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ABSTRACT14

Computational Fluid Dynamics (CFD) and Fluid–Structure Interaction (FSI) are growing dis-15

ciplines in the aeroelastic analysis and design of long-span bridges, which, with their bluff body16

characteristics, offer major challenges to efficient simulation. In this paper we employ Isogeo-17

metric Analysis (IGA) based on Non-Uniform Rational B-Splines (NURBS) to numerically sim-18

ulate turbulent flows over moving bridge sections in 3D. Stationary and dynamic analyses of two19

bridge sections, an idealized rectangular shape with aspect ratio 1:10 and a 1:50 scale model of the20

Hardanger bridge, are performed. Wind tunnel experiments and comparative Finite Element (FE)21

analyses of the same sections are also conducted. Studies on the convergence, static dependencies22

on the angle-of-attack, and self-excited forces in terms of the aerodynamic derivatives show that23
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IGA successfully captures the bluff-body flow characteristics, and exhibits superior per degree-of-24

freedom accuracy compared to the more traditional lower-order FE discretizations.25

INTRODUCTION26

The concept of Isogeometric Analysis (IGA) was proposed in (Hughes et al. 2005), in which ge-27

ometry modeling technologies from Computer-Aided Design (CAD) were applied to the numerical28

simulation of problems governed by partial differential equations (PDEs). IGA uses Non-Uniform29

Rational B-Splines (NURBS) (Piegl and Tiller 1995), and other spline types amenable to local re-30

finement, for spatial discretization. NURBS are powerful too for geometry representation and have31

the advantage of being able to exactly represent all conics. Another important advantage of using32

NURBS is that the basis functions offer a higher degree of smoothness across element boundaries33

than standard Finite Element (FE) approximations. A comprehensive introduction to IGA is given34

in (Cottrell et al. 2009). Since its introduction to structural mechanics, IGA has been success-35

fully applied and proven its efficiency in a large variety of computational physics and engineering36

areas, such as structural dynamics (Cottrell et al. 2006), contact mechanics (De Lorenzis et al.37

2011; Mathisen et al. 2015), Computational Fluid Dynamics (CFD) (Bazilevs et al. 2007a), Fluid–38

Structure Interaction (FSI) (Bazilevs et al. 2008), including Space-Time (ST) formulations (Tak-39

izawa and Tezduyar 2011), phase field modeling (Gómez et al. 2008) and electromagnetics (Buffa40

et al. 2014), to name a few.41

In this paper we combine IGA and the Arbitrary Lagrangian–Eulerian Variational Multiscale42

(ALE-VMS) formulation for Navier–Stokes equations for incompressible flows (Bazilevs et al.43

2012b; Bazilevs et al. 2013a; Bazilevs et al. 2014; Takizawa et al. 2014b; Bazilevs et al. 2015c;44

Bazilevs et al. 2015b) to simulate bridge aerodynamics. The formulation is augmented with weak45

enforcement of essential Boundary Conditions (BCs) (Bazilevs et al. 2007b; Bazilevs and Hughes46

2007; Bazilevs and Akkerman 2010; Golshan et al. 2015), which alleviate classical restrictions47

on boundary-layer mesh size, and thus may be thought of as a near-wall model. IGA and VMS48

methods have been successfully employed, in both ALE and ST context, in a wide range of turbu-49

lent flow problems, see, e.g., (Bazilevs et al. 2013a; Hsu et al. 2012; Hsu et al. 2014b; Takizawa50
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et al. 2013a; Yan et al. 2016; Takizawa et al. 2016a; Takizawa et al. 2016b; Takizawa et al. 2017a),51

including bridge aerodynamics (Scotta et al. 2016). The authors previously applied the ALE-VMS52

formulation for bridge aerodynamics modeling (Helgedagsrud et al. 2018), but in the context of53

standard FE for spatial discretizations.54

We perform stationary and dynamic simulations for two bridge sections in 3D - an idealized55

rectangular shape with aspect ratio 1:10 (R10), characterized by the strongly detached flow at the56

leading edges, and a more streamlined 1:50 scale model of the Hardanger bridge. The former has57

been studied numerically be several authors, see, e.g., (de Miranda et al. 2014; Patruno 2015). The58

Hardanger bridge section has been studied previously in (Takizawa et al. 2014a; Helgedagsrud59

et al. 2017; Helgedagsrud et al. 2018). Numerical simulations of similar generic bridge sections60

are reported in (Scotta et al. 2016; Larsen and Walther 1998; Bai et al. 2010; Šarkić et al. 2012;61

Brusiani et al. 2013). Our study focuses on stationary load coefficients and aerodynamic deriva-62

tives, which are among the most critical quantities in long-span bridge design. To validate the63

numerical simulations, forced-vibration wind tunnel experiments were also performed, some of64

which are reported in (Siedziako et al. 2017; Helgedagsrud et al. 2018), and others carried out65

specifically for this work.66

The bridge deck is taken as a rigid object, and the problem domain is represented by an ex-67

truded slice of the wind-tunnel interior with the sectional model installed. NURBS models of68

the bridge sections are constructed by first defining the initial, coarse multi-patch geometry, and69

then performing k-refinement to reach quadratic order in all parametric directions. This procedure70

results in a mostly C1-continuous discretization with a few C0 lines.71

The paper is outlined as follows. First, the governing equations are presented. Next, we give72

a brief introduction to NURBS-based IGA followed by a description of the experimental setup73

and aerodynamic forces. Next, the analysis setup and mesh definition are presented before the74

numerical results. Lastly, conclusions are drawn.75

ALE-VMS FORMULATION OF THE NAVIER–STOKES EQUATIONS OF76

INCOMPRESSIBLE FLOWS77
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In this section we summarize the governing equations of the ALE-VMS formulation of incom-78

pressible flows. For a thorough description the reader is referred to (Bazilevs et al. 2013a) and79

references therein.80

Governing equations81

On a spatial fluid mechanics domain Ωt ∈ Rnsd , nsd = 2, 3 with boundary Γt, with subscript82

t indicating time-dependence, the Navier–Stokes equations of incompressible flows in the ALE83

frame may be written as84

ρ

(
∂u
∂t

∣∣∣∣
x̂

+ (u− û) · OOOu− f
)
− OOO · σ = 0, (1)

OOO · u = 0. (2)

In Eqs. (1)–(2), ρ is the density, u is the fluid velocity, û is the fluid-domain velocity arising from85

the ALE description (Hughes et al. 1981), and f is the body force. The subscript |x̂ on the partial86

derivative denotes that the time-derivative is taken with the referential coordinates x̂ kept fixed.87

The spatial derivatives are taken with respect to the current position x. σ is the fluid Cauchy stress88

tensor, given by89

σ (u, p) = −pI + 2µ ε(u), (3)

where p and µ are the fluid pressure and dynamic viscosity, respectively, and ε(u) is the symmetric90

gradient of u.91

Discrete formulation92

At the discrete level we partition the fluid domain Ωt into nel elements denoted Ωe
t , and the93

boundary Γt into neb surface elements denoted Γb
t , and define the finite-dimensional functional94

spaces for velocity, pressure and displacement (denoted by ŷ), respectively, as Sh
u , Sh

p and Sh
m, and95

their corresponding test functions as Vh
u , Vh

p and Vh
m. Superscript h indicates that its attribute is96

4 Helgedagsrud, February 25, 2019



finite-dimensional. The semi-discrete ALE-VMS formulation is given as follows. Find uh ∈ Sh
u ,97

ph ∈ Sh
p and ŷh ∈ Sh

m, such that ∀wh ∈ Vh
u , qh ∈ Vh

p and wh
m ∈ Vh

m:98

∫
Ωt

wh · ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − ûh

)
· OOOuh

)
dΩ

+
∫

Ωt

ε(wh) : σ(uh, ph) dΩ +
∫

Ωt

qhOOO · uh dΩ

−
∫

Ωt

wh · ρ fh dΩ−
∫

(Γt)h

wh · hh dΓ

+
nel∑
e=1

∫
Ωe

t

τSUPS

((
uh − ûh

)
· OOOwh + OOOqh

ρ

)
· rM

(
uh, ph

)
dΩ

+
nel∑
e=1

∫
Ωe

t

ρνLSICOOO ·whrC(uh) dΩ

−
nel∑
e=1

∫
Ωe

t

τSUPSwh ·
(
rM

(
uh, ph

)
· OOOuh

)
dΩ

−
nel∑
e=1

∫
Ωe

t

OOOwh

ρ
:
(
τSUPSrM

(
uh, ph

))
⊗
(
τSUPSrM

(
uh, ph

))
dΩ

+
∫

Ωt̃

ε(wh
m) : Dh ε

(
ŷh(t)− ŷh(t̃)

)
= 0 (4)

In Eq. (4), hh is the prescribed surface traction. rM and rC are residuals of the Navier–Stokes99

linear-momentum balance and continuity, respectively, given by100

rM =ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − ûh

)
· OOOuh − fh

)
− OOO · σ

(
uh, ph

)
, (5)

rC =OOO · uh. (6)

Eq. (4) introduces the stabilization parameters τSUPS and νLSIC. These have been designed to render101

optimal stability and convergence through extensive studies, see e.g., (Hughes et al. 1986; Tezduyar102

and Park 1986; Tezduyar and Osawa 2000; Tezduyar 2003; Hughes and Sangalli 2007; Hsu et al.103

2010; Takizawa et al. 2018) and references therein. In this work we use the definitions given in104
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(Bazilevs et al. 2008). The last line in Eq. (4) corresponds to the linear elastostatics operator with105

the elastic tensor Dh, which is used to compute the displacement of the fluid-mechanics mesh106

interior from the that of the fluid-object interface. In a forced-vibration setting, the fluid-object107

interface motion is user-defined and is assumed known.108

To augment the formulation with weak enforcement of the essential boundary conditions (Γt)g,109

they are removed from the trial functions and replaced by the following terms added to the left-hand110

side of Eq. (4):111

−
neb∑
b=1

∫
Γb

t∩(Γt)g

wh · σ
(
uh, ph

)
n dΓ

−
neb∑
b=1

∫
Γb

t∩(Γt)g

(
2µε

(
wh
)

n + qhn
)
·
(
uh − gh

)
dΓ

−
neb∑
b=1

∫
Γb

t∩(Γt)−
g

wh · ρ
((

uh − ûh
)
· n
) (

uh − gh
)

dΓ

+
neb∑
b=1

∫
Γb

t∩(Γt)g

τTAN
(
wh −

(
wh · n

)
n
)
·
((

uh − gh
) ((

uh − gh
)
· n
)

n
)

dΓ

+
neb∑
b=1

∫
Γb

t∩(Γt)g

τNOR
(
wh · n

) ((
uh − gh

)
· n
)

dΓ, (7)

where n is the outward normal vector of the boundary. τTAN and τNOR are boundary penalty pa-112

rameters in the tangential and normal directions, respectively, as defined in (Bazilevs et al. 2007b),113

and (Γt)−g is defined as the inflow part of (Γt)g:114

(Γt)−g =
{

x|
(
uh − ûh

)
· n < 0,∀x ⊂ (Γt)g

}
. (8)

115

ISOGEOMETRIC ANALYSIS116

For space discretization of the ALE-VMS equations we employ NURBS-based IGA. The con-117

cept of IGA was proposed in (Hughes et al. 2005) to better integrate CAD and FE. NURBS are118
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the most popular basis-function technology implemented in IGA, where they are used to simul-119

taneously model geometry and provide interpolation spaces for analysis. Similar to FE methods,120

IGA mostly uses a variational framework, in combination with the isoparametric concept and p−121

and h−refinement, to discretize PDE systems. Attributes that are unique to IGA include higher-122

order inter-element continuity and a feature called k−refinement, where the order and degree of123

smoothness of the basis functions are raised simultaneously. (See Fig. 1 for an illustration in 1D.)124

IGA was first applied in the context of turbulent flows and VMS methods in (Bazilevs et al.125

2007a), where it showed excellent performance on a set of challenging benchmark problems. For126

incompressible turbulent flows, significant improvement in the per-degree-of-freedom accuracy127

due to the higher-order smoothness of NURBS was clearly demonstrated in (Akkerman et al.128

2008; Motlagh and Ahn 2012). NURBS-based IGA in combination with weakly-enforced es-129

sential boundary conditions was shown to preform very well for wall-bounded turbulent flows130

in (Bazilevs et al. 2010) and (Bazilevs and Akkerman 2010). Recent applications of IGA in flu-131

ids and FSI include wind-turbine aerodynamics (Hsu et al. 2011; Bazilevs et al. 2013b; Takizawa132

et al. 2015; Bazilevs et al. 2012a), spacecraft aerodynamics (Takizawa et al. 2013b), cardiovascular133

fluid mechanics (Bazilevs et al. 2008; Bazilevs et al. 2009; Takizawa et al. 2017c), turbomachin-134

ery (Takizawa et al. 2017a) and tire aerodynamics (Takizawa et al. 2018).135

Despite the excellent accuracy of NURBS-based discretizations for turbulent flows, IGA still136

remains a more popular technology for structures, or the “structure part” of the FSI problem (see,137

e.g., (Bazilevs et al. 2012b; Takizawa et al. 2012; Korobenko et al. 2013; Bazilevs et al. 2013a)).138

This is due to the fact that many applications make use of shell structures, which may be dis-139

cretized using surface spline technology that is implemented in many general-purpose geometry140

modeling and CAD software tools. Volumetric meshing, which is essential for flow problems, is141

much less developed in IGA, and often requires the use of in-house research codes. However, re-142

cent developments in non-matching discretizations and sliding interfaces for CFD (Bazilevs et al.143

2012a; Hsu et al. 2014a; Bazilevs et al. 2015a; Takizawa et al. 2017b; Otoguro et al. 2017) are now144

providing technology to begin eliminating the limitations associated with conforming multi-patch145
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discretizations.146

WIND TUNNEL EXPERIMENTS AND AERODYNAMIC FORCES147

This section gives a brief presentation of the experimental setup and the definition of aerody-148

namic forces. The wind tunnel experiments are carried out at the Fluid Mechanics Laboratory of149

the Norwegian University of Science and Technology using the same setup as in (Siedziako et al.150

2017), in which a comprehensive description of the experiments is given. This closed, medium-151

sized wind tunnel has a 11 m long test section and a cross-sectional dimension of 2.7 m by 1.8 m.152

Fig. 2 shows the interior of the wind tunnel with the Hardanger bridge sectional model installed.153

The sectional model is mounted to a six-axis force/torque transducer at each end, which in turn is154

mounted to a 3 degree-of-freedom actuator driven by electric motors in a user-defined motion.155

Since the force measurements include inertia, each motion history needs to be conducted also156

in still-air. The aerodynamic forces are then given by the difference between the in-wind and157

still-wind force measurements. This subtraction also cancels out any biasing. The wind velocity is158

sampled through an upwind pitot tube. The experiments are conducted for wind velocities between159

4 and 12 m/s. In this range the turbulence intensity is typically less than 0.2 %.160

With reference to the bridge sections and sign convention in Fig. 3, we define the aerodynamic161

forces, namely, drag D, lift L, and pitching moment M , per unit chord length acting on the line of162

centroids as:163

D = 1
2ρU

2HCD(t), (9)

L = 1
2ρU

2BCL(t), (10)

M = 1
2ρU

2B2CM(t), (11)

where U is the mean wind velocity and B and H are the stream-wise and cross-wind dimensions164

of the cross section, respectively. CD(t), CL(t) and CM(t) are the dimensionless aerodynamic165

coefficients, typically depending on the geometry and angle of attack.166
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The motion-induced, or self-excited, contributions of the aerodynamic forces can be expressed167

using the empirical formulation as originally proposed in (Scanlan and Tomko 1971):168

Cse
L (t) = KH∗1

ḣ

U
+KH∗2

Bθ̇

U
+K2H∗3θ +K2H∗4

h

B
, (12)

Cse
M(t) = KA∗1

ḣ

U
+KA∗2

Bθ̇

U
+K2A∗3θ +K2A∗4

h

B
. (13)

where h and θ are the vertical and angular displacements, respectively, as shown in Fig. 3. K =169

ωB/U is the so-called reduced frequency, where ω is the circular frequency of the structural mo-170

tion. H∗i and A∗i , i = {1 .. 4} are the aerodynamic derivatives. These shape-dependent parameters171

may be regarded as transfer functions between body motion and self-excited forces, and are com-172

monly expressed as functions of the reduced frequency, K. Superscript se refers to the self-excited173

part of the forces. See (Chen and Kareem 2002) for more details.174

Using the forced-vibration method, whether in the context of experiments or numerical stud-175

ies, greatly simplifies identification of the aerodynamic derivatives compared to the free-vibration176

approach. In the simulations, no FSI or fluid-object interaction coupling needs to be considered,177

because the interface motion is prescribed analytically. In addition, much shorter simulation times178

are needed to collect the required data for parameter identification. These advantages were pointed179

out by other authors (see, e.g., (Le Maître et al. 2003; Nieto et al. 2015)). In the present work, the180

aerodynamic derivatives are identified by the least-squares method described in (Siedziako et al.181

2017).182

GEOMETRY DEFINITION AND ANALYSIS SETUP183

The computational domains represents a 0.25 m wide slice of the wind tunnel, where the ceiling184

and floor are placed 0.930 m and 0.885 m from the cross section centroid, respectively. The185

inflow surface, with prescribed uniform velocity U , is placed 1.0 m upwind of the centroid, and186

the zero-traction outflow surface is placed 3.0 m downwind of the centroid. The bridge-deck187

sectional models, whose cross sections are shown in Fig. 3, are subjected to weakly-enforced no-188
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slip boundary conditions.189

For the idealized rectangular shape, two geometries are considered. The first makes use of190

sharp corners and is composed of five NURBS patches as shown in Fig. 4. Because the pressure191

singularities at the sharp corners may lead to increased sensitivity of the results to the problem192

input, we also created an alternative shape with slightly rounded corners. Here, additional NURBS193

patches are used to replace the sharp corners with exact circular arcs. The curvature radius is set to194

H/50. This setup is outlined in Fig. 5. Although the physical sectional model is built to represent195

a true rectangular shape, its actual average radius of curvature is estimated to be H/500.196

The Hardanger bridge geometry is composed by 17 patches, as shown in Fig. 6. The patches197

are constructed to yield minimal mesh distortion near the bridge deck surface, see Fig. 7. Also for198

this section we utilize NURBS to represent the circular leading edges exactly.199

The air density ρ and the dynamic viscosity µ is set to 1.1835 kg/m3 and 1.848× 10−5 kg/ms,200

respectively. The computational time stepping is chosen such that the maximum Courant number201

stays below 2.0, typically 5− 10× 10−5 s.202

From the definition of the initial patch geometry, order elevation and knot insertion is easily203

performed using the algorithms in (Piegl and Tiller 1995). The continuous mesh is created by204

merging the boundary nodes of the internal patch surfaces, in which the continuity is C0.205

The computations are performed in a parallel environment adopted from (Hsu et al. 2011),206

where the domain is partitioned into between 128 and 1024 subdomains using METIS (Karypis207

and Kumar 1998).208

NUMERICAL RESULTS209

In this section we present the numerical results, focusing on the load coefficients and aerody-210

namic derivatives. We also look at the pressure coefficient distribution on the R10 bridge deck211

surface given by Cp = p/(1/2ρU2), and the Strouhal number given by St = fwH/U , where fw is212

the vortex-shedding frequency. Both experiment and simulations are performed using the inflow213

air speed of U = 8 m/s, giving the Reynolds number Re = ρUB/µ = 2.6× 105.214

A numerical Buttersworth filter (Rabiner and Gold 1975) with low-pass frequency of 3 Hz is215
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applied to the raw experimental force data in order to remove signal noise and high-frequency216

vibrations of the sectional model. These issue are discussed in detail in (Siedziako et al. 2017).217

Such disturbances do not occur in the numerical simulations, and the results are presented without218

filtering of the computed force data.219

Convergence study220

A mesh convergence study is performed on the sharp and rounded R10 sections. Three meshes221

of increasing resolution are employed in the simulations and shown in Fig. 8. For the section222

with sharp corners, the coarse mesh (labeled M1) has 36.9× 103 control points, the medium mesh223

(labeled M2) has 261.4 × 103 control points, and the fine mesh (labeled M3) has 1 252.4 × 103
224

control points. A similar resolution is employed for the section with rounded corners. From the225

initial patch definition, we use k-refinement to construct C1-continuous NURBS analysis meshes226

that are quadratic in all parametric directions. A mesh convergence study is performed with the227

bridge section kept fixed at θ = 2°. This configuration is chosen for the following reasons: i) The lift228

and pitching moment are nonzero, and a linear relationship to the angle of attack can be assumed229

valid; ii) Earlier work (for aspect ratio 1:8) (Patruno 2015; de Miranda et al. 2014) revealed large230

differences between experimental and simulation results; and iii) The wind tunnel test results have231

relatively low scatter at this angle of attack.232

The mesh refinement study results are presented in Tab. 1 and Figs. 9 and 10. Fig. 9 illustrates233

the turbulent-flow features by visualizing vorticity magnitude contours on a spanwise cut, while234

Fig. 10 compares the pressure distribution on the top and bottom surfaces of the deck for both235

geometries. The coarse meshes do not capture the flow reattachment and shear layer well. The236

results improve with mesh refinement, as expected. This lack of good resolution on the coarse237

meshes is reflected in the corresponding pressure distributions, especially on the top surface of the238

deck (see Fig. 10). While the overall lift and drag forces are not as sensitive, the aerodynamic239

center location is shifted, resulting in higher sensitivity of the pitching moment to mesh resolution.240

Since the pressure distribution reflects the position of flow reattachment, it follows that the pitching241

moment is mainly governed by the reattachment length. We believe this explains the two-sided242
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convergence of the pitching moment, considering that the reattachment first become more distinct243

for M2.244

The geometry with rounded corners produces a slightly lower drag force, but otherwise very245

similar results are attained, including response under mesh refinement. The lower drag force246

mainly results from the fact that the corners render more low-profiled shear layers. This also247

leads to an earlier reattachment, as can be seen from the pressure distribution, which in this case248

appear to increase the magnitude of the pitching moment.249

Lastly, we note that the top and bottom surface pressure distributions exhibit more consistent250

convergence patterns for the case of rounded corners. Although rounding the corners is advanta-251

geous from the standpoint of numerical stability and convergence, the differences observed in the252

quantities of interest are not significant to justify using rounded corners in the remaining simula-253

tions.254

R10 section stationary analysis255

We now keep the mesh density fixed at the level of M2, and compute the mean aerodynamic256

load coefficients with respect to the angle of attack in the range of θ = [−5°, 5°] for the R10257

section with sharp corners. To determine the static coefficients experimentally, we have tested three258

angle-of-attack time series shown in Fig. 11. The results from the sine wave and fine-resolution259

staircase are presented as continuous curves, while the coarse staircase is represented by points260

with temporal statistics.261

Stationary simulations are performed in a similar fashion, using the mesh-moving method to262

construct a similar staircase function. On each interval the simulation is run for 1.5 s of which the263

last 1 s is sampled. The load coefficients are then represented by their mean value and the 90 %264

confidence interval of the fluctuation.265

For comparison, ALE-VMS FE simulations using linear tetrahedra and approximately the same266

number of degrees-of-freedom are performed. A thorough description of the FE analysis setup is267

given in (Helgedagsrud et al. 2018).268

Figs. 12, 13 and 14 show the experimentally measured and numerically computed load coeffi-269
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cients for drag, lift and pitching moment, respectively. For drag and lift we are able to capture the270

absolute value and initial slope with very good accuracy. For the pitching moment, however, the271

numerical simulations deviate more from the experimental data. As discussed in the convergence272

study, the pitching moment for this section is extremely sensitive to the reattachment length. In the273

FE simulation the flow stays detached much longer, which consequently leads to a smaller magni-274

tude of the pitching moment. This leads again to a premature appearance of the non-linear behavior275

that occurs at the angle-of-attack when the flow does not attack at all. The same non-linear fea-276

tures are also seen for the lifting force, however less prominent. In this respect IGA shows good277

agreement with the experiments. Earlier works analyzing the same section (de Miranda et al. 2014;278

Patruno 2015) also point out the difficulties and sensitivity of the pitching moment.279

Although FE captures the initial slope of the pitching moment better, we claim that we are280

able to achieve an overall better per-degree-of-freedom accuracy with IGA, when we take drag281

and lift and the point of no reattachment into account. Finally, we would like to point out that,282

especially for the pitching moment, the experiments must be taken with some uncertainty. Due to283

the large ratio between the lift and pitching moment, small disturbances such as vibration of the284

sectional model, geometrical imperfections and free-stream turbulence (Mills et al. 2002) may give285

a significant impact on the latter.286

Hardanger section stationary analysis287

Stationary analyses are performed for the Hardanger bridge section using the same simulation288

strategy. A similar mesh density is used as in the quadratic NURBS model for the R10 deck,289

giving a total of 313 × 103 control points. Figs. 15, 16 and 17 show the load coefficients for290

drag, lift and pitching moment, respectively. For this bridge section we capture the slope of the291

lift and pitching moment curves with excellent accuracy, however, the absolute values are slightly292

shifted. For the drag, the simulations show less sensitivity to the angle of attack than is observed293

in the experiments. Unlike for the R10 section, IGA does not show as much improvement over FE.294

Nevertheless, IGA gives better per degree-of-freedom accuracy for: i) Absolute value of the drag;295

and ii) Slopes of the lift and pitching-moment curves. The latter is important for the computation296
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of aerodynamic derivatives, as the stationary analyses represent the limit of Ured →∞.297

Compared to the R10 section, the Hardanger section exhibits a much more streamlined behav-298

ior, and the flow stays mostly attached, even for large pitching angles, as can be seen from the299

velocity contours shown in Fig. 18. This explains the less pronounced differences between IGA300

and FE simulations, considered that variation in the reattachment length appeared in the previous301

sections to be a major source of uncertainty. Although the flow is mostly attached, small differ-302

ences in the flow separations that occur at the top and bottom surface toward the leading edge and303

the fact that the section is unsymmetrical in height may further explain the differences in the abso-304

lute value of the lift and pitching moment. E.g., a small increase in the reattachment length on the305

bottom surface will increase the base suction at the lower upwind corner, which again will lead to306

a decrease in the lift and the pitching moment, as seen in Figs. 16 and 17.307

Forced-vibration analysis and aerodynamic derivatives308

We now actuate the R10 and Hardanger bridge decks in the torsional and vertical harmonic mo-309

tion in order to carry our forced-vibration experiments and simulations, and compute aerodynamic310

derivatives. An overview of the test conditions for the wind tunnel experiments and numerical311

simulations is given in Tab. 2. Different vibration frequencies, run sequentially, and different wind312

velocities (for the experiments only) are analyzed in order to obtain the dependence of the aero-313

dynamic derivatives on the reduced frequency K. A thorough description of the experimental314

setup is reported in (Siedziako et al. 2017), where the identification procedure for the aerody-315

namic derivatives is also described. A comprehensive description of the numerical approach for316

the forced-vibration simulations, including the mesh-moving algorithms, is given in (Helgedagsrud317

et al. 2018), where aerodynamic derivatives for the same sections were computed using tetrahedral318

FE. For comparison, the results from that reference are presented alongside the IGA results from319

the present analysis. We note, however, that the FE computations used approximately twice the320

number of degrees-of-freedom compared to the IGA models.321

The bridge sections are initially kept at rest for 1 s in order to develop the flow prior to starting322

the moving-domain forced-vibration simulations. To ensure that the self-excited forces can be323
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regarded as a stationary process, the first 0.25 s of data after the sections are set in motion are324

ignored. The self-excited forces are then sampled over two complete cycles. Figs. 19 and 20 show325

examples of the forced-vibration time series, more specifically the R10 section undergoing vertical326

and torsional motions, respectively, at the frequency of f = 0.8 Hz. In the same plots the predicted327

aerodynamic forces, back-substituted from Eqs. (12) and (13) and the aerodynamic derivatives328

(labeled IGA AD) and the experimentally obtained self-excited forces are shown.329

The aerodynamic derivatives for the R10 section are shown in Fig. 21 We observe that the H∗-330

type aerodynamic derivatives that govern the self-excited lift force are captured with very good331

accuracy, and IGA outperforms FE both in terms of magnitudes and phase angles. The A∗-type332

aerodynamic derivatives, however, are overestimated in the simulations. This also corresponds333

with the steep inclination seen in Fig. 14. Regarding the phase angle of the self-excited pitching334

moments, IGA produce more accurate results than the FE simulations. The overestimated pitching335

moments will consequently lead to a reduction of the critical wind speed compared with the wind336

tunnel experiments.337

The aerodynamic derivatives for the Hardanger section are shown in Fig. 22. Consistent with338

the findings in the stationary analysis, IGA is in better agreement than FE with the experimental339

data, especially for the most important aerodynamic derivatives in flutter analysis, H∗3 , A∗1, A∗2 and340

A∗3 (Øiseth et al. 2010). Similar to the R10 section, IGA overestimate the lifting forces to a lesser341

extent than FE, however, the differences between the two approaches are not as pronounced.342

CONCLUSIONS343

In this work we investigated the application NURBS-based IGA to the simulation of bluff344

body aerodynamics on moving domains with emphasis on bridge engineering. IGA shares many345

features with the more standard FE analysis, but also possesses unique features, such as exact346

geometry and higher-order smoothness that have proven beneficial in many applications, including347

turbulent flows (Motlagh and Ahn 2012; Bazilevs and Akkerman 2010; Hsu et al. 2011).348

The present study considered a rectangular section with aspect ratio B/H = 10 (R10) and349

a 1:50 scale sectional model of the Hardanger bridge. To validate and assess the accuracy and350
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efficiency of the IGA approach, wind tunnel experiments were conducted for the same sections,351

and FE analyses were carried out for comparison purposes.352

A mesh convergence study on a stationary R10 shape at 2° angle of attack were performed.353

Geometries with sharp and slightly rounded corners were considered. The geometry with rounded354

corners produced a more consistent convergence pattern for the load coefficients and pressure355

distribution, and resulted in slightly lower drag values. The moment coefficient exhibited the most356

deviation from experimental values, which confirms the findings by other researchers (de Miranda357

et al. 2014; Patruno 2015). This example is, in part, meant to illustrate the challenges of simulating358

turbulent flows over bluff bodies for bridge aerodynamics.359

The aerodynamic load coefficients for the R10 and Hardanger sections were computed from360

stationary analyses at angles of attack in the range of [−5°, 5°]. Comparative wind tunnel experi-361

ments and FE analyses show that IGA was able to capture the aerodynamic forces with very good362

accuracy, and generally outperformed the FE approach. IGA showed significant improvement for363

the more challenging R10 shape. For the Hardanger bridge section, a more modest improvement364

over FE of the slopes of the lift and pitching-moment curves were obtained using IGA. In general,365

both methods performed very well for this more streamlined section.366

The IGA approach was employed for moving-domain forced-vibration simulations, and the367

aerodynamic derivatives were computed for both bridge sections. The self-excited forces were368

captured with good accuracy, especially for the R10 section, where, as in the prior simulations,369

IGA showed a significant improvement over FE.370

The investigations presented herein have shown that IGA, in combination with the ALE-VMS371

technique and weakly enforced essential BCs, presents a powerful tool for the simulation of bridge372

aerodynamics on moving domains. The validity of the proposed approach was strengthened by373

comparing the IGA simulations with experimental measurements and more standard FE simula-374

tions. We also find it counterintuitive (and somewhat ironic) that it is the geometrically simpler375

shapes that appear to be more challenging for simulating bluff-body turbulent arodynamics than376

complex-geometry objects.377
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TABLE 1. Averaged load coefficients and Strouhal numbers for mesh refinement study of the R10
bridge section at 2° angle-of-attack and Re = 2.6× 105.

Method C̄D C̄L C̄M St

Experiment 1.25 0.29 0.030 0.17 – 0.19
M1 sharp 1.23 0.33 0.053 0.17 – 0.19
M2 sharp 1.14 0.33 0.061 0.18 – 0.20
M3 sharp 1.17 0.37 0.053 0.15 – 0.17
M1 rounded 1.14 0.31 0.059 0.22 – 0.23
M2 rounded 1.09 0.33 0.065 0.21 – 0.22
M3 rounded 1.11 0.34 0.060 0.19 – 0.21
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TABLE 2. Forced-vibration test setup for wind tunnel experiments and simulations. In the exper-
iments each frequency is run for 50 s, giving rise to a variable number of cycles.

Property Wind tunnel Simulations
Amplitude h 15 mm 15 mm
Amplitude θ 2° 2°
Wind velocities 4, 8, 10 and 12 m/s 8 m/s

Vibration frequencies
0.5, 0.8, 1.1, 1.4, 1.7, 2.0 and
2.5 Hz

0.5, 0.8, 1.1 and 2.0 Hz

Number of cycles 25 – 100 2
Sampling frequency 200 Hz 250 Hz
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Fig. 1. One-dimensional basis functions for C0-linear and C1-quadratic isogeometric analysis.
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Fig. 2. Inside the wind tunnel with the Hardanger bridge sectional model installed.
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Fig. 3. Geometries of the R10 and Hardanger cross sections with the definition of the aerodynamic
forces shown on the former. Note the direction of the pitching moment.
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Fig. 4. Computational domain constructed from five NURBS patches representing a slice of the
wind tunnel.
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(a) (b)

Fig. 5. Nine NURBS patches representing the R10 section with rounded corners: a) Full view; b)
Zoom on the leading edge indicating the scale of curvature.
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Fig. 6. Patch topology for the Hardanger bridge section.
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(a) (b)

Fig. 7. Analysis model of the Hardanger bridge. a) Zoom on the bridge deck; b) Further zoom on
the leading edge.
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Fig. 8. NURBS meshes used in the convergence study of the R10 section with sharp corners.
For visualization purposes, quadratic NURBS elements are interpolated using standard serendipity
elements.
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(a) M1 sharp (b) M2 sharp (c) M3 sharp

(d) M1 rounded (e) M2 rounded (f) M3 rounded

Fig. 9. Convergence of the instantaneous vorticity magnitude for the two R10 geometries.
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Fig. 10. Pressure distribution on the top and bottom surfaces of the R10 section with sharp and
rounded corners. Mesh refinement results are plotted.
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Fig. 11. Angle-of-attack time series employed in the experimental study.
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Fig. 12. Static drag coefficients CD from wind tunnel experiments and numerical simulations for
the R10 section.
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Fig. 13. Static lift coefficients CL from wind tunnel experiments and numerical simulations for the
R10 section.
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Fig. 14. Static moment coefficients CM from wind tunnel experiments and numerical simulations
for the R10 section.
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Fig. 15. Static drag coefficients CD from wind tunnel experiments and numerical simulations for
the Hardanger section.
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Fig. 16. Static lift coefficients CL from wind tunnel experiments and numerical simulations for the
Hardanger section.
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Fig. 17. Static moment coefficients CM from wind tunnel experiments and numerical simulations
for the Hardanger section.
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(a) θ = -5 ° (b) θ = 0 ° (c) θ = 5 °

Fig. 18. Velocity contours time-averaged over 0.25 s for the Hardanger section at different angles
of attack.
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Fig. 19. Self-excited force coefficients for the vertical motion with f = 0.8 Hz and U = 8 m/s.
Output from the IGA simulation compared to experimental results.
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Fig. 20. Self-excited force coefficients for the pitching motion with f = 0.8 Hz and U = 8 m/s.
Output from the IGA simulation compared to experimental results.
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Fig. 21. Aerodynamic derivatives for the R10 section. The wind tunnel and FE results plotted are
from (Helgedagsrud et al. 2018). The reduced velocity, Vred = U/Bω, is defined in terms of the
circular frequency.
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Fig. 22. Aerodynamic derivatives for the Hardanger bridge section. The wind tunnel and FE results
are from (Helgedagsrud et al. 2018).
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