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Summary

The activated sludge process (ASP), as the most generally applied biological wastewater
puri�cation technique, attracts a great deal of attention from the research community in a
highly populated, industrialized world. The main objective of this thesis is to investigate
methods for e¢ cient development of activated sludge plant models and for possible improve-
ments in process operation and performance through applications of advanced modeling and
control techniques. Di¤erent topics in advanced control such as parameter estimation, state
estimation, and model predictive control, are addressed, and the methods investigated in
this thesis are illustrated with two activated sludge processes, a laboratory-scale nitrogen
(N) removal plant and a full-scale phosphorus (P) removal plant: the Duvbacken wastewater
treatment plant (WWTP).

As model representation is important in control oriented modeling, the object-oriented
modeling approach providing open component-based architectures and reuse of components,
is suggested in this thesis to achieve a more �exible model representation. The models of the
N-removal process and the Duvbacken WWTP are developed based on the Activated Sludge
Models (ASMs) which are generally accepted as the standard models of activated sludge
processes (ASPs). The dynamic models are implemented in the object-oriented modeling
language Modelica using the Dymola simulation environment, based on a modi�cation of
the Modelica library WasteWater. In order to build a good software development environ-
ment, special consideration is given to two Dymola interfaces: the Dymola-Matlab interface
provided by Dymola and the Dymola-Python interface developed by the author. The applica-
tion of the modeling approach in this thesis shows that the combination of Modelica/Dymola
for e¢ cient object-oriented modeling and Matlab for further analysis is a powerful tool for
control system design.

The performances of some widely used state estimation techniques, such as the stan-
dard Kalman �lter (KF), the extended Kalman �lter (EKF), the unscented Kalman �lter
(UKF), the square-root unscented Kalman �lter (SRUKF), and the moving horizon estima-
tion (MHE), are evaluated with application to the N-removal process. The comparison of
these �lters for the N-removal process shows that the SRUKF improves numerical properties
of the UKF and provides the best estimation performance, and the discrete-time EKF gives
the fastest performance with a satisfactory estimation result. In addition, since a good char-
acterization of the main compositions in the in�uent is very important to the performance
of the ASM models, a method for simultaneously estimating both model state and in�uent
composition (model disturbance) is developed using the discrete-time EKF and illustrated
with the Duvbacken WWTP. The �lter has a good convergence property for the observable
process based on responses from the simulation model. However, when the �lter is evalu-
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vi SUMMARY

ated based on the experimental data, the performance of the �lter is relatively poor due to
unobservability of the system. Additional measurements are therefore needed to render the
Duvbacken system locally observable.
Parameter estimation of activated sludge plant models is a challenging task, since the

models are in general large-scale, nonlinear, and overparameterized. A procedure for pa-
rameter identi�ability analysis is discussed and tested with the Duvbacken model. This
systematic method proves to be very useful, since it reduces a large number of parameters
to a small subset of parameters that can be identi�ed from the available experimental data.
The �tting of the model to real data from the industrial plant is not great but satisfactory,
especially for those outputs which are important to the plant operation (e.g. concentration
of phosphate SPO4 and concentration of total phosphorus TP).
Advanced control strategies for the ASP aeration system are suggested with the focus

on the MPC algorithm, since MPC provides an optimization-based procedure with an el-
egant way of handling constraints and with capabilities of removing process disturbances.
Both linear and nonlinear MPC techniques are evaluated with the N-removal process, and
the simulation results show that the performances of the MPC controllers are satisfactory:
the controllers guarantee that the strict e uent requirements are ful�lled. The nonlinear
MPC strategy is also compared with some conventional rule-based controllers, and the MPC
controller shows the most reduction of the energy consumption and o¤ers the easiest way to
handle the inequality constraints.
Finally, recommendations for future research directions are suggested to an N-removal

project group at Telemark University College, Norway.
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Chapter 1

Introduction

1.1 Background

Water is one of our most precious resources, and wastewater treatment is becoming more
and more important in a highly populated, industrialized world. Sewage treatment is ac-
complished most economically by processes with biological oxidation, and among them, the
activated sludge process (ASP) is the most generally applied biological wastewater puri�ca-
tion technique. This thesis deals with mathematical modeling and process control of ASPs
for domestic wastewater treatment. The ASP is typically characterized by:

� requirement of a proper dynamic model to describe the complex system that incorpo-
rate a large number of biological and biochemical processes,

� uncertain model parameters due to the varying operation, in�uent, and sludge charac-
teristics of the process,

� relatively few measurements for the key state variables due to the lack of cheap and
reliable sensors and techniques,

� requirement of advanced control strategies because of the following incentives (see
Olsson & Newell (1999) and Olsson et al. (2005)):

� the increased public awareness as re�ected in more stringent regulations is an
e¢ cient driving force,

� control and optimization can help to minimize the operating costs and get more
out of the existing plants,

� rejection of large process disturbances, e.g. large variations in the load to the
plant requires monitoring and process control,

� the current manual control procedures are di¢ cult to use for controlling more
complex process alternatives.

3



4 CHAPTER 1. INTRODUCTION

1.2 Previous work

As for any industrial process, models in biological wastewater treatment have always played
an important role in the process design and in the determination of control and operating
strategies. The Activated Sludge Models (ASMs) presented by the International Water
Association (IWA) (Henze et al. 2000) are generally accepted as the mathematical description
of the biochemical processes in the ASP reactors.
Model representation is important in control oriented modeling. Traditionally, vendors

of control systems have had proprietary/closed systems for model representation. However,
a relatively recent trend is software developments supporting open component-based archi-
tectures and reuse of components based on object-oriented methods (see Heck et al. (2003)).
One object-oriented, general-purpose modeling language is Modelica (Fritzson 2004), with
commercial simulation environments such as Dymola from Dynasim (Dynasim 2004). Mod-
elica/Dymola provides important advantages such as suitability for multi-domain modeling,
the usage of general equations of physical phenomena, the reusability of model components,
and the existence of a WasteWater library containing three ASMs (Reichl 2003).
In the early 1970s, Andrews (1974) depicted many potential bene�ts from the develop-

ment and use of dynamic models for wastewater treatment processes and the incorporation
of modern control systems into wastewater treatment plant (WWTP) design. In the last
two decades, the application of advanced control techniques has received more and more
interest due to the characteristics of ASPs. Advanced control is not the solution to all the
problems of ASPs, but it can indeed help to reduce the requirement for long residence time,
improve the e uent water quality, and/or decrease the use of chemicals. In general, the
operational objective for a WWTP is to achieve the required e uent standards with the
least operational costs (Olsson et al. 2005). Typically, advanced/modern control theory may
include the following concepts (Ray 1981), (Balchen & Mummé 1988):

� System identi�cation, which determines the model structure and estimates the model
parameters (Söderström & Stoica 1989), (Walter & Pronzato 1997), (Ljung 1999).
When the model is to be used for process performance evaluation and optimization, it
is necessary to have an accurate description of the actual process. Although the ASMs
are the state-of-the-art models for ASPs, the model parameters are often required to
be adjusted to �t a certain set of data obtained from the real plant. However, a major
problem encountered in calibration of ASP models is indeed the lack of identi�ability of
the model parameters (Vanrolleghem et al. 1995), (Petersen 2000), (Brun et al. 2002).
Parameter identi�ability analysis and estimation is thus an interesting area of research.

� State estimation. In processes where digital sensors are not available or are expen-
sive, state estimation may be of signi�cant practical importance (Gelb 1992), (Soroush
1998), (Crassidis & Junkins 2004), (Simon 2006). A major bottleneck in the applica-
tion of advanced monitoring and control strategies for WWTPs lies in the di¢ culty
of measuring reactant and product concentrations in a reliable and cost e¤ective man-
ner (Lindberg 1997), (Dochain 2003). Therefore, the application of state estimation
techniques in ASPs is of great interest.

� Optimal control theory, which allows the design of control schemes that are optimal
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in the sense that the controller performance minimizes some speci�ed cost functional
(Bubnicki 2005), (Bequette 2003). The optimal control algorithms belong to the class
of model-based control strategies (Brosilow & Joseph 2002). Thus, the development
of ASP models motivates the study of applying optimal control theory to the ASP
control. However, the optimal control strategy in itself is unsuitable for practical
implementation since it is an open-loop solution.

� Model predictive control (MPC), which is the approach to implement the theory of op-
timal control on-line, introducing feedback from the process (Rossiter 2003), (Camacho
& Bordons 2004), (Seborg et al. 2004). MPC is a proven advanced control technique,
suitable for ASPs, especially due to its abilities to systematically handle constraints
and to reduce the e¤ects of process disturbances (see Zhao et al. (1994a), Lukasse et al.
(1998), Holenda et al. (2007), etc.)

1.3 Scope and outline of thesis

The goal of this thesis is to investigate methods for developing and implementing activated
sludge plant models in an e¢ cient way to provide a good prediction of process dynamics, and
to study possible improvements in process operation and performance through applications
of advanced modeling and control techniques. In a broad perspective, the thesis will cover
the modeling methodology of ASPs and all the aforementioned topics in advanced control.
The modeling and control techniques described in this thesis are in principle applicable

to any ASP; as case studies, a laboratory-scale nitrogen (N) removal process and a full-scale
phosphorus (P) removal plant: the Duvbacken WWTP, are introduced. The studies focus
on the modeling and control of the biochemical processes occurring in the biological reactors,
based on the complete ASM models. For a complex system like the ASP, the ASM model is
probably the simplest description of the processes in consideration of the predictive purpose
of the model, and model reduction of the ASM model is not considered in the thesis. With
respect to the control of ASPs, the implementation and testing of controllers is not covered
in this work. The developed control strategies are evaluated through simulation studies,
since simulations make it possible to e¢ ciently compare the di¤erent control techniques.
This thesis is composed of two parts. Part I basically gives an overview of the results

obtained in the papers provided in Part II. However, a few results in Part I are not presented
in any paper, either because the topics do not �t with the scope of the papers or because
the results were not ready at the time of submission or publishing of papers. Chapter 2
gives an introduction to ASPs and to the object-oriented modeling of ASPs. Chapter 3
provides an overview of the state estimation techniques and compares the performances of
these techniques applied to a nonlinear ASP. Parameter estimation of the ASPs is described
in chapter 4, where both estimation of kinetic parameters and model disturbances are inves-
tigated. Chapter 5 presents the process control strategies used for controlling the aeration
system of the ASPs. Chapter 6 gives a short introduction to a laboratory case study. Finally,
chapter 7 contains conclusions and suggestions for future work.
Part II provides six papers published or submitted in conjunction with this thesis:

Abstract of Paper A A general description of wastewater treatment based on activated
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sludge is given, with emphasis on the ASM2d model. Next, a systematic approach
for experimental parameter identi�ability analysis is described. After a presentation
of the wastewater treatment plant at Duvbacken in Gävle, Sweden, the experimental
identi�ability of the dynamic model is analyzed. Out of the 45 original parameters
in the model, the analysis indicates that with the given experimental conditions, 12
parameters can be identi�ed.

Abstract of Paper B This paper carries out the parameter identi�ability analysis with
the approach described in Paper A, and �ts the model to experimental data from the
Duvbacken plant. The model is implemented in an object-oriented, general-purpose
modeling language Modelica, and is executed in Matlab for further analysis. A stan-
dard least squares criterion is used in combination with a direct optimization method
to calculate the improved parameter estimates, and the adjusted model is validated
against experimental data.

Abstract of Paper C The problem of optimal state estimation in a biological wastewater
treatment process is considered. The standard Kalman �lter (KF) and its extensions:
the extended Kalman �lter (EKF) and the unscented Kalman �lter (UKF), are used
to estimate the unmeasured state. The prediction of the state with the standard KF
is poor due to the high nonlinearity of the process. Thus, the nonlinear estimation
approaches are focused, with a comparison between the EKF and the UKF. The simu-
lation results show that the UKF provides slightly better state estimate than the EKF
for both an observable process and an unobservable process.

Abstract of Paper D This paper deals with optimal control of a biological wastewater
treatment process designed to remove nitrogen with simultaneous nitri�cation/ deni-
tri�cation in a single reactor. The objective of the control is to force the total nitrogen
concentration to track given set points. The optimization problem is speci�ed and
formulated using a quadratic performance index. Dynamic optimization is used in
model predictive control (MPC) based on a linearized model. The control strategy is
successfully applied to the simulation model of the pilot plant.

Abstract of Paper E The optimal control of a nitrogen removal process with intermittent
aeration is discussed in order to design the aeration strategy (air-on and air-o¤periods)
which minimizes the energy dissipated by the aeration system, with adherence to the
limits of the EU e uent requirements and the operating constraints. The optimization
problem is formulated and used with a receding horizon in nonlinear MPC based on
the complete ASM3 model. The simulation results show that signi�cant improvements
can be achieved with respect to the initial aeration strategy, with reductions in the
energy consumption by 33% for the optimal control over one day and by 16% for MPC
over 7 days.

Abstract of Paper F The model-based optimal control and predictive control of the in-
termittently aerated nitrogen removal process is presented. The optimization problem
is developed based on the discussion in Paper E. The MPC aeration pro�le guarantees
that the plant ful�lls the e uent requirements at any time over long time periods, and
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signi�cant energy saving is also obtained when comparing MPC to three traditional
rule-based control strategies.

1.4 Main contributions

The main contributions of this thesis are:

� Two activated sludge plant models are developed based on standard ASM models: one
for the laboratory-scale N-removal plant and one for the Duvbacken P-removal plant.
The model implementation in Modelica/Dymola is described, and the possible Dymola
interfaces are introduced.

� Some widely used state estimation techniques, such as standard Kalman �lter (KF),
extended Kalman �lter (EKF), unscented Kalman �lter (UKF), square-root unscented
Kalman �lter (SRUKF), and moving horizon estimation (MHE), are discussed, and the
performances of these �lters are evaluated with application to the N-removal process.

� The systematic approach to parameter identi�ability prior to parameter estimation
(Brun et al. (2002), Dueñas Díez et al. (2006)) is described and applied to the Duvbacken-
model.

� A methodology for simultaneously estimating state and disturbance in ASPs is devel-
oped using the extended Kalman �lter, and the suggested method is illustrated on the
Duvbacken WWTP, based on experimental data.

� Advanced control strategies for the ASP aeration system, based on linear and nonlinear
MPC techniques, are suggested, with promising results compared with the traditional
rule-based controllers.

� Some recommendations for future work are suggested for a laboratory N-removal
project.
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Chapter 2

Activated Sludge Processes for
Wastewater Treatment

2.1 Introduction

Wastewater generally contains large quantities of organic matter that results in the deple-
tion of natural oxygen resources in the water. Also, the nutrients in the wastewater, such
as nitrogen and phosphorus, may lead to algae growth, which causes oxygen depletion, odor
problems, excretion of toxins, etc. Therefore, for wastewater treatment, the main objective
is to remove or reduce the content of organic matter, as well as nitrogen (N) and phosphorus
(P). A general description of biological wastewater treatment, containing wastewater char-
acterization, wastewater species, biological processes, and wastewater kinetics and dynamic
models, is given in Paper A.
The strict European Union Guideline Urban Wastewater Directive 91/271/EEC1 (a sum-

mary is shown in Table 2.1) came out in 1991, where the limits on e uent concentrations
of total chemical oxygen demand (CODtot)2, total suspended solids (SS), total phosphorus
(TP)3, and total nitrogen (TN)4 are required. Due to legislation on wastewater treatment,

1For more information, see http://ec.europa.eu/environment/water/water-urbanwaste/index_en.html.
2CODtot indicates the total organic carbon in wastewater. The CODtot related to the components in

ASM3 is de�ned as (Petersen 2000)

CODtot , SI + SS +XI +XH +XSTO +XA.

3Total phosphorus (TP) includes both soluble phosphorus and particulate phosphorus. The TP related
to the components in ASM2d is de�ned as

TP , SPO4
+ SF � iP;SF + SI � iP;SI +XPP +XS � iP;XS

+XI � iP;XI
+ (XH +XPAO +XAUT) � iP;BM:

4Total nitrogen (TN) is comprised of organic nitrogen, ammonia, nitrite, and nitrate (Metcalf & Eddy
2003). The TN related to the components in ASM3 is de�ned as

TN , SNH4 + SNOX + SI � iN;SI + SS � iN;SS +XI � iN;XI
+XS � iN;XS

+ (XH;eff +XA;eff ) � iN;BM:

9
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Table 2.1: E uent requirements in EU directive 91/271/EEC.
Parameters Componenta) E¢ ciencyb)

(% of reduction)
Chemical oxygen demand (CODtot) 125 gm�3 75%
Total suspended solids (SS) 35 gm�3 90%
Total phosphorus (TP) 2 gm�3 (10; 000�100; 000 p.e.) 80%

1 gm�3 (> 100; 000 p.e.) 80%
Total nitrogen (TN) 15 gm�3 (10; 000�100; 000 p.e.) 70� 80%

10 gm�3 (> 100; 000 p.e.) 70� 80%
a) These values of concentration are annual average.
b) Either concentration or the percentage of reduction shall apply.
One or both parameters are to be applied depending on local conditions.

activated sludge plants has been introduced on a large scale. In an activated sludge process
(ASP), wastewater is mixed with a bacterial biomass suspension (called an activated sludge)
which degrades the pollutants. Depending on the plant design and the speci�c application,
an activated sludge plant can achieve biological nitrogen removal and biological phosphorus
removal, besides removal of organic matter.
The modeling of ASPs is a very active research area, see e.g. Dochain & Vanrolleghem

(2001) and Hu et al. (2003) for reviews on the subject. It should be mentioned that there is
an essential di¤erence between a WWTP model and an activated sludge model, as discussed
in Gernaey et al. (2004). The WWTP model indicates the ensemble of activated sludge
model, hydraulic model, oxygen transfer model, and settler model needed to describe an
actual plant. The activated sludge model is used to represent the biological (and chemical)
reactions taking place in one activated sludge reactor.
To date, the most frequently used activated sludge models are the family of Activated

Sludge Models (ASMs) developed by the International Water Association (IWA). The Acti-
vated Sludge Model No. 1 (ASM1) (Henze et al. 1987) is usually considered as the reference
model, which was primarily developed for municipal ASPs to describe the removal of organic
carbon substances and nitrogen. With basically the same goals as ASM1, the ASM3 model
(Gujer et al. 1999) was developed for nitrogen removal ASPs. The ASM3 model was intended
to become the new standard model, correcting a number of defects that have been noticed
during the usage of the ASM1 model. In addition, the models including biological phospho-
rus are the ASM2 model (Gujer et al. 1995) and its extension ASM2d (Henze et al. 1999),
which extend the capabilities of ASM1 to represent the dynamics of phosphorus removal.
Henze et al. (2000) also mentioned that modeling of phosphorus removal (as mentioned in
ASM2 and ASM2d) can be integrated with ASM3 by including additional processes and
states.
This chapter gives an introduction to the ASP and to the ASM model implementation

using an object-oriented modeling method. Two activated sludge processes are studied:
one at laboratory scale for N-removal is described in section 2.2, and one at the plant
scale for P-removal is described in section 2.3. The object-oriented modeling method using
Modelica/Dymola is presented in section 2.4. In addition, appendix 2.A describes a Python
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Figure 2.1: Nitrogen transformations in biological treatment processes, based on description
in Metcalf & Eddy (2003).

tool for a Dymola-Python interface.

2.2 Nitrogen removal process

2.2.1 Biological nitrogen removal

Nitrogen is removed in these two steps: ammonium (NH4-N) is �rst oxidized to nitrate
(NO3-N) under nitri�cation; the produced nitrate is then transformed into nitrogen gas (N2)
under denitri�cation. The nitrogen transformations are schematically shown in Figure 2.1.
Hence, all of the biological nitrogen removal processes include an aerobic zone in which
nitri�cation occurs. Anoxic condition must also be included to provide denitri�cation to
complete the objective of total nitrogen removal by both NH4-N oxidation and NO3-N and
NO2-N reduction to nitrogen gas (Metcalf & Eddy 2003). Thus, the approaches for designing
anoxic conditions can be categorized as

1. separate anoxic zones which are either spatial distributions in the reactors or separate
reactors from aeration zones (Droste 1997),

2. simultaneous nitri�cation-denitri�cation (SNdN) processes where both nitri�cation and
denitri�cation occur in the same tank without alternating (in time or in space) aerobic
and anoxic conditions (Collivignarelli & Bertanza 1999), or

3. intermittently aerated processes where continuous alternating aerobic-anoxic condi-
tions are created by switching the air on and o¤ in the same tank (Ip et al. 1987),
(Nakajima & Kaneko 1991), (Hao & Huang 1996), (Kimochi et al. 1998).
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Figure 2.2: Schematic diagram of a typical activated sludge process. (Adapted from
Chachuat et al. (2005).)

In the last two decades, intermittently aerated ASPs have been developed and widely used
for small-sized WWTPs. Compared to conventional ASPs, intermittently aerated ASPs have
the following distinctive features:

� The process o¤ers signi�cant energy savings due to no continuous transport of oxygen
to the anoxic phase and high oxygen transfer e¢ ciency during the initial period of
aeration (Ip et al. 1987), (Kim et al. 2000).

� The degree of operational �exibility is high because reaction times of nitrifying/denitrifying
can easily be adjusted by changing the aeration scheduling, which makes the process
better accommodate variable in�uent loading conditions and suitable for optimization
of operational costs (Hao & Huang 1996), (Isaacs 1997) .

� The single tank con�guration provides space saving, low investments of instruments,
and easy plant retro�tting.

In this work, mainly the intermittently aerated process is studied. In addition, control of
the SNdN process is also considered in subsection 5.3.1.

2.2.2 The laboratory-scale nitrogen removal plant

A laboratory-scale N-removal plant is considered in Papers D, E and F, for modeling and
control studies of an ASP. The plant was originally built to study the removal of nitrogen from
the wastewater of an oil re�nery by Baksaas (1996); later the reactor system was modi�ed and
used for municipal wastewater treatment in student projects at Telemark University College.
This nitrogen removal process consists of a unique aeration tank with a working volume
Va = 40 l and a cylindrical settler located in the aeration tank; the process is schematically
shown in Figure 2.2. More details are available in Paper E. Hence, the plant model consists
of an aeration tank model and a settler model.
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Aeration tank model

The derivation of the reactor model is based on mass balances of the wastewater species,
which are generally expressed as follows:

Accumulation = In�ow � Out�ow + Reaction.

The ASM3 model is used to described the biological processes involved in the aeration
tank. The model contains 13 state variables described in Table 2.2. Assuming perfect mixing
in the reactor, the mass balance of each component is expressed by a nonlinear ordinary
di¤erential equation (ODE), thus the mass balance in the aeration tank results in:

dxa
dt

=
Qinxin +Qrsxrs � (Qin +Qrs)xa

Va
+ r + e1AO2 ;

where xin, xrs, xa 2 R13 contain the concentrations in the in�uent, in the recycled sludge,
and in the reactor, respectively; their components are

xl = [SO2;l SI;l SS;l SNH4;l SN2;l SNOX;l SALK;l XI;l XS;l XH;l XSTO;l XA;l XSS;l]
T

l 2 fin, rs, ag; r 2 R13 is the vector formed by the reaction rates of each component (de�ned
in ASM3); e1 is the standard basis for the �rst coordinate in R13. AO2 describes the oxygen
transfer:

AO2 = ua �KLa
�
SsatO2

� SO2;a
�
,

where KLa is the oxygen transfer coe¢ cient which is a function of the supplied air �ow rate,
and SsatO2

is the saturated dissolved oxygen concentration (SsatO2
� 10 gm�3). According to

the aeration modes of ASPs, the control input of the process may described as:

� For the continuously aerated ASP, variable ua is chosen 1, and KLa is often considered
as control input.

� For the intermittently aerated ASP, the value of KLa is chosen constant, instead,
variable ua is a binary sequence switching between 0 and 1 that represents the state
of the blower (on/o¤) aerating the plant. Hence, the control input is the sequence of
switching times, i.e., times when the blower switches on/o¤.

Settler model

The purpose of the secondary settler is twofold:

� to e¢ ciently separate the solids and liquid � the clari�cation;

� to rapidly thicken the sludge at the bottom of the settler � the thickening process.

Olsson & Newell (1999) points out that dynamic modeling of settlers has received much
less attention compared to modeling of the aeration tank, and an elegant solution still evades
the activated sludge modelers. In the literature, di¤erent settler models have been introduced
mainly based on mass balances and on settling �ux theories, see e.g. Jeppsson (1996),
Dochain & Vanrolleghem (2001), and Takács et al. (1991). However, for simplicity, the
settler is often considered as an ideal settler. We thus assume that
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Table 2.2: State variables of the ASM3 model.
State Description Unit
Dissolved components (Sj)
SO2 Dissolved oxygen g O2 m

�3

SI Soluble inert organics g COD m�3

SS Readily biodegradable substrates g COD m�3

SNH4 Ammonium g N m�3

SN2 Dinitrogen, released by denitri�cation g N m�3

SNOX Nitrite plus nitrate g N m�3

SALK Alkalinity, bicarbonate molHCO�3 m
�3

Particulate components (Xj)
XI Inert particulate organics g COD m�3

XS Slowly biodegradable substrates g COD m�3

XH Heterotrophic biomass g COD m�3

XSTO Organics stored by heterotrophs g COD m�3

XA Autotrophic, nitrifying biomass g COD m�3

XSS Total suspended solids g SS m�3

1. the separation of liquid and solid/particulate phases is perfect and no reaction occurs
in the settler, and

2. the sum of all settler out�ows equals the settler in�uent �owrate.

Based on these assumptions, the settler model can be expressed as follows:
E uent concentration

Sj;e� = Sj;a, Xj;e� = 0

Recycled sludge concentration

Sj;rs = Sj;a, Xj;rs =
Qin +Qrs
Qrs +Qw

Xj;a.

General model

In summary, the general model of the dynamic system can be simply described as a set of
ODEs:

dxa
dt

= F (xa; u; t) ,

in which u is the control input described in modeling of the aeration tank.
This simpli�ed expression will be used in the de�nition of the optimization problem in

chapter 5.
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Figure 2.3: Principle of biological phosphorus removal. (Adapted from (Jenkins 2007).)

2.3 Phosphorus removal process

2.3.1 Biological phosphorus removal

In biological removal of phosphorus, the phosphorus is released under anaerobic conditions
and taken up under aerobic/anoxic conditions, see Figure 2.3.

1. In the anaerobic phase, the phosphorus accumulating organisms (PAO) take up carbon
sources and produce intracellular polyhydroxylalkanoate (PHA) storage products. The
energy needed for this process is derived by the degradation of intracellular polyphos-
phates, resulting in a subsequent release of orthophosphate (O-PO4). Some glycogen
contained in the cell is also used.

2. In the subsequent aerobic phase, the stored PHA is metabolized, providing energy
from oxidation and carbon for new cell growth. Some glycogen is also produced. Using
the released energy, soluble O-PO4 is removed from solution and incorporated into
polyphosphates within the bacterial cell. The new biomass with high polyphosphate
storage accounts for phosphorus removal.

Since biological phosphorus removal is an extremely complex procedure, the mechanisms
of phosphorus removal are still under investigation. The mechanisms as currently understood
are summarized by the ASM2 and ASM2d models (Henze et al. 2000).

2.3.2 The Duvbacken WWTP

Duvbacken is a wastewater treatment plant which is designed to treat the municipal waste-
water from 100; 000 people equivalents (p.e.) in the city of Gävle, Sweden, see Figure 2.4.
The average feed �owrate to the plant is approximately 1; 600m3= h. The �rst construction
phase was completed in 1967, and consisted of facilities for mechanical and biological treat-
ment according to the activated sludge approach. This plant has been recently modi�ed
to mainly remove phosphorus, together with nitrogen and organic matter. The treatment
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Figure 2.4: Aerial photo of the Duvbacken wastewater treatment plant. (Taken from Du-
vbacken plant lea�et.)

process of the plant consists of grit removal, primary treatment, chemical treatment, biolog-
ical treatment, and sludge treatment. In this work, we only consider biological treatment of
wastewater, including processes for biological reactions and clari�cation. The process layout
of the biological treatment stage is described in Paper A, where the process consists of 1
anaerobe step, 3 aerobe steps, and 1 secondary sedimentation step.
A dynamic model of the plant is developed, based on the ASM2d model. A minor

simpli�cation of the presentation here compared to the full ASM2d, is that we neglect the
possibility of phosphorus to bind to metal-hydroxides and the associated chemical processes.
In the plant model, each of the 4 reaction steps (anaerobe, aerobe 1�3) is modeled as a
perfectly stirred reactor. This leads to 17 states (listed in Table 2.3) in each of the reactors,
i.e., in total 68 states for the plant model. The model has 42 parameters, i.e., kinetic
parameters of the simpli�ed ASM2d model. For the settler, it is assumed that 99:8% of the
sludge in the settler in�uent is deposited, and the remaining 0:2% of the sludge �ows out in
the e uent of the plant. The concentrations of dissolved components (Sj) in the in�ow of
the settler are equal to the Sj contained in the out�ows of the settler.

2.4 Object-oriented modeling

During the previous decade of research in modeling and simulation, the concept of object-
oriented modeling has achieved a prominent position. Many studies have demonstrated that
object-oriented concepts can be successfully employed to support hierarchical structuring,
reuse, and evolution of large and complex models, independently from the application domain
and specialized graphical formalism (Ma¤ezzoni et al. 1999), (Bortolin et al. 2004), (Bastogne
2004).
The object-oriented approach to modeling is a credible methodology to deal with complex

and heterogeneous systems, while computer simulation is the means to use such methods in
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Table 2.3: State variables of the AMS2d model.
State Description Unit
Dissolved components (Sj)
SO2 Dissolved oxygen g O2 m

�3

SF Readily biodegradable substrate for fermentation g COD m�3

SA Fermentation product (acetate) g COD m�3

SNH4 Ammonium g N m�3

SNO3 Nitrate (plus nitrite) g N m�3

SPO4 Phosphate g P m�3

SI Inert, non-biodegradable organics g COD m�3

SALK Bicarbonate alkalinity mol HCO�3 m�3

SN2 Dinitrogen g N m�3

Particulate components (Xj)
XI Inert, non-biodegradable organics g COD m�3

XS Slowly biodegradable substrate g COD m�3

XH Heterotrophic biomass g COD m�3

XPAO Phosphorus-accumulating organisms, PAO g COD m�3

XPP Stored poly-phosphate of PAO g P m�3

XPHA Organic storage products of PAO g COD m�3

XAUT Autotrophic, nitrifying biomass g COD m�3

XTSS Particulate material as model component g TSS m�3

practice for assessing the global system performance. For wastewater treatment systems, a
very good survey of modeling and simulation tools is provided in Olsson & Newell (1999)
and Gernaey et al. (2004).

2.4.1 Modelica and Dymola

In 1996 an international e¤ort was initiated for the purpose of bringing together expertise
in object-oriented physical modeling and de�ning a modern uniform modeling language;
this language was named Modelica. Modelica is an object-oriented, general-purpose model-
ing language specially designed for representing complex and heterogeneous physical sys-
tems (Tiller 2001), (Fritzson 2004). Today, there are at least four commercial simula-
tion environments based on the Modelica language: Dymola, MathModelica System De-
signer, MOSILAB, and SimulationX, as well as a number of useful tools such as EXITE,
TISC, and StateViewer. In addition, the Open Source Modelica (named OpenModelica)
is developed by the Programming Environment Laboratory (PELAB) at Linköping Uni-
versity, Sweden. For more information, we refer the reader to the Modelica home page:
http://www.modelica.org.

In this work, Modelica is used with one of its commercial simulation environments, Dy-
mola from Dynasim (http://www.dynasim.se), as the model representation tool for acti-
vated sludge systems. Compared with most other modeling and simulation tools available
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today, such as gPROMS5 and Matlab & Simulink, Modelica/Dymola o¤ers several important
advantages:

For modeling and simulation in general

� Object-oriented architecture allows the user to easily modify and reuse of model com-
ponents.

� Equation-based modeling supports many di¤erent model descriptions, such as ODEs,
di¤erential algebraic equations (DAEs), bond graphs, Petri nets, etc.6

� Acausal modeling, meaning that the model�s terminals do not necessarily have to be
assigned an input or an output role, enables both simpler models and more e¢ cient
simulation.

� Hybrid DAE systems can present both continuous-time behavior and discrete-time
behavior of the model.

� Class parameters make it possible to parameterize models in a high-level fashion by
exchanging submodels or even whole subsystems for a compatible type replacement.

� The Dymola model editor o¤ers a good intuitive user interface, and the graphical
representation of the model is embedded in the Modelica code.

For modeling and simulation of activated sludge processes

� A free Modelica library WasteWater (Reichl 2003) is available, which contains three
activated sludge models (ASM1, ASM2d, and ASM3) and several secondary clari�er
models. The WasteWater library includes relatively complete components needed for
modeling and simulation using ASMs. In addition, with the �exibility of the Modelica
language, the user can easily extend the speci�c components.

� Modelica provides �exibility to build large plant models. A full wastewater plant
usually contains many components. The hierarchical modeling support and available
basic models are vital in helping the user to deal with the complexity.

� It is possible to include measurement data as input or data tables (using the component
CombiTimeTable) to the simulator. Since measurement data are not always represented
with an equidistant time interval, Dymola provides possibilities to present time tags
to each measurement point.

5gPROMS is an equation-based modeling system designed primarily for chemical process engineering.
Currently, Modelica has less support for process models than gPEOMS, but the modeling scope is more
general. More detailed comparison of language features between gPROMS and Modelica can be found in
Tummescheit (2002).

6gPROMS includes a notation for partial di¤erential equations (PAEs) in the language, while integration
of language constructs for PAEs is still under development in Modelica.
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Figure 2.5: Model diagram of the laboratory-scale N-removal plant.

2.4.2 Model implementation

Although the WWTP is often a very large and complex system, within the Dymola simula-
tion environment, the process model can be easily constructed by dragging, dropping, and
connecting components chosen from the WasteWater library. The model diagrams of the
laboratory-scale N-removal plant and the Duvbacken P-removal plant are shown in Figures
2.5 and 2.6. More details of the models implementation for these two presented ASPs can
be found in Papers E and B, respectively.

2.4.3 Dymola interfaces

Dymola o¤ers an open interface to other programs. A well-developed interface exists for
Matlab/Simulink (MathWorks 2007), (Dynasim 2004). Recently, a prototype of an interface
to LabVIEW version 8.20 is available in Dymola version 6.1 (Dynasim 2007). In addition,
the author developed a Dymola-Python interface to execute Modelica models in the Python
environment, to test out the possibility.

Dymosim �Dynamic model simulator

Dymosim �dynamic model simulator � is a stand-alone program that contains the ma-
chine code necessary for model simulation with event handling support (Dynasim 2004).
When translating a model in Dymola, an executable Dymosim (dymosim.exe) is generated.
Dymosim can be compiled with no graphical user interface or as a Windows application with
Dynamic Data Exchange (DDE) server capabilities. With the di¤erent operating modes, the
dymosim executable can be used for simulation, linearization, and initial value calculation.
Moreover, the dymosim executable uses �les to de�ne its inputs and outputs. Figure 2.7
schematically presents the relationship between Dymosim and these �les. The dymosim
executable can be independently called from environments other than Dymola. Next, two
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Figure 2.6: Model diagram of the Duvbacken P-removal plant.

interfaces to Dymola will be discussed.

Dymola-Matlab interface

Dymola provides convenient interfaces to Matlab and the popular block-diagram simulator
Simulink. This enables the powerful physical modeling capabilities of Modelica to be com-
bined with e¢ cient control system design using Matlab/Simulink. The dymosim executable
can be called from Matlab using the function dymosim.m. Execution of the Modelica model
in Matlab is described in Paper B. In addition, the model compiled into a dymosim exe-
cutable can be linearized using the �-l�modi�er of the dymosim command7. Matlab allows
us to execute the dymosim executable modi�er using a Matlab script function:

eval([�! dymosim �,�-l �,�dslin.mat�]);

Then, the linearized model saved in dslin.mat can be loaded into Matlab using the Dymola
add-on m-function tloadlin which loads matrices A,B,C,D and string vectors uname, yname,
and xname.
For the approaches on how to transform Modelica models into Simulink see Dynasim

(2004) and Dempsey (2003).

7As a stand-alone program, Dymosim accepts command line arguments de�ned in Dynasim (2004).
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Figure 2.7: Connection of dymosim executable �le and its input and output �les, based on
(Videla 2007). Dashed lines mean that the connection is optional.

Dymola-Python interface

As a dynamic object-oriented programming language, Python may be an alternative tool for
prototyping algorithms in advanced control techniques. Compared to Matlab, Python has
some clear advantages (Langtangen 2006), such as:

� the Python environment is completely open and made for integration with external
tools,

� a complete toolbox/module with lots of functions and classes can be contained in a
single �le (in contrast to a number of M-�les),

� object-oriented programming is better developed,

� the source code is free and runs on more platforms.

Unfortunately, Dymola does not have the functionality to support the communication
with Python. Thus, a Dymola-Python interface module8, called dymosimPy, is developed
in this work in order to execute a Modelica model and load simulation results in Python.
Table 2.4 summarizes the functions in the dymosimPymodule. These functions are developed
using similar principles as for the Matlab functions o¤ered by Dymola. For instance, the
dymosim executable is called by the dymosim function in Python with the command line

8A module is a �le containing Python de�nitions and statements.
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Table 2.4: Functions in the dymosimPy module.
Function Description
dymosim Perform simulation of a Modelica model, save and load results
parload Load parameter values and names from the Dymola input �le
initload Load initial state values and names from the Dymola input �le
dymload Load simulation results from a .mat �le
dymget Get simulation result of a speci�c single variable
tnlist List a string vector with preceding row numbers
loadName Load string variables from the Dymola input �le
findIndex Find indices of a value in a list
setInitialValue Set a list (initial values) in the initialValue array

d = dymosimPy.dymosim(exp,x0,p,quiet,file)

By running this command, the dymosim executable reads the experiment description from
the input �le speci�ed in the file variable, performs simulation, stores the simulation result
in dsres.mat, and loads the result into a dictionary9 data structure in Python.
A detailed introduction to the dymosimPy module is given in appendix 2.A.

2.A dymosimPy� APythonmodule for Dymola-Python
interface

Python is a dynamic object-oriented programming language that can be used for many
kinds of software development. Python o¤ers powerful features such as classes, modules,
exceptions, dynamic typing and very high level collection data types in a concise, regular, and
very readable syntax. Both the Python language and software packages are free, and a huge
collection of library components written in or interfaced with Python exists. Hence, Python
may be a powerful integration tool for advanced control. It is of interest to develop a Dymola-
Python interface to call the dymosim executable from the Python environment. Here, a
Dymola-Python interface module, called dymosimPy, is developed to execute a Modelica
model and load simulation results in Python.
Actually, using Python for development of Modelica tools has been the subject of several

studies. German National Research Center for Information Technology (GMD) has devel-
oped aModelica translator in the Python-based development environment TRAP (Translator
RApid Prototyping) for integration in the Smile10 dynamic simulation environment. An open
source research prototype compiler11 for �Modelica (a subset of Modelica) is implemented in

9A dictionary, also called hash or associative array in other computer languages, is a kind of list where the
index, referred to as key, can be an arbitrary text. For example, a dictionary can be initialized by de�ning
dict = {}; dict[�list�] = [1,2,3].
10Smile (http://www.�rst.fraunhofer.de/en/simulation-technology) is an object-oriented dynamic simula-

tion environment developed by Technische Universität Berlin and GMD.
11More information and the source code can be found on the website

http://msdl.cs.mcgill.ca/people/wxu/research.html.
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Python with the focus on acausal modeling. The GENSIM project is developing the generic
simulation tool MOSILAB (Schmitz 2005) for the analysis of mixed time-continuous/time-
discrete (hybrid) models of heterogeneous technical systems. MOSILAB uses the Python
language and interpreter as its central mechanism for experiment control.
For more information on the Python language, see the Python home page http://python.org

and the reference books Lutz & Ascher (2003), Gauld (2000), and Langtangen (2006). How-
ever, since Python is nonpro�t, the technical support and documentation of Python are not
as good as for other commercial software.

2.A.1 Python vs. Matlab

In computational science, Matlab is the de factor standard, and o¤ers a high-level lan-
guage and an interactive environment for algorithm development, data visualization, data
analysis, and numeric computation. As a powerful scripting programming language, Python
also o¤ers a number of advantages for scienti�c computing. A comparison of Matlab and
Python is described in Langtangen (2006). Matlab and Python have indeed many things in
common, including no declaration of variables, simple and convenient syntax, easy creation
of GUIs, and gluing of simulation and visualization. Nevertheless, Python has some clear
advantageous over Matlab and similar environments:

� the Python programming language is more powerful,

� the Python environment is completely open and made for integration with external
tools,

� a complete toolbox/module with lots of functions and classes can be contained in a
single �le (in contrast to a number of M-�les),

� transferring functions as arguments to functions is simpler,

� nested, heterogeneous data structures are simple to construct and use,

� object-oriented programming is better developed,

� interfacing C, C++, and Fortran code is better supported and therefore simpler,

� scalar functions work with array arguments to a larger extent (without modi�cations
of arithmetic operators),

� the source is free and runs on more platforms.

However, Matlab has signi�cantly more comprehensive numerical functionality than Python
(linear algebra, ODE solvers, optimization, time series analysis, image analysis, etc.). The
graphical capabilities of Matlab are also more convenient than Python, since Python graph-
ics relies on external packages that must be installed separately. Some Python programmers
have developed interfaces, e.g. pymat, Mlabwrap, that allows Python programs to use Matlab
as a computational and graphics engine. Also, the matplotlib library o¤ers high-quality
curve plotting with Matlab-like syntax. A good comparison of how to use Python for those
with Matlab knowledge is given in the books Kiusalaas (2005b) and Kiusalaas (2005a)..
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2.A.2 Python fundamentals

Installing Python

Simply visit http://www.python.org/download to get the most recent version of Python. If
you are runningWindows XP, the most well-known Python distribution is ActivePython. Ac-
tivePython is a free, all-in-one distribution fromActiveState (http://www.activestate.com).
More Python distributions and integrated development environments (IDEs) are introduced
in Lutz & Ascher (2003).

Some useful Python libraries

A large number of extension modules have been developed for Python. A complete list of
available modules can be obtained from the PyPI page (http://www.python.org/pypi).
Here, two packages are used in the dymosimPy module:

� Scienti�c Tools for Python (SciPy) is open-source software for mathematics, science,
and engineering. The core library is NumPy which provides convenient and fast N-
dimensional array manipulation. In this work, the functions loadmat and savemat of
the SciPy library are used to read and write data of a Matlab .mat �le.

� matplotlib is a python 2D plotting library which produces high-quality curve plotting
with Matlab-like syntax.

De�ning PATH and PYTHONPATH variables

Sometimes, the user needs to add two important environment variables: PATH and PYTHONPATH.
The operating system searches in the directories contained in the PATH variable to �nd exe-
cutable �les. Similarly, Python searches modules to be imported in the directories contained
in the PYTHONPATH variable. The standard PythonWin has included the default Python
path which can be browsed or edited in the menu Tools/Edit Python Path. To use the
dymosimPymodule, you need to add the location of dymosimPy into the PYTHONPATH variable.
When the user has added the dymosimPy module in PYTHONPATH, all the functions in the

module can be imported using the command:

>>> import dymosimPy

Debugging in Python

The PythonWin IDE (available with the ActivePython distribution) has a built-in debugger.
The debugger supports setting breakpoints and single stepping at the source line level,
examining the current context, post-mortem diagnostics, etc.. An introduction to debugging
in Python is given on http://www.ferg.org/papers/debugging_in_python.html.

Handling �les and text

The dymosimPy module directly calls the dymosim executable that uses �les to de�ne its
inputs and outputs. In Python, the basic steps of handling �les are as follows:
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1. Open the input or output �les

A �le is opened by the open function, taking the �lename as �rst argument and a
read/write indication as second argument:

ifile = open(infilename, �r�) # open file for reading

ofile = open(outfilename, �w�) # open file for writing

The second parameter is optional:

�r� read data from the �le
�w� write data to the �le (an existing �le with the same name will be replaced)
�a� write data to the �le, appending to the end
�r+� read from and write to (erasing any previous data) the �le
�r+a� read from and write to (appending) the �le
�b� read or write binary data

The open function creates a Python �le object that you use for reading from or writing
to a �le.

2. Read from the input �le and write to the output �le

Here are some basic Python methods for �le reading and writing:

ifile.read() read a �le�s whole content
ifile.readline() read a single line from the �le
ifile.readlines() return a list containing all the lines of data in the �le
ofile.write(string) write the contents of string to the �le
ofile.writelines(list) write a list of lines to the �le

3. Close the �les

The �les are closed at the end with the close() method:

ifile.close(); ofile.close()

When working with binary �les, strings, numbers etc. must be converted into sequences
of bytes. To encode/decode binary data, Python provides a module called struct. Text
searching and manipulation can often be greatly simpli�ed by utilizing regular expressions
which is available through the re module. A basic reference for regular expression syntax in
Python is the �Regular Expression HOWTO�(http://www.amk.ca/python/howto/regex).

2.A.3 The dymosimPy module

Principle of Dymola-Python interface

The Dymola-Python interface is built based on the structure of the Dymola-Matlab interface.
More details of the Dymola-Matlab interface are given in Dynasim (2004).
The functionality of the dymosimPy module is twofold:
Firstly, Dymosim is called as a stand-alone application from Python environment: the

experiment description is read from an input �le, one simulation run is performed, the result
is stored in an output �le, and the statistics information is saved in another �le.
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Secondly, the simulation result is loaded into Python, and the result for a speci�c simple
variable can be obtained.
Dymosim is supposed to be executed in Python by a similar command as in Dymola-

Matlab interface with the following Matlab syntax:

d = dymosim(exp,x0,p)

where the three input arguments correspond to the three matrices speci�ed in a Dymosim
input �le dsin.txt. exp is the experiment setup vector, x0 is the initial state vector, and p
is the parameter vector. d is a structure variable containing the simulation result.
The input �le as well as the result �le of Dymosim are given in ASCII (human readable)

or Matlab binary format. With the executable program alist provided by Dymola, the
ASCII and binary form can be transformed into each other, e.g.

alist -b dsin.txt temp.mat

transforms the ASCII format �le dsin.txt into the Matlab data �le temp.mat. The option
-b is used to transform ASCII format to Matlab binary format.
According to the functionality, the Dymola-Python interface is built with the following

steps (see Figure 2.8):

1. Load the variables of the experimental description from the Dymosim input �le (the
default �le is dsin.txt). dsin.txt is a self-explanatory �le with general data structure
depicted in Table 2.5. The necessary variables required to run dymosim.exe are Aclass,
experiment, initialName, and initalValue.

2. Set the user de�ned input arguments: de�ne exp as the variable experiment, and put
x0 and p into the variable initialValue,.

3. Save the modi�ed variables (Aclass, experiment, initialName, initialValue) into
a new input �le, e.g. dsin_new.txt.

4. Run dymosim.exe with the command line:

dymosim.exe -w dslog.txt dsin_new.txt dsres.mat

By running this command, Dymosim reads the experiment description from the �le
dsin_new.txt, performs simulation, and stores the simulation results in dsres.mat
and the statistics information in dslog.txt.

5. Load the simulation result from dsres.mat and save the result in a dictionary data
structure to make it easy to get the simulation result for a speci�c variable.
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Table 2.5: Data structures of Dymosim input �le.
Variable name Size Description
Aclass char(3; 24) General description
experiment double (7; 1) Experimental parameters
method double (27; 1) Method tuning parameters
settings int (13; 1) Output parameters
initialName char (n; 8) Name of initial variables
initialValue double (n; 6) Matrix of initial value calculation
initialDescription char (n; 53) Description of initial variables
n is the number of initial variables.

Functions in the dymosimPy module

The functions of the dymosimPy module are summarized in Table 2.4. All the functions are
developed by the author. Some descriptions of the functions in the dymosimPy module are
given as follows:

� dymosim is the main function of dymosimPy. dymosim is called by the command
d = dymosimPy.dymosim(exp,x0,p,quiet,file)

There are two optional input arguments: quiet indicating whether simulation messages
are displayed and file indicating the name of the Dymosim input �le. The function
follows the Dymola-Python communication procedure described in Figure 2.8.

� dymload is used to load simulation results from a Matlab data �le generated by Dy-
mosim. The output dymstr is a dictionary variable containing the following �elds:

fname name of the Matlab data �le
nname the number of variable names
ndatamat the number of data matrices
name names of the variables
description description of the variables
dataInfo dataInfo array
data_# data matrices of the variables, # has range from 1 to ndatamat

� After running dymload, the simulation result of a speci�c variable can be obtained
by the dymget function. For a single variable, a column vector containing the data is
returned with the command

data = dymosimPy.dymget(dymstr,�name�)

where dymstr is a dictionary variable introduced above and name is the full variable
name.

� parload and initload are used to load names and values of model parameters and
states from the Dymosim input �le.
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Existence of dsin.txt?

Load necessary variables (Aclass, initialName, experiment,
initialValue) from dsin.txt

Set user defined input arguments: define exp as experiment
and put x0 and p into initialValue

Save modified variables (Aclass, experiment, initialName,
initialValue) in a new input file (dsin_new.txt)

Run simulation by calling dymosim.exe:
dymosim.exe -w dslog.txt dsin_new.txt dsres.mat

Load simulation results from dsres.mat

Error

Step 1

Step 2

Step 3

Step 4

Step 5

Yes

No

Start

End

Figure 2.8: Structure of the Dymola-Python interface.

� tnlist is used to list a string vector, for instance, names of parameters or states, with
preceding row numbers.

� Other functions in dymosimPy, e.g. loadName, findIndex, setInitialValue, are use-
ful for loading and changing variables in the Dymosim input �le.

Usually, you can get detailed help for a function by the help command provided in the
pydoc module, e.g.:

>>> import pydoc
>>> help(dymosimPy.dymosim)

2.A.4 Applications of the dymosimPy module

Two examples are given below to demonstrate applications of the dymosimPy module.

Example 1 (Simulation of a CSTR system model) Consider the classical continuous
stirred tank reactor (CSTR) for an exothermic, irreversible reaction, A! B. In Henson &
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Figure 2.9: Model diagram of a CSTR system implemented in Modelica/Dymola.

Seborg (1997), the following dynamic model is derived based on the component balance for
reactant A and the energy balance :

dCA
dt
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where CA is the concentration of A in the reactor, T is the reactor temperature, and Tc is the
temperature of the coolant stream. The CSTR system is implemented in Modelica/Dymola,
see Figure 2.9. The Modelica model is then simulated in the Python environment using the
dymosimPy module. The evolution of the reactor temperature T is shown in Figure 2.10 by
manipulating the temperature of the coolant stream Tc. The Python code appears as follows.

# Version 1.0, 2006-07-18
# Written by Qian Chai, Telemark University College

import dymosimPy
from pylab import * # import matplotlib library

# Define path and name of the Dymosim input file
path = "D:\\Python_Dymola\\testCSTRmodel\\" # \\ denotes \ in Python
file = path + "dsincstr.txt"
# Define experiment parameters
exp = [0, 10, 0, 500, 1e-4, 0, 8]
# Define model parameters
p, pname = dymosimPy.parload(file)
##dymosimPy.tnlist(pname)
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Figure 2.10: Simulation result of the CSTR system, plotted with the matplotlib library in
Python.

p[-5] = 305 # the 5th item from the end of p is the manipulated input
# Define initial state
x0, xname = dymosimPy.initload(file)
# Call the dymosim function
quiet = 1
d = dymosimPy.dymosim(exp, x0, p, quiet, file)
# Get simulation results for specific variables
time = dymosimPy.dymget(d,�Time�)
T = dymosimPy.dymget(d,�CSTR1.RRate.T�)
# Plot results using the matplotlib library
plot(time, T, �k�)
xlabel(�time [min]�)
ylabel(�Reactor temperature T [K]�)
show()

Example 2 (Simulation of a nitrogen removal process) Now, we use the dymosimPy
module to simulate the N-removal process presented in Paper E. Figure 2.11 shows the sim-
ulation result of the concentration of total nitrogen TN when the optimal aeration strategy
is applied, i.e., 16 aeration cycles each day. This result is as same as the one we get in the
Matlab simulation environment (see Figure 6 in Paper E). The Python program is given as
follows:

# Version 1.0, 2006-07-18
# Written by Qian Chai, Telemark University College
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Figure 2.11: Time evolution of the concentration of TN with 16 aeration cycles each day.

import dymosimPy
from pylab import *
import pydoc

help(dymosimPy.dymosim) # general help
# Define path and the name of Dymosim input file
path = "D:\\Conference\\Tools\\Python_Dymola\\testSIMS06model\\"
file = path + "dsin.txt"
# Give user-defined input arguments
step = 1.0/(60.0*24.0)
exp = [0,1,step,0,1E-4,0,8]
p, pname = dymosimPy.parload(file)
dymosimPy.tnlist(pname)
p[1] = 1.0/16.0 # define length of aeration cycle
x0, xname = dymosimPy.initload(file)
# Call the dymosim function
d = dymosimPy.dymosim(exp, x0, p)
# Get simulation results
time = dymosimPy.dymget(d,�Time�)
TNeff = dymosimPy.dymget(d,�eff_TN.TN�)
# Plot
plot(time, TNeff, �k�)
xlabel(�time [day]�)
ylabel(�total nitrogen TN [g/m3]�)
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show()

2.A.5 Conclusions

A Python module, named dymosimPy, is developed by the author to build up a convenient
communication between Modelica/Dymola and Python. dymosimPy allows the user to simu-
late Modelica models and load simulation results in the Python environment. However, the
functions included in the module are quite basic and limited. In order to carry out more ad-
vanced analysis (e.g. linearization, parameter estimation), additional useful functions should
be supplemented to the dymosimPy module.

Acknowledgement 3 The author would like to acknowledge the valuable suggestions from
Dr. V. Siepmann of StatoilHydro, Porsgrunn, Norway on handling �les in Python.



Chapter 3

State Estimation

3.1 Introduction

This chapter provides an overview of some commonly applied techniques for state estimation
of linear, nonlinear, and constrained systems. The following techniques are discussed: stan-
dard Kalman �lter (KF), extended Kalman �lter (EKF), unscented Kalman �lter (UKF),
square-root unscented Kalman �lter (SRUKF), and moving horizon estimator (MHE). Be-
cause of the wide scope of the state estimation problem, the attention will be focused on
systematic and exact presentation of algorithms in order to make implementation of the
techniques more e¢ cient. The N-removal process described in subsection 2.2.2 is used as
case study.
To formulate state estimation as a mathematical problem, we consider a dynamic system

of the general form

xk = f (xk�1; uk�1; wk�1) (3.1)

yk = h (xk; vk) ; (3.2)

where xk 2 Rnx is the state, uk 2 Rnu is the control input, and yk 2 Rny is the controlled out-
put. wk 2 Rnw and vk 2 Rnv represent the process noise and measurement noise, respectively.
They are assumed to be zero-mean Gaussian noise processes

wk � N (0; Qk) and

vk � N (0; Rk) :

f (xk�1; uk�1; wk�1) is the (possibly nonlinear) state transition function and h (xk; vk) is the
(possibly nonlinear) measurement function. The state estimation problem is to determine an
estimate of the state x̂k given the chosen model structure and a sequence of noisy observations
(measurements) fy0; : : : ; ykg.
The standard KF is the algorithm of choice in state estimation for linear systems. Non-

linear �ltering is more di¢ cult and complex and there are still many research activities for
advances and improvement in nonlinear estimation techniques. However, some nonlinear
estimation methods have become widespread. In Simon (2006) an overview of the nonlinear
estimation techniques, which include nonlinear extensions of the standard KF, unscented

33
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�ltering, and particle �ltering, has been given. The EKF is undoubtedly the most widely
used nonlinear estimation technique that has been applied in the past few decades. Recently,
new variants of the Kalman �lter which approximate the nonlinearity to a higher order have
been proposed. Among them, the UKF and SRUKF generates a population of so-called
sigma points based on the current mean and covariance of the state, and permits the di-
rect propagation of the mean and covariance through the actual nonlinear system (Julier
et al. 1995), (van der Merwe & Wan 2001). These variants of the Kalman �lter are described
in a recursion similar in structure to the standard KF. All members of this family of �lters
will comply with a structured sequence of 6 steps per iteration, as outlined in Plett (2006a):

1. State estimate time update. The �rst step is to compute a prediction x̂kjk�1 of the
current xk based on a priori information fy0; � � � ; yk�1g and the system model.

2. State error covariance time update. The second step is to calculate the predicted state
estimate error covariance Pkjk�1 based on a priori information and the system model.

3. Estimate system output ŷkjk�1. The third step is to estimate the system output using
the a priori state estimate and Equation 3.2.

4. Estimator gain matrix Kk. The fourth step is to determine the estimator gain ma-
trix by evaluating Kk = Pxy;kP

�1
y;k , where Pxy represents the cross correlation matrix

between x̂kjk�1 and ŷkjk�1, and Py represents the innovation covariance.

5. State estimation measurement update. The �fth step is to compute the a posteriori
state estimate by updating the a priori estimate using the estimator gain and the
output prediction error yk � ŷkjk�1, i.e., x̂kjk = x̂kjk�1 +Kk

�
yk � ŷkjk�1

�
.

6. State error covariance measurement update. The �nal step computes the a posteriori
state error covariance Pkjk.

Figure 3.1 illustrates the concept of a state estimator using the Kalman �lter-based
techniques.
Although the aforementioned Kalman �lter-based techniques are widely used for estimat-

ing states of unconstrained systems subject to normally distributed state and measurement
noises, many physical systems have states subject to hard constraints, such as non-negative
concentrations or pressures. Hence, Kalman �ltering is no longer directly applicable. One
solution for determining an optimal estimate is to formulate the estimation problem as the
minimization of a weighted quadratic function of the unknown variables subject to the model
equations. This formulation allows for the natural addition of inequality constraints. The
basic form of the estimation problem is non-recursive, which is easily understandable, but
the burden of computing the optimal estimates will become prohibitively large when more
and more measurements become available. It is thus necessary to introduce some kind of
approximation or simpli�cation in the estimation procedure. Based on the idea of repetitive
optimal control as used in predictive control (Sunan et al. 2002), (Qin & Badgwell 2003), (Lie
et al. 2005), moving horizon estimation is suggested as a practical approach to implement
optimization-based estimation.
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Figure 3.1: Principle of state estimation.

The design and application of state observers, also called software sensors1, in WWTPs
has been an active area over the past decades. The approaches that are relevant to the �eld
of WWTPs can be categorized into three groups:

� Classical observers (e.g. Kalman �lter) are based on the perfect knowledge of the
system model and parameters. The EKF has been widely applied in wastewater en-
gineering, e.g. Lindberg (1997), Boaventura et al. (2001), Keesman (2002), Lukasse,
Keesman & van Straten (1999b).

� Asymptotic observers are used to make the model independent of the process kinet-
ics (Perrier et al. 2000), (Dochain 2003). The asymptotic observer requires that the
number of measurements is larger than or equal to the number of process reactions.

� Interval observers can be used for predicting intervals in which the unmeasured vari-
able are guaranteed to belong, if bounds are known for the uncertain inputs and/or
parameters (Hadj-Sadok & Gouzé 2001), (Alcaraz-González et al. 2002).

3.2 State estimation techniques

3.2.1 Observability and detectability

Observability is a critical property of a system for observer design. An important consequence
of the state observability is the ability to reconstruct the time evolution of the state variables
from measured variables in an arbitrary �nite time from any initial conditions. In the
following, it is assumed that the model is identical to the true system.

1In the scienti�c literature, the expression of software sensors has largely been used for state and parame-
ter estimation. In fact, a software sensor can be de�ned as an algorithm using state estimation techniques to
reconstruct time evolution of the unmeasured states or unknown parameters on the basis of the knowledge of
the process dynamics (the dynamic model) and on the (few) available on-line measurements (Dochain 2003).
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For simplicity, we shall consider the notion of observability for the linear time invariant
system which is described as

xk = Fxk�1

yk = Hxk.

Next we address concepts related to observability, with reference to Chen (1999), Rugh
(1996), and Simon (2006).

De�nition 4 (Observability) The discrete-time system or the pair (F;H) is said to be
observable if for any unknown initial state x0, there exists a �nite integer k > 0 such that
knowledge of the input ui and output yi for all i 2 [0; k] su¢ ces to determine uniquely the
initial state x0.

De�nition 5 (Detectability) The discrete-time system or the pair (F;H) is said to be
detectable if there exists a matrix M such that

xk = (F �MH)xk�1

is exponentially stable.

The pair (F;H) is detectable if the unobservable part in the observable canonical decom-
position is stable, i.e., has eigenvalues either in the left half of the complex plane or inside
the unit disk, depending on whether we are dealing with a continuous- or a discrete-time
system. If the system is observable, then an observer gain can be found so that the esti-
mated x̂ converges to the true state x arbitrarily fast. If the system is detectable, then the
convergence of the observer can be guaranteed but the dynamics of the observer can not be
assigned arbitrarily.
It is well known that the linear system is observable if and only if the observability matrix

O =

0BBB@
H
HF
...

HF nx�1

1CCCA
has full column rank, i.e., rank (O) = nx. Another equivalent test for observability is the
PBH test.

Theorem 6 (PBH observability test) The pair (F;H) is observable if and only if

rank

�
H

�I � F

�
has full rank at every eigenvalue � of F .

For nonlinear systems, the observability analysis is rather complex, and some approaches
are introduced in e.g. Sontag (1998), Kurtz & Henson (1998), Dochain & Chen (1992),
Bogaerts & Wouwer (2004).
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3.2.2 The standard Kalman �lter (KF)

We consider a system that can be represented with a linear time invariant model

xk = Fxk�1 +Buk�1 +Gwk�1

yk = Hxk + Lvk:

Then, the algorithm of the standard KF for state estimation is presented in Table 3.1.

Table 3.1: Algorithm of the standard Kalman �lter.
Linear state-space model
xk = Fxk�1 +Buk�1 +Gwk�1
yk = Hxk + Lvk, where wk � N (0; Qk) and vk � N (0; Rk).

Initialization: for k = 0, set x0 � N
�
x̂0j0; P0j0

�
Computation: for k = 1; 2; : : :, compute
State estimate time update x̂kjk�1 = Fx̂k�1jk�1 +Buk�1
Error covariance time update Pkjk�1 = FPk�1jk�1F

T +GQk�1G
T

Output estimate ŷkjk�1 = Hx̂kjk�1
Kalman gain Kk = Pkjk�1H

T
�
HPkjk�1H

T + LRkL
T
��1

State estimate meas. update x̂kjk = x̂kjk�1 +Kk

�
yk � ŷkjk�1

�
Error covariance meas. update Pkjk = (I �KkH)Pkjk�1 (I �KkH)

T +KkLRkL
TKT

k

3.2.3 The extended Kalman �lter (EKF)

The EKF linearizes the nonlinear system around the Kalman �lter estimate, and the Kalman
�lter estimate is based on the linearized system. The nonlinear model is used for computation
of state estimate time update x̂kjk�1 and output estimate ŷkjk�1. To reduce the linearization
error in the EKF for highly nonlinear systems, some re�ned linearization techniques such
as the iterated EKF and the second-order EKF, have been described in Simon (2006) and
Crassidis & Junkins (2004).
The discrete-time EKF, which considers systems with discrete-time dynamics and discrete-

time measurements, is given in Table 3.2.
However, in practice, many engineering systems are governed by continuous-time dy-

namics whereas the measurements are obtained at discrete instants of time. We therefore
consider a hybrid system as follows

dx

dt
= �f (x; u; w)

yk = h (xk; vk)

w (t) � N (0; Q)

vk � N (0; Rk) :
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In steps 1 and 2 of the algorithm of the hybrid EKF, the state estimate and its covariance
from time k � 1 to time k are integrated as

dx̂

dt
= �f (x̂; u; 0)

dP

dt
= FP + PF T +GQGT ;

where F = @ �f
@x

���
x̂;u;0

and G = @ �f
@w

���
x̂;u;0

. We begin the integration process with x̂ = x̂k�1jk�1

and P = Pk�1jk�1. At the end of the integration we have x̂ = x̂kjk�1 and P = Pkjk�1. It
should be noticed that the covariance matrix Q of the continuous-time process noise is not
identical but related to the discrete-time process noise covariance Qk. An approximation of
the relationship can be described in the form of: Qk = (tk+1 � tk)Q, see Grewal & Andrews
(2001) and Crassidis & Junkins (2004). At each measurement time, we update the state
estimate and the covariance as derived in the discrete-time EKF (steps 3�6).

Table 3.2: Algorithm of the discrete-time extended Kalman �lter.
Nonlinear state-space model
xk = f (xk�1; uk�1; wk�1)
yk = h (xk; vk), where wk � N (0; Qk) and vk � N (0; Rk).

De�nition: Fk =
@f
@x

��
x̂kjk;uk;0

; Gk =
@f
@w

��
x̂kjk;uk;0

; Hk =
@h
@x

��
x̂kjk�1;uk;0

; Lk =
@h
@v

��
x̂kjk�1;uk;0

Initialization: for k = 0, set x0 � N
�
x̂0j0; P0j0

�
Computation: for k = 1; 2; : : :, compute
State estimate time update x̂kjk�1 = f

�
x̂k�1jk�1; uk�1; 0

�
Error covariance time update Pkjk�1 = Fk�1Pk�1jk�1F

T
k�1 +Gk�1Qk�1G

T
k�1

Output estimate ŷkjk�1 = h
�
x̂kjk�1; 0

�
Estimator gain Kk = Pkjk�1H

T
k

�
HkPkjk�1H

T
k + LkRkL

T
k

��1
State estimate meas. update x̂kjk = x̂kjk�1 +Kk

�
yk � ŷkjk�1

�
Error covariance meas. update Pkjk = (I �KkHk)Pkjk�1 (I �KkHk)

T +KkLkRkL
T
kK

T
k

3.2.4 The unscented Kalman �lter (UKF)

The UKF is an extension of the traditional Kalman �lter for the estimation of non-linear
systems (Julier et al. 1995). Di¤erent from the EKF, the UKF approximates probability
distributions by use of the unscented transform. The UKF uses the so-called sigma points
and propagates all of them through the system model to numerically estimate the state and
the output as well as their covariances. The weights of the sigma points for calculating
mean and covariances are de�ned in Table 3.3. The formulations of the UKF is given in
Table 3.4, where chol (�) denotes Cholesky factorization of a matrix, diag (�) denotes a block
diagonal matrix constructed from input arguments, and Ai denotes column i of matrix A.
See Julier & Uhlmann (2004), Wan & van der Merwe (2000), and VanDyke et al. (2004) for
more details on the algorithm. A recent comparative study of the EKF and the UKF shows
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Table 3.3: Weighting constants of the UKF.
 �0m �im �0c �icp
n~x + �

�
n~x+�

�
2(n~x+�)

�
n~x+�

+ (1� �2 + �) �
2(n~x+�)

n~x is the size of the augmented state ~xkjk (de�ned in Table 3.4), i.e., n~x = nx + nw + nv.
� = �2 (n~x + �)� n~x is a scaling parameter (typically � 2 [10�4; 1] and � = 0).
� is used to incorporate prior knowledge of the distribution (with Gaussian distribution � = 2).

that the estimation performance of the UKF is better than the EKF in terms of robustness
and speed of convergence, due to the increased time-update accuracy and the improved
covariance accuracy of the UKF, see Kandepu et al. (2008).

3.2.5 The square-root unscented Kalman �lter (SRUKF)

The unscented Kalman �lter may be used directly for state estimation, but a major drawback
of the UKF is its vulnerability for numerical instability. In particular, the state estimation
error covariance may lose its positive de�niteness in the update step of the UKF. To overcome
this �aw, van der Merwe & Wan (2001) introduced the square-root unscented Kalman �lter
(SRUKF). This approach has mainly two advantages:

1. The state covariances are guaranteed to be positive semi-de�nite because of the imple-
mentation.

2. Compared with the UKF, the SRUKF has an equal computational complexity for state
estimation and a lower computational complexity for parameter estimation.

Three important linear algebra techniques are used to implement the SRUKF (van der
Merwe & Wan 2001), (Plett 2006b):

� QR decomposition. The QR decomposition algorithm computes two factors Q 2 RN�N
and R 2 RL�N for a matrix A 2 RL�N such that A = QR where Q is orthogonal, R is
upper-triangular, and L � N . An important property of the QR factorization is that R
is related to the Cholesky factor we wish to �nd. Speci�cally, if ~R 2 RL�L is the upper
triangular portion of R, then ~RT is the Cholesky factor of P = ATA. That is, if ~R =
qr
�
AT
�T
, where qr (�) performs the QR decomposition and returns the upper-triangular

portion of R, then ~R = chol
�
AAT

�
. Thus, the time update of state covariance can be

calculated using a QR decomposition of the compound matrix
p
�ic

�
x0:2n~xkjk�1 � x̂kjk�1

�T
for i = 0; 1; : : : ; 2n~x, where x

0:2n~x
kjk�1 denotes the propagated sigma points with index from

0 to 2n~x.

� Cholesky downdating. To use the previous method, the Cholesky downdate, which
is denoted as cholupdate (�), is necessary since the weight �0c may be negative. In
addition, the Cholesky downdate is used in the �nal step of the SRUKF. If KkSy is a
matrix not a vector, downdating is consecutively done using each column of KkSy.
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Table 3.4: Algorithm of the unscented Kalman �lter.
Nonlinear state-space model
xk = f (xk�1; uk�1; wk�1)
yk = h (xk; vk), where wk � N (0; Qk) and vk � N (0; Rk).

De�nition: ~xikjk =
��
xikjk

�T
;
�
wikjk

�T
;
�
vikjk

�T�T
Initialization: for k = 0, set

x0 � N
�
x̂0j0; P0j0

�
;

~x0j0 = [x̂
T
0j0; 0; 0]

T ; ~P0j0 = diag
�
P0j0; Q0; R0

�
Computation: for k = 1; 2; : : :, compute

Sigma points calculation ~xk�1jk�1 =
h
x̂Tk�1jk�1; 01�nw ; 01�nv

iT
~Pk�1jk�1 = diag

�
Pk�1jk�1; Qk�1; Rk�1

�
~x0k�1jk�1 = ~xk�1jk�1

~xik�1jk�1 = ~xk�1jk�1 +
�
 � chol

�
~Pk�1jk�1

��
i

i = 1; 2; : : : ; n~x

~xik�1jk�1 = ~xk�1jk�1 �
�
 � chol

�
~Pk�1jk�1

��
i�n~x

i = n~x + 1; : : : ; 2n~x

State time update xikjk�1 = f
�
xik�1jk�1; uk�1; w

i
k�1jk�1

�
; i = 0; 1; : : : ; 2n~x

Output estimate yikjk�1 = h
�
xikjk�1; v

i
k�1jk�1

�
; i = 0; 1; : : : ; 2n~x

x̂kjk�1 =
P2n~x

i=0 �
i
mx

i
kjk�1

ŷkjk�1 =
P2n~x

i=0 �
i
my

i
kjk�1

Covariance time update Pkjk�1 =
P2n~x

i=0 �
i
c

h
xikjk�1 � x̂kjk�1

i h
xikjk�1 � x̂kjk�1

iT
Estimator gain Py;kjk�1 =

P2n~x
i=0 �

i
c

h
yikjk�1 � ŷkjk�1

i h
yikjk�1 � ŷkjk�1

iT
Pxy;kjk�1 =

P2n~x
i=0 �

i
c

h
xikjk�1 � x̂kjk�1

i h
yikjk�1 � ŷkjk�1

iT
Kk = Pxy;kjk�1P

�1
y;kjk�1

State meas. update x̂kjk = x̂kjk�1 +Kk

�
yk � ŷkjk�1

�
Covariance meas. update Pkjk = Pkjk�1 �KkPy;kjk�1K

T
k
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� Back-substitution. The estimator gain is calculated more e¢ ciently via back-substitution
which can be implemented with Matlab�s �/�operator.

In detail, the SRUKF algorithm for state estimation is described in Table 3.5.

3.2.6 Moving horizon estimator (MHE)

Moving horizon estimation that is based on an optimization approach, is an e¢ cient method
for state estimation of constrained systems. Rawlings & Bakshi (2006) provide a good review
of the recent research on moving horizon estimation, with a focus on advantages and disad-
vantages of di¤erent estimation techniques. To address the computational e¢ ciency issues
posed by MHE, Darby & Nikolaou (2007) introduces a parametric programming approach
for the real-time implementation.
Compared with other estimation techniques, MHE may provide the following advantages:

� The formulation of the optimization-based approach allows for the natural addition of
inequality constraints on states, noise, and other variables.

� For nonlinear estimation, the optimization formulation is quite general and has the
advantage of using full nonlinear models.

� MHE has the �exibility of incorporating a priori information including the state and
noise as well as non-Gaussian variable distributions.

Problem statement

x is assumed to be initially normally distributed with expectation x̂1j0 and covariance P1j0,
i.e., x1 � N

�
x̂1j0; P1j0

�
. x̂1j0; P1j0, Qk, and Rk are assumed to be known2.

It is assumed that we know the following information Ik of the system at the time step
k:

Ik =
�
x̂1j0; y1; : : : ; yk; u1; : : : ; uk

	
;

where k is the current time (initial value of k is 1).
The state estimation problem can be stated as:

Given the �guess� of the initial estimate x1 � N
�
x̂1j0; P1j0

�
and all of the

information up to the current time k contained in the measurement sequence
fy0; : : : ; ykg, obtain the best estimate of the initial state x̂1jk and the entire state
trajectory x̂1jk; : : : ; x̂kjk subject to the process model.

2This initial state is di¤erent from the previous �lters. x̂1j0 and P1j0 can be obtained from x̂0j0 and P0j0
using the standard EK (or EKF) time update steps.
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Table 3.5: Algorithm of the square-root unscented Kalman �lter.
Nonlinear state-space model
xk = f (xk�1; uk�1; wk�1)
yk = h (xk; vk), where wk � N (0; Qk) and vk � N (0; Rk).

De�nition: ~xikjk =
��
xikjk

�T
;
�
wikjk

�T
;
�
vikjk

�T�T
Initialization: for k = 0, set

x0 � N
�
x̂0j0; P0j0

�
~x0j0 = [x̂

T
0j0; 0; 0]

T ; ~S0j0 = diag
�
chol

�
P0j0
�
; chol (Q0) ; chol (R0)

�
Computation: for k = 1; 2; : : :, compute

Sigma points calculation ~xk�1jk�1 =
h
x̂Tk�1jk�1; 01�nw ; 01�nv

iT
~Sk�1jk�1 = diag

�
Sk�1jk�1; chol (Qk�1) ; chol (Rk�1)

�
~x0k�1jk�1 = ~xk�1jk�1

~xik�1jk�1 = ~xk�1jk�1 +
�
 ~Sk�1jk�1

�
i
; i = 1; 2; : : : ; n~x

~xik�1jk�1 = ~xk�1jk�1 �
�
 ~Sk�1jk�1

�
i�n~x

; i = n~x + 1; n~x + 2 : : : ; 2n~x

State time update xikjk�1 = f
�
xik�1jk�1; uk�1; w

i
k�1jk�1

�
; i = 0; 1; : : : ; 2n~x

Output estimate yikjk�1 = h
�
xikjk�1; v

i
k�1jk�1

�
; i = 0; 1; : : : ; 2n~x

x̂kjk�1 =
P2n~x

i=0 �
i
mx

i
kjk�1

ŷkjk�1 =
P2n~x

i=0 �
i
my

i
kjk�1

Covariance time update �Skjk�1 = qr

�p
�1c

�
x1:2n~xkjk�1 � x̂kjk�1

�T�T
Skjk�1 = cholupdate

�
�Skjk�1;

p
j�0c j

�
x0kjk�1 � x̂kjk�1

�
; sign (�0c)

�
Estimator gain �Sy;kjk�1 = qr

�p
�1c

�
y1:2n~xkjk�1 � ŷkjk�1

�T�T
Sy;kjk�1 = cholupdate

�
�Sy;kjk�1;

p
j�0c j

�
y0kjk�1 � ŷkjk�1

�
; sign (�0c)

�
Pxy;kjk�1 =

P2L
i=0 �

i
c

h
xikjk�1 � x̂kjk�1

i h
yikjk�1 � ŷkjk�1

iT
Kk =

�
Pxy;kjk�1=S

T
y;kjk�1

�
=Sy;kjk�1

State meas. update x̂kjk = x̂kjk�1 +Kk

�
yk � ŷkjk�1

�
Covariance meas. update Skjk = cholupdate

�
Skjk�1; KkSy;kjk�1;�1

�
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Full information estimation

In the full information estimation, an estimate of the states can be found by selecting the
set fx̂1; : : : ; x̂kg that maximizes the probability density function

p (x1; : : : ; xkjy1; : : : ; yk)

i.e., with mathematical notation

fx̂1; : : : ; x̂kg = arg max
x1;:::;xk

p (x1; : : : ; xkjy1; : : : ; yk) :

According to Bayes�rule, the maximum likelihood optimization is solved, and the solution
can be posed as the following least squares problem

min
x1;:::;xk

1

2

�
x1 � x̂1j0

�T
M1
P

�
x1 � x̂1j0

�
+
1

2

kX
i=1

vTi M
i
Rvi +

1

2

k�1X
i=1

wTi M
i
Qwi (3.3)

subject to

xk = f (xk�1; uk�1; wk�1)

yk = h (xk; vk)

where the weighting matrices are usually chosen as M1
P = P

�1
1j0 , M

i
R = R

�1
i , M

i
Q = Q

�1
i and

P1j0, Ri, and Qi are the covariance matrices which re�ect the con�dence in the initial state
estimate, the measurement noise, and the process noise, respectively. Weighting factors M i

R

andM i
Q might change with time. Here, we assume they are constantsMR andMQ. We refer

to this problem as the full information estimator, because we consider all of the available
measurements.

Moving horizon estimation

As the number of measurements grows, the size of the unknown variables increases without
bound. In practice, the objective function of the least squares problem at time k can be
modi�ed to

min
x
k�N ;:::;xk

1

2
(xk�N � x̂k�N)T Mk�N

P (xk�N � x̂k�N) +
1

2

kX
i=k�N

vTi M
i
Rvi +

1

2

k�1X
i=k�N

wTi M
i
Qwi;

subject to

xk = f (xk�1; uk�1; wk�1)

yk = h (xk; vk) ;

where N is a constant interval. This optimization problem is therefore called a moving
horizon optimal estimation. When the number of available measurements is less than the
optimization horizon N , one may use an increasing window length until N measurements
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are available. Alternatively, when the problem is unconstrained, e.g., an extended Kalman
�lter may be used to give optimal estimates in the initial phase.
For MHE, one interesting problem is then how to update x̂k�N and Mk�N

P . Here, we
consider unconstrained systems. In the linear case, the least squares estimation (regardless
of horizon size) is equivalent to the standard Kalman �lter under certain choices of the
weighting matrices. In the nonlinear case, updating of the weighting matrix Mk�N

P is more
complicated than the linear case; and the following methods to update Mk�N

P have been
discussed in the literature (Robertson & Lee 1995):

1. Assume that xk�N is uniformly distributed over some interval. Then, Mk�N
P = 0 and

constraints are used to bound the range of xk�N .

2. Assume that the error distribution of the estimates remains approximately constant
and Mk�N

P is a �xed weighting matrix.

3. Another possibility is based on the probabilistic interpretation of x̂k�N jk�N�1 and�
Mk�N
P

��1
as the conditional mean and covariance of xk�N . Any of the approximate

nonlinear �ltering techniques which are based on the propagation of the conditional
mean and covariance (e.g. EKF) can be used. In this case, the moving estimator with
a horizon size of one (N = 1) will be equivalent to the EKF. However, when N > 1,
Haseltine & Rawlings (2005) show that MHE is more robust to poor guesses of the
initial state in comparison to the EKF, because it �ts the data in the horizon and uses
the full nonlinear model.

Constrained state estimation

In practice, we may need to constrain the range of variables representing physical quantities.
This gives the least squares estimates that are within the speci�ed bounds, which may not
be the case for Kalman �lter-based methods. We assume that the state, process noise, and
measurement noise satisfy the following constraints

x` � xi � xu for k �N � i � k
v` � vi � vu for k �N � i � k
w` � wi � wu for k �N � i � k � 1

where the superscript ` and u stand for the lower bound and the upper bound, respectively.
Of course, more complicated constraint formulations are possible.

MHE for nonlinear estimation

The MHE problem is usually formulated as the following optimization problem

min
x
k�N ;:::;xk

1

2
(xk�N � x̂k�N)T Mk�N

P (xk�N � x̂k�N) +
1

2

kX
i=k�N

vTi M
i
Rvi +

1

2

k�1X
i=k�N

wTi M
i
Qwi

(3.4)
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subject to

xk = f (xk�1; uk�1; wk�1)

yk = h (xk; vk)

x` � xi � xu

v` � vi � vu

w` � wi � wu:

Since the nonlinear state estimation technique is dual to the nonlinear MPC techniques,
various discretization strategies and solution procedures used in nonlinear MPC are directly
applicable to nonlinear estimation as well (Robertson & Lee 1995). In some cases, solving
the described full nonlinear optimization problem may be time-consuming and unable to
�nd the global minimum of the criterion. Therefore, a simple suboptimal approximation to
the optimal solution of the nonlinear estimation problem described in Equation 3.4 is often
applied, see Russell et al. (2000). The approach is to approximate the sequential solution of
Equation 3.4 by a succession of linear least squares problems that can be easily solved by the
standard quadratic programming (QP) solvers. Appendix 3.A presents the QP formulation
for solving linear estimation problems.

3.3 State estimation of the N-removal process

This section presents state estimation of the N-removal process by simulation studies. The
objective is to compare performances of the EKF, UKF, SRUKF, and MHE for the nonlinear
biological WWTP, where the exact models and the statistical information of the stochastic
noises, are available to the �lters. In Paper C, the standard KF, EKF, and UKF are presented
for state estimation of this process. Since the simulation results show that the prediction of
the state with the standard KF is poor due to the high nonlinearity of the process, only the
nonlinear estimation techniques are focused on in this section.

3.3.1 Performance indices

To analyze the performance of the �lters, the prediction accuracies Vy and Vx are de�ned by
the following RMSE (root mean square error) performance criteria

Vy =

s
1

N � ny
(yN � ŷN)T � (yN � ŷN)

Vx =

r
1

N � nx
(xN � x̂N)T � (xN � x̂N)
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Figure 3.2: Control input for the N-removal process.

where N is the prediction horizon and we de�ne the output sequence yN , the estimated
output sequence ŷN , the state sequence xN , and the estimated state sequence x̂N as

yN ,
�
yTN ; : : : ; y

T
1

	T
ŷN ,

�
ŷTN ; : : : ; ŷ

T
1

	T
xN ,

�
xTN ; : : : ; x

T
1

	T
x̂N ,

�
x̂TN ; : : : ; x̂

T
1

	T
;

respectively. The criterion Vx can only be evaluated for simulation studies when the true
state sequence xN is known.

3.3.2 Results and discussions

Figures 3.2 and 3.3 show the control input and the simulated output variables used to drive
the nonlinear state estimation �lters.
To compare the di¤erent estimation approaches, the tuning parameters for the EKF, the

UKF, and the SRUKF are chosen identical. Three groups of simulations are carried out with
same process noise covariances but di¤erent measurement noise covariances given as follows:

Qk = diag
�
x2o � 10�6

�
and

Rk =

8<:
diag (y2o � 10�8) ; in Test I
diag (y2o � 10�6) ; in Test II
diag (y2o � 10�4) ; in Test III

,

where (xo; yo) is the operating point. For the UKF and SRUKF, the parameter � is also an
important tuning parameter, which determines the spread of the sigma points around the
current estimate. Here, � is chosen to be 1� 10�2 which is also used in Paper E.
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Figure 3.3: Simulated output variables for the N-removal process.

With the increase of the measurement noise covariance, the UKF generates negative state
estimates. Thus, a constrained Kalman �ltering technique described in Simon & Simon
(2003) is applied to project the unconstrained state estimate x̂ onto the constraint surface.
That is, if we have the constraints Bx � b, then the constrained estimate can be obtained
by solving the problem

x̂con = argmin
x̂con

(x̂con � x̂)T W (x̂con � x̂) such that Bx̂con � b;

whereW is a symmetric positive de�nite weighting matrix andW is setW = I in this work.
This inequality constrained problem can be formulated with a QP problem described in 3.A.2
and solved by the QP function in Matlab. The approach of incorporating state constraints
into the UKF by projecting the sigma points which are outside the feasible region onto the
constraint surface, is also described in Kandepu et al. (2008).
For comparison, the root squared errors (RSEs)3 of the states in Test I are shown in

Figures 3.4�3.7, where four states that most clearly exhibit the di¤erence of the nonlinear
�lters are chosen. With the UKF, the estimation results are quite noisy because of the
numerical instability of the UKF. Due to the improved numerical properties, the SRUKF is
more robust than the UKF.
To give an overview of the �lter performance, the estimation results of the various �lters

are summarized in Table 3.6. All computations are performed on a 1:7GHz Pentium M
computer with 1Gbyte RAM. Table 3.7 shows that the discrete-time EKF is the fastest �lter.
For instance, the discrete-time EKF requires about 38% of the computational burden of the
unscented �lters, because the calculation of the predictive sigma points in the unscented
�lters is time-consuming.

3The root squared error (RSE) of the state x at time t is de�ned as: RSEt =
q
(xt � x̂t)2, where xt is

the actual value at time t and x̂t is the estimated value at time t.
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Figure 3.4: Comparison of the estimation error of the concentration of SS in Test I.
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Figure 3.5: Comparison of the estimation error of the concentration of SNH4 in Test I.
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Figure 3.6: Comparison of the estimation error of the concentration of XSTO in Test I.

Figure 3.7: Comparison of the estimation error of the concentration of XA in Test I.



50 CHAPTER 3. STATE ESTIMATION

Table 3.6: Performance results of the nonlinear estimation �lters.
Method Vy Vx

Test I Discrete-time EKF 5:3230� 10�4 1:7368
Hybrid EKF 5:3188� 10�4 1:7300
UKF 7:5458� 10�4 0:9411
SRUKF 1:7526� 10�3 0:3867
MHE (�lter horizon N = 1) 5:3230� 10�4 1:7368

Test II Discrete-time EKF 6:9217� 10�3 1:7300
Hybrid EKF 6:8751� 10�3 1:7230
UKF 5:7945� 10�3 1:3613
SRUKF 6:3563� 10�3 0:4759

Test III Discrete-time EKF 9:4400� 10�2 1:4257
Hybrid EKF 9:4278� 10�2 1:4204
UKF(constrained) 1:6680� 10�2 2:5377
SRUKF 8:2867� 10�2 0:6227

Table 3.7: CPU time for the nonlinear estimation �lters.
Discrete-time EKF Hybrid EKF UKF SRUKF MHE

CPU time 25min 34min 60min 62min 28min

In Table 3.6, the di¤erence between the real measurement and the predicted measurement,
the criterion V1, is quite small. Therefore, the estimation error of the state, the criterion V2,
is mainly considered for the comparison of the �lters. The performance results demonstrate
that the SRUKF produces the lowest estimation error for all the tests. The UKF is better
than the extended Kalman �lters in reducing the estimation errors in Tests I and II, whereas
the performance of the UKF becomes poor when taking state constraints into account (see
Test III). In fact, to handle state constraints, the MHE estimator is more straightforward
and generally preferred.

In this work, a horizon size of 1 is used for the MHE with the update of the initial state
estimate and the covariance based a �rst-order Taylor expansion (as in the discrete-time
EKF). In this case, the MHE produces the identical performance as the discrete-time EKF.
For this reason, the MHE result only appears in Test I.

Also, the comparison in Table 3.6 shows that the hybrid EKF provides slightly smaller
estimation errors than the discrete-time EKF due to the more accurate time updates of the
state estimate and the covariance, but the hybrid EKF takes the more CPU time.
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3.A Optimization-based estimation formulated as QP
problem

3.A.1 The optimization-based estimation problem

A linear system, approximated in discrete time is given as

xk = Fxk�1 +Buk�1 +Gwk�1 (3.5)

yk = Hxk + Lvk: (3.6)

We still assume that the known information Ik =
�
x̂1j0; y1; : : : ; yk; u1; : : : ; uk

	
. Here, we

will introduce the notations for the measurement sequence yk ,
�
yTk ; : : : ; y

T
1

	T
, and the

input sequence uk ,
�
uTk ; : : : ; u

T
1

	T
.

The estimation problem is then de�ned as

min
x1;:::;xk

1

2

�
x1 � x̂1j0

�T
M1
P

�
x1 � x̂1j0

�
+
1

2

kX
i=1

vTi M
i
Rvi +

1

2

k�1X
i=1

wTi M
i
Qwi (3.7)

subject to

xk = Fxk�1 +Buk�1 +Gwk�1

yk = Hxk + Lvk

x` � xi � xu

v` � vi � vu

w` � wi � wu:

3.A.2 Standard QP problem

This optimization problem can be posed as a quadratic programming (QP) problem of the
form

min
�k
F (�) = min

�k

1

2
�TkH�k + gT �k (3.8)

s.t. A�k = a

B�k � b

�` � �k � �u:

The unknown variable �k is de�ned as

�k ,

0@ xk

vk

wk�1

1A
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where

xk ,
�
xTk ; : : : ; x

T
1

	T
vk ,

�
vTk ; : : : ; v

T
1

	T
wk�1 ,

�
wTk�1; : : : ; w

T
1

	T
:

xk 2 Rnx�k�1; vk 2 Rnv �k�1; and wk�1 2 Rnw�(k�1)�1. Matrix H and vector g of Equation 3.8
are determined from the requirement that Jt of Equation 3.7 should equal F (�) in Equation
3.8. The equality condition A�k = a contains the model in Equations 3.5 and 3.6. For
the optimization problem de�ned here, inequality B�k � b is empty, while constrains are
contained in �` and �u. Thus, the following matrices result (
 denotes Kronecker product):

H = diag
�
0nx�(k�1);M

1
P ; Ik 
MR; I(k�1) 
MQ

�
; (3.9)

g =

0@ 0nx�(k�1)�1
�M1

P x̂1j0
0(k�nv+(k�1)�nw)�1

1A ; (3.10)

A =

�
Ik 
H Ik 
 L 0k�ny�(k�1)�nw

I(k�1)�k 
 Inx � I(k�1)�k;1 
 F 0(k�1)�nx�k�nv �I(k�1) 
G

�
; (3.11)

a =

�
yk�

I(k�1) 
B
�
� uk�1

�
: (3.12)

Next, the bounds are given as

�` =
�
Ik�nx�1 � x`; Ik�nv�1 � v`; I(k�1)�nw�1 � w`

�T
�u =

�
Ik�nx�1 � xu; Ik�nv�1 � vu; I(k�1)�nw�1 � wu

�T
:

To solve the QP problem, the QP solver quadprog of the Optimization Toolbox in Matlab
can be used. The solution is in the form of the estimates

��k =
�
x̂Tkjk; : : : ; x̂

T
1jk; v̂

T
kjk; : : : ; v̂

T
1jk; ŵ

T
k�1jk; : : : ; ŵ

T
1jk
	T
:



Chapter 4

Parameter Estimation

4.1 Introduction

The ASM models provide a standardized set of basis models with nominal parameter values
suggested in publications. However, the various plant operation, in�uent, and sludge charac-
teristics of full-scale WWTPs require some of the model parameters to be adjusted in order
to ensure good predictive capability of the model. In practice, the parameter estimation of
the activated sludge plant models are characterized by the following features:

� The ASM models have many parameters, as compared to the number of available
measurements, which makes parameters non-identi�able or poorly identi�able.

� The outputs are insensitive to the variation of many (possibly nonlinear) combinations
of parameters.

� The numerical algorithms that perform the nonlinear parameter estimation su¤er from
convergence problems with large numbers of parameters, due to many local optima.

� Gathering good experimental data from the full-scale plant is di¢ cult, mainly because
of lack of cheap and reliable sensors and techniques for measurement.

Clearly, the quality of parameter estimation is directly related to the practical identi-
�ability of parameters, which refers to the ability to obtain accurate parameter estimates
from available experimental data. Therefore, the key question of the identi�ability analysis
is de�ned by Dochain et al. (1995) as follows:

Assume that a certain number of the state variables are available for measure-
ment; on the basis of the type and quality of available data, can we expect to
give a unique value to the model parameters via parameter estimation?

The identi�ability analysis performed prior to the parameter estimation can provide
answers to the key question. Parameter identi�ability analysis of activated sludge process
models has been studied in e.g. Vanrolleghem et al. (1995), Weijers & Vanrolleghem (1997),
Lukasse et al. (1997), Brouwer et al. (1997). A good overview of identi�ability of ASM1

53
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kinetic parameters and experimental designs is given in Petersen (2000). Recently, a more
systematic approach to parameter identi�ability is introduced by Brun et al. (2001) and Brun
et al. (2002), with applications in large environmental models and in an ASM2d model.
As regards parameter estimation of ASPs, estimation of kinetic parameters has been

discussed in Papers A and B using the least square estimation technique. In addition,
biological WWTPs are usually subject to large variations in both the in�uent pollutant
concentrations and �ow rates, which can strongly a¤ect the operating conditions of the
process. However, the large diversity and complexity of the components presented in the
process (including biomass) makes it di¢ cult to implement sensors at the entrance of the
treatment plant. As a consequence, model-based estimators are applied in WWTPs to
estimate the unmeasured input variables (i.e., disturbances from the process control point
of view). Some disturbance estimation techniques are introduced in Darouach et al. (1995),
Pina & Botto (2006), and Ha &Trinh (2004). In biological process applications, Aubrun et al.
(2001) and Theilliol et al. (2003) propose to use the Kalman �lter-based methods to estimate
the input at the entrance of anaerobic wastewater treatment processes. In fact, disturbances
can be considered as time-varying parameters, and parameter estimation techniques could
be applicable to disturbance estimation. Therefore, disturbance estimation is discussed in
this chapter in conjunction with parameter estimation.
The present chapter describes parameter estimation techniques for ASPs, with partic-

ular application to the Duvbacken P-removal plant. Section 4.2 describes the theoretical
background and the procedure for parameter identi�ability analysis. Estimation of kinetic
parameters in the Duvbacken model and model validation is presented in section 4.3. State
and disturbance estimation using the Kalman �lter technique is discussed in section 4.4. In
this chapter, the description of parameter identi�ability follows the presentation given in
Paper A and the Kalman �lter-based algorithm uses the uniform notation as in chapter 3.

4.2 Parameter identi�ability analysis

4.2.1 Theoretical background

Least squares estimation

A relatively standard method for model �tting is to select the model parameters � 2 Rn�
such that the least squares criterion de�ned as

J =
1

2

TX
t=1

(yt � ymt )
T (yt � ymt )

is minimized, where yt 2 Rny is the output observed from the real plant at time t, ymt 2 Rny
is the model output at time t, while T is the number of available observations. That is, based
on experimental data (output yt and control input ut, t 2 f1; : : : ; Tg), the best parameter
estimate �̂ is sought in the sense that the model output ymt

�
�̂
�
resembles the real output yt

as well as possible. The theoretical background of parameter identi�ability analysis has also
been discussed in Paper A.
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Sensitivity and collinearity

We introduce the notation

y =

0B@ y1
...
yT

1CA ; ym =

0B@ ym1
...
ymT

1CA u =

0B@ u1
...
uT

1CA ; e =

0B@ e1
...
eT

1CA ,
where et is the observation error yt� ymt ; hence y; ym; e 2 RT �ny�1, and u 2 RT �nu�1. Clearly,
model prediction ymt depends on the chosen parameter values. This dependence is quanti�ed
by the sensitive row vector ~sTt at time t, de�ned as

~sTt =
@ymt
@�

=
�

@ymt
@�1

� � � @ymt
@�n�

�
2 Rny�n� .

We can then build the sensitivity matrix S as

S =

0B@ ~sT1
...
~sTT

1CA =
�
s1 � � � sn�

�
2 RT �ny�n� ; sj =

@ym

@�j
=

0BB@
@ym1
@�j
...

@ymT
@�j

1CCA 2 RT �ny�1.

Assume that we have some a priori estimate/idea �i of the true value �� of �. The
criterion J can be minimized by using Newton iteration:

@2J

@�2

����
�i

�
� � �i

�
= � @J

@�

����
�i
,

where

@J

@�
= �

nyX
i=1

 
TX
t=1

�
yt;i � ymt;i

� @ymt;i
@�

!
= �

nyX
i=1

 
TX
t=1

et;i
@ymt;i
@�

!
@2J

@�2
=

nyX
i=1

TX
t=1

@ymt;i
@�

�
@ymt;i
@�

�T
�

nyX
i=1

TX
t=1

et;i
@2ymt;i

@�2
.

If � is close to the correct parameter ��, it is common to assume that et will be close to zero
on the average and hence use the Gauss-Newton approximation

nyX
i=1

TX
t=1

@ymt;i
@�

�
@ymt;i
@�

�T�

nyX
i=1

TX
t=1

et;i
@2ymt;i

@�2

 .
Thus, the Newton iterator is reduced to the expression

nyX
i=1

TX
t=1

@ymt;i
@�

�
@ymt;i
@�

�T �����
�i

�
� � �i

�
=

nyX
i=1

 
TX
t=1

et;i
@ymt;i
@�

!�����
�i

,
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and we seek the value �̂ such that the equality holds

nyX
i=1

TX
t=1

@ymt;i
@�

�
@ymt;i
@�

�T �����
�i

�
�̂ � �i

�
=

nyX
i=1

 
TX
t=1

et;i
@ymt;i
@�

!�����
�i

or �
STS

���
�i
���̂ = ST e

��
�i
, (4.1)

where ��̂ , �̂ � �i.
Clearly, matrix S must have full column rank r , rankS = n� in order to have a unique

solution for Equation 4.1. In the simplest case, this requirement fails if sj � 0, i.e., output
ym is insensitive to parameter �j under the given experimental conditions. Furthermore,
if ksjk is �small�, ym is weakly sensitive to �j, indicating that in practice ��̂j can not be
found.
Even when no columns of S are zero, there may be problems with linear dependence

among the columns of S. Such a linear dependence is denoted collinearity, and one measure
of nearness-to-collinearity in S is the smallest singular value �min (S). Since �min (S) is an
absolute measure of nearness, it is di¢ cult to interpret. To avoid this problem of interpre-
tation, one can either scale S before computing �min (S), or else scale �min (S) afterwards
(Stewart 1987). In the �rst strategy, one possible scaling strategy is to normalize every col-
umn in S. For the second strategy, it has become standard practice in linear algebra to scale
�min (S) by the largest singular value �max (S), and present the inverse: this is the condition
number � (S), which is

� (S) =
�max (S)

�min (S)
.

In the sequel, a procedure for parameter identi�ability and estimation will be introduced,
with special emphasis on two identi�ability measures: sensitivity measure and collinearity
index. The �rst is designed to assess individual parameter importance in a least squares
parameter estimation context, and the second accounts for the degree of collinearity among
parameters for various parameter subset.

4.2.2 Procedure for selecting identi�able parameters

As mentioned in section 4.1, calibration of ASM models may be a challenging tasks. ASM
models are most often highly complex, and they are usually high-order nonlinear systems
incorporating a large number of parameters. In addition, models usually are overparameter-
ized or have poorly identi�able parameters with respect to the available experimental data.
Parameter estimation of ASM models is therefore addressed by ad hoc selecting and tuning
approaches. The identi�ability procedure described in Brun et al. (2002) seems well suited
to WWTPs, since it handles large simulation models and provides systematic selection and
tuning of parameter subsets, see also Brun et al. (2001), Dueñas Díez et al. (2006). The ap-
proach of Brun and co-workers is rooted in basic linear algebra and least squares parameter
estimation, as discussed above. Also, for automated analysis of sensitivity of a large number
of parameters, Lund & Foss (2008) present an easily implemented method on parameter
ranking by successive orthogonalization, which may be of interest for on-line estimation.



4.2. PARAMETER IDENTIFIABILITY ANALYSIS 57

Figure 4.1 illustrates the general steps in the procedure for parameter identi�ability
analysis and estimation. The procedure is composed of three main stages: experiments,
identi�ability analysis, and estimation and validation. Here, we give a brief discussion of
each of the steps, and more details of the approach can be found in Dueñas Díez (2004) and
Dueñas Díez et al. (2006).

1. Experimental design. Designing experiments which provide as much information as
possible to determine and estimate the regarded parameters usually reward us with
good parameter estimates.

2. Experimental campaign.

3. Prior analysis. Scaling of outputs and parameters is essential. For the numerical analy-
sis to make sense, the quantities should be dimensionless. Thus, it is recommended to
use dimensionless, scaled quantities

~yt;j =
yt;j
y�j
; ~�j =

�j
��j

where y�j is a scale factor with the same physical dimension as yt;j, typically indicating
the variation in yt;j or a nominal value, while �

�
j is a scale factor with the same physical

dimension as �j, typically indicating the uncertainty in �j. In the sequel, scaling
parameters and outputs as part of the preprocessing of the data is highly recommended.

4. Calculate model output. Identi�ability analysis as discussed in this approach requires
only simulated model output.

5. Compute sensitivity. Based on the de�nition of sensitivities in 4.2.1, the column sj of
the scaled sensitivity matrix S is computed as

sj � scj
ym
�
�0 + ej � ��j

�
� ym

�
�0
�

��j
,

where scj is the proper scaling factor and ��j is the perturbation value of �j. ym
�
�0
�
and

ym
�
�0 + ej � ��j

�
represent the nominal output and the perturbed output, respectively,

while ej is column j of the identity matrix I 2 Rn��n� .

6. Parameter importance ranking. With Equation 4.1, the �rst step is to consider whether
the model output is insensitive to any of the parameters, i.e. to compare ksjk for the
various parameters �j. Brun et al. (2001) propose to scale ksjk by the square-root of
the amount of data nyT and introduce the sensitivity measure �

msqr
j de�ned as

�msqrj , 1p
nyT

ksjk2 ,

instead of using ksjk2 directly; they also consider other norms ksjk. The strategy is
then to sort the various parameters according to the value of �msqrj . A high value of
�msqrj means that a change in the parameter �j has an important in�uence on the model
output.
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1. Experimental design

2. Experimental campaign

Stage I. Experiments

3. Prior analysis

4. Calculate model output

5. Compute sensitivities

6. Parameter importance
ranking

8. Choose parameter
subsets

7. Assess identifiability of
parameter subsets

9. Perform parameter
estimation

10. Statistical analysis of
parameter estimates

Stage II. Identifiability
analysis

Stage III. Estimation &
validation

Parameter initial values,
range & scale factors

Basic simulation

Experimental data

Experimental data
Measure of model fit
Optimization algorithm

Figure 4.1: Procedure for parameter identi�ability analysis and estimation. Taken from
Dueñas Díez et al. (2006).
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7. Assess identi�ability of parameter subsets. In considering Equation 4.1, the next step
is to look for collinearity. Brun et al. (2001) de�nes a collinearity index K as

K ,
1

�min

�
~SK

� = 1r
�min

�
~STK
~SK

� ,
where ~SK is a T � ny � K submatrix of ~S containing those columns that correspond
to the K parameter subset of �. ~S is a slightly modi�ed sensitivity matrix where the
columns have been normalized as noted above, and �min

�
~SK

�
is the smallest singular

value of ~SK . A high value of K indicates that the parameter subset K is poorly
identi�able even if the individual parameters of K are among the top parameters of
the parameter importance ranking.

8. Choose parameter subsets. An identi�able parameter subset is chosen based on the
numerical analysis described in steps 3�8.

9. Perform parameter estimation. At this step, the measured data from the real plant
are used. Various estimation techniques can be applied, e.g. weighted least squares
estimation, maximum likelihood estimation, the Kalman �lter, moving horizon estima-
tion, asymptotic observers, etc., (Crassidis & Junkins 2004), (Gelb 1992), (Lewis 1986),
(Dochain & Vanrolleghem 2001).

10. Statistical analysis of parameter estimates. Finally, a statistical analysis should be
carried out to analyze the uncertainties of the estimates, and to evaluate the quality
of the �tting.

4.3 Estimation of kinetic parameters in the Duvbacken
model

4.3.1 Parameter identi�ability and estimation

Identi�ability analysis and estimation of the kinetic parameters for the Duvbacken plant are
discussed in the Papers A and B. The online measurements of the Duvbacken plant are taken
in the period of October 24�29, 2005. The in�uent characteristics and on-line and o¤-line
measurements are given in Paper A.
The methodology presented in subsection 4.2.2 is applied to the Duvbacken model, and

two studies are carried out:

� As an initial study before doing parameter estimation based on real data from the
plant, we check whether suitable estimates can be obtained based on simulation data
with known true parameter values, see Paper A. The model validation result shows that
the model �t is satisfactory, especially for those outputs which are important to the
plant operation (e.g. SPO4 and TP). However, in that study, the model implementation
in Matlab is restrictive with respect to possible input signals, and components of the
model are di¢ cult to modify and reuse.
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� The model is thus rewritten in the more �exible modeling language Modelica, as de-
scribed in section 2.4. The procedure shown in Figure 4.1 is used to analyze the
identi�ability again, but this time we use the same in�uent �owrate as in the real
plant. Eventually, the selected parameter subset is estimated from real data, see Paper
B.

Comparing the identi�able parameter subsets obtained in the studies, it can be seen that
most parameters in the optimally identi�able parameter set are the same. This con�rms
that these parameters are indeed identi�able.
Based on the identi�ability analysis, nonlinear least squares estimation is used, with the

following optimization criterion

�̂ = argmin
�
J = argmin

�

1

2
eTWe. (4.2)

Here, the computation of the model output ymt in the criterion J is based on ballistic sim-
ulation, i.e., using multiple-step-ahead prediction errors. This is in contrast to applying
recursive estimation techniques (e.g. the Kalman �lter-based approaches), which minimize
the one-step-ahead prediction error. To solve the optimization problem, two di¤erent algo-
rithms are applied considering convergence speed of optimization. The Finkel-Kelley Direct
optimization algorithm is proven to be more robust but slower than Matlab�s lsqnonlin al-
gorithm.

4.3.2 Model validation

Once parameter estimation has been carried out, the model with the estimated parameters
should be tested on a new set of experimental data. The measurements taken from the
Duvbacken plant over the period of October 17�24, 2005 are used for model validation, with
a periodically varying �owrate shown in Figure 4.2. A sudden increase of the feed �owrate
(as well as COD loadings) occurs at the last day, while the oxygen supply to the process is
insu¢ cient. This results in the dramatic increasing of the phosphate concentrations, see the
solid lines in the last two subplots of Figure 4.3. The simulation results in Figure 4.3 show
that the model with the estimated parameters (dashed line) captures the large variations
in SPO4 and Ptot, whereas the model with the nominal parameters (dotted line) gives poor
prediction. This indicates again the conclusion obtained in the papers: the resulting model
gives good prediction of the measurements related to phosphorus.

4.3.3 Con�dence interval of parameter estimates

Once the model is �tted to experimental data, we need to �nd out how accurate we have
estimated the parameters and conclude whether this accuracy is su¢ cient for our purpose.
Typically, the con�dence interval of the parameter estimates are used for assessing the ac-
curacy.
A con�dence interval can be obtained by using the relation (Rawlings & Ekerdt 2002):�

� � �̂
�T
Hj�=�̂

�
� � �̂

�
� 2s2npF (np; nd � np; �)
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Figure 4.2: Measured �owrate of the process feed in the period of October 17�24, 2005.
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Figure 4.3: Comparison of the model outputs using the estimated parameters (dashed) and
using the nominal parameters (dotted) with the real measurements (solid) taken in the period
of October 17�24, 2005.
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in which � is the real value of the parameter, �̂ is the estimated value of the parameter, np
is the number of estimated parameters, nd is the number of data points, � is the desired
con�dence level, and F represents the F -distribution which can be read from statistical
tables. It should be mentioned that � and �̂ only consist of the chosen identi�able parameters.
H is the Hessian of the objective function in Equation 4.2, and as discussed in 4.2.1, H can
be calculated with the following approximate expression

H = STKWSK ,

where SK is a submatrix of S containing those columns that correspond to the chosen
parameter subset K, while W is the weight matrix. s2 is the sample variance

s2 =
2J
�
�̂
�

nd � np
.

For the parameter estimation with 10 estimated parameters, the 95% con�dence interval is:�
� � �̂

�T �
STKWSK

���
�=�̂

�
� � �̂

�
� 1:4178. (4.3)

The con�dence interval is often reported with plus/minus limits, i.e., �̂ = �̂���, in which
�� can be given as

�� =

r
2s2npF (np; nd � np; �) � ~H

���
�=�̂
;

where ~H is the diagonal vector of H�1. Then, the corresponding con�dence limits to Equa-
tion 4.3 is found to be:

�̂ =

0BBBBBBBBBBBBBB@

Kh

KX

qfe
bHET
qPP
�PAO
KPS;PAO

KPHA

�AUT
KP;AUT

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

3:000
0:122
2:889
0:477
1:000
1:000
0:193
0:010
0:852
0:014

1CCCCCCCCCCCCCCA
�

0BBBBBBBBBBBBBB@

0:076
0:082
0:086
0:133
0:092
0:107
0:102
0:078
0:305
0:108

1CCCCCCCCCCCCCCA
:

The most parameters are determined with narrow con�dence intervals. However, some pa-
rameters (e.g. KPHA, KP;AUT) have very wide con�dence intervals. It should be noticed
that the con�dence limits can give an overly pessimistic picture since they de�ne a rectangle
which can encompass quite a bit more area than the actual con�dence region, as illustrated
in Figure 4.4. This is particularly the case when there is a strong correlation between the
parameters.
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Figure 4.4: An example of con�dence region and con�dence intervals in two-dimensional
case. Adapted from Rawlings & Ekerdt (2002).

4.4 Disturbance estimation using the Kalman �lter

To have a good prediction capability of the Duvbacken model, we need information about the
input signals. The on-line measurement of the in�uent �owrate of the plant is available, but
there are no sensors to measure the in�uent compositions. Indeed, a good characterization
of the COD, nitrogen, and phosphorus components in the in�uent is very important to the
performance of the ASM models (Olsson & Newell 1999). Therefore, in this section, we
accept model parameter values provided in the ASMs literatures, and instead estimate the
in�uent compositions. The objective is to develop a method for simultaneously estimating
both state and disturbance for the Duvbacken plant. This topic has not been presented in
any papers in Part II of the thesis.

4.4.1 State and disturbance estimation

The Kalman �lter is widely applied for on-line implementation of state and disturbance
estimation. Also, in section 3.3, we have shown that the discrete-time EKF provides fast
and satisfactory state estimation for an ASP. Therefore, the discrete-time EKF is the chosen
algorithm for state and disturbance estimation here.
For the general dynamic system

xk = f (xk�1; uk�1; wk�1; dk�1)

yk = h (xk; vk) ,

a standard approach to disturbance estimation using the Kalman �lter is to augment the
state vector x 2 Rnx with the disturbance d 2 Rnd , and to describe the time variance of
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disturbances with a state-space model:

�k = fd
�
�k�1

�
+ rk�1

dk = hd (�k) ,

where � 2 Rn� is the state of the disturbance model and rk is white noise. It is assumed that
wk, vk, and rk are independent, zero-mean Gaussian noise processes of covariance matrices
Qk, Rk, and Dk, respectively, i.e.,

wk � N (0; Qk)

vk � N (0; Rk)

rk � N (0; Dk) :

The choice of which disturbances to estimate should be guided by an identi�ability analysis,
as described in section 4.2.
We �rst combine the state and disturbance vectors to form an augmented state such that

the dynamics may be represented by

~xk ,
�
xk
�k

�
=

�
f
�
xk�1; uk�1; wk�1; hd

�
�k�1

��
fd
�
�k�1

�
+ rk�1

�
(4.4)

yk = h (xk; vk) : (4.5)

Table 4.1 gives the algorithm steps for simultaneous state and disturbance estimation,
which correspond directly to the state estimation EKF steps except with larger matrix
operations.

4.4.2 Observability analysis

Observability analysis for state and disturbance estimation

Let us now consider a linear system with unmeasured disturbances

dx (t)

dt
= Fx (t) + Cd (t) (4.6)

y (t) = Hx (t) , (4.7)

in which the disturbance can be described as a state-space model

d� (t)

dt
= Fd� (t)

d (t) = Hd� (t) ,

where � 2 Rn� is the state of the disturbance model.
Then, the system can be rewritten as an augmented system in the form of

d~x (t)

dt
= ~F ~x (t) (4.8)

y (t) = ~H~x (t) , (4.9)
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Table 4.1: Summary of the extended Kalman �lter for simultaneous state and input estima-
tion.
Nonlinear state-space model�
xk
�k

�
=

�
f
�
xk�1; uk�1; wk�1; hd

�
�k�1

��
fd
�
�k�1

�
+ rk�1

�
yk = h (xk; vk) ;

or
~xk = ~f (~xk�1; uk�1; ~wk�1)

yk = ~h (~xk; vk)

where wk � N (0; Qk) , vk � N (0; Rk) and rk � N (0; Dk).

We let ~xk ,
�
xTk ; �

T
k

�T
, ~wk ,

�
wTk ; r

T
k

�T
, and Q ~w

k = diag (Qk; Dk)

De�nition:

Fk =
@ ~f
@~x

���
~̂xkjk;uk;0

; Gk =
@ ~f
@ ~w

���
~̂xkjk;uk;0

; Hk =
@~h
@~x

���
~̂xkjk�1;uk;0

; Lk =
@~h
@v

���
~̂xkjk�1;uk;0

Initialization: for k = 0, set ~x0 � N
�
~̂x0j0; P

~x
0j0

�
Computation: for k = 1; 2; : : :, compute

State time update ~̂xkjk�1 = ~f
�
~̂xk�1jk�1; uk�1; 0

�
Covariance time update P ~xkjk�1 = Fk�1P

~x
k�1jk�1F

T
k�1 +Gk�1Q

~w
k�1G

T
k�1

Output estimate ŷkjk�1 = ~h
�
~̂xkjk�1; 0

�
Kalman gain Kk = P

~x
kjk�1H

T
k

�
HkP

~x
kjk�1H

T
k + LkRkL

T
k

��1
State measurement update ~̂xkjk = ~̂xkjk�1 +Kk

�
yk � ŷkjk�1

�
Covariance measurement update P ~xkjk = (I �KkHk)P

~x
kjk�1 (I �KkHk)

T +KkLkRkL
T
kK

T
k
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where ~x (t) ,
�
x (t)
� (t)

�
2 R(nx+n�)�1, ~F =

�
F CHd
0 Fd

�
, and ~H =

�
H 0

�
.

According to the PBH observability test (Theorem 6 in section 3.2), this augmented
system is said to be observable if

rank

�
~H

sI � ~F

�
= rank

0@ H 0
sI � F �CHd
0 sI � Fd

1A = nx + n�. (4.10)

Before discussing the conditions for meeting Equation 4.10, we need the concept of trans-
mission zeros.

De�nition 7 (Transmission zeros) Consider a system (F;C;H) described in Equations

4.6 and 4.7 and its linear pencil � (s) =
�

H 0
sI � F �C

�
, the transmission zeros1 of the

system are those s such that

rank (� (s)) = rank

�
H 0

sI � F �C

�
< nx +min [ny; nd] .

Now we consider the rank condition in Equation 4.10. For all s 2 eig (Fd), where
eig (Fd) denotes the eigenvalues of Fd, in order to ful�ll the rank condition, the matrix�

H 0
sI � F �CHd

�
needs to have full rank. Hence, the number of states in the disturbance

model should be less than or equal to the number of outputs (i.e. n� � ny), and there
must not exist any transmission zeros at s 2 eig (Fd) for the system (F;CHd; H). For all
s =2 eig (Fd), the n� last columns are linearly independent, i.e. rank (sI � Fd) = n�. If the

system without disturbance is observable, i.e. rank
�

H
sI � F

�
= nx, then the augmented

system is observable.
These observation can be summarized in the following theorem:

Theorem 8 The augmented system described in Equations 4.8 and 4.9 is observable if the
system has the following properties:

� The original system (F;H) is observable.

� The number of states in the disturbance model is less than or equal to the number of
outputs, i.e. n� � ny.

� The system (F;CHd; H) has no transmission zeros at any s 2 eig (Fd).

Example 9 (Constant disturbance) Let us reconsider the linear state equations 4.6 and
4.7. Now we assume that the disturbance is constant

d

dt
d (t) = 0.

1In Matlab, the function zero can be used to compute transmission zeros of LTI models.
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The augmented system becomes

d~x (t)

dt
= ~F ~x (t)

y (t) = ~H~x (t) ,

where ~x (t) ,
�
x (t)
d (t)

�
2 R(nx+nd)�1, ~F =

�
F C
0 0

�
, and ~H =

�
H 0

�
. The augmented

system is observable if

rank

0@ H 0
sI � F �C
0 sI

1A = nx + nd.

According to Theorem 8, the state equations 4.6 and 4.7 with constant disturbance is observ-
able if

� the original system (F;H) is observable,

� the number of unknown disturbances is less than or equal to the number of outputs, i.e.
nd � ny, and

� the system (F;C;H) has no transmission zeros at s = 0.

Structural observability

For the nonlinear WWTP model, in order to guarantee the (arbitrarily chosen) exponential
convergence of the �lter, the process must be locally observable, i.e., the linearized model
must be observable and ful�ll the observability test discussed above. This requires that
the measurements must be su¢ cient in number and in their relationship to the predicted
states and disturbances. To give a clue that helps us to �nd necessary measurements, a
graph approach is performed for structural observability analysis (Lunze 1992). Based on
the model structure, one can �nd system observability without knowing the precise system
parameters. A system is said to be output-connectable (or output-reachable) if there exists
for every state vertex a path from state vertex to at least one output vertex. The reachability
test is a necessary condition of investigating the observability.
The structure of a system described by ASM2d model is shown in appendix 4.A, with

the outputs that are available in practice. We can see that the states SI, SN2, and XI do
not connected to the outputs, thus, the system is unobservable. In other words, to make the
system output-connectable, these states have to be considered as available measurements.

4.4.3 Application to the Duvbacken plant

Process description

As introduced in Dochain & Vanrolleghem (2001), the general mathematical model of the
Duvbacken plant can be formulated as

dx (t)

dt
= f (x (t) ; u (t)) + Cd (t) + w (t)

y = h (x (t)) + v (t)
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where x 2 Rnx is the state, u 2 Rnu is the model input, d 2 Rnd is the disturbance that
typically represents the feed composition, and the matrix C is known. The process noise and
the measurement noise are assumed to be w (t) � N (0; Q) and v (t) � N (0; R), respectively.
In general terms, disturbance models have to be chosen according to the expected load. In

the case of WWTPs, the feed composition of domestic wastewater may typically vary during
the course of a day. However, wastewater characteristics vary from plant to plant, and there
are quite few measurements taken from the feed. Therefore, an accurate disturbance model
is di¢ cult to �nd. It is more realistic to assume a constant disturbance

d

dt
d (t) = r,

where r is the white noise.
Considering the application of the discrete-time EKF, the augmented model described in

equations 4.4 and 4.5 becomes

~xk =

�
xk
dk

�
=

�
f (xk�1; uk�1; wk�1; dk�1)

dk�1 + rk�1

�
yk = h (xk; vk) .

In contrast to the states x, the additional states d are considered as constants during the
propagation phase in the �lter. However, the values of d will be corrected in the update steps
of the Kalman �lter algorithms at discrete-time instants. A signi�cant advantage of state
augmentation for disturbance estimation is the fact that the algorithm can track time-varying
disturbances.
A dynamic model of the Duvbacken plant has been described in section 2.3. In the model,

each of the 4 steps in the plant (anaerobe, aerobe 1�3) includes 17 states and this gives a
model with 68 states. The model input is the volumetric feed �owrate Qin, while the feed
compositions of 17 variables are the model disturbance. Due to the practical focus of this
study, only the 4 most interesting feed concentrations are estimated: readily biodegradable
substrate SF;in, fermentation products SA;in, ammonium SNH4;in, and slowly biodegradable
substrate XS;in. The other feed concentrations are chosen to be constant.
In the plant, 13 measurements listed in Table 4.2 are available with the sampling time

of 1min. However, according to the observability analysis in subsection 4.4.2, we �nd that
at least the following 16 state variables2 need to be available for measurement to render the
Duvbacken system locally observable:

In anaerobe reactor: SPO4, SI, SN2, SALK, XI, XTSS

In aerobe reactor 1: SO2, SPO4
In aerobe reactor 2: SO2, SNH4 , SNO3, SPO4
In aerobe reactor 3: SO2, SNH4, SNO3, SPO4.

Consider the problem of constructing estimates of the unmeasured state variables and dis-
turbances from the available outputs listed in Table 4.2. The resulting augmented system
is observable if the conditions in Theorem 8 are ful�lled. It is obvious that the original
system is unobservable due to the lack of measurements. Therefore, the augmented system
is unobservable as well. In the sequel, we �rst choose to check whether the suitable state and

2Unfortunately, it is not realistic to measure all these states in practice.
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Table 4.2: Measurements of the Duvbacken WWTP.
Output Component Description
y1 SNH4;a1 Ammonium in outlet of aerobe reactor 1
y2 SNO3;a1 Nitrate in outlet of aerobe reactor 1
y3 XTSS;a1 Total suspended solids in outlet of aerobe reactor 1
y4 SO2;a2 Dissolved oxygen in outlet of aerobe reactor 2
y5 SNO3;a2 Nitrate in outlet of aerobe reactor 2
y6 XTSS;a2 Total suspended solids in outlet of aerobe reactor 2
y7 SO2;a3 Dissolved oxygen in outlet of aerobe reactor 3
y8 SNO3;rs Nitrate in return sludge chamber
y9 XTSS;rs Total suspended solids in return sludge chamber
y10 SNH4;e� Ammonium in e uent of the plant
y11 SPO4;e� Phosphate in e uent of the plant
y12 TPe� Total phosphorus in e uent of the plant
y13 XTSS;e� Total suspended solids in e uent of the plant

disturbance estimates can be obtained for the observable process by the simulation study,
then the application to the plant based on real data is investigated.

Simulation results

The proposed estimation approach is evaluated for the observable process based on responses
from the simulation model. The input Qin is obtained from the real plant over a 40 h period,
and the time evolution of Qin is plotted in Figure 4.5. The feed wastewater composition and
the simulation results over the 40 h period for the plant are shown in Table 4.3.
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Figure 4.5: Time evolution of the measured feed �owrate over a 40 h period.
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Table 4.3: Simulated concentrations of ASM2d components.
ASM2d components Feed [ g=m3] E uent [ g=m3] Recycled sludge [ g=m3]
SO2 0:1 2:91 2:91
SF 30 0:47 0:47
SA 20 0:01 0:01
SNH4 25 18:37 18:37
SNO3 0:5 4:05 4:05
SPO4 7 0:03 0:03
SI 30 30:06 30:06
SALK 5 5:79 5:79
SN2 2 8:34 8:34
XI 10 1:50 2436:31
XS 75 0:05 78:10
XH 10 1:98 3231:77
XPAO 0 1:16 1885:27
XPP 0 0:13 215:34
XPHA 0 0:13 215:34
XAUT 0:2 0:06 91:01
XTSS 100 3:76 6120:39

Figure 4.6 shows the good convergence properties of the estimator for the disturbances.
Also, the estimation of unmeasured states are plotted in Figure 4.7. Due to the large quantity
of the state variables, only some of the states for the last reactor (aerobe reactor 3) are shown
in the �gure. The time evolutions of both the unmeasured states and the inputs illustrate
the potential of the proposed approach to simultaneously estimate unmeasured states and
disturbances.

Experimental results

Although the system is unobservable based on the experimental data, it is still of great inter-
est to investigate the practical performance of the disturbance estimator. Figure 4.8 shows
estimated values of the unmeasured feed concentrations based on real data, in comparison
to the disturbance values used in the simulation model. However, since the real value of the
disturbance is not known, this makes the initialization and tuning of the �lter more di¢ cult.
In order to evaluate the performance of the �lter, the evolution of some key outputs are
displayed in Figures 4.9 and 4.10: the real output from the plant (solid line) and the esti-
mated output with the EKF (dashed line). For veri�cation of the disturbance estimate, we
also include the model output with nominal disturbance values (dotted line) and the model
output after disturbance estimation (dash-dotted line). The comparison of the simulations
will indicate whether the model provides smaller prediction errors through disturbance esti-
mation. We can see that the output prediction is quite good using the EKF. However, the
estimated disturbances do not provide a signi�cant improvement in the prediction capability
of the model outputs.
From a practical point of view, it should be stressed that the obtained results are inter-
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Figure 4.6: Time evolution of the disturbances for the observable process.
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bances (blue, dotted), and simulated results with the estimated values for the disturbances
(green, dash-dotted).
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esting. Indeed, as it has been pointed out in the introduction, the estimation of the feed
concentrations of WWTPs is a very challenging problem. The processes su¤er from a lack
of sensors, and their investment and operating costs together with di¢ culties of measuring
gas and biomass concentrations limit practical implementation of sensors. The proposed ap-
proach allows us to estimate both the unmeasured model states and the disturbances, using
a number of available measurements.
According to the application of the EKF to the state and disturbance estimation of the

Duvbacken process, we would like to draw attention to the following conclusions:

� The EKF requires that a reliable process model is available and model �tting and
validation should preferably be carried out. However, perfect models rarely exist and
uncertainty of e.g. initial conditions and kinetics often appear in WWTPs. In this
case, observability of the system is particularly important to ensure the dynamics of
the EKF to be assigned arbitrarily.

� To render the Duvbacken system locally observable, the following additional state
variables need to be available for measurement based on the measured output listed
in Table 4.2: SPO4, SI, SN2, SALK, XI, and XTSS in anaerobe reactor, SO2 and SPO4
in aerobe reactor 1, SNH4 and SPO4 in aerobe reactor 2, and SNO3 in aerobe reactor 3.
However, measurement of some of the state variables (e.g. SI and SN2) is not realistic
with today�s technology.

� The EKF should be carefully tuned in the real-life application, otherwise biased results
might appear. The main parameters to tune are the covariance matricesQ andR. Also,
the choice of initial value of state error covariance P0 plays an important role in the
convergence properties of the EKF.

4.A Structural observability analysis of ASM2d model

The structure of the system described by the ASM2d model is illustrated in Figure 4.11.
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Figure 4.11: Structure of the system described by ASM2d model.



Chapter 5

Control Strategies

5.1 Introduction

Applying advanced control strategies to ASPs is a challenging task. Compared to other
industrial processes, some of the challenges that are particular to the control of the ASP are
stated in Olsson & Newell (1999):

� The disturbances of the ASP are extremely large.

� The process has signi�cant nonlinearities limiting the usefulness of simple controllers.

� The process has sti¤ dynamics, i.e., there is a wide range of time constants (from a
few minutes to several days).

� There are few manipulated variables.

� Sensors do not exist for many states and are expensive for others.

� The strict EU Directive 91/271/EEC on Urban Wastewater Treatment strongly con-
straints the maximum pollutant concentrations allowed in the e uent.

For ASPs, many control techniques have been proposed in the literature from classi-
cal control (e.g. PID control, cascade control, and ratio control), rule-based control (e.g.
knowledge-based control and fuzzy control), model based control (e.g. optimal control,
MPC, and adaptive control), to plant-wide control. For a thorough review of the techniques,
the reader is referred to Weijers (2000). Also, state-of-the-art of control methods and prac-
tical cases for wastewater treatment are presented in Olsson et al. (2005). Some examples
of control strategies for ASPs are given in Lindberg (1997), Lukasse, Keesman, Klapwijk &
van Straten (1999), and Samuelsson (2005).
In this work, MPC is chosen for advanced control of ASPs. MPC is by far the most

commonly applied advanced control technique in the chemical process industry (Bequette
2003). The reasons why MPC looks appropriate for control of ASPs are:

� MPC handles constraints in an optimal fashion.
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� The MPC algorithm allows us to anticipate and remove the e¤ects of disturbances.
Indeed, disturbances are a major reason why control is required for ASPs.

� The optimization-based procedure is a natural way of handling multivariable control
problems.

� MPC provides a general framework for complicated processes with time-delays, inverse-
responses, and interactions.

In this chapter, control strategies of the aeration system for the intermittently aerated
ASP introduced in section 2.2 are studied. We consider both simple rule-based controllers
in section 5.2 and advanced model-based controllers (e.g. optimal control and MPC) in
section 5.3. In the application of MPC, we �rst choose to study linear MPC for a nitrogen
removal ASP with continuous aeration in subsection 5.3.1, which provides us with guide-
lines for further MPC development. Next, nonlinear MPC is considered due to the high
nonlinearity of ASPs and discussed in subsection 5.3.2.

5.2 Rule-based control strategies

In practice, many rule-based operating modes have been investigated and applied to inter-
mittently aerated ASPs, and can be categorized as

� open-loop control using �xed lengths of aerobic and anoxic phases, or

� feedback control using varying phase lengths by establishing a switch point for each
phase. The switch point is typically the concentration of dissolved oxygen, nitrate, or
ammonia.

These rule-based control strategies are often used for evaluation of process performance (Hao
& Huang 1996), (Kimochi et al. 1998) and for comparison with advanced model-based control
strategies (Isaacs & Thornberg 1998), (Lukasse, Keesman, Klapwijk & van Straten 1999),
(Chachuat et al. 2005).
In Paper F, three rule-based strategies are presented for the nitrogen removal process

with intermittent aeration:

� �xed lengths of aerobic and anoxic phases,

� relay control of the blower (on/o¤) state by the upper level of dissolved oxygen (DO)
whilst the aeration cycle length is �xed, and

� relay control of the blower state by the upper and lower bounds of ammonia concen-
tration (SNH4).

Another widely-used strategy is relay control by both the upper and lower bounds of DO,
which is the approach applied to the laboratory process in chapter 6. The reactor is then
intermittently aerated to restrict the value of DO between DOmin and DOmax. By the
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Figure 5.1: Simulation result of the DO zone control strategy: TN in the e uent.

simulation study, the reasonable values of DOmin1 and DOmax are found to be 0:02 gm�3and
1:1 gm�3, which results in the total aeration fraction of 53:95%. The e uent TN obtained
with the DO zone control strategy is shown in Figure 5.1. The controller has a similar
performance as the �xed phase length controller and the DO upper level controller shown
in Paper F, but the aeration switching frequency is higher (the number of aeration cycles
Nc = 129 d

�1).
Common to all these strategies is that the control variable is selected so as to satisfy the

following criterion over a 24 h control horizon:

min J =

X
d

Th

subject to
dxa
dt

= F (xa; ua)
0 � TNmax�TN .

The objective is to determine the aeration pro�le that minimizes the aeration fraction, i.e.,
the total aeration time (

X
d) divided by the control horizon (Th), with adherence to the

e uent limit for the concentration of total nitrogen (TN). The objective function J is
subject to the nonlinear process model dxa

dt
= F (xa; ua). The rule-based control strategies

handle the usual daily variations of in�uent �owrate and TN load quite well and keep the
e uent TN within the constraint during the 24 h control horizon. However, the rule-based
approaches scheduled on a daily basis, are limited in that predetermined time schedules of
aeration cycles with �xed phase lengths or �xed values of switch points cannot compensate
for unanticipated loading variations (see also Potter et al. (1996)).

1In practice, the accuracy of the DO measurement may not be guaranteed when the value of DO is getting
too low. Thus, the tuning of the DO levels should be performed carefully.
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Figure 5.2: Predictive control scheme.

Next, the more advanced MPC controller will be discussed with comparison to the rule-
based controllers.

5.3 Model predictive control (MPC)

The development of mathematical models for ASPs motivates the application of model-based
optimal control, see e.g. Kabouris & Georgakakos (1990), Zhao et al. (1994b), Isaacs (1997),
Kim et al. (2000). However, the open-loop optimal control should not be implemented
in practice because the open-loop operation is very sensitive to model error and unknown
disturbances. The ideal solution is to apply the dynamic optimization on-line with a receding
horizon and include feedback in MPC. Figure 5.2 shows the block diagram of MPC. Readers
not familiar with MPC may consult one of the many texts on the subject, e.g. Maciejowski
(2002), Rossiter (2003), Qin & Badgwell (2003), and Camacho & Bordons (2004).

Applications of optimal control and MPC in intermittently aerated ASPs has been the
subject of a number of research studies. The MPC technique is studied in Zhao et al.
(1994a), Lukasse et al. (1998), Lukasse, Keesman & van Straten (1999a), and Holenda et al.
(2007) using simpli�ed models. In recent research, for example Chachuat et al. (2001),
Chachuat et al. (2005) and Balku & Berber (2006), some e¢ cient optimization algorithms are
investigated for alternating aerobic-anoxic processes based on complete ASMs. In addition,
Balku (2007) presents a comparison between conventional and intermittently aerated systems
in terms of nitrogen removal and aeration time with an optimization algorithm.
For a complicated system like the ASP, a simple model is only possible by neglecting large

parts of the process dynamics. Large simpli�cations of dynamics result in poor predictive
capability of the model, and the simpli�ed model is often only suitable for the speci�c
process. The main hindrance for the implementation of MPC in wastewater treatment
has always been the large computational demand for solving the optimization problem in
MPC. However, with the increase in speed of computing hardware and improvements in
optimization algorithms, interest in application of MPC using complete ASMs is growing.
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5.3.1 Linear MPC for continuously aerated ASP

Application of MPC for a SNdN process with continuous aeration is investigated in Paper D.
Linear MPC with constraints, which is a standard technique, is applied as a starting point
of the MPC study. For linear MPC, a typical mathematical formulation of the criterion may
be, see Hauge (2003):

min
uk;:::;uk+N

Jk =
1

2

NX
i=0

�
eTk+iQek+i + u

T
k+iRuk+i +�u

T
k+iS�uk+i

�
, (5.1)

constrained by the de�nitions

ek = rk � yk
�uk = uk � uk�1,

the linear model of the process, e.g.

xk+1 = Fxk +Buk

yk = Hxk +Duk,

and the bounds

u`k � uk � uuk
y`k � yk � yuk

�u`k � �uk � �uuk,

in which u, y, r, and x are the control input, controlled output, output reference, and state,
respectively. The optimization horizon N and the weighting matrices Q, R, and S are the
tuning parameters of MPC. The use of the linear model together with the quadratic objective
function gives rise to a convex problem (Quadratic Programming, QP) whose solution is
well studied with many commercial products available (e.g. the QP solver quadprog of the
Optimization Toolbox in Matlab).
The state-space model for the controller design in Paper D is generated by the lineariza-

tion of the process model (based on the ASM3 model) at a steady-state operating point of
the plant. The steady-state is reached by assuming constant in�uent �owrate and concen-
trations, and the reactor condition at the steady-state is also considered initial conditions
for the optimization.
The objective of the controller is to regulate the concentration of total nitrogen (TN)

around a speci�ed set-point by operating on the aeration system. Since the oxygen transfer
process can be described with the oxygen mass transfer coe¢ cient (KLa), we choose KLa as
the manipulated input, which is constrained to KLa 2 [0; 240] d�1. Moreover, no process
and measurement noises are taken in consideration.
The simulation result shows that the performance of the MPC controller is satisfactory:

the concentration of TN is controlled to track its set-point with good convergence properties.
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5.3.2 Nonlinear MPC for intermittently aerated ASP

The main advantage of nonlinear MPC over linear MPC is obviously the possibility of dealing
with nonlinear dynamics. In fact, the extension of linear MPC ideas to nonlinear processes
is straightforward, at least conceptually. However, there are some di¢ culties derived from
the use of nonlinear models such as (Camacho & Bordons 2004):

� The optimization problem is nonconvex, and its resolution is much more di¢ cult than
the QP problem.

� The di¢ culty of the optimization problem translates into an important increase in
computation time.

� Nonlinear system identi�cation is more di¢ cult than the linear case, and applications
of e¢ cient identi�cation techniques, as described in section 4.2, need to be investigated.

Some of these problems have partially been solved, and nonlinear MPC is becoming a �eld
of intense research, see Henson (1998) and Kouvaritakis & Cannon (2001).
For the characteristics of ASPs, application of nonlinear MPC would seem essential for

improved performance. There are two main reasons for this: �rst, ASPs are usually highly
nonlinear. Secondly, ASPs are hardly ever in steady state, but is subject to transient behavior
all the time, because the wastewater in�uent typically varies both in its �owrate and in its
composition. In addition, by controlling reaction times of nitrifying and denitrifying in a
single tank, the process o¤ers energy savings and low investments of instruments.
The most straightforward approach to the nonlinear MPC problem is to retain the for-

mulation of the optimization problem as we have discussed in linear MPC, simply replacing
the linear model by a nonlinear one, and rely on suitable optimization methods. There-
fore, the optimization problem for the aeration control of the intermittently aerated ASP is
formulated as

min
f1;:::;fNc

J =
1

Nc

XNc

k=1
fk,

constrained by the nonlinear process model

dxa
dt

= F (xa; ua)

and the bounds

0 � TNmax�TN
ton;min
a

� fk �
ton;max
a

1� to�;max
a

� fk � 1�
to�;min
a

.

Here, we consider the value of KLa constant, instead, the aeration fraction fk is de�ned as
the manipulated input. Also, fk is constrained to its lower and upper limits depending on
maximum and minimum air on/o¤ periods, while the output variable (TN) is controlled to
be less than its limit TNmax. As the de�ned problem is a constrained nonlinear optimization
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Figure 5.3: MPC aeration fraction and TN concentration in the in�uent vs. time.

problem, several powerful commercial solvers (e.g. the SNOPT and the conSolve solvers in
the TOMLAB optimization toolbox for Matlab) can be used to solve this kind of problem.
The most important source of disturbances is the wastewater in�uent as described in

section 4.4. In order to test the MPC performance under process disturbances, in Paper
F, typical daily variations of dry weather conditions are simulated using some weighting
functions de�ned in the literature for the in�uent wastewater �owrate and composition.
Figure 5.3 illustrates that the variation of the aeration fraction obtained with MPC is closely
related to the variation of the feed concentration: the high TN load induces the high aeration
fraction, whereas the low TN results in the low aeration fraction. In addition, the simulation
over a long-term period (10 d) shows that the MPC controller guarantees that the strict
e uent requirements are ful�lled and the energy saving is lasting.
Finally, to con�rm the bene�ts that may be realized using the proposed MPC strategy,

comparisons with conventional rule-based controllers introduced in section 5.2 is considered
in Paper F, and the MPC controller presents the following advantages:

� MPC provides most reduction of the aeration time.

� It is easier to deal with the inequality constraints in both e uent requirements and
operating conditions.

� The tuning of the MPC controller is relatively easy; in this study, the main tuning
parameter is the MPC horizon.

In the computation, MPC takes 22min for a 24 h control horizon. Although this computation
time is much longer than the other simple controllers, it is still feasible for the on-line
implementation of the MPC controller.
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Chapter 6

Laboratory Case Study

A new laboratory-scale plant was built by an N-removal project group at Telemark University
College in 20071. Unfortunately, the author could only participate in the design and the plant
construct phases of the project due to the time limit of the PhD research period. In this
chapter, an introduction to the laboratory-scale plant is given, and then some possible future
research directions for the project are suggested.

6.1 Experimental set-up

The N-removal plant is schematically depicted in Figure 6.1. Experiments are performed on
two di¤erent types of reactors: the bio�lm reactor2 (Reactor 1 in the �gure) and the ASP
reactor (Reactor 2 in the �gure).

Reactor system

The reactors are made of Plexiglass, and each reactor has a working volume of 10 l, with
7:7 l of the reactor volume and 2:3 l of the settler volume. The settled sludge in the settler
is recycled internally. For both reactors, the sludge retention time (SRT) is maintained at
12 � 24 d, i.e., the wasted sludge �owrate is Qw 2 [0:32; 0:64] l= d. The hydraulic retention
time (HRT) is chosen to be HRT 2 [12; 24] h, which results in the in�uent �owrate of
Qin 2 [7:7; 15:4] l= d.

Sludge and feed wastewater

The seeding sludge for the laboratory reactors was taken from the WWTP of city of Risør,
Norway.

1The project group included a number of professors, researchers, and master students at Telemark Uni-
versity College (TUC), as well as two visiting researchers from China. They are professor Rune Bakke,
professor Bernt Lie, lecturer Morten Pedersen, associate professor Finn Haugen, PhD fellow Deshai Both-
eju, Yuan Song, Shadi Lot�, and Lei Zhao. Visiting researchers Dr. Zhiqiang Chen from Harbin Institute
of Technology, China, and professor Tao He from Hubei University of Technology, China, has also given
tremendous help and many suggestions during their stay at TUC.

2For the bio�lm reactor system, a new model is required.
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Figure 6.1: Schematic diagram of the laboratory N-removal plant.
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Table 6.1: Composition and �owrate of the in�uent feed for the laboratory study.
Feed source Composition Concentration Flowrate
Nutrient (nitrogen) source 0:2 l= d

(NH4)2 SO4 4438mg= l

K2HPO4 344mg= l
KH2 PO4 344mg= l
NaHCO3 7445mg= l

Carbon source 0:17 l= d
Starch (potatoes) 3899mg= l
Yeast extract 100mg= l

Dilution water 8:64 l= d

Total feed �owrate is 9:01 l= d.

The in�uent feed consists of nutrient source, carbon source, and dilution water. In order
to reduce replenishment times for the in�uent feed, the nutrient and carbon sources are
concentrated, and they are stored in two 10 l glass reservoirs. The wastewater in the reservoirs
is transferred to the reactors by a peristaltic pump (Cole-Parmer Master�ex 7520-47) that
can be controlled on/o¤ from the PC. An example of the composition and the �owrate
of the feed wastewater is given in Table 6.1. In this case, the feed wastewater consists of
total chemical oxygen demand (COD) of 74mg= l, total nitrogen (TN) of 21mg= l, and total
phosphorus (TP) of 3mg= l.

Data acquisition and control system

The data acquisition system used in this project consists of a computer (2:8GHz Pentium 4,
512MB RAM) with an interface card (National Instruments PCI-6024E), a terminal panel,
and a user interface software. Signals of the DO sensors (Oxi340 and Oxi340i models, WTW)
are sent to the computer through the series port connection. The electric control valves (5821
model, SAMSON) are used to regulate air supply to the reactors, by receiving signals from
the controller designed in the control software (LabVIEW version 8.2). The reactors are
aerated by intermittent aeration strategies. That is, the air valves are controlled by the
upper and lower bounds of DO based on the on-line measurement of DO: the aeration is
turned on when DO � DOmax and is turned o¤ when DO � DOmin. The DO sensors have a
1min time delay and 1min sampling time.
LabVIEW is also used for real-time database management and real-time display of process

variables, as shown in Figure 6.2.

O¤-line measurements

The in�uent wastewater samples are collected from the outlet of the feed pipes. E uent
samples for each reactor are taken from the respective e uent outlet. Process performance
variables are rountinely analyzed, included TN, COD, ammonium (SNH4), nitrite (SNO2),
nitrate (SNO3), and total suspended solids (XSS). In addition, pH and temperature are also
recorded.
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Figure 6.2: Controller screen of the LabVIEW user interface; under development.

6.2 Recommendations to the N-removal project

Based on the current research results described in this thesis, recommendations for future
research directions of the N-removal project are given, with emphasis on the activated sludge
reactor.

Modeling

1. First of all, the model of the N-removal process should be developed based on the ASM3
model which may be the best choice in the modeling of the biological processes. The
object-oriented modeling approach (see section 2.4) can provide �exible and e¢ cient
model representation.

2. Once a process model is chosen, the model needs to be validated, not only in a quali-
tative but also in a quantitative way by comparing its predictive capabilities with data
measured from the real system. The systematic approach to parameter identi�ability
and estimation, which is presented in chapter 4, can be applied.

3. The developed model can be used for many di¤erent purposes, for instance, sys-
tem analysis by simulation, process optimization, state estimator, process control, see
Dueñas Díez (2004).

4. As only few of the ASM3 components in the feed in�uent are available by measurement,
the unmeasured feed composition can be estimated using the approach proposed in
section 4.4.
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Process control

1. The performance of the zone control strategy based on the available DO measurement,
may be improved by considering the time delay of DO sensors.

2. The linear and the nonlinear MPC algorithms described in section 5.3 can be imple-
mented for the ASP to achieve on-line application of the model-based optimal control.

3. When testing MPC on the laboratory plant, the current states must be known. Since
we cannot measure all the states, the state estimation techniques discussed in chapter 3
can be used to estimate the model states.

In order to implement the aforementioned modeling and process control issues, it is
of interest to have an open implementation architecture for e¢ ciently integrating control
algorithms and software tools.

6.3 Implementation architecture � future perspective

In the EU project INCOOP (INtegrated process COntrol and plantwide OPtimization)3, an
architecture for advanced, model based control is proposed, see Figure 6.3. The reference
architecture is developed to give a good software development environment where process
control and instrumentation system, process simulator (e.g. gPROMS), optimizer, and al-
gorithm prototyping environment (e.g. Matlab) can be integrated. The main advantages of
the architecture are:

� The architecture is set up in a distributed modular structure, and various modules can
easily be added, modi�ed, or removed.

� A powerful computing tool, such as Matlab, is used to achieve the freedom in algorith-
mic development.

� Open communication standards make the integration of di¤erent tools easy.

In the wastewater treatment area, Olsson & Jeppsson (2006) point out the motivation of
using open architectures for process control:

The controllers, I/O and buses are built to accommodate third-party modules
and to integrate easily for fast setup. This feature gives facilities the freedom
to choose the best and latest technologies from manufacturers without having to
stay within product lines or fear product obsolescence.

3The INCOOP project is an RTD project carried out from 2000�2003 aiming at full integra-
tion and realization of the model based control and real time optimization in the process indus-
try. Researchers from chemical process industries (Bayer, Shell International Chemicals, IPCOS Tech-
nology, MDC Technology) and academia (Eindhoven University of Technology, Delft University of
Technology, RWTH Aachen, and Carnegie Mellon University) have participated in this project; see
http://www.lpt.rwth-aachen.de/Research/Completed/co_incoop.php.
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Figure 6.3: Software architecture for advanced control. Redrawing of �gure from INCOOP
workshop (INCOOP 2007).
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The INCOOP architecture provides us with a methodology for e¢ ciently integrating a
�exible object-oriented modeling approach with advanced control techniques for WWTPs.
Let us comment on each of the modules of the architecture.

OPC server is used as a key component for building the software environment. As an
open connectivity via open standards, OPC (OLE for process control) is widely used
in industrial automation. Most of control systems o¤er OPC servers in order to openly
communicate with any OPC client, see http://www.opcfoundation.org. In addition,
Matlab provides the OPC Toolbox that is an OPCData Access client application, capa-
ble of connecting to any OPC Data Access compliant server (e.g. National Instruments
LabVIEW OPC server (Chai 2005)). Dymola version 6.1 also provides an interface to
OPC Data Access.

Scheduler is used to coordinate the various tools.

Generic process model is important for model-based control and optimization. In IN-
COOP, it is proposed to use gPROMS (PSE 2006); the choice is based on several
characteristics for gPROMS, such as strong support for process models and an equa-
tion based system which makes it possible to introduce manipulation of the models
(e.g. analytic model reduction, linearization). Another general, equation-based mod-
eling language is Modelica. Currently, Modelica has less support for process models
than gPROMS, but the modeling scope is more general.

Simulated process indicates the same equation-based simulation tools (i.e., gPROMS and
Modelica/Dymola).

Model reduction includes elimination of nonlinear models, elimination of implicit expres-
sions, reduction of the number of states in the model, etc. The approximate model
should be suited specially for the application in the optimization and control modules
(modules Optimizer prototype and MPC prototype (Matlab) in Figure 6.3).

Optimiser prototype is required to generate optimal control trajectories for the process.
E¢ cient algorithms for optimization are necessary to enable the optimization tech-
niques to be applied on-line, and software tools are often used to solve optimization
problems.

State estimation prototype is used to �nd unmeasured states since optimization of a
system requires that the states of the system are available. The common techniques
for state estimation have been discussed in chapter 3.

MPC prototype is developed to control the process based on the optimized trajectories
obtained by optimizer. MPC predicts the future optimal control actions and send them
to the plant that includes a primary control system.

Process instrumentation is a tool for communication with the process, which enables the
use of data from the process and puts out actuator signals to the process.
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In this research, Matlab is used as the integration platform due to its support to Dymola
and powerful numerical capabilities. Recently, LabVIEW version 8.20 adds a functionality
to support the communication with Dymola. With the development of the interface between
LabVIEW and Dymola/Modelica, the use of LabVIEW with MathScript4 could be an ex-
cellent integration platform. Also, the open source programming language Python described
in appendix 2.A, could replace Matlab in a �poor man solution�.

4MathScript is a new feature for LabVIEW 8 that adds math-oriented, textual programming to LabVIEW,
and is generally compatible with m-�le script syntax used by e.g. Matlab. For more information see
http://www.ni.com.



Chapter 7

Conclusions and Future Directions

7.1 Conclusions

The main objective of this thesis has been to investigate possible improvements in operation
and performance of activated sludge plants through applications of advanced modeling and
control techniques. The activated sludge process (ASP) is generally applied in biological
wastewater treatment due to its e¢ cient elimination of organic matter and nutrients such
as nitrogen and phosphorus. Although ASPs have been introduced in a large number of
studies, there are still many challenges associated with the application of modern modeling
methods and control strategies for such processes.

Modeling

Special emphasis has been put on the investigation of approaches that implement e¢ ciently
the complex activated sludge plant models. A laboratory-scale nitrogen removal process
and a full-scale phosphorus removal plant: the Duvbacken WWTP, have been used as case
studies. For ASPs, the family of Activated Sludge Models (ASMs) presented by the IWA are
generally accepted as the standard models of ASPs. The models of the N-removal process and
the Duvbacken WWTP have then been developed based on the ASM3 model and the ASM2d
model, respectively. The object-oriented modeling approach providing open component-
based architectures and reuse of components, is suggested in this thesis in order to achieve
more �exible model representation. The object-oriented modeling language Modelica with
one of its commercial simulation environments, Dymola, is chosen as model representation
tool for activated sludge systems. Special consideration has been given to the Dymola
interfaces to other programs, in order to build a good software development environment.
Two Dymola interfaces are described: the Dymola-Matlab interface provided by Dymola
and the Dymola-Python interface developed by the author, where both Matlab and Python
are powerful algorithm prototyping environments for advanced control. Within the Dymola
simulation environment, the models of the N-removal process and the DuvbackenWWTP are
easily constructed by using the free Modelica library WasteWater. The applications of the
modeling approach in this thesis have shown that the combination of Modelica/Dymola for
e¢ cient object-oriented modeling andMatlab for further analysis is a powerful tool for control
system design. However, currently, information transfer in Dymola-Matlab interaction is via
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�les. It would presumably dramatically decrease the execution time if the simulator could
be connected to Matlab as a function.

State estimation

As regards state estimation and parameter estimation, the attention is focused on the appli-
cation of the di¤erent estimation techniques to ASPs. An overview of the most generally ap-
plied techniques for state estimation such as standard Kalman �lter (KF), extended Kalman
�lter (EKF), unscented Kalman �lter (UKF), square-root unscented Kalman �lter (SRUKF),
andmoving horizon estimation (MHE), has been given, with consideration of systematic pre-
sentation of the algorithms for easy implementation. Although these techniques have been
widely studied in the literature, the performances of the �lters for the complete ASM models
have seldom been discussed. In this thesis, the nonlinear estimation techniques are com-
pared for state estimation of the N-removal process. The comparison results show that the
discrete-time EKF gives the fastest performance with a satisfactory estimation result. The
slightly variant version of the discrete-time EKF: the hybrid EKF, produces slightly lower
estimation errors than the discrete-time EKF due to the more accurate time updates of the
state and covariance. Among all the estimation techniques, the SRUKF improves numerical
properties of the UKF and provides best estimation performance; and one main advantage
of the unscented �lters is the fact that no Jacobian matrices of the system need to be calcu-
lated. To handle state constraints, the MHE estimator is most straightforward and generally
preferred. When inequality constraints are not considered, the MHE with a horizon size of 1
and with the update of the initial state estimation and the covariance as in the EKF, gives
equivalent results to that of the EKF.

Parameter estimation

The large variations of plant operation, in�uent, and sludge characteristics of ASPs require
some of the model parameters to be adjusted in order to ensure good predictive capabilities
of the model. However, parameter estimation of ASP models is a challenging task, since ASP
models are in general large-scale, nonlinear, and overparameterized. In this thesis, parameter
estimation is carried out for both kinetic parameters of the ASM model and compositions in
the in�uent which is considered model disturbances from the process control point of view.
A procedure for parameter identi�ability analysis is discussed and tested with the Du-

vbacken model. Such a method proves to be very useful, since it reduces a large number
of parameters to a small subset of parameters that can be identi�ed from the available ex-
perimental data. Estimation of the kinetic parameters is carried out using the least squares
method, based on real data taken from the industrial plant. After parameter estimation, the
�tting of the model to a new set of experimental data is not great but satisfactory, especially
for those outputs which are important to the plant operation (e.g. SPO4 and TP).
Since a good characterization of the main compositions in the in�uent is very impor-

tant to the performance of the ASM models, a method for simultaneously estimating both
model state and in�uent composition has been developed using the discrete-time EKF. A
method to study observability for state and disturbance estimation is discussed. The EKF-
based approach is illustrated with the Duvbacken process; however, the Duvbacken system
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is unobservable due to lack of measurements. As an initial study before doing state and
disturbance estimation based on real data from the plant, we check whether suitable esti-
mates can be obtained for the observable process based on responses from the simulation
model; and this study shows the estimator has a good convergence property. Next, when
the �lter is evaluated based on the experimental data form the real plant, the performance
of the �lter is relatively poor. As argued, the lack of the necessary measurements renders
the system unobservable. The use of the additional measurements, such as SPO4, SI, SN2,
SALK, XI, and XTSS in anaerobe reactor, SO2 and SPO4 in aerobe reactor 1, SNH4 and SPO4
in aerobe reactor 2, and SNO3 in aerobe reactor 3, may improve the estimation of states and
disturbances, and hopefully the development of measuring technology would give us prob-
abilities to obtain all the necessary measurements. In addition, since the real value of the
disturbance is not known, it makes the initialization and tuning of the EKF more di¢ cult.
Although the estimation capability of the �lter is limited, the application still demonstrates
that the proposed approach provides us with a general methodology to estimate unmeasured
states and disturbances using a number of available measurements.

Process control

The development towards tighter e uent requirements and better dynamic models have
motivated the application of advanced control to ASPs, where the focus has been put on the
MPC algorithm because it provides an optimization-based procedure with an elegant way of
handling constraints and with capabilities of removing process disturbances. In this thesis,
the MPC algorithm has been evaluated with the N-removal process: �rst of all, a linear
MPC controller is developed to regulate the concentration of total nitrogen (TN) around
a speci�ed set-point by operating on the continuous aeration system. Secondly, the MPC
technique using the nonlinear process model is investigated and applied to controlling the
intermittent aeration system. The aim of the control is to design an aeration strategy (air-on
and air-o¤ periods) which minimizes the energy consumption of the aeration system, with
adherence to the EU e uent standards and the operating constraints. The simulation over a
long-term period (10 d) shows that the nonlinear MPC controller guarantees that the strict
e uent requirements are ful�lled and the energy saving is lasting.
Finally, to con�rm the bene�ts that may be realized using the proposed nonlinear MPC

strategy, comparisons with conventional rule-based controllers used in practice and in the
literature, have been carried out, where MPC had the most reduction of the aeration
time/energy consumption and o¤ered the easiest way to handle the inequality constraints.
Based on the results presented in this thesis, it can be concluded that the application of the
nonlinear MPC to the N-removal process is promising.

7.2 Future directions

In this work, the particular emphasis has been to study advanced modeling and control
techniques for improving performances of ASPs. Although the modeling method and control
strategies are evaluated with simulation studies, the implementation of them is straightfor-
ward. It is thus of great interest to test the proposed approaches to the laboratory plant and
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eventually to real full-scale WWTPs. Based on the current research results, the most obvious
expectation for future work which might hopefully be carried out by research activities at
Telemark University College (TUC), are that:

� Model development of the activated sludge plant will be improved, with particular
emphasis on modeling of settling and clari�cation which is an important element in
determining the overall process dynamics.

� Sensitivity and correlation problems depend strongly on the experiments performed,
the measurements taken, and the experimental conditions. Thus, careful experimental
designing and reasonable implementation of experiments would help us get promising
estimation of model parameters.

� A more general overview of state estimation techniques will be given. Other estimation
techniques such as ensemble Kalman �lter and particle �lter, will also be evaluated.
In this work, the MHE has been tested with a horizon size of 1; clearly, it will be of
interest to study the behavior of the MHE using a larger horizon size.

� A general model for describing dynamics of ASP disturbances will be developed. Since
the feed composition of domestic wastewater typically varies signi�cantly during the
course of a day, the process disturbance is a strong periodic signal. This requires a
proper formulation (e.g. an oscillator model) to describe the periodic variation.

� When applying MPC to the real plant, the estimation techniques are expected to be
combined with the control strategy to obtain the unmeasured current states or/and
process disturbances, based on the available measurements.

� Advantages of advanced, model-based controllers over simple rule-based controllers will
to be studied further. Besides for nominal performance, di¤erent control techniques will
be compared for robustness against model mismatch and large process disturbances.

� Since lack of cheap and reliable sensors for measurement is a big challenge in parameter
and state estimation of WWTPs, investigation of simple and e¢ cient software sensors
will be of great interest. It is recommended to cooperate with the sensor technology
group at TUC.
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MARTA DUEÑAS DÍEZ‡, SVERRE H. AMRANI§ and BERNT LIE*†

Keywords: ASM2d, identifiability analysis, parameter estimation, model fitting

In this paper, a general description of wastewater treatment based on activated sludge
is given, with emphasis on the ASM2d model. Particular emphasis has been given to
make the presentation readable without a too detailed prior knowledge of wastewater
treatment. Next, a method for experimental parameter identifiability analysis is
described. After a presentation of the wastewater treatment plant at Duvbacken in
Gävle, Sweden, the experimental identifiability of the dynamic model is analyzed.
Out of the 45 original parameters in the model, the analysis indicates that with the
given experimental conditions, 12 parameters can be identified.

1. Introduction

Water is one of our most precious resources, and wastewater treatment is becoming
more and more important in a highly populated, industrialized world. Wastewater
contains organic matter and microorganisms, and the microorganisms thus deplete the
water for oxygen. Furthermore, nitrogen and phosphorous content leads to algae growth.
It is thus of importance to reduce the content of organic matter, as well as nitrogen and
phosphorous. There are also safety regulations on the content of microorganisms, as well
as on other content in the wastewater. See e.g. Metcalf & Eddy (2003) for an overview
of characteristics of wastewater, and treatment of wastewater.

Both for design and operation of wastewater treatment plants, it is of interest to
develop models of how the plants transform the feed. One characteristic of wastewater
feed is its highly varying flow rate and composition (Olsson & Newell 1999). This
implies that dynamic models are highly relevant for wastewater treatment plants. One
such series of models are the Activated Sludge Models (ASM) (Henze, Harremoës, la
Cour Jansen & Arvin 1996), which have been developed to include a description of
organic content and decomposition, microorganisms, nitrogen processes, and phosphor-
ous processes. In particular, ASM2d attempts to describe the important processes
involved in the transformation of organic matter, nitrogen, and phosphorous (Henze,
Gujer, van Loosdrecht & Mino 2000).

The ASM models are parametric, and nominal parameter values are suggested in
publications. However, the models are based on averages of microorganism and organic
matter populations, and wastewater characteristics vary from plant to plant. It is thus
necessary to fit the model parameters to experimental data from a specific wastewater

*Corresponding author: Bernt.Lie@hit.no.
†Telemark University College, P.O. Box 203, N-3901 Porsgrunn, Norway.
‡Hydro Corporate Research Center, Porsgrunn, Norway.
§BioTek AS, Porsgrunn, Norway.
¶An early version of this paper was presented at SIMS 2005, the 46th Conference on Simulation

and Modeling, Trondheim, Norway, October 13–14, 2005.
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stream in order to ensure good predictive properties of a model (Jeppson 1993), (Brun,
Kühni, Siegrist, Gujer & Reichert 2002).

In this paper, we consider the Duvbacken wastewater treatment plant in Gävle,
Sweden, which is designed to treat the municipal wastewater from 100.000 pe1. This
plant has recently been modified to remove phosphorous, nitrogen, and organic matter,
primarily using bacteria. In situations where the biology represented by the bacteria
struggle to perform according to governmental effluent criteria, chemicals are added as
a supplement. The particular emphasis is to study the identifiability of parameters in a
dynamic model of the plant, based on available experimental data. In this paper, real
experimental data were unavailable, and the study is therefore based on simulated data.
However, the procedure can be used without modification with real data.

In section 2 of the paper, an overview of principles for modeling biological
wastewater treatment (BWWT) is given. In section 3, basic principles of parameter
identifiability are discussed. In section 4, a plant at Duvbacken, Gävle, is presented, and
a model of the plant is verified. In section 5, identifiability analysis for the Duvbacken
model is carried out, and some results of model fitting are given. Finally, some
conclusions are drawn.

2. Biological Wastewater Treatment

2.1. Wastewater characterization and treatment

Due to the importance of clean water, wastewater treatment is a large and growing
industry throughout the world. Microorganisms in water tend to use dissolved oxygen
(DO) while consuming organic and inorganic compounds, resulting in harmfully
low concentrations of DO to the aquatic environment. Thus, a primary task in wastew-
ater treatment is to remove the oxygen consuming pollutants and their feed. Other
pollutants consisting of nitrogen and phosphorous lead to eutrophication, which is the
accelerated ageing of lakes and estuaries due to excessive plant and algal growth. It is
thus in addition important to remove nitrogen and phosphorous compounds from
wastewater.

The composition of wastewater depends on its source; important classes of wastew-
aters are industrial and domestic wastes. The latter, sewage, consists of substances such
as ground garbage, laundry water, and excrement. More than 99% of wastewater is
water, and about 0.5 g/l is suspended solids such as cellulose and organic matter in the
form of fatty acids, carbohydrates, and proteins. The bad odor of sewage stems from
protein decomposition under anaerobic2 conditions. Sewage contains a varied population
of microorganisms such as bacteria, which must not be mixed into drinking water.
Still, microorganisms are useful in transforming dissolved substances into particulate
substances which can then be removed from the wastewater.

As mentioned, one problem with wastewater is that it contains carbonaceous matter
which through chemical reactions depletes water for oxygen. The simplest measure of
the content of such matter, is the biochemical oxygen demand (BOD): the BOD is equal
to the amount of dissolved oxygen that is consumed by the wastewater when incubated
for a specified length of time at 20°C, typically for 5 or 7 days (BOD5 or BOD7,
respectively); BOD measures the oxidation of organic matter. A better measure is the

1 pe � person equivalents.
2 Anaerobic, i.e., without the presence of oxygen or oxides.
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Table 1. Typical composition of domestic waste water, with indication of effluent standards.
From Bailey & Ollis (1986).

Parameter Influent raw wastewater Effluent in an acceptable plant

BOD, mg/l 100 � 250 5 � 15
COD, mg/l 200 � 700 15 � 75
Suspended solids, mg/l 100 � 400 10 � 25
Nitrogen, mg/l 20 � 30 2 � 5
Total phosphorous, mg/l 6 � 10 0.2 � 0.6

chemical oxygen demand (COD), both because it can be measured routinely in a couple
of hours3 (Bailey & Ollis 1986), but also because it gives a more accurate measure of
the carbonaceous content: COD measures the oxidation of both organic and inorganic
matter.

Other undesirable components in wastewater are nitrogen, typically in the form of
ammonia (NH3), and phosphorous. In addition, wastewater holds both larger objects and
readily settleable solids, as well as oil films and other components such as heavy metals
and toxic organics. Table 1 illustrates typical feed compositions and effluent standards
for sewage.

A wastewater treatment plant typically consists of two or three stages. In the primary
stage, easily separable particles (boulders—floc particles, etc.) are removed. In the
secondary stage, suspended particles and soluble materials are removed, while in
the tertiary stage, remaining contaminants (subcolloidal and soluble materials) are
removed, the water is treated chemically to remove bacteria, etc.

In this paper, we will concentrate on the secondary stage, where the wastewater has
a muddy consistence and where oxygen is added. Under such oxygenated conditions,
microorganisms thrive, forming an active suspension of biological solids (mostly
bacteria) called an activated sludge.

2.2. Wastewater species

Essentially, microorganisms metabolize and breed while consuming substrate4. In
this process, the microorganisms synthesize and secrete a polysaccharide gel causing the
microbes to agglomerate into flocs (Bailey & Ollis 1986). These flocs have a high
affinity for suspended matter (substrate, etc.), and flocculation thus enables the removal
of microorganisms and substrate through sedimentation.

Wastewater contains a large number of microorganisms and substrate, and it is
necessary to simplify the description of the components. In the sequel, the components
that are detailed are those used in the Activated Sludge Model 2d (ASM2d) (Henze,
Gujer, Mino, Matsuo, Wentzel, Marais & van Loosdrecht 1999), (Henze et al. 2000).
The structure of the presentation is similar to that of Jeppson (1993), although his is for
ASM1. A minor simplification of the presentation here compared to the full ASM2d, is
that we neglect the possibility of phosphorous to bind to metal-hydroxides, and the
associated chemical processes. In the presentation, we will follow the naming conven-
tions of the Activated Sludge Models (ASM), which distinguish between dissolved

3 Or in a few minutes using sophisticated instruments.
4 By substrate is meant nutrients (organic and inorganic matter, including oxygen) and energy.
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component S and particulate component X. Subscripts are attached to distinguish
between the various dissolved and particulate components. As wastewater contains a
wide variety of e.g. organic matter, a precise model would need to use population
balances. In the ASM, average species are considered in order to simplify the models.
In the description, S or X (with subscript) refer both to a specie, and to the concentration
of the specie.

Organic substrate is considered to be either biodegradable, or unbiodegradable. The
unbiodegradable matter can be either soluble (small species) or particulate (larger
species); in both cases, it is considered inert matter, and named SI and XI, respectively.
The biodegradable matter is substrate for the organisms, and can be either soluble (small
species/molecules) or particulate (larger species). Particulate biodegradable matter XS is
too large to pass through the cell walls of the microorganisms, and must first be
decomposed—which is time consuming, thus XS is denoted slowly biodegradable
substrate. Soluble biodegradable matter is readily biodegradable. ASM2d distinguishes
between fermentable biodegradable substrate SF, and the biodegradable fermentation
product SA (assumed to be acetate CH3 CO�

2 in later analysis). In ASM1, there was no
distinction between SF and SA, and SS � SF � SA was used there.

Inorganic substrate consists of small molecules, which are soluble. In addition to
oxygen SO2 (O2), these are nitrous components such as nitrogen SN2 (N2), ammonium SNH4

(some ammonia NH3, but mainly ammonium ion NH�
4 ; assumed to be 100% ammonium

ion in stoichiometric computations), nitrogen oxides SNO3 (nitrate NO�
3 and nitrite NO�

2 ;
for stoichiometric computations assumed to be 100% nitrate), and inorganic soluble
phosphorous SPO4 (primarily ortho-phosphates, which are anions of the inorganic chemi-
cal compound of phosphoric acid H3 PO4; for stoichiometric computations assumed to
consist of 50% H2 PO�

4 and 50% HPO2 �
4 ).

To facilitate the computation of pH and charge balance, the alkalinity of wastewater
is described by SALK (for stoichiometric computations assumed to be bicarbonate
HCO�

3 ).
Several types of microorganisms exist in wastewater; all of these are considered

to be particulate. Heterotrophic organisms XH require organic compounds as their
substrate; they are responsible for hydrolysis5 of slowly biodegradable substrate XS into
smaller components, and grow aerobically6 and anoxically7, as well as are active in
anaerobic8 fermentation. Autotrophic organisms XAUT require inorganic compounds as
their substrate; they are responsible for nitrification under aerobic conditions, where
ammonium SNH4 is oxidized directly into nitrogen oxides SNO3. Finally, there are
phosphate-accumulating organisms (PAO), XPAO; these may grow in both anoxic and
aerobic environments.

In addition to the phosphorous accumulating organisms XPAO mentioned above, two
types of cell internal storage products associated with PAO are considered: XPHA includes
primarily organic poly-hydroxyalkanoates (assumed to be poly-hydroxy-butyrate (C4 H6

O2)n in stoichiometric computations), and inorganic poly-phosphates XPP (assumed to be

5 Chemical decomposition of matter by the splitting of a bond and the addition of the hydrogen
cation H� and the hydroxide anion OH� of water.

6 Aerobic � requires the presence of oxygen; SO2 � 0.
7 Anoxic � extracts oxygen from nitrate oxides; SO2 � 0, SNO3 � 0. In this process, nitrate NO3 is

converted to N2, hence this process is also denoted denitrification.
8 Anaerobic � requires the absence of oxygen and nitrate oxides; SO2 � 0, SNO3 � 0.
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(K0.33 Mg0.33 PO3)n in stoichiometric computations). The phosphorous contents of XPHA

and XPP are not included in XPAO.
Finally, since phosphorous removal and precipitation introduces mineral fractions in

the wastewater which are not included in the other components, a total suspended solids
XTSS is introduced.

2.3. Wastewater processes

The overall chemical process taking place in BWWT can be described as (Metcalf
& Eddy 2003):

�1 (organic material) � �2O2 � �3NH3 � �4PO3 �
4 → �5(new cells) � �6CO2 � �7H2O,

where the �j-s are stoichiometric coefficients and it is assumed that microorganism
enzymes have a catalytic effect on the reaction, but also that microorganisms grow and
breed (new cells). Essentially, organic material is transformed into new cells under the
consumption of oxygen, ammonia, and phosphorous components, producing water, CO2,
and new cells which flocculate and may sediment.

In a realistic mathematical model, a more detailed set of stoichiometric reactions
must be incorporated. In the following description of the chemical processes taking
place between substrate and microorganisms, coefficients �j, ij, fj, and Yj constitute a
parameterization of the stoichiometric coefficients (Henze et al. 1999); in all chemical
reactions below, the parameterized stoichiometric coefficients are positive. Four groups
of chemical processes are introduced: Hydrolysis processes (decomposition of slowly
biodegradable organic substrate XS), Processes of facultative heterotrophic organisms9

(metabolism and breeding of XH, etc.), Processes of phosphorous-accumulating organ-
isms (involving XPAO and their cell-internal storages XPHA and XPP), and Nitrification
processes (involving SNH4, SNO3, and SN2).

A final comment before going into the some details of the chemical processes in
wastewater treatment: there are some inconsistencies in Henze et al. (1999). As an
example, in their Table 3, the stoichiometric coefficients for “Aerobic growth on SF” are
given, involving a number of species. However, in their summary Table 11, more species
appear to be involved in the “reaction” than in their Table 3. The same is true for other
processes. In the discussion below, the species that are discussed in their section
“Biological processes, stoichiometry and kinetics” are underlined in the reaction schemes
(the main species), while the additional species (as of their Table 11) are kept without
underlining, and are given an arbitrary stoichiometric coefficient �j.

Hydrolysis: The following hydrolysis (decomposition) reactions take place on slowly
biodegradable substrate XS, catalyzed by enzymes in three classes of microorgan-
isms, and split into soluble unbiodegradable SI and fermentable SF matter with a
splitting factor fSI:

XS � ( � �j, TSS)XTSS → fSI SI � (1 � fSI)SF � �j, NH4SNH4 � �j, PO4SPO4 � �j, ALKSALK

where, j � 1 is aerobic hydrolysis (SO2 � 0), j � 2 is anoxic hydrolysis (SO2 � 0,
SNO3 � 0), and j � 3 is anaerobic hydrolysis (SO2 � 0, SNO3 � 0).

9 Facultative � exhibiting a certain behavior under some environmental conditions, but not under
other conditions.
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Facultative heterotrophic organisms: Facultative heterotrophic organisms metabolize
and breed on substrates. Six chemical processes are considered. In oxygen based
aerobic growth of XH on fermentable substrate SF:

1

YH
SF �� 1

YH
� 1� SO2 � �4, NH4SNH4 � �4, PO4SPO4 � �4, ALKSALK → XH � �4, TSS XTSS,

in oxygen based aerobic growth of XH on fermentation products SA:

1

YH
SA �� 1

YH
� 1� SO2 � �5, NH4SNH4 � �5, PO4SPO4 → XH � �5, TSS XTSS � �5, ALKSALK,

in nitrate based anoxic growth of XH on fermentable substrate SF:

1

YH
SF �

1 � YH

2.86YH
SNO3 � �6, NH4SNH4 � �6, PO4SPO4 → XH �

1 � YH

2.86YH
SN2

��6, TSS XTSS � �6, ALKSALK,

while in nitrate based anoxic growth of XH on fermentation products SA:

1

YH
SA �

1 � YH

2.86YH
SNO3 � �7, NH4SNH4 � �7, PO4SPO4 → XH �

1 � YH

2.86YH
SN2

��7, TSSXTSS � �7, ALKSALK,

Under anaerobic conditions (SO2 � 0, SNO3 � 0), the heterotrophic microorganisms
do not grow. Instead XH catalyze fermentation of SF leading to fermentation products
SA:

SF � �8, ALKSALK → SA � �8, NH4SNH4 � �8, PO4SPO4.

Finally, lysis reactions (decomposition/decay) occur in the heterotrophic organisms,
where essentially XH is split into unbiodegradable matter XI and slowly biodegrad-
able substrate XS with a certain splitting factor fXI:

XH � �9, TSS XTSS → fXI XI � (1 � fXI)XS � �9, NH4SNH4 � �9, PO4SPO4 � �9, ALKSALK.

Phosphorous-accumulating organisms: Organisms XPAO have the potential to accumu-
late phosphorous in the form of poly-phosphate XPP. Eight chemical processes are
considered. Poly-hydroxy-alkanoates XPHA are created from fermentation products
SA and stored10:

SA � YPO4 XPP � �10, TSS XTSS → XPHA � YPO4SPO4 � �10, ALKSALK.

Poly-phosphates XPP grow aerobically and anoxically:

SPO4 � YPHASO2 � YPHA XPHA → XPP � �11, TSS XTSS � �11, ALKSALK,

SPO4 � ( � �12, NO3) SNO3 � YPHA XPHA → XPP � ( � �12, NO3) SN2

��12, TSS XTSS � �12, ALKSALK.

10 In Table 4 of Henze et al. (1999), XPHA is assigned the stoichiometric coefficient 0 by misprint.
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Likewise, the organisms XPAO grow aerobically and anoxically:

iPBMSPO4 � �13, O2SO2 �
1

YPHA
XPHA � �13, NH4SNH4 � �13, TSS XTSS � �13, ALKSALK → XPAO,

iPBMSPO4 � ( � �14, NO3) SNO3 �
1

YPHA
XPHA � �14, NH4SNH4 � �14, TSS XTSS → XPAO

�( � �14, NO3) SN2 � �14, ALKSALK.

Finally, each of the phosphorous particles XPAO, XPP, and XPHA are prone to lysis
(decomposition):

XPAO � �15, TSS XTSS → fXIXI � (1 � fXI)XS � �15, PO4SPO4 � �15, NH4SNH4 � �15, ALKSALK,

XPP � �16, TSS XTSS � �16, ALKSALK → SPO4

XPHA � �17, TSS XTSS � �17, ALKSALK → SA.

Nitrifying organisms: In anoxic processes, autotrophic organisms utilize oxygen from
nitrate ions (NO�

3 , denitrification), producing nitrogen N2. This nitrate is produced
in the nitrification process, which is a two step process, typically:

2 NH�
4 � 3 O2 → 2 NO�

2 � 4H� � 2 H2 O

2 NO�
2 � O2 → 2 NO�

3 .

Since the reaction of nitrite (NO�
2 ) into nitrate is very fast, nitrite will hardly be

present, and it is convenient to operate with a simplified overall stoichiometric
reaction:

NH�
4 � 2 O2 → NO�

3 � 2 H� � H2 O.

Utilizing the ASM notation, we write this nitrification process as:

(��18, NH4) SNH4 �
4.57 � YA

YA
SO2 � iPBM SPO4 � �18, ALK SALK →

1

YA
SNO3 � XAUT � �18, TSS XTSS

Also, the autotrophic organisms are prone to lysis:

XAUT � �19, TSSXTSS → fXI XI � (1 � fXI) XS � �19, NH4 SNH4 � �19, PO4 SPO4 � �19, ALK SALK.

In Henze et al. (1999), two processes for chemical precipitation of phosphates are
included; we have neglected these processes in our model.

2.4. Wastewater kinetics and dynamic models

A stoichiometric equation for a chemical process is typically written as

�AA � �BB → �C C � �DD � �E E.
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If A, B, C, D, and E are unrelated, we can not say much more about the stoichiometric
coefficients �j. However, if A � NH�

4 , B � O2, C � NO�
3 , D � H� , and E � H2 O,11

conservation of atoms and charge dictates that �A � k, �B � 2k, �C � k, �D � 2k, and
�E � k, where k conveniently can be chosen as 1 (Smith & Missen 1991). We can use
conservation of atoms and charge to relate the stoichiometric coefficientsof the ASM2d,
hence parametric description of the coefficients �i (Yj, fk, il ) can be found; see Henze
et al. (1999) for typical parameters.

With known stoichiometric equations and coefficients, kinetic rate expressions
�j [ matter

volume · time] are needed, one for each chemical process. For all rates �j, the rate is
proportional to the concentration of the involved microorganism:

1. Hydrolysis and heterotroph growth depend on the presence of heterotroph
organisms XH, hence ∀j � {1, … , 9}��j � XH.

2. The processes depending on phosphorous-accumulating organisms XPAO have
rates ∀j � {10, … , 17}��j � XPAO.

3. Processes governed by nitrifying organisms (autotroph organisms) have rates
∀j � {18, 19}��j � XAUT.

Next, the hydrolysis process rates depend on the simultaneous presence of substrate XS

and microorganism XH; these rates depend on how well XS covers the surface of XH,
hence

∀j � {1, 2, 3}��j �
XS/XH

KX � XS/XH
→�0,

1,

XS
XH

→ 0
XS
XH

→ �
.

Similar rate expressions are used for other processes where microorganisms catalyze
transformation of material, e.g. for storage of XPHA (process 10) and aerobic storage of
XPHA and XPP (processes 11 and 13).

Finally, some switching functions are introduced in order to model how the rates
depend on the presence or absence of substrates. As an example, aerobic processes are
assumed to depend on the presence of oxygen, hence the rates are made proportional to

∀j � {1, 4, 5, 11, 13, 18}��j �
SO2

KO2 � SO2

→�0,

1,

SO2 → 0

SO2 → �
.

On the other hand, for anoxic and anaerobic processes that depend on the absence of
oxygen, the rates are made proportional to either

∀j � {2, 3, 6, 7, 8}��j �
KO2

KO2 � SO2

→�1,

0,

SO2 → 0

SO2 → �

or

∀j � {12, 14}��j �
KO2

SO2

→ →�� ,

0,

SO2 → 0

SO2 → �
.

Similar switching functions are used to model the required presence or absence of nitrate
SNO3.

11 The simplified nitrification process.
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The full set of process rate equations �j are given in Table 7 of Henze et al. (1999).
The final step in the modeling phase is to formulate specie balances, which typically
have the form

d

dt
mj � ṁi, j � ṁe, j � ṁg, j

where mj is the accumulated mass of specie j (e.g. SF, XH, etc.), ṁi, j is the mass influx
of specie j into a system, ṁe, j is the mass efflux of specie j out of a system, and ṁg, j is
the mass of specie j generated in a chemical reaction per time unit. For a well mixed
system of volume V,

ṁg, j � V · �K
k � 1

�k, j�k,

where K chemical processes are taking place; K � 19 in our slightly simplified ASM2d
description. In our description, we use either 18 or 17 species, depending on whether we
include SS � SF � SA or not. Thus, we will have 18 (or 17) differential equation for mass
accumulation for each well mixed system volume in our biological wastewater treatment
plant.

3. Parameter Identifiability

3.1. System, model, and parameter

For a system S, assume that we have developed a model structure M with parameter
� �Rn�; the corresponding model is denoted M (�). The (parametric) model may be
based on a mechanistic understanding of the system S, or be a generic mathematical
mapping. By varying � over a feasible set �, we get a set of models M (�), i.e. a model
structure M. In reality, the model behavior depends on the experimental conditions K ;
K is a description of how an experiment has been carried out, including a sequence of
inputs ut �Rnu, t � {1, … , T} to, and outputs yt �Rny, t � {1, … , T } from the real
system S. With a given model M (�) and experimental conditions K , we can compute a
model output ym

t (M (�), K ). We will simplify the notation for the model output to ym
t (�).

With available model structure M (�) and experimental conditions K , we can attempt
to find a specific parameter �̂ which is such that the model output ym

t (�̂) is close to the
system output yt in some sense. To achieve this, we can choose from a set of
identification methods I��; the estimate �̂ will also depend on the chosen identification
method I��. We will simplify the notation and write ym

t (�̂) as ŷt.
Usually, it is assumed that the real system S is an element of the model structure

M (�) and has a true parameter �* such that S is (input-output) identical to M (�*). It is
thus of interest to study whether and to what degree it is possible to find the true system
parameters �* from the given model structure M (�), experimental conditions K , and
identification method I��. We will denote this study an experimental parameter
identifiability study, since the result depends on the experimental conditions K (and to
some degree on I��). Another important study could be whether and to what degree �* can
be found from M (�) if we allow any (conceivable) experimental conditions K ; this we
will denote a theoretical parameter identifiability study.

Clearly, the set of experimentally identifiable parameters will be a subset of the set
of theoretically identifiable parameters. Examples of methods for studying theoretical
parameter identifiability, are given in e.g. Pohjanpalo (1978) and Holmberg (1982), and
in Ljung & Glad (1994); see also Walter & Pronzato (1997). However, for many



Cristina Sarmiento Ferrero et al.10

industrial processes it will be difficult to get accept for carrying out active experiments,
and it may be necessary to rely on the natural perturbation in the system. Thus, we may
not be able to identify all the theoretically identifiable parameters in practice, and the
experimental identifiability may give a better measure of the parameters which can be
found.

After a set of identifiable parameters have been found, these can be estimated using
some identification technique I��. Then, the statistical quality of the model parameters �̂
and prediction model ŷt should be studied.

Parameter identifiability and parameter estimation in mechanistic models has been
widely studied in engineering (Bard 1974), (Beck & Arnold 1977), (Walter & Pronzato
1997), (Rawlings & Ekerdt 2002), (Ljung 1999), (Söderström & Stoica 1989). The
systematic approach described in Brun, Reichert & Künsch (2001) seems well suited to
Biological Waste Water Models, since it handles large simulation models, and provides
identifiability diagnosis for parameter subsets. In the sequel, some background to the
method of Brun et al. (2001) is given.

3.2. Practical identifiability analysis

We assume that the output yt �Rny � 1 and the model output ym
t (� � K ) are related

by yt � ym
t (� � K ) � et, where et describes model error/uncertainty. Furthermore, both

yt and ut are available for t � {1, … , T } (experimental conditions K ) and we introduce
the notation y � ym (� � K ) � e to describe all the resulting equations; y, ym, e �Rny · T � 1.
With a perfect model structure and the correct parameter vector �*, the error e will
be e 	 0 and y 	 ym (�* � K ). In the real world, e is unknown. A possible strategy is
to set e � 0, and hope for a solution � such that y � ym (� � K ). We base the analysis
on a linearized approximation of this equation, giving T · ny linear equations in n�
unknowns:

S · ��̂ � �y, (1)

where �y �
� y � ym(� i | K ), ��̂ �

� �̂ � � i, S �
� �ym

�� | � � � i. S is denoted the model sensitivity.
If no solutionexists, it is common to project �y on the column space of S, �yR (S), and
solve S · ��̂ � �yR (S)—this equation always has a solution, which coincides with the
solution of the corresponding normal equation from using the least squares method:

ST S · ��̂ � ST · �y. (2)

The chosen method for analyzing the identifiability of parameters, is based on Brun
et al. (2001), see also Brun et al. (2002), Dueñas Dı́ez, Fjeld, Andersen & Lie (2006).
This method is rooted in the linear equation of either equation 1, or 2. Essentially,
these equations have a solution if the sensitivity matrix S has full rank. Clearly, if
the jth column sj of matrix S is a zero vector, then matrix S exhibits rank loss and
parameter �j can not be found. Similarly, if 
 sj 
 is “small”, we may expect problems
in finding �j. However, even when all columns of S are significantly different from
zero vectors, we may have problems in finding � if some column is linearly dependent
on the other columns. This linear dependence is termed collinearity. Two possible
measures of collinearity are the condition number �j, and the smallest singular value
�min(S ).

Scaling of outputs and parameters is essential, and it is recommended to use
dimensionless quantities ỹt, i � yt, i /y

�

i and �̃i � �i /��

i . In the sequel, it is assumed that such
a scaling has been introduced as part of the preprocessing of the data.
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In their method, Brun et al. (2001) consider the sensitivity measure �msqr
j defined as

�msqr
j �

� 1

�nyT

 sj 
2. (3)

Their strategy is then to sort the various parameters according to the value of �msqr
j . If

there is a marked drop in the value of �msqr
j for some j, then they propose to assume that

those parameters with the smallest sensitivity measure can not be found; hence these
parameters are removed from the set of tunable parameters. It should be noted, however,
that if the sensitivity measure decreases without marked jumps, and if it is within a
couple of decades from the largest value, it may be unjustified to remove a parameter.
In typical applications, a set of 10–20 parameters are often retained in the parameter set
after the sensitivity screening described above.

The chosen measure of collinearity index �(�) is

�(�) �
� 1

�min(S̃ )
�

1

��min(S̃ TS̃ )
, (4)

where S̃ is a slightly modified sensitivity matrix where the columns have been
normalized to unit norm. It should be noted that this measure is not necessarily a good
measure of collinearity, see Stewart (1987) and Belsley (1991).

Collinearity is a measure of how combinations of parameters interact, thus they
propose to consider all possible subsets P of parameters of �, and compute the
collinearity index for all these possible subsets. Let �p be one of these subsets, thus �(�p)
is to be computed for all possible p � P. It follows from basic combinatorics that the
number of possible subsets with at least 2 parameters and at most n� parameters is
#�(�P) � �n�

i � 2 (n�
i ); with n� � 10, #�(�P) � 103, and with n� � 20, #�(�P) � 106.

In their papers, Brun et al. propose that when �(�p) � 10, parameter set p should be
considered collinear. Thus, all parameter sets p for which �(�p) 	 10 should be con-
sidered for further study, and parameter estimates for these sets p should be computed.
The final choice of parameters is then based on a statistical analysis of theparameters for
which �(�p) is approximately less than 10.

4. The Duvbacken Plant Model

4.1. Process flow description

Wastewater first undergoes pretreatment involving removal of coarse particles and
primary sedimentation of particles. Referring to Figure 1, the pretreated wastewater
together with sludge return enters the anaerobe reactor step consisting of three parallel
lines, each line consisting of two separate volumes in series, i.e. the anaerobe reactor step
consists of a total of 6 separate volumes—each of which is supplied with mixers. The
main purpose of the anaerobic reactor step, is to make conditions suitable for biological
phosphorous removal.

Aerobe reactor step 1 has the same physical configuration as has the anaerobe reactor
step, that is, three parallel lines, each line consisting of two separate volumes. All six
volumes are aerated, either by continuous aeration or by intermittent aeration. The air is
supplied from three blowers, serving a common air line distributing air to each of the six
volumes—which in principle can be controlled independently—where the air enters each
volume through about 140 aeration membrane dishes. The outlets from the three parallel
lines converge into a common effluent line.
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Figure 1. Flowsheet of the Duvbacken Waste Water Treatment Plant.

As can be seen from Figure 1, it is also possible to bypass a certain portion of the
pretreated wastewater directly to aerobe reactor step 2. The reason for this is that effluent
from the pre-treatment is rich in readily biodegradable organic matter. Hence, as to
enhance denitrification in aerobe reactor step 2 (if biological nitrogen removal is the
goal), bypass of the pretreated wastewater directly to reactor step 2 might be a useful
strategy. Aerobe reactor step 2 consists of two rectangular and parallel basins. Each
basin is aerated, either continuously or intermittently, and the air is supplied using four
ejectors in each basin, distributed equally along the length of the basins.

From aerobe reactor step 2, the outlet lines converge into one effluent line which
leads to aerobe reactor step 3. Aerobe reactor step 3 consists of fourteen small volumes,
configured as shown in Figure 1. Each volume is aerated, either continuously or
intermittently. The air is supplied from blowers, and the air is dispersed in each volume
through aeration dishes.

From aerobe reactor step 3, the wastewater flows into ten parallel secondary
sedimentation basins. The sludge from these basins, is pumped into a sludge chamber.
The sludge chamber has two main purposes. Firstly, sludge is returned back to the inlet
of the anaerobe reactor step—one sludge return line for each of the three parallel lines.
Secondly, sludge is wasted and pumped to the sludge treatment which involves addition
of polymer, thickening etc. The reject water from the thickening process is returned back
to the plant.

4.2. Flow descriptions and sensors

The component concentrations in the influent to the plant is typically characterized
as follows, Table 2. With reference to Table 2, the following comments should be made:

• The pretreatment reduces the total phosphorous content considerably due to sludge
removal from the primary sedimentation basins.

• The pre-treatment reduces the unfiltered biological oxygen demand with 50. The
average volumetric influent flow rate is 1400–1500 m3/h.

The plant has to obey the following governmental effluent requirements:

• BOD7 
 10 mg � l.
• Ptot 
 0.5 mg � l.
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Table 2. Description of typical influent concentrations to the Duvbacken Waste Water Treatment
Plant.

Influent to plant After pretreatment

Parameters Description Units Unfiltered Filtered Unfiltered Filtered

Ptot Total phosphorous mg/l 6.0 3.2 3.4 1.2
PO4-P Phosphate phosphorous mg/l 3.4 2.0
NO3-N Nitrate nitrogen mg/l 1.0 1.4
NH4-N Ammonia nitrogen mg/l 27.2
BOD7 Biological oxygen demand mg/l 205 69 99 55

Table 3. On-line sensors at the Duvbacken Waste Water Treatment Plant.

Sensor type Location Sensors

Dissolved oxygen SO2 Aerobe reactor step 1, one sensor in each parallel line. —
Aerobe reactor step 2, two sensors in each basin. y6

Aerobe reactor step 3, 5 sensors in 5 different volumes. —

Nitrate nitrogen SNO3 Outlet of aerobe reactor step 2, one sensor y4

Sludge chamber, one sensor. y8

Ammonia nitrogen SNH4 Outlet of aerobe reactor 1, one sensor. y1

Effluent of the plant, one sensor. y9

Phosphate phosphorous Effluent of the plant, one sensor. —

Total phosphorous Effluent of the plant, one sensor. —

Dissolved phosphorous SPO4 Outlet of aerobe reactor step 3, one sensor. y10

Total solids XA � XH � XPAO Outlet of aerobe reactor step 1, one sensor. y3

Outlet of aerobe reactor step 2, one sensor.
Sludge chamber, one sensor y7

Effluent of plant, one sensor.

As can be seen, there are currently no governmental requirements regarding the
nitrogen contents in the effluent. Table 3 gives an overview of the available on-line
sensors of the plant.

In addition, inorganic soluble phosphorous SPO4 is measured by off-line laboratory
analysis in aerobe reactors 1, 2, and 3; y2, y5, and y10, respectively.

4.3. Model and model verification

A dynamic model is developed, based on the standard kinetics of the ASM2d model
(Henze et al. 1999), (Metcalf & Eddy 2003), (Henze et al. 2000). In the dynamic model,
each of the 4 steps in the plant (anaerobe, aerobe 1–3) is modeled as a perfectly stirred
reactor. This leads to 17 states in each of 4 stirred volumes, i.e. 68 states. The model has
a total of 45 parameters. The states of the model are grouped into the concentration of
soluble species Sj and particulate species Xj. The model has 18 potential input variables:
total volumetric flow rate q and the composition of the 17 species. In the model fitting,
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Figure 2. Simulated outputs SNO3, SNH4, SPO4, and SS � XA � XH � XPAO over 7 days, with sludge
ages Tsludge � 6 d (solid, black) and Tsludge � 2 d (dashed, blue).

10 measurements are available12. Examples of measurements are the concentration of
suspended solids SS (i.e. the sum of the microorganisms), the concentration of soluble
nitrates SNO3, the concentration of soluble ammonium SNH4, and the concentration of
inorganic soluble phosphorous SPO4. The model has been implemented in Matlab, and the
calling syntax for running the simulation code and compute the outputs for the plant is

[T,Y]�bioout(s0,x0,q,Sf,Xf,P0)

Here, s0 and x0 are the initial state vectors, q is the feed flow rate, Sf and Xf are the
feed concentrations of the state variables, and P0 is the parameter vector. The response
from the simulator is T which is a vector of time instants where the solution is available,
and Y which is the matrix of output responses.

Before analyzing the identifiability and estimating parameters, it is a good idea to
verify that the model gives reasonable responses (Olsson & Newell 1999). Figure 2
depicts the concentrations of SS, SNO3, SNH4, and SPO4 for two different sludge ages
in the plant—Tsludge � 6 d and Tsludge � 2 d,13 during 7 days of operation. The results are
reasonable:

• Figure 2 shows that the suspended solids concentration SS is reduced when the
sludge age is reduced. This makes sense: less residence time means that less solids
is precipitated.

12 In this paper, all measurements were assumed to be available every minute.
13 The sludge age is the residence time of the sludge in the reactor system.
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• To observe bio-N operation (nitrogen removal), in general the sludge age should
be no less than 6 d. To observe bio-P operation (phosphorous removal), the sludge
age should be no less than 2 d. Thus, with a sludge age of 6 d in Figure 2, the
system should be on the verge of dropping out of bio-N operation, and with a
sludge age of 2 d, the system should be on the verge of dropping out of bio-P
operation.

• Although bio-N operation may be obtained with a sludge age of 6 d, in the
scenarios simulated in Figure 2, the feed contains no autotrophic biomass XAUT,
and the concentration of XAUT in the effluent stays below 10� 2 mg/l for the entire
period of 7 d (not shown). To observe nitrification, XAUT should have a value
around, say, 300 mg/l. Nitrification would then manifest itself in e.g. a marked
decrease in dissolved ammonium SNH4.

• Phosphorous removal is observed from e.g. the amount of dissolved phosphorous
SPO4. In Figure 2, the concentration of SPO4 starts to increase (after 4 d) in the case
of the 2 d sludge age, while it stays low for the higher sludge age. This indicates
bio-P operation at a sludge age of 6 d, while the bio-P operation is failing at a
sludge age of 2 d.

There are some oscillations in some outputs in Figure 2—these are due to oscillating
oxygen feed in the aerobe reactors.

5. Identifiability Analysis for the Duvbacken Plant Model

5.1. Experimental conditions

With our state space based model, we need a set of experimental input signals ut in
order to carry out the identifiability analysis. Identifiability analysis as discussed in this
paper, does not require knowledge of the experimental response yt from the real system.
However, if we later want to estimate the parameters, then the system response is
needed.

Here, we use a simulation model implemented in Matlab, with constant influent
flow rate and compositions; the main transients in the system are due to initial values
that are not at steady state, and an oscillating strategy for oxygen feed. Although the
relatively small perturbation of the system is far from ideal for parameter identification,
it will serve to illustrate the method for experimental parameter identifiability
analysis.

5.2. Model sensitivity

The sensitivity was found by numerically perturbing the simulation model. First, a
nominal output was computed, ym

t (�0), and reshaped into ym (�0) �RnyT � 1. Then the
perturbed output ym

t (�0 � ej · ��j) was computed and reshaped into ym (�0 � ej · ��j);
ej is column j of the identity matrix I �Rn� � n�. Then finally column sj of the sensitivity
S was computed as

sj �
ym(�0 � ej · ��j) � ym(�0)

��j
.

The outputs and parameters were scaled according to recommendations in Brun et al.
(2002).
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Table 4. Parameter importance ranking according to the sensitivity measures. Parameters labeled
by an asterisk (*) are considered identifiable from the available data.

�msqr
j Parameters Parameter #

14.812 �*PAO Maximum growth rate of PAO 30
3.9867 q*PP Rate constant for storage of XPP 29
3.2385 bPAO Rate for Lysis of XPAO 32
3.105 K *X Saturation coefficient for particulate COD 8
2.9954 Kh Hydrolysis rate constant 4
2.9412 �*H Maximum growth rate on substrate 16
2.9324 q*fe Maximum rate for fermentation 17
2.5858 K *A,PAO Saturation coefficient for acetate, SA 36
2.2768 bPHA Rate for Lysis of XPHA 33
2.2196 q*PHA Rate constant for storage of XPHA (base XPP) 28
1.9906 KA,HET Saturation coefficient for growth on acetate SA 23
1.9526 K *PHA Saturation coefficient for PHA 44
1.326 KO2,HYD Saturation/inhibition coefficient for oxygen 7
1.2238 b*HET Rate for Lysis of XH 19
1.1272 KO2,HET Saturation/inhibition coefficient for oxygen 20
1.0583 	*fe Anoxic hydrolysis reduction factor 6
0.99162 KO2,PAO Saturation/inhibition coefficient for oxygen 34
0.95771 KF Saturation coefficient for growth on SF 21
0.52842 K *PS,PAO Saturation coefficient for phosphorus in storage of PP 38
0.46989 b*PP Rate for Lysis of XPP 45

5.3. Sensitivity index

The sensitivity measure �msqr
j � 
 sj 
2 /�nyT was computed. Out of the 45 original

parameters, the 20 most sensitive parameters are shown in Table 4.
Although the decrease in �msqr

j is gradual, we thus make the deliberate choice of
assuming that parameters 21–45 are not identifiable. We assign the nominal parameter
value to these parameters, and then continue with collinearity analysis to see which of
the 20 parameters with highest sensitivity that we can estimate.

5.4. Collinearity indices and identifiable parameters

Similarly as to in Brun et al. (2002), the 20 parameters of interest from the parameter
sensitivity ranking can be classified in different groups according to the biological
processes to which they belong. The parameters are divided into 4 different groups
according to the kind of biological processes they describe: 4 parameters are related
to hydrolysis of particulate substrate, 6 parameters are related to heterotrophic organ-
isms, 10 parameters are related to phosphorus-accumulating organisms, and none are
related to autotrophic organisms. The distribution of the 20 most sensitive parameters is
thus:

• Hydrolysis of particulate substrate: KX, Kh, KO2, HYD, 	fe

• Heterotrophic organisms: �H, qfe, KA, HET, bHET, KO2, HET, KF

• Phosphorus-accumulating organisms: �PAO, qPP, bPAO, KA, PAO, bPHA, qPHA, KPHA,
KO2, PAO, KPS, PAO, bPP

• Autotrophic organisms:—

Next, the collinearity index �(�p) is calculated for all possible subsets of the top 20
parameters. Values for �(�p) lie in the range 1–11. This is almost within the range of
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�(�p) 	 10 as proposed by Brun et al. (2002), so our parameters are hardly collinear.
However, to illustrate the concept of collinearity, we instead consider parameters to be
collinear if �(�p) � 5. Here it is found that there are parameter subsets with up to 13
elements which fulfill �(�p) 	 5, whereas subsets with 14 and more elements all have
�(�p) � 5. Therefore, we consider a maximum of 13 parameters as potentially identifiable
from the available data. The subset containing the largest number of parameters with the
smallest collinearity index �(�p) 	 5 is selected as the best identifiable; and has collinear-
ity index �(�p) � 4.27.

Experience reported in the literature suggest that parameter bPAO is difficult to
estimate, even though the model is sensitive to this parameter (Brun et al. 2002):
typically, an unrealistic value of bPAO is found in the parameter estimation. We thus
choose to take bPAO out of the set of parameters to estimate. With this simplification,
�(�p) drops to 4.20. The chosen final subset of 12 parameters consists of 2 parameters
related to hydrolysis of particulate substrate, 3 parameters related to heterotrophic
organisms, and 7 related to phosphorusaccumulating organisms; these parameters are
indicated with an asterisk in Table 4.

5.5. Parameter estimation

After finding an identifiable parameter subset based on knowledge of ym
t (�0 � K ),

we are ready to estimate the parameters. To do so, we need responses yt, t � {1, … , T }
from the plant. As an initial study before doing parameter estimation based on real data
from the Gävle plant, we choose to check whether suitable parameter estimates can
be obtained based on responses from the simulation model. Thus, the nominal parame-
ters in the ASM2d plant are chosen as the “correct” parameters �*, and then some
outputs yt (K ) � ym

t (�* � K ) are computed. The initial parameter guess �0 was chosen as
a 10% increase of �*. Some responses yt (K ) are displayed in Figure 2 with a
sludge age of 6 d. Clearly, the outputs indicate a relatively stiff system (compare
e.g. the slow variation of SNH4 to the rapid variation of SPO4), with relatively little
excitation. Hence, difficulties may be expected in finding all parameters. Also, as
we have seen, most of the identifiable parameters are related to the phosphorous
removal, so we would expect that states related to phosphorous can be fitted better to the
data.

In order to find parameter estimates, a weighted least squares criterion is applied

�̂ � arg min
�

J � arg min
�

eTWe (5)

where �̂ contains the optimal parameter values of the parameters marked with an asterisk
in Table 4 and the other parameters are chosen as �0, W is block diagonal with Wt in the
diagonal blocks,

Wt � diag (1/(y�

1)2, … , 1/(y�

ny
)2),

and e is the observation error y � ym (Dueñas Dı́ez et al. 2006).
To compute the parameter estimates, the nonlinear least squares algorithm

lsqnonlin of the Optimization Toolbox in Matlab is used. Table 5 shows the initial
parameter values �0, the “correct” values �*, and the estimated values �̂ obtained after
minimizing J.
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Table 5. Comparison of initial and estimated parameter values.

Symbol Description �0 �̂ �* Unit

�PAO Maximum growth rate of PAO 0.0322 0.03156 0.0293 h� 1

qPP Rate constant for storage of XPP 0.0385 0.03876 0.0350 g XPP g� 1 XPAO h� 1

KX Saturation coefficient for particulate 0.1100 0.11537 0.1000 g XS g� 1 XH h� 1

COD

�H Maximum growth rate on substrate 0.1513 0.16832 0.1375 g XS g� 1 XH h� 1

qfe Maximum rate for fermentation 0.0756 0.03970 0.0688 g SF g� 1 XH h� 1

KA,PAO Saturation coefficient for acetate, SA 4.4000 4.42080 4.0000 g COD m� 3

qPHA Rate constant for storage of XPHA 0.0963 0.10698 0.0875 g XPHA g� 1 XPAO h� 1

(base XPP)

KPHA Saturation coefficient for PHA 0.0110 0.01125 0.0100 g XPHA g� 1 XPAO

bHET Rate for Lysis of XH 0.0101 0.01049 0.0092 h� 1

	fe Anoxic hydrolysis reduction factor 0.4400 0.45286 0.4000 —

KPS,PAO Saturation coefficient for phosphorus 0.2200 0.21772 0.2000 g P m� 3

in storage of PP

bPP Rate for Lysis of XPP 0.0050 0.00513 0.0046 h� 1

Note that for several parameters, � �*
j � �0

j � 
 � �*
j � �̂j �. The reason for this is that we are estimating

only a subset of the parameters.

5.6. Model validation

Validation is the comparison of model output ym
t (�̂ � K �) with the real output yt (K �)

based on validation data K �, while parameter estimate �̂ is based on training data K . The
main reason why the validation data K � should differ from the training data K is to avoid
fitting the model to noise. In this paper, we constructed the training data from an
assumed perfect model, yt � ym

t (�* � K ), and we choose to use the training data for
validation, too. The evolution of some key outputs are displayed in Figure 3: the “real”
output yt � ym

t (�*) from the biological reactor, and the prediction outputs ŷt � ym
t (�̂). For

comparison, we also include the model outputs ym
t (�0), which will indicate how much

the model has been improved through parameter estimation.
The concentration of SPO4 after parameter estimation (dashed red curve in Figure 3)

is quite close to the “real” process output (black, solid line). As argued previously, the
model simulates bio-P operation, which can be observed from the time evolution of SPO4.
We also argued that due to the bio-P operation, most of the identifiable parameters are
related to phosphorous removal. Furthermore, more weight has been put on phosphorous
removal outputs because of the governmental restrictions on total phosphorous in the
effluent. Thus, the model has mainly been adjusted to give good prediction of those
measurements which are related to phosphorous.

The prediction capabilities of other outputs (e.g. SNH4 and SNO3) are poorer. As
argued, the lack of autotrophic biomass (XAUT) in the process leads to poor nitrification.
Consequently, parameters related to the autotrophic (nitrifying) organism group are
poorly identifiable. However, since there are no government restrictions on the nitrogen
outputs, the poor prediction capability of nitrogen outputs is acceptable.
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Figure 3. Comparison of model outputs: yt � ym
t (�*) (solid, black), ŷt � ym

t (�̂) (dashed, red), and
ym

t (�0) (dotted, blue).

6. Conclusions

In this paper, a method for assessing parameter identifiability of large scale models
based on experimental data is discussed. The method is applied to a model of a
biological wastewater treatment plant. First, a general description of wastewater treat-
ment is given, with an introduction to the ASM2d dynamic model. The description is
unique in the sense that it does not require much background in biological waste water
modeling, apart from a background in basic process modeling. Next, an overview is
given of a method for analyzing experimental identifiability which has been proposed in
the literature. Then, an overview of the Duvbacken wastewater treatment plant in Gävle,
Sweden, is given. Finally, the identifiability analysis theory is applied to a model of the
Duvbacken plant. It should be emphasized that because real experimental data were
unavailable, the study has been based on simulated data assuming a perfect model.
However, the procedure can be used without modification with real data.

In the analysis, a model with 45 parameters has been studied. From the experimental
identifiability analysis, 12 of the parameters were found to be identifiable. Some details
in the analysis are given. Then these 12 parameters are used in a parameter estimation
study, and improved parameters are found using a Matlab routine for nonlinear least
squares minimization. After finding the parameters, the model is validated against the
original experimental data. The model fit is not perfect. However, the results are logical
from an understanding of the process operation: the model fit is quite good for those
outputs that matter in the operation of the plant, and less good in outputs which are less
important to the plant operation.

Some future work may include:

• The current model implementation in Matlab is relatively rigid with respect to
possible input signals, and a rewriting of the model in a more flexible modeling
language such as Modelica is planned.
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• Verifying the model more thoroughly for other operating scenarios.
• Fitting the model to experimental data for larger initial errors in parameters, and

comparing different optimization algorithms, as well as multiple shooting vs.
single shooting (used here).

• Fitting the model to noisy data/real experimental data.
• Including a statistical analysis of the parameters and prediction capabilities of the

model.
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WASTEWATER TREATMENT PROCESS
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�Telemark University College, P.O. Box 203, N-3901
Porsgrunn, Norway

Abstract: In this paper the problem of optimal state estimation in a biological
wastewater treatment process (WWTP) is considered. The standard Kalman �lter
(KF) and its extensions: the extended Kalman �lter (EKF) and the unscented
Kalman �lter (UKF), are used to estimate the unmeasured state. The prediction
of the state with the standard KF is poor due to the high nonlinearity of the
biological WWTP. Thus, the nonlinear estimation approaches are focused, with a
comparison between the EKF and the UKF. The simulation results show that the
UKF provides slightly better state estimate than the EKF for both an observable
process and an unobservable process. Copyright c° 2007 IFAC

Keywords: State estimation, Kalman �lter, Wastewater treatment process

1. INTRODUCTION

State estimation of dynamic systems is an impor-
tant prerequisite for safe and economical process
operation. There is a wide range of techniques
in the literature designed for state estimation in
both linear and nonlinear dynamic systems. The
Kalman �lter (KF) (Kalman 1960) is one of the
most widely used methods for state estimation
and tracking due to its simplicity and robustness.
The standard Kalman �lter is the algorithm of
choice in state estimation for linear systems. The
approach can be used to reconstruct variables
that are not measured and to reduce the e�ect
of noise on the available measurements. However,
since most practical systems involve nonlinearity
of one kind or another, the problem of nonlinear
estimation is extremely important. Therefore, the
Kalman �lter was early on extended in a some-
what ad hoc way to include nonlinear dynamic
models in the extended Kalman �lter (EKF). For
the computation of the �lter gain, the EKF simply
linearizes the nonlinear models about the cur-
rent estimate so that the standard Kalman �l-

1 Corresponding author: Bernt.Lie@hit.no

ter gain computation algorithm can be applied.
Although the EKF maintains the elegant and
computationally e�cient recursive update form of
the standard KF, the EKF typically works well
only in the region where the �rst-order Taylor
series linearization adequately approximates the
nonlinear probability distribution (Crassidis &
Junkins 2004). To overcome this limitation, Julier
et al. (1995) proposed the unscented Kalman �lter
(UKF) as an alternative to the EKF in nonlinear
estimation. The UKF generates a population of
so-called sigma points based on the current mean
and covariance of the state, and permits the direct
propagation of the mean and covariance through
the actual nonlinear system. The applications and
comparisons of the EKF and the UKF have been
discussed in a number of studies, e.g. Wan &
van der Merwe (2000) and Romanenko & Castro
(2004).

In the last decades, due to the increasingly strict
requirements on treated wastewater, the need to
monitor systems and automatically control bio-
logical wastewater treatment processes (WWTPs)
is rapidly increasing. To reconstruct the state
of the system from the few available measure-
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ments and to control important biological vari-
ables, appropriate algorithms have to be de-
veloped. Some state estimation algorithms for
WWTPs have been described in Dochain & Van-
rolleghem (2001), and Olsson & Newell (1999).
Also, in Keesman (2002), Boaventura et al. (2001),
Lukasse et al. (1999), and Zhao & Kümmel
(1995), the EKF has been applied to simpli�ed
WWTP models, but the application of the UKF
to WWTPs is not studied much in the literature.

The objective of this study is to demonstrate (i)
the application of the standard KF, the EKF,
and the UKF to state estimation of a biological
WWTP and (ii) the di�erences in performance of
these estimation approaches. As an example, a ni-
trogen removal process described by the Activated
Sludge Model No. 3 (ASM3) (Gujer et al. 1999)
is considered. The state estimation is carried out
for the complete ASM3 model.

The paper is organized as follows. In Section 2, the
Kalman �lter based state estimation approaches
are summarized. In Section 3, the approaches
are illustrated on a wastewater nitrogen removal
process. The comparison between the EKF and
the UKF is shown. Finally, some conclusions are
drawn in Section 4.

2. STATE ESTIMATION APPROACHES

2.1 Standard Kalman �lter (KF)

To better understand how nonlinear estimators
work, it is useful to focus on the linear case �rst.
A linear system, approximated in discrete time is
given as

��+1 =��� +��� +���

�� =��� + 	�

where �� � R�� is the state, �� � R�� is the con-
trol input, and �� � R�� is the controlled output.
�� � R�� and 	� � R�� present the process noise
and measurement noise, respectively. They are
assumed to be zero-mean Gaussian noise processes
�� � N (0
 ��) and 	� � N (0
 ��).

A standard KF formulation for estimating the
process state �, where � is assumed to be initially
normally distributed with expectation �̂1|1 and
covariance 1|1, is given by:

�̂�+1|� =��̂�|� +���

�+1|� = ��|��� +����
�

��+1 =�+1|���
¡
��+1|��� +��+1

¢�1
�̂�+1|�+1 = �̂�+1|� +��+1

¡
��+1 � ��̂�+1|�

¢

�+1|�+1 = (� ���+1�)�+1|� (� ���+1�)
�

+��+1��+1�
�
�+1


where ��+1 denotes the actual measurement at
step �+1. The Kalman gain �� is chosen to min-
imize the a posteriori estimate error covariance
�|�. Note that the equation for the a posteriori
state covariance �|� is called the stabilized imple-
mentation, because it has better numerical prop-
erties than some other frequently used equations
for �|�, e.g. �|� = (� ����)�|��1.

2.2 Extended Kalman �lter (EKF)

For several reasons, state estimation for nonlinear
systems is considerably more di�cult and admits
a wider variety of solutions than the linear prob-
lem (Crassidis & Junkins 2004). In this paper, we
discuss two di�erent approaches to achieve esti-
mation for nonlinear systems: the method of EKF
uses the recursive update form of standard KF by
linearizing the nonlinear model at each time step,
and the method of UKF uses a set of appropriately
chosen weighted points to parameterize the means
and covariances of probability distributions.

The nonlinear system is described by the stochas-
tic model

��+1 = � (��
 ��
 ��)

�� = � (��
 ��
 	�)

where �1 � N ¡
�̂1|1
 1|1

¢
, �� � N (0
 ��), and

	� � N (0
 ��). �̂1|1, 1|1, ��, and �� are as-
sumed to be known.

The EKF algorithm can be summarized as the
following set of equations:

�̂�+1|� = �
¡
�̂�|�
 ��
 0

¢

�+1|� =���|���� +�����
�
�

��+1 = �+1|����+1
¡
��+1�+1|����+1

+��+1��+1�
�
�+1

¢�1
�̂�+1|�+1 = �̂�+1|� +��+1

¡
��+1 � �

¡
�̂�+1|�
 ��+1
 0

¢¢

�+1|�+1 = (� ���+1��+1)�+1|� (� ���+1��+1)
�

+��+1��+1��+1�
�
�+1�

�
�+1


where matrices ��, ��, ��, and �� are de�ned
as the following Jacobians:

�� =
��

��

¯̄
¯̄
�̂�|�����0


 �� =
��

��

¯̄
¯̄
�̂�|�����0

�� =
��

��

¯̄
¯̄
�̂�|��1����0


 �� =
��

�	

¯̄
¯̄
�̂�|��1����0

�

2.3 Unscented Kalman �lter (UKF)

We initiate the UKF by

�1 � N
¡
�̂1|1
 1|1

¢
�
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Fig. 1. Model diagram of the nitrogen removal plant implemented in Modelica/Dymola.

First, an augmented state is de�ned as

��� =

�
�
��
��
	�

�
� �

The mean and covariance of the augmented state
vector are

�̃�|� =

�
�
�̂�|�
0
0

�
� 
 ̃�|� =

�
�
�|� 0 0
0 �� 0
0 0 ��

�
� .

The size of �̃�|� is ��̃ = �� + �� + �	. Introduce
matrix � as the Cholesky root of (��̃ + �) ̃�|�:

� �� = (��̃ + �) ̃�|�

where � = �2 (��̃ + �)���̃ is a scaling parameter
(typically � � £10�4
 1¤ and � = 0). Let �
 denote
column � of matrix � .

Next, we de�ne 2��̃ + 1 sigma points X̃ 

�|� with

corresponding weights �
 as follows:

X̃ 0
�|� = �̃�|�

X̃ 

�|� = �̃�|� + �
 � = 1
 � � � 
 ��̃

X̃ 

�|� = �̃�|� � �
���̃ � = ��̃ + 1
 � � � 
 2��̃

� 0
� = �� (��̃ + �)

� 0
� = �� (��̃ + �) +

¡
1� �2 + �

¢

� 

� =� 


� = 1� [2 (��̃ + �)] � = 1
 � � � 
 2��̃

where � is used to incorporate prior knowledge
of the distribution (with Gaussian distribution
� = 2).

De�ne X 

�|� to be the vector of the �rst �� ele-

ments of X̃ 

�|�, W


�|� to be the vector of the next
�� elements of X̃ 


�|�, and V
�|� to be the vector of
the last �	 elements of X̃ 


�|�. The predicted sigma
points X 


�+1|� and Y
�+1|� are given by:

X 

�+1|� = �

³
X 

�|�
 ��
W


�|�
´

 � = 0
 � � � 
 2��̃

Y
�+1|� = �
³
X 

�+1|�
 ��
V
�|�

´

 � = 0
 � � � 
 2��̃.

We then compute the predicted means as

�̂�+1|� =
2��̃X

=0

� 

�X 


�+1|�

�̂�+1|� =
2��̃X

=0

� 
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and the predicted covariances as
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�
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where ��+1|� represents the innovation covari-
ance, and  �+1|� represents the cross correlation
matrix between �̂�+1|� and �̂�+1|�.

We can now compute the UKF gain ��+1 as

��+1 =  �+1|���1�+1|�


and �nally the updated estimates of state and
covariance as

�̂�+1|�+1 = �̂�+1|� +��+1

¡
��+1 � �̂�+1|�

¢

�+1|�+1 = �+1|� ���+1��+1|���
�+1�

Compared with the EKF, the UKF features two
main advantages: (i) the UKF avoids the compu-
tation of the Jacobian matrices, and (ii) the UKF
achieves a third order accuracy in the Taylor series
expansion of the statistics of the state, whereas
the EKF is at most �rst order accurate.

3. APPLICATION TO A NITROGEN
REMOVAL PROCESS

3.1 Process model

In this study, a laboratory-scale nitrogen removal
plant is considered. More details of the process are
given in Chai et al. (2006). The process model con-
sists of an aeration tank model in which oxygen
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Fig. 2. Simulation results of the standard KF (dash-dot), the EKF (dotted), and the UKF (dashed). The
solid line represents the true states.

is supplied, and a settler model where the sludge
is separated from the liquid being treated. ASM3
describes the biological processes involved in the
aeration tank. The states of the model are grouped
into the concentration of soluble components  
and particulate components ! . The kinetic and
stoichiometric parameter values are taken from
the typical parameter values suggested in ASM3
publications. Assuming perfect mixing in the reac-
tor, the mass balance in the aeration tank results
in:

"��
"#

=
�
��
� +������ � (�
� +���)��

��
+$ + %1AO2




where �
�, ���, �� � R13 contain the concentra-
tions in the in�uent, in the recycled sludge, and
in the reactor, respectively; their components are

�� = [ O2��  I��  S��  NH4��  N2��  NOX��  ALK��

!I�� !S�� !H�� !STO�� !A�� !SS��]
� 


& � {��, $', (}; $ � R13 is the reaction rates of each
component (de�ned in ASM3); %1 is the standard
basis for the �rst coordinate i R13. AO2

describes
the oxygen transfer: AO2

= ��(
¡
 ���O2

�  O2��

¢
,

where��( is the oxygen transfer coe�cient which
is the control input variable in this study, and  ���O2

is the saturated dissolved oxygen concentration.

Assuming that the settler is a perfect splitter, the
resulting mass balance equations are as follows:

E�uent concentration:

 �e� =  ��, !�e� = 0

Recycled sludge concentration:

 ��� =  ��, !��� =
�
� +���
��� +��

!��.

The dynamic model is implemented in the object-
oriented modeling language Modelica (Fritzson

2004) using the Dymola simulation environment
(Dynasim 2004), see Figure 1, based on modi�-
cations of the free Modelica library WasteWater
(Reichl 2003). Dymola generates a convenient in-
terface to Matlab such that Modelica models can
be executed within MATLAB.

3.2 Results and discussion

MATLAB is used for implementation of the es-
timation approaches. To estimate the state, we
need measurements from the plant. As an initial
study before doing state estimation based on real
data from the plant, we choose to check whether
reasonable state estimates can be obtained based
on response from the simulation model.

Observability is an important concept in dynamic
systems in general. Observability depends mainly
on the choice of measurement variables. In this
case, to ensure that the system is fully observable,
the following measurement variables are chosen:
the concentration of total nitrogen TN in the e�u-
ent, as well as the concentrations of dissolved oxy-
gen  O2

, dinitrogen  N2 , inert particulate organics
!I, and total suspended solids!SS in the aeration
tank 2 . The state and measurement vectors are
subject to zero mean additive white noise with
covariances

�� =� = diag
³¡
�o · 10�3

¢2´
and

�� =� = diag
³¡
�o · 10�4

¢2´



respectively, where (�o
 �o) is the operating point.
The chosen noise levels are relatively low in this
introductory phase of the study. Larger noise
covariances will be considered in future work.

2 In practice, some of these measurement variables may
be di�cult to measure; in this study, we assume that they
are available.
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Fig. 3. Comparison of the estimation errors of the EKF (dotted) and the UKF (dashed) for the observable
process.
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Figure 2 illustrates the performances of the stan-
dard KF, the EKF, and the UKF. Four unmea-
sured states, which most clearly exhibit the dif-
ference of the estimation results between the EKF
and the UKF, are shown in the �gure: the concen-
trations of readily biodegradable substrates  S,
ammonium  NH4 , organics stored by heterotrophs
!STO, and autotrophic biomass !A. The predic-
tion of the states with the standard KF is poor
because of the nonlinear characteristics of the bi-
ological WWTP dynamics. Nonlinear estimation
is therefore imperative for biological WWTPs. In
Figure 2, both the EKF and the UKF track all
the states of the process; indeed, the performance
of the EKF and the UKF are quite similar. To
compare the estimation qualities of the EKF and
the UKF, Figure 3 plots the relative squared es-
timation errors of the �lters which are relative to
the true states. The result shows that the EKF
and the UKF give the similar estimation error
for the concentrations of the soluble components
( S,  NH4). However, for the concentrations of the
particulate components (!STO, !A), the superior
performance of the UKF is clear.

In WWTPs, measuring most state variables is
either di�cult or expensive. This time, we assume
that only the concentration of total nitrogen TN
in the e�uent and the concentration of dissolved
oxygen  O2

in the aeration tank are the available
measurement variables for the nitrogen removal
process. By performing observability analysis of
a linearized model, we �nd that this system is
not observable. However, the system is detectable
since the dynamics of the �lter error is asymp-
totically stable; detectability guarantees conver-
gence of the �lter. Figure 4 depicts the estima-
tion errors of the unobservable process with the
EKF and the UKF. By comparing Figure 4 with
Figure 3, we �nd that the estimation errors of
the unobservable process are slightly larger than
the observable process for both the EKF and the
UKF. With the UKF, the state estimates for the
unobservable process are more noisy than for the
observable process. However, for the unobservable
(but detectable) process, the EKF and the UKF
still give reasonable estimates for the unmeasured
states. Hence, if the available measurements are
adequate for the dynamic system’s requirements,
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Table 1. Mean estimation errors over 3
days.

Method �S �NH4 �STO �A
Observable process
EKF 1�3× 10�4 8�5× 10�4 7�6× 10�2 6�4× 10�3
UKF 7�6× 10�5 1�5× 10�3 1�4× 10�2 2�2× 10�3

Unobservable process
EKF 1�5× 10�4 1�5× 10�3 8�9× 10�2 1�2× 10�2
UKF 1�3× 10�4 4�4× 10�3 2�5× 10�2 8�4× 10�3

a fully observable system may not be necessary
(Crassidis & Junkins 2004).

Finally, to give an overview of the estimation
capabilities of the EKF and the UKF, the mean
estimation errors for the aforementioned states
over 3 days are summarized in Table 1. For the
most states, UKF provides better state estimation
than the EKF for both the observable process and
the unobservable process (also see Figures 3 and
4).

4. CONCLUSIONS

In this paper, we investigate the use of the stan-
dard KF, the EKF, and the UKF in state estima-
tion of a typical biological WWTP and compare
the di�erences in performance of these estimation
approaches. First, the general formulations of the
Kalman �lter based algorithms are introduced.
Then, the performances of the estimation algo-
rithms are evaluated by simulation studies. The
estimation results show that state estimation with
the linear approach (the standard KF) is poor
because of the high nonlinearity of the bioprocess.
It is therefore important to exploit nonlinear esti-
mation algorithms for biological WWTPs. For the
nitrogen removal process, the UKF provides more
accurate estimates than the EKF for both the
observable process and the unobservable process
(see Table 1), which attests to the power of using
the UKF for nonlinear systems. In the compu-
tation, the EKF takes 8 min, while the UKF
takes 23 min, i.e., the computation time of the
UKF is about 3 times longer than that of the
EKF. The reason for this is that the calculation
of the predicted sigma points in the UKF is time-
consuming for the nitrogen removal model. Nev-
ertheless, since the UKF avoids the computation
of the Jacobian matrices, the UKF is simpler to
implement than the EKF.
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ABSTRACT
This paper deals with optimal control of a biologi-
cal wastewater treatment process. A pilot plant is de-
signed to remove nitrogen with simultaneous nitri�ca-
tion/denitri�cation in a single reactor. The objective of the
control in this paper is to force the total nitrogen concentra-
tion to track given set points. The dynamic modeling and
start-up simulation of the process are �rst presented based
on the ASM3 model and the object-oriented modeling lan-
guage Modelica. Next, the optimization problem is spec-
i�ed and formulated using a quadratic performance index.
Dynamic optimization is used in model predictive control
(MPC) based on a linearized model. The control strategy
is successfully applied to the simulation model of the pilot
plant.

KEYWORDS
Wastewater treatment; ASM3 model; Optimal control; Pre-
dictive control

1 Introduction

Water is one of our most precious resources, hence waste-
water treatment is a large and growing industry through-
out the world. Wastewater contains large quantities of or-
ganic matter that tends to deplete oxygen in the water. Fur-
thermore, nitrogen and phosphorus content lead to algae
growth. It is thus of importance to reduce the content of
organic matter, as well as nitrogen and phosphorus. As one
of the means of biological treatment, the activated sludge
process is commonly used in wastewater treatment [1].

For small-sized wastewater treatment plants which
are appropriate for communities of about 10; 000 person
equivalents (p.e.) [2], the process generally consists of a
single aeration tank in which oxygen is either supplied by
diffusers or surface turbines, and a settler where the mi-
crobial culture is separated from the liquid being treated,
see Figure 1. In the aeration tank, the micro organisms are
used to convert the colloidal and dissolved carbonaceous
organic matter into various gases and into cell tissue. Be-
cause cell tissue has a speci�c gravity slightly greater than
that of water, the resulting cells can be removed from the
treated liquid by gravity settling in the settler. Most of the
cells are recycled and mixed with incoming wastewater to

maintain convenient sludge age characteristics and high re-
action rates. Speci�cally, for nitrogen removal, nitri�ca-
tion and denitri�cation occur simultaneously in the unique
aeration tank. Nitrogen is removed in these two steps: am-
monium is �rst oxidized to nitrate under nitri�cation/the
aerobic step; the produced nitrate is then transformed into
nitrogen gas under denitri�cation/the anoxic step [3].

Influent
Aeration tank

Settler

Effluent

Recycled sludge Wasted sludge

AirQin, xin

Qrs, xrs

Qin + Qrs

Qeff, xeff

Qw

Figure 1: Schematic diagram of a typical activated sludge
process.

The simultaneous nitri�cation-denitri�cation (SNdN)
applications require oxygen control or other types of con-
trol methods to assure that both nitri�cation and denitri�-
cation occur in a single tank. Most of small size waste-
water treatment plants use very simple control strategies
(e.g. time control, manual control) or implement more
�advanced� controllers such as proportional controllers [4].
Although biological removal of organic matter from waste-
water is correctly handled in most cases by means of the
aforementioned controls, the nitrogen concentration in the
treated wastewater may signi�cantly exceed the allowed
levels.

In this study, a laboratory-scale nitrogen removal
plant is considered. The objective is to develop aeration
strategies for optimal nitrogen removal by using dynamic
optimization methods. The application of dynamic opti-
mization methods requires a suf�ciently accurate mathe-
matical model describing the wastewater treatment process.
The present work uses the recently developed Activated
Sludge Model No. 3 (ASM3) [5]. ASM3 is for the time
being considered the best choice in the modeling of the bi-
ological processes involved in the activated sludge tank, es-
pecially in dealing with the aerobic and anoxic processes in
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the same tank [6]. To give an open and �exible model rep-
resentation, the general-purpose modeling language Mod-
elica is chosen. Modelica is an object-oriented model-
ing language with advantages such as suitability for multi-
domain modeling, the usage of general equations of phys-
ical phenomena, the reusability of model components, and
a hierarchical model structure [7].

The paper is organized as follows. In section 2, the
dynamic model of the nitrogen removal plant is described
and implemented in Modelica. In section 3, the optimiza-
tion problem is speci�ed; the optimization method and re-
sults are also discussed. In section 4, the optimization
method is used in a closed loop by applying model predic-
tive control (MPC). Finally, some conclusions are drawn in
section 5.

2 Process Model

2.1 Nitrogen removal plant model

The pilot nitrogen removal process consists of a unique aer-
ation tank (Va = 40 l) equipped with an air blower with
diffuser which provides oxygen, and a mixer which makes
the tank behave as continuous stirred tank reactor (CSTR).
The settler is a cylindrical pipe located in the aeration tank,
where the sludge is either recycled to the aeration tank or
extracted from the system. The recycled sludge is propor-
tional to the in�uent �owrate, i.e. Qrs = 0:8 � Qin. The
waste sludge �owrate Qw is used to manipulate the solids
retention time SRT1, which is the most critical parameter
for activated sludge design. The process is operated with
constant in�uent �ow rate (Qin = 96 l=d) and composi-
tions.

Hence, the plant model consists of an aeration tank
model in which the microbiological processes take place,
and a settler model where the liquid and solid phases are
separated.

Aeration tank model

ASM3 describes the biological processes involved in the
aeration tank. The states of the model are grouped into
the concentration of soluble components Sj and particulate
components Xj . ASM3 consists of 13 state variables and
36 parameters, see [5] and [8]. The kinetic and stoichio-
metric parameter values are taken from typical parameter
values suggested in ASM3 publications.

Assuming perfect mixing in the reactor, the mass bal-
ance in the aeration tank results in:

dxa
dt

=
Qinxin +Qrsxrs � (Qin +Qrs)xa

Va
+ r + eAO

(1)

1The solids retention time (SRT) is the residence time of the sludge
in the reactor system. The simpli�ed de�nition of the SRT is SRT =
Va=Qw:

where xin, xrs, xa 2 R13 contain the concentrations in the
in�uent, in the recycled sludge, and in the reactor, respec-
tively; their components are

xl = [SO2;l SI;l SS;l SNH4;l SN2;l SNOX;l SALK;l

XI;l XS;l XH;l XSTO;l XA;l XSS;l]
T
;

l 2 fin, rs, ag; r 2 R13 is the vector formed by the re-
action rates of each component (de�ned in ASM3); e is a
13-dimensional auxiliary vector with 1 in the �rst element
and 0 in the other elements of the vector. The mass balance
equation contains the additional term AO which describes
the oxygen transfer from the diffusers:

AO = KLa
�
SsatO � SO;a

�
where KLa is the oxygen transfer coef�cient which is a
function of the supplied air �owrate, and SsatO is the satu-
rated dissolved oxygen concentration (SsatO � 10 g=m3).

Settler model

In this work, the settler is considered a perfect splitter: (i)
the sum of the three out�ows (ef�uent, wasted sludge, and
recycled sludge �ow rates) equals the settler in�uent �ow
rate; (ii) the ef�uent is exclusively constituted of soluble
components. The resulting mass balance equations are as
follows:
� Ef�uent concentration

Sj;e� = Sj;a, Xj;e� = 0 (2)

� Recycled sludge concentration

Sj;rs = Sj;a, Xj;rs =
Qin +Qrs
Qrs +Qw

Xj;a. (3)

General model

Eliminating xrs from Eq. 1 using equations 2 and 3, one
can reformulate the dynamic system as a set of ODEs:

dxa
dt

= f (xa; t) .

2.2 Model implementation in Modelica

The dynamic model is implemented in Modelica using
the Dymola simulation environment [9], based on modi-
�cations of the free Modelica library WasteWater [10].
Compared with most modeling languages available today
(e.g. Matlab), Modelica offers important advantages for the
implementation of the model. The object-oriented architec-
ture allows the user to move and change a component with-
out modifying the rest of the model, and the components
can be reused in various models. Multi-domain capability
gives the possibility to easily combine electrical, mechan-
ical etc. models, as well as control systems etc. within
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Figure 2: Model diagram of the nitrogen removal plant implemented in Modelica/Dymola.

in the same model. The model diagram of the wastewater
treatment process is shown in Figure 2.

Within Dymola, the model is easily constructed by
dragging, dropping, and connecting components chosen
from the modi�ed WasteWater library. During the simu-
lation, a system of differential algebraic equations (DAE) is
established by Dymola. The DASSL integration procedure
of Dymola is used to solve the DAE system. Moreover, Dy-
mola generates a convenient interface to Matlab such that
Modelica models can be executed within Matlab. An appli-
cation executing a Modelica model in Matlab is described
in [11].

To identify the continuous operation dynamics, sim-
ulation of the start-up period of the plant is provided by
starting with the aeration tank �lled by the incoming waste-
water. The in�uent wastewater composition is

xin = [0; 30; 60; 16; 0; 0; 5; 25; 115; 30; 0; 1; 125]
T
:

A continuous air supply is employed for 30 days with
KLa = 50d

�1 and SRT = 30d. The simulation results of
the start-up operation are shown in Figures 3�5, where the
system approaches steady-state after about 20 days.

3 Optimal Control

3.1 Optimization problem statement

Tight requirements have been imposed on the ef�uent of
wastewater treatment plants by the European Union dur-
ing the last decade [2]. In particular, nitrogen discharge is
strictly regulated in order to reduce the environmental im-
pact of the treated ef�uent and to ensure the reliability of
the treatment plant. The limit value of the concentration
of total nitrogen (TN) is 15 gm�3 for agglomerations of
p.e. between 10; 000 and 100; 000. However, an objective
of 10 gm�3 is often aimed at to make the plant operation
more robust. Furthermore, the mininal value of TN which
can be reached for the process is found to be 9:5 gm�3 by

means of simulation. A set point of 10 gm�3 is thus cho-
sen in this study.

In this paper, we are concerned with the problem of
controlling the total nitrogen (TN) around a speci�ed set
point (TNsp = 10 gm�3) under a set of constraints. We
thus consider the oxygen transfer coef�cient KLa as con-
trol input u 2 Rnu (nu = 1). The output is y = TN 2 Rny
(ny = 1) and the state variable is x = xa 2 Rnx (nx = 13).
The nonlinear model is linearized about the steady-state
conditions indicated in section 2.2, and is discretized with
the sampling time Ts = 10min. The linear, discrete-time
model is in the form:

xk+1 = Axk +Buk (4)
yk = Cxk: (5)

The chosen objective function for the optimization
problem is:

J =
1

2

NX
i=1

�
e2i +R � (KLai)

2
+ S � (�KLai)

2
�

(6)

where R and S are constant weighting factors. Here, the
output error ei is

ei = TNsp;i�TNi; (7)

and the control increment�KLai is

�KLai = KLai �KLai�1: (8)

In addition, the control input is constrained to KLa 2
[0; 240] d�1.

3.2 Optimization method and results

The optimization problem described above can be posed as
a quadratic programming (QP) problem of the form

min
z
F (z) = min

z

1

2
zTHz + cT z (9)

s.t. Az = a

Bz � b

z` � z � zu:
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Figure 3: Simulation pro�les for suspended solids (XSS),
heterotrophic bacteria (XH), and inert particulate (XI).
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Figure 4: Simulation pro�les for stored organics (XSTO),
autotrophic bacteria (XA), slowly biodegradables (XS),
inert soluble (SI), and readily biodegradables (SS).
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Figure 5: Simulation pro�les for dissolved oxygen (SO2),
ammonium (SNH4), dinitrogen (SN2), nitrite plus nitrate
(SNOX), alkalinity (SALK), and total nitrogen (TN).

A general introduction to QP formulations and solvers for
MPC has been given in [12]. Based on their presentation,
we �rst de�ne the vector of unknowns z as:

zT =
�
KLa

T ; �KLa
T ; eT ; TNT ; xTa

�
;

Table 1. Matrices for complete variable set QP-
formulation.

A11 = �IN;�1 
B
A15 = IN �nx � IN;�1 
A
A25 = �IN 
 C
A41 = �IN �nu + IN;�1 
 Inu
TNsp =

�
TNsp;1 � � � TNsp;N

�T
where

KLa
T = (KLa1; :::;KLaN ) ;

�KLa
T = (�KLa1; :::;�KLaN ) ;

eT = (e1; :::; eN ) ;

TNT = (TN1; :::;TNN ) ;

xTa =
�
xTa;1; : : : ; x

T
a;N

�
;

KLa, �KLa 2 RN �nu�1; e, TN 2 RN �ny�1; and xa 2
RN �nx�1. Matrix H and vector c of Eq. 9 are determined
from the requirement that J of Eq. 6 should equal F (z)
in Eq. 9. The equality condition Az = a contains the
model in Eqs. 4�5 and the de�nitions in Eqs. 7�8. For
the optimization problem de�ned here, inequality Bz �
b is empty, while constrains are contained in z` and zu.
Thus, the following matrices result (
 denotes Kronecker
product):

H = diag
�
IN 
R; IN 
 S; IN �ny ; 0N �ny ; 0N �nx

�
c = 0N �(2nu+2ny+nx)�1

A =

0BB@
A11 0 0 0 A15
0 0 0 IN �ny A25
0 0 IN �ny IN �ny 0
A41 IN �nu 0 0 0

1CCA
a =

 �
A � xa;0 +B �KLa0

0(N�1)�nx�1

�T
; 0TN �ny�1;

TNTsp;

�
�KLa0

0(N�1)�nu�1

�T!T
;

where matrices Aij and TNsp are de�ned in Table 1, and
xa;0 andKLa0 are known variables. Next,

z` =
�
IN �nu�1 �KLa

`;�1 � IN �(nu+2ny+nx)�1
�T

zu =
�
IN �nu�1 �KLa

u;1 � IN �(nu+2ny+nx)�1
�T
:

To solve the QP problem, QP solver quadprog of
the Optimization Toolbox in Matlab is used. The weight-
ing factorsR, S are tuning parameters; in this study, we set
R = 0 and S = 0:1. To minimize the deviation between
the predictor output and the reference, R should be given a
small value or 0. Optimal control is considered over a 24 h
period, i.e. the horizon is N = 144 when Ts = 10min.
The optimal aeration trajectory for the linearized model is

221



depicted in Figure 6. The corresponding ef�uent concentra-
tions of total nitrogenTN, chemical oxygen demandCOD,
and dissolved oxygen SO2 are shown in Figure 7. For com-
parison, we also include the simulation results by using
the optimal input sequence KLa to the nonlinear Model-
ica model, which will indicate whether the optimal control
is valid for the nonlinear process model.

The concentration of TN is controlled to track the set
point. Moreover, as another requirement on the ef�uent
of wastewater treatment plants, COD should be less than
125 gm�3. This ef�uent criterion is satis�ed in Figure 7.
Hence, the optimal input sequence gives satisfactory con-
trol results for both the linearized model used in Matlab and
the nonlinear Modelica model.

However, open loop operation as described above is
very sensitive to model error and unknown disturbance.
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Figure 6: Evolution ofKLa for the optimal control over 1
day, based on a linearized model.
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Figure 7: Comparison of TN, COD, and SO2 for the QP
optimal control in Matlab (dashed), with the simulation
results by injecting the optimal input into the nonlinear

Modelica model (solid).

4 Model Predictive Control (MPC)

Model based predictive control (MPC) changes the open
loop optimal control problem of the previous section into a
closed loop solution. In order to apply MPC to the model
of the pilot plant, we need state estimation to get the current
states from measurements. However, in this initial study, it
is assumed that a perfect model of the pilot plant is avail-
able without any disturbances, and that all state variables
are available. Based on these assumptions, the state esti-
mation is not considered in this work. An approach to non-
linear moving horizon state estimation using an activated
sludge model, is described in [13]. More introductions of
theoretical and practical issues associated with MPC tech-
nology can also be found in [12], [14], and [15].
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Figure 8: Evolution ofKLa for the MPC over 1 day.
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Figure 9: MPC simulation results with prediction horizon
N = 15.

The prediction horizon N is an important tuning pa-
rameter for optimization results. Since the larger N , the
closer the MPC solution approaches the full horizon opti-
mal solution, a large N is desirable. On the other hand,
N should be as small as possible because 1) the computa-
tional burden increases dramatically with N , and 2) larger
N requires inclusion of more-steps-ahead predictions and
hence more uncertainty. To investigate the effect of N in
this application, the controlled process is simulated for N
ranging from 5 to 30 sampling intervals. The simulation re-
sults show that increasing N increases the MPC accuracy
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and the computational burden. Speci�cally, Figures 8 and
9 indicate the results with the prediction horizon N = 15.
The MPC controller performance is satisfactory: the con-
centration of TN is controlled at its set point, while the
concentration of COD is in conformity with the EU ef�u-
ent standard.

5 Conclusion

In this paper, the use of a dynamic optimization method to
design an optimal aeration strategy for small-size wastewa-
ter treatment plants is discussed. The method is applied to
a simulated pilot nitrogen removal plant including simulta-
neous nitri�cation-denitri�cation.

A dynamic model describing the pilot plant is �rst de-
veloped based on the ASM3 model and is implemented in
Modelica with the modi�ed WasteWater library. The
dynamic start-up simulation of the plant is pursued in order
to evaluate the normal operating conditions. Then, the de-
termination of the optimal aeration pro�le for the system is
accomplished by both the open loop optimal control and the
closed loop operation (MPC). The optimal controllers are
designed to maintain the total nitrogen concentrationTN at
prespeci�ed levels by acting on the oxygen transfer coef�-
cient KLa. We formulate the optimization problem using
the state space model of the process, and pose it as a QP
problem with a complete set of variables [12]. The perfor-
mances of the control strategies are evaluated by simulation
studies. The simulation results show that the concentration
of TN is controlled to track the set point. Thus, the con-
troller performance is satisfactory.

In this work, the optimal control strategy has been ap-
plied to a simulation model. In the future, the strategy will
be tested on the laboratory model. To get the current state
based on the measurements from the real process, applica-
tion of a state estimation approach (e.g. Kalman �lter) in
MPC is planned. Also, the convergence capabilities of the
optimization method may be studied. In addition, current
operating modes are given over short time horizons (24 h
period). However, since the in�uent �ow rate and compo-
sitions are likely to exhibit large variations from one day
to the other, additional studies are required to analyze long
term effects of optimization.
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���� �������� ��� 4���� - %��� �� ��� �������
� �������� ��� �)�� ��� ������ ����������
�� ������ ���#����� ������ ��� �������������
��� ��� ������� ����� $���"������ ������� �
����#�� � ����� ��� �����	 ������� � "���
�)���� �� ������ ����� ���"�����9��� ������
����: ��� �������� ������ � ���� �����������
��� ������� ��� ����� �����"�����9��� ���)�
���� �� � ����� ������� ������� � �� ����� ��
��������� ���� �� ���;���� ������ �� �����#��
�)���� ����� ���� ��� �)����� ������� ���
�#�������� ���� �� ������ ������ ������� ���
���� �����#�� �)���� ��� ����� ��� ������ ��
������ ������ 
� ������� ���� ��� ������� ��
����� ���<��� �� ��� ������ ������ ����������
��� ������������ �������� ����� �� � ���������
����� �+������� �� �� =>>?�� �)����#� ������� �
���������� ���� �� ������� ���� �� #�� 


� ��� ������ ������ ������� �� ��� ������� ����
��� � ��������� �� ����#� ��� �;����� ���
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4� - $������� ������ �� � ������ ���#����
������ ������� 

�������� �� �� �$* ��� ���������� ��������
���� ��� ����#�� �� ������� ���� ������� ������
����� !�� ��(���#� �� ��� ������� � �� �����
�� ������� �������� ������ ��� ����� �������
���� ������ ��� ������ �������� �� ���
������� ������� ��� ��������� �� ��� ����
�� ��� ������ ����������� ��� ��� ��������
���������� !�� �������� ���� � ����� �� ���
���� ��������� ������� !�� ��������� ��
������ ��������� ������� ������� � ��;�
������ �������� ����������� ����� ��������
��� ���������� ��������� ������� !�� �������
���5 ���� ��� ���#���� $����� %���� &� '
��$%'� �@�(�� �� �� -AAA� �$%' � ��� ��� ���
���� ��������� ��� ���� ����� � ��� �������
�� ��� �������� ��������� �#��#�� � ��� ����
#���� ������ ���5� ��������� � ������ ��� ���
������ ��� ���)� ��������� � ��� ���� ���5
�6��5� B 6����� =>>?� !� �#� �� ���� ���
C�)��� ����� �������������� ��� ���������������
������� �������� %������ � ������ %������ �
�� ��(����������� ������� �������� ��� ��#���
����� ���� �� �������� ��� ���������� ������
��� ��� ����� �� ������� �������� �� ������� ����
������� ��� ��������� �� ����� ����������� ���
� ���������� ����� ��������� �4������ =>>D� 

= *./+E$$ %/0E7


� ��� ������ � ����������������� ������� ����#��
����� � ��������� !�� ������� ������� �� �
����� ������� ���5 ��� � ���5�� #����� �� �
	� 
 !�� ���5 � ������� ��� �� �� ������
��� ������� ���� ���#�� �)����� ��� � �)��
��5�� ��� ���5 ����#� �� ��������� ������ ���5
������� �+$!.� !�� ������� � � ��������� ���
������� � ��� ������� ���5 ��� � #����� ��
��� 
� ����� ��� ������ � ����� �������� �� ���
������� ���5 �� �)������� ���� ��� ������ !��
�������� ������ � ����������� �� ��� �C����
C�������  � ��� � ��� � ��� !�� ����� ������
C������ �� � ���� �� ��������� ��� ������
�������� ��� �� � � ���� � ��� ���� ������
��������� ��� ���#���� ������ ����� !�� ��

� !�� ����"�� ��"���� �� ��� ��� � ��� � ������

��� ��� �#����� ������� � �������� �� �� � ��
�� ���� ������ ��� ������� � ������� �� ��
�������� ��� �������� �C���� C�� ���� ���
���������� 3������� �������� ��� ����� ��
��� ������� � ������ �� �� �� � !���� ��� �C����
C�� ���� � ��� � ������ � �� 
�� 

!�� ����� ����� ������� �� �� ������� ���5
����� ��� � ������� ����� !�� ������ ��� ����
�������� � ����� � ��� ���#��� ���5 +���
6�55� B 7� �=>>F� !�� �$%' ����� ��������
��� �������� ��������� �#��#�� � ��� �������
���5 !�� ������ �� ��� ����� ��� ������� ��� ���
������������ �� ������� ���������� �� ��� ����
������� ���������� ��  ������� ������� �)��
� ��� �������� ��� ���� ������� � ��� �������
���5 ������� �	
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���� � ��� �C����� � ��� �������� ������� ���
� ��� �������� �������#���: ���� ���������� ���
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 � ���� ��� ��: � � ��� � ��� #����� ������ ��
��� ������� ����� �� ���� ��������� ���"��� �
�$%'�: �� � � ������������ ��)���� #�����
��� � � ��� "��� ������� ��� � � ��� �����
�������� �� ��� #����� !�� ���� ������� �������
������� ��� �������� ���� �	 ���� ��������
��� �)���� �������� ���� ��� �������	

�	 � �� ����
�
���	 � �	��

�

�������� � ��� �)���� �������� ���;���� ����
� � ������� �� ��� ������� �� C�� ����� ��� ���	

� ��� ��������� �����#�� �)���� ������������
����	 � �� ����� !�� #������ �� � � �����
�������� ������� ������� � ��� � ��� ������
����� ��� ����� �� ��� ������ ���9��� ������� ���
����� 
� � ������� ���� ��� ������ � �� �� ���

 � � 


� ��� ���5� ��� ������� � ��������� � �������
�������� ��� +��� 6�55� B 7� �=>>F� !�� ���
������ ���� ������� �������� ��� �� �������	
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� �������� �������� 	�� ���� E������ -
���� E������� = ��� '� ��� ��� ����������� ���
������ ������ �� � ��� �� /0E�	
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4� = %���� ������ �� ��� ������� ����#�� ����� ���������� � %������90����� 

!�� ������ ����� � ���������� � %�����
�� ���� ��� 0����� �������� ��#�������
�0����� =>>D�� ��� 4���� =� ����� �� ���"�
������ �� ��� ���� %������ ������ ����������
�.���� =>>'� 0����� ��������� � ���#����� ��
������� �� %����� ���� ���� %������ ������ ���
�� �)������ ���� %����� �� ��������� �)��
����� � %������ ����� � %����� � ��������
� +��� ����� B 7� �=>>F� 

&������ ����#�� � ����#�� �� ������� ���
������ �� ��� ��� �������� � ���������� �������
���)� �������� � ��� ������� ���5 3�����
��� ������� #������ ���� �C������ ��� ������
��� �� ��� ����� � ��� �������� �� �������
�����  � ���� ���� ��� ������ ����� ��9�� 

� ��� %������ ������ ��� ������� #������ �
��"��� �� �� ���� #������ ���� ���� � ����
���� ��� ������� 0����� "�� ���	�
� ��#��
��� ���(������� �� ���� ������: ��� ��� ������
���� ��������������� � ���� �� �������� �
������� ����� ����� �� ��� �������� �� �������
���� 
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%�7 +/&!./7

��� �!
�
"�
�	 !��#��� �����	

!�� ������� ������� ��� �� ���� �� � ���������
�� ������ ����� ���� ����� ������� �� �� �����
����� �������� �� �� ����� ������  � ��� �����
������� ��� ��������#� ������ �� ��� ������� ���
4���� ' 4�� � �#�� ��������� ������ ��� ��
������ ���� ����� ��� �� ������� ������ 
� ���
��� ������� ������ �� � ��� ������� �� ��� �����
��� �� � ��� ������ �� ��� ���� ������  � ���
����� ����� !�� ������� ������� ��� ���� �
��"��� �� �� � ������ � ����� ��������� ������
�� �� 3����� ��� ������� ��� ��� �� �������
�� ���������� �� ��� �� ��� � � �� � � � � �� 

� ����� �� �#�� � �
��$ 
	���� !�������
	�
������� ���� ��� ��������� ��� �������� � �
�������� ���� ��� ������ �� ������ �� � 5���� 
4�� � ����"�� ��� � ������� ��� ������ ��
������� ������ ��� ���� �������� � � ����� 

!�� ��� �� ������� ���������� � ���� �������
���� ���� �� �� ���������� ����� �� ������ ���
������������ ������ ��� ��������� � ������
��� �#�� ���������� �������� � � �	 � 
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!�� ��(���#� �� ��� ����� � �� �������� ���
������� ���"�� ���� ������ ��� ������ ����
������� $��� ��� ������ ���������� � �����
������ �� ��� ������� ��� �� ��� �������� ������
��������� � ��������� ����#�� �� ������
��� ������� ��� !���� ��� ��(���#� ������� �
� ��"��� �� ��� ����� ������� ��� �#��� �� ���
��� ������	
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� � � ����������� #������ ��� ��� �� ���� ��
��� ������ ������� ������� �#�� ��� ���������
������	 ��� ������� ��� ������ ������� ��������
��� ���� ��� ������ ���������� 

���"��#��$ �!�%������%

%�)��� ������� ������������� ��� ������ �
����� �� ���� ��� ��� E1 ������ ��������� ��
������� �)���� ������ ���� ��������� �����
� ��� ����� ������� ��	
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� ��� ���5� �� ������ ���� ����� ��� �� ������
����� ���������� � ��� ������ � � �� �����
��� ��� �� ��� � ��������� ����� ����"�� �� �
����� ���� �� ��� ������������ ������ ������ �
�������� ����� �����"����� ������ 6���� ��
����� ������������� ���� ��� ��������� �� �� �
��������� ��������� � ��� ��������� ������� 


� �������� ��#���� ���������� ��� ��"��� ��
������ ��� �������� �� ��� �������� �������
��������� ��� �� ���#��� ��� ������ ���� ������
�� !�� ���������� ������ �� ������ �����
�
������� ��� ��)��� �
������� ����� �������
��� ����� �
������� ��� ��)��� �
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����� ������ ���� �� ������� ����� 2��
��������� �� +������� �� �� �=>>?�� �� ��"��
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4��� 
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� ��� ����� ��� ������� � � ���������� ����
����� ��������� �������� ���� ������� ���
�������� ����� ���������� � %������ 

��� �!
�
"�
�	 ��%�$ �	$ ������

!�� �������� ��������� ������� � ���#�� ��
��� ������ ���#�� � ��� !/%7�6 � �������
��� ������) ��� %����� ������ ���#�� ����
���� ���������� �������� ��������� ��������
��� ��� $����5���5 ��������� �������� ����
������� �$H*� ������ �� ��� 3���*����� $H*
������ 
� ��� ���5� ��� $����5���5 $H* �
���� ������� �� �� ������ ���#������� 

!� ������ ��� ��������� �������� ��������
�������� �� ��� �������� ����� �� ��� �����
� ���#��� �� ������� ��� ��� ������� ���5
"���� �� ��� ������ ���������� !�� �C����
���������� ��������� �

	�� � ��� ��� ��� ��� �� �� �� ��� ���� ��� �� �� ����
�
�

�� ���������� �� ������ � �������� ���
��� � ������ �� � ����� � � � � ��� ��� ���

�� � ��� ��� � � �� � � � � �� �I�


� ��� ������� ��� ������� �������� �� E������ I
��� �� �������� �� �� ��� 
	

�� ����
�	 ������ 
!�� ������ ���������� ������ ����� ����� �����
�� ���� 
� ��� ���5� ��� ������ ����� �������
������� ��� ��������� ���� �������� ��� ���
��������� 

4���� ��� ������ ������ �� ������� ������ ��
� ������ �� �������� ������ ������� ���"���
��� ��� #����� �� �� � ��� �		� ��� �#�� � 
��
������� G �#�� � �	 � ��������� ������ !��
������������ #����� �� ��(���#� ������� � ���
����� � 4���� D !�� �������� ������ #����
�� �� � ����� �� �� �� ��� ��� ������ #���� ��
� � ������ 3���#��� ��� �� ��� ��(�� �;������
����������� � ���#�� ��� ��������� �������
� ��� ����� ������ �� +*1 ��� ������� $���
��� ���������� ��� �������� ��� ��� ������
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Predictive Control of an Intermittently Aerated
Activated Sludge Process

Qian Chai and Bernt Lie

Abstract—This paper presents model-based optimal control
and predictive control of a biological wastewater treatment
process with intermittent aeration. The objective of the control
is to design an aeration strategy which minimizes the energy
consumption induced by the aeration system, with adherence
to the EU effluent standards and the operating constraints.
The developed optimization problem is used with a receding
horizon in nonlinear MPC based on the complete ASM3 model.
The MPC aeration profile guarantees that the plant fulfills
the effluent requirements at any time over long time periods.
Significant energy saving is also obtained when comparing MPC
to three traditional rule-based control strategies.

I. INTRODUCTION

Due to legislation on wastewater treatment, especially
the strict EU Guideline Urban Wastewater Directive
91/271/EEC, there are strong incentives to upgrade existing
wastewater treatment plants in order to comply with the
effluent standards and to reduce operation costs. The acti-
vated sludge process (ASP) is the most generally applied
biological wastewater treatment method. In the classical
biological treatment systems, aerobic nitrification and anoxic
denitrification are maintained in separated zones. In the
last two decades, intermittently aerated ASPs have been
developed in a way through which the aerobic and anoxic
zones are periodically exchanged [1], [2].

The intermittently aerated ASP generally consists of a
single aeration tank with alternating aerobic-anoxic condi-
tions by switching the supplied air on and off, and a settler
where the microbial culture is separated from the liquid
being treated. Most of the culture is recycled and mixed
with incoming wastewater to maintain convenient sludge
age characteristics and high reaction rates. The alternating
aerobic-anoxic technique can easily be applied to the existing
nitrogen removal plants with nitrogen removal efficiencies of
70−90% [3]. Compared to the classical biological treatment
processes, the intermittently aerated ASP offers significant
energy savings and easy plant retrofitting. An important
feature of the intermittently aerated ASP is its flexible
control ability, which makes the process better accommodate
variable influent loading conditions and makes it suitable
for optimization of operating costs [2]. Generally, control
of the aeration system is of great importance since (i)
the concentration of dissolved oxygen is directly related to
nitrogen removal and (ii) the energy consumption of the
aeration system is the main operating cost.

Corresponding author: Bernt.Lie@hit.no; tel: +47 35575169.
Address: Telemark University College, P.O. Box 203, N-3901 Porsgrunn,
Norway.

Process control of ASPs is a challenging task since the
processes are characterized by large disturbances, significant
nonlinearities, and stiff dynamics. To date, in many mu-
nicipal treatment plants, the lengths of aerobic and anoxic
phases are typically fixed or scheduled daily using a plant’s
supervisory control and data acquisition system. A more
advanced control approach is rule-based feedback control,
which uses varying phase length by establishing a switch
point for each nitrification/denitrification phase. Since the
on-line monitoring of ammonia and nitrate is difficult,
some indirect measurements of ammonia and nitrate (e.g.
oxidation-reduction potential (ORP), pH, dissolved oxygen
(DO)) are commonly used to control ASPs [4]. Recently,
with the development of mathematical models, particularly
the Activated Sludge Models (ASMs) [5], application of
optimal control has been the subject of a number of studies
[6], [7], [8], [9]. Moreover, the application of MPC in the
intermittently aerated ASPs has been studied in [10], [11],
and [12] using simplified models, but the application of MPC
with the complete ASM models is not studied much in the
literature.

In this paper, optimal control of the aeration system is
considered for improving the efficiency and reliability of
an intermittently aerated ASP, used for removal of nitrogen
from domestic wastewater. The objective of the control is to
design an aeration strategy (air-on and air-off periods) which
minimizes the energy dissipated by the aeration system, with
adherence to the limits of the effluent requirements and the
operating constraints. In Section II, the configuration and
dynamic model of the nitrogen removal plant are described.
In Section III, the optimization problem is formulated,
and the optimization method and results are discussed. In
Section IV, special emphasis is placed on using dynamic
optimization in MPC with a receding horizon for a usable
online implementation and to show the long-term effects of
the optimal aeration strategy. In Section V, the simulation
results of MPC are compared to three traditional control
strategies for nitrogen removal in the intermittently aerated
ASP. Finally, some conclusions are drawn in Section VI.

II. PROCESS CONFIGURATION AND MODELING

A. Process configuration
In this study, a model of a laboratory-scale nitrogen

removal plant is considered. The process consists of a
unique aeration tank (Va = 40 l) and a cylindrical settler
(Vset = 2.5 l). More details of the process are given in [13].
The sludge retention time (SRT) for the overall process is
maintained at 15 d. The influent wastewater to the plant is
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Fig. 1. Typical daily variations of inlet wastewater flow rate and compo-
sition, taken from [14].

primarily domestic wastewater. The average influent flow
rate (Qin) is 96 l/d which gives a hydraulic retention time
(HRT) of 10 h, and the average total chemical oxygen
demand (CODin) and total nitrogen (TNin) concentrations
are 260 gm−3 and 25 gm−3, respectively. Typical daily
variations of dry weather conditions are simulated using
weighting functions defined in [14] for both inlet wastewater
flow rate and composition, see Fig. 1.

B. Process model
The plant model consists of an aeration tank model and a

settler model. The complete Activated Sludge Model No.
3 (ASM3) describes the biological processes involved in
the aeration tank. The states of the model are grouped into
the concentration of soluble components Sj and particulate
components Xj . Assuming perfect mixing in the reactor, the
mass balance in the aeration tank results in:

dxa
dt

=
Qinxin +Qrsxrs − (Qin +Qrs)xa

Va
(1)

+r + e1AO2
,

where xin, xrs, xa ∈ R13 contain the concentrations in
the influent, in the recycled sludge, and in the reactor,
respectively; their components are

xl = [SO2,l SI,l SS,l SNH4,l SN2,l SNOX,l SALK,l

XI,l XS,l XH,l XSTO,l XA,l XSS,l]
T ,

l ∈ {in, rs, a}; r ∈ R13 is the vector formed by the
reaction rates of each component (defined in ASM3); e1 is
the standard basis for the first coordinate in R13; and AO2

describes the oxygen transfer:

AO2
= ua ·KLa

¡
SsatO2

− SO2,a

¢
, (2)

where KLa is the oxygen transfer coefficient which is a
function of the supplied air flow rate, and SsatO2

is the
saturated dissolved oxygen concentration (SsatO2

≈ 10 gm−3).
Variable ua is a binary sequence switching between 0 and
1 and represents the state of the blower (on/off) aerating
the plant. It is assumed that the blower is on at time t = 0.

Fig. 2. Model diagram of the intermittently aerated ASP implemented in
Modelica/Dymola.

Here, the control variable that influences the operation of the
plant is the sequence of switching times, i.e., times when the
blower switches on/off.

For simplicity, the settler is often considered a perfect
splitter, thus the settler model can be expressed as follows:

Effluent concentrations are

Sj,eff = Sj,a, Xj,eff = 0 (3)

Recycled sludge concentrations are

Sj,rs = Sj,a, Xj,rs =
Qin +Qrs

Qrs +Qw
Xj,a. (4)

In summary, the general model of the dynamic system can
be simply described as a set of ODEs:

dxa
dt

= F (xa, ua, t) . (5)

The dynamic model is implemented in the object-oriented
modeling language Modelica [15] using the Dymola simu-
lation environment [16], see Fig. 2, based on the modified
Modelica library WasteWater [17]. Dymola generates a
convenient interface to Matlab such that Modelica models
can be executed within Matlab. An application executing a
Modelica model in Matlab is described in [18].

III. OPTIMIZATION PROBLEM

A. Definition of optimization problem
The aeration process can be seen as a succession of cycles

where each cycle consists of an air-on period followed by an
air-off period, i.e. the period between two consecutive starts
of the blower, see Fig. 3. For a given optimization horizon
Th, let there be Nc aeration cycles. In the kth aeration cycle,
ak is the duration of the cycle and dk is the length of
the duty cycle, i.e. the air-on period. The aeration fraction
fk, which is defined as fk = dk/ak, is often introduced
instead of dk. Hence, the aeration time can be optimized
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by manipulating ak and fk for k = 1, · · · , Nc. In order
to avoid a mixed integer programming problem that may
complicate the solution, let the number of cycles Nc be
fixed. In addition, the length of the aeration cycles are made
constant, a = Th/Nc. The set of optimized parameters is then
reduced from 2×Nc to Nc parameters. Also, the optimiation
horizon is chosen to be 24 h.
1) Objective function: The objective of this study is to

determine the aeration profile that minimizes the energy
consumption. The energy consumption is mainly decided
by the aeration time of the process, and the extra power
comsumption induced by starting the aeration system is
neglected. Energy optimization is therefore achieved by
minimizing the aeration time. Thus, the objective function
J is defined as the total aeration time divided by the total
optimization time:

J =

XNc

k=1
a · fk

Th
. (6)

2) Inequality constraints: The inequality constraints are
defined in order to cope with the EU effluent standards on
chemical oxygen demand COD, suspended solids SS, and
total nitrogen TN:

CODeff ≤ CODmax = 125 gm
−3 (7)

SSeff ≤ SSmax = 35 gm
−3 (8)

TNeff ≤ TNmax = 10 gm
−3. (9)

In this work, we assume that there are no particulate compo-
nents in the effluent (SSeff ≡ 0). Also, the COD constraint is
generally easily satisfied as a large part of the biodegradable
organic carbon is consumed during denitrification stages.
Based on these considerations, only the constraint on TNeff
is therefore considered in the optimization problem.

To ensure the feasibility of the computed aeration strate-
gies and to prevent the blower from damage, constraints on
the aeration and non-aeration sequences are introduced:

ton,min ≤ a · fk ≤ ton,max (10)
toff,min ≤ a · (1− fk) ≤ toff,max, (11)
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Fig. 4. Objective function J vs. number of cycles Nc.

where we define ton,min = toff,min = 5min and ton,max =
toff,max = 2h with reference to [19].

To decide the constraints for the number of cycles Nc, we
first get the constraints of the aeration cycle duration a by
adding inequalities 10 and 11:

ton,min + toff,min ≤ a ≤ ton,max + toff,max. (12)

Then, Nc must be constrained to
Th
au
≤ Nc ≤

Th
a

(13)

where au and a are the upper and lower boundaries of a in
inequality 12, respectively.
3) Optimization problem: Finally, the dynamic optimiza-

tion problem on a given optimization horizon Th can be
stated as:

min
f1,...,fNc

J =

XNc

k=1
a · fk

Th
=

1

Nc

XNc

k=1
fk (14)

s.t.
dxa
dt

= F (xa, ua, t)
0 ≤ TNmax−TNeff

ton,min
a

≤ fk ≤
ton,max

a

1− toff,max
a

≤ fk ≤ 1−
toff,min

a
.

B. Optimization methods and results
The resulting optimization problem is solved by the

SNOPT solver in the TOMLAB1 optimization toolbox for
Matlab. SNOPT is a fast and robust solver for solving
large-scale nonlinear optimization problems with a sequential
quadratic programming (SQP) algorithm [20].

First, simulation of the start-up period of the plant is done
using an intermittent air supply with KLa = 72d

−1, Nc =
15d−1 (i.e. a = 1.6 h), and

fk = 0.6 for k = 1, . . . ,Nc. (15)

1For more information, see the TOMLAB home page
http://www.tomlab.biz.
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Fig. 5. Evolution of aeration fraction fk for open-loop optimal control
(solid) and for MPC (dotted) over 24 h.

The system approaches steady state after about 30 days
according to simulation, see also [21]. In this work, the
steady state concentrations are used as the initial conditions,
and are used for all control strategies here so that the obtained
results can be compared.

The optimal number of aeration cycles Nc is sought by
computing optimal aeration profiles for the values of Nc ∈
[6, 144] d−1 given in inequality 13 over a 24 h optimization
horizon. The corresponding values of the objective function
J are given in Fig. 4. The optimal value of Nc is found to be
24 with the lowest value of J = 40.05%, i.e. the length for
each aeration cycle is 1 h. The values of objective function
have large variations when Nc > 60 d−1, because the SQP
algorithm may easily be captured in local minima with the
increasing number of unknown optimization variables.

The optimal aeration strategy for 24 cycles a day is
represented in Fig. 5 in solid line. The corresponding effluent
concentrations of TN and COD are shown in Fig. 6 (solid
lines). The effluent constraint on COD always remains
inactive, so this constraint has been removed from the
optimization problem. The optimization results demonstrate
that the total aeration fraction of 40.05%, i.e. 9 h 37min
of aeration time a day, is sufficient to ensure the effluent
constraints over 24 h.

IV. MODEL PREDICTIVE CONTROL

The nonlinear optimal control strategy described above
is an open-loop operation which is very sensitive to model
errors and unknown disturbances. For a usable online imple-
mentation, a nonlinear MPC is applied to change the open-
loop optimal control into a closed-loop solution. In order
to apply MPC to the model of the pilot plant, we need
state estimation to get the current unmeasured states from
measurements. In this simulation study, it is assumed that
all states are available, therefore the state estimation is not
considered here. The study of state estimation of a similar
nitrogen removal process is described in [22].

The constrained nonlinear optimization defined in Section
III is used in MPC with a receding horizon. The MPC
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Fig. 6. Results of optimal control (solid) and MPC (dotted) over 24 hours:
the effluent concentrations of TN and COD.

horizon is an important tuning parameter for optimization
results. In this study, the MPC horizon is tuned to be 4
aeration cycles. The MPC aeration fraction and simulation
results over 24 h are shown in Figs. 5 and 6 with dotted lines.
We note that the optimal aeration strategy is closely related
to the variation of the feed concentration: the high TN load
(see Fig. 1) induces the high aeration fraction (e.g. between
8:00 and 20:00), whereas the low TN load results in the low
aeration fraction. Compared with optimal control, the TN
concentration with MPC increases faster at the beginning due
to the shorter MPC horizon. The application of MPC leads
to a total aeration fraction of 43.46% over a 24 h period.
This value is larger than the one obtained in optimal control
(J = 40.05%). The higher aeration fraction results in that the
effluent concentration of TN is held at lower values (8.5–
9.5 gm−3) than the effluent constraint 10 gm−3, see Figs.
6 and 7. This seemingly disappointing result for MPC can
be explained as follows: due to the periodic operation, the
stationary optimal future sequence of fk will look similar to
the solid line in Fig. 5, and will never reach some “steady
state” — there will always be some initial “transient” in fk.

Also, MPC is applied over a long simulation horizon to
guarantee that the effluent requirements are fulfilled and the
energy saving is lasting, see Fig. 7. The computation of the
optimal fk over 10 days (for 24 cycles a day) yields a total
aeration fraction of 46.42% and more than fulfills the strict
effluent requirements at any time.

V. COMPARISON BETWEEN MPC AND RULE-BASED
CONTROL

In this section, the MPC controller developed above is
compared with the traditional rule-based control strategies
for intermittently aerated ASPs. The rule-based control
strategies used in practice and in the literature can be catego-
rized as (1) open-loop control using fixed lengths of aerobic
and anoxic phases, or (2) feedback control using varying
phase lengths by establishing a switch point for each phase.
The switch point is typically the concentration of dissolved
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oxygen, nitrate, or ammonia [23], [24]. In this work, three
rule-based control strategies are compared with MPC: fixed
phase length, oxygen based control, and ammonia based
control. The comparison is carried out by simulation using
the sequence of aeration/non-aeration times as the control
input and the TN concentration as the primary output. The
objective of control strategies is to minimize the aeration
time of the process while satisfying the effluent constraints.
Evaluation criterion J is described in Equation 6. The applied
rule-based controllers are described as follows:
• Fixed phase length control: In this controller, the

lengths of aerobic and anoxic phases are fixed. We
assume that there are Nc aeration cycles for a given op-
timization horizon 1 d; then the length of aeration cycles
a is 1 d

Nc
. The controller thus has 2 tuning parameters: the

number of cycles Nc each day and the aeration fraction
f , which are found to be Nc = 60d

−1and f = 48.61%
by minimizing J over 1 d.

• Oxygen (DO) based control: In practice, a well-
accepted technique is to turn the aeration system on
and off based on the online measurement of DO
concentration. In [19], an oxygen based controller is
designed as: each aeration cycle has a constant duration
of a = 1 d

Nc
and the aeration system is stopped when

the DO concentration reaches DOmax. In this study, to

TABLE I
COMPARISON BETWEEN RULE BASED CONTROL STRATEGIES AND MPC.

Controller Criterion Tuning parameters CPU time for
simulating 24 h

Fixed phase 48.61% Nc = 60d
−1 39 s

f = 48.61%
DO based 53.12% Nc = 50d

−1 20 s
DOmax = 1.64 gm−3

SNH4 based 47.59% SNH4,max = 7.9 gm
−3 30 s

SNH4,min = 7.4 gm
−3

MPC 43.46% Nc = 24d
−1 22min

fk, k = 1, . . . , Nc

fulfill the effluent constraints, Nc and DOmax are tuned
to be 50 d−1 and 1.64 gm−3, respectively.

• Ammonia (SNH4) based control: The aeration system
can also be controlled by the upper and lower bounds
of SNH4 based on the measurement of SNH4 (see [25]):
the aeration is turned on when SNH4 ≥ SNH4,max
and is turned off when SNH4 ≤ SNH4,min. In fact,
large values of SNH4,max and SNH4,min will result in
lower aeration consumption, since ammonia is oxidized
to nitrate under the aerobic step. To make the control
results comparable, SNH4,max and SNH4,min are tuned to
be 7.9 gm−3 and 7.4 gm−3 because SNH4 varies within
this region when using the MPC solution.

A comparison of MPC with the rule-based controllers
is given in Table I. All computations are performed on
a 1.7GHz Pentium M computer with 1Gbyte RAM. The
values of criterion J show that MPC provides the shortest
aeration time, whereas the DO based controller is least
satisfactory. We find that MPC achieves 18.2% (i.e., 2.3 h)
aeration reduction each day in comparison to the DO based
control. Compared to the fixed phase length and SNH4 based
control, which have similar J values, MPC reduces the
average aeration time by up to 10.6% and 8.7%. Although the
computation time of MPC is much longer than the simpler
controllers, it is still feasible with on-line implementation of
an MPC controller. Fig. 8 presents the TN concentrations
obtained with all these control strategies. It is seen that
the performances of the optimally tuned fixed phase length
controller and DO based controller are similar, e.g., the
aeration switching frequencies are high for both controllers,
and the SNH4 based controller is designed to mimic the
performance of MPC. It should be noticed that the fixed
phase length strategy is limited in that predetermined fixed
aerobic and anoxic phases cannot compensate for unantici-
pated loading variations (e.g. rain/storm events). Although
feedback is utilized for the DO and SNH4 based control
strategies, the tuning of the parameters are rather sensitive
and must be performed carefully. In summary, the MPC
presents the following advantages:

1) MPC provides the most reduction of the aeration time.
2) It is easier to deal with the inequality constraints in

both effluent requirements and operating conditions.
3) MPC handles disturbances (e.g. load changes) in a

more natural way.



 
TN

ef
f  

[g
/m

3 ]

0 4 8 12 16 20 2424
Time of day [hour]

TNmax

4

5

6

7

8

9

10

11

fixed phase length
DO based control
SNH4 based control
MPC

Fig. 8. Comparison of effluent TN concentrations obtained with rule based
control strategies and with MPC.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an optimal control strategy for a small-sized
nitrogen removal ASP is developed to reduce the energy
consumption induced by the aeration system, with adherence
to the limits of the effluent standards. The optimization prob-
lem is formulated as a constrained nonlinear optimization
problem, which is solved by the SNOPT solver of the TOM-
LAB optimization toolbox. Then, the optimization method
is used with a receding horizon in nonlinear MPC based on
the complete ASM3 model. The application of MPC over
a long simulation horizon (10 d) is discussed, and the MPC
aeration profile guarantees that the plant fulfills the tight EU
effluent requirements at any time. Based on the same control
objective as MPC, traditional rule-based control strategies,
such as fixed phase length, DO based, and SNH4 based
control are discussed using well-tuned controller parameters.
The comparison between the rule-based controllers and MPC
shows that better aeration profiles, with reductions of energy
consumption of up to 18.2%, could be obtained by applying
MPC.

In the present study, the predictive control strategy has
been applied to a simulation model. The plan is to test
the strategy on the laboratory plant in the future. It is also
of interest to study the applications of MPC to full-scale
industrial plants.
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