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Abstract High-utility itemset mining (HUIM) is a popu-

lar data mining task with applications in numerous domains.

However, traditional HUIM algorithms often produce a very

large set of high-utility itemsets (HUIs). As a result, analyz-

ing HUIs can be very time consuming for users. Moreover, a

large set of HUIs also makes HUIM algorithms less efficient

in terms of execution time and memory consumption. To

address this problem, closed high-utility itemsets (CHUIs),

concise and lossless representations of all HUIs, were pro-

posed recently. Although mining CHUIs is useful and de-

sirable, it remains a computationally expensive task. This is

because current algorithms often generate a huge number of

candidate itemsets and are unable to prune the search space

effectively. In this paper, we address these issues by propos-

ing a novel algorithm called CLS-Miner. The proposed al-

gorithm utilizes the utility-list structure to directly compute

the utilities of itemsets without producing candidates. It also

introduces three novel strategies to reduce the search space,

namely chain-estimated utility co-occurrence pruning, lower

branch pruning, and pruning by coverage. Moreover, an ef-

fective method for checking whether an itemset is a subset

of another itemset is introduced to further reduce the time
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required for discovering CHUIs. To evaluate the performance

of the proposed algorithm and its novel strategies, extensive

experiments have been conducted on six benchmark datasets

having various characteristics. Results show that the pro-

posed strategies are highly efficient and effective, that the pro-

posed CLS-Miner algorithm outperforms the current state-of-

the-art CHUD and CHUI-Miner algorithms, and that CLS-

Miner scales linearly.

Keywords utility mining, high-utility itemset mining,

closed itemset mining, closed high-utility itemset mining

1 Introduction

Frequent itemset mining (FIM) [1] is a popular knowledge

discovery task. The goal of FIM is to find all frequent itemsets

in a transaction database. A frequent itemset is a set of items

that appears in at least minsup transactions, where minsup

is a parameter set by the user. FIM has been the subject of

many studies, and remains to this day a very active research

area [2–7]. However, it assumes that all items in a database

are equally important (e.g., in terms of profit, importance, or

weight) and that items may not appear more than once in each

transaction. However, these assumptions often do not hold in

reality. In practice, retailers may be more interested in find-
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ing the itemsets that yield a high profit than in discovering

the itemsets that appear frequently. To address these limita-

tions, the task of FIM has been redefined as the task of high-

utility itemset mining (HUIM). In HUIM, items can appear

more than once in each transaction and a weight is assigned to

each item to indicate its relative importance to the user (e.g.,

in terms of unit profit). The goal of HUIM is to discover all

high-utility itemsets (HUIs) in a transaction database. A set

of items is said to be a HUI if its utility (e.g., the profit that it

yields in a database) is not less than a minimum utility thresh-

old minutil set by the user.

In recent years, HUIM [8–14] has become a popular re-

search area, because it has many applications in several do-

mains such as cross-marketing, click stream analysis, and

biomedicine [9, 10, 15–17]. HUIM is widely recognized as

more difficult than FIM because the powerful downward clo-

sure property used to prune the search space in FIM does not

hold in HUIM. This latter property states that the support of

an itemset is anti-monotonic, i.e., supersets of an infrequent

itemset are infrequent and subsets of a frequent itemset are

frequent. However, in HUIM, a HUI may have supersets and

subsets having lower, equal, or higher utilities. Thus, tech-

niques to prune the search space developed in FIM cannot be

used in HUIM directly.

Many efficient HUIM algorithms have been proposed [8–

13, 18, 19]. To prune the search space, these algorithms uti-

lize measures that overestimate the utility of itemsets and are

monotonic [8, 10]. Even though these algorithms have many

applications, a major drawback is that the set of HUIs can be

very large, depending on how the minimum utility parameter

is set by the user. In general, when a HUIM algorithm gener-

ates more HUIs, its execution time and memory consumption

also increase greatly. Furthermore, analyzing a large number

of HUIs produced by a HUIM algorithm is a difficult and

time-consuming task for users.

To address this issue, a compact and lossless representation

of HUIs, called closed high-utility itemsets (CHUIs) [20],

was proposed. This representation is inspired by the concept

of closed patterns [5, 21–23], which was introduced in FIM.

An itemset is said to be a CHUI if (1) its utility is not less than

a minimum utility threshold specified by the user, and if (2) it

has no supersets appearing in the same transactions [20]. The

set of CHUIs is interesting because it can be several orders of

magnitude smaller than the set of all HUIs, and it allows all

HUIs to be derived without scanning the database (it is loss-

less). Moreover, CHUIs also provide meaningful information

to decision makers because they are the largest HUIs that are

common to groups of customers [20].

Although mining CHUIs is desirable for the above reasons,

it remains a computationally difficult task, and it is challeng-

ing to design a closed high-utility itemset mining (CHUIM)

algorithm that is both efficient in terms of runtime and mem-

ory usage [20]. To design an efficient CHUIM algorithm, one

must correctly incorporate techniques from closed FIM with

techniques used in HUIM, to reduce the search space effec-

tively, ensuring that no CHUIs are missed. CHUD [20] is

the first CHUIM algorithm. However, a major limitation of

CHUD is that it is a two-phase algorithm, which can gener-

ate a large number of candidates1) and repeatedly scans the

database.

To address this limitation of two-phase algorithms, one-

phase algorithms have been proposed recently and have been

shown to outperform previous two-phase HUIM algorithms

[9, 11, 24, 25]. These algorithms employ a novel structure

called a utility-list [9, 11]. Using this structure, the utility

of an itemset can be quickly calculated without scanning the

original database by making join operations with utility-lists

of smaller itemsets. Inspired by these algorithms, a one-phase

algorithm called CHUI-Miner (Closed+ High Utility Item-

set Miner) [26] has been recently proposed for CHUIM. It

employs a structure called (extended utility-list (EU-List) to

maintain information about the utilities of itemsets in transac-

tions. Furthermore, it adopts a divide-and-conquer methodol-

ogy to efficiently mine the complete set of CHUIs. However,

even with the improvements introduced in CHUI-Miner, the

task of CHUIM remains computationally expensive for the

following reasons.

(1) First, although CHUI-Miner [26] discovers CHUIs us-

ing a single phase and does not generate candidates as

per the definition of the two-phase model, CHUI-Miner

explores the search space by generating itemsets, and a

costly join operation has to be repeatedly performed to

evaluate the utility of each itemset. Thus, it is desirable

to design more efficient pruning strategies that could re-

duce the number of utility-list joins that are performed.

(2) Second, CHUI-Miner [26] prunes the search space us-

ing two upper-bounds on the utilities of itemsets called

the transaction-weighted utilization (TWU) [8] and the

remaining utility [9]. An important limitation of using

1) It is important to note that the term “candidate” has different meanings in HUIM and FIM. In FIM, an algorithm is said to not generate candidates if it only
considers patterns that exist in a database [3, 4]. In HUIM, an algorithm is said to not generate candidates if it does not mine HUIs in two phases, i.e., by first
identifying a set of potential HUIs using overestimations, and then calculating their exact utilities by scanning the database



Thu-Lan DAM et al. CLS-Miner: efficient and effective closed high-utility itemset mining 3

the TWU upper-bound is that it is loose, and thus nu-

merous candidates need to be considered to find the fi-

nal set of CHUIs.

(3) Third, a drawback of the search space pruning strat-

egy based on the remaining utility upper-bound used by

CHUI-Miner is that it can only be applied to an item-

set after its utility-list has been fully constructed. How-

ever, constructing a utility-list is an expensive opera-

tion [9, 11]. To improve the efficiency of CHUIM, it is

thus desirable to design pruning strategies that can be

applied during or before utility-list construction.

(4) Fourth, efficient techniques must be designed to avoid

considering as many non-closed itemsets as possible. In

particular, two key operations for closed pattern min-

ing are subsumption checks and closure computations

[5, 22, 23]. Those operations need to be implemented

efficiently.

To address the need for a more efficient CHUIM algorithm,

this paper proposes a novel algorithm called CLS-Miner. This

algorithm introduces several novel ideas to discover CHUIs

efficiently by addressing the four above limitations. The main

contributions of this work are summarized as follows.

(1) Three efficient strategies for pruning the search space

are proposed. The first strategy is called chain-

estimated utility co-occurrence pruning (Chain-EUCP).

It uses the estimated utility of item co-occurrences to

determine whether an itemset and its extensions should

be pruned. The second strategy is called lower branch

pruning (LBP). This strategy reduces the search space

using a novel upper-bound on the utilities of transitive

extensions of an itemset. These two strategies allow

candidates to be eliminated without fully constructing

their utility-lists. The last strategy is based on a new

concept called coverage that is inspired by the defini-

tion of a closed itemset. The coverage can be used to

prune low-utility itemsets and also to quickly calcu-

late the closure of itemsets. The three proposed prun-

ing strategies can greatly reduce the number of join op-

erations for constructing utility-lists and, thus, prune a

large part of the search space.

(2) An efficient pre-check containing method for checking

whether an itemset X contains another itemset Y is also

proposed. This method is used to perform subsumption

checks and closure computations. These two operations

are essential in closed pattern mining. As shown in the

experimental evaluation section of this paper, the novel

pre-check method is effective and can greatly reduce the

runtime of these two operations.

(3) A novel algorithm called CLS-Miner is proposed to effi-

ciently mine CHUIs. The CLS-Miner algorithm utilizes

the utility-list structure and integrates the three pro-

posed pruning strategies and the fast pre-check method.

(4) An extensive performance evaluation of the proposed

algorithm and its strategies is performed on both

real-life and synthetic datasets. The performance of

CLS-Miner is compared with the performance of the

state-of-the-art CHUD and CHUI-Miner algorithms for

CHUIM. Results show that the proposed strategies are

effective for reducing the search space, and that the

CLS-Miner algorithm is highly efficient. The proposed

algorithm also has excellent scalability.

The rest of this paper is organized as follows. Section 2

reviews studies related to HUIM and CHUIM. Preliminar-

ies and the problem definition are introduced in Section 3.

Section 4 presents the three novel strategies and pre-check

method. Section 5 presents the CLS-Miner algorithm, and

gives a detailed example illustrating how the algorithm is ap-

plied. Experimental results are reported in Section 6. Finally,

a conclusion is drawn, and future work is discussed in Section

7.

2 Related work

This paper presents a new algorithm for CHUIM. Thus, this

section briefly reviews studies related to HUIM and CHUIM.

2.1 HUIM

In real life, customer transactions generally contain informa-

tion about the purchase quantities of items, and items may

have different unit profits. Traditional algorithms for FIM ig-

nore this information. To address this limitation, the task of

HUIM was proposed [27]. In HUIM, the utility of an item-

set may be equal, less than, or greater than the utility of any

of its subsets. Thus, if an algorithm prunes supersets of low-

utility itemsets to reduce the search space, it may produce an

incomplete set of HUIs. To address this issue, the TWU mea-

sure [8] was introduced. It is an upper-bound on the utility

of itemsets, and restores the downward closure property. Ac-

cording to the TWU model, all supersets of an itemset having

a TWU lower than the minimum utility threshold also have a

TWU lower than that threshold. However, a disadvantage of

using the TWU is that it is a loose upper-bound on the utility
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of itemsets and, thus, a huge number of candidates still need

to be considered to find the final set of HUIs.

Numerous HUIM algorithms discover HUIs in two phases

using the TWU model such as Two-Phase [8], UP-Growth

and UP-Growth+ [10], PB [28], and BAHUI [12]. These al-

gorithms first generate a set of candidate HUIs by overes-

timating their utilities using the TWU measure (phase 1).

Then, these algorithms perform additional database scans

to calculate the exact utilities of candidates and keep only

those that are HUIs (phase 2). Despite having introduced new

techniques to discover HUIs, an important drawback of two-

phase algorithms is that they can generate a huge number of

candidates because the TWU is a loose upper-bound on the

utility of itemsets.

Recently, algorithms have been proposed to mine HUIs us-

ing a single phase to avoid maintaining a large number of

candidates in memory before calculating their exact utility.

The HUI-Miner algorithm [9] introduced a new data structure

called utility-list to maintain information about the utilities of

itemsets in transactions. Once HUI-Miner has constructed the

utility-list of each single item, it can create the utility-list of

any larger itemset by joining the utility-lists of some of its

subsets, without scanning the database. HUI-Miner can find

all HUIs and their exact utilities using the utility-list struc-

ture. HUI-Miner [9] was shown to outperform previous algo-

rithms. However, HUI-Miner still has to perform a costly join

operation to obtain the utility-list of each itemset generated

by its search procedure. To reduce the number of join opera-

tions, the FHM algorithm [11] was introduced. It integrates a

novel strategy for pruning the search space using information

about itemset co-occurrences. It was shown that this strategy

can greatly reduce the number of join operations, and that

FHM [11] can be up to six times faster than HUI-Miner.

2.2 CHUIM

Although the discovery of HUIs is useful and has many ap-

plications, a drawback of traditional HUIM algorithms is that

they can produce a huge number of patterns. For users, an-

alyzing a huge number of patterns can be difficult and time

consuming. Moreover, as more patterns are discovered, the

runtimes of HUIM algorithms become longer and more mem-

ory is consumed [20].

In FIM, a popular solution to this problem is to discover

concise representations of patterns that are small sets of pat-

terns that summarize all other patterns by eliminating redun-

dant itemsets (itemsets that can be derived from the other

itemsets). For example, several concise representations of

frequent itemsets have been proposed such as closed item-

sets [21, 22], maximal itemsets [29, 30], and generator item-

sets [31]. It was demonstrated that these representations can

be orders of magnitude smaller than the set of all frequent

patterns, thus providing more concise information to users.

Moreover, it was shown that mining these representations is

often faster than discovering all frequent itemsets.

To obtain similar benefits in HUIM, researchers have de-

veloped concise representations of HUIs [20, 26, 32, 33]. De-

signing a concise representation of HUIs is more challenging

than developing a concise representation of frequent item-

sets as the utility measure is neither monotonic nor anti-

monotonic [20]. Thus, concise representations in FIM need

to be adapted to the context of HUIM, and novel techniques

need to be designed to efficiently discover these represen-

tations in databases. Three main concise representations of

HUIs have been proposed, which have different characteris-

tics and provide different information to users.

• A maximal HUI [33] is a HUI that has no supersets that

are HUIs. The representation of maximal HUIs pro-

vides the benefit of being a very compact representa-

tion of all HUIs. However, it has the drawback of being

lossy, i.e., a large amount of information about HUIs

can be lost.

• A generator of a HUI [32] is the smallest set of items

common to a group of customers that have bought a

HUI. The representation of generators of HUIs is useful

to discover small sets of items that characterize groups

of customers. However, it is also lossy.

• A closed+ HUI [20, 26] is a HUI that has no supersets

having the same support, and annotated with its utility

unit array. The advantages of CHUIs are that they are

very compact and lossless (unlike the two previous rep-

resentations). Thus, information about every other HUI

can be recovered from this representation without scan-

ning the database.

In this paper, we are interested in closed+ HUIs because

they are the most popular concise representation of HUIs and

are lossless. The first proposed algorithm for mining CHUIs

was CHUD (Closed+ High Utility itemset Discovery) [20].

It is a depth-first search algorithm that extends the DCI-

Closed [22] algorithm, which is one of the fastest algorithms

for mining frequent closed itemsets. DCI-Closed [22] utilizes

a bitwise vertical representation of the database. Moreover, it

adopts a divide-and-conquer approach and visits itemsets in

the search space in a specific order by traversing generator
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itemsets to reach closed itemsets. Furthermore, DCI-Closed

integrates an efficient mechanism to detect duplicate closed

itemsets without maintaining previously found closed item-

sets in main memory.

CHUD [20] is a two-phase algorithm. In the first phase, it

applies a modified DCI-Closed procedure to discover candi-

date CHUIs. During this process, CHUD applies several ef-

fective strategies for reducing the number of candidates gen-

erated based on the properties of the utility measure. Simi-

lar to the DCI-Closed algorithm, CHUD utilizes the itemset–

transaction id (Tid) set pair tree (IT-Tree) structure [22] to ex-

plore the search space of itemsets. In an IT-Tree, each node

N(X) contains an itemset X, its Tid set TidSet(X), and two

lists of items called PreSet(X) and PostSet(X). The CHUD

algorithm recursively explores the IT-Tree and stops when all

candidate CHUIs have been found. A key difference between

DCI-Closed and CHUD, is that this latter stores an estimated

utility value EstU(X) in each node N(X) of the IT-Tree. This

value represents an upper-bound on the utility of the item-

set X and its supersets, and is used for reducing the search

space. A data structure called transaction utility table (TU-

Table) [20] is also adopted, which stores the transaction util-

ities of all transactions. The TU-Table allows the estimated

utility of any itemset X to be calculated efficiently using its

Tid set and without scanning the database.

In the second phase, CHUD calculates the exact utility of

each candidate itemset X found in phase 1 to filter those that

are not HUIs. At the same time, the CHUD algorithm cre-

ates a structure called utility unit array for each CHUI. This

structure ensures that the set of CHUIs is a lossless represen-

tation of all HUIs (that it can be used to derive all other HUIs

and their exact utilities). The CHUD algorithm utilizes four

strategies to reduce the search space. The first is called dis-

carding global unpromising items (DGU). It consists of only

considering promising items for generating candidates and to

remove the utilities of unpromising items from the global TU-

Table. The three other strategies are called removing the exact

utilities of items from the global TU-Table (REG), remov-

ing the minimum itemset utilities from the local TU-Tables

(RML), and discarding candidates having a maximum item

utility that is less than the minimum utility threshold (DCM).

Although CHUD introduces a novel tree structure and sev-

eral candidate pruning strategies, it inherits the limitations of

two-phase algorithms. This considerably degrades its perfor-

mance both in terms of runtime and memory consumption.

Recently, a one-phase algorithm called CHUI-Miner [26]

was proposed for mining CHUIs more efficiently. CHUI-

Miner integrates techniques from closed itemset mining [21,

22] to only discover closed patterns. It utilizes an EU-List

structure to store information about the utility of itemsets

and adopts a divide-and-conquer approach to mine CHUIs

without producing candidates. CHUI-Miner is the first one-

phase algorithm for mining CHUIs. However, CHUI-Miner

only prunes the search space using the TWU [8] and the re-

maining utility upper-bounds [9]. As a result, CHUI-Miner

can still consider a huge number of itemsets from the search

space. Moreover, CHUI-Miner repeatedly applies a EU-list

construction operation that is very costly.

Although CHUIM has many applications, discovering

CHUIs remains a computationally expensive task. Therefore,

there is a need for more efficient algorithms [26]. To ad-

dress this issue, this paper proposes a novel algorithm called

CLS-Miner to mine CHUIs efficiently. It is a one-phase algo-

rithm (unlike CHUD), which relies on the utility-list struc-

ture to discover CHUIs (similarly to CHUI-Miner). How-

ever, there are some key differences between CLS-Miner and

CHUI-Miner. The proposed algorithm integrates three novel

search space pruning strategies: (1) Chain-EUCP, (2) LBP,

and (3) pruning by coverage. These novel strategies can prune

itemsets in the search space before their utility-lists are con-

structed, and thus greatly reduce the cost of mining CHUIs.

Furthermore, an efficient pre-check containing method is also

proposed to quickly determine whether an itemset is a subset

of another itemset. This method is used to optimize the oper-

ations of closure computations and subsumption checks typ-

ically performed by closed pattern mining algorithms. It will

be shown in the experimental evaluation of this paper that the

proposed pre-check method considerably reduces the time for

discovering CHUIs.

3 Preliminaries and problem definition

Before presenting the proposed algorithms and its novel

strategies, it is necessary to introduce preliminaries related

to HUIM, closed itemset mining, and to formally define the

problem of CHUIM. This section introduces these defini-

tions.

3.1 Problem definition

Let I = {i1, i2, . . . , im} be a set of items. A positive number

p(i j) is associated to each item i j ∈ I, called the external util-

ity of i j. It represents the relative importance of item i j to the

user (e.g., the unit profit of i j). Let D be a transaction database

containing a set of n transactions D = {T1, T2, . . . , Tn} such

that Td ⊆ I (1 � d � n), and each transaction Td has a unique



6 Front. Comput. Sci.

identifier d called its Tid. Moreover, given a transaction Td

and an item i j, let q(i, Td) be the internal utility (e.g., the pur-

chase quantity) of item i in Td. An itemset X is a set of l

distinct items X = {i1, i2, . . . , il} such that X ⊆ I. An itemset

containing l items is said to be of length l, and to be an l-

itemset. In the rest of this paper, for the sake of brevity, each

itemset will be denoted by the concatenation of its items. For

example, the itemset {x, y, z} will be denoted as xyz. The

union of two itemsets X and Y will be denoted as XY or X∪Y.

Example 1 Table 1 presents a transaction database D con-

taining five transactions (T1, T2, T3, T4, and T5), which will

be used as a running example. In this database, the set of

items is I = {a, b, c, d, e, f , g}. The external utilities (e.g.,

unit profits) of these items are presented in Table 2. The items

a, b, c, d, e, f , and g have external utilities of 5, 2, 1, 2, 3, 1,

and 1, respectively. The itemset ac appears in transactions T1,

T2, and T3. The items a, c, e, and g have internal utilities (pur-

chase quantities) of 2, 6, 2, and 5, respectively, in transaction

T2.

Table 1 Example transaction database

Tid Transaction TU

T1 (a, 1), (c, 1), (d, 1) 8

T2 (a, 2), (c, 6), (e, 2), (g, 5) 27

T3 (a, 1), (b, 2), (c, 1), (d, 6), (e, 1), ( f , 5) 30

T4 (b, 4), (c, 3), (d, 3), (e, 1) 20

T5 (b, 2), (c, 2), (e, 1), (g, 2) 11

Table 2 External utility values

Item a b c d e f g

External utility 5 2 1 2 3 1 1

Definition 1 (Utility of an item in a transaction) The util-

ity of an item i in a transaction Td is defined as u(i, Td) =

q(i, Td) × p(i), where q(i, Td) is the internal utility (purchase

quantity) of item i in transaction Td, and p(i) is the external

utility (unit profit) of item i.

For example, in Table 1, u(a, T1) = 1 × 5 = 5 and

u(c, T1) = 1 × 1 = 1.

Definition 2 (Utility of an itemset in a transaction) The

utility of an itemset X in a transaction Td is denoted as

u(X, Td) and defined as u(X, Td) =
∑

i∈X u(i, Td).

For example, in Table 1, u(ac, T1) = 1 × 5 + 1 × 1 = 6 and

u(ac, T2) = 2 × 5+ 6 × 1 = 16.

Definition 3 (Transaction utility and total utility) The util-

ity of a transaction Td is denoted as TU(Td), and is calcu-

lated as TU(Td) = u(Td, Td). The total utility of a database

D is denoted as TUD(D), and is calculated as TUD(D) =
∑

Td∈D TU(Td, Td).

For example, in Table 1, TU(T1) = 8, TU(T2) = 27,

TU(T3) = 30, TU(T4) = 20, and TU(T5) = 11. The to-

tal utility of database D is TUD(D) = (TU(T1) + TU(T2) +

TU(T3) + TU(T4) + TU(T5)) = 8 + 27 + 30 + 20 + 11 = 96.

Definition 4 (Utility and relative utility of an itemset) The

utility of an itemset X in a database D is defined as u(X) =
∑

X⊆Td∧Td∈D u(X, Td). The relative utility of an itemset X in

a database D is denoted as ru(X) and is defined as ru(X) =

u(X)/TUD(D).

For example, in Table 1, u(ac) = u(ac, T1) + u(ac, T2) +

u(ac, T3) = 6 + 16 + 6 = 28. The relative utility of itemset ac

is, thus, ru(ac) = 28/96 = 0.29.

Definition 5 (HUI) Let there be a user-specified minimum

utility threshold minutil (0 < minutil < TUD(D)). If the util-

ity of an itemset X is no less than minutil, then X is said to be

a HUI. Otherwise, X is said to be a low-utility itemset. The

problem of HUIM consists of discovering all HUIs in a given

transaction database.

An equivalent definition of the problem of HUIM is

the following. Given a relative minimum utility threshold

r_minutil = minutil/TUD(D), an itemset X is a HUI if and

only if ru(X) � r_minutil.

Having formally defined the problem of HUIM, the fol-

lowing paragraphs define the problem of CHUIM.

Definition 6 (Support and Tid set of an itemset) The Tid

set of an itemset X is the set of Tids of transactions contain-

ing X, and is denoted by TidSet(X). The support of an itemset

X is denoted as sup(X) and defined as sup(X) = |TidSet(X)|.
In other words, the support of an itemset is the number of

transactions where the itemset appears.

Definition 7 (Closed itemset) An itemset X is called a

closed itemset if there exists no proper superset Y ⊃ X in

D such that sup(X) = sup(Y) [21, 22].

Definition 8 (CHUI) An itemset X is a CHUI if X is closed

and its utility u(X) � minutil [20, 26].

Problem statement Let there be a database D where in-

ternal and external utilities are provided for all items. Given

a user-specified minimum utility threshold minutil, the prob-

lem of CHUIM is to discover all closed itemsets in D having
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utilities that are no less than the minutil threshold [20, 26].

Example 2 Consider the database of Table 1. Suppose that

the parameter minutil is set to 30 (or, equivalently, that

r_minutil = 31%). The set of HUIs for the running exam-

ple is H = {bd:30, ace:31, bcd:34, bce:31, bde:36, bcde:40,

and abcde f :30}, where the number beside each itemset indi-

cates its utility. Among those itemsets, the CHUIs are CH =

{ace:31, bce:31, bcde:40, and abcde f :30}.

In FIM, the downward closure property is used to re-

duce the search space. However, this property does not hold

in HUIM, when considering the utility measure. To restore

this property, the TWU measure was introduced and it is an

upper-bound on the utility. The TWU measure is defined as

follows [8].

Definition 9 The TWU [8] of an itemset X in a database

D is denoted as TWU(X) and defined as TWU(X) =
∑

Td∈D∧X⊆Td
TU(Td).

Property 1 (Overestimation [8]) The TWU of an itemset

X is no less than its utility, that is TWU(X) � u(X).

For example, the transaction utilities of transactions T1, T2,

and T3 of the running example are 8, 27, and 30, respectively.

The TWU of item a is TWU(a) = TU(T1)+TU(T2)+TU(T3)

= 8 + 27 + 30 = 65. The following property of the TWU is

commonly used to prune the search space in HUIM.

Property 2 (Pruning using the TWU [8]) Let there be an

itemset X. If TWU(X) < minutil, then X and its supersets are

low-utility itemsets.

For example, the TWU of item f is TWU( f ) = TU(T3) =

5 + 4 + 1 + 12 + 3 + 5 = 30. Tables 3 and 4 show the trans-

action utilities of all transactions in D and the TWU values of

all items.

Table 3 Transaction utilities for the running example

Tid T1 T2 T3 T4 T5

TU 8 27 30 20 11

Table 4 TWU values of items for the running example

Item name a b c d e f g

TWU 65 61 96 58 88 30 38

3.2 Utility-list structure

The proposed algorithm relies on the utility-list structure of

the HUI-Miner algorithm [9] to mine HUIs in a single phase.

Therefore, this subsection introduces important definitions

related to this structure and its key properties. The utility-list

structure was proposed in HUI-Miner to avoid the drawbacks

of the previous two-phase algorithms: maintaining a large

amount of candidates in memory and repeatedly scanning the

database to calculate the utilities of itemsets.

Definition 10 (Utility-list [9]) Without loss of generality,

let � be a total order on items from I. The utility-list of an

itemset X in a database D is denoted by ul(X). It contains

a tuple of the form (tid, iutil, rutil) for each transaction Ttid

containing X (X ⊆ Ttid). The iutil element of a tuple corre-

sponding to a transaction Ttid stores the utility of X in Ttid,

i.e., u(X, Ttid). The rutil element of a tuple stores the value
∑

i∈Ttid∧i�x∀x∈X u(i, Ttid), called the remaining utility [9].

Example 3 The utility-list of item a is {(T1, 5, 3)(T2, 10,

17)(T3, 5, 25)}. The utility-list of item e is {(T2, 6, 5)(T3, 3,

5)(T4, 3, 0)}. The utility-list of itemset ae is {(T2, 16, 5),(T3,

8, 5)}.

Utility-lists have the two following important properties,

which are used to calculate the utility of any itemset and to

prune the search space.

Property 3 (Sum of iutil values [9]) Let there be an item-

set X. The utility of X (denoted as u(X)) is equal to the sum

of the iutil values in its utility-list ul(X). If the sum of the iutil

values in ul(X) is higher than or equal to the minutil thresh-

old, it follows that X is a HUI. Otherwise, it is a low-utility

itemset [9].

Property 4 (Pruning using the sum of iutil and rutil val-

ues [9]) Let there be an itemset X. An itemset Y is said

to be an extension of X if and only if Y can be obtained by

appending an item y to X such that y � i, ∀i ∈ X. It can

be demonstrated that any transitive extension of X can only

have a utility that is less than or equal to the sum of iutil and

rutil values in ul(X). If the sum of iutil and rutil values in the

utility-list of X is less than minutil, all transitive extensions

of X are low-utility itemsets.

As proposed in the HUI-Miner algorithm [9], the utility-

list of any itemset can be obtained by intersecting the utility-

lists of some of its subsets. For example, let P, Px and Py

be itemsets, such that Px and Py are extensions of P with

items x and y, respectively. The utility-list of itemset Pxy is

obtained by applying Algorithm 1 [9]. For each element in

ul(x), the algorithm checks whether there is an element cor-

responding to the same transaction in ul(y). If there is one, a

binary search is then performed in the utility-list of P to de-
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termine whether there is also an element corresponding to the

same transaction. Therefore, the complexity of this procedure

is O(m log nz), where m, n, and z are the number of entries in

ul(x), ul(y), and ul(P), respectively.

Algorithm 1 The utility-list construction procedure

Input:

ul(P) : the utility-list of itemset P;

ul(Px): the utility-list of itemset Px;

ul(Py): the utility-list of itemset Py;

Output:

ul(Pxy): the utility-list of itemset Pxy;

1: ul(Pxy) = NULL;

2: for each (tuple ex ∈ ul(Px)) do

3: if (∃ey ∈ ul(Py) and ex.tid==ey.tid) then

4: if (ul(P) is not empty) then

5: Search element e ∈ ul(P) such that e.tid = ex.tid;

6: exy←− (ex.tid; ex.iutil + ey.iutil − e.iutil; ey.rutil);

7: else

8: exy←− (ex.tid; ex.iutil + ey.iutil; ey.rutil);

9: end if

10: ul(Pxy)←− ul(Pxy) ∪ exy;

11: end if

12: end for

13: return ul(Pxy);

3.3 Frequent closed itemset mining

As the proposed algorithm mines closed patterns, this sub-

section introduces the concept of a closed itemset and its key

properties. These properties will be used in the proposed al-

gorithm.

The task of mining frequent closed itemsets consists of dis-

covering all closed itemsets having support values that are no

less than a user-specified minimum support threshold minsup

[22, 23, 30, 31, 34]. It has been shown in previous studies that

the number of frequent closed itemsets is often much lower

than the number of frequent itemsets. Thus, it is desirable to

mine closed itemsets [20].

Most frequent closed itemset mining algorithms [22, 23,

30, 31, 34] discover closed itemsets by performing two steps:

search space browsing and closure computation. Among

these algorithms, DCI-Closed [22] is one of the fastest al-

gorithms. A typical closed itemset mining algorithm browses

the search space of itemsets by going from an equivalence

class to another by computing the closure of the visited fre-

quent itemsets. This process allows to quickly identify the

maximal element (the closed itemset) in each equivalence

class. Two itemsets are said to belong to the same equiva-

lence class if they appear in exactly the same set of transac-

tions. Some key definitions related to closed itemsets are the

following [22].

Definition 11 (Closure of an itemset [22]) The closure of

an itemset X, denoted as C(X), is the largest set Y such that

X ⊆ Y and sup(X) = sup(Y). An alternative and equivalent

definition is C(X) =
⋂

d∈TidSet(X) Td. An itemset X is called a

closed itemset, if X = C(X).

Definition 12 (Generator [22]) A generator is an itemset

of the form X = Y ∪ i, where Y is a closed itemset and i � Y.

A generator X is said to be order preserving if C(X) = Y ∪ i

or i ≺ C(Y ∪ i)\Y ∪ i.

To browse the search space of itemsets and find the closed

itemsets, several algorithms start from the minimal elements

of each equivalence class (the generators) [22]. As soon as a

generator is found, its closure is computed. Then, new gen-

erators are built from that closed itemset by appending single

items to that itemset, and the process is repeated with each

of these generators to find other closed itemsets. As a closed

itemset is the maximal element of its equivalence classes, this

strategy guarantees that jumping from an equivalence class to

another will not miss any closed itemsets. However, several

generators have the same closure. Thus, it is necessary to uti-

lize a mechanism to avoid generating the same closed itemset

more than once. A solution to this problem is to use the fol-

lowing property [22].

Property 5 ( [22]) Given two itemsets Y and X, if Y ⊂ X

and supp(X) = supp(Y), then C(X) = C(Y).

Therefore, if a generator Y is found, having the same sup-

port as an already-discovered closed itemset X and Y ⊂ X,

it can be concluded that the closure of Y is X. In this case,

it is said that X subsumes Y, and it becomes unnecessary to

compute the closure of Y. Otherwise, the closure of Y should

be computed to obtain a new closed itemset.

To compute the closure of a generator X, the following

property can be employed [22].

Property 6 ( [22]) Given an itemset X and an item i ∈ I,

TidSet(X) ⊆ TidSet(i)⇔ i ∈ C(X).

By the above property, if TidSet(X) ⊆ TidSet(i), it follows

that i belongs to the closure of X. Therefore, by performing

this inclusion check for all the items in I not included in X,

the closure C(X) of any itemset X can be computed.

Having presented the problem of HUIM, CHUIM, and im-

portant properties related to closed itemset mining, the fol-

lowing section introduces the proposed techniques.
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4 Proposed strategies and pre-check method

To design an efficient CHUIM algorithm, three key chal-

lenges must be addressed.

• First, it is necessary to design effective search space

pruning techniques because the search space in item-

set mining tasks is very large. For example, if there are

1000 distinct items in a database, there are 21000−1 pos-

sible itemsets (by excluding the empty set). To design a

HUIM algorithm, it is necessary to design search space

pruning techniques that rely on properties of the utility

measure [8–13].

• Second, efficient techniques must be designed to avoid

considering as many non-closed itemsets as possible.

As mentioned in the previous section, most closed pat-

tern mining algorithms perform two key operations:

subsumption checks and closure computations [5, 22,

23].

These two operations are repeatedly performed by most

closed itemset mining algorithms to prune the search

space of non-closed itemsets. For this reason, it is cru-

cial to implement them efficiently.

• Third, an efficient CHUIM algorithm should calculate

the utility of itemsets efficiently. To avoid generating

a huge number of candidates and directly calculate the

utility of itemsets, many recent state-of-the-art HUIM

algorithms utilize the utility-list structure. However, a

costly join operation needs to be performed to build

utility-lists of l itemsets (l > 1). Therefore, an important

question is how to reduce the cost of join operations, or

avoid performing it when possible [11].

This section describes how these challenges are addressed

in the proposed CLS-Miner algorithm. The designed algo-

rithm introduces three novel search space pruning strategies

to prune low-utility itemsets without fully constructing their

utility-lists. These strategies are presented in Sections 4.1,

4.2, and 4.3, respectively. Moreover, an efficient pre-check

method is introduced in Section 4.4 to optimize the opera-

tions of subsumption checking and closure computation to

identify closed itemsets efficiently. Then, in Section 5, we

present the proposed algorithm that combines all the pro-

posed strategies and the pre-check method.

4.1 Chain-EUCP strategy

The first proposed pruning strategy is called Chain-EUCP.

It relies on a structure called the Estimated Utility Co-

occurrence Structure (EUCS) [11] defined as follows.

Definition 13 (EUCS [11]) Let I∗ be the set of all items

having a TWU no less than minutil in a database D. The

EUCS of database D is denoted as EUCS D and defined as

EUCS D = {(a; b; TWU(ab)) ∈ I∗ × I∗ × R+}.

As other efficient one-phase algorithms for HUIM [9,

11, 24–26], the proposed CLS-Miner algorithm scans the

database twice to compute the TU and TWU values of all

items and 2-itemsets, as well as to construct the EUCS. Dur-

ing the first database scan, the TWU values and the utilities

of all items are calculated. The TWU values of items are then

used to establish a total order � on items appearing in the

transaction database, which is the order of ascending TWU

values as suggested in the previous works [9–11]. The sec-

ond database scan constructs the EUCS. During this database

scan, items in transaction are reordered using the ascending

order of TWU values.

Example 4 Consider database D of the running example as

presented in Table 1. During the first database scan, the TWU

values of all items are calculated (Fig. 1(a)). Then, during the

second database scan, transactions are reordered by ascend-

ing order of TWU values (Fig. 1(b)), and the EUCS structure

is built (Fig. 1(c)). In this example, the EUCS is represented

as a triangular matrix, where each row/column represents an

item, and each cell indicates the TWU of the itemset formed

by combining the items corresponding to the column and row.

An interesting observation is that some pairs of items never

co-occur in the database, and hence have a TWU value of

zero. For example, the item g does not appear in any of the

transactions containing f or d.

In previous work [11], the following property was pro-

posed to reduce the search space using the EUCS. This prop-

erty is known as the Estimated Utility Co-occurrence Pruning

(EUCP) property.

Property 7 (EUCP property [11]) Let there be a non-

empty itemset X = {x1, x2, . . . , xz}. Furthermore, let there be

an item y, such that Xy is an extension of X (that is, y � xz).

If TWU(xzy) < minutil, then Xy and its transitive extensions

are low-utility itemsets.

Proof Let Z be a transitive extension of Xy. As Xy ⊆ Z

and xzy ⊆ Xy, it follows that xzy ⊆ Z. Because TWU(xzy) <

minutil, Z and its supersets are low-utility itemsets (by Prop-

erty 2). �
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Fig. 1 (a) Items are reordered by ascending order of TWU values; (b) trans-
actions are sorted according to this order; (c) the EUCS matrix

In previous work [11], Property 7 was used to reduce the

search space. In this paper, a more general version of this

property is proposed to prune a larger part of the search space.

Property 8 (Generalized EUCP property) Let there be a

non-empty itemset X and an item x ∈ X. Furthermore, let

there be an item y, such that Xy is an extension of X. If

TWU(xy) < minutil, then Xy and its transitive extensions are

low-utility itemsets.

Proof Let Z be any extension of Xy. As Xy ⊆ Z and

xy ⊆ Xy, it follows that xy ⊆ Z. Because TWU(xy) < minutil,

Z and its supersets are low-utility itemsets (by Property 2). �

The novel Chain-EUCP strategy applies Property 8 to di-

rectly prune an itemset Pxy and its transitive extensions with-

out constructing their utility-lists. By Property 2, if there is

a tuple (x; y; TWU(xy)) in the EUCS such that TWU(xy)

< minutil, then any superset Pxy of xy has a utility lower

than minutil. Thus, if the above condition is met, Pxy and

its transitive extensions do not need to be considered by

the proposed algorithm. The proposed Chain-EUCP strategy

is different from the EUCP strategy [11] used in previous

work. For an itemset Pxy, the EUCP only checks the prun-

ing condition for the two last items x and y appended to Pxy,

whereas the Chain-EUCP strategy checks the pruning condi-

tion TWU(ab) < minutil for all pairs of items a, b ∈ Pxy. If

the condition is met for any such pair of items, it follows that

Pxy and its supersets are low-utility itemsets and, hence, that

they do not need to be considered by the proposed algorithm

(by Property 8). Therefore, the proposed Chain-EUCP strat-

egy is more general than the EUCP strategy used in previous

work [11], and can prune a larger part of the search space.

The proposed algorithm, which relies on this strategy, is pre-

sented in Section 5.

4.2 Coverage concept

The second novel strategy proposed in this paper is based

on a novel concept of coverage. This concept is inspired by

the definition of frequent closed itemsets in FIM [4]. In this

subsection, we first present the concept of coverage, then ex-

plain how this concept is used to calculate the utility of item-

sets, and propose a new strategy for reducing the search space

when mining CHUIs.

Definition 14 (Coverage) Let there be two items i, j ∈ I.

Item j is said to cover i if TidSet(i) ⊆ TidSet( j). The cover-

age of item i is denoted by Cov(i) and defined as Cov(i) =

{z|TidSet(i) ⊆ TidSet(z) ∧ z ∈ I}.

Property 9 (Relationship between the TWU and coverage)

Let there be two items i, j ∈ I in a database D. We have that

j ∈ Cov(i) if and only if TWU(i) = TWU(i j).

Proof Let the notation TidSet(xy) denote the set of Tids of

transactions containing x but not y. The TWU of the itemset

ij is defined by the following equation:

TWU(i j) =
∑

Td∈D∧i j⊆Td

TU(Td) =
∑

Td∈TidSet(i j)

TU(Td)

=
∑

Td∈TidSet(i j)

TU(Td) +
∑

Td∈TidSet(i j)

TU(Td)

−
∑

Td∈TidSet(i j)

TU(Td)

=
∑

Td∈TidSet(i)

TU(Td) −
∑

Td∈TidSet(i j)

TU(Td)

= TWU(i) −
∑

Td∈TidSet(i j)

TU(Td).

Therefore,

TWU(i j) = TWU(i)

⇔
∑

Td∈TidSet(i j)

TU(Td) = 0⇔ TidSet(i j) = ∅

⇔ TidSet(i) ⊆ TidSet( j)⇔ j ∈ (i). �

This property provides a simple way of calculating the cov-

erage of any single item i ∈ I using the TWU of single items

and the EUCS structure presented in the previous subsection.

Example 5 Consider the example database presented in Ta-

ble 1. Figure 1 (top) indicates the TWU values of all items
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and presents the corresponding EUCS (bottom). Consider the

item b, we have TWU(b) = 61. In the EUCS, there are two

tuples containing b, which are (b, c, 61) and (b, e, 61). The

TWU values stored in these tuples are equal to TWU(b) = 61.

Hence, the coverage of item b is Cov(b) = {c, e}.
In the following, an itemset obtained by performing the

union of an item and its coverage is called a coverage item-

set. For example, the itemset bce is a coverage itemset since

it can be obtained by performing the union of the item b with

its coverage Cov(b) = {c, e}.
To calculate the utility of any coverage itemset X such as

bce without performing utility-list intersections or additional

database scans, the following property is introduced.

Property 10 (Utility of a coverage itemset) Let there be

a coverage itemset X = pp1 p2...pr. The utility of X can be

efficiently calculated using the following equation:

u(X) =
∑

1�i�r

u(ppi) − (r − 1) × u(p).

Proof Because pi ∈ Cov(p), it follows that TidSet(p)

⊆ TidSet(pi). Therefore, TidSet(ppi) = TidSet(p), and

TidSet(pp1 p2...pr) = TidSet(p)., thus

u(X) = u(pp1 p2...pr) =
∑

Td∈TidSet(p)

u(pp1 p2 · · · pr, Td)

=
∑

Td∈TidSet(p)

[u(p, Td) + u(p1, Td) + · · · + u(pr, Td)]

=
∑

Td∈TidSet(p)

[[(u(p, Td) + u(p1, Td)) + · · · + (u(p, Td)

+ u(pr, Td))] − (r − 1) × u(p, Td)]

=
∑

Td∈TidSet(p)

[[(u(p, Td) + u(p1, Td)) + · · · + (u(p, Td)

+ u(pr, Td))] − (r − 1) ×
∑

Td∈TidSet(p)

u(p, Td)]

=
∑

1�i�r

∑

Td∈TidSet(p)

[u(p, Td) + u(pi, Td)] − (r − 1) × u(p)

=
∑

1�i�r

u(ppi) − (r − 1) × u(p). �

Example 6 Consider the example database given in

Table 1. The coverage of item b is Cov(b) = {e, c}, as ex-

plained in Example 5. By applying Property 10, the utility of

the coverage itemset bec can be calculated directly without

constructing its utility-list as follows:

u(bec) = u(be) + u(bc) − u(b) = 25 + 22 − 16 = 31.

Using the above property, the utility of any coverage item-

set X can be obtained directly by adding the utilities of 2-

itemsets and subtracting the utility of a 1-itemset. Thus, the

utility of X can be obtained without performing utility-list

intersections or additional database scans. The only require-

ment for calculating the utility of an itemset using the above

property is to precalculate the coverage of each item, and

the utilities of 1-itemsets and 2-itemsets. The coverage of all

items can be calculated efficiently using the EUCS structure

by applying the proposed Algorithm 2.

Algorithm 2 The CoverageConstruct procedure

Input: The set of items I;

Output: The coverage of each item in I;

1: for each item x ∈ I do

2: Cov(x) ←− ∅;
3: for each item y ∈ I and y � x do

4: if (EUCS (x, y) = TWU(x)) then

5: Cov(x) ←− Cov(x) ∪ y;

6: end if

7: end for

8: end for

Moreover, this paper also introduces a second property for

pruning the search space of itemsets using the novel concept

of coverage. This pruning strategy is integrated into the pro-

posed CLS-Miner algorithm.

Property 11 (Pruning using the coverage) Let there be

a single item p, and Cov(p) be its coverage. Furthermore,

consider an itemset Y ⊆ Cov(p) and an itemset X such that

X ∩ Y = ∅ and p � X. If p ∪ X is a HUI, then p ∪ X ∪ Y is

also a HUI.

Proof Because Y is a subset of Cov(p), it follows that:

TidSet(p ∪ X ∪ Y) = TidSet(p ∪ X).

The utility of the itemset p ∪ X ∪ Y is calculated as

u(p ∪ X ∪ Y) =
∑

Td∈D
u(p ∪ X ∪ Y, Td)

=
∑

Td∈TidSet(p∪X)

[u(p ∪ X, Td) + u(Y, Td)]

=
∑

Td∈TidSet(p∪X)

u(p ∪ X, Td)

+
∑

Td∈TidSet(p∪X)

u(Y, Td)

= u(p ∪ X) +
∑

Td∈TidSet(p∪X)

u(Y, Td) > u(p ∪ X).

Thus, if p ∪ X is a HUI, then u(p ∪ X) � minutil. Hence,

u(p ∪ X ∪ Y) > u(p∪ X) � minutil. Therefore, p ∪ X ∪ Y is a

HUI. �

Furthermore, it can be easily seen by Definition 14 (related

to the coverage) and Property 6 (related to closure computa-
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tions) that if an item j belongs to the coverage of an item i, it

follows that j belongs to the closure of all itemsets containing

the item i. Hence, the concept of coverage is also integrated

into the process of closure computation.

The proposed algorithm integrating this strategy and the

other strategies presented throughout Section 4 is presented

in Section 5.

4.3 LBP strategy

A third novel pruning strategy is introduced in this section. It

is motivated by the following observation. HUI-Miner [9] is

a one-phase algorithm that introduced a novel pruning strat-

egy to reduce the search space using the sum of iutil and rutil

values in the utility-list of an itemset X (Property 4). If this

sum is less than minutil, then the itemset X and its transi-

tive extensions are low-utility itemsets and do not need to

be considered. Although this strategy was shown to be effec-

tive for reducing the search space, a drawback is that it can

only be applied to an itemset X after its utility-list has been

fully constructed. However, constructing the utility-list of an

itemset is very costly. It is, thus, desirable to design pruning

strategies that can prune an itemset X and its transitive exten-

sions before its utility-list is fully constructed. The proposed

Chain-EUCP strategy is one such strategy and relies on infor-

mation about item co-occurrences to reduce the search space.

In this subsection, Property 4 is adapted to introduce a novel

strategy for pruning an itemset X and its transitive extensions

(called lower branches) before its utility-list is constructed.

This strategy is called LBP and it relies on a new upper-bound

on the utility of itemsets and their extensions, called the con-

junction upper-bound utility. The LBP strategy is based on

the following definitions and properties.

Definition 15 (Tid set difference) Let there be an item-

set X and an itemset Y such that their Tid sets are TidSet(X)

and TidSet(Y), respectively. The size difference of the Tid

sets of X and Y is denoted as di f f (X, Y), and is calculated

as di f f (X, Y) = abs(|TidSet(X)| − |TidSet(Y)|), where abs is

the absolute value function.

Property 12 Let there be an itemset X and an itemset Y

such that X∩Y = ∅. The relation di f f (X, XY) � |TidSet(X)|−
min(|TidSet(X)|, |TidSet(Y)|) holds. For the sake of brevity,

the value |TidSet(X)| − min(|TidSet(X)|, |TidSet(Y)|) will be

denoted as cdi f f (X, Y).

Proof Since TidSet(XY) ⊆ TidSet(X) and TidSet(XY) ⊆
TidSet(Y), then |TidSet(XY)| � |TidSet(X)| and

|TidSet(XY)| � |TidSet(Y)|
=⇒ |TidSet(XY)| � min(|TidSet(X)|, |TidSet(Y)|)
=⇒ di f f (X, XY) = |TidSet(X)| − |TidSet(XY)|

� |TidSet(X)| −min(|TidSet(X)|, |TidSet(Y)|). �
Definition 16 (The smallest sum of iutil and rutil values

of an itemset) The smallest sum of the iutil and rutil val-

ues of an itemset X is denoted as ulmin(X). It is defined as

the sum ulm.iutils + ulm.rutils for the tuple ulm ∈ ul(X)

such that �ulk ∈ ul(X) where (ulk.iutils + ulk.rutils) <

(ulm.iutils + ulm.rutils).

Definition 17 (Conjunction upper-bound utility) Let there

be an itemset X and an item y � i,∀i ∈ X. The con-

junction upper-bound utility of itemset X with respect to

item y is denoted by con(X, y) and defined as con(X, y) =
∑

ul∈UL(X) (ul.iutil + ul.rutil) − cdi f f (X, y) × ulmin(X).

This upper-bound is calculated very efficiently in the pro-

posed CLS-Miner algorithm, and is used for pruning the

search space based on the following properties.

Property 13 Let there be an itemset X and an item y, such

that y � i,∀i ∈ X. The value con(X, y) is no less than the

sum of iutil and rutil values in the utility-list of Xy, i.e.,

con(X, y) �
∑

ul∈UL(Xy)(ul.iutil + ul.rutil).

Proof Let UL(xy) denote the subset of the utility-list of x

corresponding to transactions where y does not appear. In

other words, UL(xy) = {ul|ul ∈ UL(x) ∧ y � Tul.tid}. Hence,

con(X, y) =
∑

ul∈UL(X)

(ul.iutil+ul.rutil)−cdi f f (X, y) × ulmin(X);

con(X, y) =
∑

ul∈UL(Xy)

(ul.iutil + ul.rutil)

+
∑

ul∈UL(Xy)

(ul.iutil + ul.rutil)

− cdi f f (X, y) × ulmin(X).

Let LH = con(X, y) −∑ul∈UL(Xy) (ul.iutil + ul.rutil). Then,

LH =
∑

ul∈UL(Xy)

(ul.iutil + ul.rutil) − cdi f f (X, y) × ulmin(X);

LH �
∑

ul∈UL(Xy)

ulmin(X) − cdi f f (X, y) × ulmin(X);

LH � di f f (X, Xy) × ulmin(X) − cdi f f (X, y) × ulmin(X);

LH � (di f f (X, Xy) − cdi f f (X, y)) × ulmin(X) � 0.

Therefore, con(X, y) �
∑

ul∈UL(Xy)(ul.iutil + ul.rutil). �

Property 14 (LBP) Let there be an itemset X and an item

y � i,∀i ∈ X. If con(X, y) < minutil, then Xy and all its tran-

sitive extensions are low-utility itemsets.
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Proof As con(X, y) �
∑

ul∈UL(Xy)(ul.iutil + ul.rutil) (by

Property 13), and con(X, y) < minutil, it follows that
∑

ul∈UL(Xy) (ul.iutil+ul.rutil) < minutil. Therefore, by Property

4, the itemset Xy and its transitive extensions are low-utility

itemsets. �

The above property is used to prune the search space. For a

given itemset X, if con(X, y) is less than minutil, then Xy and

all its transitive extensions are low-utility itemsets, and can

thus be pruned. As will be shown in the experimental eval-

uation of this paper, the LBP strategy can greatly reduce the

number of extensions considered by the proposed CLS-Miner

algorithm and, thus, also reduces its running time since the

construction of numerous utility-lists can be avoided.

The proposed CLS-Miner algorithm integrating the novel

LBP strategy and the other strategies presented throughout

Section 4 is presented in Section 5.

4.4 Pre-check method for fast subsumption checks and clo-

sure computations

This section introduces a fourth technique that will be used

to improve the performance of the proposed algorithm (de-

scribed in the next section). This technique reduces the cost

of subsumption checks and closure computations. These two

operations are performed by most closed pattern mining algo-

rithms to determine whether an itemset is closed and other-

wise to directly obtain its closure (and, thus, prune the search

space). Because both subsumption checks and closure com-

putations are typically repeatedly performed by closed pat-

tern mining algorithms, it is crucial to implement these oper-

ations efficiently in a CHUIM algorithm. In this section, we

propose an efficient pre-check method to optimize both oper-

ations. Recall that closure computation consists of calculat-

ing the smallest closed itemset that is a superset of a given

itemset. The subsumption relation is defined as follows.

Definition 18 (Subsume [20, 22]) Let there be two item-

sets X and Y. The itemset X is said to subsume Y if and only

if Y ⊂ X and sup(Y) = sup(X).

For example, bce subsumes bc because bc ⊂ bce and

sup(bc) = sup(bce) = 3.

Definition 19 (PreSet and PostSet [22]) Let there be an

itemset Px = P ∪ x, where P is a closed itemset and x is

an item such that x � P. The PreSet of Px is defined as

PreSet(Px) = {y ∈ I|y � Px and y ≺ x}. The PostSet of

Px is defined as PostSet(Px) = {y ∈ I|y � Px and y � x}.

When an itemset Y is generated by the algorithm, a sub-

sumption check is performed to determine whether Y is a sub-

set of a previously found closed itemset. If yes, it follows that

Y is non-closed and that the supersets of Y do not need to be

explored as their closure has already been discovered [22]. To

implement subsumption checks efficiently, a challenge is that

the set of previously found closed itemsets becomes larger

as more CHUIs are found by the algorithm. Thus, each new

itemset needs to be compared with an ever-increasing set of

closed itemsets. To avoid the performance degradation that

would result from such an implementation of subsumption

checking, it is necessary to implement this operation more

efficiently.

In the CHUD [20] and CHUI-Miner [26] algorithms, sub-

sumption checks are implemented by the IsS ubsumedCheck

procedure presented in Algorithm 3. To further optimize this

procedure, the following paragraphs introduce a novel prop-

erty establishing a relationship between the Tid sets of a pair

of itemsets and the subsumption relation between these item-

sets. This property is the basis for the efficient fast subsump-

tion checking procedure proposed in this paper.

Algorithm 3 IsSubsumedCheck procedure

Input: An itemset Y , PreSet(Y);

Output: Return true if Y is subsumed by an already mined CHUI. Oth-
erwise, return f alse.

1: for each (item J ∈ PreSet(Y)) do

2: if (TidSet(Y) ⊆ TidSet(J)) then

3: Return true;

4: end if

5: end for

6: Return f alse;

Property 15 (Subsume relation) Let there be two itemsets

J and Y. Furthermore, assume that the Tid sets TidSet(Y) and

TidSet(J) are sorted in ascending order of Tids. Moreover,

let TidSeti(X) denote the Tid value stored at position i in the

Tid set of an itemset X. If Y is subsumed by J, then the three

following inequalities must hold:

(1) |TidSet(Y)| � |TidSet(J)|.
(2) TidSeti(Y) � TidSeti(J),∀i, 1 � i � |TidSet(Y)|.
(3) TidSeti−di f f (J,Y)(Y) � TidSeti(J),∀i, |TidSet(J)| −
|TidSet(Y)| < i � |TidSet(J)|.

Proof As Y is subsumed by J, it follows that TidSet(Y) ⊆
TidSet(J) and, thus, that |TidSet(Y)| � |TidSet(J)|. We

prove that inequality (2) holds by showing that �i, 1 � i �
|TidSet(Y)| if TidSeti(Y) < TidSeti(J). Assume that ∃i, 1 �
i � |TidSet(Y)| and TidSeti(Y) < TidSeti(J). The integer m is



14 Front. Comput. Sci.

the smallest position that satisfies TidSetm(Y) < TidSetm(J).

- If m = 1, then TidSet1(Y) < TidSet1(J), and therefore

TidSet1(Y) � TidSet(J). This contradicts the statement

that Y is subsumed by J.

- If m > 1, as TidSetm(Y) < TidSetm(J) and

TidSetm(Y) > TidSet(m−1)(Y) � TidSet(m−1)(J),

it follows that TidSet(m−1)(J) < TidSetm(Y) <

TidSetm(J) ⇒ TidSetm(Y) � TidSet(J), which contra-

dicts the statement that Y is subsumed by J.

Therefore, �i, 1 � i � |TidSet(Y)| such that TidSeti(Y) <

TidSeti(J), inequality (2) holds. The inequality (3) can be

proven in a similar way. �

Both the proposed CLS-Miner and the CHUI-Miner [26]

algorithms are utility-list-based algorithms. Therefore, the

subsumption check operation can be costly. To perform sub-

sumption check efficiently, we introduce some improvements

based on Property 15. These improvements consist of check-

ing three conditions before performing a subsumption check.

• First, the length of the utility lists of Y and J is com-

pared. If the length of the utility-list of Y is greater than

that of J, Y is not subsumed by J.

• Second, if there exists a Tid in TidSet(Y) that is smaller

than that at the same position in TidSet(J), then Y is

also not subsumed by J.

• Third, if there exists a Tid in TidSet(Y) that is greater

than that at the same position in TidSet(J) when read-

ing the Tid sets from right to left, then Y is also not

subsumed by J.

If an itemset Y passes these three conditions, then the

proposed algorithm performs the subsumption check as in

CHUI-Miner. Otherwise, the subsumption check is not per-

formed as it follows by Property 15 that Y is not subsumed

by X. The three proposed pre-check conditions are espe-

cially effective for sparse or short transaction datasets, as

will be shown in the experimental evaluation. The detailed

pseudo-code of the modified subsumption checking method

is presented in Algorithm 4. It relies on a procedure called

precheckContain, which checks the three conditions. This

procedure is also used in the main search procedure of the

proposed algorithm for calculating the closure of itemsets.

The proposed algorithm is described in the next section.

5 Proposed CLS-Miner algorithm

This section first presents the CLS-Miner algorithm and

Algorithm 4 The improved IsSubsumedCheck procedure

Input: An itemset Y and PreSet(Y);

Output: Return true if Y is subsumed by an already mined CHUI. Oth-
erwise, return f alse;

1: for each (item J ∈ PreSet(Y)) do

2: if preCheckContain(J, Y) then

3: if (TidSet(Y) ⊆ TidSet(J)) then

4: Return true;

5: else

6: Return f alse;

7: end if

8: else

9: Return f alse;

10: end if

11: end for

Procedure preCheckContain(X,Y)

Input : X: an itemset, Y: an itemset;

Output : Return true if X potentially contains Y . Otherwise, return f alse;

1: lenX = |TidSet(X)|;
2: lenY = |TidSet(Y)|;
3: if (lenX < lenY) then

4: Return f alse;

5: end if

6: for (int i = 0; i < lenX; i + +) do

7: if (TidSet(X).getT id(i) > TidSet(Y).getT id(i)) then

8: Return f alse;

9: end if

10: if (TidSet(X).getT id(lenX− i) < TidSet(Y).getT id(lenY − i)) then

11: Return f alse;

12: end if

13: end for

14: Return true;

discusses its complexity. Then, a detailed example of how

the algorithm works on the running example database is pre-

sented.

5.1 Designed algorithm

The proposed CLS-Miner algorithm finds closed itemsets ef-

ficiently by employing the search space browsing and clo-

sure computation techniques of the DCI_CLOSED algorithm

[22], and by integrating the four novel techniques presented

in Section 4. CLS-Miner applies the efficient Chain-EUCP

strategy to prune the search space using the EUCS structure.

This strategy can greatly reduce the number of join operations

that are performed for constructing utility-lists, similarly to

the less-general EUCP strategy used in previous work [11].

CLS-Miner also applies the designed LBP strategy to re-

duce the search space. Moreover, the concept of coverage and

pruning using the coverage is integrated into closure compu-

tation to find potential CHUIs. In addition, CLS-Miner uti-
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lizes the proposed fast subsumption checking method. The

main procedure of CLS-Miner is given in Algorithm 5.

Algorithm 5 CLS-Miner

Input: a transaction database D and the minutil threshold;

Output: the complete set of CHUIs;

1: Scan D to calculate the TWU of each single item;

2: Let I∗ be the list of items having TWU values no less than minutil;

3: Let � be the ascending order of TWU values on items in I∗;
4: Scan D to build the utility-list of each item i ∈ I∗ and the EUCSD

structure;

5: Call CoverageConstruct();

6: Search-CHUI (∅, ∅, the utility-list of items ∈ I∗, EUCS D);

Procedure Search-CHUI()

Input: P: an itemset, PreSet(P): a set of pre-extensions of P, PostSet(P):
a set of post-extensions of P, and the EUCS structure;

Output: the complete set of CHUIs;

1: for each itemset x ∈ PostSet(P) do

2: Px←− P ∪ x;

3: Construct the utility list of Px, UL(Px);

4: if (S UM(UL(Px).iutils + S UM(UL(Px).rutils) � minutil) then

5: if IsS ubsumedCheck(Px, PreSet(P)) = f alse then

6: postSetNew ←− ∅;

7: Declare variable passed = true;

8: for each itemset y ∈ PostSet(P) and y � x do

9: if con(Px, y) < minutil then

10: continue;

11: end if

12: if (∃i ∈ Px such that EUCS (i, y) < minutil) then

13: continue;

14: end if

15: if (y ∈ Cov(x)) OR (preCheckContain(Px,y) AND
TidSet(Px) ⊆ TidSet(y)) then

16: Px←− Px ∪ y;

17: Construct the utility list of Pxy, UL(Pxy);

18: if (S UM(UL(Pxy).iutils + S UM(UL(Pxy).rutils) <
minutil) then

19: passed = f alse;

20: break;

21: end if

22: else

23: postSetNew ←− postSetNew ∪ y;

24: end if

25: end for

26: if passed = true then

27: if S UM(UL(Pxy).iutils > minutil then

28: Output Pxy;

29: end if

30: PreSet(Pxy) ←− PreSet(P);

31: PostSet(Pxy) ←− postSetNew;

32: Search-CHUI(Pxy, PreSet(Pxy), PostSet(Pxy), EUCS D);

33: end if

34: PreSet(P)←− PreSet(P) ∪ x;

35: end if

36: end if

37: end for

The proposed algorithm first scans the database D to cal-

culate the TWU values of all items (line 1). Then, the algo-

rithm identifies the set I∗ of all items having a TWU value

no less than minutil (line 2). Items not in this set are hence-

forth ignored because they cannot be part of a HUI accord-

ing to Property 2. The TWU values of these items are then

used to establish a total order � on items, which is the or-

der of ascending TWU values (line 3). A second database

scan is then performed. During this database scan, items in

transactions are reordered according to the total order �, the

utility-list of each item i ∈ I∗ is built and the EUCS struc-

ture is built (line 4). The coverage relation is then constructed

by calling the CoverageConstruct procedure (line 5). Then,

the recursive Search-CHUI procedure is called to recursively

search for CHUIs using a depth-first search similar to the

DCI_CLOSED [22], CHUD [20], and CHUI-Miner [26] al-

gorithms. The procedure takes as input parameters the cur-

rent itemset to be extended P, the two sets of items PreSet(P)

and PostSet(P), and the EUCS structure. The procedure out-

puts all the CHUIs that strictly contain P by analyzing all the

valid closed itemsets that are obtained by extending P with

the items in its PostSet.

The main steps of the Search-CHUI procedure are as fol-

lows. For each itemset x of PostSet(P), an itemset Px =

P ∪ x is created, denoted by Px, and its utility-list UL(Px)

is built using Algorithm 1 (lines 2 and 3). If the sum of

the iutil and rutil values in the utility-list of Px is no

less than minutil, then extensions of Px will be explored

(line 4). Before exploring these extensions, the procedure

IsS ubsumedCheck(Px, PreSet(P)) is called to check whether

Px is included in previously found closed itemsets. If yes,

then supersets of X do not need to be explored (line 5). If

no, the search procedure tries to merge Px with each item

y ∈ PostSet(P) such that y � x to form a larger itemset Pxy.

The variable postSetNew stores a set of items called post-

set items, which can be appended to Pxy to generate poten-

tial CHUIs. This variable is initialized to the empty set. A

variable name passed is also used to mark an extension Pxy

as a potential CHUI (lines 6 and 7). Before constructing the

utility-list of Pxy, the algorithm checks whether the two fol-

lowing conditions are satisfied: (i) con(Px, y) is no less than

minutil (lines 9–11), and (ii) x and y co-occur and pass the

pruning condition of the Chain-EUCP strategy (lines 12–14).

If these conditions are satisfied, the search procedure checks

whether the coverage relation is respected and if y belongs

to the closure of Px (line 15). Then, the utility-list of Pxy

is constructed (line 17). If the sum of the iutil and rutil val-

ues in the utility-list of Pxy is less than minutil, this means
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that Pxy and its transitive extensions are low-utility itemsets.

Hence, the search procedure stops adding items to Pxy to not

generate its extensions (lines 18–20). Otherwise, y is added

to postSetNew (line 22). If Pxy is a potential CHUI and its

utility is no less than minutil, it is output (lines 26–29). The

Search-CHUI procedure is then recursively called to continue

exploring the search space (line 32). Finally, the item x is

added to PreSet(P) (line 34). When the proposed algorithm

terminates, all the CHUIs in the database have been obtained.

We next prove that the algorithm is correct and complete.

Theorem 1 The proposed CLS-Miner algorithm is correct

and complete at mining all CHUIs.

Proof To demonstrate that the algorithm finds all and only

the CHUIs, we must first show that the algorithm can find

all closed itemsets. This is clear since the proposed algo-

rithm adopts the search procedure of the DCI_CLOSED algo-

rithm [22] for closed itemset mining. This procedure is also

employed by the CHUD [20] and CHUI-Miner [26] algo-

rithms. Its search space browsing technique enumerates all

possible itemsets. Using the PostSet set guarantees that the

complete set of potential closed itemsets will be obtained,

whereas the PreSet set guarantees that all duplicate closed

itemsets will be pruned by the procedure IsSubsumedCheck().

Hence, the search procedure is correct and complete for find-

ing the closed itemsets and eliminating all non-closed item-

sets [22].

Then, we must show that the algorithm finds all itemsets

that are HUIs. To calculate the utilities of itemsets, the CLS-

Miner algorithm employs the utility-list structure and Prop-

erty 3 [9]. It has been shown previously that this property is

correct for calculating the utility of itemsets [9]. Thus, CLS-

Miner can correctly calculate the utility of itemsets and iden-

tify only the HUIs.

Having established that the search procedure of the algo-

rithm can find all itemsets that are closed and high utility, we

must lastly show that the various pruning techniques used in

CLS-Miner to enhance its performance do not prune HUIs.

The basic pruning strategy used in CLS-Miner is Property 4.

This property was demonstrated to prune only low-utility

itemsets in previous work [9]. Moreover, the CLS-Miner

also integrates three novel pruning strategies presented in

Section 4. These strategies are based on Properties 8, 11, and

13, respectively. These properties have been proven to be cor-

rect in Sections 4.1, 4.2, and 4.3, respectively.

Finally, it should be noted that the novel pre-check method

for fast subsumption checking and closure computation, pro-

posed in Section 4.4, is correct and has no influence on the

output (by Property 15).

Hence, based on the above discussion, it can be concluded

that the proposed CLS-Miner algorithm is correct and com-

plete for mining all CHUIs. �

5.2 Complexity of CLS-Miner

In this subsection, we analyze the complexity of the pro-

posed CLS-Miner algorithm by first considering each main

step of the algorithm. Then, the global worst-case complex-

ity of CLS-Miner is discussed and is compared with the com-

plexity of the state-of-the-art CHUD and CHUI-Miner algo-

rithms.

1) Calculating the TWU of single items The CLS-

Miner algorithm first calculates the TWU values of all

items. This requires a single database scan, and thus

takes O(n × w) time, where n is the number of trans-

actions and w is the average transaction length.

2) Generating I∗ Then, CLS-Miner stores all items hav-

ing TWU values no less than the minutil threshold in

a list called I∗. This list is then sorted in ascending or-

der of TWU values. This operation takes in the worst

case O(m log m) time, where m is the number of distinct

items in the database.

3) Constructing the utility-lists of items in I∗ There-

after, CLS-Miner builds the utility-list of each item in

I∗. The utility-list of an item contains an entry with

three fields for each transaction where the item appears.

In the worst case, each item appears in all transactions.

Thus, the worst-case space complexity for the initial

utility-lists is O(|I∗| × m). Building these initial utility-

lists requires a single database scan, and thus takes

O(n × w) time. Constructing the utility-lists of each k-

itemset (k > 1) using the utility-list construction proce-

dure (Algorithm 1) can be performed in linear time [9].

4) Constructing the EUCS structure Another impor-

tant step of the CLS-Miner algorithm is to build the

EUCS. This operation is very fast as it also requires a

single database scan. Furthermore, this structure occu-

pies a small amount of memory bounded by |I∗| × |I∗|.
However, in practice, this structure is much smaller be-

cause usually limited number of pairs of items co-occur

in real-life transaction databases (see Section 6). Thus,

this structure can be implemented as a sparse matrix

rather than a full triangular matrix. In our implementa-

tion, the EUCS is implemented as a hash map, where
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each entry has an item x as key, and another hashmap

as value, which maps each item y that co-occurs with x

to the value TWU(xy).

5) Constructing the coverage relation Another oper-

ation performed by CLS-Miner is calculating the cov-

erage of items in I∗ using the EUCS structure. In the

worst case, each item is compared with each item, and

each item appears in all transactions. Thus, the worst-

case time complexity of this operation is O(|I∗|2 × m2).

However, in practice there is a limited number of pairs

of items that co-occur in transactions having the same

TWU. Thus, calculating the coverage is very fast.

6) Discovering all CHUIs The last major operation per-

formed by CLS-Miner is the discovery of all CHUIs

by recursively applying the Search-CHUI() procedure.

The complexity of this procedure is proportional to the

number of times that the IsSubsumedCheck() procedure

is called, which is proportional to the number of item-

sets in the search space that are not pruned by the al-

gorithm. In the worst case, no itemsets are pruned by

the pruning strategies and, thus, all the subsets of |I∗|
must be considered by the algorithm. There are 2I∗ − 1

subsets. Thus, the worst-case complexity is O(2|I∗| − 1).

Therefore, the worst-case time complexity of the CLS-Miner

algorithm (Algorithm 5) is O(2|I∗|), which is roughly O(2|I|).
It can, thus, be said that CLS-Miner is a pseudo-polynomial

algorithm as its time complexity is roughly linear with the

number of patterns that it visits in the search space. The num-

ber of patterns in the search space is determined by the effec-

tiveness of the pruning strategies employed by CLS-Miner.

Among all the operations performed by CLS-Miner, the dis-

covery of CHUIs using the Search-CHUI() procedure is by

far the most costliest in terms of execution time. Other oper-

ations such as calculating the TWU of items, generating I∗,
creating the initial utility-lists, and constructing the coverage

relation is generally not costly and has a negligible impact

on the overall runtime of CLS-Miner as these operations are

only performed once.

Having discussed the complexity of the proposed algo-

rithm, in this paragraph we briefly discuss the complexity of

the state-of-the-art CHUD [20] and CHUI-Miner [26] algo-

rithms. CHUD is a two-phase algorithm. In the first phase,

CHUD finds candidate CHUIs using a depth-first search. In

the worst case, no itemsets are pruned and CHUD visits all

itemsets in the search space, which has a time complexity of

roughly O(2|I|). Then, CHUD calculates the exact utility of

each candidate in the second phase by scanning the database

to eliminate low-utility itemsets. This process has a worst-

case time complexity of O(|I|×n×w×v), where v is the aver-

age itemset length, as each itemset must be compared with

each transaction. Thus, the worst-case time complexity of

CHUD is roughly O(2|I|). Similarly, it can also be established

that the worst-case time complexity of CHUI-Miner [26] is

also roughly O(2|I|).

Although a worst-case time complexity of O(2|I|) may

seem high, it is typical of the complexity of efficient algo-

rithms in the field of itemset mining, as the number of op-

erations usually depends on the number of itemsets in the

search space, which depends on the threshold value set by

the user [3,4]. However, in practice, the search space is often

much smaller than 2|I| − 1 itemsets as not all items co-occur

in a database. In the experimental evaluation section of this

paper, it will be demonstrated that in practice the CLS-Miner

algorithm outperforms the CHUD [20] and CHUI-Miner [26]

algorithms on six benchmark datasets. One of the main rea-

son is that CLS-Miner integrates novel pruning strategies al-

lowing a larger part of the search space to be pruned. More

specifically, the proposed Chain-EUCP and LBP strategies

pruned up to 92.5% of the candidate CHUIs in our exper-

iments. Thus, although the worst-case time complexity is

roughly the same for the three algorithms, CLS-Miner has to

process fewer itemsets in the search space. Other reasons for

the excellent performance of CLS-Miner is that it incorpo-

rates a novel fast pre-check method, and that it also performs

a single phase, thus avoiding the drawback of two-phase al-

gorithms such as CHUD [20].

5.3 Illustrative example

To give a better understanding of how the proposed algorithm

works, this subsection provides a detailed example of how

the CLS-Miner algorithm is applied for the running example.

Consider the database D of the running example depicted in

Table 1, the corresponding unit profit values of items (Table

2), and that minutil = 30 (or, equivalently, r_minutil = 31%).

Mining CHUIs using CLS-Miner is performed as follows.

1) The database D is scanned to calculate the TWU of each

item. The result is shown in Table 3.

2) The list I∗ of single promising items is created and

sorted in ascending order of TWU values. The result

is I∗ = { f , g, d, b, a, e, c}.
3) The database D is scanned again to construct the utility-

list of each single item in I∗ (Fig. 2) and the EUCS D is
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built (depicted in Fig. 1).

4) The coverage of each promising item is calculated (Ta-

ble 5).

Table 5 The set of promising items with their support counts and
coverage

1-itemset(P) { f } {g} {d} {b} {a} {e} {c}
coverage(P) {d, b, a, e, c} {e, c} {c} {e, c} {c} {c}
sup(P) 1 2 2 3 3 3 4

5) The Search-CHUI procedure begins its recursive search

for CHUIs using item f . The set PreSet is initially

empty and PostSet = {g, d, b, a, e, c}. The procedure ex-

plores the search space of CHUIs that are supersets of f

by appending items from the PostSet to f . According to

the utility list of f (shown in Fig. 2), the sum of the iutil

and rutil values of f is equal to 30, which is no less than

minutil. Thus, extensions of f should be considered as

potential HUIs. As no item precedes f according to the

total order �, the set PreSet is empty and, thus, f is not

subsumed by any items. Then, the algorithm considers

appending items to f to compute its closure. The set

PostSet of the closed itemset beginning with f is ini-

tialized to the empty set. Then, items are appended to f

to try to generate the closure of f . Before appending an

item to f , pruning conditions are checked to determine

whether the resulting itemset could be a HUI. In this

example, the algorithm first considers appending g to f

to generate the itemset f g. The conditions are checked,

and f g is pruned by the Chain-EUCP strategy, because

there is a tuple ( f , g,0) in the EUCS D, which means that

these two items do not co-occur in the database. Then,

the algorithm considers appending d to f to create the

itemset f d. That itemset is not pruned by the LBP strat-

egy (as con( f d) = 30 - 0 × 30 = 30 = minutil) and the

Chain-EUCP strategy. Then, because d is in the cover-

age of f (Table 5), the utility-list of f d is constructed,

that is ul(fd) = {(T3, 17, 13)}. Because sum(ul(fd).iutils)

+ sum(ul(fd).rutils) = 17 + 13 = 30 = minutil, f d is

considered as a potential HUI (a candidate). CLS-Miner

next considers appending b, a, e, and c in the same way.

This results in the CHUI f dbaec, having the utility-list

ul( f dbaec) = {(T3, 30, 0)}. Because the utility of the

itemset f dbaec is 30, which is no less than the minutil

threshold, it is a CHUI and it is output. Then, f is added

to the set PreSet( f ) and PostSet( f dbaec) =∅. The loop

with item f ends.

6) Next, CLS-Miner searches for CHUIs starting with item

g. This process is similar to Step 5, with PreSet={ f }
and PostSet={d, b, a, e, c}. The sum of the iutil and rutil

values of ul(g) is (7 + 31 = 38) > 30 = minutil. Then,

it is found that g is not subsumed by the already-mined

CHUI f dbaec. Thus, the algorithm considers extend-

ing g. The extension gd fails to pass the test of the

Chain-EUCP strategy and it is, thus, pruned. The ex-

tensions gb and ga are also pruned in the same way.

Next, the algorithm considers appending item e to g.

The resulting itemset ge is not pruned by the two strate-

gies, and it is found that e belongs to the coverage

of g. The utility-list of ge is then constructed, that

is ul(ge) = {(T2, 17, 10)(T5, 5, 6)}. Because ge may

lead to a closed itemset, it is extended with item c

in the same way. The utility-list of the itemset gec is

ul(gec) = {(T2, 17, 10)(T5, 7, 4)}. However, u(gec) = 24

< minutil = 30 and thus gec is not a CHUI. Then,

PreSet(gec) = { f , g}, PostSet(gec) = ∅, and the loop

for g ends.

7) The remaining items are processed in the same way. Fi-

nally, the set of CHUIs is CH = {abcde f :30, bcde:40,

bce:31, ace:31}, where the number next to each itemset

indicates its utility.

6 Experimental evaluation

This section presents an extensive experimental evaluation

to assess the performance of the proposed CLS-Miner al-

gorithm, including its pruning strategies and the pre-check

method for fast subsumption checks and closure computa-

tions. The performance of CLS-Miner is compared with the

state-of-the-art CHUI-Miner [26] and CHUD [20] algorithms

for CHUIM. CHUI-Miner was proposed recently for min-

ing CHUIs, and it was shown to outperform the two-phase

Fig. 2 Utility-lists of promising items
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CHUD algorithm [20,26]. Experiments were performed on a

computer equipped with a 64-bit Core i5, 2.4 GHz Intel Pro-

cessor and 8 GB of RAM, running Windows 7 SP1 64-bit

as the operating system. All the compared algorithms were

implemented by extending the SPMF open-source java li-

brary [35] and ran on the J2SDK 1.7.0. Both real and syn-

thetic datasets were used in the experiments. The character-

istics of the datasets used in the experiments are given in Ta-

ble 6, where #Trans, #Items, and #Avg indicate the number

of transactions, the number of distinct items, and the aver-

age transaction length, respectively. The Mushroom, Retail,

Chess, and Connect datasets were obtained from the FIMI

Repository. The Foodmart dataset is the Microsoft foodmart

2000 database, and the ChainStore dataset was obtained from

the NUMineBench software distribution [36].

Table 6 Details of the datasets

Dataset #Trans #Items #Avg Type

Mushroom 8,124 119 23.0 Dense

Chess 3,196 75 37 Dense

Connect 67,557 129 43.0 Dense

Retail 88,162 16,470 10.3 Sparse

Foodmart 4,141 1,559 4.4 Sparse

ChainStore 1,112,949 46,086 7.3 Sparse

The datasets have been selected because they include

dense, sparse, and large datasets, and thus represent the main

types of data seen in real-life applications. These datasets are

also the main benchmark datasets used in the HUIM liter-

ature. All datasets except Foodmart and ChainStore do not

include internal and external utility values. Thus, for these

datasets, the internal and external utilities have been gener-

ated randomly in the [1, 5] and [1, 10] intervals, respectively,

using a log-normal distribution, as in previous works [20,26].

6.1 Evaluation of the Chain-EUCP strategy

The first experiment was performed to evaluate the proposed

Chain-EUCP strategy. In this experiment, CLS-Miner with

the Chain-EUCP strategy (denoted as CLS-MinerCE) was

compared with a version of CLS-Miner without the Chain-

EUCP strategy (denoted as CLS-MinerNoCE). The algorithms

were run on the Retail, ChainStore, Chess, and Connect

datasets. The parameter minutil was varied and the number of

candidates generated by the two versions of CLS-Miner was

measured. Table 7 indicates the number of candidates gen-

erated by CLS-MinerCE and CLS-MinerNoCE on the Retail

and ChainStore datasets. Results for the Chess and Connect

datasets are provided in Table 8.

It can be observed that this strategy is quite effective on

sparse datasets. Furthermore, it can be observed that when

minutil is set to small values, few candidates are pruned. This

is reasonable because fewer pairs of items in the EUCS struc-

ture meet the condition EUCS (x, y) < minutil when minutil

is set to a small value. Thus, fewer candidates are pruned.

However, the Chain-EUCP strategy is very effective and us-

ing this strategy, CLS-MinerCE considers up to 92% less can-

didates than CLS-MinerNoCE .

Table 7 Number of candidates generated by CLS-Miner with/without the
Chain-EUCP strategy on sparse datasets

Minimum Retail ChainStore

utility/%
CLS-

MinerNoCE

CLS-

MinerCE

CLS-

MinerNoCE

CLS-

MinerCE

0.1 4,643,301 3,058,464 1,397,708 105,537

0.08 7,167,652 5,212,220 3,761,895 597,633

0.06 10,923,546 8,589,355 9,916,894 3,086,107

0.04 18,225,180 15,358,692 26,304,356 13,457,757

0.02 36,600,558 32,485,724 75,824,402 54,537,511

0.01 78,485,602 69,048,615 158,501,880 130,304,550

Table 8 Number of candidates generated by CLS-Miner with/without the
Chain-EUCP strategy on dense datasets

Minimum Chess Connect

utility/%
CLS-

MinerNoCE

CLS-

MinerCE

CLS-

MinerNoCE

CLS-

MinerCE

50 0 0 0 0

40 587 500 31 16

30 22,828 22,625 1,097 1,051

20 2,650,790 2,650,589 17,479 17,406

10 49,493,242 49,492,939 4,359,633 4,359,126

6.2 Evaluation of the LBP strategy

The second experiment was conducted to evaluate the effec-

tiveness of the proposed LBP strategy at pruning the search

space. This experiment was carried on the ChainStore, Re-

tail, Chess, and Connect datasets. A version of CLS-Miner

with the LBP strategy (denoted as CLS-MinerLbp) was com-

pared with a version of CLS-Miner without the LBP strat-

egy (denoted as CLS-MinerNoLbp). The parameter minutil was

varied and the number of candidates was measured for the

two versions of CLS-Miner. Table 9 compares the number of

candidates generated by CLS-MinerLbp and CLS-MinerNoLbp

on the ChainStore and Retail datasets, which are both sparse

datasets. Results for the dense Chess and Connect datasets

are provided in Table 10. These results show that candidate

pruning using the LBP strategy can be very effective as it can

prune up to 92.5% of the candidates.

6.3 Evaluation of pruning effectiveness

The influence of the two main pruning strategies Chain-
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EUCP and LBP on the overall execution time of CLS-Miner

was also evaluated. Figure 3 shows the execution times when

each pruning strategy is applied individually and when both

strategies are applied together in CLS-Miner. The perfor-

mance of the Chain-EUCP and LBP strategies vary for dif-

ferent datasets. However, overall, it can be observed that the

Chain-EUCP strategy is more effective than the LBP strat-

egy on sparse datasets, and that the overall best performance

is obtained when combining both pruning strategies for all

datasets. The above analysis confirms the effectiveness of the

proposed pruning strategies.

Table 9 Number of candidates generated by CLS-Miner with/without the
LBP strategy on sparse datasets

Minimum Retail ChainStore

utility/%
CLS-

MinerNoLbp

CLS-

MinerLbp

CLS-

MinerNoLbp

CLS-

MinerLbp

0.1 4,652,729 3,058,464 1,409,186 105,537

0.08 7,178,729 5,212,220 3,785,342 597,633

0.06 10,933,113 8,589,355 9,964,155 3,086,107

0.04 18,250,665 15,385,692 26,397,614 13,457,757

0.02 36,639,799 32,485,724 75,849,670 54,537,511

0.01 78,591,959 69,048,615 158,728,749 130,304,550

Table 10 Number of candidates generated by CLS-Miner with/without the
LBP strategy on dense datasets

Minimum Chess Connect

utility/%
CLS-

MinerNoLbp

CLS-

MinerLbp

CLS-

MinerNoLbp

CLS-

MinerLbp

50 0 0 0 0

40 873 500 140 16

30 23,148 22,625 1,385 1,051

20 2,651,131 2,650,589 17,801 17,406

10 49,501,084 49,492,939 4,359,928 4,359,126

6.4 Evaluation of the pre-check method for subsumption

checking and closure computation

The effectiveness of the proposed pre-check method for fast

subsumption checks and closure computations was also eval-

uated. Recall that a subsumption check consists of determin-

ing whether an itemset is included in a closed itemset that has

already been found, and that closure computation consists of

calculating the closure of an itemset. As mentioned, most

closed itemset mining algorithms repeatedly perform sub-

sumption checking and closure computation. Thus, it is cru-

cial to optimize these operations. An experiment was carried

out to assess the efficiency of the proposed pre-check method

to optimize these two operations. We prepared another ver-

sion of the proposed algorithm, called CLS-MinerNoPreCheck,

where the pre-check method used for subsumption checking

Fig. 3 Effect of pruning strategies. (a) Retail; (b) ChainStore; (c) Chess;
(d) Connect

and closure computation is deactivated. A comparison of the

execution times of both versions of the algorithm is shown in

Fig. 4 for the same datasets. It can be seen in this figure that

the optimized version is up to 50% more efficient.

6.5 Efficiency of the proposed algorithm

This section compares the efficiency of the proposed CLS-
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Fig. 4 Runtime of CLS-Miner with/without preCheckContain method. (a) Mushroom; (b) Chess; (c) Connect; (d) Retail; (e) Foodmart; (f)
ChainStore;

Miner algorithm with CHUD [20] and CHUI-Miner [26]

on the six datasets. CHUD is the first algorithm for min-

ing CHUIs. CHUD includes three strategies called REG,

RML, and DCM that greatly enhance its performance. How-

ever, CHUD is a two-phase algorithm. Therefore, it gener-

ates a huge number of candidates, and its repeatedly scans

the database to calculate their exact utilities as mentioned

above. CHUI-Miner [26] is a one-phase algorithm that relies

on the utility-list structure [9] to mine CHUIs. A drawback

of CHUI-Miner is that it has to fully construct the utility-lists

of all the itemsets in its search space, and this is a costly op-

eration. The proposed CLS-Miner algorithm addresses this

drawback by introducing three strategies to prune low-utility

itemsets before their utility-lists are constructed. CLS-Miner

is also a one-phase algorithm. Therefore, we first compare

the number of utility-list construction operations (candidates)

performed by CHUI-Miner and the proposed CLS-Miner al-

gorithm. Then, a comparison of runtimes and memory con-

sumption of the three algorithms for mining CHUIs is pro-

vided.

The number of candidates generated by the CHUI-Miner

and CLS-Miner algorithms are compared in Fig. 5. It can be

observed that the proposed algorithm can generate far fewer

candidates than CHUI-Miner, especially on sparse and large

datasets such as ChainStore. The number of candidates pro-

duced by the proposed algorithm is about two orders of mag-

nitudes smaller than that of CHUI-Miner.

A comparison of the execution times of the CHUD, CHUI-

Miner, and CLS-Miner algorithms is presented in Fig. 6. Ex-

ecution times include the time for reading the input database,

discovering the patterns, and writing the CHUIs to an output

file. Results show that the proposed CLS-Miner algorithm is

faster than both CHUD and CHUI-Miner. When the minutil

threshold is set to large values, the runtimes of the compared

algorithm are quite similar. However, for small values of the

minutil threshold, there is a big gap between the proposed al-

gorithm and the two previous state-of-the-art algorithms. The

reason for this is as follows. CHUD [20] is a two-phase algo-

rithm. Hence, it suffers from the problem of generating a huge

number of candidates and repeatedly scanning the database

to calculate their utilities, which takes a lot of time. CHUI-

Miner [26] is a single-phase algorithm as the proposed CLS-

Miner algorithm. However, the proposed CLS-Miner algo-

rithm relies on three novel effective pruning strategies that

can prune a large part of the search space. Furthermore, the

CLS-Miner algorithm also employs the efficient pre-check

method to quickly perform subsumption checks and closure

computations, which considerably reduces its execution time.

Table 11 compares the peak memory usage of the three

algorithms for the six datasets when the minutil threshold

is set to the smallest values used in the previous experiment.

All memory measurements were done using the standard Java

API. By consulting this table, it can be found that CHUD con-

sumes the most memory among the three algorithms, on all

datasets. The CHUI-Miner and CLS-Miner algorithms con-

sume the same amount of memory on the Foodmart dataset.

For the remaining datasets, the proposed algorithm slightly

consumes more memory than CHUI-Miner. CHUI-Miner and

CLS-Miner are single-phase algorithms that do not need to

maintain candidates in memory. However, CLS-Miner needs
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Fig. 5 Comparison of the number of candidates generated by CHUI-Miner and CLS-Miner. (a) Mushroom; (b) Chess; (c) Connect; (d) Retail;
(e) Foodmart; (f) ChainStore

Fig. 6 Runtime comparison on different datasets. (a) Mushroom; (b) Chess; (c) Connect; (d) Retail; (e) Foodmart; (f) ChainStore

to store other structures in memory for its pruning strategies

such as the EUCS and the coverage of items. Hence, consid-

ering this, it can be concluded that CLS-Miner has reasonable

performance in terms of memory usage.

6.6 Scalability evaluation

We also performed experiments to assess the scalability of the

proposed algorithm on a synthetic dataset T10I4NXKDYK,

where the number of transactions Y and the number of items

X were varied. For this experiment, the value of the minutil

threshold was fixed to 0.5%, the number of items was var-

ied from 2,000 to 10,000, and the number of transactions

was varied from 100,000 to 500,000. Figure 7(a) shows the

runtimes of the algorithms on the T10I4NXKD100K dataset

when the number of distinct items is varied from 2,000 to

10,000. Figure 7(b) shows the runtimes of the compared al-

gorithms on T10I4N4KDXK when the database size is varied

from 100,000 to 500,000 transactions. It can be observed that

the proposed algorithm has linear scalability with respect to

the number of items and the number of transactions.

In conclusion, the experiments described previously show

that the proposed methods are highly effective and the CLS-

Miner outperforms CHUD and CHUI-Miner.
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Table 11 Comparison of maximum memory consumption /MB

Dataset CHUD CHUI-Miner CLS-Miner

Mushroom 318.7 266.1 329.8

Chess 749.6 134.4 140

Connect 1,967.8 536 620

Retail 390.4 282 305.2

Foodmart 277.8 169.1 169.1

ChainStore 2,698.5 1,259.6 1,402.3

Fig. 7 Scalability of the compared algorithms under different parameter
settings. (a) Varied number of items; (b) varied dataset sizes

7 Conclusion and future work

In this study, we introduced an efficient algorithm called

CLS-Miner for mining CHUIs. The proposed algorithm relies

on the utility-list structure to discover patterns in one phase.

Moreover, to reduce the cost of utility-list intersection oper-

ations of utility-list-based algorithms, CLS-Miner introduces

several novel ideas. First, an improved pruning strategy called

Chain-EUCP based on the estimated utility of pairs of items

was introduced. Second, an efficient LBP strategy was pro-

posed to reduce the search space by pruning low-utility tran-

sitive extensions of itemsets. Third, a novel concept called

coverage was presented to quickly discover the closure of

itemsets and prune low-utility items. These strategies can

prune itemsets without fully constructing their utility-lists.

Finally, a fast pre-check method was introduced to quickly

perform closure computations and subsumption checks. This

method is useful for the problem of mining CHUIs.

An extensive experimental evaluation was conducted to

evaluate the proposed CLS-Miner algorithm and the pro-

posed techniques introduced in this algorithm. Results have

shown that CLS-Miner and its techniques are highly efficient.

In particular, the Chain-EUCP and the LBP strategies can

prune up to 93% of candidates and the pre-check method can

reduce the total runtime by up to 50%. In terms of runtime,

CLS-Miner is up to several orders of magnitude faster than

existing methods for mining CHUIs. A scalability experiment

has also shown that the algorithm has linear scalability with

respect to the number of items and the number of transac-

tions.
In recent years, big data has emerged as an important re-

search topic. Therefore, it is our plan to develop a distributed

version of CLS-Miner that can be run on cloud-computing

platforms for processing huge datasets.
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