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Abstract
Clustering algorithms (i.e., gaussian mixture models, k-means, etc.) tackle
the problem of grouping a set of elements in such a way that elements from
the same group (or cluster) have more similar properties to each other than
to those elements in other clusters. This simple concept turns out to be
the basis in complex algorithms from many application areas, including se-
quence analysis and genotyping in bio-informatics, medical imaging, anti-
microbial activity, market research, social networking etc. However, as the
data volume continues to increase, the performance of clustering algorithms
is heavily influenced by the memory subsystem.

In this paper, we propose a novel and efficient implementation of Lloyd’s
k-means clustering algorithm to substantially reduce data movement along
the memory hierarchy. Our contributions are based on the fact that the vast
majority of processors are equipped with powerful Single Instruction Mul-
tiple Data (SIMD) instructions that are, in most cases, underused. SIMD
improves the CPU computational power and, if used wisely, can be seen as
an opportunity to improve on the application data transfers by compress-
ing/decompressing the data, specially for memory-bound applications. Our
contributions include a SIMD-friendly data-layout organization, in-register
implementation of key functions and SIMD-based compression. We demon-
strate that using our optimized SIMD-based compression method, it is pos-
sible to improve the performance and energy of k-means by a factor of ≈5x
and ≈9x respectively for a i7 Haswell machine, and ≈22x and ≈22x for
Xeon Phi: KNL, running a single thread.





Paper C.2 1. Introduction 187

1 Introduction
Clustering algorithms try to group a set of elements in such a way that
elements from the same group (or cluster) have more similar properties to
each other than to those elements in other clusters. Clustering is considered
as a central problem in data management and data mining, as well as the
basis in complex algorithms from many fields of application. Clustering is
used in bio-informatics for sequence analysis and genotyping, to group ho-
mologous sequences into gene families. On PET1 scans (medical imaging),
cluster analysis can be used to differentiate between different types of tis-
sue and blood in a three-dimensional image. It can also be used to analyse
patterns of antibiotic resistance in medical research, to analyze multivari-
ate data from surveys and test panels in market research or to to recognize
communities within large groups of people in social networks.

Among the many different clustering methods, k-means is one of the most
widely used. The advantage of k-means is its simplicity: starting with a set
of randomly chosen initial centers, the kernel repeatedly assigns each input
point to its nearest center, and then recomputes the centers given the point
assignment. From a theoretical standpoint, k-means is not a good clustering
algorithm in terms of efficiency or quality: the running time can be expo-
nential in the worst case and even though the final solution is locally op-
timal, it can be far from the global optimum (even under repeated random
initializations). Therefore, recent works e.g. k-means++ focus on improv-
ing the initialization procedure, increasing performance, convergence and
quality [1].

In recent years, we have witnessed an explosive growth of big data [2].
The overwhelming data inputs raise compelling computational challenges
to data intensive kernels, such as clustering. Despite the advent of multi-
core and many-core systems, the performance of data intensive computa-
tions is often largely inhibited by slow disk accesses as well as the limited
bandwidth or latency for data transfers across the memory hierarchy. This
is especially critical in real-time or near real-time scenarios (e.g., analyzing
a high resolution medical image in a few hours rather than days can be
extremely beneficial for a patient). Effective data compression algorithms
can be used to mitigate this problem by reducing the amount of data to be
transferred across the memory hierarchy as well as the number of required
memory/disk accesses.

1Positron Emission Tomography.
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Modern processors equipped with extra-wide registers for SIMD (Single
Instruction Multiple Data) instructions provide us with an opportunity to
achieve better compression performance. For instance, Intel has been sup-
porting data parallelism through 128-bit and 256-bit SIMD computations
using SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Exten-
sions) instructions and recently extends their support further by introducing
AVX-512 (512-bit extensions to the 256-bit AVX) SIMD instructions. ARM is
going to release Scalable Vector Extension (SVE) [3] instruction set to sup-
port up to 2048-bit vectors. Therefore, the emerging trends clearly show
that vectorization is going to play an important role in the future High Per-
formance Computing (HPC) systems. Consequently, many researchers seek
to exploit the vector units in the recent hardware to improve the decoding
speed of compression algorithms [4, 5]. In particular, the authors in [6]
have demonstrated the effectiveness of using a SIMD compression method
to improve performance and energy efficiency of cache/memory bound time
series processing.

Based on the aforementioned findings, here we present a simple, yet effi-
cient implementation of Lloyd’s algorithm [7] by using an effective SIMD
based compression approach to accelerate the performance of integer k-
means clustering on compressed data sets. The idea is to improve data
locality and decrease the memory bandwidth requirements of SIMD based
computations by using a lightweight compression method without signific-
antly increasing the computational requirements. The algorithm begins by
storing data points in a block data layout format where each block is com-
pressed using the V-PFORDelta coding method described in [6].

Our key contributions in this paper are:

• We make an efficient implementation of a state-of-the-art k-means al-
gorithm (Lloyd et al. [7]) by optimizing its loop traversal scheme and
by using a block data layout format to store the data. This is key to
make the overall computations more SIMD-efficient and to improve
the data locality of the algorithm. This layout also enables SIMD soft-
ware prefetching to further improve performance.

• We introduce an in-register implementation of the most time-consuming
function (namely ArgMin, discussed in Section 3) to optimize data loc-
ality and conserve memory bandwidth.

• The distance vector of the clustering algorithm does not need to be
completely accurate, as long as elements are clustered in the same
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way. We use a scalar product based approximation to the euclidean
distance computation in order to reduce the computational require-
ments (Section 4.2).

• We present a method to reduce the increased pressure on the memory
subsystem due to vectorization using a lightweight SIMD-based data
compression method [6]. The underlying concept here is to reduce the
total number of required memory accesses by accessing compressed
data. We show that integration of compression is feasible, specially
when the processor runs out of reservation stations or load-store-
queue entries and memory-level parallelism (MLP) is degraded.

• Finally, we demonstrate the effectiveness of our proposed approach in
terms of performance and energy-efficiency on Intel multi-core (Haswell)
and many-core (Xeon Phi: Knights Landing (KNL)) platforms.

2 Related Work
Clustering problems have been frequent and important objects of study for
the past many years by data management and data mining researchers.
One of the most popular heuristics for solving these problems is based on a
simple iterative scheme for finding a locally minimal solution, often known
as k-means algorithm. There are a number of variants to this algorithm, so,
to clarify which version we are using, we will set our baseline as Lloyd’s
algorithm [7]. The initialization process of the algorithm is crucial for ob-
taining a good solution [8].

In this paper we primarily focus on the acceleration of the k-means al-
gorithm using thread and data-level parallelism. This goal has been the
target of many recent researches to accelerate the k-means algorithm. In
[9], the authors have explored the performance of general-purpose applica-
tions including a CUDA implementation of a k-means algorithm on graphics
processors. In [2, 10], the authors proposed an algorithm that performs
the distance calculations in parallel on the GPU while sequentially updating
the cluster centroids on the CPU based on the results from the GPU calcu-
lations. In the aforementioned optimization methods, parallelism is done
at the task level, where the data is divided into smaller chunks and each
chunk is processed in sub-tasks. All of these tasks execute the same logic as
in the baseline k-means algorithm. In contrast, our proposed implementa-
tion method slightly differs from the baseline as it integrates a compression
method for further optimization.



Paper C.2

In [11], Hadian and Shahrivari have used a KD-tree (k-dimensional tree)
based structure where each node for the KD-tree is represented by a bound-
ing box specifying the minimal axis-parallel hyper-rectangle containing all
associated points. Consequently, the search for nearest centroid is accel-
erated. Our work is closely related to the paper [12], where the authors
proposed a fine-grained SIMD based approach which computes n distances
from the n data points to the same centroid in one loop. Hence, this ap-
proach is termed as centroid-oriented approach. We have made an im-
provement over this approach by performing in-register Arg-min computa-
tion along with computations using compressed data set. Moreover, none
of the aforementioned approaches has performed the energy efficiency ana-
lysis. In addition, to the best of our knowledge, the systematic investigation
of k-means implementation using SIMD instruction sets has not been per-
formed on Intel’s Knights Landing platform before.

3 K-means Clustering Overview

3.1 Single-threaded Scalar K-means

Let X = {x1, . . . , xn} be a set of data points in the d-dimensional space
and let k be a positive integer specifying the number of clusters. Let C
= {c1, . . . , ck} divide X into k clusters (X′

j ⊂ X, j = {1, . . . , k}), where cj
is the centroid of cluster X′

j. The distance from a data point (xj) to a
centroid (cj) is determined by the Euclidean Distance denoted as φ(xi, cj) =√∑d

k=1(x
k
i − ckj )

2. The optimal set C of k centroids can be found by min-
imizing the following function:

Θ =
∑

xi∈X,cj∈C
φ(xi, cj)

A single-threaded scalar k-means algorithm is illustrated in Algorithm 1.
The algorithm is divided into 3 states namely seeding state, labeling state
and cluster update state. In the seeding state, the initial set of centroids is
chosen by k random values from the set of data points X. In every iteration
of the labeling state, each data point xi ∈ X is assigned to the cluster Cli

with the closest centroid cli . This is implemented in the ArgMin
cj∈C

φ(xi, cj)

function, which returns the number li (the label for datapoint xi) of the
cluster that minimizes φ(xi, cj) in line 5. Line 6 forms the new updated
clusters, but does not update the position of its centroid, which is done in
next state, the cluster update state. Here the new cluster value (the position
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Algorithm 1 Sequential k-means Algorithm
Input: data (X), number of clusters (k) | Output: centroids (C)

Seeding state

1: cj ∈ C← random xi ∈ X, i = 1..., n; j = 1, ..., k

Labeling state

2: repeat
3: X′

1..k = {}

4: for Each xi ∈ X do
5: li ← ArgMin

cj∈C
φ(xi, cj)

6: X′
li
← X′

li
∪ xi

7: end for

Cluster update state

8: for Each cj ∈ C do

9: cj ← 1

| X′
j |

∑
xj ∈ X′

j

10: end for
11: until convergence

of the centroid, cj) is computed for each of the updated clusters X′
j by di-

viding the sum of the cluster-values with the number of data points in each
cluster (namely mj).

3.2 Multi-threaded Scalar K-means

We use the OpenMP [13] API to make a parallel implementation of the
algorithm. In the parallel implementation of the k-means algorithm, the
labeling state (i.e. li computation) is identified as being inherently data
parallel. Therefore, Algorithm 1 can be translated into a multi-threaded
implementation by the following two steps (See Algorithm 2):

• Divide the data set X to be clustered into p blocks and assign one
thread for each block. Each thread executes independently the la-
beling step (lines 5–9) in parallel. This implies also to update its par-
tial sum of points in cluster li and m-value (number of elements in
cluster).

• Once the labeling step is completed, an implicit barrier allows the
reduction step to combine all thread-local partial sum- and m-values
together [13]. Then we update the centroids accordingly.
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Algorithm 2 Parallel k-means Algorithm
Input: data (X), number of clusters (k) | Output: centroids (C)

1: cj ∈ C← random xi ∈ X, j=1, ..., k
2: repeat
3: sum1..k = m1..k = 0
4: #pragma omp parallel for reduction(+: sum1..k,m1..k)
5: for Each xi ∈ my block of X do
6: li ← ArgMin

cj∈C
φ(xi, cj)

7: sumli ← sumli + xi
8: mli ← mli + 1
9: end for

10: for Each cj ∈ C do

11: cj ← sumj

mj

12: end for
13: until convergence

4 Multi-threaded Vectorized K-means with Compressed Data-
set

To exploit the full performance potential of the modern micro-architectures
supporting SIMD operations, we have carefully chosen the following strategies:

• Memory hierarchy sensitive strategies to efficiently transfer data into
the registers.

• Approximate the Euclidean distance computation by using precom-
puted scalar products.

• In-register ArgMin computation to optimize data locality.

• SIMD data compression to conserve bus-bandwidth and reduce the
number of cache accesses.

4.1 Loop Traversal Strategy and Data Layout Optimization

The ArgMin computation step of the k-means algorithm is typically imple-
mented by three nested loops iterating over data points (n), cluster repres-
entations (k) and dimensions (d). Therefore, the loop traversal strategy of
this step can also be defined by the n-k-d space. In order to optimize the
data locality property of this ArgMin computation, we divide the input data
stream into smaller blocks.
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Figure 1: Loop traversal strategy for SSE-SIMD k-means.

Figure 1 illustrates the loop traversal strategy that is deployed in our multi-
threaded vectorized k-means implementation. In the figure we can observe
that the outermost loop iterates over the data points xi, the nested loop
iterates over the cluster representatives cj and the innermost loop iterates
over the dimensions d. For SSE, each block in the n-k-d space involves
4 data points (the same as the number of uint32_t values we can fit in a
SSE register), 4 cluster representatives (also equal to the data we can fit
in the SSE register) and 1 dimension. Once this step is repeated over the
d dimension, as indicated by the orange zig-zag arrow in the Figure 1, the
ArgMin computations for the 4 data points (green circles) are completed.
Next, the ArgMin computations for the next 4 points can begin.

Figure 2: Block data layout for locality optimization.
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It is important to note that all the data points fitted into the vector registers
first complete their computations across all dimensions (d), before the next
set of data points are loaded into the vector register. Hence, neither the
row-major layout nor the column-major layout is efficient for storing the
data block into the memory. Instead, a block data layout of (s × d) is used
to store the data into memory, where s is the vector register size divided
by element size, or SIMD_WIDTH, and d is the dimension. Figure 2 illus-
trates the block data layout format used in our multi-threaded k-means im-
plementation. The combination of block data layout with our chosen data
access strategy has the following advantages:

• The loop traversal strategy is efficient as the n data points are streamed
into the SIMD register only once. Also the k cluster representatives are
streamed into the registers only once for the n different data points
within a n-k-d block. As a result, it reduces the required number of
repeated transfers of the cluster representatives to the registers.

• The block data layout minimizes memory bank conflicts by grouping
the contiguously used data together. Also the disturbance of temporal
data held within processors caches is minimized by using streaming
store instructions2.

• The SIMD based ArgMin computation does not require horizontal ad-
dition3 anymore. Thereby the overall computations become more
SIMD efficient.

4.2 Approximate Euclidean Distance Computation

In the k-means algorithm, the Euclidean distance metric is used for compar-
ison purposes only, rather than computing the actual distance. Therefore,
the distance vector does not need to be completely accurate. Considering
this, we have adopted an indirect approach to compute this distance using
a scalar product.

Let us consider, �x1 and �c1 represent a multi-dimensional data point and a
cluster representative respectively, and the dimension is d in both cases. Let
us also assume that {x11

, . . . , x1d
} and {c11

, . . . , c1d
} are the values of �x1

and �c1 across d dimensions. Now, the formulas for the Euclidean distance

2An store instructions that skips the first level of the cache hierarchy.
3The addition of all the data values within a vector register.
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‖ �x1 − �c1 ‖ and scalar distance 〈�x1,�c1〉 [14] can be defined as:

‖ �x1 − �c1 ‖=
√√√√ d∑

i=1

(x1i
− c1i

)2, 〈�x1,�c1〉 =
d∑

i=1

x1i
· c1i

The Euclidean distance computation can be re-written as:

‖ �x1 − �c1 ‖2 =

d∑
i=1

(x1i
− c1i

)2

=

d∑
i=1

(x21i
+ c21i

− 2x1i
c1i

)

=

d∑
i=1

x1i
· x1i

+

d∑
i=1

c1i
· c1i

− 2

d∑
i=1

x1i
· c1i

= 〈�x1,�x1〉+ 〈�c1,�c1〉− 2〈�x1,�c1〉

In the labeling state of k-means algorithm, the Euclidean distance between
a data point �x1 and all cluster representatives �c1,. . .,�ck is computed. There-
fore, we can pre-compute 〈�c1,�c1〉, . . ., 〈�ck,�ck〉 before starting the labeling
state. As a result, the membership id (label) (l) of a data point �xi can be
defined as:

li = ArgMin
1≤j≤k

‖ �xi − �cj ‖2

= ArgMin
1≤j≤k

〈�xi,�xi〉+ 〈�cj,�cj〉− 2〈�xi,�cj〉

= ArgMin
1≤j≤k

1

2
〈�cj,�cj〉− 〈�xi,�cj〉

since xi is identical for all j, we can skip 〈�xi,�xi〉 computation and divide
the operand of ArgMin by the positive constant two. Consequently this
approximation computation requires d multiplications and d additions or
subtractions and one array lookup as compared to original d multiplications
and 2d-1 additions or subtractions.
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4.3 In-register ArgMin Computation

As loading causes an entire cache line to be moved into the cache hierarchy,
any load operation looks more or less the same from a memory bandwidth
perspective irrespective of the size of the data operand. Moreover, many
small loads often consume more microarchitectural resources, which may
cause the processor to stall and reduce the MLP. Therefore, while perform-
ing ArgMin computation, we aim to minimize the required number of load
operations while maximizing the utilization of the data that are loaded into
the register. In our ArgMin computation scheme, as illustrated in Figure 3,
the number of load operations is reduced as the block data layout puts rel-
evant data close to each other. Additionally, we can reuse the loaded data in
several iterations of the ArgMin computation by shuffling the register con-
tents. For instance, once centroids values (i.e. c1, c2, c3, c4) are loaded into
a SIMD register, the values are shuffled around to compute the distances of
the 4-centroids from each data point (e.g. x1). As a consequence, repetitive
transfer of cluster representatives is avoided for each point xi, thus reducing
the memory bandwidth requirements.

4.4 Bus-bandwidth Conservation Through Vectorized Data Compression

We further attempt to reduce pressure on the memory subsystem by load-
ing and storing more data to/from the same DRAM page. With this aim,
we split the data stream into blocks of (s × d) integers, where each block
of data is compressed using a SIMD compression method. The process is
similar to algorithm 2, but has an additional step where each block of data
is decompressed in parallel (between lines 4 and 5).

The scope of the paper is limited to integer compression on integer inputs.
Centroids are approximated to their nearest integer so that integer com-
pression techniques can be applied. This is not mandatory in our proposal,
but not doing so reduces the compression ratio for large high-dimensional
cluster sets. This approximation is applied to all kernels in order to avoid
reporting any unfair benefits that it may cause.

For compressing a data block we use the V-PFORDelta coding scheme pro-
posed in [6]. V-PFORDelta is a delta coding-based compression technique
which uses vectorized binary packing over blocks of integers. This scheme
uses b bits to represent each integer value and stores exceptions that cannot
be represented by b bits on a per block basis. Then, successive values are
stored using b bits per integer using a fast bit packing functions. The factors
that determine the storage cost of a given block in binary packing are:
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• the number of bits (b) used to present the delta value.

• the block length (B = s × d)

• a fixed per-block overhead (κ)

The total storage cost for one block is bB + κ. We tune the bit width (b) of
delta to 16 to minimize the value of ((s × d) × b + c(w) × 32) where (s ×
d) is the length of block and c(w) is the number of exceptions. For further
details about the SIMD implementation of V-PFORDelta please refer to [6].

5 Experiments and Results
There are many optimizations available for k-means, so it is hard to choose
a baseline for comparison in our specific evaluation environment. In ad-
dition, replication of results if no source-codes are provided is a real chal-
lenge. To minimize the sources of error, we chose a simple algorithm [2]
and the available OpenMP implementation as baseline. This selection en-
sures that we can isolate the effects of SIMD-friendly data structures and
SIMD-compression from other optimizations [15].

Most of the related work optimizations are orthogonal to ours, and many
others can be suitable for compression. Note that the main goal of this pa-
per is "to improve on the behaviour of memory/latency bound applications
through compression techniques". We are not trying to compete for best
speedup, but to show the feasibility and what results can be expected from
SIMD-based compression. Table 1 shows the expected compatibility with
other optimizations available in the literature to achieve best performance.

Moreover, we are considering the following assumptions in our evaluation:

• Compression is done offline. In many big-data applications, specially
those with low insertion count, storing datasets in compressed formats
that can be directly accessed is the most promising solution.

• Centroids are approximated to their nearest integers. This is not an
obligatory part of our proposal. The approximation can be avoided by
one additional SIMD-conversion (int to float) on top of D (= SIMD-
width) uncompressed integers to continue with floating point opera-
tions. This will prevent compressing the cluster values with the selec-
ted integer compression technique though. Also note that accuracy is
not an issue, since iterative algorithms usually stop on a convergence
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Table 1: Compatibility analysis of stat-of-the-art proposals with our pro-
posed scheme

Paper Contributions Compatibility
SIMD SIMD Block-data-layout In-register Argmin

Proposal comp. compression + distance Approx.
loop-opt. comp.

[1] Improved seeding algorithm No Yes Yes Yes Yes
[2] Heterogeneous computation: labeling on

GPU, cluster update on CPU
Yes Yes Yes Yes Yes

[16] Use of KD-tree to filter out a candidate No Yes No No Yes
[12] Heterogeneous computation: centroid

labeling on KNC, cluster update on CPU
Yes Yes No No Yes

[17] Avoids distance computations using dis-
tance bounds and triangular inequality

No Yes No No Yes

[18] Use of MapReduce, iteration dependence
is reduced using probability sampling

No Yes Yes Yes Yes

[19] Approximation using binary-tree cluster
closure

No Yes No No Yes

[20] Encode high dimensional data points No Yes Yes Yes Yes

criteria, that is respected when using approximation to integers. The
overhead in iteration count is relatively small (< 4%).

5.1 Experimental Setup

We present the following seven variants of k-means implementations to
demonstrate the effectiveness of our proposed approach:

• Scalar: A simple implementation of k-means algorithm using C++.

• SSE_auto: Auto-vectorization of Scalar implementation (using -msse2
compiler flag to prevent AVX code generation).

• SSE_basic: Hand-tuned SSE-based vectorization of k-means algorithm
over data dimension.

• SSE_optimized: SSE-based vectorization of the proposed SIMD-optimized
k-means algorithm.

• SSE_compressed: SSE_optimized implementation integrated with V-
PFORDelta coding technique.

• AVX512_auto: Auto-vectorization of Scalar kernel using -xMIC-AVX512
flag.

• AVX512_compressed: Hand-tuned AVX512-based vectorization of the
optimized kernel integrated with V-PFORDelta.
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Table 2: Hardware Specifications of the Test Platforms

Processor Intel R© CoreTM i7-4700K Intel R© Xeon Phi 7250
Architecture Haswell Knights Landing
Clock Speed 0.8 – 3.5 GHz 1.4 Ghz
# of Cores 4 cores / 8 threads 68 cores / 272 threads
L1 Cache 32 KB data + 32 KB inst, 8-way private
L2 Cache 256 KB, 8-way private 1 MB, 16-way per 2 cores
L3 Cache 8 MB, shared, 16-way associativity 16 GB, shared HBM-MCDRAM

In this experiment, we have used Intel R© CoreTM i7-4700K desktop pro-
cessing system. The system runs with Ubuntu 14.04.1 LTS 64-bit OS. In-
tel C++ compiler (version 14.0.1) with -O3 optimization flag is used to
generate the executables. Turbo Boost Technology is disabled in the BIOS
and the CPU frequency is set to a certain value while taking the measure-
ments. In addition, we have also tested our implementations in a Xeon
Phi 7250 processor with 68 cores running at 1.40 GHz. The system runs
SUSE Linux Enterprise Server 12 SP1 and the binaries are generated using
Intel C++ compiler (version 17.0.035) with -O3 optimization level and the
-xMIC-AVX512 flag to generate AVX512 code. We only use 64 cores, and
leave 4 cores to handle the OS (recommended by Intel). The hardware
specifications of our test platforms are presented in Table 2.

Knights Landing (KNL) offers a high number of cores (68 in our evaluation
platform) with up to four threads per core. The cores are based on Silver-
mont Atom out of order cores, tiled in pairs. Each core contains two Vector
Processing Units (VPUs), that work with vector registers up to 512-bit wide.
The VPUs are compatible with SSE, AVX and AVX512, but only one of the
VPUs will be used for SSE-AVX codes. If the user wants to get the full po-
tential of the VPUs the code needs to be recompiled for AVX512 (we recom-
piled SSE versions to run on KNL). In addition, each tile shares 1 MB of L2
memory, that are linked together using a 2D mesh interconnect (or NOC4).
This interconnect hooks the cores to two DDR4 memory controllers (384
GB with a bandwidth of 90 GB/sec) and eight stacks of high bandwidth
memory (HBM-MCDRAM, 16 GB with a bandwidth close to 400 GB/sec).
The HBM memory can work in different modes, as a scratchpad memory, as
an additional cache level or in hybrid mode (combination of the previous
two modes). Our system is configured to use the HBM as cache (L3). An-
other key feature of KNL as compared to KNC or other Many-core platforms

4Network on Chip.
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Figure 4: The basic workflow of parallel k-means using compressed data set
on multi-core systems.

(like GPGPUs) is that it can work as an stand-alone processor, being the first
bootable implementation of what was, up until now, a coprocessor handled
by a host CPU.

5.2 Multi and Many-core Implementations

We have used OpenMP to achieve thread-level parallelism for our k-means
algorithm. We implemented our code using a wrapper library, rather than
writing intrinsics directly on the code. This wrapper library is contained in
a header file that is imported by the k-means code, making the code more
readable and easy to modify/migrated between architectures. For example,
an integer SIMD addition (simd_add_i(x,y)) is defined in the wrapper lib-
rary as a macro that translates to _mm512_add_epi32(x,y) for AVX512 and
_mm_add_epi32(x,y) for SSE. The source code uses simd_add_i(x,y) for
SIMD integer additions, and the pre-processor translates the macros to the
appropriate target architecture. This implementation allows us to keep al-
most the same code for SSE and AVX512, except for instructions that merge
register types (e.g., cvtepi8_epi32). Performance and energy of intermediate
vector size implementations (i.e., AVX2 256-bit) are not shown to improve
legibility but can be extrapolated from SSE (128-bit) and AVX512 (512-bit).
The thread schedule is set as static (i.e. default) for the Haswell system, so
that the iterations are partitioned into chunks which are allocated to the
threads in a round-robin manner. The thread affinity is set as scatter to
make the best use of each core first. The work flow of our proposed method
is illustrated on Figure 4. However, the KNL system showed slightly better
performance with the dynamic thread scheduling than static (around 5%)
when working with high number of threads, even though we don’t have



Paper C.2

explicit synchronization between threads. Scatter thread affinity outper-
formed compact by a factor of 2x on both static and dynamic scheduling.
The scheduling analysis is not shown since we feel it is not relevant to the
publication, but it can be included upon request.

5.3 Datasets

Real-world Data

To understand the relative efficiency of this algorithm under practical cir-
cumstances, we use KDDCupBio04: a multidimensional biological dataset
which is used in several scientific research works [21, 22, 23] involving
clustering of high dimensional data. This dataset consists of 145751 multi-
dimensional (74 dimensions) data points. The data compression ratio of
this dataset is around 1.63. Note that, not all the ’clustering datasets’ in
these dataset repositories [24, 25] can be used directly in our experiments
as many of these datasets contain non-numeric/missing values for some
attributes or the size of the dataset is not large enough to provide any inter-
esting insight.

Synthetic Data

For some real-world, it is possible to achieve even greater compression ra-
tio than the ratio of KDDCupBio04. For instance, the compression ratio
of synthetically generated control charts dataset [26] is around 3.80. Un-
fortunately, the size of this dataset is too small (288 KB) for us to test
with. To overcome this limitation, we have generated a synthetic dataset
with greater compression reatio consisting of 164 dimensional 145728 data
points. These points were distributed evenly among 50 clusters as follows:
The 50 cluster centers were sampled from a uniform distribution over the
hypercube [1, 1]d. A Gaussian distribution was then generated around each
center, where each coordinate was generated independently from a univari-
ate Gaussian with a given standard deviation. The standard deviation varied
from 0.01 (very well-separated) up to 0.7 (virtually unclustered). The ini-
tial centers were chosen by taking a random sample of data points. The data
compression ratio of this dataset is 3.32 using V-PFORDelta coding. Note
that the contrasting nature of the chosen real-world and synthetic datasets
can provide us an important insight of the effectiveness of our proposed
optimization techniques against the dataset of different sizes, dimensions
and compression-ratios. The selected datasets can be seen as upper-lower
bounds. We can add a few more real-world datasets, but we feel it will only
dim the results.
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(a) 1 thread

(b) 4 threads (c) 8 threads

Figure 5: Execution time of the implementations of multi-threaded kernels
at different frequencies on HL (Haswell) system.

5.4 Performance Analysis

The performance analysis will be carried out in both the Haswell and the
KNL systems for the aforementioned k-means kernel implementation strategies
and features. Figure 5 and Figure 6 present the execution time and spee-
dup of the different strategies when varying the core frequency on Haswell
while Figure 7 shows the speedup for KNL. The speedup at a certain core
frequency is computed by considering the execution time of the single-
threaded kernel as baseline at the same core frequency. To gain further
insights into the key drivers of performance variations of different kernel
implementations, we also consider certain hardware performance counters
provided by PAPI [27]. The list of these counters including the counter-
values is presented in Tables 3 and 4.
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(a) Speedup on HL (800 MHz)

(b) Speedup on HL (2500 MHz) (c) Speedup on HL (3500 MHz)

Figure 6: Speedup of the multi-threaded k-means kernel implementations
at different frequencies on HL (Haswell) system.

We can make several important observations from Figure 5. First, the per-
formance curve in Figure 5a shows that the core frequency has a linear
impact on the performance of different kernel implementations as the exe-
cution time decreases linearly with the increase of core frequency. For both
architectures, running more than one thread per core (SMT) has a negative
effects on performance.

It is also shown in Figure 5 and 7 that both SSE_auto and AVX512_auto ker-
nels provide better performance than the Scalar kernel, though the achieved
speedup (i.e. 1.4 for SSE and 8.2 for AVX512) is much lower than the
ideal speedup (i.e. 4/16). SSE_basic kernel clearly outperforms SSE_auto
kernel for both synthetic and real-world datasets. Having a closer look
at the counter values of these two kernel implementations, we can find
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Table 3: Average Cache and Memory Related Events for single threaded
kernel implementations on Haswell processor

Kmeans L1 Data L1 Data L1 Data Stalled cycles on Total Instruction
Kernel cache accesses cache misses cache write mem. subsystem cycles count

R S R S R R S R S R S
Scalar 209967449 288984692659 6307484 8890233722 57397 471240 459710883 363486528 99342163994 1324809657 1834921001955
SSE_auto 51479506 72141873865 6313758 8888548471 56752 2698435 925356343 259319085 73511519337 710537090 990970043470
SSE_basic 55679577 73879158008 6287243 8891312454 37542 1562250 779375650 136502855 39371898023 304937969 406358865890
SSE_optimized 13620296 17981569831 1636397 2240184825 80584 5825528 1528259338 104098777 28227451532 235781815 332783146983
SSE_compressed 13150228 11277606810 1635752 2240555095 70202 195166 283349789 87650731 24933051932 223216928 321490559724
R=Real dataset S=Synthetic dataset

out that the cache accesses for SSE_auto kernel is comparable with that
of SSE_basic kernel, but the instruction count is doubled for SSE_auto ker-
nel over SSE_basic kernel. Therefore, we can conclude that compiler auto-
vectorization adds some extra instructions in the code that cause a perform-
ance penalty when compared with manual vectorization.

Our second observation is that SSE_optimized kernel can achieve a speedup
of up to 3.6 for single threaded implementation at a peak core frequency
(i.e. 3500) on Haswell, which is about 30% better performance over the
SSE_basic kernel and 6.8 for the KNL. Since in SSE_optimized strategy, the
total number of memory/cache accesses is further reduced due to in-register
ArgMin computations and the use of blocked data layout format, the overall
performance improvement was expected. This reduction in the number of
required cache/memory accesses is apparent in Table 3. The superlinear
scaling on the KNL comes from a substancial reduction on the L1D cache
misses (Table 4). Since L1D caches from both systems are very similar we
can only guess that prefetching is working much better with the new data
layout on KNL, but we cannot validate this assumption since we don’t have
access to that specific performance counter yet. We see the same trend when

Figure 7: Speedup of the multi-threaded k-means kernel implementations
on KNL system (log scale).
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Table 4: Cache performance counters and instruction count for single
threaded kernel on the KNL processor

Kmeans L1 Data L1 Data Instruction
kernel cache accesses cache misses count

Scalar 292535065167 318225301 1799359093827
SSE_basic 75702075624 439620351 513924495386
SSE_opt 18016121321 84379111 261087333119
SSE_comp 11347608934 85922280 258738990685
AVX512_auto 19327764016 3154904399 129678790549
AVX512_Comp 803823687 61285372 45527089021

comparing AVX512_auto and AVX512_Comp, with a substantial reduction
on both cache accesses and misses.

Finally, the SSE_comp kernel outperforms all implementations on Haswell,
specially when the synthetic dataset is used. As we have already discussed,
if the datapoints in the dataset exhibit good correlation among them, the
compressed dataset can be used to further reduce the number of memory
access. In Table 3, we can observe that the number of memory accesses
for synthetic dataset is reduced significantly, which is not the case for the
real-world dataset. Therefore, SSE_comp does not get much performance
benefit for the read-world dataset as the overhead of the decompressing
process is not nullified by the reduced number of memory accesses. It is
important to note that the performance is increased only at the higher core
frequencies, which is reasonable, as the decompression process requires to
perform some additional computations. That, and the incredibly low cache
miss-rate on the optimized code justifies the "poor" performance of the com-
pressed versions on KNL, since it operates at a low frequency (1.4 Ghz).
Still, AVX512_Comp achieves a 22x speedup over the scalar version. There-
fore, we can conclude that the level of speedup for the SIMD_comp kernel
is sensitive to the compression ratio and core frequency, but has a worst-
case performance similar to that of the uncompressed implementation on
regular CPUs. It should be worth considering moving the compression to
hardware for low frequency architectures.

5.5 Energy Efficiency Analysis

In this section we discuss the implications of the different approaches on
the energy efficiency of the analyzed systems. Both Intel Core i7 and Xeon
Phi processors have internal counters to estimate the energy consumed by
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(a) 1 thread

(b) 4 threads (c) 8 threads

Figure 8: Core energy of the multi-threaded k-means implementations at
different frequencies on HL (Haswell) system.

different zones of the processor (also known as power planes). We will
provide energy measurements for the whole package (including core power
and DRAM controller traffic). These counters can be accessed either by the
RAPL interface (root-level) or the powercap interface (user-level).

Figure 8 shows the total energy used by the Haswell cores as we vary core
frequency and number of threads. Total energy remains similar as we in-
crease the number of cores, meaning that we are not wasting power when
adding additional cores in idle time or unprofitable computations. It is also
important to note that energy used by the compressed SSE version is very
similar to that used by the optimized SSE version. This means that the
extra computations performed when compressing/decompressing the data
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(a) 800 MHz

(b) 2500 MHz (c) 3500 MHz

Figure 9: Relative EDP of the multi-threaded k-means implementations at
different frequencies on HL (Haswell) system.

will burn equal (or less, for high frequencies) energy than the uncompressed
version, while performing much better. As for the overall energy reduction,
SSE shows improvements in the order of 3.7x (14.9x) for the real-world
dataset and 4.2x (16.9x) for the synthetic dataset when running on a single
(four) thread(s).

When looking at EDP (Figure 9 and 10) we can clearly see the benefits of
our proposed implementations. Both the optimized and the compressed
SSE (AVX512) versions considerably outperform the scalar codes. SSE-
compressed achieves an EDP improvement factor of 10x (29x) when run-
ning the real world (synthetic) dataset on four threads at the lowest fre-
quency we can test. When running at 3.5Ghz, the EDP benefits peak when
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Figure 10: EDP improvements of the multi-threaded k-means kernel imple-
mentations on KNL system (log scale).

running on four threads with 14x and 24x EDP improvements over the
scalar version running on four threads for the real-world and synthetic data-
sets (respectively). On KNL, the AVX512_comp EDP improvements reach
490x on a single thread, with a peak of 292848x better EDP when running
on 64 threads over the scalar version running on a single thread. This super-
linear scaling reveals a high power dissipation of the idle cores of the KNL
platform as the governor of the KNL system is set to performance, which
forces the CPU to use highest possible clock frequency. Since we do not
have root access privilege, we could not change the CPU governor or bind
the system processes onto a single core so as to prevent the OS scheduler
from keeping the cores busy. Nevertheless, this would be the common case
for most end users. Finally, it is also worth mentioning that the compressed
codes outperform the optimized codes by a factor of 1.47x to 1.72x for four
threads and real-world/synthetic datasets (respectively) when running at
high frequencies (Haswell), but perform similarly at low frequencies (worst
for KNL). This is consequent with the performance of the compressed codes
at high frequencies.

6 Conclusions and Future Work
Grouping a set of elements that have similar properties to each other than
to other elements in a different cluster is a problem present in many fields
of applications. This technique can be applied to both integer and floating-
point application domains. Pixel coordinates on medical imaging, DNA se-
quence analysis (Guanine Cytosine Adenine Thymine), multivariate data
surveys or IDs in social networks are some examples of the integer domain.
In this paper, we present a modified integer k-means algorithm that achieves
both thread-level and data-level parallelism (vectorization).



Paper C.2

We use a new SIMD-friendly data layout that improves data locality. In ad-
dition, we also perform an in-register implementation of key functions to
minimize data transfers from/to the processor register bank. To further re-
duce the pressure on the memory subsystem, we improve on the optimized
SIMD version to support compressed datasets. Software compression trades
computation cycles (+) with memory bandwidth requirements (-). SIMD
can compute more data with less instructions, and, if used wisely, become
an opportunity to improve on the application data transfers by compress-
ing/decompressing the data.

We have shown that integration of SIMD-based compression is feasible, as
long as we can do it in a reasonable time. Results show improvements on
performance and core energy consumption of a state-of-the-art k-means im-
plementation when running on a single thread by 4.5x and 8.7x respectively.
EDP improvements range between 15x to 57x, depending on the input set,
for an i7 Haswell CPU. On the Xeon Phi KNL architecture results are even
better, with ∼22x improvements on both performance and energy and EDP
improvements of 490x for a single thread. Compression will become of crit-
ical importance as the use of wide vectors turns CPU bound applications into
memory bound, leaving more idle time to compress-decompress (note: Intel
512-bits, ARM-SVE 2048-bits). However, there may be cases where better
compression algorithms or hardware support becomes necessary, specially
on systems that run below 2GHz, and we are working to solve that issue.

Improving the performance of clustering algorithms improves time to solu-
tion, that can be critical in market research and other close to real-time
scenarios. In addition, it allows to compute bigger datasets in a "reasonable"
time. For example, image processing of medical images for personalized
medicine can highly benefit from this, increasing resolution of the images
or resonances while producing the output in a similar time frame. On the
other hand, improving the energy efficiency translates into a reduction on
operation and running costs, a reduction on cooling needs and that usually
translates into a reduction on the size of the machinery that computes the
algorithms. This can mean a huge improvement on personalized medicine,
making PET scans, antibiotic resistance or blood tests more accessible to
small clinics.

In future, we would like to extend our study on evaluating the effect of us-
ing a look-up table for the approximate computation (precomputed 〈�ci,�ci〉
values) in the labeling state. Our initial study shows that, the use of precom-
puted values using look-up table can lead to more than 30% performance
improvement for the single threaded SSE_opt kernel implementation. It is



Paper C.2 REFERENCES 211

also a part of our future work to use compression in other algorithms. In fact
we are currently working with compression on B-Trees, in addition to previ-
ous work on industrial time series compute kernels. Furthermore, widening
the coverage to floating point is a necessary future step. Changing the com-
pression algorithm for one with floating-point support is straight-forward.
The feasibility on that domain will depend on the computational require-
ments of the compression algorithm and the compression ratios achieved.
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