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Abstract: A Java-based platform, MoleGear, is developed for de novo molecular design based on the 

chemistry development kit (CDK) and other Java packages. MoleGear uses evolutionary algorithm 

(EA) to explore chemical space, and a suite of fragment-based operators of growing, crossover, and 

mutation for assembling novel molecules that can be scored by prediction of binding free energy or 

a weighted-sum multi-objective fitness function. The EA can be conducted in parallel over multiple 

nodes to support large-scale molecular optimizations. Some complementary utilities such as 

fragment library design, chemical space analysis, and graphical user interface are also integrated 

into MoleGear. The candidate molecules as inhibitors for the human immunodeficiency virus 1 

(HIV-1) protease were designed by MoleGear, which validates the potential capability for de novo 

molecular design. 
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1. Introduction 

Computational chemistry plays an important role in the design of new drug-like molecules [1–

5], catalysts [6–8], and novel solvents of ionic liquids [9–11]. De novo molecular design has been an 

active research area of drug design/discovery over the last decades, and many approaches such as 

LUDI [12], LEA3D [13], Flux [14,15], and pharmacophore-linked fragment virtual screening (PFVS) 

[16] have been developed by using protein and ligand structures. The ligand-based approaches have 

wider applicability, especially when the three-dimensional (3D) structure of the target is not available 

[17]. It should be noted that the chemical space is huge, which makes it difficult to search the 

appropriate structure through the whole space. Thus, strong effort has been put on the development 

of effective heuristic algorithms for the searching and optimization purposes. Evolutionary 

algorithms (EA) mimic natural evolution’s ability to produce functional objects (e.g., structures, 

parameters, and programs) with the use of analogous mechanisms—reproduction, mutation, 

recombination (crossover), and selection. By applying EA to the molecular design fields, a diverse 

chemical space can be searched to provide optimal, or near-optimal solutions to a wide range of 

objectives. So far, many studies have reported the use of EA tools for computer-aided de novo 

molecular design [6, 15, 17–22]. Evolutionary algorithms use fitness functions to determine the 

surviving structures, which will be used in the next generation population. Different fitness functions 

are reported in the de novo design tools, for example, the similarity-driven fragment-based 

evolutionary approach was reported by Kawai et al. [17], and Flux used a similarity index [15]. The 

docking scoring method based on AutoDock [23] and AutoDock Vina [24] (hereafter refers to Vina) 

provides an efficient way to calculate the fitness of structure-based molecules. These approaches can 

generate suitable structures. However, a combination of different fitness functions can potentially 

provide a higher flexibility for de novo design of drug-like molecules. In this work, a multi-objective 

fitness function including both docking score and similarity score is introduced to the evolutionary 

de novo design. A unique Java-based platform, MoleGear is developed based on a Java script using 
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different tools such as Balloon [25], Open Babel [26] and MolConverter/Cxcalc (ChemAxon), and 

AutoDock and Vina. In order to evaluate the functionality of MoleGear, the design of candidate 

molecules of the human immunodeficiency virus 1 (HIV-1) protease inhibitors was conducted. 

Different fitness functions based on the receptor-based and ligand-based scoring strategy as well as 

the combination were used to score the newly designed molecules. Finally, the best candidate 

molecule with a structure and conformation similar to indinavir was discovered. 

2. Results and Discussion 

2.1. Dataset 

The compounds in the National Cancer Institute (NCI) diversity set [27] has been widely used 

in docking-based virtual screening studies [28–30], and specifically as a benchmark dataset for 

comparing AutoDock and Vina in the application of screening for inhibitors that are active against 

human immunodeficiency virus (HIV-1) protease [31–32]. 

A dataset consisting of 1990 compounds selected from around 140,000 compounds in the 

National Cancer Institute diversity set is used for drug design, which covers a broad range of 

chemotypes. The application of fragment library tools on the dataset in MoleGear generates a library 

consisting of 1151 fragments including 599 side chains with one R-group and 552 scaffolds. Among 

those scaffolds, 462 have two R-groups, 75 have three R-groups, 14 have four R-groups, and 1 has 

five R-groups (see the representative graphs graphical presentation in Figure 1). To build up the 

dataset, only the compounds containing the atoms of C, N, O, S, P, F, Cl, Br, and I were selected. The 

fragments that were charged or possessed more than 16 atoms or three fused rings or at least one ring 

with more than 7 atoms were excluded according to self-defined rules. Moreover, the fragments that 

possessed atoms other than C, N, O, and S were also excluded. The same fragmentation routine was 

applied to the structure of indinavir, and 8 fragments (fr.1–fr.8) including 4 scaffolds and 4 side chains 

are obtained as shown in Figure 1. It was found that 284 components in the NCI diversity set cover 

the fragment of fr.1, and at least more than 7 components cover the fragments of fr.2–fr.5. In total, 98 

fragments including those fragments appeared >7 times in the NCI dataset together with the 

fragments of fr.6–fr.8 in Figure 1 were selected for drug design in this work. 

 

 

Figure 1. Fragments split from the structure of indinavir using the fragment library tool of MoleGear 

leading to 4 side chains (fr.1, fr.3, fr.7, and fr.8) that contain single R-group, and the scaffolds of the 

fr.2 and fr.4 have two R-groups, while fr.5 and fr.6 have three R-groups. 

2.2. Case Study—MoleGear for Drug Design  

A simple illustration of HIV-1 protease active site in complex with an indinavir—one of its 

potent and orally bioavailable inhibitors—at a resolution of 2.0 Å (Protein Data Bank (PDB) structure 

1HSG [33]), is shown in Figure 2 (a). One important interaction between the enzyme and the inhibitor 

is the critical hydroxyl group (refers to O2 in Figure 2b) that forms a hydrogen bond to the carboxyl 

groups of the catalytically active aspartic acid. Incorporation of structural isosteres as replacements 

of the hydroxyl group may lead to compounds that are potent and selective to HIV-1 protease. 
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Figure 2. (a) Active site of HIV-1 protease in complex with its inhibitor indinavir (Protein Data Bank 

(PDB) structure 1HSG). Specific interactions between the enzyme and the inhibitor include the 

hydroxyl group (O2 in (b)) hydrogen bonding to the carboxyl groups of the essential Asp 25/25’ 

enzymic residues (hydrogen bonding distances are shown in angstroms), and the amide oxygens (O1 

and O3 in (b)) of the inhibitor hydrogen bonding to the backbone amide nitrogen of Ile 50/50’ via a 

mediating water molecule. (b) Structure of indinavir with the numbering of oxygen atoms. 

The selected dataset was applied to both receptor- and ligand-based evolutionary de novo design 

of the novel inhibitors for HIV-1 protease. For the receptor-based design, the 1HSG HIV-1 protease 

structure obtained from the Protein Data Bank (PDB) [33] was used as the receptor, and the binding 

free energy predicted by docking based on AutoDock 4.2 was used to estimate the fitness of the 

candidate structures. For the ligand-based design, the similarity to the indinavir structure based on 

the 82 descriptors covering seven 3D and eight 2D categories (see Table 1) was used as fitness 

function. Both the receptor- and ligand-based designs used a population size of 100 individuals and 

maximum 30 generations, and each type of design was repeated 6 times using different random 

numbers. Ideally, the indinavir structure should be found by the EA runs as all the related fragments 

are included. However, this is almost impossible in practice due to a huge combinatorial space. Thus, 

we only inspect the cases in which all relevant fragments occur in the generations. The occurrences 

of each indinavir related fragment were averaged among the 6 experiments along with the 

generations, as shown in Figure 3 (a) and Figure 4, respectively. 

Table 1. Molecular descriptors used in ligand-based design of the novel HIV-1 protease inhibitors. 

Category Molecular descriptors 

3D Charged partial surface area (CPSA) [34] 

 Gravitational index [35] 

 Molecular length to breadth ratio 

 Molecular distance edge (MDE) [36] 

 Moment of inertia 

 Geometrical shape coefficients of radius–diameter diagram [37] 

 Weighted holistic invariant molecular (WHIM) descriptors [38] 

2D Topological polar surface area (TPSA) [39] 

 Topological shape coefficients of radius–diameter diagram  

 XLogP [40] 

 Polarizability differences between all bonded atoms 

 Numbers of hydrogen bond acceptors 

 Numbers of hydrogen bond donor  

 Numbers of atoms 

 Numbers of bonds 

4
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In the receptor-based design, all the 8 indinavir related fragments (referring to Figure 1) were 

selected by the EA initial generation (Figure 3 (a)), but none of them comes out on the top in the end 

despite the relatively high persistence of fr.6. In contrast, significant selection goes to the three 

fragments derived from the NCI diversity set (referring to Figure 3 (b)) which in average have been 

used over 50 times in the final generation of the evolution runs. This indicates that building blocks 

derived from active ligand molecules (here refers to indinavir) can potentially lead to good but not 

necessarily the best candidate molecules. 

In the ligand-based design, all the 8 indinavir related fragments (referring to Figure 1) were also 

chosen by the first generation of EA (Figure 4). However, the fragments of the fr.3 and fr.6 were 

mostly used by next generations of the EA runs, which may be due to the nature of the similarity 

pressure. Besides the evident increase of the occurrences of the fr.3 and fr.6, other fragments also got 

a moderate or slight increase in growth except the fragments fr.5 and fr.8. 

 

Figure 3. (a) Occurrence versus generation averaged by 6 receptor-based evolutionary algorithm (EA) 

experiments, which involves the 8 indinavir related fragments (unfilled shapes) as well as the 

fragments that were ever selected over 50 times (filled shapes). The samples correspond to the 

fragments marked of same shape in Figure 1 and (b) fragments that were selected over 50 times by at 

least one generation, including two scaffolds associated with two R-groups and one scaffold 

associated with three R-groups. 

 

Figure 4. Occurrence along generation averaged by the 6 ligand-based EA experiments, which 

involves the 8 indinavir related fragments. The samples correspond to the fragments marked of same 

shape in Figure 1. 
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In the third type of design, a combination of the receptor-based and ligand-based scoring 

strategies was conducted to define a half-to-half weighted multi-objective function. A graphical view 

on the outcome of one representative evolution experiment is shown in Figure 5. The molecule of 

no.80 (marked red frame) in the population appeared in the last generation, which is considered as 

the highest fitness of both the binding affinity to HIV-1 protease and the similarity to indinavir. A 

superposition between the indinavir inhibitor cut from the 1HSG complex and the AutoDock 4.2 

predicted binding mode of the no.80 molecule is shown in Figure 6 (i.e., the molecule 4 in Figure 7). 

Overall, this molecule simulates indinavir well both in structure and conformation, and a carbonyl 

oxygen is attempting to perform similar function of the hydroxyl oxygen of indinavir although there 

are still some differences in the conformation. Some other ligands for HIV-1 protease designed by 

MoleGear from the relevant experiments are shown in Figure 7, which are also considered as good 

candidates. It should be noted that the developed MoleGear provides a general capability of de novo 

molecular design, and the integration with other methods such as machine learning and artificial 

intelligence can be further conducted in the future work to enhance the design power. Moreover, 

testing the capability of the developed platform for designing of intrinsically disordered protein–

ligand complex or exploring inactive compounds [41] can also be performed. 

 

Figure 5. Graphical view of outcome from an EA run by MoleGear. 

 

 

Figure 6. Superposition of the indinavir structure (in cyan) cut from the 1HSG complex with the 

AutoDock 4.2 predicted binding mode of the molecule no.80 (in orange, marked with red frame in 

Figure 5). 

MoleGear Viewer
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Figure 7. The candidate ligands for HIV-1 protease designed by MoleGear from the EA runs using 

the multi-objective function combining half-to-half the receptor- and ligand-based scoring strategy. 

3. Methods 

The general structure of MoleGear is shown in Figure 8, and evolutionary de novo design 

represents a major function that provides a stochastic way for exploration of chemical space. A suite 

of fragment-based operators such as crossover, mutation, and growing are used in MoleGear for the 

assembly of new molecular structures based on a graph-based molecular representation provided in 

the chemistry development kit (CDK) [42]. 

 

Figure 8. General structure of MoleGear. 

The exploitation of chemical structure space by MoleGear can be guided by fitness functions in 

accordance with different strategies—the affinity of molecules binding to a protein target, the 

similarity of novel molecules to an available active molecule, or quantitative structure–

activity/property relationship (QSAR/QSPR). These scoring strategies are combined as an 

appropriate multi-objective fitness function for the estimation of the integral quality of novel 

molecules. Before starting any fitness function computation, an acceptable initial 3D structure of a 

molecule is required. MoleGear is interfaced to the programs of Balloon [25], Open Babel [26], and 

MolConverter/Cxcalc (ChemAxon) to provide different methods for 3D conformational search. It 

should be noted that MoleGear only provides the interfaces to the external software. 

MoleGear
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AutoDock and Vina can be called by MoleGear to provide a receptor-based scoring based on 

binding free energy estimation. Moreover, a set of molecular descriptors can be obtained from CDK 

package that is integrated into MoleGear. Therefore, ligand-based scoring functions based on 

molecular similarity or QSAR can be defined. Currently, the partial least square regression (PLSR) 

model in the Weka package is implemented in MoleGear for QSAR analysis. 

Besides the major function of the evolutionary de novo design, other complementary utilities such 

as fragment library design and chemical analysis of a molecule set (i.e., Optimal Subset Selection) are 

also supported by MoleGear as shown in Figure 8. Moreover, MoleGear provides graphical user 

interface (GUI) to visualize molecular population and their property space. Some of these functions 

are implemented by integrating Java packages of Jmol and JFreeChart (for chemical structure and 

space visualization, respectively) as well as Weka and JavaStat for statistical analysis [6]. 

3.1. Evolutionary Algorithm for De Novo Design 

The basic scheme of EA in MoleGear is illustrated in Figure 9. A seed population including k 

molecules is initially constructed either from an available set of chemical structures [18] or a fragment 

library. All the structures are by default saturated with hydrogens and subjected to a conformational 

search performed by 3D builders. The structure with the lowest energy among a pre-defined number 

of searched conformers of each molecule is saved and scored by a fitness function. After that, the 

optimization cycle consisting of four main steps starts: (i) new offspring molecules are bred by 

structural operators such as growing, crossover, and mutation; (ii) conformational search and fitness 

calculation are conducted for the generated offspring molecules; (iii) the population is updated by 

replacing the least competitive structures with more fit offspring molecules. The optimization cycle 

continues until a pre-defined number of offspring structures have been produced, and a new 

generation is obtained by the combination of the offspring and the current population. The 

population evolves over generations until a termination criterion is satisfied (e.g., maximum of 

generations or a minimum number of satisfying solutions) or exhaustion sets in (e.g., no improved 

solution is found within a limited number of successive searches). 

 

Figure 9. Evolutionary scheme of MoleGear. 
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It should be noted that MoleGear supports parallel implementation of the conformational search 

and fitness calculation of the EA either on a cluster-type architecture with the Message Passing 

Interface (MPI) or a general multicore machine through multithreading based on the OpenMPI 

environment. The parallelization scheme is implemented by a cluster with multiple nodes. The n 

nodes are allocated to implement the overall computation job, and each node contributes m processor 

cores. The Core one on the master node generates (n × m − 1) molecular structures and transfers them 

simultaneously to the (n × m − 1) slave cores. While the slave cores are computing the fitness of the 

current batch of molecules, the Core one prepares the next batch of new (n × m — 1) molecules and 

then receives the previous batch of calculated molecules to update the population. In case of 

expensive and large-scale molecular computations, substantial time can be saved with parallel 

implementation compared to serial implementation. 

3.2. Molecular Assembly  

Molecular representation: A graph-based molecular representation method provided from CDK is 

employed in MoleGear. One molecular diagram is parsed to a set of atom and bond objects with 

connectivity information stored in a data structure container. The graph-based representation has a 

good resemblance of the constitution of a chemical structure, which can easily be manipulated by 

human knowledge. It should be noted that the properties of a chemical structure are highly 

dependent on the 3D structure, and thus an appropriate 3D structure is usually required which is 

generated by an explicit program like Balloon in MoleGear. 

Building blocks: Both atoms and fragments can be used as basic building blocks for the assembly 

of candidate structures. Atom-based approaches are superior to fragment-based methods in the 

generation of a diverse structure space, but not good at generating a chemically sensible space. 

Fragment-based strategies create chemically sensible structures by using fragments that are 

commonly occurring in available drug molecules, which can significantly reduce the search space. In 

MoleGear, the definition of fragment is not that rigid, and can vary from an atom to a polycyclic ring 

system. The fragments can be pre-managed with a fragment library so that each building block 

selected by the EA can be well tracked. 

Structural operators: The choice of EA for chemical space exploitation implicitly makes genetic 

operators to be responsible for the manipulation of molecular structures. With the graph-based 

molecular representation described above, three operators (i.e., growing, crossover, and mutation) 

are implemented in MoleGear to assemble novel candidate molecules, as illustrated in Figures 10–12. 

 

Figure 10. Generation of seed population by growing from an initial “core” scaffold. 
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The growing operator builds a new molecule from an initial “core” scaffold which is randomly 

picked from a coupled fragment library and contains at least two substitution points (Figure 10). The 

molecular fragments are added to the empty substitution points of the “core” scaffold and previously 

added moieties until no empty substitution point is left. To prevent growing too large molecules, all 

added fragments are ordered to process substitution points no more than the moieties they attach to. 

A seed population of novel compounds is thereby generated by repeating growing operator. 

 

Figure 11. Generation of novel molecules by crossover of two parent structures. 

Tournament selection in EA is employed to choose a better parent structure by comparing the 

pair of individuals randomly picked from the population, which is used to generate the next 

generation population. The other genetic operators of crossover and mutation are used to further 

evolve the population. The crossover operator conducts an “inter-breeding” where a “branch” of two 

parent molecules are swapped and matched with the new moieties so that two new offspring 

molecules are generated (Figure 11). The mutation operator tends to execute a local modification or 

introduce a new moiety to replace the present part on a selected parent molecule to create a new 

molecule (Figure 12). It is worth noting that the growing operator can still be partly used within the 

next generations to maintain enough diversity of the population. The frequencies of using different 

operators can be set by the users in MoleGear. 

 

Figure 12. Generation of novel molecules by mutation of a parent structure through changing the 

position of a local scaffold (A) or replacing a local scaffold (B) or replacing side chain (left) with a new 

entry. 

3.3. Conformational Search 

The Java package of Balloon uses distance geometry to generate an initial conformer, which is 

subjected to geometric modification by a genetic algorithm under the restraint of a MMFF94 force 

field [25]. Open Babel [26] (searches lowest-energy conformer based on the universal force field 

(A)

(B)
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(UFF)) is often used to translate molecules between different formats. MolConverter (ChemAxon, 

Hungary) generates 3D coordinates from a Minkowski-like space followed by 3D geometry 

optimization to reach a local energy minimization using the Dreiding force field. A deeper 

conformational search using the same force field by the Cxcalc program (ChemAxon) can be further 

conducted. All these methods are integrated into MoleGear. 

3.4. Fitness Function 

New molecules generated by molecular assembly program are scored by fitness functions, and 

the more competitive candidates will stay inside the chemical space. By default, EA makes no 

assumptions about the fitness landscape; this generality makes it suitable for both receptor-based 

design and ligand-based design. Currently, MoleGear supports the receptor-based scoring by 

handling the output of the default docking programs AutoDock and Vina. Whereas AutoDock (from 

version 4.0.0) implements a Lamarckian genetic algorithm (LGA) search method that integrates a 

semiempirical free energy force field function for scoring of searched conformers, while Vina uses a 

gradient optimization method for conformer scoring by using an advanced knowledge-based and 

empirical function. Both software deal with the full ligand flexibility and the limited receptor 

(residue) flexibility and returns promising bound conformations together with predicted binding free 

energies. 

The docking score (Scorei,dock) for the ith molecule in MoleGear is defined as follows: 

 

𝑆𝑐𝑜𝑟𝑒𝑖,𝑑𝑜𝑐𝑘 = {

1                        𝑖𝑓 𝐸𝑖 + 𝑃𝑅𝐸𝑆𝑆𝑒 ≥ 𝐸𝑚𝑎𝑥

1 −
𝐸𝑖

𝐸𝑚𝑖𝑛−𝑃𝑅𝐸𝑆𝑆𝑒
   𝑖𝑓 𝐸𝑚𝑖𝑛 < 𝐸𝑖 + 𝑃𝑅𝐸𝑆𝑆𝑒 < 𝐸𝑚𝑎𝑥

0                       𝑖𝑓 𝐸𝑖 + 𝑃𝑅𝐸𝑆𝑆𝑒 ≤ 𝐸𝑚𝑖𝑛

        (1) 

𝑃𝑅𝐸𝑆𝑆𝑒 =  (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) × 𝑐𝑒      (2) 

where Ei is the binding free energy of the ith molecule, Emax and Emin are the maximal and minimal 

energy of individuals in the current generation population, respectively, and ce is a user-defined 

strength coefficient. The score is scaled between 0 and 1. The lower the score, the better the fitness of 

a molecule. If the 3D structure of the biological receptor is unavailable, the ligand-based scoring is 

used as an alternative strategy based on the known active binding ligands. The ligand-based 

evaluation in MoleGear is implemented by analysis of similarity between template and novel 

structures expressed by their Euclidian distance in a proper space. The similarity score for the ith 

molecule (Scorei,sim) is calculated by, 

𝑆𝑐𝑜𝑟𝑒𝑖,𝑠𝑖𝑚 = {

1                        𝑖𝑓 𝐷𝑖 + 𝑃𝑅𝐸𝑆𝑆𝑑 ≥ 𝐷𝑚𝑎𝑥

1 −
𝐷𝑚𝑖𝑛−𝑃𝑅𝐸𝑆𝑆𝑑

𝐷
   𝑖𝑓 𝐷𝑚𝑖𝑛 < 𝐷𝑖 + 𝑃𝑅𝐸𝑆𝑆𝑑 < 𝐷𝑚𝑎𝑥

0                       𝑖𝑓 𝐷𝑖 + 𝑃𝑅𝐸𝑆𝑆𝑑 ≤ 𝐷𝑚𝑖𝑛

       (3) 

 

𝑃𝑅𝐸𝑆𝑆𝑑 =  (𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛) × 𝑐𝑑  
 

(4) 

where Di is the Euclidian distance between the ith molecule and the template molecule. Dmax and Dmin 

are, respectively, the maximal and minimal distance values of individuals in the current generation 

population, and cd is a user-defined strength coefficient. The score returns a number between 0 and 

1, and the lower scores point to the more fit molecules. Moreover, MoleGear also supports the 

definition of a weighted-sum fitness function combing multiple objective terms: 

𝑆𝑐𝑜𝑟𝑒𝑒 = ∑ 𝑊𝑝 × 𝑆𝑐𝑜𝑟𝑒𝑖,𝑝𝑝                                             (5) 

Scorei and wp are the calculated fitness score and the weight applied to the pth property (e.g., 

docking and similarity) for the ith molecule, respectively. The weights are determined in accordance 

with the relative importance of the properties defined by users. Once a new generation population is 
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built up by inserting new offspring molecules, the maximal and minimal property values (e.g., energy 

or distance) of the population will be retrieved, and the scores of individuals in the population will 

be updated according to the new intervals. 

3.5. Fragment Library Design 

Fragments derived from the existing drugs and compounds with known activities and 

properties make it likely to produce new compounds with feasible molecular structures. In addition, 

those fragments are also more likely to be “drug-like” molecules compared to random structures by 

satisfying the “rule of five” (Ro5) [43], and containing no reactive functional groups [13]. Thus, 

fragment-based drug design becomes a popular approach in drug design. However, the number of 

available drugs is vast, and often a small fraction of them is accessible. MoleGear offers a platform to 

build up a fragment library by the fragmentation of available molecular structures through splitting 

and screening operations. 

Splitting: Molecular structures are hydrogen depleted and split into fragments at rotatable and 

non-terminal bonds (i.e., single bonds that are neither a part of a ring nor the ones that include atoms 

connected to only one other atom), or at variation sites of a common skeleton among a series of 

compounds of the same family. Prior to that, the rule of Ro5 is implemented to prevent the 

regeneration of undesirable structures. When MoleGear starts to split a structure, the bonds that 

connect to rings have a higher priority to be operated compared to those that connect to general 

atoms. The resulting fragments are saved in MDL as “sdf” format files with the atomic coordinates 

and substitution points (R-groups) indicated. 

Screening: All derived fragments are subjected to certain filter rules, so duplicate and 

unfavorable moieties will be removed. The so-called “unfavored” structures are dependent on the 

specific definition by the users. A library is then established, which contains preferable building 

blocks as scaffolds and side chains. A link file containing the paths to the fragments and their 

occurrences in known molecules is then created. It is useful to present all the structures in a united 

graphical interface (Figure 13) so that the user can more easily check and refine the dataset. 

 

  

Figure 13. Graphical view of a fragment library built by MoleGear. 

3.6. Chemical Space Analysis  

A set of molecular descriptors (e.g., electronic, geometrical, topological, and hybrid categories) 

imported from the CDK QSAR package are used to capture the chemical features of an involved 

molecule or fragment set. This usually results in a multi-dimensional data space spanned with many 

correlated variables. MoleGear uses principal component analysis (PCA) to convert the multi-

dimensional descriptor space into a lower-dimensional space spanned with independent principle 

MoleGear Reader
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properties. The objects in the principle property space can be visualized through score plotting. 

Various selection algorithms (e.g., most descriptive compound (MDC) [44] and D-optimal design) 

can be used to select a subset of molecules that spans an important structural or physiochemical space 

of the original dataset. The selected structures can be plotted with the unselected ones 

distinguishingly in the score space. Regression by means of projections to latent structures (PLS) 

method, and classification by k-nearest neighbors (K-NN) can be further investigated by QSAR/QSPR 

analytical tools. 

4. Conclusions 

The Java-based platform MoleGear was developed for de novo molecular design by a well-

schemed evolutionary algorithm, which uses a graph-based method to represent molecular 

structures. A suite of fragment-based operators is used to assemble novel molecules, and various 

strategies are applied to score the assembled structures. The EA in MoleGear can be implemented in 

parallel over multiple nodes, and thus enables large-scale optimizations. In addition, the 

complementary utilities such as fragment library design, chemical space analysis, and graphical view 

are well supported. The functionality and flexibility of MoleGear has been demonstrated by different 

designs of drug-like inhibitors for HIV-1 protease. The designed candidate molecules were found to 

be similar with the reference molecule in both structure and conformation, which indicates that 

MoleGear can be used for de novo design of drug-like molecules. Moreover, it is also expected that 

the designed molecules are chemically feasible. The evolutionary de novo molecular design is 

implemented on Java-based platform, and can be further expanded to integrate extra specific 

functionalities. 
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