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STATISTICAL ANALYSIS OF ROUNDED DATA:

MEASUREMENT ERRORS VS ROUNDING ERRORS

N.G. Ushakov1 and V.G. Ushakov2

Since data for statistical analysis are always given in a discretized form, observations contain not
only measurement errors but also rounding errors which are determined by the discretization step.
In this paper we consider situations where the rounding errors are considerable: they are comparable
to or even greater (in average) than the measurement errors. It is shown that it can be reasonable to
increase the measurement errors in order to reduce the error of the final result.

1. Introduction

Real data in statistics is always given in a discretized (rounded) form. The rounding errors can play
an important role in many situations. Suppose, for example, that one needs to measure some quantity.
To reduce the error one makes several measurements and then calculates the average. The observations
are rounded. In this case, if the measurement errors are much less than the step of discretization then
the (guaranteed) accuracy of the final result cannot be better than the discretization step, and the
averaging is useless.

Rounding errors are especially serious and must not be ignored when the sample size is large. At
present, big data sets are becoming more and more common due to the rapid development of computer
technology, therefore there is a growing interest in statistical analysis of rounded data; see, for example,
[1–4] and the references therein.

In the present paper we study (both theoretically and by Monte Carlo simulation) how the influence
of the rounding errors can be reduced. It turns out that it is useful to add a suitable component to the
measurement error. The uniqueness of this paper is that we do not suppose that the discretization step
tends to zero. It is supposed to be constant, and, without loss of generality, we suppose that it is equal
to 1. This means that we consider discretization as rounding to the nearest integer. So, let x be a real
number with the integer part [x] and fractional part {x}. The rounded value (denote it by x∗) is equal
to [x] if {x} < 1/2 and [x] + 1 if {x} > 1/2. Note that x∗ = [x+ 1/2].

Consider a random sample X1, . . . ,Xn consisting of independent and identically distributed random
variables with finite unknown expectation µ. The expectation is estimated, but the X-s are not observed.
Instead, we observe the rounded values X∗

1 , . . . ,X
∗
n. We are interested in the properties of the estimator

µ̂ =
1

n

n
∑

i=1

(Xi)
∗. (1)

In the next section we obtain an upper bound for the distance between the almost sure limit of the
estimator and the estimated expectation µ. In Section 3, some simulation results will be presented for
finite samples. Some sufficient conditions for the consistency of estimator (1) were obtained in [5].

If a sequence of random variables T1, T2, . . . converges almost surely to a random varable T , then, as
usual, we denote this Tn

a.s.
−→ T and also write

T = lim
n→∞

(a.s.)Tn.
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2. The sample mean: an upper bound for the limiting error

We will use the following model and make the following assumptions. The observations X1,X2, . . .
are represented in the form

Xi = µ+ λYi, i = 1, 2, . . . ,

where Y1, Y2, . . . are independent identically distributed random variables such that EYi = 0. We can
change the parameter λ. The aim is to reduce the distance between n−1

∑n
i=1(Xi)

∗ and µ.
Let g(x) be a real-valued function defined on a finite or infinite interval (a, b). The total variation of

g(x) is defined as

V(g) = sup

n−1
∑

i=0

|g(xi+1)− g(xi)|,

where the supremum is taken over all n and all sets x0, x1, . . . , xn such that a < x0 < x1 < . . . < xn < b.
Denote

Sm =
∞
∑

k=1

1

km
,

where m is a natural number. For example, S1 = ∞, S2 = π2/6.
Theorem. Let Y -s be absolutely continuous with probability density function f(x). If f(x) is m

times differentiable, m > 0, then
∣

∣

∣

∣

∣

lim
n→∞

(a.s.)
1

n

n
∑

i=1

(Xi)
∗ − µ

∣

∣

∣

∣

∣

6
Sm+2V(f

(m))

2m+1πm+2λm+1
(2)

(f (0) is defined as f).
Proof. Denote the characteristic function of the variables Y -s by ϕ(t). According to Theorem 2 of

[6],

|ϕ(t)| 6
V(f (m))

|t|m+1
(3)

for all real t. Consider E(Xi)
∗. We have

E(Xi)
∗ = E

[

Xi +
1

2

]

= E

(

Xi +
1

2

)

− E

{

Xi +
1

2

}

= µ+

(

1

2
− E

{

Xi +
1

2

})

;

therefore

|E(Xi)
∗ − µ| =

∣

∣

∣

∣

1

2
− E

{

Xi +
1

2

}∣

∣

∣

∣

. (4)

Let g(x) and ψ(t) be the density and the characteristic function of Xi + 1/2. Then

E

{

Xi +
1

2

}

=

1
∫

0

x

∞
∑

n=−∞

g(x + n)dx.

Due to the Poisson summation formula (see Feller (1971), p. 632, Formula (5.9) with ζ = 0, λ = π),

∞
∑

n=−∞

g(x+ n) =
∞
∑

k=−∞

ψ(2πk)e−ix2πk;

therefore

E

{

Xi +
1

2

}

=
∞
∑

k=−∞



ψ(2πk)

1
∫

0

xe−ix2πk



 =
1

2
+

∑

k 6=0

(

ψ(2πk)
i

2πk

)

=
1

2
−

∞
∑

k=1

ℑψ(2πk)

πk
(5)
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(we took into account that the real part of any characteristic function is even and the imaginary part is
odd). But

ψ(t) = eit(µ+1/2)ϕ(λt). (6)

From (3)–(6) we obtain

|E(Xi)
∗ − µ| 6

∞
∑

k=1

ℑψ(2πk)

πk
6

∞
∑

k=1

ψ(2πk)

πk
=

∞
∑

k=1

ϕ(2πkλ)

πk
6

6

∞
∑

k=1

V(f (m))

λ(m+1)(2πk)m+1πk
=

Sm+2V(f
(m))

2m+1πm+2λm+1
.

The result follows now from the classical strong law of large numbers.
In Table 1 we present the values of the right-hand side of inequality (2) when the distribution of λYi

is normal with zero mean and variance σ2, and when m = 0. The numbers are given for different values
of σ. The table shows that the limiting error of the estimator is much less than the discretization step,
if the variance of the measurement errors is large enough.

Table 1. The right-hand side of inequality (2) when the distribution of λYi is normal with zero mean and variance
σ2, and when m = 0. The numbers are given for different values of σ.

σ = 0 σ = 0.1 σ = 0.2 σ = 0.4 σ = 0.6

∞ 0.66490 0.33245 0.16623 0.11082

σ = 0.8 σ = 1 σ = 2 σ = 3 σ = 4

0.08311 0.06649 0.03325 0.02216 0.01662

3. Finite samples: simulation study

In the previous section we studied the limit behavior of the sample mean of rounded data. Now we
consider the problem for finite samples, using the Monte Carlo simulation. The main aim is to study
the dependence of the quality of the estimator on the variance σ2 of the measurement errors.

For each σ we simulate N random samples X1j , . . . ,Xnj , j = 1, . . . , N , of size n from the normal
distribution with the expectation µ and the standard deviation σ. The observations are rounded, and
the expectation µ is estimated by the sample mean of the rounded data, i.e., by

µ̂j =
1

n

n
∑

i=1

(Xij)
∗.

Then the average distance is calculated between estimates and the estimated expectation, i.e., values

d(σ, n) =
1

N

N
∑

j=1

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xij)
∗ − µ

∣

∣

∣

∣

∣

.

These values are presented in Table 2. We took µ = 0.4, N = 1000.
The results presented in Table 2 show that if the measurement errors are small (σ = 0, 0.1, 0.2),

then the accuracy of the estimator practically does not depend on the sample size and it is relatively
low. Moreover, the less the standard deviation of the measurement errors, the less the accuracy of the
estimator. As the standard deviation grows, the accuracy begins to depend on the sample size. For each
sample size n, d(σ, n) first decreases in σ and then increases.
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It is useful to compare Table 2 with Table 1. For “small” sample sizes (102, 103, 104), the observed
average errors are less than the upper bound for the limiting error for small values of σ and greater
for large values of σ. For large sample sizes (105, 106), the upper bound is essentially greater than the
observed values for all σ-s. Perhaps this means that for the normal distribution inequality (2) can be
essentially improved.

Table 2. Simulation results: the mean distance between estimates and the expectation for different distributions
of the additional errors, maximum with respect to µ.

σ n = 102 n = 103 n = 104 n = 105 n = 106

0 0.4 0.4 0.4 0.4 0.4
0.1 0.24171 0.24135 0.24124 0.24133 0.24136
0.2 0.09436 0.09254 0.09128 0.09152 0.09146
0.4 0.04147 0.01462 0.00794 0.00792 0.00797
0.6 0.05214 0.01633 0.00542 0.00165 0.00053
0.8 0.06545 0.02177 0.00698 0.00210 0.00067
1 0.08237 0.02604 0.00837 0.00254 0.00084
2 0.16131 0.05097 0.01576 0.00504 0.00161
3 0.23262 0.07834 0.02274 0.00771 0.00248
4 0.30467 0.10610 0.03250 0.01036 0.00311
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