has been shown that in order to obtain positive real truncated
systems, only one of the gramians in the balancing algorithm needs to satisfy
either the PR or the DPR equations. This opens the way for new combina-
tions of gramians in order to obtain positive real truncated systems. Here
it has been used to obtain positive real frequency weighted truncation. For
future research it would be of interest to find error bounds for the proposed
algorithms.

There already are model reduction methods in the literature for the H2

or H∞ norm which give stable systems (Yan and Lam, 1999). For future
work it would be interesting to see if it is possible to extend some of this
work to positive real systems that exploit the properties in this chapter.
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Chapter 6

Case Studies

6.1 Introduction

The preceding chapters have revealed the structure and stability properties
of the radiation forces. In this chapter three different approaches for the
identification of the radiation forces are investigated; identification of each
mode as a SISO system, identification of each mode as a SISO system fol-
lowed by MIMO reduction of the overall system and MIMO identification of
the overall system. The identification is done both in the time and frequency
domain in order to compare the two approaches. The proposed approaches
are compared in terms of estimated model order, accuracy of fit, use of avail-
able information, ease of use and generation of positive real systems. Two
different case studies are done. The radiation forces of a 3-DOF horizontal
vessel model are identified from the frequency dependent added mass and
damping matrices given by the software WAMIT. Subsequently the radia-
tion forces for a lateral vessel model are identified from data sets from the
software VERES. Section 6.2 presents the case study with the 3-DOF vessel
model and Section 6.3 considers the case study with the lateral vessel model.
Finally Section 6.4 discusses the different approaches.

6.2 3-DOF Vessel Model from WAMIT Data

In this section the radiation forces of a 3-DOF vessel will be identified from
the frequency dependent added mass and damping matrices obtained from
the software WAMIT. The vessel has port/starboard symmetry. The 6-DOF
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equations of motion are written as

Mξ̈(t) + τR2(t) +Chξ(t) = τ visc(t) + τ ext(t) + τA(t) (6.1)

ẋ(t) = Ax(t) +Bξ̇(t) (6.2)

τR2(t) = Cx(t) (6.3)

In the Laplace domain this is

Mξ̈(s) +K(s)ξ̇(s) +Chξ(s) = τ visc(s) + τ ext(s) + τA(s) (6.4)

A horizontal vessel model can be described by a 3-DOF model containing
the displacements in surge, sway and yaw (Fossen, 2002)

ξ = [ξ1, ξ2, ξ6]
T (6.5)

We then get the following vessel model

Mξ̈(t) + τR2(t) = τ visc(t) + τ ext(t) + τA(t) (6.6)

ẋ(t) = Ax(t) +Bξ̇(t) (6.7)

This can be written in the Laplace domain as

Mξ̈(s) +K(s)ξ̇(s) = τ visc(s) + τ ext(s) + τA(s) (6.8)

where

M =





M11 0 0
0 M22 M23

0 M32 M33



 , K(s) =





K11(s) 0 0
0 K22(s) K26(s)
0 K62(s) K66(s)



 (6.9)

Here K11(s), K22(s) and K66(s) should be strictly proper with relative de-
gree 1 and positive real, and K26 = K62 should be stable and of relative
degree 1 and the transfer function K(s) should be positive real.

WAMIT is developed at the Massachusetts Institute of Technology (MIT).
The software is a radiation/diffraction panel program developed for linear
analysis of the interaction of surface waves with offshore structures. WAMIT
is used to compute the frequency dependent added mass matrix A(ω) and
the frequency dependent damping matrix B(ω) for a barge (TEST20 in
(www.wamit.com, 2006)). The software can calculate the modes,

Aij(ω) ∀ i = (1, . . . , 6), j = (1, . . . , 6) (6.10)

Bij(ω) ∀ i = (1, . . . , 6), j = (1, . . . , 6). (6.11)
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Figure 6.1: Frequency dependent damping parameters Bij(ω) and frequency
dependent added mass parameters Aij(ω) for the 3-DOF barge model plotted
against the frequency ω.
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Figure 6.2: The determinants of the matrices Bx(ω) and Byψ(ω) over the
frequencies ω.

The frequency dependent added mass matrix A(ω) and the frequency de-
pendent damping matrix B(ω) used for the 3-DOF model of the barge are
both plotted in Figure 6.1.

First the positive realness of the radiation forces in the system is verified.
The 3-DOF system

K(s) =





K11(s) 0 0

0 K22(s) K26(s)
0 K62(s) K66(s)



 (6.12)

is positive real if the associated damping matrix is positive real. The sys-
tem can be decoupled in one system describing the surge dynamics and one
system describing the dynamics in sway and yaw,

Kx(s) = [K11(s)] (6.13)

Kyψ(s) =

[

K22(s) K26(s)
K62(s) K66(s)

]

(6.14)
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Hence the system is positive real if

det(Bx(ω)) = det([B11(ω)]) ≥ 0, ∀ ω (6.15)

det(Byψ(ω)) = det

([

B22(ω) B26(ω)
B62(ω) B66(ω)

])

≥ 0, ∀ ω (6.16)

The determinant of the matrices Bx(ω) and Byψ(ω) for all frequencies are
plotted in Figure 6.2, and it can be concluded that the data set obtained
from WAMIT represents a positive real system.

The time domain identification of the system is done from the impulse
response of the system. The impulse responses of the system is given by

k(t) =
2

π

∫ Ω

0
B(ω)cos(ωt) dω =





k11(t) 0 0
0 k22(t) k26(t)
0 k62(t) k66(t)



 (6.17)

The upper limit of the integral Ω is set to 20 (rad/s) since the damping
matrix B(ω) has converged to zero for all modes at this frequency (plot of
the damping modes are given in Figure 6.1).

The frequency domain identification is done from the frequency response
of the radiation forces,

K(jω) = B(ω) + jω(A(ω) −A(∞)) =





K11(jω) 0 0
0 K22(jω) K26(jω)
0 K62(jω) K66(jω)





(6.18)
The most interesting part is the identification of the system describing the
dynamics in surge and sway. This system can be identified by using SISO or
MIMO identification, as will be shown. Three different approaches will be
used:

• SISO identification of each mode.

• MIMO identification of the overall system.

• SISO identification of each mode followed by MIMO model reduction.

For the approaches the time domain scheme presented in Section 4.2 will be
used, before the frequency domain schemes from Section 4.3 will be used.
For model reduction the algorithms in Section 5.2.1-5.2.3 will be used.
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6.2.1 SISO Identification

The model of the radiation forces for the 3-DOF model are identified by doing
SISO identification of each mode individually. By doing SISO identification
the order n of each mode can be independently chosen, and the optimal fit
in each mode can be chosen. For each mode models of the order of 2, 4 and
6 are obtained by using the different identification methods.

Table 6.1: 10 first singular values of the Hankel matrices in different modes

Modes
k11(t) k22(t) k26=62(t) k66(t)

(·104) (·105) (·105) (·108)
116.33 233.83 206.47 112.53
107.02 212.74 174.88 98.26
17.63 33.66 60.28 22.02
10.98 10.38 32.17 7.05
5.68 3.21 8.64 2.20
2.51 2.00 4.37 2.18
2.02 1.05 2.10 0.96
1.93 0.64 1.73 0.79
0.90 0.49 1.53 0.61
0.70 0.42 1.43 0.50

The different identified models are compared in terms of the fit of the
impulse response (IR) and the fit of the phase (Ph.) and magnitude (Mag.)
in the Bode plot. This has been done by use of the multiple correlation
coefficient (squared) (Ljung, 1999)

R2
y = 1 − eTe

yTy
(6.19)

where eTe is the sum of squared errors and yTy is the sum of square of the
original data set. The multiple correlation coefficient gives information about
the goodness of a fit of a model to the original data set. The reason for using
this is to give an indication of how well the identified model fits both the im-
pulse response and the Bode plot. Further the ||·||∞-errors between the origi-
nal data sets and the identified models are found, ||E(s)||∞ = maxω |E(jω)|.
For the diagonal modes and those modes where the data sets indicate posi-
tive realness the identified models are checked for this property. In addition
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it is chosen to use structure as a measure, where we know that the time do-
main (TD) approach does not give the wanted structure, while the frequency
domain (FD) approaches will.

The Hankel SVD realization is done in the time domain. The 10 first
singular values obtained for the different modes are shown in Table 6.1. From
the singular values one can see that most of the dynamics in the different
modes can be captured by low order models.

Table 6.2: Error Measures for the SISO Identification

R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR Structure
Mode: K11

TD: Hankel SVD
n = 2 0.9839 0.9004 0.9750 4.39 · 104 × -
n = 4 0.9853 0.8995 0.9754 3.01 · 104 × -
n = 6 0.9873 0.8989 0.9754 2.55 · 104 × -
FD 1: pem
n = 2 0.9852 0.9862 0.9894 3.38 · 104 × ×
n = 4 0.9883 0.9874 0.9906 1.05 · 104 × ×
n = 6 0.9929 0.9889 0.9907 3.96 · 103 × ×
FD 2: invfreqs
n = 2 0.9567 0.9684 0.9798 4.47 · 104 × ×
n = 4 0.9916 0.9996 0.9996 1.03 · 104 × ×
n = 6 0.9869 0.9995 0.9999 3.85 · 103 × ×
Mode: K22

TD: Hankel SVD
n = 2 0.9889 0.8772 0.9870 7.29 · 105 - -
n = 4 0.9985 0.9112 0.9891 3.18 · 105 × -
n = 6 0.9991 0.9123 0.9891 2.89 · 105 × -
FD 1: pem
n = 2 0.9835 0.9875 0.9883 7.78 · 105 × ×
n = 4 0.9981 0.9916 0.9895 3.13 · 105 × ×
n = 6 0.9997 0.9918 0.9886 7.67 · 104 × ×
FD 2: invfreqs
n = 2 0.9557 0.9869 0.9725 9.08 · 105 × ×
n = 4 0.9941 0.9970 0.9991 1.47 · 105 × ×
n = 6 0.9978 0.9992 0.9994 9.48 · 104 × ×

Continued on next page
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R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR Structure
Mode: K26 = K62

TD: Hankel SVD
n = 2 0.5029 0.9824 0.8642 1.07 · 106 NPR -
n = 4 0.9500 0.9920 0.9802 1.93 · 105 NPR -
n = 6 0.9924 0.9917 0.9823 2.42 · 105 NPR -
FD 1: pem
n = 2 0.3399 0.9329 0.6853 1.70 · 106 NPR ×
n = 4 0.9598 0.9920 0.9869 2.53 · 105 NPR ×
n = 6 0.9362 0.9918 0.9806 4.51 · 105 NPR ×
FD 2: invfreqs
n = 2 0.4439 0.9547 0.8578 1.35 · 106 NPR ×
n = 4 0.9818 0.9983 0.9925 3.25 · 105 NPR ×
n = 6 0.8783 0.9996 0.9982 2.14 · 105 NPR ×
Mode: K66

TD: Hankel SVD
n = 2 0.9847 0.8620 0.9812 4.83 · 108 - -
n = 4 0.9947 0.9057 0.9873 1.79 · 108 × -
n = 6 0.9968 0.9065 0.9872 1.53 · 108 × -
FD 1: pem
n = 2 0.9735 0.9874 0.9807 4.96 · 108 × ×
n = 4 0.9934 0.9890 0.9913 4.77 · 107 × ×
n = 6 0.9959 0.9900 0.9907 3.33 · 107 × ×
FD 2: invfreqs
n = 2 0.9063 0.9628 0.9524 5.90 · 108 × ×
n = 4 0.9950 0.9988 0.9996 4.21 · 107 × ×
n = 6 0.9955 0.9991 0.9997 3.48 · 107 × ×

In Table 6.2 the different error measures for the identified models are
listed. The table shows that the diagonal modes are well fitted already at an
order of 2, while the off-diagonal modes need to be fitted with an order of 4
before the most important dynamics are captured. For most of the positive
real modes all the obtained models were positive real. Also the combination
of all the 4th or 6th order models into MIMO systems representing the dy-
namics in sway and yaw, Kyψ(s), were positive real. The impulse responses
and Bode plots of the original data sets and the identified models are shown
in the Figures 6.3-6.10. In general, the impulse responses are well fitted
by both the time and frequency domain algorithms, while in the frequency
response in the Bode plots are better approximated by the FD algorithms
than the TD approach.
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Figure 6.3: Plot of k11(t) and K11(jω) versus identified models.
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99



6. Case Studies

155

160

165

170

175

180

185

190

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

−90

−45

0

45

90

P
ha

se
 (

de
g)

Bode Diagram: K
66

(j ω)

Frequency  (rad/sec)

K
66

(j ω)

FD 1, n=2
FD 1, n=4
FD 1, n=6

(a) Method: pem.

155

160

165

170

175

180

185

190

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

−90

−45

0

45

90

P
ha

se
 (

de
g)

Bode Diagram: K
66

(j ω)

Frequency  (rad/sec)

K
66

(j ω)

FD 2, n=2
FD 2, n=4
FD 2, n=6

(b) Method: invfreqs.

Figure 6.10: Bode plot of K66(jω) and identified models of different orders.
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6.2.2 MIMO Identification

The MIMO identification of the system Kyψ from (6.14) is addressed in this
section. As a first attempt the overall systems were identified by the use of
the Hankel SVD and pem algorithms. The results are shown in Table 6.3.
Since there are great differences in the values of the modes K22 and K66 we
get different identified models for the modes K26 and K62. Because of the
large differences in values of the different modes, the symmetry of the system
is not kept. Further, the large differences between the values in the different
modes makes it difficult with this approach, even with proper scaling of the
different data sets, to identify the system accurate. Systems of high order
are needed in order to capture the dynamics of the system. One can also see
that the fit of the mode K62 is not satisfactory. The orders of the obtained
MIMO systems Kyψ were 12, 16 and 24.

As a further approach, a system structure,

Kyψ =

[

K22 K26

0 K66

]

, (6.20)

was used. Then the dynamics of the system K26 were used for the K62

system, giving the following system,

Kyψ =

[

K22 K26

K26 K66

]

. (6.21)

Using this approach all the modes have the same denominator, and the
overall systemKyψ consist of two multi-input single-output (MISO) systems
describing the dynamics in surge and sway. The results of the identification
are shown in Table 6.4. This approach gives more compact and accurate
models than the direct MIMO identification. This can be seen by comparing
the results in Table 6.3 and Table 6.4. The latter approach gives the same
dynamics in the modes K26 and K62, and the symmetry property of the
system is kept. This is a property which can be useful later when designing
control systems or observers for the system.

The orders of the overall MIMO systems Kyψ generated were 8, 12 and
16. Compared to the SISO identification this approach gives more compact
models with good accuracy. For both approaches all models for the diagonal
modes were positive real, as shown in Table 6.3 and Table 6.4. Also the
overall MIMO systems were checked and confirmed positive real.
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Table 6.3: Different Error Measures for the MIMO Identification

R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR Structure
Mode: K22

MIMO TD: Hankel SVD
n = 12 0.9886 0.9107 0.9894 4.48 · 105 × -
n = 16 0.9874 0.9125 0.9888 6.02 · 105 × -
n = 24 0.9889 0.9137 0.9889 5.87 · 105 × -
MIMO FD: pem
n = 12 0.9997 0.9919 0.9895 1.16 · 105 × ×
n = 16 0.9970 0.9911 0.9914 1.57 · 105 × ×
n = 24 0.9982 0.9913 0.9903 7.01 · 104 × ×
Mode: K26

MIMO TD: Hankel SVD
n = 12 0.9426 0.9940 0.9790 1.90 · 105 NPR -
n = 16 0.9862 0.9927 0.9830 2.64 · 105 NPR -
n = 24 0.9967 0.9917 0.9786 2.30 · 105 NPR -
MIMO FD: pem
n = 12 0.8439 0.9928 0.9671 2.10 · 105 NPR ×
n = 16 0.9000 0.9942 0.9808 5.42 · 105 NPR ×
n = 24 0.9323 0.9952 0.9745 7.50 · 105 NPR ×
Mode: K62

MIMO TD: Hankel SVD
n = 12 0.5463 0.9931 0.9055 7.34 · 105 NPR -
n = 16 0.5569 0.9915 0.8181 1.93 · 106 NPR -
n = 24 0.8766 0.9878 0.9513 7.63 · 105 NPR -
MIMO FD: pem
n = 12 0.3391 0.9964 0.5720 3.47 · 106 NPR ×
n = 16 0.5746 0.9338 0.8112 2.07 · 106 NPR ×
n = 24 0.9067 0.9869 0.9491 2.13 · 106 NPR ×
Mode: K66

MIMO TD: Hankel SVD
n = 12 0.9983 0.9089 0.9873 1.50 · 108 × -
n = 16 0.9990 0.9100 0.9874 1.50 · 108 × -
n = 24 0.9998 0.9102 0.9874 1.51 · 108 × -
MIMO FD: pem
n = 12 0.9998 0.9916 0.9900 1.84 · 107 × ×
n = 16 0.9980 0.9913 0.9911 4.05 · 107 × ×
n = 24 0.9999 0.9916 0.9905 1.25 · 107 × ×
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In Figures 6.11-6.13 the impulse response of the original data sets are
plotted against the impulse response of the obtained models, and the fre-
quency response of the original data sets are plotted against the frequency
response of the obtained models. As for the SISO identification, both the
algorithms used give models which fit the impulse responses well. While for
the frequency responses, one can see from the Bode plots that the frequency
domain algorithm gives a better fit.

Table 6.4: Different Error Measures for the MIMO Identification

R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR Structure
Mode: K22

MIMO TD: Hankel SVD
n = 8 0.9984 0.9137 0.9887 4.86 · 105 × -
n = 12 0.9947 0.9146 0.9898 4.51 · 105 × -
n = 16 0.9987 0.9109 0.9890 3.40 · 105 × -
MIMO FD: pem
n = 8 0.9976 0.9915 0.9890 4.07 · 105 × ×
n = 12 0.9856 0.9886 0.9923 2.73 · 105 × ×
n = 16 0.9973 0.9911 0.9900 2.76 · 105 × ×
Mode: K26 = K62

MIMO TD: Hankel SVD
n = 8 0.9522 0.9918 0.9804 2.30 · 105 NPR -
n = 12 0.9507 0.9913 0.9806 2.76 · 105 NPR -
n = 16 0.9453 0.9938 0.9794 1.91 · 105 NPR -
MIMO FD: pem
n = 8 0.9498 0.9931 0.9823 4.95 · 105 NPR ×
n = 12 0.9697 0.9943 0.9863 4.35 · 105 NPR ×
n = 16 0.9513 0.9956 0.9878 3.06 · 105 NPR ×
Mode: K66

MIMO TD: Hankel SVD
n = 8 0.9048 0.8963 0.9583 9.08 · 108 × -
n = 12 0.9935 0.9073 0.9877 2.08 · 108 × -
n = 16 0.9954 0.9070 0.9874 1.68 · 108 × -
MIMO FD: pem
n = 8 0.9151 0.9749 0.9686 6.45 · 108 × ×
n = 12 0.9903 0.9887 0.9911 1.50 · 108 × ×
n = 16 0.9981 0.9913 0.9897 7.23 · 107 × ×
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Figure 6.11: Impulse response of k22(t) and identified models, and Bode plot
of K22(jω) and identified models.
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Figure 6.12: Impulse response of k26(t) and identified models, and Bode plot
of K26(jω) and identified models.
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Figure 6.13: Impulse response of k66(t) and identified models, and Bode plot
of K66(jω) and identified models.
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6.2.3 SISO Identification with Reduction

SISO identification of each mode is done in this section, before the overall
MIMO systemKyψ is reduced. In this section we have used models obtained
by use of the Hankel SVD algorithm. Accurate models of different order were
obtained for the different modes, before they were put together as a MIMO
system of order 30. Further the reduction algorithms from Chapter 5 were
used, and models of orders 10, 12 and 16 were obtained forKyψ. The results
are shown in Table 6.5.

The Lyapunov balancing gives positive real reduced order systems of
orders 12 and 16. But for order 10, the reduced order system is not positive
real. All the reduced order systems generated by Riccati and mixed gramian
balancing are positive real, as expected. By comparing the resulting systems
with the ones obtained by time domain identification in Table (6.4) and
Table (6.2) one can see that the resulting reduced order models have good
accuracy.

The mixed gramian balancing does not keep the symmetry properties of
the system. This is because the gramians in the algorithm are not the dual of
each other, hence we get different error measures in the K26 and K62 modes.
For the system of orders 12 and 16 the difference is minor, but for the system
of order 10 it is not acceptable. Both the Lyapunov and Riccati balancing
keep the symmetry properties of the original system. This also raises the
question whether the mixed gramian balancing is suited for MIMO systems,
something which should be investigated further. As mentioned earlier, it
is also of interest to keep the symmetry property of the system, since this
can be a useful property for use in control and observer design. For all the
modes the errors are comparable with the Lyapunov and Riccati balancing
schemes, but the symmetry is not kept.

In Figures 6.14-6.16 the impulse response of the original data sets is
plotted against the impulse response of the obtained reduced order models
together with the Bode plot of the original frequency responses against the
Bode plot of the obtained reduced order models. From the plot one can
see that both the impulse response and Bode plot are well fitted when this
approach has been taken. Hence, this approach is attractive for obtaining
compact and efficient models of the radiation forces.

For this system the Lyapunov balancing shows good performance for the
systems of orders 12 and 16. But since it cannot ensure reduced order positive
real systems, which is the case for the system of order 10, Riccati balancing
is preferred. For this particular system the Riccati balancing shows good
performance looking at the different error measures. The algorithm shows
good fit and accuracy also for the system of order 10.
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Table 6.5: Different Error Measures for the Reduction

R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR
Mode: K22

Original n = 30 0.9991 0.9902 0.9903 6.90 · 104 ×
Lyapunov n = 16 0.9991 0.9902 0.9903 6.95 · 104 ×
Lyapunov n = 12 0.9981 0.9889 0.9903 9.28 · 104 ×
Lyapunov n = 10 0.9895 0.9510 0.9863 5.02 · 105 -
Riccati n = 16 0.9991 0.9902 0.9903 6.90 · 104 ×
Riccati n = 12 0.9991 0.9902 0.9903 6.90 · 104 ×
Riccati n = 10 0.9988 0.9902 0.9901 1.96 · 105 ×
Mixed n = 16 0.9991 0.9902 0.9903 6.90 · 104 ×
Mixed n = 12 0.9989 0.9901 0.9901 1.21 · 105 ×
Mixed n = 10 0.9870 0.9866 0.9827 5.88 · 105 ×
Mode: K26 = K62

Original n = 30 0.9471 0.9905 0.9841 1.84 · 105 NPR
Lyapunov n = 16 0.9475 0.9904 0.9841 1.85 · 105 NPR
Lyapunov n = 12 0.9464 0.9923 0.9839 1.82 · 105 NPR
Lyapunov n = 10 0.9425 0.9926 0.9829 1.75 · 105 NPR
Riccati n = 16 0.9472 0.9905 0.9841 1.84 · 105 NPR
Riccati n = 12 0.9472 0.9905 0.9842 1.84 · 105 NPR
Riccati n = 10 0.9346 0.9923 0.9805 5.57 · 105 NPR
Mixed62≈26 n = 16 0.9471 0.9905 0.9841 1.84 · 105 NPR
Mixed62≈26 n = 12 0.9393 0.9932 0.9826 3.33 · 105 NPR
Mixed26 n = 10 0.9451 0.9924 0.9834 2.58 · 106 NPR
Mixed62 n = 10 0.5104 0.9948 0.7886 2.58 · 106 NPR
Mode: K66

Original n = 30 0.9978 0.9895 0.9910 3.17 · 107 ×
Lyapunov n = 16 0.9978 0.9895 0.9910 3.17 · 107 ×
Lyapunov n = 12 0.9978 0.9895 0.9910 3.17 · 107 ×
Lyapuniv n = 10 0.9978 0.9895 0.9910 3.17 · 107 ×
Riccati n = 16 0.9978 0.9895 0.9910 3.15 · 107 ×
Riccati n = 12 0.9978 0.9895 0.9910 3.94 · 107 ×
Riccati n = 10 0.9978 0.9895 0.9909 4.41 · 107 ×
Mixed n = 16 0.9978 0.9895 0.9910 3.17 · 107 ×
Mixed n = 12 0.9978 0.9895 0.9910 3.20 · 107 ×
Mixed n = 10 0.9978 0.9895 0.9910 3.48 · 107 ×
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Figure 6.14: Impulse response of k22(t) and reduced order models, and Bode
plot of K22(jω) and reduced order models.
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Figure 6.16: Impulse response of k66(t) and reduced order models, and Bode
plot of K66(jω) and reduced order models.
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6.3 Lateral Vessel Model from VERES Data

In this section the radiation forces of a lateral vessel model will be obtained
from the frequency dependent added mass matrix A(ω) and the frequency
dependent damping matrix B(ω) computed by use of VERES. The same
approaches will be used as in Section 6.2,

• SISO identification of each mode.

• MIMO identification of the overall system.

• SISO identification of each mode followed by MIMO model reduction.

The identification will be done both in the time and frequency domains with
the algorithms presented in Section 4.2-4.3. Further, model reduction will
be done with the algorithms presented in the Sections 5.2.1-5.2.3.

Figure 6.17: The hull form of the S−175 tanker

VERES (VEssel RESponse program) is developed at MARINTEK (the
Norwegian Marine Technology Research Institute) and offers the ability to
calculate ship motions and loads (Fathi, 2004). VERES is used to compute
the added mass matrix A(ω) and damping matrix B(ω) for a S−175 tanker
ship (Fathi, 2004). The program can calculate the modes,

Aij(ω) ∀ i = (2, . . . , 6), j = (2, . . . , 6) (6.22)

Bij(ω) ∀ i = (2, . . . , 6), j = (2, . . . , 6) (6.23)
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The S−175 hull form is given in Figure 6.17. Since VERES does not pro-
vide the added mass and damping in surge, a lateral vessel model will be
investigated for the S−175 tanker. The added mass parameters Aij(ω) and
the damping matrix parameters Bij(ω) used for the lateral vessel model are
plotted in Figure 6.19.

The S-175 tanker has port/starboard symmetry and the 6-DOF equations
can be split in one longitudinal system containing the displacements in surge,
heave and pitch, and one lateral system containing the displacements in sway,
roll and yaw. The position vector of the lateral vessel model can be written
as a combination of the displacements in sway, roll and yaw,

ξ = [ξ2, ξ4, ξ6]
T (6.24)

This gives the following vessel model

Mξ̈(t) + τR2(t) +Chξ(t) = τ visc(t) + τ ext(t) + τA(t) (6.25)

ẋ(t) = Ax(t) +Bξ̇(t) (6.26)

τR2(t) = Cx(t) (6.27)

with the following system matrices

M =





M22 M24 M26

M42 M44 M46

M62 M64 M66



 , Ch =





0 0 0
0 Ch44 0
0 0 0



 (6.28)

In the Laplace domain this can be written

Mξ̈(s) +K lat(s)ξ̇(s) +Chξ(s) = τ visc(s) + τ ext(s) + τA(s) (6.29)

with

K lat(s) =





K22(s) K24(s) K26(s)
K42(s) K44(s) K46(s)
K62(s) K64(s) K66(s)



 (6.30)

First the positive realness of the radiation forces in the system is verified.
The lateral vessel system in (6.27) is positive real if the associated damping
matrix is positive real. Hence the system is positive real if

det(B(ω)) = det









B22(ω) B24(ω) B26(ω)
B42(ω) B44(ω) B46(ω)
B62(ω) B64(ω) B66(ω)







 ≥ 0, ∀ ω (6.31)

The determinant of the matrix B(ω) over all frequencies ω is plotted in
Figure 6.18, and it can be concluded that the data set obtained from VERES
represents a positive real system.
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Figure 6.18: The determinant of the positive semidefinite damping matrix
B(ω) for the S−175 tanker.

The time domain identification of the system is done from the impulse
response of the system. The impulse response of the system is given by,

klat(t) =
2

π

∫ Ω

0
B(ω) cos(ωt) dω =





k22(t) k24(t) k26(t)
k42(t) k44(t) k46(t)
k62(t) k64(t) k66(t)



 (6.32)

The upper limit of the integral Ω is set to 20 (rad/sec) since the damping
matrix B(ω) has converged to zero for all modes at this frequency (plot of
the damping modes are given in Figure 6.19).

The frequency domain identification is done from the frequency response
of the radiation forces,

K lat(jω) =





K22(jω) K24(jω) K26(jω)
K42(jω) K44(jω) K46(jω)
K62(jω) K64(jω) K66(jω)



 (6.33)
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Figure 6.19: The frequency dependent damping parameters Bij(ω) and the
frequency dependent added mass parameters Aij(ω) plotted versus the fre-
quency ω for the lateral vessel model.
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6.3.1 SISO Identification

In this section the 3-DOF lateral vessel model is identified by use of SISO
identification of each mode individually. The same error measures are used
as in the previous sections.

Table 6.6: Different Error Measures for the Identification

R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR Structure
Mode: K22

SISO TD: Hankel SVD
n = 2 0.9864 0.8216 0.9927 2.69 · 106 - -
n = 4 0.9995 0.9878 0.9921 1.51 · 106 × -
SISO FD: invfreqs
n = 2 0.9670 0.9823 0.9890 4.09 · 106 × ×
n = 4 0.9774 0.9926 0.9979 1.56 · 106 × ×
Mode: K24 = K42

SISO TD: Hankel SVD
n = 2 0.8113 0.7449 0.9377 3.04 · 106 NPR -
n = 4 0.9784 0.9631 0.9902 1.27 · 106 NPR -
SISO FD: invfreqs
n = 2 0.8118 0.7806 0.9240 3.44 · 106 NPR ×
n = 4 0.9775 0.9351 0.9877 1.39 · 106 NPR ×
Mode: K26 = K62

SISO TD: Hankel SVD
n = 2 0.9885 0.9978 0.9923 3.13 · 107 NPR -
n = 4 0.9999 0.9869 0.9949 1.47 · 107 NPR -
SISO FD: invfreqs
n = 2 0.9719 0.9991 0.9889 5.43 · 107 NPR ×
n = 4 0.9952 0.9997 0.9971 1.42 · 107 NPR ×
Mode: K44

SISO TD: Hankel SVD
n = 2 0.9874 0.8228 0.9921 9.98 · 106 - -
n = 4 0.9987 0.9896 0.9930 5.27 · 106 × -
SISO FD: invfreqs
n = 2 0.9588 0.9736 0.9867 1.51 · 107 × ×
n = 4 0.9833 0.9937 0.9911 1.09 · 107 × ×

Continued on next page

116



Lateral Vessel Model from VERES Data

R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR Structure
Mode: K46 = K64

SISO TD: Hankel SVD
n = 2 0.9897 0.9989 0.9924 1.78 · 108 NPR -
n = 4 0.9995 0.9862 0.9929 8.57 · 107 NPR -
SISO FD: invfreqs
n = 2 0.9684 0.9984 0.9894 2.82 · 108 NPR ×
n = 4 0.9857 0.9997 0.9978 7.34 · 107 NPR ×
Mode: K66

SISO TD: Hankel SVD
n = 2 0.9853 0.8119 0.9903 7.22 · 109 - -
n = 4 0.9993 0.9880 0.9907 3.63 · 109 × -
SISO FD: invfreqs
n = 2 0.9518 0.9670 0.9848 1.10 · 1010 × ×
n = 4 0.9753 0.9958 0.9983 3.05 · 109 - ×

For this model, each mode is identified by models of orders 2 and 4. By
combining the models for the different modes MIMO systems of orders 24
until 36 can be obtained, depending on the order one chooses in each mode.
In this case study the Hankel SVD and the invfreqs algorithms are used to
do the identification.

The error measures are listed in Table 6.6. From the table one can see
that most of the modes are well fitted already at an order of 2. But the
increase to an order of 4 gives better fit and accuracy. For this system both
the algorithms fail to give positive real systems in some of the modes, which
is something to be aware of when combining the SISO systems into a MIMO
model. Looking at the error measures one can see that there is not much
difference between the two algorithms.

In Figures 6.20-6.25 the impulse response of the original data set and the
impulse responses of the obtained models are plotted together with the Bode
plots of the original data sets and the obtained models. In general there is
not much difference between the impulse responses of the different models
obtained by use of the different algorithms, while the frequency responses are
better fitted by use of the frequency domain identification scheme invfreqs.
For this model the mode which is most difficult to approximate is K24 = K42.

Because of the symmetry of the system only 6 modes instead of 9 need
to be identified, and the symmetry property is kept.
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Figure 6.20: Impulse response of k22(t) and identified models, and Bode plot
of K22(jω) and identified models.
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Figure 6.21: Impulse response of k24(t) and identified models, and Bode plot
of K24(jω) and identified models.
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Figure 6.22: Impulse response of k26(t) and identified models, and Bode plot
of K26(jω) and identified models.
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Figure 6.23: Impulse response of k44(t) and identified models, and Bode plot
of K44(jω) and identified models.
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Figure 6.24: Impulse response of k46(t) and identified models, and Bode plot
of K46(jω) and identified models.
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Figure 6.25: Impulse response of k66(t) and identified models, and Bode plot
of K66(jω) and identified models.
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6.3.2 MIMO Identification

This section presents MIMO identification of the overall lateral vessel system.
The same approach is followed as in Section 6.2.2. The system structure,

K lat =





K22 K24 K26

0 K44 K46

0 0 K66



 , (6.34)

was used. Then the dynamics for the upper off-diagonal modes were used
also for the lower off-diagonal modes,

K lat =





K22 K24 K26

K24 K44 K46

K26 K46 K66



 . (6.35)

For this approach all the systems have the same denominator, and the overall
systemK lat consists of three MISO systems describing the dynamics in sway,
roll and yaw. The symmetry property of the original data set is kept. The
error measures for the different modes of the identification are shown in Table
6.7.

For this particular system, the difference in order and accuracy is quite
large between the Hankel SVD algorithm and the pem algorithm. In order
to get a good fit and generate a positive real system a system of order 36
was necessary with the Hankel SVD algorithm. For the pem algorithm an
accurate positive real model was obtained already at an order of 18, and also
a system of order 30 was obtained. All the MIMO systems were positive
real.

For both approaches the MIMO models are more accurate then the ones
obtained by combining the SISO systems into MIMO models. Hence, for this
data set, it is a good approach in order to obtain compact, accurate models
for the radiation forces.

Figures 6.26-6.31 compare the impulse responses of the original data sets
and models together with the comparison of the Bode plots of the original
data sets and models. The impulse responses compare well with the models
generated both from the Hankel SVD algorithm and the pem algoritm. From
the Bode plots one can see that the frequency domain approach gives a better
fit to the magnitude and phase than the time domain approach.
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Table 6.7: Error Measures for the MIMO Identification

R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR Structure
Mode: K22

MIMO TD: Hankel SVD
n = 36 0.9996 0.9882 0.9921 1.48 · 106 × -
MIMO FD: pem
n = 18 0.9909 0.9965 0.9986 1.43 · 106 × ×
n = 30 0.9925 0.9977 0.9991 9.98 · 105 × ×
Mode: K24 = K42

SISO TD: Hankel SVD
n = 36 0.9946 0.9798 0.9944 1.22 · 106 NPR -
MIMO FD: pem
n = 18 0.9523 0.8901 0.9690 2.20 · 106 NPR ×
n = 30 0.9819 0.9482 0.9918 1.19 · 106 NPR ×
Mode: K26 = K62

MIMO TD: Hankel SVD
n = 36 0.9997 0.9868 0.9945 1.46 · 107 NPR -
MIMO FD: pem
n = 18 0.9961 0.9995 0.9980 2.14 · 107 NPR ×
n = 30 0.9983 0.9999 0.9985 1.03 · 107 NPR ×
Mode: K44

MIMO TD: Hankel SVD
n = 36 0.9988 0.9896 0.9929 5.26 · 106 × -
MIMO FD: pem
n = 18 0.9916 0.9977 0.9993 3.22 · 106 × ×
n = 30 0.9891 0.9972 0.9996 3.51 · 106 × ×
Mode: K46 = K64

MIMO TD: Hankel SVD
n = 36 0.9994 0.9863 0.9927 8.96 · 107 NPR -
MIMO FD: pem
n = 18 0.9943 0.9999 0.9991 4.86 · 107 NPR ×
n = 30 0.9968 0.9999 0.9993 3.89 · 107 NPR ×
Mode: K66

MIMO TD: Hankel SVD
n = 36 0.9993 0.9880 0.9907 3.63 · 109 × -
MIMO FD: pem
n = 18 0.9888 0.9984 0.9989 2.25 · 109 × ×
n = 30 0.9911 0.9988 0.9993 1.82 · 109 × ×
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Figure 6.26: Impulse response of k22(t) and identified models, and Bode plot
of K22(jω) and identified models.
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Figure 6.27: Impulse response of k24(t) and identified models, and Bode plot
of K24(jω) and identified models.
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Figure 6.28: Impulse response of k26(t) and identified models, and Bode plot
of K26(jω) and identified models.
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Figure 6.29: Impulse response of k44(t) and identified models, and Bode plot
of K44(jω) and identified models.

129



6. Case Studies

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5
x 10

8
Impulse Response k

46
(t)

Time (sec)

A
m

pl
itu

de
k

46
(t)

TD n=36

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5
x 10

8
Impulse Response k

46
(t)

Time (sec)

A
m

pl
itu

de

k
46

(t)

FD n=18
FD n=30

(a) Impulse response.

10
−1

10
0

155

160

165

170

175

180

185

M
ag

ni
tu

de
 (

dB
)

Bode Diagram: K
46

(jω)

10
−1

10
0

−300

−250

−200

−150

−100

−50

Frequency (rad/sec)

P
ha

se
 (

de
g)

K
46

(jω)

TD n=36
FD n=18
FD n=30

(b) Method: Hankel SVD and pem.

Figure 6.30: Impulse response of k46(t) and identified models, and Bode plot
of K46(jω) and identified models.
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Figure 6.31: Impulse response of k66(t) and identified models and Bode plot
of K66(jω) and identified models.
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6.3.3 SISO Identification with Reduction

In this section SISO identification of each mode is done, followed by a re-
duction of the overall system Klat, by use of the algorithms presented in
the Sections 5.2.1-5.2.3. By utilizing the symmetry of the system, only 6 of
9 modes have to be identified when we use SISO identification. The same
approach follows as in Section 6.2.3.

Accurate models for the different modes were obtained by use of the
Hankel SVD scheme and combined into a MIMO system representing Klat.
The overall MIMO system was of order 72. Further it was reduced to orders
36, 20 and 16 by the use of Lyapunov, Riccati and mixed gramian balancing.
The error measures are given in Table 6.8. The differences between the errors
for the MIMO systems of order 36 were so small that only the error measures
for the Lyapunov balancing are listed.

The Lyapunov and Riccati balancing keep the symmetry property of the
system, while the mixed gramian balancing does not keep this property. For
MIMO systems, based on whether the controllability and available storage
gramians or the required supply and observability gramians are balanced
with each other, the two resulting systems will be the transpose of each
other. In this case, the required supply and observability gramians are bal-
anced. If the controllability and available storage gramians were balanced,
the obtained error measures would have been the transpose of what we get
now, i.e. K26 = K62 and K62 = K26. For this case study the differences
when using mixed gramian balancing are quite large in some of the modes
e.g. the modes K24 and K42 in the system of order 16. However, in terms
of error measures for the different modes the method can compete with the
Lyapunov and Riccati balancing schemes. These are the same remarks as
mentioned in the first case study.

All the different balancing schemes generated positive real reduced order
systems for all the different orders. Further, compact models with good
accuracy and fit were obtained. In this case study the Lyapunov balancing
was the reduction method giving the systems with best accuracy and fit of
the original data sets.

Looking at Tables 6.6-6.8 the different modeling approaches for this case
study can be compared. The SISO identification followed by MIMO reduc-
tion gives flexibility to choose the best fit of the individual modes in the
identification phase, at the same time as compact and accurate models are
generated by use of the model reduction. Looking at the different error mea-
sures for the various approaches, the approach with identification followed
by reduction gives the most compact and accurate models.
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Table 6.8: Different Error Measures for the Reduction

R2
y=1 − eT e

yT y

Order IR Ph. Mag. || · ||∞ PR
Mode: K22

Original n = 72 0.9996 0.9882 0.9921 1.48 · 106 ×
Lyapunov n = 36 0.9996 0.9882 0.9921 1.48 · 106 ×
Lyapunov n = 20 0.9994 0.9872 0.9921 1.64 · 106 ×
Riccati n = 20 0.9996 0.9882 0.9921 1.48 · 106 ×
Mixed n = 20 0.9995 0.9881 0.9921 1.49 · 106 ×
Lyapunov n = 16 0.9978 0.9901 0.9906 2.11 · 106 ×
Riccati n = 16 0.9991 0.9881 0.9918 1.71 · 106 ×
Mixed n = 16 0.9993 0.9885 0.9921 1.63 · 106 ×
Mode: K24 = K42

Original n = 72 0.9996 0.9971 0.9955 1.11 · 106 NPR
Lyapunov n = 36 0.9996 0.9973 0.9955 1.12 · 106 NPR
Lyapunov n = 20 0.9972 0.9923 0.9970 1.12 · 106 NPR
Riccati n = 20 0.9992 0.9974 0.9950 1.25 · 106 NPR
Mixed24 n = 20 0.9992 0.9972 0.9955 1.02 · 106 NPR
Mixed42 n = 20 0.9962 0.9976 0.9952 1.09 · 106 NPR
Lyapunov n = 16 0.9911 0.9404 0.9915 1.65 · 106 NPR
Riccati n = 16 0.9982 0.9983 0.9941 1.71 · 106 NPR
Mixed24 n = 16 0.9950 0.9944 0.9955 1.30 · 106 NPR
Mixed42 n = 16 0.9712 0.9623 0.9875 2.08 · 106 NPR
Mode: K26 = K62

Original n = 72 0.9999 0.9869 0.9952 1.39 · 107 NPR
Lyapunov n = 36 0.9999 0.9869 0.9952 1.39 · 107 NPR
Lyapunov n = 20 0.9999 0.9869 0.9952 1.37 · 107 NPR
Riccati n = 20 0.9997 0.9869 0.9950 1.51 · 107 NPR
Mixed26 n = 20 0.9993 0.9867 0.9945 1.40 · 107 NPR
Mixed62 n = 20 0.9993 0.9867 0.9945 1.65 · 107 NPR
Lyapunov n = 16 0.9999 0.9869 0.9950 1.48 · 107 NPR
Riccati n = 16 0.9990 0.9869 0.9946 1.87 · 107 NPR
Mixed26 n = 16 0.9999 0.9869 0.9952 1.40 · 107 NPR
Mixed62 n = 16 0.9935 0.9867 0.9921 2.49 · 107 NPR

Continued on next page
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R2
y=1 − eT e

yT y

IR Ph. Mag. || · ||∞ PR
Mode: K44

Original n = 72 0.9999 0.9867 0.9926 5.15 · 106 ×
Lyapunov n = 36 0.9999 0.9867 0.9926 5.14 · 106 ×
Lyapunov n = 20 0.9999 0.9873 0.9926 5.05 · 106 ×
Riccati n = 20 0.9998 0.9868 0.9926 5.16 · 106 ×
Mixed n = 20 0.9999 0.9866 0.9926 5.12 · 106 ×
Lyapunov n = 16 0.9995 0.9870 0.9931 4.92 · 106 ×
Riccati n = 16 0.9998 0.9868 0.9925 5.18 · 106 ×
Mixed n = 16 0.9991 0.9885 0.9924 5.19 · 106 ×
Mode: K46 = K64

Original n = 72 0.9995 0.9862 0.9929 8.57 · 107 NPR
Lyapunov n = 36 0.9995 0.9862 0.9929 8.57 · 107 NPR
Lyapunov n = 20 0.9995 0.9862 0.9929 8.55 · 107 NPR
Riccati n = 20 0.9995 0.9863 0.9929 8.48 · 107 NPR
Mixed46 n = 20 0.9995 0.9862 0.9929 8.55 · 107 NPR
Mixed64 n = 20 0.9995 0.9862 0.9929 8.57 · 107 NPR
Lyapunov n = 16 0.9995 0.9863 0.9929 8.50 · 107 NPR
Riccati n = 16 0.9996 0.9863 0.9929 8.55 · 107 NPR
Mixed46 n = 16 0.9995 0.9862 0.9929 8.51 · 107 NPR
Mixed64 n = 16 0.9995 0.9862 0.9929 8.99 · 107 NPR
Mode: K66

Original n = 72 0.9993 0.9880 0.9907 3.62 · 109 ×
Lyapunov n = 36 0.9993 0.9880 0.9907 3.63 · 109 ×
Lyapunov n = 20 0.9993 0.9880 0.9907 3.63 · 109 ×
Riccati n = 20 0.9993 0.9880 0.9907 3.61 · 109 ×
Mixed n = 20 0.9993 0.9880 0.9907 3.63 · 109 ×
Lyapunov n = 16 0.9993 0.9880 0.9907 3.63 · 109 ×
Riccati n = 16 0.9993 0.9880 0.9907 3.64 · 109 ×
Mixed n = 16 0.9993 0.9880 0.9907 3.63 · 109 ×

In Figures 6.32-6.37 the impulse responses and Bode diagrams of the
original data sets and the obtained models are presented. These show good
fit and accuracy in most of the modes.
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Figure 6.32: Plot of k22(t) andK22(jω) versus identified and reduced models.
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Figure 6.33: Plot of k24(t) and K24(jω) versus identified and reduced models.
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Figure 6.34: Plot of k26(t) andK26(jω) versus identified and reduced models.
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Figure 6.35: Plot of k44(t) and K44(jω) versus identified and reduced models.
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Figure 6.36: Plot of k46(t) andK46(jω) versus identified and reduced models.
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Figure 6.37: Plot of k66(t) and K66(jω) versus identified and reduced models.
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Concluding Remarks

6.4 Concluding Remarks

Time domain and frequency domain techniques have been applied in this
chapter in order to identify the radiation forces. Time domain identification
requires the calculation of the impulse responses of the radiation forces before
the identification can take place. By using frequency domain techniques
the data sets from the hydrodynamic software can be used to express the
frequency response, and no further calculations are needed in order for the
identification to take place. Hence, less preprocessing of the data sets is
needed than for time domain identification.

The case studies showed that both time domain and frequency domain
techniques work well for the identification of the radiation forces. The im-
pulse responses were fitted well by both methods, while for the approximation
of the magnitude and phase of the system, the frequency domain techniques
worked better. For the frequency domain approach the computation of the
convolution integral is avoided, and it represents a more direct way of ob-
taining the models of the radiation forces at the same time as it has very
nice performance in terms of accuracy and fit for all the error measures.

Three different approaches were taken for the identification of the radi-
ation forces; SISO identification of every mode; MIMO identification of the
overall model; SISO identification of every mode followed by model reduction
of the overall MIMO system. All approaches gave models with a good fit to
the original data sets, but the latter method proved to be most powerful in
terms of obtaining compact and accurate models.

SISO identification with subsequent model reduction gives designers of
control systems or simulators flexibility in terms of choosing the order and
accuracy of the model. This method also provides the possibility to identify
higher order models, used for the verification of controllers that are designed
and based on low order models.
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Chapter 7

Final Remarks

7.1 Conclusions and Suggestions for Further Work

This thesis has addressed the identification and order reduction of paramet-
ric models of radiation forces in marine applications. The motivation behind
investigating these forces lies in marine applications where such models are
useful for simulator, control and observer design. Examples of such applica-
tions include DP systems, marine systems simulators and wave power plants.

The models developed were obtained by use of hydrodynamic software.
This is a cheap alternative compared to traditional methods like full-scale ex-
periments, and hence there is a financial motivation for using this approach.

The stability and positive realness of the radiation forces were stated
by using the properties revealed in the data sets from the hydrodynamic
software. Furthermore, it was shown that the overall vessel model is passive
if the radiation forces are modeled positive real. Stability and passivity are
dynamical properties which should be reflected in the model of the radiation
forces.

By using the frequency dependent added mass and damping matrices
from the hydrodynamic software, the radiation forces can either be identified
by time domain or frequency domain identification. For time domain identi-
fication, a method based on Markov parameter estimation was used and for
frequency domain identification two different algorithms were applied; one
based on least squares fitting and one prediction error minimization algo-
rithm. All the algorithms used were customized functions implemented in
MATLAB.

Two case studies were investigated. The radiation forces for a 3-DOF
vessel model were identified where the hydrodynamic data sets were ob-
tained from the software WAMIT. Subsequently, the radiation forces for a
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lateral vessel model were identified from data sets obtained form the soft-
ware VERES. For the case studies three different approaches for use of the
identification schemes were investigated: SISO identification of every mode;
MIMO identification of the overall system; SISO identification of every mode
followed by model reduction of the overall MIMO system.

Time domain identification of the radiation forces requires the computa-
tion of the impulse response from either the added mass matrix or from the
damping matrix. Frequency domain identification can be used directly on
the frequency response of the radiation forces, which is easily obtained from
the frequency dependent added mass and damping matrices. Hence the lat-
ter represents a more direct way of obtaining the radiation force models. In
addition, the frequency domain techniques gave more accurate models than
the time domain approach. All the identification algorithms used guaran-
teed stable models, while positive realness was not ensured. However, the
schemes applied generated positive real systems in most of the cases where
the data sets indicated this property.

The three different approaches for use of the identification schemes gave
accurate models with good fit to the original data sets. However, identifica-
tion followed by model reduction proved to be the most powerful in terms
of obtaining compact and accurate models. SISO identification followed by
MIMO reduction gives flexibility in the model generation. This approach
makes it possible to develop models with different accuracy, e.g. where a low
order model can be used for controller design while a model of higher order
and with better accuracy can be used for verification of the controller. It
can be concluded that combining identification and model reduction offers
flexibility in the choice of model complexity and accuracy.

For the two case studies investigated the vessels had relatively simple
dynamics. For future research it would be of interest to apply these methods
to systems with more challenging dynamics. The models developed are only
valid for vessels at zero speed, and future research could consider the case
of forward speed. For a vessel with forward speed the frequency dependent
added mass and damping parameters are also dependent on the velocity of
the vessel.

In terms of model reduction, an overview of existing balanced truncation
methods was given, before a new algorithm keeping the positive realness of
the reduced order systems was developed; mixed gramian balancing. This
showed nice properties in terms of accuracy and computational time com-
pared to existing methods. The method works well for SISO systems, but
for MIMO systems one has to be aware of that the symmetry properties of
systems will not be kept, since the gramians are not dual to each other.

It has been shown that in order to obtain positive real truncated systems,
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only one of the gramians in the balancing algorithm needs to satisfy either
the PR or the DPR equations. This opens the way for new combinations of
gramians in order to obtain positive real truncated systems. Here it has been
used to obtain positive real frequency weighted truncation. For the existing
balanced truncation methods investigated well established error measures are
developed. For future research it would be of interest to find error bounds for
the proposed algorithms in this thesis. Further, an extension to descriptor
systems could be investigated. In the literature there already exist order
reduction methods focusing on the approximation error in the H2- and H∞-
norms which give stable systems. For future work it would be of interest
to see if it is possible to extend some of this work to positive real systems
exploiting the properties resulting in mixed gramian balancing and positive
real frequency weighted truncation.
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Appendix A

Notation

A(ω) frequency dependent added mass matrix (2.20)
B(ω) frequency dependent damping matrix (2.21)
A(∞),MA added mass at infinite frequency (2.25)
η position vector defined in the n-frame (2.1)
ν velocity vector defined in the b-frame (2.2)
ξ position vector defined in the h-frame (2.4)
MRB rigid-body system inertia matrix (2.5)
Ch restoring forces and moments matrix (2.6)
τR radiation forces and moments (2.5)
τ visc viscous forces and moments (2.5)
τ ext external forces and moments (2.5)
τA actuator forces and moments (2.5)
τH hydrostatic forces and moments (2.5)
ΦR velocity potential (2.10)
p hydrodynamic pressure on the surface of the vessel (2.12)
ρ water density (2.12)
ϕ̂ frequency domain complex velocity potential (2.10)
ϕim imaginary part of the complex velocity potential (2.16)
ϕre real part of the complex velocity potential (2.16)
ψ time domain instantaneous response velocity potential (2.28)
χ time domain memory effect velocity potential (2.28)
k(t) radiation forces memory effect impulse response (2.36)

from velocity to force
K(jω) radiation forces memory effect frequency response (2.55)

from velocity to force
SISO single-input single-output
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A. Notation

Table A.1: Units for Radiation Force Components

Damping Added mass Impulse response
Bij(ω) Aij(ω) kij(t)

i=j, j=(1,2,3) kg/s kg kg/s2

i=j, j=(4,5,6) kgm2/s kgm2 kgm2/s2

i6=j, i,j=(1,. . . ,6) kgm/s kgm kgm/s2

MIMO multi-input multi-output
BIBO bounded-input bounded-output
τR1 instantaneous response of the radiation forces (3.4)
τR2 memory effect part of the radiation forces (3.5)
V total energy of vessel-water system (3.32)
H̄(s) radiation forces transfer function from (3.12)

velocity to force
LTI linear time invariant
A B

C D
LTI system approximating the radiation forces

(3.38)-
(3.39)

A B

C
linear system matrices with D = 0

(3.40)-
(3.41)

K(s) radiation forces memory effect transfer (3.42)
function from velocity to force

l(t) radiation forces memory effect impulse (3.76)
response from acceleration to force

L(jω) radiation forces memory effect frequency (3.78)
response from acceleration to force

Ĥ(s) radiation forces transfer function from (3.87)
acceleration to force

M Markov parameters (4.14)
SVD singular value decompositionin
Hn+1 Hankel matrix (4.16)
Σ singular values (4.17)
Z̄
N frequency response data set (4.32)

K̄ij(jωk) sample of frequency response in mode ij (4.32)
Kij(jω) parameterized frequency response in mode ij (4.34)
W weighting function (4.35)
A(θ) B(θ)

C(θ)
parameterized LTI system

(4.36)-
(4.37)

θ parameters for identification
(4.36)-
(4.37)
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ε prediction error (4.39)
ZN time domain input-output data set (4.40)
VN cost function (4.41)
θ̂N optimal choice of parameters in θ (4.42)
A B

C D
linear system matrices (5.1-5.2)

G(s) linear system transfer function (5.3)
Ar Br

Cr Dr
reduced order linear system matrices (5.4-5.5)

Gr(s) reduced order linear system transfer function (5.6)
T coordinate transformation matrix (5.7)
P controllability gramian (5.15)
Q observability gramian (5.16)
Σ singular values (5.20)
Φ power spectrum (5.24)
Z(s) phase system (5.24)
F G

G H
phase system Z(s) matrices

V (s) left spectral factor (5.24)
F Gl

H J l
left spectral factor V (s) system matrices (5.36)

W (s) right spectral factor (5.24)
F G

Hr J r
right spectral factor W (s) system matrices (5.37)

PR positive real
DPR dual positive real
V storage function (5.49)
s supply function (5.49)
Vr required supply (5.50)
Va available storage (5.52)
R Required supply gramian (5.51)
O Available storage gramian (5.53)
Kx surge system (6.13)
Kyψ sway-yaw system (6.14)
IR Impulse response
Ph. Phase
Mag. Magnitude
NPR Not positive real system
R2
y Multiple correlation coefficient (squared) (6.19)

K lat Lateral vessel system (6.30)

157





Appendix B

Mathematical Toolbox

Riemann-Lebesgue Lemma:

If f(x) is integrable on [a, b] then

lim
t→∞

∫ b

a
f(x) sin(tx) dx = 0 (B.1)

and

lim
t→∞

∫ b

a
f(x) cos(tx) dx = 0 (B.2)

The Fourier Transform:
Consider a continuous-time signal f(t), defined for −∞ ≤ t ≤ ∞. Then
the Fourier transform pair associated with f(t) is defined as follows:

F[f(t)] = F (jω) =

∫ ∞

−∞
e−jωtf(t) dt (B.3)

F−1[F (jω)] = f(t) =
1

2π

∫ ∞

−∞
ejωtF (jω) dω (B.4)

F (jω) is referred to as the Fourier transform of f(t).
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B. Mathematical Toolbox

The Fourier Cosine Transform:
The Fourier cosine transform is the real part of the Fourier transform.
The Fourier cosine transform pair associated with the even function f(t) is
defined as follows:

Fc[f(t)] = Fre(jω) =

∫ ∞

0
f(t) cosωt dt (B.5)

F−1
c [Fre(jω)] = f(t) =

2

π

∫ ∞

0
Fre(jω) cos ωt dω (B.6)

Fre(jω) is referred to as the Fourier cosine transform of f(t).

The Fourier Sine Transform:
The Fourier sine transform is the imaginary part of the Fourier transform.
The Fourier sine transform pair associated with the odd function f(t) is
defined as follows:

Fs[f(t)] = Fim(jω) =

∫ ∞

0
f(t) sinωt dt (B.7)

F−1
s [Fim(jω)] = f(t) =

2

π

∫ ∞

0
Fim(jω) sinωt dω (B.8)

Fim(jω) is referred to as the Fourier sine transform of f(t).

The Hilbert transform:
The Hilbert transform of the real function f(t) is the imaginary function
f̄(t). The Hilbert transform pair associated with f(t) and f̄(t) is defined
by

f̄(t) = H{f(t)} =
1

π

∫ ∞

−∞

f(u)

(t− u)
du (B.9)

f(t) = H−1
{

f̄(t)
}

= − 1

π

∫ ∞

−∞

f̄(u)

(t− u)
du (B.10)

For a causal function g(t) the following relation is given g(t) = f(t)− jf̄(t).
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BIBO stability, Theorem 5.15 in (Antoulas, 2005):

Theorem B.1 The system described by the convolution integral

y(t) =

∫ ∞

0
h(t− τ)u(τ)dτ (B.11)

is BIBO stable if and only if the L∞-induced norm of the convolution op-
erator is finite.

This means that the every element hij of the impulse response h must be
absolutely integrable,

∫ ∞

0
|hij(t)| dt <∞ (B.12)

Lp input-output stability, Proposition 5.17 in (Antoulas, 2005):

Proposition B.1 The finiteness of the L1-norm of the impulse response
h implies the Lp input-output stability of the system Σ described by the
convolution integral y(t) =

∫ ∞
0 h(t− τ)u(τ) dτ for 1 ≤ p ≤ ∞.

Relation internal/input-output stability, Theorem 5.18 in (Antoulas, 2005):

Theorem B.2 Given a dynamical system Σ and a finite-dimensional re-

alization

(

A B

C 0

)

thereof, the following statements are equivalent:

• ||Σ||1 <∞

• ||Σ||2 <∞

• There exist a realization of Σ, with A Hurwitz.

• Every minimal realization of Σ has A Hurwitz.
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B. Mathematical Toolbox

Passive system (Egeland and Gravdahl, 2002):

Definition B.1 Consider a system with input u ∈ Rn and output y ∈ Rn.
Suppose that there is a constant E0 ≥ 0 so that for all control time histories
u and all T ≥ 0 the integral of yT (t)u(t) satisfies

∫ T

0
yT (t)u(t)dt ≥ −E0 (B.13)

then the system is said to be passive.

Parts of Corollary 2.1 in (Lozano et al., 2000):

Assume that there is a continuously differentiable function V (t) ≥ 0 and a
d(t) such that

∫ t
0 d(t)dt ≥ 0 for all T ≥ 0. Then if

V̇ (t) ≤ yT (u)u(t) − d(t) (B.14)

then the system is said to be passive.

The Laplace Transform:

Consider a continuous-time signal f(t), defined for 0 ≤ t ≤ ∞. Then the
Laplace transform pair associated with f(t) is defined as follows:

L[f(t)] = F (s) =

∫ ∞

0−
e−stf(t) dt (B.15)

L−1[F (s)] = f(t) =
1

2πj

∫ σ+j∞

σ−j∞
estF (s) ds (B.16)

F (s) is referred to as the Laplace transform of f(t). Some useful properties
of the Laplace transform follows.
Final-Value Theorem

lim
t→∞

y(t) = lim
s→0

sY (s) (B.17)

Initial-Value Theorem

lim
t→0+

y(t) = lim
s→∞

sY (s) (B.18)

Integral Law

L[

∫ t

0−
y(τ) dτ ] =

1

s
Y (s) (B.19)
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Relative degree of transfer function (Skogestad and Postlethwaite, 1996):

Definition B.2 A rational transfer function is given by

G(s) =
N(s)

D(s)
=
bns

n + bn−1s
n−1 + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
(B.20)

The difference in degrees between N(s) and D(s) is called the relative degree
of the transfer function. Let the degree of N(s) and D(s) be m and n. Then

1. G(s) is strictly proper if G(s) → 0 as s→ ∞.
For a strictly proper system m < n.

2. G(s) is semi-proper or bi-proper if G(s) → D 6= 0 as s→ ∞.
For a semi-proper system m = n.

3. G(s) is improper if G(s) → ∞ as s → ∞. For a improper system
m > n.

Zero-state equivalent (Chen, 1999):

Theorem B.3 Two linear time-invariant state equations [A,B,C,D] and
[

Ā, B̄, C̄, D̄
]

are zero-state equivalent or have the same transfer matrix if
D = D̄ and

CAmB = C̄ĀmB̄, m = 0, 1, 2, . . . (B.21)

Stable system (Antoulas, 2005):

Theorem B.4 A matrix A is Hurwitz; that is Re(λi)< 0 for all eigen-
values of A, if and and only if for any given positive definite symmetric
matrix Q there exists a positive definite symmetric matrix P that satisfies
the Lyapunov equation

AP + PAT = −Q (B.22)

Moreover if A is Hurwitz, then P is the unique solution of (B.22)
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