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Abstract

This thesis analyses manoeuvring ships. Good modelling is vital for ef-
fective control system design and simulation. Such models are invaluable
tools in areas such as training and decision support. This thesis prioritises
physical reasoning in the ship model, and contributes with the following:

� A physically motivated ship model

� A new, compact derivation of the equations of motion with memory
e¤ect for ships

The �rst contribution is a model developed from longstanding analyses
in low aspect�ratio aerodynamics. The hull of a ship is treated as an aircraft
wing �ipped onto its side. An advanced mathematical model structure
is then derived. The model copes with the four degrees of freedom of
most interest in manoeuvring: surge, sway, roll, and yaw. The e¤ects of
sway velocity and yaw rate arrive naturally from these analyses. The goal
is to arrive at a model structure, and to enumerate this structure from
experiment. That is, the structure is what is sought, and not methods for
computing its parameters.

Using experimental data from planar motion mechanism tests, this
model is veri�ed and validated. It matches up very closely with what
is observed in experiment. Furthermore, the model is compared to a pre�
existing commercial model, and shows considerably greater accuracy. The
model is additionally veri�ed through full�scale tests on a modern trimaran
design.

The Lagrangian formulation in this �eld dates back many decades. This
thesis contains the derivation for the nonlinear equations of motion for
a ship manoeuvring through waves. The equations arise from applying
Kirchho¤�s equations to a convolution integral formulation of the added
mass.
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Chapter 1

Introduction

Seagoing vessels have always carried the vast bulk of tradeable goods across
our planet. In ancient times, a single vessel journeying from the Far East
carried as much spice as all the beasts of burden did in an entire year
(Pereira 2006). Today, lumbering oil tankers carry the lifeblood of our
economies across the globe. Ferries of increasing performance and e¢ -
ciency move huge numbers of people and tra¢ c daily. High performance
naval vessels, from small agile coastal patrol vessels, through frigates and
destroyers, all the way up to vast nuclear aircraft carriers, are put to use
in both defensive and o¤ensive capacities year�round.

The past decades have seen mammoth developments in both control
theory and computerisation. These advances �ltered into an array of �elds;
marine cybernetics being one prime example. Cybernetics was de�ned by
Wiener (1948) to be "the science of control and communication in the ani-
mal and the machine". Marine cybernetics is the study of complex dynam-
ical systems as they relate to the marine discipline. This science consists
of control theory and systems theory applied to a vast array of topics.
These range from analyses of ships, boats and submarines to remote and
autonomous underwater vehicles. Wiener claimed both animal and ma-
chine in this �eld of study. Marine cybernetics might seem to be machine
rather than animal, but the studies of how �sh swim and the design of
biomimetic underwater vehicles make it clear that marine cybernetics en-
compasses both.

The work within this thesis analyses manoeuvring ships. These analyses
are vital for the accurate modelling of any vessel, be it a riverboat, coastal
or ocean�going vessel. The myriad of control problems, from a simple
manoeuvring task through to complex guidance manoeuvres necessitate
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such work.
Many �elds of guidance, navigation and control are dependent on accu-

rate models. Fields such as path following, collision avoidance or formation
control are limited in scope if the assumptions made about the model are
unphysical. The problem of navigation is quite meaningless if there is no
knowledge of the capabilities of whatever is navigating. Inaccurate mod-
elling of a vessel puts limitations on the control system, making an already
onerous task all the greater, and limiting the capabilities of the vessel.

For many years, the primary concern in developing models of ships has
been mathematical convenience: a model with "nice" properties. This mo-
tivation has given rise to models with simple linear damping terms, and
models which are heavily decoupled using diagonal mass and damping ma-
trices. This statement is not to belittle these approaches, but such simpli-
�cations sacri�ce accuracy for utility, and forfeit the ability to cope with
changing operating conditions. These models are limited to manoeuvres
around �xed operating points, or to only modest manoeuvres.

Contrary to such approaches, this thesis attempts to explain the forces
acting on a ship from the standpoint of physical motivation. That is, the
work in this thesis introduces concepts for physical rather than mathemat-
ical reasons. The result is a model su¢ ciently advanced to capture much
of the behaviour of displacement and semi�displacement vessels in heavy
manoeuvring problems. By applying lift and drag theory sectionally, the
e¤ects that surge, sway and yaw have on the vessel arise naturally.

The treatment is carried out in four degrees of freedom: surge, sway,
roll and yaw. Heave and pitch are neglected. The end result is a model
highly capable of modelling a ship manoeuvring aggressively across a very
large speed range.

The viability of this model is tested by considering a set of planar mo-
tion mechanism tests. Data at one speed range were used to verify the
e¤ectiveness of the model. Data at a separate speed range were then used
to validate the model as working across a wide speed range. For further
veri�cation, data from full�scale trimaran trials are used.

In addition to this work, a new formulation of the equations of motion
appears. This formulation is based on Lagrangian dynamics. By apply-
ing Kirchho¤�s equations to a convolution formulation of the added�mass,
a wholly new structure to the equations of motion is found. This struc-
ture allows manoeuvring through waves to be contemplated, without being
restricted to any limited coordinate system.

The results give strong indications that the physics of manoeuvring is
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being dealt with quite comprehensively.
Before the main topic of this thesis is delved into, the �eld must be

placed in context. This introduction is broadly divided into two sections.
The �rst deals with the history of dynamics, while the second is a review
of manoeuvring theory as it has developed and how it exists today.

1.1 History of Dynamics

The �eld of dynamics is among the most important in history. Human
interest in the �eld extends deep into pre�history. The knowledge of which
direction and speed to run at to catch one animal, or to escape from another,
is innate to humans. The development of weaponry for hunting and �ghting
demonstrates interest in the dynamical aspects of the motion of bodies. The
use of ranged weaponry predates modern man. Javelins1 dated to 400,000
B.C. were discovered in a mineshaft in modern day Germany, and were used
by homo�heidelbergensis, a predecessor and contemporary of early man.
The ancient world is replete with innovative and inventive applications of
dynamics: from slings to ballistæ, to vending machines for holy water.

Take what the pre�eminent physicist and philosopher of science, Ernst
Mach, wrote of Newton�s contributions (Mach 1883):

Newton discovered universal gravitation and completed the
formal enunciation of the mechanical principles now generally
accepted. Since his time no essentially new principle has been
stated. All that has been accomplished in mechanics since his
day has been a deductive, formal, and mathematical develop-
ment of mechanics on the basis of Newton�s Laws.2

The sentiments expressed by Mach are held by most in the �elds of
mechanics. When they are not held, the disagreement is usually slight.
As common as these sentiments may be, it is still necessary to examine
whether they are factual or not.

The motivation for writing this section of the introduction stems from
the sentiments of the great physicist, mathematician, historian of science,

1A javelin is distinct from a spear. It is designed to be front�weighted and lighter to
make it suitable for throwing. In contrast, spears are weighted for ease of carrying.

2That general relativity has since superseded classical mechanics is of no importance
here.
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and polemicist, Cli¤ord Truesdell3. In his essay A Program toward Redis-
covering the Rational Mechanics of the Age of Reason (Truesdell 1968), he
wrote:

The scientists, in so far as they take any note of history
at all, not only have shared the historians�neglect of the later
[i.e., after Newton] mathematical development of mechanics but
also, in the main, have ignored what the historians have learned
about the earlier periods and have rested content with Mach�s
whole view or a rudimentary abstract of it.

Whether reading a textbook on robotics, marine engineering, aerospace
engineering or, indeed, on mechanics itself, the statement above is often too
true.

Discussions of dynamics almost invariably begin by citing the work of
Sir Isaac Newton (1687) in his Principia, and only seldomly proceed further
than this opus: petitio Principia, if the reader will excuse the Dog Latin.

The neglect of the history of the �eld is extant from the beginning of
a university education. It is as if classical mechanics arose from a com-
bination of thin air and the genius of Newton. This hagiography does a
great disservice to at least four parties: �rstly, to the scholars whose works
predate Newton; secondly, to Newton�s contemporaries and successors, who
actually synthesised the dynamics that we know and apply today; thirdly,
to the present�day students who pursue a true history of dynamics; and
fourthly to Newton himself, whose memory is sullied by the misrepresenta-
tion of his work.

This neglect leads us to question why this history is being contemplated
here. What is the problem?

The problem is that the history of science, a large and growing �eld,
seems to �lter none of its knowledge to the practitioners of science. Scien-
ti�c careers can be built on advanced topics with absolutely no concept of
what lies in the foundations.

The history of a science is vital to a true and humble understanding of
that science. Being taught a subject and simply assuming it true is more
like theft than the pursuit of knowledge.

In truth, history of a science can only really be grasped and analysed
after the subject itself is known to a good degree. However, once that
science is understood and a university degree comes to its end, there is no

3The term "natural philosopher" ought to su¢ ce, but unfortunately has not enjoyed
popular or correct usage in recent times (Noll 2006).
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drive to put the learning into a historical perspective. A modern engineering
degree is then more like an advanced tradeschool diploma than the higher
form of learning and understanding that it ought to be, and that it used to
be.

A cursory glance at history seems su¢ cient nowadays, but should it be?
The development of dynamics is a much longer, halting and laborious story
that neither began nor ended with Isaac Newton.

1.1.1 Before Newton

An analysis of motion ought to begin with the Ancient Greeks4. Since the
in�uence of the Greeks lasted two millennia, it is inconceivable to describe
the growth of dynamics without mentioning them.

The dominant �gure in the ancient development of dynamics was Aris-
totle (384 BC�322 BC). His writings (Aristotle ca. 330 B.C.) on this and
on many other subjects held sway over much of science for the next two
thousand years. Much of his reasoning on motion stemmed from the faulty
concept of the classical elements (�re, air, water and earth). Each of these
is given its own natural place in the world: �re at the top; air underneath
�re; water below air; and �nally earth resting beneath them all.

Whenever an element was taken from its natural place it would en-
deavour to return. This reasoning explained why an air bubble breathed
underwater �oats to the surface, and why a rock thrown upwards falls back
to the Earth. Each object was then a combination of all of these. A feather,
lighter than a rock, must have more air than the rock, but less than the
air itself. From this line of thinking arose "natural motion": motion that
occurs due to the nature of the object. All other motion was violent; it
had a separate cause. A brick falling to the ground would be natural, but
a brick thrown through the air would be violent.

Aristotle concluded that heavier objects fall faster than light objects,
and that this fall�rate is proportional to their weights: an object twice as
heavy falls twice as fast. He also reasoned that the speed of progression
through a medium was inversely proportional to the density of that medium.
This reasoning implied that the speed of progression in the void would be
in�nite; thus he concluded that the very existence of a void was impossible.

... between any two movements there is a ratio (for they
occupy time, and there is a ratio between any two times, so

4Greek philosophy is generally taken to begin with the work of Thales of Miletus (ca.
624 BC�ca. 546 BC), which is in modern�day Turkey.
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long as both are �nite), but there is no ratio of void to full.

Elsewhere he wrote that, if a void were to exist, heavy objects would
fall at the same rate as light ones. This statement should be understood in
context, as he used this supposed equality of fall rates to then say by modus
tollens that a void cannot exist. He further wrote that, in a void, there
would be no reason for a body to stay in one place or move to another, and
so motion would continue forever. It is often said, based on this statement,
that he enunciated a principle of inertia, but this is only possible by a
selective reading of his works.

Among the various physical questions pondered by ancient philosophers,
the question of why an arrow continues to �y after it has left its bowstring
was particularly perplexing. Aristotle (ca. 330 B.C.) reasoned that the
arrow displaced the air in front of it, which rushed behind and then pushed
the arrow forwards. The idea of a thing moving violently without some
other thing pushing it along the way; moving without a mover, was entirely
alien to Aristotelians. This fallacious separation of natural and violent
motion would haunt physics for two thousand more years.

The progress towards a truer representation was slow and halting. Aris-
totle�s worldview became ingrained upon both Western and Arabic science
and theology. His prevalence in the latter of these �elds impacted the pro-
gression of the former. Much of it became Church dogma. By raising his
theology above and beyond criticism, by proxy it raised a protective wall
around his physics.

The lengthy dominance of Aristotle is now di¢ cult to imagine. Even
into the early Renaissance entire contributions on physics from philosophers
would consist solely of commentaries on Aristotle�s works: two millennia
after they were composed.

The 6th century Alexandrian philosopher, John Philoponus (ca. 490�
ca. 570), wrote extensive critiques of Aristotelian physics (Philoponus 517),
and it is here that the inklings of a modern approach to dynamics can be
seen.

Philoponus found little satisfaction in Aristotle�s approach to motion,
indeed he also found little satisfaction in his other approaches. In his com-
mentaries he demolished Aristotle�s work on both natural and violent mo-
tion. For natural motion, Philoponus posited that an object has a natural
rate of fall. Falling through a medium would hinder this natural rate:

But a certain additional time is required because of the in-
terference of the medium.
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He introduced a natural fall rate in the void, and subtracted from this
the e¤ect of the resistance of the medium. This concept allowed him to
nonsense the Aristotelian concept that the speeds at which objects fall at
are in proportion to their weights. He did this with appeal to the same
kind of experiment carried out in Renaissance Italy almost a millennium
later5. The prior sentence should be read very carefully, as Philoponus did
not suggest the equality of fall�rates in the void. In fact he concluded that
this concept was wrong. His belief was that heavier objects do fall faster
than do light ones in a void.

For violent motion, he asserted that when an object is moved, it is given
a �nite supply of forcing impetus6: a supply of force that, while it lasted,
would explain the object�s continuing motion:

Rather it is necessary to assume that some incorporeal mo-
tive force is imparted by the projector to the projectile...

He denoted this incorporeal motive enèrgeia. This enèrgeia is exhausted
over the course of an objects motion, which rests once this exhaustion is
complete. This property was now internal to the body. He struck fairly
close to some kind of rudimentary concept of kinetic energy. At the very
least, he struck close to some concept which we can now relate to kinetic
energy. A conceptual path can be traced from Philoponus to Maupertius,
through Leibnitz and on to Young.

The conclusion of the sentence quoted above is:

... and that the air set in motion contributes either nothing
at all or else very little to this motion of the projectile.

The strongest and most groundbreaking insight that Philoponus made
was that a medium does not play a role in maintaining motion. It acts as
a retarding force. This notion was in direct opposition to Aristotle, who
required that the medium should cause the continuing motion. This par-
adigm shift that John Philoponus introduced allowed him to explain that
motion in a void was possible. His lasting contribution is with these quali-
tative analyses. His quantitative explanations are without merit, although
these analyses resonate through Galileo�s dynamics.

5The comparison of the speeds of falling objects, carried out by Benedetti around
1553 (commonly atrributed to Galileo).

6 Impetus theory, the precursor to the modern principle of inertia, can properly be
attributed to Philoponus.
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In the centuries that followed Philoponus, other philosophers followed
in a staggering and haphazard progression towards Newton. It would be
another millennium before Aristotelian motion would be disregarded once
and for all. The reasons are various, but much of it is theological in nature.
Philoponus�writings on Tritheism were declared anathema by the Church,
which led to the neglect, condemnation, and ridicule of his writings. Zim-
merman had the following to say (Sorabji 1987):

His writings, then and later, enjoyed notoriety rather than
authority.

The inferior works on mechanics from his contemporaries, such as Sim-
plicius, were treated in a more favourable light.

In the following centuries, the development of dynamics was very slight.
Although true, there is a pernicious modern idea that science stood still
from the fall of the Western Roman Empire (476 A.D.) until the Renais-
sance. While the remark may hold water for the Early Middle Ages, it has
no standing whatsoever with the High and Late Middle Ages.

Aristotle�s views, or variations on these, were analysed further by the
likes of the Andalusian�Arabs Avempace and Averröes7 in the mid�13th
century. They had little more than uncited rehashing and acidic remarks,
respectively, for the work of Philoponus. The gratitude owed to these
philosophers should not be understated. It is through their works that
Philoponus�thoughts were preserved: his books were not published in West-
ern Europe until the early 16th century. Averröes wrote such extensive
treatises on Aristotelian physics and theology that he was nicknamed The
Commentator by Thomas Aquinas. The intellectual stupor existed in the
West because an Aristotelian theological worldview was dogma. Those
studying mechanics were reticent to go further than simple reinterpreta-
tion of Aristotle, even when so much of it was clearly wrong.

The stimulus that reinvigorated the �eld can be traced to the Condem-
nations of 1277. In this year, Tempier, the Bishop of Paris, condemned var-
ious doctrines enveloping much of radical Aristoelianism and Averröeism,
among others. This event is important because the condemnation of Aris-
totle�s theology led philosophers to question the truth of the rest of his
worldview. Deviating from dogma was then, and remained for centuries
more, very dangerous for philosophers, but now Aristotle�s physics were
no longer protected. The importance of the Condemnations led to what
Duhem (1917) called:

7 Ibn Bājjah and Ibn Rushd in Anglicised Arabic.



1.1 History of Dynamics 9

a large movement that liberated Christian thought from the
shackles of Peripatetic and Neoplatonic philosophy and pro-
duced what the Renaissance archaically called the science of
the �Moderns.�

Soon after, in the early 14th century, the Oxford Calculators8 explained,
in a kinematic sense, the motion of objects under uniform acceleration. Im-
portantly, these men did not concentrate solely on the qualitative descrip-
tion of motion. What was previously a murky description of motion became
a quantitative derivation. They answered kinematic questions numerically.
What is fantastic is that the notion of instantaneous speed was within their
grasp, even without the strong grip a¤orded us by calculus. The mean�
speed theorem dates from this period, and is attributed to William Heytes-
bury9. They were additionally responsible for separating motion itself from
its causes: the separation of kinematics and kinetics. Bradwardine10 also
noted:

All mixed bodies11 of similar composition will move at equal
speeds in a vacuum

The statement above shows that the Mertonians were well aware that
objects of the same composition fall at the same rate, regardless of their
mass. They could not use the concept of density, because they did not
understand what it was. Instead, the fall�rates were explained in terms of
the nonsense classical elements of Ancient Greece, but they were explained.

Within their work can be found thorough analyses of uniform and accel-
erated motion. What cannot be found is a conclusive connection between
these mathematical analyses and the actual world. Deriving an equation
describing accelerated motion is a long way from establishing that all ob-
jects fall according to this equation.

Their analytical approaches to motion were well received Europe�wide,
and was quickly taken up by the Parisian schools. French priest, Jean
Buridan (1300�1358), was by most accounts the giant of fourteenth century
philosopy. He took these theories up with gusto, and expounded a theory

8The Oxford Calculators were a group of 14th century academics based at Mer-
ton College, Oxford, and included William Heytesbury, Thomas Bradwardine, Richard
Swineshead and John Dumbleton.

9Bizarrely attributed to Galileo by many.
10The selfsame Bradwardine spoken of in Chaucer�s Canterbury Tales.
11A mixed body is one that consists of two or more of the classical elements: �re, air,

water and earth.
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that can properly be described as an early and rudimentary concept of what
we now call inertia.

He posited in a similar manner to Philoponus that the motion of an
object was internal to it, and importantly recognised that this impetus
does not dissipate through its own motion: that something else must act
upon the object to slow its motion. His insights into the implications of this
were more advanced than anything prior. In discussing a thrown projectile,
he said that it would:

...continue to be moved as long as the impetus remained
stronger than the resistance, and would be of in�nite duration
were it not diminished and corrupted by a contrary force resist-
ing it or by something inclining it to a contrary motion.

To the typical reader, it is generally unexpected that a philosopher
would have entertained the notion of in�nite motion a full three centuries
before Newton. His genius in descriptions of the qualitative properties was
not matched by his genius in the quantitative.

Buridan�s student, Nicolo Oresmè (ca. 1323�1382), developed geomet-
rical descriptions of motion. More than that, he used geometry as a method
of explaining the variations of any physical quantity. As great as this was,
he had a poorer understanding of dynamics than his tutor, and treated
impetus as something which decays with motion (Wallace 1981). Oresmè�s
work is a prime example of the stumbling advancement of dynamics: it was
rare that any one person could advance in one area without a simultaneous
regression in another.

Albert of Saxony (ca. 1316�1390), another student of Buridan, took
impetus theory forwards in projectile motion. For an object propelled hor-
izontally, he reasoned that the motion had three distinct periods. The �rst
of these was purely horizontal, where the body moved by its own impetus.
The second was a curve towards the ground, as gravity began to take ef-
fect. The third was a vertical drop, as gravity took over and impetus died.
Although maintaining the distinction between natural and violent motion,
Albert at least came closer to the true shape of projectile motion.

It is quite di¢ cult to emphasise the true e¤ect that the philosophers
from the Oxford and Parisian schools had on mechanics, and on science
in general. Mechanics had moved from indistinct qualities into de�ned
quantities: if an object moves at this speed, how far does it go in this
amount of time? If an object accelerates in this manner, what will its speed
be after a given period? These questions were asked and answered.
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Shortly after Giovannia di Casalè (d. ca. 1375) returned to Genoa from
studying at Oxbridge, he developed a geometric approach (di Casalè 1346)
similar to that of Oresmè. This work undoubtedly in�uenced the Venetian,
Giambattista Benedetti, in his 1553 demonstration of the equality of fall�
rates. The in�uence that Casali�s geometric approach wielded is evident
while reading Galileo�s works on kinematics.

An important point is then evident: the �eld of kinematics had leapt
ahead of dynamics. Truesdell (1968) speaks of the impact of the Calculators
in the following glowing terms:

In principle, the qualities of Greek physics were replaced, at
least for motions, by the numerical quantities that have ruled
Western science ever since.

While kinematics was becoming more and more capable of describing
both uniform and accelerated motion, and was able to quantify these an-
alytically, numerically and geometrically; philosophers remained unable to
explain the why behind them. The causes of motion, now separate and
distinct from kinematics, were not very much closer to being discovered.
This situation changed very little until the late 16th century.

Galileo Galilei (1564�1642) sought these causative descriptions of mo-
tion: he was the �rst of the modern dynamicists. The Italian was well�read
in the workings of both the Parisian and Mertonian schools. From these,
he set out into the still poorly understood �eld of kinetics.

To move forward, he examined the most successful of the ancient sci-
ences: Archimedes�hydrostatics. He took those principles as inspiration to
examine the motion of a falling object. He utilised no mixed�body theory
of matter. Instead, he treated bodies, and the media through which they
travel, in terms of their densities12.

Archimedes�propositions explain the forces of buoyancy in equilibrium:
they detail where an object will rest in a body of water. Galileo extended
these principles from static into dynamic concepts. Archimedes explained
the behaviour of bodies and their natural positions of rest. Galileo took
this notion and applied it to bodies in motion. His monumental postulation
was that buoyancy, in addition to determining a body�s position of rest,
furthermore determines how fast a body will reach that position of rest.
He used this force of buoyancy to try to explain why objects fell at the
speed they did.

12or, rather, their speci�c gravity.
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It is wrong to say that he devised a dynamical law based on static prin-
ciples. His theorems are a generalisation of Archimedes�static principles,
which are then derivable from Galileo�s: the converse is untrue.

These notions were not wholly new. Instead of using a ratio of weight
to resistance in order to explain motion, Galileo described it as a natural
motion from which was subtracted the e¤ect of the medium. Instead of
having velocity determined by the ratio of a body�s weight to the medium�s
resistance, it was to be determined by a natural value minus some part due
to the resistance of the medium.

The approach, ingenious thought it was, led to no hoped for grand
principle.

The comparison between Galileo and Avempace is commonly drawn,
as Avempace had postulated the same kind of thing: discarding the Aris-
totelian ratio. Galileo was certainly aware of Avempace�s work, through
what Averröes wrote of it13. It is unfair to say that Avempace was the
originator of this sort of analysis, as it predates him by hundreds of years.
This theory again goes back to John Philoponus, who was also well known
to Galileo. Additionally, Avempace did not postulate Galileo�s explanations
for the causes of motion (i.e., a dynamic buoyancy law).

A note should be made on his supposed discovery of the equality of
fall�rates. Galileo did not make this discovery. The story is that in 1589
he dropped various cannon balls from the Leaning Tower of Pisa, and thus
the world came to know that all objects fall at the same rate. The story
is contemptibly wrong on several counts. Firstly, this experiment does not
even demonstrate equal fall rates: it only shows that objects of the same
composition fall at the same rate, independent of their weight. Secondly,
in 1589, Galileo did not believe in the equality of fall�rates. His notes from
this period (Galilei ca. 1602) state that objects of equal density fall at the
same rate, but that denser objects fall faster than less dense ones:

I say therefore that in a vacuum, heavier bodies would de-
scend more rapidly than lighter ones, because the excess of the
heavier bodies over the medium would be greater than the ex-
cess of the lighter ones.

That bodies of the same density fell at the same rate had been stated
already by Bradwardine two hundred years before. Thirdly, the selfsame

13 In his early notes, Galileo cites Averröes ahead of all, save Aquinas. See the essay
Galileo and the Doctores Parisienses in (Wallace 1981).
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experiment had already been performed by Giambattista Benedetti years
before, and his work was known to Galileo.

It is di¢ cult to ascertain when Galileo concluded that all objects fall
at the same rate. He withheld publication on this subject for many years.
The initial cause of his withholding was his own desire to bring the subject
to a completion before revealing it. The later cause was the restrictions
placed on him by the Inquisition. He knew of it by 1604, as he revealed
it in correspondence with a con�dant. In truth, he felt betrayed when a
friend of his mistakenly revealed it to the world in the early 1630s, and
only after this did he publish anything on the matter. It was not until Two
New Sciences appeared in 1638, towards the close of his life, that he �nally
published what he knew.

For all Galileo�s e¤ort, he never satis�ed himself with his explanations of
the causes of motion. In Dialogues Concerning Two New Sciences (Galileo
1638), towards the close of his life, he sadly confessed to this failure. After
listening to the thoughts on dynamics voiced by Simplicio and Sagredo,
Salviati, proponent of Galileo�s philosophy, makes the comment:

Now, all these fantasies, and others too, ought to be exam-
ined; but it is really not worth while. At present it is the purpose
of our Author merely to investigate and to demonstrate some
of the properties of accelerated motion (whatever the cause of
this acceleration may be)...

Here Galileo resigns himself to never �nding what he sought. His char-
acters instead progress through thorough discussions of the kinematics of
motion alone: Salviati and Sagredo dragging Simplicio14 by the coattails
into modern science.

...we have decided to consider the phenomena of bodies falling
with an acceleration such as actually occurs in nature and to
make this de�nition of accelerated motion exhibit the essential
features of observed accelerated motions.

Over the course of the rest of the book, Galileo sets forth his de�nitions
of uniform and accelerated motion in lightning fast demonstrations. The
topics of discussion then go through motions of various things, especially
that of projectiles. This work sounded the death knell of Aristotle�s physics.

14The name is a portmanteau of Simplicius, the classical Aristotelian, and the word
for simpleton.



14 Introduction

In discussing a body thrown upwards, then falling back downwards, Sim-
plicio voices the two thousand year old distinction between natural and
violent motion. Sagredo replies:

...this distinction between cases which you make [i.e., violent
and natural] is super�uous or rather non existent.

Much is said about Newton unifying motion in the heavens and motion
on Earth: that is, recognising that the laws apply equally so to the orbit
of a massive planet as they do to the fall of a tiny apple. Very little is
said about unifying natural and violent terrestrial motion, and yet it took
two millennia of thought before the two were recognised as one and the
same. The separation of the two had permeated Western science for two
thousand years, and it was Galileo who demonstrated the insight to �nally
and permanently demolish this nonsense concept.

His dynamics were noteworthy and had a very large in�uence over his
successors, but the true contribution of Galileo is in his kinematics, not in
his dynamics. He could explain what he observed: uniformly accelerated
motion, but he could not explain the causes behind it. While he failed, he
set a great example for his successors: one that was well learnt and will
never be forgotten. His dynamics were laden with no mystical indistinct
properties. They were laden with rigorous de�nitions and analyses.

Aristotelian dynamics had been staggered by many deserved blows, but
had kept standing, in various poses, for two thousand years. Galileo deliv-
ered the coup de grâce, putting it to its long overdue rest.

By the mid 17th century, dynamics was understood in the murkiest of
ways. A myriad of problems, each requiring its own ingenious solution, was
solvable almost solely by special cases. Much of this problem solving was
needed before any general laws of dynamics could �nally be grasped. Today
we learn the principles, and then how to apply them. The developers of
the �eld solved extraordinarily di¢ cult problems, and lots of them, before
any true governing principles were found. We learn the principles and then
tackle problems, but the physicists had to tackle the problems before they
could see the principles.

The giant of mechanics in the years leading up to Newton was the
Dutchman, Christian Huygens (1629�1695). He was the �rst to explain
oscillations of a �nite pendulum, which he did so for a special case. His
writings on solid body collisions had a monumental e¤ect on the world. He
observed that after two solid bodies collide, their collective speed may well
be increased or decreased, but their collective momentum remains the same:
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perhaps the �rst true expression of the conservation of momentum15. He
furthermore recognised that in rigid body collisions, the centre of gravity
of the system remains in uniform motion: a hugely penetrating notion.

1.1.2 Sir Isaac Newton, His Contemporaries and Successors

Sir Isaac Newton (1643�1728) made contributions to virtually every area of
natural philosophy, mathematics, optics and astronomy. His monumental
publication, Philosophæ Naturalis Principia Mathematica (1687), usually
called The Principia in short, was published in 1687. It is likely the most
in�uential yet least read book in the �eld of classical mechanics. Its purpose
was set forth in its preface:

... mechanics will be the science of motion resulting from
any forces whatsoever, and of the forces required to produce
any motion...

Newton set out to explain phenomena throughout the universe. What
lay within was to apply everywhere, and to every process. The trajectory
taken by a cannon ball was to be governed by the same laws which governed
the orbits of the planets.

As the start of his work, he states his de�nitions of mass, momentum,
inertia and forces, both through contact and at a distance (centripetal). He
then states his laws:

First Law Every body perseveres in its state of rest, or of uniform motion
in a right line, unless it be compelled to change that state by forces
impressed upon it thereon.

Second Law The alteration of motion16 is proportional to the motive force
impressed; and is made in the direction of the right line in which that
force is impressed.

Third Law To every action there is always opposed an equal reaction: or
the mutual actions of two bodies upon each other are always equal,
and directed to contrary parts.

15Descartes is often credited with this concept, but his notion of this was the bulk of
an object times its scalar speed. His rationale was entirely di¤erent too.
16 i.e. momentum, as per his Def. II
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Books One and Two are titled Of the Motion of Bodies, being split into
two exhaustive analyses. The third is titled The System of the World.

The �rst book analyses motions in a void. From his laws, he analyses
a multitude of motions, such as elliptic, parabolic and hyperbolic orbits
around some focus. He investigates the forces that maintain these, i.e. the
centripetal forces. Universal gravitation is introduced. After showing how
point masses behave in the void under gravitation, he demonstrates that
�nite bodies can be treated as such. Kepler�s Laws follow directly. The �rst
book organised and systematised principles, some of which were at least
dimly understood before, but these principles had never been organised
together into a system of analysis for application everywhere.

The second book sets out to explain motion on Earth, where motion
does not occur in a void: he sought the details of motion in resisting me-
dia. It is here that Newton departs from his program of deducing physical
behaviour based on his laws: he �nds but little use for them. For exam-
ple, in all his treatments of �uidic motion he �nds no room to apply his
principle of momentum. In contrast, he conjures ingenious hypotheses to
explain a myriad of things ranging from projectile motions to the speed of
sound in air. This book is a testament to Newton�s towering stature as a
mathematician and dynamicist. The second book of the Principia is almost
entirely new. The scholium of the �rst section of it reads:

But, yet, that the resistance of bodies is in the ratio of the
velocity, is more a mathematical hypothesis than a physical one.

This sentiment is applicable to much of the hypotheses in the book.
Today it is mostly forgotten. The book is dominated by hypothesis after
hypothesis, with Newton displaying his �air for creative solutions: often
precise, often an excellent approximation, but also often wrong and today of
only historical value. There are veins of gold hidden within. His observation
that �uidic resistance is proportional to the square of velocity can be found,
as can the �rst description of internal �uidic friction:

The resistance arising from the want of lubricity in the parts
of a �uid is, cæteris paribus, proportional to the velocity with
which the parts of the �uid are separated from each other.

That most of the results were incorrect cannot be a criticism of Newton
either as a physicist or mathematician. The contribution of this book is
immeasurable. For instance, it constitutes the beginning of �uid dynamics,
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and studied many of its problems for the �rst time. From his e¤orts, his
contemporaries and successors were gifted with a bridgehead from which
to attack these subjects in earnest. A myriad of potential motions through
�uids is contemplated. The book is the staging point for hydrodynamics.
Newton contemplated which hullform might pass through the water with
least resistance, introducing an optimisation problem that found applica-
tion throughout the 19th century.

The third book set forth his solutions to problems in celestial dynamics,
with great success. Kepler�s Laws of Planetary Motion had resulted from
Newton�s own, and he performed exhaustive analyses of the Solar System.

The de�ciencies in the Principia are little discussed. To the modern
scholar, it is often impenetrable and confusing; the language of mathematics
having evolved so much since then. A common remark made about the
Principia is that Newton strangely resorts to geometrical methods instead
of his own calculus. Newton does not use his notation of �uxions, but even
as soon as we arrive at Lemma II of Book I, the notion of calculus is present,
if in an unfamiliar form.

For rigid body mechanics, there is no treatment of rotation. Although
Newton says that the spinning top: "does not stop spinning except insofar
as it is slowed by air." there is no justi�cation given. It appears directly
after his statement of the First Law, but this law cannot tell us anything
of the spinning top. Newton might have perceived that the top continues
to spin, just as it would continue in linear motion if so impelled. He very
well might have perceived that this is the case, but he did not demonstrate
it, and it is not possible to explain the spinning top using what is within
the Principia. There is certainly no treatment of angular momentum. The
motion of a rigid body cannot be described by the methods given in the
Principia.

There is no treatment of �exible bodies, such as the catenary curve or
the vibrating string, nor is there any analysis of the �nite body pendulum.
No equations of motion appear for systems of more than two free masses, or
one constrained. A prime example of the �eld�s infancy is the three�body
problem. Newton attempted to solve this problem, but the contents of the
Principia are insu¢ cient to do so. He devised insightful approximations
and valid inequalities, but the three�body problem was insoluble from his
principles. His talent in this area is evident, as his work would not be
surpassed until the mid�18th century by the e¤orts of Euler and Lagrange.

That Newton did not solve all of mechanics�problems is not a criticism
at all, but only part of a clear�headed appraisal of what he did do. His
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achievements were monumental. He ought not to be credited with the
completion of classical mechanics, but rather its beginnings.

In the century following The Principia�s publication, the �eld of mechan-
ics swelled immensely. For all the credit given to Newton, the world ought
to be equally grateful to his contemporaries and successors, especially Leon-
hard Euler, the Bernoullis Jakob and John, and Joseph Lagrange. These
are the men who synthesised what we now apply today.

Newton�s Contemporaries and Successors

If The Principia contains no treatment of angular momentum, contrary to
popular belief, then where and when did this law arise and who discovered
it? The answer is di¢ cult to ascertain, as the principle was applied for
many years before it was recognised for what it was (For a comprehensive
analysis, seeWhence the law of moment of momentum? in Truesdell 1968).

The law of angular momentum is commonly treated as a consequence
of linear momentum, but that is no more true than the common statement
that Newton�s First Law can be ascertained from his Second. This ap-
proach works for special cases only: it is not true in general. The Newtonian
equations cannot contemplate deformable bodies or motion of a continuum
without severe restriction. Angular momentum is a law of mechanics in-
dependent from any other. It took most of the 18th century for this to be
realised.

In the Acta Eruditorum of 1686, Jakob Bernoulli (1654�1705) analysed
the motion of a pendulum using the ancient law of the lever: i.e., by balanc-
ing the moments. By applying this static problem to the dynamic problem
of the pendulum, he sought a new methodology for mechanics. His at-
tempt at this stage was �awed, but was published in correct form in 1703
(Bernoulli 1703). His e¤orts led him to introduce many concepts which are
now elementary, or even obvious, today.

By balancing the moments, the law of the lever is found. This static
equilibrium condition was generalised into a dynamic equilibrium. Jakob
Bernoulli wrote that the force of the lever can be regarded as equivalent to
the acceleration per unit mass reversed in sign, thereby restoring a static
condition. His was the earliest proper explanation of inertial force, and is
a progenitor of what is now by convention called D�Alembert�s Principle.

Jakob Bernoulli�s statement of the moment of momentum can not be
considered a consequence of applying Newton�s Second Law. Its �rst ap-
pearance, �awed though it was, predates the publication of the Principia by
a year. To emphasise: the law governing angular motion predates Newton�s
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law, which governs only linear motion. That said, it is only to be found and
understood with great di¢ culty. The impenetrability of Jakob Bernoulli�s
work is evident, since it took many years before the genius within was
recognised and developed by Euler.

Through analysing the catenary curve17, it was Jakob Bernoulli who
�rst recognised that solutions could be derived by balancing forces applied
to in�nitesimal portions of the cable, and furthermore that the selfsame
solutions could be derived by balancing the moments acting on those in-
�nitesimal portions: two essential principles of mechanics are equivalent
for certain systems. This apparent equivalency caused the great physicists
of the 18th century to seek, in vain, the single unifying principle through
which all of mechanics could be analysed.

Using this work on the catenary as a springboard, Jakob Bernoulli
vaulted into an analysis of elastic beams: the bending of �nite bodies, which
he published in the Acta Eruditorum of 1694. Here he recognised that the
balancing of forces or moments alone was insu¢ cient to the task. Between
each in�nitesimal stretch, there must be a contact force and moment.

In addition to these mammoth contributions, Jakob Bernoulli was the
�rst to state how the motion of a constrained system can be analysed. Given
the constraints, propose the forces which maintain these constraints. The
motion of a system of constrained masses can then be analysed. Seemingly
obvious today, the idea �nds no ancestor before Jakob Bernoulli.

If it is typical to elevate some beyond their true achievements, it is
equally typical to undermine those with achievements beyond measure. The
laws, equations and principles named after Leonhard Euler (1707�1783)
devastate Stigler�s Law of Eponymy18, and yet he is the very reason that
the law applies virtually everywhere else. It is through Euler that much of
dynamics was delivered to the modern world.

Between 1747 and 1750, Euler took his own works on constrained sys-
tems, and applied them to the three�body problem. In this work, he wrote:

The foundation... is nothing else than the known principle
of mechanics, du = pdt, ... we can see that this principle holds
equally for each partial motion into which the true motion is
thought of as reduced.

Euler is here saying that what had been found was an approach that
applied to any dynamic process, and that it additionally applied to every

17The shape that a thin hanging cable assumes under its own weight.
18"No scienti�c discovery is named after its original discoverer."
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part of that process. It was simply not understood prior to Euler�s paper.
In retrospect it seems too obvious to even mention. This retrospection
emphasises the di¢ culty of analysing the history of science: today, it is
thoroughly di¢ cult not to see this principle as self�evident in Newton�s
writings: what is obvious now is supposed obvious then, but that is wrong.

In Euler�s paper, Discovery of a New Principle of Mechanics (Euler
1750), he wrote down the following:

Fx =Max, Fy =May, Fz =Maz.

Following his statement of the new principle, he derived the tensor of
inertia by taking the moments about the centre of gravity. By these equa-
tions, Euler claimed, all mechanical problems could be solved. That we
now call these equations Newton�s Second Law is immaterial. In the words
of Truesdell:

... they occur nowhere in the work of Newton or of anyone
else prior to 1747. It is true that we, today, can easily read
them into Newton�s words, but we do so by hindsight.

Although Euler initially believed that the issue was resolved, he shortly
came to realise his mistake. The principle of angular momentum lay hidden.
The full classical equations would not be written down for another two
decades.

The rotations of even a rigid body were problematic, let alone of a sys-
tem of particles or continuum. That a rigid body could rotate ad in�nitum
was dimly perceived for almost a century before it was properly explained.
As mentioned, Newton�s spinning top is a key example, but we simply can-
not admit stabs�in�the�dark. Throughout the early to mid 18th century,
physicists had been unable to explain rotational motion in more than a
single axis.

Euler contemplated the problem in the early 1730s, but did not ap-
proach it again for another decade. The driving force was his work on
naval architecture in Scientia Navalis (Euler 1749). Here he was forced to
deal with oscillations very di¤erent from the simple planar type. He hy-
pothesised that each body has three orthogonal axes about which it may
rotate.

The �rst rigorous treatment of these axes was by the Hungarian physi-
cist, Ján Andrej Segner (1704�1777). He proved that free rotation is pos-
sible through a minimum of three individual axes, there being more than
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three for special cases (spheres etc.). Euler recognised the strength of Seg-
ner�s reasoning, and was the �rst to reason that these axes all had to pass
through the centre of gravity.

1776 saw the birth of a foundation of classical mechanics. It was in this
year that Euler published his First and Second Axioms (Euler 1776):

F = _P, P =Mv

L = _H, H = I!

At last, the road devised by Newton, and hewn by many, had been paved
by Euler. The laws of vectorial mechanics were understood and formulated
then just as they are today.

The Indirect Approach

Newton�s approach takes force and momentum as its basis. It is often
called the direct approach, or vectorial dynamics. D�Alembert wrote what
is anything but a shining endorsement of the direct approach in his book
Treatise on Dynamics in 1743:

Why should we appeal to that principle used by everybody
nowadays, that the accelerating or retarding force is propor-
tional to the element [i.e. di¤erential] of velocity, a principle
resting only on that vague and obscure axiom that the e¤ect is
proportional to the cause? ... we shall be content to remark
that the principle, be it true or be it dubious, be it clear or
be it obscure, is useless to mechanics and ought therefore to be
banished from it.

The lionisation of the Newtonian approach by the British certainly was
not quite mirrored everywhere on the continent. In contrast to the di-
rect approach, and with equal validity, the scalar quantities of energy and
work can serve as a basis for an approach called the indirect approach, or
analytical dynamics (Williams Jr. 1996).

The history of analytical dynamics is just as cloudy and obscure as
the development of Newton�s Laws. Leibnitz (1647�1716) is the earliest
true standard bearer for using energy and work as the bases for mechanical
principles. He posited that through any process, a vis viva (living force) is
preserved. This term he equated tomv2 and so Leibnitz�s living force is just
twice the kinetic energy. He believed, and so did his contemporaries, that
conservation of vis viva contradicted the Cartesian and Newtonian notion of
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conservation of momentum. Leibnitz wished to use this vis viva, along with
his dead force (potential energy), as the basic principles of mechanics. This
"living" force irritated the delicate sensibilities of many, and with good
reason. A living force seemed to invite the teleological and theological
qualities of the ancient sciences to return from the dead.

One must question why Leibnitz objected so much to the Cartesians�
and Newtonians�use of momentum. For them, landmark results were al-
ready inbound using the principle of momentum and its conservation. What
was special about this vis viva, and why did velocity appear twice? These
notions stem from Galileo�s Two New Sciences.

In his �nal Dialogue (Galileo 1638), Galileo made key observations re-
lated to the indirect approach. Falling from a given height, a body acquires
a velocity that is precisely the same velocity required to raise the body
back to the given height. Since the square of the velocity acquired is pro-
portional to the height, it seemed reasonable to surmise that v2 has a link
to some fundamental property of motion. Running along the same vein of
gold, he noted that velocity acquired by a body rolling down an incline is
only in�uenced by the height of the fall and not by the inclination itself:
he recognised that the velocity was independent of the path.

Leibnitz considered many cases using his live and dead forces. Indeed,
many problems can be solved by examining the energy quantities at key
points. Instead of the Newtonian momentum, and its alteration through im-
pressed forces, Leibnitz considered kinetic energy, and its alteration through
the work done by impressed forces. The mathematics behind what lay
ahead was undeveloped in his day, and the true leap forward for the indi-
rect approach would have to wait many years from Leibnitz, until it found
its home with Euler and Lagrange. Before the indirect method could come
to fruition, the calculus of variations was required.

Along those lines, an interesting period in this development is the
brachistochrone challenge of the late 17th century. Brachistochrone is a
portmanteau of brachistos and chronos: Greek for shortest and time re-
spectively. The problem is to take a bead on a frictionless wire, acted upon
only by gravity, and to then determine the quickest possible route between
two points A and B. It can be seen in Figure 1.1. The �rst version of the
problem was posed by Galileo in Two New Sciences (Galileo 1638), but his
solution was incorrect, mistakenly thinking that the solution was the arc of
a circle. He at least recognised that it was not a straight line.

The �rst person to solve the problem was John Bernoulli. He posed
this problem to the mathematicians of Europe as a challenge in the Acta
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Figure 1.1: The brachistochrone problem posed by John Bernoulli.

Eruditorum of 1696.
In choosing the wording of his challenge, Bernoulli gave an unmistakable

hint at how he had solved the problem. He invoked both Pascal and Fermat.
Pascal had o¤ered prizes for challenges on the cycloid four decades prior,
while Fermat showed that light always takes the path of least time (Fermat�s
Principle). The solution to John Bernoulli�s challenge was the former�s
curve, and his method was by applying Fermat�s principle.

Solutions soon arrived from his elder brother Jakob, Leibniz, de L�Hôpital
and an anonymous one from Newton19; all showing the solution to be the
cycloid.

This challenge led to a clash between the fragile egos of the two Bernoullis.
Following publication of the solutions to the brachistochrone problem in
1697, Jakob Bernoulli posed a more di¢ cult version, again in the Acta
Eruditorum. The �rst version sought the minimum time to a certain point.
Jakob Bernoulli instead posed a problem to minimise the travel time to a
vertical line. That is, to �nd out which of all the possible cycloids reaches
the line �rst. The reposed problem is depicted in Figure 1.2.

This problem was quickly tackled by both Bernoullis, Leibniz and Euler.
The answer to the problem is the cycloid which passes through the line at a
right angle to it. It is not, however, the answer to the problem which makes

19Though anonymous, John Bernoulli realised who it was from, and famously remarked
that the lion is known by its claw: "tanquam ex ungue leonem."
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Figure 1.2: Jakob Bernoulli�s Brachistochrone Problem.

this challenge especially noteworthy. The second version of the brachis-
tochrone was obviously another minimum time problem, but now it was a
problem to be solved by contemplating all possible paths. It was hardly
the �rst optimisation problem to be contemplated, but it was the partic-
ular one which, in being solved, led to the development of the calculus of
variations.

Over the next years these e¤orts led the Bernoullis in shamefully defam-
atory one�upmanship, as each tried to climb to the top of European math-
ematics at the expense of his sibling. The younger John Bernoulli outlived
his elder brother. In the years of the early 18th Century, the calculus
of variations was formalised and organised by the likes of John Bernoulli,
D�Alembert and Euler.

It was during this timeframe that D�Alembert and Euler �nally gen-
eralised Jakob Bernoulli�s inertial force. They formalised the pre�existing
principle and showed that the principle of virtual work applied equally to
bodies in motion. Mechanics was then gifted with a single variational prin-
ciple.

The furtherance of the attempts to use energy and work to ascertain
physical principles is due to the work of the Frenchman, Pierre de Mau-
pertius (1698�1759). He posited that in any and every process, an action
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is minimised, with this action being de�ned according to the process. His
perceptive qualities were remarkable. Most of his de�nitions of action found
no use, but others did. For light, he posited in a 1744 paper that this action
was the integral of the speed over the path taken. With this principle, he
struck gold; deriving Snell�s Law from an indirect approach. His genius
here mirrors what John Bernoulli did in his brachistochrone solution. This
principle of least action became ubiquitous throughout much of mechanics.

In the same year, Euler published his own results on the matter. He
posited it in a far more general and accurate way. He applied the integral
of the momentum of a body over its path travelled: the reduced action20.
In the following years, he applied the same to static problems, taking vari-
ations of the potential energy. This method lead him to the classical result
that a body, or a system of bodies at rest always lie at a minimum of
potential energy.

The thrust in this direction was taken up by the French�Italian math-
ematician, Joseph Lagrange (1736�1813). A contemporary of Euler in
his later years and common collaborator, the two formulated the Euler�
Lagrange equation, bringing the formulation of the indirect method on by
leaps and bounds. Lagrange was the true champion of this method through-
out his Mècanique Analytique (Lagrange 1788). In addition, he recognised
the usefulness of generalised coordinates, giving the method a towering
strength: the invariance of the method to coordinate changes.

The future development of this �eld through Hamilton and Jacobi is
well understood, and this historical review has already become drawn out.

1.2 The Beginnings of Naval Architecture

Naval architecture, like so many �elds, predates history. Humans have con-
structed seagoing vessels for around 70,000 years, enabling the migration
of the island communities throughout southeast Asia. By this route Aus-
tralia was reached and settled 10,000 years before humans entered Europe.
The largest ship of ancient times is Roman by design, and is now uninspir-
ingly called Caligula�s Great Ship21. Displacing 7400 tons; it is the heaviest
wooden ship ever built. Measuring 104m long; it was the longest wooden
ship until it was surpassed 1800 years later by the 105m long French frigate,

20 i.e., the action with kinetic energy alone.
21 It is speculated that it carried the massive Vaticano obelisk from Heliopolis to Rome.

Modern wooden ships of this size were hardly seaworthy. It was most likely a �oating
palace or temple, like Caligula�s Nemi ships.
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Rochambeau22 (though this includes its 13m ram.) The ancients were not
lacking in ship�building knowhow. What they did know was hidden away
as trade secrets, and their methods are unpreserved.

Once again, it is through Hellennic writings that we see the �rst analy-
ses upon which naval architecture was founded. Discussion of the �eld
commonly takes Archimedes (ca. 287 B.C.�ca. 212 B.C.) as the starting
point, which this time is perfectly apt. In the 3rd century B.C. he formu-
lated the law of hydrostatics which bears his name. The anecdote relating
why Archimedes investigated buoyancy is found in the writings of Vitru-
vius (ca. 27 B.C.). Hiero II, king of Syracuse contracted some unknown
party to build a crown using a weight of gold given him. Upon delivery
of the crown, accusations were made that it had been alloyed with silver;
thereby cheating the sovereign out of his gold. The crown weighed the cor-
rect amount, but Hiero had his friend Archimedes investigate the theft that
he suspected but could not detect.

The discovery of the law, perhaps now more famous than the law itself,
then followed. While pondering the problem, Archimedes settled into a
bathtub, and noticed that the more he settled into the tub, the more water
spilled over. From that he realised that he could measure the volume of
an irregular object, and could therefore discover the speci�c density of any
object; and thus tell the di¤erence between a gold crown and an alloyed
one. He then ran home, unclad, yelling eureka!23

Using the correct masses of silver and gold, Archimedes showed that
the crown was not made of pure gold. Vitruvius did not preserve the fate
of the contractor.

The story is apocryphal: the earliest known version was written two
hundred years after Archimedes� time. Anecdote aside, what Archimedes
himself actually wrote has been preserved, and the most important propo-
sitions he made in On Floating Bodies (Archimedes 2007) are given here
minus their proofs.

Proposition 3 Of solids those which, size for size, are of equal weight with
a �uid will, if let down into the �uid, be immersed so that they do
not project above the surface but do not sink lower

Proposition 4 A solid lighter than a �uid will, if immersed in it, not be
completely submerged, but part of it will project above the surface.

22US built, and provisionally the USS Dunderberg, it was rejected and never commis-
sioned into the US Navy.
23 I have found it!
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Proposition 5 Any solid lighter than a �uid will, if placed in the �uid,
be so far immersed that the weight of the solid will be equal to the
weight of the �uid displaced.

Proposition 6 If a solid lighter than a �uid be forcibly immersed in it,
the solid will be driven upwards by a force equal to the di¤erence
between its weight and the weight of the �uid displaced.

Proposition 7 A solid heavier than a �uid will, if placed in it, descend to
the bottom of the �uid, and the solid will, when weighed in the �uid,
be lighter than its true weight by the weight of the �uid displaced.

These propositions explain the static behaviour of bodies partially or
fully submerged. He developed these ideas in the second volume of On
Floating Bodies by calculating the buoyancy of sections of certain paraboloids,
likely as idealisations of ship hulls. Hero of Alexandria24 advanced this
work in the �rst century A.D. In the second book of his Metrica he demon-
strated how to calculate the buoyancy of various irregular volumes (Cohen
and Drabkin 1948). Hydrostatics essentially remained in this form for the
next 1,500 years.

While dynamics and kinematics and other sciences developed greatly
in the Middle Ages, hydrostatics found no outlet for advancement. Rather
than a lack of interest in the �eld, it is indicative of the sheer success of
Archimedes. That no one could improve on his work until the 16th century
is evidence enough for this assertion.

The Flemish mathematician and engineer, Simon Stevin (ca. 1548�
1620) is a progenitor of sorts for modern hydrostatics. He can be credited
with a rudimentary explanation of hydrostatic pressure. Furthermore, he
showed that the centre of gravity of a body and its centre of buoyancy must
lie along the same vertical axis. Huygens followed that up with thoughts on
shapes being naturally stable or unstable, this being done through analysing
the buoyancy forces through 360 � of rotation.

A variety of analyses took place in the following years. A comprehensive
history of this topic can be found in (Ferreiro 2006).

In the realm of stability analyses, much of the earliest and most funda-
mental work was carried out by the Frenchman Pierre Bouguer (1698�1758).
His work, Traitè du Navire (Bouguer 1746) contains extensive analyses of

24His many inventions include a holy water vending machine that would not look out
of place in Asterix or The Flintstones.
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all manner of topics in naval architecture. Among these we �nd the deriva-
tion of the metacentre of stability, with results given by experiment. He
furthermore contemplates an extension of the metacentre to �nite angles.

Euler, in his naval treatise, Scientia Navalis (Euler 1749), attacked the
subject with his customary gusto. Applying in�nitesimal calculus to a ship
hull, and integrating the pressures gave Archimedes� law directly. From
here he attacked the problem headon. He derived the equations describing
the restoring moments in both roll and pitch, and then derived the heel
and trim angles resulting from the sail. It is fair to say that Euler�s work
contains the superior theoretical results, while Bouguer�s work contains the
superior practical results. That is not to imply that either one �oundered
in the realm of the other.

The �rst work devoted solely to hydrodynamics was Daniel Bernoulli�s
work, Hydrodynamica (Bernoulli 1738). The fundamental basis for the
book is the conservation of energy. D. Bernoulli asserted the equality be-
tween what he called the potential ascent and actual descent of a system.
The �rst of these is the distance that the centre of gravity of a system
can ascend if each component were to suddenly alter its velocity directly
upwards until all parts were at rest. That is, if the whole kinetic energy of
the system were converted to potential energy by immediate ascent, how
far would the centre of gravity raise? His de�nition of the actual descent is
the altitude that the centre of gravity would descend after all parts came
to a rest. He credited this use of the conservation of energy to his father.
These considerations hearken back to the approach of Huygens with the
pendulum, and in inspiration back to Galileo.

The appearance of his son�s work, and the consequent rise in his stature,
motivated John Bernoulli to write his own treatise on hydrodynamics, enti-
tled Hydraulica (Bernoulli 1743). In a shameful manoeuvre, he backdated
this book purportedly showing his son to be a plagiariser. That aside, his
work was a mark of true genius, and left more of a mark than did Hydrody-
namica. In contrast to his son�s approach, he used the Newtonian principles
and calculus, as they were understood at that stage. It appears to be the
�rst application of Newtonian principles to the continuum, in this case �uid
motion through pipes. Within this work is also the crude appearances of
internal pressure and a general representation of the Bernoulli equation.

It is again to Euler that we owe the largest debt of gratitude. While
D�Alembert conceived the �rst �eld description of motion in his work of
1752, it was Euler who described it using partial di¤erential equations. In
1752 he published a paper replete with concepts that are still applied today.
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He analysed the in�nitesimal tetrahedron, which led to
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the equation of continuity. Among the various other concepts he intro-
duced both velocity and acceleration potentials, with the Laplace equation
applied. Bernoulli�s equation is derived for unsteady irrotational motions.

Three years later, the ideas had matured fantastically. The concept of
pressure, dimly applied in the past, was explained as a �eld acting on some
closed boundary, with equal action external and internal to this boundary.
Using his axioms, the hydrodynamic equations describing ideal �uids are
derived.

1.3 History of Manoeuvring

Serious investigation into manoeuvring characteristics of ships began over
one century ago, with analyses of the turning performance of warships
(White 1877). The main motivation, as for many �elds, was military. For
a good summary of the history of manoeuvring, see the work by Clarke
(2003).

In a modern sense, the mathematical modelling of a ship can be said to
have begun with the work by Davidson and Schi¤ (1946), in which equa-
tions describing linear steering dynamics were derived, incorporating the
interactions between sway and yaw. The model derived in the paper is
recognisable today.

In the work by Nomoto et al. (1957), the steering equations derived by
Davidson were reformed such that the steering dynamics of the yaw mode
could be analysed in isolation, through either a �rst or second order transfer
function. Even today, this simple and thoroughly e¤ective model is used
within a multitude of guidance and control system design papers.

The method of analysing the yaw behaviour independent of other modes
was further developed in Norrbin�s (1963) work. This approach maintained
the same structure as Nomoto�s �rst order representation, and added a non-
linear component to the �rst order transfer function. The form of this non-
linearity was a time invariant polynomial function of the yaw rate. These
functions are commonly referred to as static nonlinearities or manoeuvring
characteristics.

The second order representation was extended to include similar non-
linearities in the work by Bech and Wagner Smith (1969). This paper also
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introduces the now familiar Bech�s reverse spiral manoeuvre which shows
how the parameters of the nonlinearities can be found from time�series
analyses.

A signi�cant development arrived with Abkowitz�s (1964) work, in which
an entirely new approach was applied to explain the forces acting on a
ship. Abkowitz applied Taylor�series expansions to the hydrodynamic
forces about a forward cruise speed. These expansion models give an un-
limited number of parameters, and can model forces to an arbitrary degree
of precision, at the expense of a large number of coe¢ cients. Abkowitz pre-
sented both linear and nonlinear equations of motion in the three degrees of
freedom of most interest to manoeuvring problems: namely surge, sway and
yaw. This work constitutes the beginning of nonlinear analyses of multiple
degrees of freedom manoeuvring problems, and opened the door to a vast
�eld, introducing a multitude of problems to be tackled. A variety of publi-
cations have dealt with how to calculate, estimate or identify the coe¢ cients
of these models (e.g. Abkowitz 1975, Abkowitz 1980, Hwang 1980, Käll-
ström and Åström 1981).

In the work by Fedayevsky and Sobolev (1963), another new type of
model was derived. This manoeuvring model, instead of being based upon a
series expansion, characterised the hydrodynamic forces in terms of modulus�
quadratic equations, which were seen to be empirically accurate and of low
order.

The di¤erences between the series and modulus approaches are quite
fundamental, and the di¤erent coe¢ cients are in general irreconcilable.

The series models were further developed in the work by Son and
Nomoto (1982), in which the Abkowitz model was extended to include
roll, enabling a more complete analysis of the forces acting on a ship.

The modulus models were developed as follows. In the work by Norrbin
(1970), another model was derived, this time modelling the hydrodynamic
forces in terms of nonlinear quadratic and quartic terms for even functions,
and quadratic modulus models for odd terms. This model was made more
manageable in the work by Blanke (1981). The most important parts of
Norrbin�s model were retained, and physical reasoning used to simplify
some of the more unwieldy terms.

Further developments were made by Christensen and Blanke (1986), in
which a linear�time varying model was derived. This model added a roll
mode, and removed the surge equation by incorporating the forward speed
as a time�varying parameter in the other modes. This approach allows
for quick and yet accurate analysis to be made of the roll�mode, making
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it especially suited for use in rudder roll damping and �n roll damping
problems.

Takashina (1986) developed a method for describing the forces acting on
a manoeuvring ship in terms of Fourier series analyses. These Fourier series
were expanded about the angle between the ship�s total velocity and the
encounter angle with the current velocity. This apprach results in a mixture
of odd functions and modulus terms. The model has demonstrated good
accuracy across a wide range of sideslip angles (Tanaka 1995) for certain
manoeuvres, although the model has no inertial coupling terms, and as such
su¤ers in the modelling of complex manoeuvres.

Several models have been developed that apply cross��ow drag formu-
lations in order to explain the sway and yaw forces on a ship. Obokata et al.
(1981) developed a model based on a sectional cross��ow drag formulation,
which was expanded and tested to demonstrate its capability (Obokata and
Sasaki 1982, Obokata 1987). Hooft (1994) mixed sectional cross��ow drag
theory with the low aspect ratio lift and drag theory of Jones (1946) to de-
rive a more comprehensive model of the hydrodynamic forces acting during
manoeuvring.

There are many related papers which draw on the approach by Hooft
of combining various formulations to derive a more comprehensive model
(Leite et al. 1998, Beukelman and Journee 2001, Karasuno and Igarashi
1990). Leite et al. (1998) utilised Fourier series in the same fashion as
Takashina, and merged these with low aspect ratio wing properties and the
linear theory of Clarke et al. (1983). Experimental veri�cation of this work
can be seen in the work by Aranha et al. (2001).

Comparative analyses of many of the model types described within this
introduction have also been carried out (e.g. Matsuura et al. 2000, Simos
et al. 2002).

The basis for a large number of models is the work of the Mathematical
Modelling Group. The work of this group can be found in (MMG 1977a,
MMG 1977b, MMG 1977c, MMG 1977d, MMG 1980), and also in papers
such as (Inoue et al. 1981, Kijima et al. 1990b, Kijima et al. 1990a).

The simulation and control of ships and other seagoing vehicles was in-
�uenced greatly by the work of Fossen (1994, 2002a). In these publications,
the �eld of robotics was related to the marine �eld (Craig 1989), enabling
a crossover from each formerly independent �eld.

Energy based approaches to hydrodynamics can be seen, for example, in
Milne-Thomson (1968). The application of Kirchho¤�s law to aid in solving
the equations of motion in a moving and rotating frame of reference can be
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seen in Meirovitch and Kwak (1989).
Time�domain formulations of the equations of motion for ships began

to be analysed in the 1950s. The work by Cummins (1962) is an invaluable
historical review of the early development of these time�domain relations.
Not only that, it is the main citation for modern time�domain formula-
tions. Cummins formulated the equations of motion as convolutions of the
history of velocities. Ogilvie (1964) related Cummins�formulations to the
classical equations, increasing their utility and enabling them to be tied to
conventional hydrodynamic codes. Analyses of the functional form of the
equations can be seen, for example, in (Bishop and Price 1981, Bishop et
al. 1984). Recent works on the uni�cation of manoeuvring and seakeeping
can be seen in (Bailey et al. 1997, Fossen 2005).

1.4 Thesis Organisation

The thesis is organised as follows:

Chapter 2 sets up the mathematical framework for analysing the dynam-
ics of ships. The �rst section analyses the kinematic aspects of mo-
tion. The second section introduces the kinetic portion of dynamics
by writing down the Kirchho¤ Equations, and applying them to a
regular rigid body.

Chapter 3 starts by deriving the conventional low�frequency equations
of motion for ships. This chapter contributes by generalising this
low�frequency approach. The new formulation is valid for arbitrary
motion, is derived. It is developed by taking a convolution formulation
of the added�mass matrix, and applying Kirchho¤�s Equations.

Chapter 4 contains the derivation of a novel four degree of freedom ma-
noeuvring model. It is developed from conventional low aspect�ratio
aerodynamics. Several di¤erent physical processes are analysed. The
forces are typically treated in the �ow axes, and converted to the
body��xed frame. Circulatory lift and drag are dealt with in this
manner. Nonlinear lift and drag (cross��ow drag) are included. A
roll model is included, with emphasis on how the roll angle in�uences
the circulatory lift and drag forces. The �nal result is a model struc-
ture suitable for analysis over a wide range of operating conditions.

Chapter 5 collates the results from Chapters 3 and 4, and sets down the
�nished models.
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Chapter 6 uses experimental data to establish the viability of the low�
frequency manoeuvring model that was derived in earlier chapters.
This work validates and veri�es the model. A set of planar motion
mechanism tests were used as the datasource for this task. The model
is veri�ed by performing a regression analysis on the PMM data at one
speed. It is then veri�ed by showing that it can accurately replicate
a dataset at a wholly di¤erent speed. This same approach is taken
with an existing commercial model, and comparisons drawn between
the two.

Chapter 7 uses full�scale data from a high speed trimaran test, and �ts
the manoeuvring model to it. This work serves as an additional vali-
dation test.

1.4.1 Publications

The following publications are directly connected with the work presented
in this thesis:

1. Ross, A., T. Perez and T. I. Fossen. Clari�cation of the Low�Frequency
Modelling Concept for Marine Craft. Proc. of the IFAC MCMC�06,
Lisbon, Portugal, September 20�22, 2006.

2. Ross, A., T. Perez and T. I. Fossen. A Novel Maneuvering Model
Based on Low�Aspect Ratio Lift Theory and Lagrangian Mechanics.
Proc. of the IFAC CAMS�07, Bol Croatia, September 19�21, 2007.

3. Perez, T., T. Mak, T. Armstrong, A. Ross and Thor I. Fossen. Val-
idation of a 4DOF Manoeuvring Model of a High�speed Vehicle�
Passenger Trimaran. Proc. of Ninth International Conference on
Fast Sea Transportation FAST2007, Shanghai, China.

4. Ross, A., T. Perez and T. I. Fossen. Relating Lagrangian Ship Models
to Classical Manoeuvring Theory. Accepted for publication in Journal
of Ship Research, 2008.
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Chapter 2

Dynamics

The English word dynamic spawns from the Ancient Greek noun ������&,
meaning strength or power. This �eld of science deals with the motion of
bodies, and is subdivided into two main sections of analysis: kinematics and
kinetics. Kinematics studies the geometry of motion, but without regard
for any causes of that motion. Kinetics studies the forces acting on a body,
and the motions resulting from these. This chapter mirrors the subdivision
of dynamics: the �rst part states the mathematics behind motion, and the
second part derives the equations of motion for rigid bodies.

2.1 Kinematics

The treatment of the geometry of motion is called kinematics. The word
comes from the Greek verb, ���"��, to move. The �eld deals purely with
motion itself with no regard for its causes.

To deal with the geometry of motion, one must �rst specify what the
motion is relative to. Several frames of reference are necessary for an ade-
quate treatise on ship motion, and so a description of these follows.

2.1.1 Frames of Reference

The equations of motion can be formed in an arbitrary frame of reference.
Various frames exist, and some are natural choices for certain problems and
unnatural choices for certain others. Descriptions shall be made of several
of these, according to the standards de�ned by the ANSI/AIAA (1992).
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Earth Centred Inertial

The Earth Centred Inertial (ECI) frame, or fig�frame of reference, has its
origin coincident with the centre of the Earth, but it does not rotate with
it. It is given by fig , (oi;�!xi ;�!yi ;�!zi ). The components are de�ned relative
to two planes; de�ned below.

De�nition 2.1 Ecliptic plane: the plane coincident with the ellipse traced
out by the orbit of the geometric centre of the Earth around the barycentre
of the Solar System.

De�nition 2.2 Equatorial plane: the plane that is normal to the axis of
rotation of the Earth, and that intersects the geometric centre of the Earth.

The components of the fig�frame are then de�ned as follows: oi is
�xed at the intersection of the ecliptic plane with the axis of rotation of
the Earth; �!zi points through the North Celestial Pole; �!xi points in the
direction of the vernal equinox; �nally �!yi is �xed relative to the other two
ordinal directions to give a right�hand frame of reference. In words: �!xi and�!yi form a plane in line with the equator, while �!zi points "northwards." It
is depicted in Figure 2.1.

This frame of reference still moves in relation to the �xed stars, as the
Earth�s orbit varies over time. The precession of the Earth�s orbit means
that over the course of roughly 26,000 years, �!zi traces out a cone with
a half�angle of around 23:5 � (Herman 1995). Additionally, nutation and
polar motions perturb the Earth�s orbit to smaller degrees, with the latter
being di¢ cult to predict far in advance. Closer approximations to inertial
frames are possible, such as the International Celestial Reference Frame
(ICRF), which is used in studying planetary motion, spacecraft dynamics,
and other problems on similar scales.

Earth Centred Earth Fixed

The Earth Centred Earth Fixed (ECEF) frame, or feg�frame, is shown in
Figure 2.2.

The frame is given by feg , (oe;�!xe;�!ye ;�!ze). It has its origin coincident
with the ECI�frame, and �!ze � �!zi . Its distinguishing feature is that it
rotates around the �!zi axis with the rotational velocity of the Earth: !ize =
7:2921e�5 rad= s. That means that any location on the Earth�s surface is
time�invariant in this frame.
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Figure 2.1: The Earth-Centred Inertial Frame

The �!xe axis points directly from the centre of the Earth through the
intersection of the prime meridian and the equator (i.e. 0 �N , 0 �E), while
the �!ye axis is set to give a right�handed frame, and so points directly
towards the location 0 �N , 90 �E.

The frame�s position relative to the fig�frame is shown in Figure 2.3.

North�East�Down

A North�East�Down (NED) or fng�frame is de�ned relative to the World
Geodetic System (World Geodetic System 1984). The WGS�84 is in turn
de�ned relative to the ECEF�frame, and is a reference ellipsoid that ap-
proximates the surface of the Earth.

An NED�frame can be de�ned relative to any point on the WGS,
excluding either celestial pole. The reference frame is given by fng ,
(on;

�!xn;�!yn;�!zn), where �!xn is in the direction of the geodesic pointing to-
wards the Northern Celestial Pole; �!zn is directly towards the origin of the
ECEF�frame, and �nally �!yn is formed to give a right�handed frame, which
gives an eastward pointing �!yn.

Since the rotation of the earth is so slow, relative to the accelerations
and rotations a manoeuvring ship experiences, its e¤ects can be neglected
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Figure 2.2: The Earth Centred Earth Fixed frame
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Figure 2.3: The relationship between the ECI and ECEF frames
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for the purposes of ship modelling and control. For this reason, the fng
frame is assumed to be su¢ ciently inertial throughout this thesis.

Body��xed

A body��xed frame, or fbg�frame, given by fbg , (ob;�!xb;�!yb ;�!zb ), is a frame
which translates and rotates with a body of interest. The frame is typically
�xed at a useful point on the body. This point might be, for instance, at the
centre of gravity, or collocated with the origin of an inertial measurement
unit (IMU).

In ships, and in this thesis, it is conventional to set: �!xb towards the bow
of the ship; �!yb towards starboard; and �!zb to give a right�handed frame,
which entails a "downward" pointing �!zb .

The fbg�frame moves and rotates with respect to the NED�frame, and
so the coordinates describing the relative position of the former to the latter
are vital. The generalised position vector of the body��xed frame relative
to the NED�frame is given by the vector �, where:

� , [n; e; d; �; �;  ]> 2 R3 � S3. (2.1)

This vector is commonly sectioned into the translational and rotational
components as:

pn , [n; e; d]> 2 R3 (2.2)

� , [�; �;  ]> 2 S3, (2.3)

where (n; e; d) is the vector of positions north, east, and down respectively,
and (�; �;  ) signi�es the roll, pitch, and yaw angles respectively.

Additionally, the body��xed velocities: the velocities of the body��xed
frame relative to the fng�frame but expressed in the fbg�frame. are com-
monly utilised:

� , [u; v; w; p; q; r]> 2 R6, (2.4)

where the components (u; v; w; p; q; r) are the velocities in surge, sway,
heave, roll, pitch and yaw respectively. These can be sectioned into lin-
ear and rotational velocities: �1 , [u; v; w] and �2 , [p; q; r].

The velocities are depicted in Figure 2.4. The red vector shows the
surge velocity, u; the green vector shows the sway velocity v; the green
vector shows the heave velocity w; and the grey vector �1 depicts the linear
velocity vector.
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Figure 2.4: Linear velocities u, v, and w.

Flow Axes

The �ow axes, or ffg�frame can be de�ned by the velocity of a body
through a �uid. This axis system is also commonly used in aerodynamics,
in which they are named wind�axes. The angle that a body moves through a
�uid at is vitally important in calculating both the direction and magnitude
of forces that arise due to this motion. The axes are ffg , (of ;�!xf ;�!yf ;�!zf ).
The origin, of can in principle be set anywhere, but it makes sense to
collocate it with ob. The longitudinal vector

�!xf points directly along the
body��xed linear velocity vector �1. The

�!zf vector acts acts along the �!zb�
axis, rotated about the �!yb�axis by the angle�of�attack, �. The �!yf vector
is set to form a right�handed frame: it points along the �!yb�axis, rotated
about �!zb by the sideslip angle, �. The angle of attack and angle of sideslip
are shown in Figures 2.5 and 2.6 respectively.

The transformations between frames will be dealt with in the coming
section.

2.1.2 Transformations between frames

The �eld of kinematics deals with the motion of an object in a geometric
fashion: there is not treatment of the causes of this motion. Dealing with
multiple reference frames is fundamental. Many forces are naturally calcu-
lated in one frame of reference. For example, gravity naturally acts in the
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Figure 2.5: Angle of attack, �.

Figure 2.6: Angle of Sideslip, �.
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z�direction of the fng�frame. Alternatively, it acts precisely in the oppo-
site direction of ri (i.e., exactly in reverse to the position vector relative
to the centre of the Earth). Considering gravity in the body��xed frame,
however, presents us with no help at all. Similarly, considering a lift force
in the �ow axes gives an immediately apparent direction and calculable
magnitude for the force. Considering it in the NED frame o¤ers no such
possibility. These facts entail much changing from one frame to another.
This task is done through the following matrix transformations.

Transformation between fng and fbg

� fng , (on;�!xn;�!yn;�!zn)

� fbg , (ob;�!xb;�!yb ;�!zb )

Linear Velocity Transformation The notation used to rotate a vector
from one frame to another is given by:

ry = Ry
xr
x, (2.5)

where Ry
x is a rotation matrix: the subscript denoting which frame is the

source, and the superscript denoting which frame is the destination. The
matrix above rotates the vector r from frame fxg to frame fyg. By de�ni-
tion, every rotation matrix is a member of the special orthogonal group (i.e.,
the group of orthogonal matrices with det = +1). For three�dimensional
rotations

Ry
x 2 SO (3) 8fxg; fyg (2.6)

) (Ry
x)
�1 = (Ry

x)
> = Rx

y . (2.7)

The orientation of one frame, fyg, relative to another, fxg, can be
described through three separate rotations, by Euler�s Theorem on Rotation
(Fossen 2002a). Each consecutive rotation is simple (i.e., each rotation is
performed about one axis at a time). The order in which these rotations
are carried out is not �xed.

Since three rotations are su¢ cient to describe an arbitrary orientation
in three dimensions, there are 27 possible orders in which these rotations
can take place. The necessary condition on these twenty seven is that
consecutive rotations cannot take place around the same axis (i.e., roll�
roll�pitch can not work, while roll�pitch�roll is �ne). There are 12 of the
27 which satisfy this condition.
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The one used almost universally in marine control and also aeronautics
and aerospace engineering is described here. The convention in rotating
from the fbg�frame to the fng�frame is to rotate about x, then y then z.
This approach is sometimes called the 123 convention, but it is not the x�
convention (which is roll, then pitch, then roll again). The 123 convention
is:

1. A rotation, �, about the x�axis of the fbg�frame: Rx (�)

2. A rotation, �, about the y�axis of the intermediate frame: Ry (�)

3. A rotation, �, about the z�axis of the second intermediate frame:
Rz ( )

The resulting rotation matrix is then:

Rn
b (�) = Rz ( )Ry (�)Rx (�) (2.8)

) Rn
b (�)

�1 = (Rz ( )Ry (�)Rx (�))
>

) Rb
n (�) = Rx (�)

>Ry (�)
>Rz ( )

> (2.9)

A rotation by the angle � about the x�axis is:

Rx (�) =

241 0 0
0 cos� � sin�
0 sin� cos�

35 . (2.10)

A rotation by the angle � about the y�axis is:

Ry (�) =

24 cos � 0 sin �
0 1 0

� sin � 0 cos �

35 . (2.11)

A rotation by the angle  about the z�axis is:

Rz ( ) =

241 0 0
0 cos� � sin�
0 sin� cos�

35 . (2.12)

These rotations give the solution for (2.8) and (2.9) as:

Rn
b (�) =

24 c c� s�c� �s�
c s�s� � s c� c c� + s�s�s c�s�
s s� + c c�s� s c�s� � c s� c�c�

35 (2.13)
Rb
n (�) = R

n
b (�)

> =

24c c� c s�s� � s c� s s� + c c�s�
s�c� c c� + s�s�s s c�s� � c s�
�s� c�s� c�c�

35 ,(2.14)
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with:

s� , sin (�) (2.15)

c� , cos (�) (2.16)

Remark 2.1 The angles �, � and  are typically called the Euler�angles.
It is a longstanding convention in aerospace and marine engineering, and
will not be changed in this thesis. That said, the convention is generally not
accepted in mathematics and physics (e.g. Goldstein et al. 1953, Lifshitz and
Landau 1982, Arfken 1985, Weisstein 2008). The angles, as special cases
of Euler�angles, ought to be more precisely named either the Tait�Bryan
angles (Kelvin and Tait 1896) or the Cardano angles.

The matrices in (2.13) and (2.14) allow for the transformation of any
linear quantity, such as force or velocity, from one frame of reference to
another. To transform the angular velocities from one to another requires
additional analysis.

Angular Velocity Transformation Given the body��xed angular ve-
locities �2 = [p; q; r]>, we wish to calculate the time�rate of change of
the Euler Angles, [�; �;  ]>. As with linear velocity, the integral of the
body��xed angular velocity,

R
�2d� , is has no physical interpretation here.

The rate of change of the Euler�angles can, however, be derived from a
transformation matrix T� (�) applied to these velocities:

_� = T� (�)�2. (2.17)

This transformation can be derived as (Fossen 2002a, Perez and Fossen
2007):

�2 =

24 _�0
0

35+Rx (�)
>

240_�
0

35+Rx (�)
>Ry (�)

>

2400
_ 

35 , T� (�)�1 _�. (2.18)

Using (2.10)�(2.12) gives:

T� (�)
�1 =

241 0 �s�
0 c� c�s�
0 �s� c�s�

35 (2.19)

) T� (�) =

241 s�t� c�t�
0 c� �s�
0 �s�=c� c�=c�

35 , � 6= ��=2. (2.20)
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Complete Transformation The transformation matrix from the fbg�
frame to the fng�frame is then given by:

J (�) ,
�
Rn
b (�) 0
0 T� (�)

�
(2.21)

) _� = J (�)�. (2.22)

Transformation Between ffg and fbg

� fbg , (ob;�!xb;�!yb ;�!zb )

� ffg , (of ;�!xf ;�!yf ;�!zf )

Many forces are most easily interpreted in the �ow axes. The drag force
by de�nition acts precisely in the opposite direction of �!xf . The lift force
acts precisely in the opposite direction of �!zf . The rotation matrices to
transform between fbg and ffg are are given by:

Rf
b =

24 cos� cos� sin� cos� sin�
� sin� cos� cos� � sin� sin�
� sin� 0 cos�

35 (2.23)

Rb
f =

24cos� cos� � sin� cos� � sin�
sin� cos� 0

cos� sin� � sin� sin� cos�

35 , (2.24)

where:

� , arctan
w

u
(2.25)

� , arctan
v

u
. (2.26)

Note that if heave is neglected, these relations are equivalent to:

� � 0 (2.27)

� � arctan
v

u
� arcsin v

U
� arccos u

U
. (2.28)

2.2 Kinetics

The word kinetics is also of Greek origin, stemming from the word �������,
which means the act of moving. This �eld deals with the forces and mo-
ments acting on objects, and explains the accelerations caused by these.
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Once complete, the accelerations can be combined with the kinematics
studied in Section 2.1. This combination gives a set of di¤erential equa-
tions; the solution of which completes the problem of motion analysis.

There are a number of approaches through which equations of motion
can be derived. The �rst and most easily recognised is through Newton�s
Second Law F = ma (for �xed mass). A second is through an energy based
approach, referred to as the Euler�Lagrange equation. The latter approach
is used within this thesis.

Newton�s Laws describe motion in an inertial reference frame. The E�
L equations do not share this restriction: they possess frame�indi¤erence.
This property means that the law applied is the same regardless of which
reference frame is chosen. This symmetry exempli�es Dirac�s belief that
physical laws should possess a mathematical beauty (see the �nal essay in
Truesdell 1988).

The distinction between Newtonian and Lagrangian mechanics can be
understood by noting where one begins. To form the equations of motion
with Newtonian mechanics, one begins by de�ning a mass. The force acting
on this mass is directly proportional to the product of mass and accelera-
tion:

F = ma. (2.29)

Conversely, in the Euler�Lagrange approach, the �rst step is to state
the Lagrangian to be:

L , T �
�
_�; �; t

�
� P (�) , (2.30)

where T � and P are the kinetic coenergy and potential energy respectively1.
The Euler�Lagrange equation is (e.g. Naidu 2003):

d

dt

�
@L

@ _�

�
� @L

@�
= J�T (�) � , (2.31)

where � is a generalised coordinate system2.
In principle, any such coordinate system can be used in this formulation:

there is no need to constrain �= �. Although it is valid, there is no bene�t
to setting �=

R
�dt, since this integral has no real meaning here (although

in other �elds, the distance travelled along each axis might be of interest).
This approach relates the forces acting on an object to the time�rate�of�

change of the energy, and by doing so gives di¤erential equations describing
1The kinetic coenergy and kinetic energy are identical throughout this thesis.
2The term generalised coordinate �rst appears in (Kelvin and Tait 1896).
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the motion itself. It is this mathematical framework in which the analyses
of motion will be placed in this thesis.

2.2.1 Kirchho¤�s Equations of Motion

Kirchho¤�s (1869) equations are a set of relations used to obtain the equa-
tions of motion from the derivatives of the kinetic energy of a system; they
are a special case of the Euler�Lagrange equations. The derived equa-
tions also give the Coriolis�centripetal forces, which arise in non�inertial
frames. Derivations in the marine �eld can be seen, for example, in (Milne-
Thomson 1968, Fossen 2002a). The derivations are included in Appendix
A.

d

dt

�
@T

@�1

�
+ S (�2)

@T

@�1
= � 1 (2.32)

d

dt

�
@T

@�2

�
+ S (�2)

@T

@�2
+ S (�1)

@T

@�1
= � 2. (2.33)

Applicability of Kirchho¤�s Equations

Being a special case of the E�L equations, Kirchho¤�s equations share the
limitations of the most typical Euler�Lagrange formulation. Note that not
all E�L formulations necessarily share the following requirements.

Holonomic The system must be holonomic: the number of generalised
coordinates must be equal to the degrees�of�freedom of the system.
Note that this property the use of a quaternion approach, or any other
chart on SO (3) with more than three parameters, as there are too
many generalised coordinates.

Time�invariant The system can not have any time�varying constraints.
A �xed�mass criterion is then placed on the rigid body. For exam-
ple, a rocket losing mass continuously is not explainable using the
formulation given by (2.32)�(2.33). The reason for this is that the
work�energy relation used in the derivation is no longer applicable,
as it no longer takes into account the energy lost in the mass ex-
iting the system. In these kinds of problems additional terms are
necessary to account for the reaction forces from any loss (or gain) in
mass. Such a reaction force is typically referred to as Metchersky�s
force (Pesce 2003, Pesce and Tannuri 2006).
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2.2.2 Rigid Body Equations of Motion

To develop the rigid body equations of motion from (2.32)�(2.33), we �rst
specify the system we are interested in. Given a rigid body, its mass matrix
can be formed as (Fossen 1994, Fossen 2002a):

MRB =

�
mI3�3 �mS

�
rbg
�

mS
�
rbg
�

I0

�
2 R6�6, (2.34)

where rbg is the location of ob: the origin of body �xed frame relative to the
centre�of�gravity of the ship. The mass matrix has the following properties:

Property 2.1 _MRB = 0.

Property 2.2 MRB = (MRB)
> > 0.

The body��xed frame is de�ned relative to the NED frame, which is
assumed to be inertial. Motion of the rigid body is then described wholly
by six independent coordinates. As the admissible motion of the body is
also in six degrees of freedom, the system is holonomic.

The kinetic energy of this system is given by:

TRB =
1

2
�>MRB�. (2.35)

For convenience, the equations are solved at the centre of gravity (i.e.,
rbg = 0). Furthermore, port�starboard symmetry is assumed. The full set
of equations is given in Appendix B.1.

The kinetic energy given by (2.35) is time�invariant, and we are treating
a holonomic system, satisfying the requirements given in Section 2.2.1, so
Kirchho¤�s Equations apply. They are solved as

d

dt

�
@TRB
@�1

�
+ S (�2)

@TRB
@�1

=

24m _u�mvr +mqwm _v +mur �mpw
m _w �mqu+mpq

35 (2.36)

d

dt

�
@TRB
@�2

�
+ S (�2)

@TRB
@�2

+S (�1)
@TRB
@�1

=

24 Ix _p+ (Iz � Iy) pr + Ixzpq
Iy _q + (Ix � Iz) pr � Ixz

�
p2 + q2

�
Iz _r + (Iy � Ix) pq � Ixzqr

35 .
(2.37)
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They can be formulated into:

MRB _� +CRB (�)� = �RB, (2.38)

where:

MRB ,

26666664

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 Ixz
0 0 0 0 Iy 0
0 0 0 Ixz 0 Iz

37777775 (2.39)

CRB (�) ,

26666664

0 0 0
0 0 0
0 0 0
0 mw �mv

�mw 0 mu
mv �mu 0

0 mw �mv
�mw 0 mu
mv �mu 0
0 Ixzp+ Izr �Iyq

�Ixzp� Izr 0 Ixp+ Ixzr
Iyq �Ixp� Ixzr 0

37777775 . (2.40)

Note the properties MRB �M>
RB and CRB (�) � �C>RB (�).

Using (2.38), and adding the transformation from the fbg�frame to the
fng�frame (see Section 2.1.2) gives us the �nal form for the rigid body
equations of motion:

_� = J (�)� (2.41)

MRB _� +CRB (�)� = �RB. (2.42)

Properties of Kirchho¤�s Equations

mass�termsz }| {
d

dt

�
@T

@�1

�
+

Coriolis�centrip.z }| {
S (�2)

@T

@�1
= � 1 (2.43)

d

dt

�
@T

@�2

�
| {z }
inertia�terms

+ S (�2)
@T

@�2
+ S (�1)

@T

@�1| {z }
Coriolis�centripetal moments

= � 2. (2.44)
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For a constant rigid body mass matrix, MRB, the Kirchho¤ Equations
can always be partitioned into the form (Sagatun and Fossen 1991, Fossen
1994, Fossen 2002a):

MRB _� +CRB (�)� = �RB,

which has the following properties:

Property 2.3 _MRB = 0.

Property 2.4 MRB = (MRB)
> > 0.

These �rst two properties follow immediately from the de�nition of the
system.

Property 2.5 CRB (�) = �CRB (�)
>.

Proof. This property was proved in (Sagatun and Fossen 1991), which is
repeated here. The Coriolis�centripetal terms in (2.43)�(2.44) are:

CRB (�)� =

"
S (�2)

@T
@�1

S (�2)
@T
@�2

+ S (�1)
�
@T
@�1

�# . (2.45)

By the properties of the cross�product, S (a) b = �S (b) a, and so the
above can be rewritten:

CRB (�)� =

24 �S
�
@T
@�1

�
�2

�S
�
@T
@�1

�
�1 � S

�
@T
@�2

�
�2

35 (2.46)

=

24 0 �S
�
@T
@�1

�
�S
�
@T
@�1

�
�S
�
@T
@�2

�35��1
�2

�
. (2.47)

Since S (a) = �S (a)> 8a, the skew�symmetry of C (�) is trivial.
This skew symmetry of the Coriolis�centripetal matrix, CRB (�), o¤ers

physical insight. This term performs no actual work on the system: the
forces are �ctive and only appear from the usage of a non�inertial frame�
of�reference. This is true regardless of the formulation of the kinetic energy.

Property 2.6 �>
�
_MRB � 2C (�)

�
� = 0.
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Proof. _MRB = 0, so the only term required to analyse is �>C (�)�:

�>C (�)� = a�
�>C (�)�

�>
= a

�>C (�)> � = a

�>
�
C (�) +C (�)>

�
� = 2a

) a = 0,

where the skew�symmetry of C (�) has been exploited.
We can compare and contrast Kirchho¤�s Equations with Newton�s Sec-

ond Law:
M (�) �� = � �. (2.48)

M (�) is the rigid body mass matrix de�ned in the fng�frame: the mass
distribution therefore varies as the body rotates; and � � is the generalised
force in the inertial frame. This equation is by necessity applied in an
inertial frame. If we were to rotate these terms into the body �xed frame,
substitute a constant mass matrix, and then compensate for the time�
varying parts, we would �nd the Kirchho¤ equations. It is aesthetically
pleasing to think of the mass and inertia terms of the Kirchho¤ equations
as being applications of Newton�s Second Law:

MRB _� +CRB (�)� = �RB. (2.49)

The �rst part, MRB _�, can be considered to be Newton�s Second Law:
the next part, CRB (�)�, can be considered to be a correction of the �rst to
compensate for the fact that the equation is being solved in a non�inertial
frame of reference.

The mathematical basis for deriving the equations of motion for a vessel
have now been set down, and so this task can now be contemplated.



Chapter 3

Equation of Motion for Ships

The rigid body equations of motion given by (2.41)�(2.42) are insu¢ cient to
model a body moving through water. During this motion, kinetic energy is
imparted to the �uid which it would otherwise not have, and so this energy
must be included as part of the formulation of the equations of motion.
Of the pressure induced forces acting on a ship, some are proportional to
the acceleration through the �uid. These are denoted added�mass, virtual
mass, or sometimes added�inertia. These forces oppose the change in speed
of the vessel. In the equations of motion, they are grouped alongside the
rigid�body mass.

The solution is to use the energy of this mass in applying the Kirch-
ho¤ equations. It is not su¢ cient to derive the equations of motion using
the rigid�body mass, and then insert the added�mass pressure force as an
external force. That is, it is fundamentally unsatisfactory to write that:

MRB _� +CRB (�)� = �MA _� + � . (3.1)

In formulating the equations of motion, it is also necessary to account
for the Coriolis�centripetal forces that arise due to the added�mass forces.
However, before the proper form can be derived, it is necessary to give the
form of the hydrodynamic added mass.

The coe¢ cients describing the added mass can be written according to
the notation of Bailey et al. (1997) as:

Fa (!) , with (3.2)

F 2 fX;Y; Z;K;M;Ng (3.3)

a 2 f _u; _v; _w; _p; _q; _r; u; v; w; p; q; r; n; e; dg, (3.4)
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where ! is the frequency of oscillation. At any given frequency, Fa (!) =
@F
@a (!) a, which is typically called an oscillatory derivative. The inertial
pressure forces are those corresponding to _u, _v etc. These can be grouped
into matrix form as:

MA (!) = �

26666664

X _u (!) X _v (!) X _w (!) X _p (!) X _q (!) X _r (!)
Y _u (!) Y _v (!) Y _w (!) Y _p (!) Y _q (!) Y _r (!)
Z _u (!) Z _v (!) Z _w (!) Z _p (!) Z _q (!) Z _r (!)
K _u (!) K _v (!) K _w (!) K _p (!) K _q (!) K _r (!)
M _u (!) M _v (!) M _w (!) M _p (!) M _q (!) M _r (!)
N _u (!) N _v (!) N _w (!) N _p (!) N _q (!) N _r (!)

37777775 .
(3.5)

At low frequency, these are typically referred to as the hydrodynamic
derivatives (e.g. Bailey et al. 1997, Journée and Massie 2001, Fossen 1994,
Fossen 2002a). This frequency is often said to be zero�frequency, but that
makes little sense while discussing the oscillatory modes in heave, roll and
pitch (Ross et al. 2006).

We make the de�nitions:

M0
A , MA (! = 0) (3.6)

M1
A , MA (! =1) , (3.7)

with the associated matrix components:

M0
A = �

266666664

X0
_u X0

_v X0
_w X0

_p X0
_q X0

_r

Y 0_u Y 0_v Y 0_w Y 0_p Y 0_q Y 0_r
Z0_u Z0_v Z0_w Z0_p Z0_q Z0_r
K0
_u K0

_v K0
_w K0

_p K0
_q K0

_r

M0
_u M0

_v M0
_w M0

_p M0
_q M0

_r

N0
_u N0

_v N0
_w N0

_p N0
_q N0

_r

377777775
(3.8)

M1
A = �

266666664

X1
_u X1

_v X1
_w X1

_p X1
_q X1

_r

Y1_u Y1_v Y1_w Y1_p Y1_q Y1_r
Z1_u Z1_v Z1_w Z1_p Z1_q Z1_r
K1
_u K1

_v K1
_w K1

_p K1
_q K1

_r

M1
_u M1

_v M1
_w M1

_p M1
_q M1

_r

N1
_u N1

_v N1
_w N1

_p N1
_q N1

_r

377777775
, (3.9)

where the superscript 0 or 1 implies that the coe¢ cient is de�ned at low�
frequency or in�nite frequency respectively. No assumption of symmetry is
made on M0

A. Newman (1977) showed symmetry at zero speed in an ideal
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�uid, but also that symmetry is no longer guaranteed at forward speed. At
in�nite frequency, symmetry is assured regardless of forward speed.

This section proceeds by �rst re�deriving the equations of motion valid
at low�frequency, and then by deriving them for arbitrary motion. The
former is valid for manoeuvring in calm water, while the latter is valid
for manoeuvring in waves. Prior to the derivation, some discussion of the
applicability of the Kirchho¤ equations is necessary.

The rigid body system, as reasoned in Chapter 2.2, is holonomic and
time�invariant. Its use in the Kirchho¤ equations is satisfactory.

In the �uid, there are in�nite degrees of freedom. The added�mass
coe¢ cients relate the six body �xed velocities of the rigid body to the
energy imparted to the �uid. As such there are six generalised coordinates,
but in�nite admissible variations, and therefore the �uid system is not
holonomic. Even though the system fails to meet this criterion, it can
still be treated as a conventional Lagrangian system. The proof is given
in (Lamb 1932, Birkho¤ 1960). Discussion of the validity of applying the
EL equations to the added�mass system can be found in (Sagatun and
Fossen 1991, Sagatun 1992, Wichlund et al. 1995).

3.1 Equations of motion for Low�Frequency Added
Mass

This section repeats the results from (Imlay 1961, Sagatun and Fossen 1991,
Sagatun 1992, Fossen 1994, Fossen 2002b).

Motion in calm water is typically at very low�frequency. The kinetic
energy of the total system is:

T =
1

2
�>M�, (3.10)

where M =MRB +M
0
A, with these de�ned being according to equations

(2.39) and (3.8).
It is important to note that only the symmetric parts ofM0

A are relevant.
The skew�symmetric parts can have no in�uence whatsoever on the kinetic
energy of the system, by observing the simple relation:

K = �K>

) x>Kx = 0 8x. (3.11)
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Therefore, using the relation (Fossen 2002b):

M0
A �

1

2

�
M0

A +
�
M0

A

�>�| {z }
symmetric

+
1

2

�
M0

A �
�
M0

A

�>�| {z }
skew�symmetric

, (3.12)

we make the de�nition

�M0
A ,

1

2

�
M0

A +
�
M0

A

�>�
. (3.13)

Note that

TA =
1

2
�>M0

A� �
1

2
�> �M0

A� 8�, (3.14)

and so we can exclusively apply the symmetric part of the added�mass
matrix. Although this property is noticed, even if it were not, the Kirchho¤
equations symmetrise the inertial forces in their very application.

Kirchho¤�s equations can be applied as follows:

d

dt

�
@T

@�1

�
+ S (�2)

@T

@�1
= � 1 (3.15)

d

dt

�
@T

@�2

�
+ S (�2)

@T

@�2
+ S (�1)

@T

@�1
= � 2. (3.16)

If we segregate the energy of the system into two components: that of
the rigid body mass, and that of the added�mass, i.e. T = TRB + TA, then
the forces on the rigid body due to added�mass can then be written as:

� a1 = � d

dt

�
@TA
@�1

�
� S (�2)

@TA
@�1

(3.17)

� a2 = � d

dt

�
@TA
@�2

�
� S (�2)

@TA
@�2

� S (�1)
@TA
@�1

. (3.18)
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In component form these forces and moments are:

XA = � d

dt

@TA
@u

+ r
@TA
@v

� q@TA
@w

(3.19)

YA = � d

dt

@TA
@v

+ p
@TA
@w

� r@TA
@u

(3.20)

ZA = � d

dt

@TA
@w

+ q
@TA
@u

� p@TA
@v

(3.21)

KA = � d

dt

@TA
@p

+ w
@TA
@v

� v@TA
@w

+ r
@TA
@q

� q@TA
@r

(3.22)

MA = � d

dt

@TA
@q

+ u
@TA
@w

� w@TA
@u

+ p
@TA
@r

� r@TA
@p

(3.23)

NA = � d

dt

@TA
@r| {z }

Added mass

+ v
@TA
@u

� u@TA
@v

+ q
@TA
@p

� p@TA
@q| {z }

Coriolis�centripetal

. (3.24)

For a constant mass, these forces can always be parameterised (Fossen
1994, Fossen 2002a) according to:�

� a1
� a2

�
= � �M0

A _� �C0A (�)�. (3.25)

The equations of motion are:

_� = J (�)� (3.26)�
MRB + �M0

A

�
_�+
�
CRB (�) +C

0
A (�)

�
� = � b, (3.27)

where � b is the generalised force resolved in the fbg�frame acting onMRB

and �M0
A.

3.1.1 Dynamic Properties

which has the following properties:

Property 3.1
�
MRB + �M0

A

�
=
�
MRB + �M0

A

�>
> 0.

Property 3.2 _MRB =
_�M
0

A = 0.

Property 3.3 C (�) = �C (�)>.

Proof. This proof is identical to that given in Section 2.2.2.
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Property 3.4 �>
�
_MRB +

_�M
0

A � 2C (�)
�
� = 0.

Proof. _MRB = _�M
0

A = 0; and the rest of the proof is identical to that
given in Section 2.2.2.

3.1.2 4�DOF Example

Take a typical example of a port�starboard symmetric ship. The analysis
is for surge, sway, roll and yaw; typically detailed enough for most manoeu-
vring problems. The added mass is of the following form:

M0
A = �

2664
X0
_u 0 0 0
0 Y 0_v Y 0_p Y 0_r
0 K0

_v K0
_p K0

_r

0 N0
_v N0

_p N0
_r

3775 . (3.28)

The added mass forces acting on the rigid body mass are described by

� d

dt

@TA
@�

= � d

dt

@

@�

1

2
�> �M0

A� (3.29)

= � �M0
A _�, (3.30)

with � = [u; v; p; r]>.
The symbolic solution for the Coriolis�centripetal forces acting on the

rigid�body mass is:

Xc = �Y 0_v vr �
1

2

�
N0
_v + Y

0
_r

�
r2 � 1

2

�
Y 0_p +K

0
_v

�
pr (3.31)

Yc = X0
_uur (3.32)

Kc = 0 (3.33)

Nc =
�
Y 0_v �X0

_u

�
uv +

1

2

�
Y 0_r +N

0
_v

�
ur +

1

2

�
Y 0_p +K

0
_v

�
pu. (3.34)

Since we have
�
Xc Yc Kc Nc

�>
= �CA (�)�, the matrix form is

given by:

CA (�) =

2666666664

0 0 0
Y 0_v v +

1
2

�
N0
_v + Y

0
_r

�
r

+1
2

�
Y 0_p +K

0
_v

�
p

0 0 0 �X0
_uu

0 0 0 0
�Y 0_v v � 1

2

�
N0
_v + Y

0
_r

�
r

�1
2

�
Y 0_p +K

0
_v

�
p

X0
_uu 0 0

3777777775
.

(3.35)
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Under the additional assumption of a symmetric added mass, this ma-
trix is:

CA (�) =

2664
0 0 0 Y 0_v v + Y

0
_r r + Y

0
_p p

0 0 0 �X0
_uu

0 0 0 0
�Y 0_v v � Y 0_r r � Y 0_p p X0

_uu 0 0

3775 ,
(3.36)

where N0
_v =Y

0
_r and Y

0
_p =K

0
_v are interchangeable.

3.2 Equations of motion with Fluid Memory Ef-
fects

This section proceeds to apply the Kirchho¤ formulation to a time�domain
model with �uid memory e¤ects. The end result is a new formulation of
the equations of motion, valid under arbitrary motion.

Section 3.1 showed the structure of the equations of motion for the case
of zero frequency motion, but this tells us little of how they ought to look if
the added�mass matrix is frequency dependent. Consider a simple example
of undamped surge motion:

(m�X _u (!)) _u = X. (3.37)

This equation has the rough appearance of a di¤erential equation, but
this is not so. It is limited by the fact that both the motion and excita-
tion must be at the frequency ! (Tick 1959). Such a pseudo�di¤erential
equation is entirely unable to cope with random or transient motions and
excitations. Using inverse Fourier transforms, it is trivial to derive a time�
domain equivalent which has the following structure:

m _u�
�
XC
_u � _u

�
(t) = X (t) , (3.38)

where XC
_u = F�1[X _u (!)] and X (t) = F�1[X]. This formulation is valid

under arbitrary motion, without any limitations on frequency of either the
motion or excitation. Under this structure, arbitrary forces are perfectly
acceptable. This versatility allows nonlinear damping and the like to be
included on the right hand side of the equation as excitation forces. Even
with this result it is still unclear how the complete equations of motion
ought to look. A long line of research exists on time�domain formulations
(e.g. Cummins 1962, Ogilvie 1964, Bishop et al. 1984, Bailey et al. 1997,
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Fossen 2005, Perez and Fossen 2007). The approach in this chapter derives
a new structure for the equations of motion by using the kinetic energy of
the �uid as the basis. This formulation is inherently de�ned in the body
�xed frame, in contrast with formulations in which the model is tied to a
steady forward speed or to oscillatory motion about some equilibrium axes.

The kinetic energy of the added�mass in the frequency domain is:

TA (!) =
1

2
�> (!)MA (!)� (!) (3.39)

By application of the Convolution Theorem for unitary Fourier trans-
forms (e.g. Bracewell 1999), we can write that:

TA (t) =
1

2

p
2�F�1[F [�> (t)]F [MA (t)]F [� (t)]] (3.40)

=

r
�

2

�
�> �MA � �

�
(t) (3.41)

The impulse response of the added mass is found from the inverse
Fourier transform as follows:

MA (t) =
1p
2�

1R
�1

MA (!) exp (i!t) d! (3.42)

=
1p
2�

1R
�1

(MA (!)�M1
A ) exp (i!t) d!

+
1p
2�

1R
�1

M1
A exp (i!t) d!

=
1p
2�

1R
�1

(MA (!)�M1
A ) exp (i!t) d!

+
1p
2�
M1

A � (t)

MA (t) =
1p
2�

1R
�1

(MA (!)�M1
A ) exp (i!t) d!

+
1p
2�
M1

A . (3.43)

Let us separate the convolution part of the impulse response from the
constant in�nite frequency contribution by de�ning:

M�
A (t) ,

1R
�1

(MA (!)�M1
A ) exp (i!t) d! (3.44)

)MA (t) =
1p
2�
M�

A (t) +
1p
2�
M1

A , (3.45)
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and to furthermore de�ne the components of M�
A (t) to be:

M�
A (t) = �

266666664

X�
_u (t) X�

_v (t) X�
_w (t) X�

_p (t) X�
_q (t) X�

_r (t)

Y �_u (t) Y �_v (t) Y �_w (t) Y �_p (t) Y �_q (t) Y �_r (t)

Z�_u (t) Z�_v (t) Z�_w (t) Z�_p (t) Z�_q (t) Z�_r (t)

K�
_u (t) K�

_v (t) K�
_w (t) K�

_p (t) K�
_q (t) K�

_r (t)

M�
_u (t) M�

_v (t) M�
_w (t) M�

_p (t) M�
_q (t) M�

_r (t)

N�
_u (t) N�

_v (t) N�
_w (t) N�

_p (t) N�
_q (t) N�

_r (t)

377777775
. (3.46)

The following properties are assumed:

Property 3.5 M�
A (t) is absolutely convergent.

Property 3.6 M1
A = (M1

A )
>. This symmetry is shown in (Newman

1977, Journée and Massie 2001).

Using the same approach as in Section 3.1.2, the symmetric components
are applied, and the skew�symmetric portions are discarded by de�ning:

M�
A (t) , 1

2

�
M�

A (t) +M
�
A (t)

>
�
+
1

2

�
M�

A (t)�M�
A (t)

>
�
(3.47)

�M�
A (t) , 1

2

�
M�

A (t) +M
�
A (t)

>
�

(3.48)

) TA =
1

2
�>M1

A � +

r
�

2

�
�> � �M�

A � �
�
(t) (3.49)

The total kinetic energy is then

T = TRB + TA

=
1

2
�> (MRB+M

1
A )� +

r
�

2

�
�> � �M�

A � �
�
(t) . (3.50)

Whether this system is treatable using Kirchho¤�s Equations must now
be dealt with. As in Section 3.1, the �uid system is not holonomic. Equally
so, the same reasoning holds and the system can be treated as if it were a
conventional Lagrangian system. The system appears to have an explicit
time�dependence, as the impulse response function for the added�mass is
convolved with time. The momentum of the system is de�ned by:

�
�M�
A � �

�
(t) =

1R
�1

�M�
A (�)� (t� �) d� , (3.51)
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and so the added�mass kernel does not appear as a function of time. Rather,
the kinetic energy is a bilinear function of the body��xed velocities, and so
the time�invariance holds. The Kirchho¤ equations can then be applied:

� a1 = � d

dt

�
@TA
@�1

�
� S (�2)

@TA
@�1

(3.52)

� a2 = � d

dt

�
@TA
@�2

�
� S (�2)

@TA
@�2

� S (�1)
@TA
@�1

. (3.53)

We �rst note the rule for di¤erentiating convolutions:

d

dt
(x � y) (t) = ( _x � y) (t) = (x � _y) (t) . (3.54)

The inertial terms are then given by:

d

dt

�
@TA
@�

�
=

d

dt

�
@

@�

1

2
�>M1

A � +
1

2

�
�> � �M�

A � �
�
(t)

�
(3.55)

=
d

dt

��
�M�
A � �

�
(t) +M1

A �
�

(3.56)

d

dt

�
@TA
@�

�
=

�
�M�
A � _�

�
(t) +M1

A _�. (3.57)

An example derivation will be given �rst, before writing down the �nal
structure of the equations of motion.

3.2.1 Derivation Example

Beginning with the matrix of added�mass coe¢ cients:

MA (!) = �

2664
X _u (!) 0 0 0
0 Y _v (!) Y _p (!) Y _r (!)
0 K _v (!) K _p (!) K _r (!)
0 N _v (!) N _p (!) N _r (!)

3775 , (3.58)

the time domain equivalents are given by:
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MA (t) =

r
1

2�
M�

A (t) +

r
1

2�
M1

A (3.59)

M�
A (t) = �

2664
X�
_u (t) 0 0 0
0 Y �_v (t) Y �_p (t) Y �_r (t)

0 K�
_v (t) K�

_p (t) K�
_r (t)

0 N�
_v (t) N�

_p (t) N�
_r (t)

3775 (3.60)

M1
A = �

2664
X1
_u 0 0 0
0 Y1_v Y1_p Y1_r
0 K1

_v K1
_p K1

_r

0 N1
_v N1

_p N1
_r

3775 (3.61)

�M�
A (t) =

1

2

�
M�

A (t) +M
�
A (t)

>
�
. (3.62)

Since surge is decoupled from other modes; the simplest part to analyse
is the inertial force in surge, and the Coriolis�centripetal force in sway. The
added�mass force acting on the rigid body in surge is:

Xi = � d

dt

@

@u
TA (3.63)

= � d

dt

@

@u

�
�1
2
(u �X�

_u � u) (t)�
1

2
X1
_u u

2

�
=

d

dt

�
1

2
(X�

_u � u) (t) +
1

2
(u �X�

_u) (t) +X
1
_u u

�
=

d

dt
((X�

_u � u) (t) +X1
_u u)

Xi = (X�
_u � _u) (t) +X1

_u _u. (3.64)

The Coriolis�centripetal force in sway is given by:

Yc = �r @
@u
TA (3.65)

= (X�
_u � u) (t) r +X1

_u ur. (3.66)

Equations (3.64) and (3.66) can be examined at two important limiting
cases; at in�nite and at zero (low) frequency. The behaviour in these two
cases should be consistent with what is expected. At high frequency, we
should expect the entire behaviour to be governed by the in�nite frequency
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behaviour. At low frequency, the behaviour out to replicate that derived in
Section 3.1.

High�Frequency To describe the high�frequency behaviour, take equa-
tion (3.66). We set u = u0 cos (!t), and take the limiting case as
! !1:

Yc = r lim
!!1

1R
�1

X�
_u (t� �)u (�) d� +X1

_u ur (3.67)

= ru0. lim
!!1

1R
�1

X�
_u (t� �) cos (!�) d� +X1

_u ur. (3.68)

Since the components of �M�
A (t) are absolutely convergent by assumption,

we can apply the Riemann�Lebesgue Lemma (Gradshteyn and Ryzhik
2000), giving the following:

lim
!!1

1R
�1

X�
_u (t� �) cos (!�) d� = 0. (3.69)

The Coriolis�centripetal force in sway at in�nite frequency is given by

Yc = (X�
_u � u) (t) r +X1

_u ur (3.70)

= X1
_u ur, (3.71)

and so the high�frequency behaviour is consistent.

Low�frequency At low�frequency, the inertial surge behaviour is gov-
erned by:

u0. lim
!!0

1R
�1

X�
_u (t� �) cos (!�) d� (3.72)

' u0. lim
!!0

1R
�1

X�
_u (t� �) d� (3.73)

= u0
1R
�1

X�
_u (�) d� . (3.74)

This integral is the �nal value of the step response of X�
_u (�), which is

given by:
1R
�1

X�
_u (�) d� = X0

_u �X1
_u , (3.75)
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which gives the Coriolis�centripetal force:

Yc = (X�
_u � u) (t) r +X1

_u ur (3.76)

=
�
X0
_u �X1

_u

�
ur +X1

_u ur (3.77)

Yc = X0
_uur. (3.78)

Arbitrary Frequency The surge equation is now analysed at an arbi-
trary frequency to investigate whether standard behaviour can be
replicated.

The inertial force in surge can be described as:

(m�X1
_u ) _u� (X�

_u � _u) (t) = Xi (3.79)

F [(m�X1
_u ) _u� (X�

_u � _u) (t)] = F [Xi] (3.80)

(m�X1
_u ) _u (!)� (X _u (!)�X1

_u ) _u (!) = Xi (!) (3.81)

(m�X _u (!)) _u (!) = Xi (!) , (3.82)

where the relation

F [(X�
_u � _u) (t)] =

p
2�F [(X�

_u) (t)]F [ _u (t)] (3.83)

= (X _u (!)�X1
_u ) _u (!) (3.84)

has been applied.

These examples demonstrate that the new formulation corresponds cor-
rectly with known cases.

3.2.2 4�DOF Solution

The solution for the Coriolis�centripetal forces in four degrees of freedom
is:

Xc = � (Y _v � v) (t) r � (Y _p � p) (t) r � (Y _r � r) (t) r

�Y1_v vr � 1
2

�
Y1_p +K1

_v

�
pr � 1

2
(N1

_v + Y1_r ) r
2 (3.85)

Yc = X1
_u ur + (X

�
_u � u) (t) r (3.86)

Kc = 0 (3.87)

Nc = � (X _u � u) (t) v + (Y _v � v) (t)u+ (Y _p � p) (t)u+ (Y _r � r) (t)u

+(Y1_v �X1
_u )uv +

1

2

�
Y1_p +K1

_v

�
pu+

1

2
(Y1_r +N1

_v ) ru.(3.88)
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In matrix form these are:

C1A (�) =

2666664
0 0
0 0
0 0

�Y1_v v � 1
2 (N

1
_v + Y1_r ) r

�1
2

�
Y1_p +K1

_v

�
p

X1
_u u

0
Y1_v v + 1

2 (N
1
_v + Y1_r ) r

+1
2

�
Y1_p +K1

_v

�
p

0 �X1
_u u

0 0
0 0

3777775 (3.89)

C�A (�) =

26666664

0 0
0 0
0 0

� (Y _v � v) (t)
� (Y _p � p) (t)
� (Y _r � r) (t)

(X�
_u � u) (t)

0
(Y _v � v) (t) + (Y _p � p) (t)

+ (Y _r � r) (t)
0 � (X�

_u � u) (t)
0 0
0 0

377775 . (3.90)

Note that both are skew�symmetric, and possess a very familiar form.
The di¤erence is that the matrix shown in (3.90) has convolution integrals
in place of static multiplications. The �nal form for the model is then:

_� = J (�)� (3.91)

M_�+
�
�M�
A � _�

�
(t)+C (�)� = � b, (3.92)

where M = MRB+M
1
A and C (�) = CRB(�) +C

1
A (�) + C

�
A (�). At

low frequency, these equations match (3.26)�(3.27): At high frequency they
behave solely according to the in�nite frequency behaviour.

The full six DOF matrices of the this model are given in Appendix B.3.
Note that the equations are not trivially implementable, as _� appears

inside of a convolution integral. However, it is easily recognisable that�
�M�
A � _�

�
(t) �

�
_�M
�
A � �

�
(t) , (3.93)
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and so an equivalent formulation is:

_� = J (�)� (3.94)

M_�+
�
_�M
�
A � �

�
(t)+C (�)� = � b. (3.95)

3.2.3 Dynamic Properties

Property 3.7 M =M> > 0.

Property 3.8 _M = 0.

Property 3.9 C (�) = �C (�)>.

Proof. This property is independent of the actual formulation of the kinetic
energy, and so its proof is identical to that given in Section 2.2.2.

Property 3.10 �>
�
_M� 2C (�)

�
� = 0.

Proof. This proof is identical to that given in Section 2.2.2.

3.3 Added "Mass" and "Destabilising" Coriolis�
centripetal Forces

It is worthwhile to take a few sentences to clarify the behaviour of the
equations of motion as formulated up to this point. The added�mass is
purely a pressure�induced force that arises proportional to the accelerations
of the ship. So in this sense it behaves in a like manner to conventional
rigid body mass; its energy content is an inherent part of the equations
of motion. That said, it certainly cannot be a mass of water that moves
with the ship, as the term might be interpreted to suggest. This idea is
obviously not true on at least three counts.

Firstly, it cannot be true since the whole �uid moves, to some degree,
as the ship moves through it.

Secondly, the added mass is di¤erent, in general, for each degree of
freedom. If there were a mass of water attached to the ship, then this mass
would apply equally in surge, sway and heave. In a rigid body setting, the
notion of an object weighing a certain amount if pushed in one direction,
yet another amount if pushed in a di¤erent direction is entirely ridiculous.
The fact that it is the case for added mass demonstrates that it is not a
true mass of water.
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Thirdly, by Newton�s First Law, a body in constant straight line motion
will continue in this state unless an external unbalanced force acts upon it.

Let us take the case of low�frequency surge, sway and yaw motion.
For simplicity�s sake, we have assumed a diagonal mass and added�mass,
and neglect damping entirely. This example allows us to look solely at
the low frequency added mass and Coriolis�centripetal terms which arise,
without altering any of the fundamental properties of the system.�

m�X0
_u

�
_u+

�
Y 0_v �m

�
vr = X (3.96)

(m� Y _v) _v +
�
m�X0

_u

�
ur = Y (3.97)�

Iz �N0
_r

�
_r| {z }

inertial

�
�
Y 0_v �X0

_u

�
uv| {z }

Coriolis�centripetal

= N . (3.98)

If the body begins in steady motion, then _� = 0. Milne-Thomson (1968)
described some motions in this manner in Chapter 18. He used the term
directions of permanent translation to denote those directions in which a
body will continue to travel uniformly, in the sense of Newton�s First Law.
At t = t0, in an unforced condition, we have:

_r =
1�

Iz �N0
_r

��Y 0_v �X0
_u

�
uv| {z }

Munk moment

. (3.99)

This yaw moment is called the Munk moment (Munk 1936). It arises
solely from the Coriolis�centripetal e¤ects of the added�mass. Note that
the only two directions of permanent translation are �rstly when u 6= 0
and v � 0, and secondly when u � 0 and v 6= 0: uniform surge motion
and uniform sway motion respectively. For all other steady motions, even
though no external unbalanced force acts on the ship, a rotation is induced.
If the added mass were a mass, it would violate Newton�s First Law (one
must note that the added mass force is an unbalanced external force). For
the case of any mass, every potential direction is a direction of permanent
translation.

A special case exists for the case when the body in question is circular
about the z�axis, for example a cylinder or sphere. In this case, since
X _u � Y _v, every direction is also direction of permanent translation. For
every other shape, hence all ships, there are only two.

A simulation of the equations of motion given in (3.96)�(3.98) is shown
in Figure 3.1. The parameters were arbitrarily set to:



3.4 Structure of the Equations of Motion 71

Parameter Value
m 100 kg

X0
_u �10 kg

Y 0_v �100 kg
Iz 1000 kg:m2

N _r �1000 kg:m2
u0 2m= s

v0 2m= s

r0 0 rad= s
Parameters used in Figure 3.1

Note the stable periodic motion of the body. Note also that the ki-
netic energy is constant over the whole simulation. The notion that the
Munk�moment is destabilising is imprecise and confusing. It is certainly
not destabilising in the sense of an uncontrolled growth of energy; it has
precisely no in�uence whatsoever on the energy of the system.

It is often written that the Munk�moment impels a ship to a perpendic-
ular orientation toward the �ow. This sentiment contains some truth but is
not wholly correct. The pure, isolated e¤ect of the Munk�moment is shown
in Figure 3.1, and it cannot be reasoned that the body moves towards a
perpendicular orientation. Neither (u; v) = (0; v0) nor (u; v) = (u0; 0) are
asymptotically stable equilibrium points. Any disturbance will remain and
will not decay. What is true is that a small deviation in sideslip from ei-
ther (u; v) = (u0; 0) or (u; v) = (0; v0) will periodically grow and decay.
It is in this sense that the Munk�moment is destabilising. The body will
always be stable within some neighbourhood whose size is governed by the
unchanging kinetic energy of the system.

3.4 Structure of the Equations of Motion

The emphasis in this chapter has been on deriving the behaviour of the
added�mass in the body��xed frame. The equations of motion described
in Section 3.2 are more complex than is usual. The derivation has led
to a situation in which the added�mass and also the Coriolis�centripetal
forces are modelled by convolution integrals. This formulations contrasts
heavily with others, in which there is typically a single convolution integral
describing a mixture of potential damping and inertial behaviour (Cummins
1962, Ogilvie 1964, Bailey et al. 1997, Fossen 2005).
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Figure 3.1: The e¤ects of Coriolis�centripetal Forces on an arbitrary body.
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Although control theory is usually applied to a simpli�ed model�structure,
it is claimed here that the formulations in this chapter are more suitable,
even though they are more complex. Taking cue from the work of Sørensen
(Sørensen 2005a, Sørensen 2005b, Smogeli 2006, Refsnes 2008), the suitable
way to model a system is to design both a process plant model (PPM) and
a control plant model (CPM). The �rst of these is an accurate model de-
signed for simulation and testing, while the second is a simpli�ed structure
that is suitable for tasks like control and observer design. These designs are
then tested using the PPM. The claim that the new equations of motion
are suited for control system design ought to give rise to suspicion, and
requires justi�cation.

The basis for a large portion of control theory is Lyapunov analysis
(e.g. Khalil 2002, Krstic et al. 1995, Slotine and Li 1991). Such analysis
will typically begin by specifying a Lyapunov function closely related to
the kinetic energy, if not the kinetic energy itself. Passivity theory (e.g.
van der Schaft 1999, Egeland and Gravdahl 2002) is itself a fundamentally
energy inspired �eld. Ortega et al. (2001) describe it as an "energy shaping
approach", describing the control methodology thusly:

The control problem can then be recast as �nding a dynamical
system and an interconnection pattern such that the overall
energy function takes the desired form.

If the energy is concealed within a mixed mass�damping convolution
integral, then there is no clear total energy function. It is unclear if such
an analysis outlined by Ortega is even possible. If the energy were to
be calculated using solely 1=2�>M1

A �, a crucial error would be made, as
this contradicts both equations (3.39) and (3.50), which both describes the
energy correctly. Any analysis based on this would be misguided.

There are therefore three approaches which ought to be avoided, for the
reasons given so far in this chapter.

1. Grouping the Coriolis�centripetal terms within the damping matrix,
as is typical in the low�frequency model. This grouping can often
be seen written as N (�) = C (�) + D (�). In this approach the
skew�symmetry of the C (�) matrix is concealed, and therefore un-
exploitable. Controllers.

2. If the Coriolis�centripetal forces are linearised, their skew�symmetry
is broken, violating a fundamental property of those forces: that they
perform no work on the system.
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3. Grouping the added�mass convolution inside a mixed potential damping�
inertia convolution. Again, by hiding energy, this at the very least
hampers any approach related to energy shaping or balance. Methods
built around approximations will then typically be more conservative
than necessary.
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Chapter 4

Forces

There are a multitude of physical processes that act on a manoeuvring ship.
An outline of the various forces is given here.

Inertial Pressure Forces Typically called added mass, these are pressure
forces that act in proportion to acceleration through the �uid. These
forces have been comprehensively dealt with in Chapter 3.

Potential Damping Similarly, these are pressure generated damping forces.
They are also typically referred to as pressure, pro�le or form drag.
Essentially, as a body passes through a �uid, pressure increases in
front of this motion, and decreases behind, giving a net force which
opposes motion.

Friction This is a damping force which is generated as the viscous �uid
interacts with the hull as it passes underneath and around it, e.g.
skin friction.

Vortex Shedding This is commonly referred to as interference drag. It
arises due to the shedding of vortex sheets at sharp edges.

Lifting Forces Hydrodynamic lift forces arise from two physical mecha-
nisms. The �rst is due to the linear circulation of water around the
hull. The second is a nonlinear e¤ect, commonly called cross��ow
drag, which acts from a momentum transfer from the body to the
�uid. This secondary e¤ect is closely linked to vortex shedding.

Restoring Forces These forces arise from buoyancy, which is a result of
the displacement of the water around the ship. The force due to
gravity is conventionally grouped alongside these forces.
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Current Forces The ship�s body��xed velocity is generally de�ned rela-
tive to the �xed sea�oor. The sea itself also moves relative to this
�xed point, and the di¤erences between them arise as current forces.

Control Forces These forces are from control surfaces such as rudders,
�ns or interceptors, and propulsive forces such as from a propeller or
waterjet

Wind Forces Wind is de�ned as the rough motion of air over the Earth�s
surface. This motion induces considerable forces on the superstruc-
ture of a manoeuvring ship.

The methods by which the hydrodynamic forces may be modelled are
various. They range from a purely mathematical approach, through to
a purely empirical approach, through to a purely computational approach.
Each has its merits and none is without its weaknesses. This thesis combines
the �rst with the second. The equations of motion are derived analytically,
while the actions of the other forces are dealt with using a combination of
mathematics and empiricism.

Of the forces listed above, this thesis contemplates the �rst six, and
neglects the last three. As a quali�er on this statement, although potential
damping is contemplated, it is done so in a limited way. The potential
damping in calm water is dealt with, but not the damping in waves. Al-
though the current forces are ignored, they can be included as relative
velocities (Fossen 2002a, Refsnes 2008).

The organisation of this chapter is as follows:

1. The structure of the circulatory lift and drag forces acting on a ship
are derived.

2. The cross�ow principle is applied to explain the e¤ects of nonlinear
lift and drag.

3. The e¤ects of roll on circulation are derived, appearing as additional
circulatory lift and drag.

4. An empirical roll model is added.

4.1 Damping Forces

Damping forces constitute the most awkward and ill�de�ned of the forces
acting on a ship. The drive of the rest of this chapter is to arrive at a
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model structure which can best describe the damping forces acting on a
vessel. The goal is not to arrive at numbers for this structure, but rather to
�nd a �rm physical footing upon which experimental data might rest. This
marks a de�nite divergence from the approach to this point. This change
in methodology needs some justi�cation.

For a body moving along the free surface of a �uid, we can generally
write a generic force as:

F =
1

2
�U2SCF ,

where F is the force; � is the �uid density; S is the wetted surface area;
and CF is a non�dimensional coe¢ cient. Although of a simple form, this
equation is deceptive:

Wetted Surface The wetted surface varies with the velocity of the ship.
The wave pro�le along the vessel is heavily dependent on forward
speed, the mass distribution and the geometry of the vessel. This
value then cannot be taken to be constant across the speed range.

Speed In a manoeuvring ship, the speed U varies across the length of the
body. For surge, sway and yaw, the local speed is given by U (x) =q
u2 + (v + xr)2. It is inappropriate to use only the speed at a single

location.

Force Coe¢ cient The coe¢ cient is itself an unknown function of other
non�dimensional parameters, such as the Reynold�s Number, Froude
Number, or sideslip angle.

The indeterminacy of all of these makes the modelling of damping ex-
ceedingly di¢ cult. It is for this reason that the drive is to arrive at the
structure itself, rather than speci�c numbers. Given this approach, two
key approaches guide the following work:

� The linear superposition of damping forces on top of the equations
of motion is valid. This means that lift, drag, cross�ow drag as well
as other forces can be investigated independently. Each investigation
then gives an additional set of terms to be included as forces acting
on the right hand side of the equations of motion.

� Deriving the structure of the forces is su¢ cient. This is done with the
intention of using experiment to enumerate this derived structure.
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The rest of this chapter will deal with lift and drag forces in four degrees
of freedom: surge, sway, roll, and yaw. These are of most importance
in manoeuvring ships, and the other degrees of freedom can typically be
neglected (Blanke 1981).

4.2 Circulatory Lift and Drag

A ship can be modelled as a low aspect ratio wing (Blanke 1981, Hooft
1994, Leite et al. 1998). Note that the discussion of lift and drag here
entail forces in the horizontal plane, and do not refer to lifting in the sense
of lifting a body out of the water (e.g. Faltinsen 2006a).

The lift and drag can be characterised by two coe¢ cients: namely the
lift and drag coe¢ cient respectively.

These forces act in the �ow axes: the former acting perpendicular to
the direction of motion, and the latter acting parallel and directly opposite
to the direction of motion. The forces from these can be written as:

L =
1

2
�U2SCL (�;Re) (4.1)

D =
1

2
�U2SCD (�;Re) , (4.2)

where L is lift, D is drag, � is the water density, U is the total speed, S is a
characteristic area such as L2pp, CL is the nondimensional lift coe¢ cient, CD
is the nondimensional drag coe¢ cient, � is the sideslip angle, and �nally
Re is the Reynold�s number.

Since these forces are resolved in the �ow axes, they must be converted
to the body �xed frame before being added. This is done using the trans-
formation: �

XLD

YLD

�
=

�
� cos� sin�
� sin� � cos�

� �
D
L

�
. (4.3)

The lift and drag forces, and the sideslip angle, �, are depicted in Figure
4.1.

The moments arising from lift and drag are then derived as:�
KLD

NLD

�
=

�
zcp
xcp

�
:YLD, (4.4)

where (xcp;zcp) de�nes the location of the centre of pressure.
The approach taken within this chapter is to formulate the local lift

and drag forces: the speed is local: U (x) =
q
u2 + (v + xr)2. Note that
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Figure 4.1: Lift and Drag Forces on a Ship

this local speed is also used in the calculation of the sideslip angles. It is
elementary to show that � = arctan v=u = arccosu=U = arcsin v=U . The
localised lift and drag is then integrated over the length of the ship to give
the structure for a set of three�dimensional coe¢ cients.

4.2.1 Lift

The lift coe¢ cient is modelled as proportional to the sine of the sideslip
angle (Lewis 1989b):

CL = CL� sin�, (4.5)

where CL� is a constant of proportionality.
Treating this force as a function of longitudinal position, i.e. applying

the local speed U (x) =
q
u2 + (v + xr)2 gives us:

CL (x) = CL� sin� (x) (4.6)

= CL�
v + xr

U (x)
. (4.7)

Applying this to the lift equation given by (4.1) then gives:

L (x) =
1

2
�U (x)2 SCL (x) (4.8)

=
1

2
�U (x)SCL� (v + xr) . (4.9)
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This lift force is then resolved in the longitudinal direction, using equa-
tion (4.3) as:

XL (x) = L (x) sin� (x) (4.10)

= L (x)
v

U (x)

=
1

2
�SCL� (v + xr)

2 . (4.11)

If this is integrated this over the length of the ship, the total longitudinal
force is:

XL = Xvvv
2 +Xrvrv +Xrrr

2 (4.12)

Similarly, the lift force resolved in the transverse direction can be cal-
culated as:

YL (x) = �L (x) cos� (x) (4.13)

= �L (x) u

U (x)

= �1
2
�SCL� (uv + uxr) (4.14)

Integrating over the length then gives:

YL = Yuvuv + Yurur (4.15)

4.2.2 Drag

A drag force acts precisely in opposition to the motion of the ship. As such,
it is a purely dissipative term. There are several ways in which drag forces
may be modelled. Linear modelling is necessary and su¢ cient at very low
speeds, whereas at medium to high speed operation, higher order terms
become necessary.

The drag coe¢ cient is conventionally modelled as a quadratic function
of sideslip, with a zero angle drag coe¢ cient (Hoerner and Borst 1975) as:

CD = CD0 + CD�� sin
2 �, (4.16)

where CD0 is a dimensionless drag coe¢ cient at 0� angle of sideslip, and
CD�� describes the induced drag proportional to sin2 �. In pure surge
motion (i.e. without sideslip), the drag force arising from CD0 can be
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considered to be the same as the ITTC drag formula (Lewis 1989a):

XITTC = �1
2
�S (1 + k) (Cf +�Cf ) juju (4.17)

) CD0 � (1 + k) (Cf +�Cf ) , (4.18)

where k is a correction term that can be set according to Hoerner (1965), S
is the wetted surface area, Cf is the �at plate friction from the ITTC�1957
line, and �Cf is a hull roughness parameter.

The structure that the drag coe¢ cient takes from this point forward
is similar to that in equation (4.16), with a term that we propose acts
linearly with the total speed, U (which agrees with the results seen in Berg
and Utnes 1978, Skjetne et al. 2004, Ayaz et al. 2006). Sectionally, the drag
coe¢ cient is then given by:

CD (x) = CD0 + CDUU (x) + CD�� sin
2 � (x) (4.19)

= CD0 + CDUU (x) + CD��

�
v + xr

U (x)

�2
. (4.20)

This is a slight abuse of notation, as the equation is seemingly no longer
dimensionally correct. The drag coe¢ cient CDU actually varies linearly
with the Reynold�s number, but we do not include the constant length and
viscosity for brevity: these are hidden within CDU , which has dimensions
TIME/LENGTH. The sectional drag force is then:

D (x) =
1

2
�SU (x)2CD (Re; �) (4.21)

=
1

2
�SU (x)2

 
CD0 + CDUU (x) + CD��

�
v + xr

U (x)

�2!
=

1

2
�S
�
U (x)2CD0 + U (x)

3CDU + CD�� (v + xr)
2
�
(4.22)
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This force acts in the longitudinal direction as:

XD (x) = �D (x) cos� (x) (4.23)

= �D (x) u

U (x)

= �1
2
�S

�
CD0U (x)u+ U (x)

2 uCDu + CD��
u

U (x)
(v + xr)2

�
�= �1

2
�S

�
CD0u

2 + CDUu
3 + CDUuv

2 + CDUux
2r2

+2CDUxrvu+ CD��
�
v2 + x2r2 + 2xvr

� �
) XD = Xuuu

2 +Xuuuu
3 +Xvvv

2 +Xrrr
2 +Xvrvr +Xuvvuv

2

+Xrvurvu+Xurrur
2. (4.24)

In the sway direction, this force is resolved as:

YD (x) = �D (x) sin� (x)

= �D (x) v + xr
U (x)

= �1
2
�S

 
CD0 (uv + uxr) + U (x)

2CDU (v + xr)

+CD��
1

U(x) (v + xr)
3

!
.(4.25)

Since for most high speed manoeuvring problems U (x) � (v + xr)3,
which is equivalent to the assumption of a small angle of sideslip, we discard
the terms corresponding to CD��. The assumption is reasonably good for
slow speed, high � operation too, since the sideforce will be dominated by
the lower order terms, such as CD0uv. Under the stated assumption, the
sectional sideforce is then:

YD (x) �= �1
2
�S (CD0 (uv + uxr)

+CDU

�
u2xr + u2v + (v + xr)3

��
(4.26)

) YD = Yuvuv + Yurur + Yuuru
2r + Yuuvu

2v + Yvvvv
3 + Yrrrr

3

+Yrrvr
2v + Yvvrv

2r. (4.27)

4.2.3 Total Forces from Lift and Drag

We can then summate the lift and drag forces in their relevant degrees of
freedom.
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The total surge and sway forces that arise from lift and drag are then:

XLD = XL +XD (4.28)

= Xuuu
2 +Xuuuu

3 +Xvvv
2 +Xrrr

2 +Xvrvr +Xuvvuv
2

+Xrvurvu+Xurrur
2 (4.29)

YLD = YL + YD (4.30)

= Yuvuv + Yurur + Yuuru
2r + Yuuvu

2v + Yvvvv
3 + Yrrrr

3

+Yrrvr
2v + Yvvrv

2r. (4.31)

The sway force induces a rolling and yawing moment according to:

KLD = YLD:zcp = Kuvuv +Kurur +Kuuru
2r +Kuuvu

2v +Kvvvv
3

+Krrrr
3 +Krrvr

2v +Kvvrv
2r (4.32)

NLD = YLD:xcp = Nuvuv +Nurur +Nuuru
2r +Nuuvu

2v +Nvvvv
3

+Nrrrr
3 +Nrrvr

2v +Nvvrv
2r. (4.33)

4.2.4 Low�speed Drag

If low speed operations are to be considered, then the drag force should
be augmented with a linear component that dominates near u = 0 m= s.
Without a linear component, exponential convergence is not present, and
the system is not physically correct. This linear drag decays with velocity,
to re�ect the observed results that at higher speeds, the drag is dominated
by higher order e¤ects. This is somewhat similar to the situation in aerody-
namics, in which induced drag dominates at low airspeed, decaying as the
velocity grows, until the contribution from pro�le drag becomes prevalent
at higher speeds (e.g. Lewis 1989b). Such a term can be added as:

Dl = DU exp (�aU)U , (4.34)

where a is set to give a transition between linear and nonlinear regimes:
a u 1

2 achieves this, although this is nothing more than a convenient value.
Note that the drag force should be implemented directly, instead of forming
a drag coe¢ cient, as the coe¢ cient would be singular at zero speed:

CDl =
DU exp (�aU)U

1
2�U

2S
(4.35)

=
1

U

2

�S
DU exp (�aU) . (4.36)
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Figure 4.2: An example of the linear damping decaying with velocity.

The linear drag component with the singular coe¢ cient at zero speed
agrees with the results published by Hoerner (1965) for drag coe¢ cients at
very low Reynold�s numbers, in which the drag coe¢ cient is found to be
proportional to Re�1.

4.3 Non�linear Lift (Cross�Flow Drag)

The lift and drag forces described in Section 4.2 describe the lift and drag
forces that arise from circulatory e¤ects. However, since the ship hull is
being treated as a low aspect�ratio wing, it is necessary to include an
additional non�linear lift component, with an associated induced drag term.

An interesting way to see this is that, were an in�nitely long ship to be
present, there could certainly be no circulation: there would be neither a
leading nor a trailing edge, and therefore nothing for the water to circulate
about (Hoerner and Borst 1975).
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Even in this situation there is a component of lift present that arises
from the de�ection of water and the imparting of momentum onto this
water. Hoerner and Borst (1975) stated that this comes from the presence
of a pair vortex sheets around the lateral edges of a wing. In a ship, this
corresponds to the presence of a single vortex sheet that curls vertically
around the bottom of the hull. This is depicted in Figure 4.3. It is common
to reason that these vortices curl horizontally at the bow and the stern, but
this is not correct; as has already been stated, cross�ow drag is present in
an in�nitely long ship.

The form that this nonlinear component takes is

�CL = k
0
Cnl sin

2 � cos�. (4.37)

where k
0
is a form coe¢ cient. This equation is somewhat similar to 34th

Proposition within Newton�s Principia, usually referred to as Newton�s
Sine�Squared Law, although this should not be taken to imply that this
lift force arises from the impact and subsequent uniform de�ection of water
particles on the hull. The induced drag that arises from this is

�CD = k
0
Cnl sin

3 �. (4.38)

For our purposes, it does not serve any purpose to resolve these forces
in the �ow axes any more. The initial assumption in the cross��ow drag
principle is that the nonlinear lift and drag arise due to transverse �ow
across the hull or wing, and therefore it makes no sense to derive the non-
linear lift and drag in equations (4.37) and (4.38), as the force that these
are calculated from is already in the body �xed frame. We instead invoke
the cross��ow drag principle directly.

The cross��ow drag principle assumes that the viscous drag is a function
solely of the �uid velocity athwartships (i.e., the sway velocity across the
hull, v). Given this, the sectional cross��ow drag coe¢ cients can be used
to calculate the sway, yaw and roll forces acting on the ship. Explanations
of this principle can be found, for example, in the work by Faltinsen (1990),
Beukelman and Journee (2001) or Golding et al. (2006).

The sectional cross��ow force acting on a ship can be written as:

Ycf =
1

2
�

LppZ
0

U (x)2Ccf (x)T (x) dx. (4.39)

The cross��ow drag coe¢ cient Ccf (x) is typically given one of two
forms: both asymmetric about the sideslip angle �. The �rst (e.g. Faltinsen
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ß>0

Figure 4.3: Nonlinear Flow Underneath Hull

2006b, Beukelman and Journee 2001) is of the form Ccf (x) = Ccf sin� (x) jsin� (x)j,
the second form, from Hoerner and Borst (1975) is Ccf (x) = Ccf sin

3 � (x).
We apply the �rst model, using � (x) = arcsin v+xr

U(x) to get:

Ycf =
1

2
�

LppZ
0

U (x)2Ccf sin� (x) jsin� (x)jT (x) dx (4.40)

=
1

2
�Ccf

LppZ
0

(v + xr) jv + xrjT (x) dx, (4.41)

with corresponding moments in roll and yaw:

Kcf =
1

2
�Ccf

LppZ
0

zcp (x) (v + xr) jv + xrjT (x) dx (4.42)

Ncf =
1

2
�Ccf

LppZ
0

x (v + xr) jv + xrjT (x) dx, (4.43)

where zcp (x) is the vertical centre of pressure as a function of longitudinal
position.
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4.3.1 Approximation of Cross��ow Drag

From the work of Norrbin (1971), it is known that the cross��ow drag
described in equations (4.41)�(4.43) can be approximated using quadratic
damping terms in modulus form, and written as:

Ycf �= Yjvjv jvj v + Yjrjv jrj v + Yjvjr jvj r + Yjrjr jrj r (4.44)

Kcf
�= Kjvjv jvj v +Kjrjv jrj v +Kjvjr jvj r +Kjrjr jrj r (4.45)

Ncf
�= Njvjv jvj v +Njrjv jrj+Njvjr jvj r +Njrjr jrj r. (4.46)

This approximation is commonly used. Its accuracy varies from excel-
lent to very poor. The errors are actually asymmetric about the sideslip
angle. The surface shown in Figure 4.4 shows a representation of the error
as a function of both the sway and yaw velocities. When both v and x:r
have the same sign, there is no error. When they di¤er in sign, an error
arises.

The numbers in Figure 4.4 are only representative of the structure of
the errors. A value of zero means that there is no di¤erence between the
full formulation and its approximation. The green areas then represent the
well modelled portions of the cross��ow drag. The key point is that there
will always be two quadrants with errors. The location of these errors is
dependent on the body in question. For example, if the cross��ow drag is
centred behind Lpp=2 then the errors shown would rotate by 90 �.

4.4 Roll Model

Surge, sway and yaw have been characterised, and the in�uence that these
forces and moments have on roll has also been quanti�ed, but only to a
limited extent. This section describes two e¤ects. The �rst is the roll angle
in�uence on lift and drag. The second completes the roll mode analysis by
describing a linear and nonlinear damping function.

4.4.1 Roll Angle In�uence on Lift and Drag

The roll angle � in�uences the lift and drag characteristics of the hull.
Especially for ships with a low metacentric height, roll has a signi�cant
e¤ect on the manoeuvring characteristics (Blanke and Jensen 1997) This
in�uence emphasises the need for detailed modelling the of the roll�sway�
yaw interactions. Extant work on this �eld can be found (e.g. Hirano and
Takashina 1980). The approach taken here models the roll angle in�uence
by further analogy to aerodynamics.
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Figure 4.4: Structure of errors in Cross��ow approximation

Figure 4.5: Wing with dihedral angle �

In an aircraft wing, the axial tilt (or v�shape) of a wing is called dihedral
if tilted upwards, and anhedral if tilted downwards. Dihedral is depicted in
Figure 4.5 by the symbol �.

This e¤ect can be characterised by equating the roll angle with an angle
of dihedral or anhedral: anhedral when the ship rolls into the sway direc-
tion, and dihedral when the ship away from the sway direction. The term
dihedral will be used to mean both. The dihedral angle of a rolling hull is
shown in Figure 4.6, where � and � are conceptually the same.

The roll angle of the ship a¤ects the circulatory lift and drag described
in Sections 4.2.1 and 4.2.2, and these e¤ects will now be described.
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Figure 4.6: Roll-Angle/ Dihedral of Hull

Changes to Drag

Hoerner (1965) detailed the e¤ect that an angle of dihedral has on the
induced drag function using the following approximation:

CDi =
C2L

�AR cos2 �
, (4.47)

where � is the angle of dihedral, CL is the lift coe¢ cient, and AR is the
aspect ratio of the wing. For application in this manoeuvring model, the
same methodology is used to describe the roll angle in terms of this dihedral
e¤ect, i.e. � = �. This formula is used to augment the drag equation (4.22)
as follows:

CD (�; x) =
C

cos2 �
sin2 � (x) (4.48)

= C sin2 �
�
1 + tan2 �

�
(4.49)

) �CD (�; x) = C
(v + xr)2

U (x)2
tan2 � (4.50)

�= C
(v + xr)2

U (x)2
�2, (4.51)

where C is a generic coe¢ cient that is replaced later. This enters into the
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drag equation as:

�D (�; x) =
1

2
�SCU (x)2

(v + xr)2

U (x)2
�2 (4.52)

=
1

2
�SC (v + xr)2 �2. (4.53)

Using tan2 � u �2 introduces errors of approximately 5% at � = 15�,
but the errors escalate quickly above this. For large roll angles, such as
manoeuvring in extreme seas, it becomes important to keep the trigono-
metric relationship, or to introduce an additional coe¢ cient from the series
expansion of the tan function:

tanx = x+
x3

3
+
2x5

15
::: jxj < �

2
(4.54)

) tan�2 u �2 +
2

3
�4 (4.55)

) �D (�; x) =
1

2
�S (v + xr)2

�
�2CD�� + �

4CD�4
�
: (4.56)

This noted, the drag function given in (4.53) is assumed to be good
enough. In the body��xed frame, the drag function is:

�XD (x) = ��D (�; x) cos� (x) (4.57)

= ��D (�; x) u

U (x)

= �1
2
�SC

u

U (x)
(v + xr)2 �2

u �1
2
�SC (v + xr)2 �2

) �XD = Xvv��v
2�2 +Xvr��vr�

2 +Xrr��r
2�2. (4.58)

�YD (x) = ��D (�; x) sin� (x) (4.59)

= ��D (�; x) v + xr
U

= �1
2
�SC

(v + xr)3

U (x)
�2 (4.60)

u 0, (4.61)

where the small angle assumption (v + xr)3 =U u 0 has been applied.
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Changes to Lift

The e¤ect that dihedral has on lift is described in Hoerner and Borst�s
(1975) work on �uid dynamics, in which the generic equation describing
the lift coe¢ cient in relation to the angle of attack is given by:

d�

dCL
=

1

2� cos2 �
+

1

�AP cos2 �
. (4.62)

We apply this equation and subtract the lift coe¢ cient at zero angle of
dihedral, using cos2 � = 1� sin2 � to give:

CL (�; x) = C cos2 � sin� (x) (4.63)

�CL (�; x) = �C sin2 � sin� (x) (4.64)

�= CL���
2 v + xr

U (x)
. (4.65)

These terms enter into the original lift and drag equations to give:

�L (�; x) =
1

2
�U (x)2 S

v + xr

U (x)
CL���

2 (4.66)

=
1

2
�SU (x) (v + xr)CL���

2. (4.67)

In the surge direction of the body��xed frame these are:

�XL (x) = �L (x) sin� (x) (4.68)

=
1

2
�SU (x) : (v + xr)CL���

2 v + xr

U (x)

=
1

2
�S (v + xr)2CL���

2 (4.69)

) XL = Xvv��v
2�2 +Xvr��vr�

2 +Xrr��r
2�2. (4.70)

In the sway direction, this is:

YL (x) = ��L (x) cos� (x) (4.71)

= �1
2
�SU (x) : (v + xr)CL���

2 u

U (x)

= �1
2
�Su (v + xr)CL���

2

) YL = Yuv��uv�
2 + Yur��ur�

2. (4.72)
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Figure 4.7: Roll in�uence on lift and drag

4.4.2 Overall Changes

The complete changes of lift and drag In the body �xed frame are given
by:

�XLD = �XD +�XL (4.73)

�YLD = �YD +�YL.

�XLD = Xvv��v
2�2 +Xvr��vr�

2 +Xrr��r
2�2 (4.74)

�YLD = Yuv��uv�
2 + Yur��ur�

2. (4.75)

The e¤ect that roll angle has on lift and drag generation is shown in
Figure 4.7. The drag forces experienced by the ship can increase in the
region of 10�15 % during a moderately aggressive manoeuvre, while the lift
forces drop by a similar percentage, and so it is important to take this into
account in the modelling process.

Collecting all the circulatory lift and drag forces together, in the body�
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�xed frame the augmented circulatory lift and drag forces are:

XLD = XL
uuu

2 +XL
uuuu

3 +XL
vvv

2 +XL
rrr

2 +XL
rvrv +X

L
uvvuv

2

+XL
rvurvu+X

L
urrur

2 +XL
vv��v

2�2 +XL
vr��vr�

2 +XL
rr��r

2�2

(4.76)

YLD = Y L
uvuv + Y

L
urur + Y

L
uuru

2r + Y L
uuvu

2v + Y L
vvvv

3 + Y L
rrrr

3

+Y L
rrvr

2v + Y L
vvrv

2r + Y L
uv��uv�

2 + Y L
ur��ur�

2 (4.77)

KLD = YLDzcp = KL
uvuv +K

L
urur +K

L
uuru

2r +KL
uuvu

2v +KL
vvvv

3

+KL
rrrr

3 +KL
rrvr

2v +KL
vvrv

2r +KL
uv��uv�

2 +KL
ur��ur�

2

(4.78)

NLD = YLDxcp = NL
uvuv +N

L
urur +N

L
uuru

2r +NL
uuvu

2v +NL
vvvv

3

+NL
rrrr

3 +NL
rrvr

2v +NL
vvrv

2r +NL
uv��uv�

2 +NL
ur��ur�

2.

(4.79)

4.4.3 Roll Damping

The damping in roll remains to be modelled. During motion of the ship
through water, energy is transported away from the ship in the form of
gravity waves: for most degrees of freedom, this type of damping constitutes
the majority of total damping. However, this is not the case for the roll
mode: there are generally more complicated physical processes in play, and
these are di¢ cult to model.

There are at least �ve constituent components of roll damping: wave
generation, skin friction, eddy creation, lift generation, and appendage
damping (bilge keels or �ns etc.). Some of these are depicted in Figure 4.8.
These processes are highly complicated, and in general it is either impracti-
cal or impossible to model them in a sound theoretical manner. Empirical
formulae are typically used instead. These can be modelled according to
the results by Ikeda et al. (1976), Lloyd (1998) or Himeno (1981) as either
a linear component plus a cubic, or a linear component plus a quadratic
modulus term (Bass and Haddara 1988). This paper takes the cubic version
(e.g. Perez 2005, Journée and Massie 2001):

K = Kpp+Kpppp
3. (4.80)

4.5 Total Damping Forces

The complete set of damping forces acting on the ship are then:
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Figure 4.8: Sources of Roll Damping
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Circulatory Lift and Drag These forces are described by equations (4.76)�
(4.79). The roll angle in�uences are included.

Cross�ow Drag Cross�ow drag is modelled according to equations (4.44)�
(4.46).

Roll Damping The damping in roll is given according to equation (4.80).
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Chapter 5

Complete Models

The purpose of this chapter is to collate the results of the three preced-
ing chapters. Finally, several models will be presented, which will then
constitute the required models used in the second half of this thesis. The
important regimes to model are:

Low�Frequency Model This model copes with low-frequency operations.
The purpose of this model is to comprehensively model a ship travel-
ling in calm water.

Model with Fluid Memory E¤ect This model is more complete, in that
it accurately models operations in the presence of waves.

Reduced Order Models Simpler models are presented, for use in au-
topilot design.

5.1 Low�Frequency Model

This model is a 4�DOF model for use in calm waters. It is given by:

_� = J (�)� (5.1)

M_� +C (�)� +D (�)� + g (�) = � , (5.2)
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where M ,MRB + �MA, C (�), CRB (�) + C
0
A (�). The added mass is

given by:

MA = �

2664
X0
_u 0 0 0
0 Y 0_v Y 0_p Y 0_r
0 K0

_v K0
_p K0

_r

0 N0
_v N0

_p N0
_r

3775 (5.3)

�MA =
1

2

�
MA +M

>
A

�
. (5.4)

The added mass Coriolis-centripetal matrix, calculated from (5.4), is:

C0A (�) ,

2666666664

0 0 0
Y 0_v v +

1
2

�
N0
_v + Y

0
_r

�
r

+1
2

�
Y 0_p +K

0
_v

�
p

0 0 0 �X0
_uu

0 0 0 0
�Y 0_v v � 1

2

�
N0
_v + Y

0
_r

�
r

�1
2

�
Y 0_p +K

0
_v

�
p

X0
_uu 0 0

3777777775
(5.5)

CRB (�) ,

2664
0 0 0 mv
0 0 mw �mu
0 �mw 0 Iyq

�mv mu �Iyq 0

3775 . (5.6)

The damping matrix D (�) is modelled as:

� Linear lift and drag, given by equations (4.76)�(4.79)

� Cross�ow drag given by equations (4.44)�(4.46)

� Roll damping, given by equation (4.80)

One matrix formulation of this is:
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D (�) =

266666666666664

�XL
uuu�XL

uuuu
2

�XL
rvurv

�XL
vvv �XL

rvr
�XL

uvvuv �XL
vv��v�

2

�XL
vr��r�

2

�Y L
uv��v�

2 � Y L
ur��r�

2 �Y L
uvu� Y L

uuvu
2 � Y L

vvvv
2

�Y L
rrvr

2 � Yjvjv jvj � Yjrjv jrj

�KL
uv��v�

2 �KL
ur��r�

2 �KL
uvu�KL

uuvu
2 �KL

vvvv
2

�KL
rrvr

2 �Kjvjv jvj �Kjrjv jrj

�NL
uv��v�

2 �NL
ur��r�

2 �NL
uvu�NL

uuvu
2 �NL

vvvv
2

�NL
rrvr

2 �Njvjv jvj �Njrjv jrj
0 �XL

rrr �XL
urrur �XL

rr��r�
2

0
�Y L

uru� Y L
uuru

2 � Y L
rrrr

2

�Y L
vvrv

2 � Yjvjr jvj � Yjrjr jrj

�Kp �Kpppp
2 �KL

uru�KL
uuru

2 �KL
rrrr

2

�KL
vvrv

2 �Kjvjr jvj �Kjrjr jrj

0
�NL

uru�NL
uuru

2 �NL
rrrr

2

�NL
vvrv

2 �Njvjr jvj �Njrjr jrj

3777777775
. (5.7)

The restoring matrix, g (�) is given as:

g (�) =

266664
0

�g
zR
0

Awp (�) d� sin�

�grGMT sin� cos�

�gr
�
�GML +GMT

�
sin�

377775 . (5.8)

A simpler form of this is:

g (�) =

2664
0
0

�grGMT sin�
0

3775 . (5.9)

5.2 Model with Fluid Memory E¤ects

This is a model suitable for motion through waves. The uni�ed model is
given by:

_� = J (�)� (5.10)

M_� +C (�)�+
�
�M�
A� _�

�
(t)+D (�)� + g (�) = � , (5.11)
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where M ,MRB +M
1
A , and C (�) , CRB (�) +C

1
A (�) +C

�
A (�), with

these de�ned as:

M�
A (t) = �

2664
X�
_u (t) 0 0 0
0 Y �_v (t) Y �_p (t) Y �_r (t)

0 K�
_v (t) K�

_p (t) K�
_r (t)

0 N�
_v (t) N�

_p (t) N�
_r (t)

3775 (5.12)

�M�
A (t) =

1

2

�
M�

A (t) +M
�
A (t)

>
�

(5.13)

M1
A = �

2664
X1
_u 0 0 0
0 Y1_v Y1_p Y1_r
0 K1

_v K1
_p K1

_r

0 N1
_v N1

_p N1
_r

3775 . (5.14)

C1A (�) =

2666664
0 0
0 0
0 0

�Y1_v v � 1
2 (N

1
_v + Y1_r ) r

�1
2

�
Y1_p +K1

_v

�
p

X1
_u u

0
Y1_v v + 1

2 (N
1
_v + Y1_r ) r

+1
2

�
Y1_p +K1

_v

�
p

0 �X1
_u u

0 0
0 0

3777775 (5.15)

C�A (�) =

266666664

0 0
0 0
0 0

� (Y �_v � v) (t)
�
�
Y �_p � p

�
(t)

� (Y �_r � r) (t)
(X�

_u � u) (t)

0
(Y �_v � v) (t) +

�
Y �_p � p

�
(t)

+ (Y �_r � r) (t)
0 � (X�

_u � u) (t)
0 0
0 0

3777775 . (5.16)
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5.3 Autopilot Models

The models presented here are for heading autopilot design. Both are yaw
only nonlinear time-varying models.

Low-Frequency Model

(Iz �N _r) _r �NL
uv��uv�

2 �NL
uvuv �NL

uuvu
2v �NL

vvvv
3

�NL
rrvr

2v �Njvjv jvj v �Njrjv jrj v �NL
urur �NL

uuru
2r

�NL
rrrr

3 �NL
vvrv

2r �Njvjr jvj r �Njrjr jrj r +
�
X0
_u � Y 0_v

�
uv

�1
2

�
N0
_v + Y

0
_r

�
ru� 1

2

�
Y 0_p +K

0
_v

�
p = N (5.17)

_� = r (5.18)

Model with Fluid Memory E¤ects

(Iz �N _r) _r �NL
uv��uv�

2 �NL
uvuv �NL

uuvu
2v �NL

vvvv
3

�NL
rrvr

2v �Njvjv jvj v �Njrjv jrj v �NL
urur �NL

uuru
2r

�NL
rrrr

3 �NL
vvrv

2r �Njvjr jvj r �Njrjr jrj r
+(X1

_u � Y1_v )uv �K1
_v up�N1

_v ru

�1
2
(Y �_v � v) (t)u�

1

2

�
Y �_p � p

�
(t)u

�1
2
(Y �_r � r) (t)u+

1

2
(X�

_u � u) (t) v = N (5.19)

_� = r (5.20)
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Part II

Identi�cation of the Ship
Model





Chapter 6

Planar Motion Mechanism
Tests

The �rst part of this thesis developed an advanced model structure. The
second part of this thesis complements the �rst by using experimental data
to show that the work from Part I is valid

This chapter describes how the model derived in Part I of this thesis
can be identi�ed from captive model tests.

Validation and veri�cation of a model might take a number of forms.
Experimental procedures include full�scale tests, model�scale captive tests
and free running tests. Each method has its advantages and disadvantages.
Captive tests give great control over what is done, though limits what can
be done. The quality of measurement data is excellent, typically with all
states being measured. Full�scale experiments are of prohibitive expense,
but provide the only true link to the physics involved in manoeuvring. The
measurements involved in these tests are typically more de�cient, often
lacking in data for example in propeller thrust and other force measure-
ments. Free�running model tests provide a tenuous link between the two.
Clearly all three together are best, but this is immaterial, as all of them
will rarely be available at any suitable price.

The datasource for this chapter is a set of commercially obtained PMM
runs.

6.1 Experiment Description

The data used for analysis in this thesis stems from commercial planar
motion mechanism (PMM) tests. These tests were performed on a scale
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Figure 6.1: Flowchart illustrating identi�cation methodology

model of a modern frigate. The model was free to move in heave and pitch,
and was constrained in all other degrees of freedom.

The experimental results used in this thesis are put to two purposes:

Veri�cation The process of veri�cation entails making sure that the model
can match a given dataset. By identifying the coe¢ cients of the
model, and then showing that the derived model is capable of repli-
cating the dataset; the model can be shown to be viable.

Validation Validation entails testing the model against a completely dif-
ferent dataset; one that was not used in the derivation process. Match-
ing this data well is a vital step in demonstrating the utility of the
model. To verify that the model is in fact e¤ective, the model is tested
against a dataset not used in its derivation.

The test is to investigate whether the coe¢ cients of the model, iden-
ti�ed from some set of experiments, can replicate other experiments. If
di¤erent experiments can be matched, this is highly suggestive of e¤ective
and physical modelling of the vessel. This process is illustrated in Figure
6.1. Note that the validation data is not used to derive the Lagrangian
model.

Two distinct regimes were tested. The �rst at 30kt and the second
at 18kt. This signi�cant di¤erence in speed allows an estimation of how
e¤ective the derived model is.

Furthermore, a PMM model was purchased, which had been �tted to



6.2 Parameterisation 109

this same dataset. This model gives a kind of benchmark or test�case to
compare to the Lagrangian model.

A variety of PMM test runs were used. Each type of test emphasises
di¤erent dynamic characteristics.

Pure Drift Pure drift simply sets the model at a �xed oblique angle, and
tows the vessel along. Static derivatives such as Xuu or Yjvjv are
isolated from any in�uence from yaw motion.

Pure Sway A pure sway test tows the model forwards, while moving solely
in sway, with the heading �xed at zero. These are usually sinusoidal
oscillations, but in principle can be any motion whatsoever. This
test, then, isolates the sway dynamics from the yaw dynamics. An
example test is shown here in Figure 6.2.

Pure Yaw A pure yaw test tows the model forwards while moving in yaw.
The sidewards motion is compensated for: there is no sway velocity.
An example is shown in Figure 6.3.

Mixed Sway and Yaw This test has the ship at a set sway velocity, while
the model yaws. In essence it is a generalisation of pure yaw, except
the model is held at a nonzero sway velocity. It is shown in Figure
6.4.

6.2 Parameterisation

Prior to identifying the model, it is parameterised into a suitable form. The
basis for this parameterisation is the model given in Section 5.1.

�x =
�
X0
_u Y 0_v

1
2

�
N0
_v + Y

0
_r

�
XL
uu
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uuu XL

rvu XL
vv XL

rv XL
uvv

�
(6.1)
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Figure 6.2: A pure sway test. Note that there is no yaw motion, only sway.
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112 Planar Motion Mechanism Tests

­0.4 ­0.2 0 0.2 0.4
0

1

2

3

4

5

6

7

8

9

10
Mixed Sway and Yaw Example

y (m)

x 
(m

)

0 2 4 6

0.358

0.36

0.362

0.364

0.366

time (s)

S
w

ay
 V

el
oc

ity
 (m

/s
)

0 2 4 6

­10

­5

0

5

10

time (s)

Y
aw

 R
at

e 
(d

eg
/s

)

Figure 6.4: Example of yaw motion at a drift angle. Note that v is �xed at
a nonzero value.
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This is not the �nal structure applied in computation. Take the surge
parameters: Y 0_v and X

L
rv are both multiplied by rv. It therefore seems that

the two are indistinguishable, but this is not the case. The sway added�
mass appears trivially in the sway equation, and so when all functions
are considered together, this parameter is identi�able. There are several
instances of this, such as the pair X0

_u and Y
L
ur in the sway equation, but

again these pairs present no actual problem if all degrees of freedom are
treated simultaneously.

The total parameter vector is then:
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6.3 Identi�cation Results

The regression algorithm used to derive the unknown parameters is the
large-scale algorithm within the lsqcurve�t function of the Matlab c
 Opti-
mization Toolbox (Matlab 2006). This is a subspace trust region method,
details of which can be found in the works on the interior-relective Newton
method by Coleman and Li (1996). The data �tting is carried out by solving
for the �t that best �ts the cost function:

min
�t

1

2
jF (�t;�; _�)� �mj2 .

Once the coe¢ cients have been found from this analysis, they can be
used to reconstruct the PMM test. A capability to do so indicates that
the Lagrangian model matches up well with the physical system and hence
veri�es the structure of the model. This same process is carried out on a
di¤erent set of test data that was not used in the regression analyses: if the
model works even for data that was not included in the regression analysis,
the Lagrangian model�s suitability is assured.
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6.3.1 Veri�cation

This section shows the Lagrangian model compared to its source data. Note
that in dynamic tests, several runs are combined into single plots. This
is done for reasons of brevity, and is the reason why there are apparent
discontinuities in the force and moment data.

The steady drift motion, datapoints of which are shown in Figure 6.5,
shows a very good match across a wide range of sideslip angles.

Pure sway is depicted in Figure 6.6. The two datasets match up well.
The coupling from sway velocity to yaw moment is evidently dealt with
very e¤ectively. These moments are quite large, and there is very little
noticeable di¤erence between the experimental data and the Lagrangian
model. The coe¢ cients that are of importance here are those such as NL

uuv

and NL
vvv.

The discontinuities seen in the plots are due to the merging of separate
PMM runs. In the individual tests, the forces change smoothly.

The table below shows the root mean square error in the modelled
forces.

DOF Surge (N) Sway (N) Yaw (N) Roll (N.m)
RMS Error 1.4 10.3 4.3 1.1

RMS Errors from Figure 6.6

The pure yaw is shown in Figure 6.7. These two sets of test data also
match up very well.

In comparison to the source data, the surge forces are rather muted in
the Lagrangian model. There is more oscillatory behaviour in the source
dataset. This suggests that the direct coupling of yaw to surge is slightly
underestimated. The �t is still within a few percent.

The roll mode shows noticeable errors, but in this experiment the mo-
ments in roll are extremely small; peaking at about 8 N.m. The direct
coupling of yaw to roll does not appear to be very signi�cant.

In sway, the forces are quite high, so the coupling from yaw to sway is
very important to model.

The RMS errors for the pure yaw case are shown in the following table.
The errors are very low, even for sway and yaw.

DOF Surge (N) Sway (N) Yaw (N) Roll (N.m)
RMS Error 2.8 5.9 9.5 1.8

RMS Errors from Figure 6.7
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Figure 6.5: Lagrangian model veri�ed with 30 kt steady drift motion
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Figure 6.6: Veri�cation of model in pure sway motion.
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Figure 6.7: Veri�cation of model in pure yaw motion.
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Figure 6.8 shows mixed sway and yaw motion. This is the experiment
that is most di¢ cult to �t to. The model is moving in surge, sway and yaw
all at once, and so all coupling terms are important.

It is worthwhile to compare the magnitude of the forces and moments
in the mixed sway yaw case to those of the earlier cases. In Figures 6.6 and
6.7, the typical forces are much smaller than here. This fact demonstrates
that it is not su¢ cient to model the vessel using sway and yaw separately.
Dealing with these modes of motion in isolation gives a very poor indication
of the forces during regular manoeuvring. The coupled sway�yaw e¤ects
have a large e¤ect on the forces and moments observed. Coe¢ cients such
as XL

rvu and Njvjr are therefore extremely important.
The high number of discontinuities within the test data is again due to

the merging of many PMM runs into one dataset. During each PMM run
the forces are smooth.

This strongly suggests the importance of coupled sway�yaw e¤ects.
Dealing with sway and then yaw in isolation gives a very poor indication
of the e¤ects that take place when both are in action.

DOF Surge (N) Sway (N) Yaw (N) Roll (N.m)
RMS Error 7.1 8.8 14.1 2.4

RMS Errors from Figure 6.8

6.3.2 Validation

The model is validated using a dataset taken from 18 kt experiments. None
of the data presented in this section was used to derive coe¢ cients for the
model. The goal of this section is to ascertain whether the Lagrangian
model can replicate this unknown data.

Pure yaw experiments are shown in Figure 6.9, while mixed sway and
yaw experiments are shown in Figure 6.10. The matching is also very
e¤ective at the reduced speed.

The pure yaw test follows very closely in sway, roll and yaw. The
match in surge is a little poorer. The source data oscillates much more,
which implies that the surge�yaw couplings are being undermodelled at
this speed, and so there is a likely Reynold�s Number dependence within
coe¢ cients like XL

urr and X
L
rr. This said, the forces are so small at this

speed that the di¤erences are quite negligible.
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Figure 6.8: Veri�cation of model in mixed sway and yaw motion.
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In mixed sway and yaw, the match is thoroughly e¤ective. The accuracy
within aggressive manoeuvres is impressive.

DOF Surge (N) Sway (N) Yaw (N) Roll (N.m)
RMS Error 3.0 2.3 7.2 1.2

RMS Errors from Figure 6.9

DOF Surge (N) Sway (N) Yaw (N) Roll (N.m)
RMS Error 4.6 4.5 7.9 1.4

RMS Errors from Figure 6.10

6.3.3 Comparison to Pre�existing Model

The conventional PMM derived model, purchased along with the PMM
data, was used as a benchmark to compare to.

This model itself is a 4�DOF model, but the surge motion is solely for
perturbations about the steady cruise speed. Due to this, the surge motion
was not analysed, as no useful information could be derived in comparing
the two.

In closeness of �t, the two are often comparable, but the new model
shows signi�cant improvement in several respects.

The di¤erence between the two is most marked in the aggressive sway�
yaw manoeuvres.

The roll modelling in the Lagrangian model is always tighter, and this
is especially the case in pure�yaw motion. This demonstrates the more
e¤ective coupling from surge and yaw to roll.
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Figure 6.9: Model performance at 18 knots pure yaw.
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Figure 6.10: Model performance at 18 knots mixed sway and yaw.
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Figure 6.11: Comparison between model types in pure sway motion at 30kt.
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Figure 6.12: Comparison between model types in pure yaw motion at 30kt.
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Figure 6.13: Comparison between model types in mixed sway and yaw
motion at 30kt.
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Figure 6.14: Comparison between model types in pure yaw motion at 18kt.
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Figure 6.15: Comparison between model types in mixed sway and yaw
motion at 18kt.
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Chapter 7

Full�scale Trials

The tests presented in this chapter are additional veri�cation tests. The
source for this data is a set of full�scale trials on a trimaran. The results
presented in this chapter verify that the model is su¢ ciently advanced by
showing that it can match full�scale test data.

7.1 Vessel Details

Full�scale tests were carried out on the Benchijigua Express; an Austal�
designed 127m long trimaran for use in vehicle and passenger transport.
The ship is shown in Figure 7.1. This is a high speed vessel; operating at
up to 40 kt.

The tests were carried out o¤ the west coast of Australia, near Freman-
tle.

7.2 Test Details

In this chapter, the test data is far less ideal than in Chapter 6. The PMM
tests had all force, position, velocity and acceleration measurements with
virtually no noise whatsoever. In contrast, the full�scale tests were car-
ried out in relatively calm water, but with signi�cantly worse measurement
technology available. Although the sea was fairly calm, there was still no-
ticeable swell, and in addition the tests were carried out in an area known
to have fairly signi�cant current.

Position measurements were recorded from a global positioning system.
These were augmented with roll angle and yaw rate measurements which
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Figure 7.1: The H260 Benchijigua Express, courtesy of Austal Ships.

were derived from the vessel�s ride control system. The unknown velocities
were calculated by taking the derivatives of the measured positions.

The data available is a set of zig�zag tests. The vessel began from a
steady forward speed at around 35 kt.

A much reduced order model is implemented in this chapter. There are
a number of reasons why this is advisable. Firstly, the range of motions to
be simulated is limited: only a few zig�zag oscillations are available. There
is no real need for the full model to explain the test data. Secondly, the
quality of the measured data is far poorer. There are no measurements of
acceleration, and the control forces are similarly generated from calculation
alone.

The parameter vector in this test is given by:

�t =
�
X0
_u Y 0_v

1
2

�
N0
_v + Y

0
_r

�
1
2 (Y _p +K _v)

1
2 (K _r +N _p) N _r

XL
uu XL

rvu Y L
uv Y L

ur Yjvjv Yjrjv

Yjvjr Yjrjr KL
uv KL

ur Kjvjv Kjrjv

Kjvjr Kjrjr NL
uv NL

ur Njvjv Njrjv Njvjr Njrjr
�
.(7.1)

Once again, the problem is to minimise:

min
�t

1

2
jF (�t;�; _�)� �mj2 .

This minimisation problem was carried out using a genetic algorithm
from (Passino 2005).
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7.3 Results

To quantify the performance the coe¢ cient of determination R2 was calcu-
lated. This coe¢ cient is de�ned as follows:

R2 =

P�
D̂ � �D

�2
P�

D̂ �D
�2
+
P�

D̂ � �D
�2 , (7.2)

where D and �D are the measured data and the mean respectively, and
D̂ is the estimate of the data that the model generates. Each number is
de�ned on [0; 1] and gives an indicator of what proportion of the data is
replicable.The values are shown below:

Data R2 Error
u 0:91

v 0:45

p 0:86

r 0:97

� 0:94

 0:90
R2 from Figures 7.2 and 7.3

The match is generally very good. The match in sway is rather poorer
than the rest. There are far more oscillations in the sway velocity, and it
is unclear if this is purely due to di¤erentiated noise.

7.4 Comments

The dynamics involved in the zig�zag tests are not very rich. The need
for such an advanced model is therefore not necessary. The same test�data
could just as well be replicated with an older model. The results presented
in this chapter only show that the model is no less capable. Cautious
optimism is the only sentiment that can be taken from the results presented
in this chapter.
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Figure 7.2: Body��xed velocities during zig�zag manoeuvre
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Chapter 8

Conclusions

The thesis has focused on modelling manoeuvring vessels. The goal was to
discover a physically motivated model structure. Using lift and drag theory,
a complex and advanced model of a ship was derived. The structure of the
model makes it well�suited to a variety of simulation and control tasks.

The focus of the �rst part was to derive a model structure: the focus
was not on the numerical determination of its parameters. The second part
of the thesis was then to use experimental data to evaluate the model�s
abilities. The model was tested against a variety of high�quality PMM test
data, and performed very well. It proved capable of replicating the test
data by which it was derived. Furthermore, it proved capable of replicating
additional tests. This one set of coe¢ cients were shown to work very well
across a wide speed range.

Full�scale tests on a high performance trimaran were presented. The
Lagrangian model was shown to be capable of matching these tests e¤ec-
tively, further demonstrating its strengths.

In addition to these results, Kirchho¤�s Equations were applied to derive
an advanced yet useful formulation of the equations of motion. The end
result is a generally applicable mathematical framework for manoeuvring
through the seas.

The motivation throughout was to restore physicality to the modelling
process, and a good deal of success has been enjoyed in this.

8.1 Future Work

The main body of work in the thesis can be improved upon with more ex-
perimental data. Very recent trends give the future of the �eld an optimistic
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air. The SIMMAN conference (SIMMAN 2008) made available extensive
sets of test data for several vessels, giving the community a free and open
resource for use as a benchmark.

The dynamics of the roll mode were not able to be evaluated using the
PMM data, although the full scale veri�cation did identify some of these
dynamics. Furthermore, only a single vessel was tested. Extensive testing
is certainly desirable.

At no point in this thesis was online identi�cation contemplated. There
is a long history of using these methods for manoeuvring ships. Applying
these methods to such an extensive model is no easy task. Progress in this
area would be very useful.

Additionally, although a new framework for the equations of motion was
presented, no attempt was made to tie this to any hydrodynamic code. Such
an approach could lead to quick and e¤ective development of simulation
tools.
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Appendix A

Derivation of Kirchho¤�s
Equations

The kinetic energy of an object with mass M is given by:

T =
1

2
�>M�.

Since this is quadratic in �, we can apply Euler�s Theorem on homoge-
neous functions (Kreyszig 1999) to state that:

�
@T

@�
= 2T

) �1
@T

@�1
+ �2

@T

@�2
= 2T .

It can be shown (see the proof in Section 18.32 of Milne-Thomson 1968)
that the time rate of change of the impulse wrench (�;�) can be related to
the force-torque couple (� 1; � 2) by:

@�

@t
= � 1 (A.1)

@�

@t
= � 2. (A.2)

Consider the motion of fbg, relative to fng: the latter �xed in space, and
the former �xed to the body (see Section 2.1.1). Without loss of generality,
the analysis begins with the two frames coincident: ob = on at t = t0. The
translational e¤ects can be decoupled from the rotational e¤ects by taking
in�nitesimal changes of each. The two can then be treated separately.
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Figure A.1: An in�nitesimal translation of the origin

Take the impulse wrench (�;�) and translate it in�nitesimally by the
amount �1dt. This is shown in Figure A.1. The translation does not a¤ect
the vector �b, but at t = t0 + dt alters the moment impulse �b by the
amount �1dt� �. That is, an in�nitesimal translation gives:

(�b;�b) = (�;�) t = t0 (A.3)

(�b;�b) = (�;�+ �1dt� �) t = t0 + dt. (A.4)

Therefore, a translation induces an increment in the impulse term �b of
S (�1)�.

Take the same impulse wrench and rotate it in�ntesimally by the amount
�2dt. This is depicted in Figure A.2. The rotation alters � by �2dt � �,
and � by �2dt� �.

(�b;�b) = (�;�) t = t0 (A.5)

(�b;�b) = (� + �2dt� �;�+ �2dt� �) t = t0 + dt. (A.6)

The two increments are therefore S (�2) � and S (�2)� respectively.

The time rate of change of (�;�) with respect to the fng�frame is
d�=dt and d�=dt respectively. Collecting these with the two preceeding
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Figure A.2: An in�nitesimal rotation of the origin



152 Derivation of Kirchho¤�s Equations

paragraphs�results gives:

@�

@t
=

d�

dt
+ S (�2) �

@�

@t
=

d�

dt
+ S (�2)�+ S (�1) �.

Applying (A.1)�(A.2) gives:

d�

dt
+ S (�2) � = � 1 (A.7)

d�

dt
+ S (�2)�+ S (�1) � = � 2. (A.8)

These constitute the equations of motion which relate the impulse wrench
to the forces in the body �xed frame. The �nal step to be taken is to relate
these equations to the kinetic energy.

An application of a force-torque couple over an in�nitesimal time, �t,
gives a corresponding increase in the velocities of (�1 + ��1;�2 + ��2), at
which time the impulse wrench will have changed to (� + ��;�+��). Over
the in�nitesimal distance, the work done (i.e., the increment in kinetic
energy) will be:

�1�� + �2�� =
@T

@�1
��1 +

@T

@�1
��2 = �T: (A.9)

If the linear and angular velocities are taken to be ��1 and ��2, then
we can set � = h, where h is an alternative in�ntesimal scalar. By again
applying Euler�s Theorem we can see that �� = h� and �� = h�. Similarly,
�T = 2hT . This gives:

�1� + �2� =
@T

@�1
�1 +

@T

@�2
�2 = 2T .

An additional in�nitesimal variation then gives:

�1�� + ���1 + �2��+ ���2 = 2�T (A.10)

Subtracting (A.9) from (A.10) gives the result:

���1 + ���2 = �T =
@T

@�1
��1 +

@T

@�2
��2
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This then relates the impulse wrench (�;�) to the kinetic energy as
follows:

� � @T

@�1
(A.11)

� � @T

@�2
(A.12)

First the equations of motion were derived in terms of the impulse
wrench (�;�), seen in equations (A.7)�(A.8). Now this impulse wrench
has been derived in terms of the partial derivatives of the kinetic energy of
the system, shown in (A.11) and (A.12).

The �nal step is then to substitute these relations back into (A.7)�(A.8).
This gives:

d

dt

@T

@�1
+ S (�2)

@T

@�1
= � 1 (A.13)

d

dt

@T

@�2
+ S (�2)

@T

@�2
+S (�1)

@T

@�1
= � 2. (A.14)

These equations of motion are Kirchho¤�s (1869) equations. Given a
starting point of the kinetic energy T , these equations describe the rela-
tionship between the forces acting on a body, and the motion induced.
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Appendix B

Equations of Motion

The equations of motion given in this chapter are derived by applying
equations (A.13)�(A.14) to the kinetic energy of a system.

B.1 6�DOF Rigid Body Equations of Motion

Using

MRB =

26666664

m 0 0 0 m:zg �m:yg
0 m 0 �m:zg 0 m:xg
0 0 m m:yg �m:xg 0
0 �m:zg m:yg Ix �Ixy Ixz

m:zg 0 �m:xg �Iyx Iy �Izy
�m:yg m:xg 0 Izx �Izy Iz

37777775

gives the kinetic energy as T = 1=2�>MRB�. Using this in (A.13)�(A.14)
gives the equations of motion to be:

_� = J (�)� (B.1)

MRB _� +CRB (�)� = �RB, (B.2)

where the matrix function CRB (�) is given by:
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CRB (�) =

26666664

0 0 0
0 0 0
0 0 0

�m (ygq + zgr) m (xgq � w) m (xgr + v)
m (ygp+ w) �m (zgr + xgp) m (ygr � u)
m (zgp� v) m (zgq + u) �m (xgp+ ygq)

m (ygq + zgr) �m (xgq � w) �m (xgr + v)
�m (ygp+ w) m (zgr + xgp) �m (ygr � u)
�m (zgp� v) �m (zgq + u) m (xgp+ ygq)

0 Ixzp+ Izr �Iyq
�Ixzp� Izr 0 Ixp+ Ixzr

Iyq �Ixp� Ixzr 0

37777775 .
(B.3)

The rigid body equations of motion retain this form throughout the rest
of this appendix.

B.2 6�DOF Low�Frequency Motion

The added�mass at low frequency is given by:

M0
A = �

266666664

X0
_u X0

_v X0
_w X0

_p X0
_q X0

_r

Y 0_u Y 0_v Y 0_w Y 0_p Y 0_q Y 0_r
Z0_u Z0_v Z0_w Z0_p Z0_q Z0_r
K0
_u K0

_v K0
_w K0

_p K0
_q K0

_r

M0
_u M0

_v M0
_w M0

_p M0
_q M0

_r

N0
_u N0

_v N0
_w N0

_p N0
_q N0

_r

377777775
. (B.4)

The total kinetic energy in low frequency motion is then:

T =
1

2
�>
�
MRB + �M0

A

�
�. (B.5)

Applying equations (A.13)�(A.14) gives:

_� = J (�)� (B.6)�
MRB + �M0

A

�
_�+
�
CRB (�) +C

0
A (�)

�
� = � b, (B.7)

where the inertial component is given by:

�M0
A =

1

2

�
M0

A +
�
M0

A

�>�
.
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The Coriolis�centripetal matrix function C0A (�) is given by:

C0A (�) =

26666664

0 0 0 0 �a3 a2
0 0 0 a3 0 �a1
0 0 0 �a2 a1 0
0 �a3 a2 0 �b3 b2
a3 0 �a1 b3 0 �b1
�a2 a1 0 �b2 b1 0

37777775 , (B.8)

where

a1 = X _uu+
1

2
(X _v + Y _u) v +

1

2
(X _w + Z _u)w

+
1

2
(X _p +K _u) p+

1

2
(X _q +M _u) q +

1

2
(X _r +N _u) r (B.9)

a2 =
1

2
(Y _u +X _v)u+ Y _vv +

1

2
(Y _w + Z _v)w

+
1

2
(Y _p +K _v) p+

1

2
(Y _q +M _v) q +

1

2
(Y _r +N _v) r (B.10)

a3 =
1

2
(Z _u +X _w)u+

1

2
(Z _v + Y _w) v + Z _ww

+
1

2
(Z _p +K _w) p+

1

2
(Z _q +M _w) q +

1

2
(Z _r +N _w) r (B.11)

b1 =
1

2
(K _u +X _p)u+

1

2
(K _v + Y _p) v +

1

2
(K _w + Z _p)w

+K _pp+
1

2
(K _q +M _p) q +

1

2
(K _r +N _p) r (B.12)

b2 =
1

2
(M _u +X _q)u+

1

2
(M _v + Y _q) v +

1

2
(M _w + Z _q)w

+
1

2
(M _p +K _q) p+M _qq +

1

2
(M _r +N _q) r (B.13)

b3 =
1

2
(N _u +X _r)u+

1

2
(N _v + Y _r) v +

1

2
(N _w + Z _r)w

+
1

2
(N _p +K _r) p+

1

2
(N _q +M _r) q +N _rr. (B.14)

B.3 Equations of Motion with Fluid Memory Ef-
fects

This section uses the results from Section 3.2. The time�domain represen-
tation of added�mass in the uni�ed model is given by:
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MA (t) =
1p
2�
M�

A (t) +
1p
2�
M1

A ,

with the matrices given by:

M�
A (t) = �

266666664

X�
_u (t) X�

_v (t) X�
_w (t) X�

_p (t) X�
_q (t) X�

_r (t)

Y �_u (t) Y �_v (t) Y �_w (t) Y �_p (t) Y �_q (t) Y �_r (t)

Z�_u (t) Z�_v (t) Z�_w (t) Z�_p (t) Z�_q (t) Z�_r (t)

K�
_u (t) K�

_v (t) K�
_w (t) K�

_p (t) K�
_q (t) K�

_r (t)

M�
_u (t) M�

_v (t) M�
_w (t) M�

_p (t) M�
_q (t) M�

_r (t)

N�
_u (t) N�

_v (t) N�
_w (t) N�

_p (t) N�
_q (t) N�

_r (t)

377777775
(B.15)

M1
A = �

266666664

X1
_u X1

_v X1
_w X1

_p X1
_q X1

_r

Y1_u Y1_v Y1_w Y1_p Y1_q Y1_r
Z1_u Z1_v Z1_w Z1_p Z1_q Z1_r
K1
_u K1

_v K1
_w K1

_p K1
_q K1

_r

M1
_u M1

_v M1
_w M1

_p M1
_q M1

_r

N1
_u N1

_v N1
_w N1

_p N1
_q N1

_r

377777775
. (B.16)

The components of these are de�ned according to the notation in Section
3.2. The kinetic energy of the total system is then

TA =
1

2
�> (MRB +M

1
A )� +

r
�

2

�
�> � �M�

A � �
�
(t) , (B.17)

where
�M�
A (t) ,

1

2

�
M�

A (t) +M
�
A (t)

>
�
.

Applying equations (A.13)�(A.14) gives:

_� = J (�)� (B.18)

(MRB +M
1
A ) _�+(CRB (�) +C

1
A (�) +C

�
A (�))� = � . (B.19)

The Coriolis�centripetal matrices are formed as follows:

C1A (�) =

26666664

0 0 0 0 �a13 a12
0 0 0 a13 0 �a11
0 0 0 �a12 a11 0
0 �a13 a12 0 �b13 b12
a13 0 �a11 b13 0 �b11
�a12 a11 0 �b12 b11 0

37777775 ,
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where

a11 , X1
_u u+ Y

1
_u v + Z1_u w +K

1
_u p+M

1
_u q +N

1
_u r (B.20)

a12 , X1
_v u+ Y

1
_v v + Z1_v w +K

1
_v p+M

1
_v q +N

1
_v r (B.21)

a13 , X1
_w u+ Y

1
_w v + Z1_w w +K

1
_w p+M

1
_w q +N

1
_w r (B.22)

b11 , X1
_p u+ Y

1
_p v + Z1_p w +K

1
_p p+M

1
_p q +N

1
_p r (B.23)

b12 , X1
_q u+ Y

1
_q v + Z1_q w +K

1
_q p+M

1
_q q +N

1
_q r (B.24)

b13 , X1
_r u+ Y

1
_r v + Z1_r w +K

1
_r p+M

1
_r q +N

1
_r r; (B.25)

and C�A (�) is:

C�A (�) =

26666664

0 0 0 0 �a�3 a�2
0 0 0 a�3 0 �a�1
0 0 0 �a�2 a�1 0
0 �a�3 a�2 0 �b�3 b�2
a�3 0 �a�1 b�3 0 �b�1
�a�2 a�1 0 �b�2 b�1 0

37777775 , (B.26)

where

a�1 , 1

2
(X�

_u � u) (t) +
1

2
(X�

_v � v) (t) +
1

2
(X�

_w � w) (t)

+
1

2

�
X�
_p � p

�
(t) +

1

2

�
X�
_q + �q

�
(t) +

1

2
(X�

_r � r) (t) (B.27)

a�2 , 1

2
(Y �_u � u) (t) +

1

2
(Y �_v � v) (t) +

1

2
(Y �_w � w) (t)

+
1

2

�
Y �_p � p

�
(t) +

1

2

�
Y �_q +M _v

�
(t) +

1

2
(Y �_r +N _v) (t) (B.28)

a�3 , 1

2
(Z�_u � u) (t) +

1

2
(Z�_v � v) v +

1

2
(Z�_w � w) (t)

+
1

2

�
Z�_p � p

�
(t) +

1

2

�
Z�_q � q

�
(t) +

1

2
(Z�_r � r) (t) (B.29)
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b�1 , 1

2
(K�

_u � u) (t) +
1

2
(K�

_v � v) (t) +
1

2
(K�

_w � w) (t)

+
1

2

�
K�
_p � p

�
(t) +

1

2

�
K�
_q � q

�
(t) +

1

2
(K�

_r �N _p) (t) (B.30)

b�2 , 1

2
(M�

_u � u) (t) +
1

2
(M�

_v � v) (t) +
1

2
(M�

_w � w) (t)

+
1

2

�
M�

_p � p
�
(t) +

1

2

�
M�

_q � q
�
(t) +

1

2
(M�

_r � r) (t) (B.31)

b�3 , 1

2
(N�

_u � u) (t) +
1

2
(N�

_v � v) (t) +
1

2
(N�

_w � w) (t)

+
1

2

�
N�
_p � p

�
(t) +

1

2

�
N�
_q � q

�
(t) +

1

2
(N�

_r � r) (t) . (B.32)



Appendix C

PMM Test Data

The PMM tests from Chapter 6 are shown here in full. This set of tests
was carried out on a 1:35.48 scale model of a modern frigate.

All data presented is nondimensional. The procedure for nondimension-
alisation is:

u0 =
u

U0

v0 =
v

U0

r0 =
r

U0=Lpp

t0 =
t

Lpp=U0

X 0 =
X

1
2�U

2
nL

2
pp

Y 0 =
Y

1
2�U

2
nL

2
pp

K 0 =
K

1
2�U

2
nL

3
pp

N 0 =
N

1
2�U

2
nL

3
pp
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C.1 Thirty Knot Tests
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C.1.2 Pure Yaw

0 5 10 15 20
­1.4

­1.2

­1
x 10­3 Pure Yaw at Thirty Knots (nondimensional)

S
ur

ge
 F

or
ce

Lagrangian Model
Hydrodynamic Forces

0 5 10 15 20
­2

0

2
x 10­3

S
w

ay
 F

or
ce

0 5 10 15 20
­1

0

1
x 10­3

Y
aw

 M
om

en
t

0 5 10 15 20
­5

0

5
x 10­5

R
ol

l M
om

en
t

time

30kt pure yaw motion.



C.1 Thirty Knot Tests 165

0 5 10 15 20
0

0.5

1

Pure Yaw at Thirty Knots (nondimensional)
S

ur
ge

 V
el

oc
ity

0 5 10 15 20
­4

­2

0

2

4
x 10­3

S
w

ay
 V

el
oc

ity

0 5 10 15 20
­0.1

­0.05

0

0.05

0.1

Y
aw

 R
at

e

time

Velocities during 30kt pure yaw motion.



166 PMM Test Data

C.1.3 Mixed Sway and Yaw
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C.2 Eighteen Knot Tests
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0 10 20 30 40 50 60
­4

­2

0

2
x 10­4 Pure Yaw at Eighteen Knots (nondimensional)

S
ur

ge
 F

or
ce

0 10 20 30 40 50 60
­1

0

1
x 10­3

S
w

ay
 F

or
ce

0 10 20 30 40 50 60
­5

0

5
x 10­4

Y
aw

 M
om

en
t

0 10 20 30 40 50 60
­5

0

5
x 10­5

R
ol

l M
om

en
t

time

Lagrangian Model
Hydrodynamic Forces

Pure yaw motion at 18kt.



C.2 Eighteen Knot Tests 169

0 10 20 30 40 50 60
0

0.2

0.4

0.6

Pure Yaw at Eighteen Knots (nondimensional)
S

ur
ge

 V
el

oc
ity

0 10 20 30 40 50 60
­1

­0.5

0

0.5

1
x 10­3

S
w

ay
 V

el
oc

ity

0 10 20 30 40 50 60
­0.2

­0.1

0

0.1

0.2

Y
aw

 R
at

e

time

Velocities during pure yaw motion at 18kt.



170 PMM Test Data

C.2.2 Mixed Sway and Yaw
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