
Åsmund Tjora

Modeling Run-Time Distributions
in Passively Replicated Fault
Tolerant Systems

Thesis for the degree of doktor ingeniør

Trondheim, December 2007

Norwegian University of
Science and Technology
Faculty of Information Technology, Mathematics and Electrical
Engineering
Department of Engineering Cybernetics

NTNU
Norwegian University of Science and Technology

Thesis for the degree of doktor ingeniør

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Engineering Cybernetics

©Åsmund Tjora

ISBN 978-82-471-5787-9 (printed ver.)
ISBN 978-82-471-5790-9 (electronic ver.)
ISSN 1503-8181

ITK Report 2007-9-W

Theses at NTNU, 2007:259

Printed by Tapir Uttrykk

i

Summary

Many real-time applications will have strict reliability requirements in addition
to the timing requirements. To fulfill these reliability requirements, it may be
necessary to use a fault-tolerance strategy.

An active replication strategy, where several instances of the task is run
in parallel, is the preferred choice for many real-time systems, as the parallel
execution of the task instances gives a high probability that at least some of
the instances finish successfully before the deadlines, even if others should fail.
However, enabling several parallel executions of single tasks increase the need
for processing power, which is costly and increases the requirements to space
and energy consumption.

In a passive replication strategy, only one instance of a task is run at a time.
If the task fails, a backup is readied, and the task is rerun on the backup. This
requires fewer resources than active replication strategies, but the extra time
needed for the rerun of the task can increase the probability of deadline misses.
Thus, analyzing the timing of these systems is necessary.

Analysis using the worst-case execution times for the tasks in the fault tol-
erant system can often give very conservative results, especially if the tasks’
normal execution times rarely approaches the worst case times.

The analysis of the run-time distributions of the tasks in passively replicated
fault tolerant systems can be a useful tool for deciding whether a passive repli-
cation strategy is suitable for the system or not. Unlike worst-case execution
time analysis, the distributions can also show the improvement in reliability
for systems where the passive replication strategy does not work in the worst
case scenario. This improvement may be so good that it justifies the use of the
replication strategy.

In this work, mathematical models for run-time distributions of tasks in
several classes of passive replication systems are developed. These models give
the run-time distributions as functions of parameter distributions of the modeled
system, like the fault-free runtime of a task, the fault detection time distribution,
and the distribution of the time between fault detection and the start of the
rerun of the task.

The different fault detection mechanisms used in passive replication sys-
tems lead to different structure of the mathematical models. Also, whether the
replicas are homogeneous or inhomogeneous affect the model structure. Many
other differences in the modeled systems’ structure will lead to differences in the
parameter distributions, but not in the structure of the mathematical models.

Models for systems using homogeneous and inhomogeneous replicas, with

ii

watchdogs, timeouts, and acceptance tests as fault detectors are developed.
One of the goals of the work has been to show the steps used to develop the
models in a way so the same steps can be used to develop run-time models for
systems that are not presented in the work.

The use of the models is shown with several examples, and the example
results are compared to results obtained from discrete event system simulation.

iii

Preface

This thesis presents the results of my research as a doctoral student at the
Department of Engineering Cybernetics (ITK) at the Norwegian University of
Science and Technology (NTNU). The Department of Engineering Cybernetics
has also been funding this project.

I would like to thank my supervisor, Associate Professor Amund Skavhaug
at the Department of Engineering Cybernetics, who encouraged me to start on
the doctoral studies, and who has always helped me look forward, even when
the direction of my project changed from what was originally planned. I would
also like to thank my co-supervisor, Associate Professor Poul Heegaard at the
Department of Telematics. My supervisors’ advice, suggestions and questions
have been important feedback for my work.

I would like to thank the dissertation committee: Dr. Karl-Erwin Grosspi-
etsch, Dr. Kai Hansen, Professor Ivica Crnkovic and Professor Bjarne Helvik. I
would also like to thank Associate Professor Sverre Hendseth who has been the
administrator for the committee.

The road to finishing this work has been long and sometimes very difficult.
I have several times “lost my sense of direction” and been unsure of how I
should proceed, especially at the beginning of the study – something that is
reflected in the fact that this work ended up being very different from what
was the original plan. Thanks to all the people who have given me good ideas,
comments and advice and helped me towards the goal. I would especially like
to thank Professor Peder Emstad, whose course on traffic analysis introduced
me to the use of moment-generating functions, and Professor Gerhard Chroust,
whose comments to one of my workshop presentations gave me many of the
ideas I’ve been working with.

I would like to thank to all the people at “D-blokka” for all their help and
encouragement. Special thanks goes to Eva, Tove, and Unni who have always
been helpful, to the regulars at the lunchroom, and to my office-mates Trygve,
Ekrem, and Kenneth. Good friends at work and an inspiring working environ-
ment have been very important for me.

A warm thanks goes to my parents for telling me that I should never give
up, even when the challenges seem to be too great. Without their support and
encouragement, I would never have been able to finish this work.

Trondheim, November 2007,
Åsmund Tjora

iv

Contents

1 Introduction 1
1.1 Passive replication in real-time systems 3
1.2 Using run-time distributions . 4
1.3 Goals and contributions of the work 7

2 Dependable real-time systems 11
2.1 System reliability . 11

2.1.1 Dependability attributes 12
2.1.2 Faults, errors, and failures 15
2.1.3 Classification of faults and failures 17
2.1.4 Deadline faults and failures 22

2.2 Software fault-tolerant methods 24
2.2.1 Fault tolerant structures 24
2.2.2 Fault detection methods 27
2.2.3 Homogeneity of replicas 31

3 Fault tolerant mechanisms using time redundancy 35
3.1 Description of the modelled systems 35

3.1.1 System structure . 36
3.1.2 Timing . 40
3.1.3 Fault models . 42

3.2 Fault detection models . 42
3.3 Homogeneous and inhomogeneous replication 46
3.4 The timing models . 48

vi Contents

4 Derivation of the mathematical models 49
4.1 Introduction to the mathematics 49

4.1.1 Moment-generating functions 50
4.1.2 The method . 50
4.1.3 Limiting the number of replicas 51
4.1.4 Naming of distributions used in the models 53

4.2 Systems using watchdogs for fault detection 54
4.2.1 The fault model . 54
4.2.2 Inhomogeneous systems 56
4.2.3 Homogeneous systems . 63
4.2.4 Systems with multiple fault rates 69

4.3 Systems with timeout as a fault detection method 72
4.3.1 The fault models . 73
4.3.2 Inhomogeneous systems 75
4.3.3 Homogeneous systems . 79
4.3.4 Using a fixed fault probability 82

4.4 Systems with acceptance failure detection 84
4.4.1 Inhomogeneous systems 84
4.4.2 Homogeneous systems . 86
4.4.3 Using a fixed fault probability 88

4.5 Other systems . 89
4.5.1 Combination of timeout and acceptance tests 90
4.5.2 Simple checkpointed systems 92

4.6 System structures with models not derived 92
4.6.1 Combination of timeout and acceptance tests, with failure

probabilities dependent on previous failure modes 93
4.6.2 Nested fault tolerant structures 94
4.6.3 Checkpointed systems that roll back further than the last

checkpoint . 97
4.7 Summary of main results . 97

5 Use of the models 107
5.1 The simulator . 107

5.1.1 Simulator structure . 108
5.1.2 Implementation . 112
5.1.3 Handling and presentation of results 113

5.2 Calculating the results numerically 113
5.3 Examples . 114

5.3.1 Some common distributions used in the examples 116

Contents vii

5.3.2 Systems using watchdogs as a fault detection mechanism 119
5.3.3 Systems using timeout as a fault detection method 132
5.3.4 Systems using acceptance test as a fault detection method 135
5.3.5 Systems combining acceptance test and timeout 135

6 Discussions and suggestions for future work 145
6.1 Fault models . 145
6.2 Models of other systems . 146
6.3 Use of the models . 146

7 Conclusion 149

A Fault Tolerance Methods in Component-Based Real-Time Sys-
tems 151
A.1 Introduction . 152
A.2 Analysis . 152

A.2.1 Cold passive replication 152
A.2.2 Warm passive replication 153
A.2.3 Active replication . 153
A.2.4 Active replication with voting 154

A.3 Discussion . 154
A.4 Future work . 154

B A General Mathematical Model for Run-Time Distributions in
a Passively Replicated Fault Tolerant System 157
B.1 Introduction . 158
B.2 The passive replication method 159
B.3 A simple time model of a passively replicated fault tolerant method160

B.3.1 The original fault-free system 161
B.3.2 The fault model . 161
B.3.3 The model of a system where faults may occur 162

B.4 Extending the model . 164
B.4.1 Adding time for fault correction 164
B.4.2 Adding the fault detection delay 166

B.5 Example . 168
B.6 Discussions and Conclusion . 169

viii Contents

C Assessing Reliability of Real-Time Distributed Systems 173
C.1 Introduction . 174
C.2 The model of the fault-tolerant system 175
C.3 The Analytical Model . 176
C.4 The Simulator . 179

C.4.1 The Client . 180
C.4.2 The Fault Generator . 180
C.4.3 The Server . 180
C.4.4 The Observer . 180
C.4.5 Implementation . 181

C.5 Example . 181
C.5.1 System parameters . 181
C.5.2 Results . 183

C.6 Discussion and conclusion . 185

D A Mathematical Model for Run-Time Distributions in a Fault
Tolerant System with Nonhomogeneous Passive Replicas 187
D.1 Introduction . 188
D.2 The modelled system . 190
D.3 The mathematical model . 192

D.3.1 Notation . 192
D.3.2 The fault model . 193
D.3.3 The system without detection and correction delays . . . 193
D.3.4 Adding the fault correction delay 196
D.3.5 Adding the fault detection delay 197

D.4 Examples . 197
D.4.1 The simulator . 198
D.4.2 A basic system . 200
D.4.3 Heterogeneous systems . 201
D.4.4 Imprecise systems . 204

D.5 Discussions and conclusion . 208

E Run-time Distributions in Passively Replicated Systems Using
Timeout and Acceptance Fault Detection 211
E.1 Introduction . 212
E.2 Description of the modelled system 214
E.3 Deriving the mathematical model 215

E.3.1 The fault model . 217
E.3.2 Deriving the model . 219

Contents ix

E.4 Example of use . 221
E.4.1 A basic system . 222
E.4.2 A system with checkpoints 223

E.5 Discussions and conclusion . 228

Bibliography 229

x Contents

Chapter 1

Introduction

When using a computer system to control another (usually non-computer) sys-
tem, like an engine or a processing plant, the computer system is often not only
required to produce the results needed for the control task, but also to produce
these results at the correct time. If the state of the controlled system changes
quickly, the control signals from the controlling computer system may be incor-
rect if they are a few milliseconds delayed, which means the computer system
used for control must be able to handle strict timing requirements.

A real-time computer system is a computer system that is designed so that
tasks running in the system can meet the strict timing requirements of the
“real world”, that is, processes that are outside of the computer system. The
processing of real-time tasks running in the system must produce results within
deadlines decided by the timing of the “real world” processes, and failure to meet
such a deadline may result in a degradation of the overall system’s performance,
or even the failure of the system.

While high processing speed is sought after in most computer systems, in
real-time system, temporal determinism is of higher importance than speed [43],
as the system may fail if a single deadline is missed, even if all other deadlines
are met by a large margin. For example, a speed-up strategy that increases
the average processing speed by a large amount will be preferred for batch-
processing systems, but may be unsuitable for real-time system if the speed-up
is at the cost of occasional long delays that may cause deadline misses, as shown
in figure 1.2.

Many real-time applications will, in addition to the timing requirements,
also have requirements to the system’s reliability [18]. The halt or the incorrect

2 Chapter 1. Introduction

Sensor data

Real−time computer system Controlled system

Sensor

Motor

Control signal

Figure 1.1: A real-time computer system used for control

speed−up strategy)

�� ��

���������������������
���������������������

����

�����
Task 2 Task 3 Task 4

Deadline for task 4Deadline for task 3Deadline for task 2

Task 1 Task 2 Task 3 Task 4

Task 1

Overhead

Without speed−up

With speed−up

Deadline for Task 1
(missed when using the

Figure 1.2: Timing when using a speed-up strategy that increases the average
speed of the system. Because of the initial overhead, Task 1 misses its deadline.

1.1. Passive replication in real-time systems 3

operation of the control system due to a failure may be very costly, or it may
even put human lives at risk. To fulfill the reliability requirements, it may be
necessary to use a fault tolerance mechanism. The combination of real-time and
fault tolerance is therefore an important study. If a fault tolerance mechanism
enables the system to tolerate faults, but in doing so, causes a task to miss
its deadline, it has introduced a new fault into the system. This way, some
fault tolerance mechanisms may be unsuitable for the system, depending on the
system’s characteristics.

For real-time systems, it has been common to use active replication, running
several instances of a task on several hardware nodes in parallel, as a means to
achieve fault tolerance. If one of the replicas should fail, the affected replica
is masked out, while the others continue to run. This will give a deterministic
temporal behavior even if some of the replicas should fail, as the non-failed
replicas will finish their execution normally. The possibility to compare results
from the replicas can also function as a fault detection mechanism, increasing
the range of faults that the mechanism may react to.

For general-purpose systems, fault tolerance mechanisms based on passive
replication strategies have been common. In these systems, only one instance of
the task, the primary, is active and running, while other instances are passive
backups. If the active replica fails, one of the backups is activated, and the
task, or unfinished parts of the task, is rerun using this backup. Because the
detection of the failure, the activation and updating of the backup, and the
rerun of the task is time-consuming, this kind of fault tolerance mechanism may
cause problems if used in real-time systems.

1.1 Passive replication in real-time systems

While replication strategies based on active replication in many ways work bet-
ter than passive replication strategies, active replication will also require more
processing power. The extra hardware needed to run the instances of the task
in parallel may cause the system to exceed limits to physical space, energy con-
sumption, or cost. For some systems, a passive replication strategy will give
“good enough” fault tolerance, and using an active fault tolerance strategy for
these systems might be considered as “overengineering”.

The requirements to timeliness and dependability for a system may be so
high that a non-tolerant system becomes very costly or even impossible to make.
Still, the same requirements may be on a level that does not justify using an ac-
tive replication strategy, making the passive replication strategy the best choice.

4 Chapter 1. Introduction

A simple illustration of this is shown in figure 1.3.
To be able to decide if a passive replication strategy is a good solution for

meeting the real-time system’s reliability requirements, the timing of the system,
especially when it is affected by a fault, must be analyzed.

Often, the system’s tasks’ worst-case execution times are used for the anal-
ysis. A simple approach is to see if a task’s operational window is larger than
the WCET for running both the primary and backup of the task as well as any
overhead that may occur due to the fault handling.

Scheduling analysis in fault tolerant systems where failed tasks must be
rerun, can give a probabilistic guarantee that all deadlines are met based on
calculating a minimum tolerable distance between faults and the probability
that faults do not occur closer than this distance [7, 12].

For some systems, the use of worst-case execution times in the analysis may
be a bit too conservative. While the analysis may be used to decide whether
or not the system will work if a fault occurs at the worst possible time, faults
occurring at the worst possible time may be a very rare event, a fact that is not
visible in the analysis results.

If a task rarely has a runtime near the worst case execution time, or if it
is possible to detect failures and errors during execution, e.g. by the use of a
watchdog mechanism for fault detection or by using checkpoints, a passive fault
tolerance mechanism may improve the dependability of a system by a large
degree, even if it does not tolerate faults in a worst case scenario. In figure 1.4,
the timing of a task that needs to be rerun due to a fault is shown. While the task
will miss its deadline in the worst case, it is also possible that the task is able to
complete the rerun within the deadline for most fault occurrences. Depending
on how reliable the system needs to be, the passive replication strategy may be
“good enough” for the system.

Further, many methods of analysis assume that the system is only able to
tolerate single faults. While some systems cannot tolerate several faults that
occur close to each other, other systems may provide this tolerance, even if there
are deadlines involved.

1.2 Using run-time distributions

Some, but not all, real-time systems may get a significant increase in reliability
from using a passive replication strategy, even if the worst-case requirements
are not fulfilled.

The runtimes of a system using a passive replication strategy may vary

1.2. Using run-time distributions 5

requirements

co
st

No fault tolerance
Active replication
Passive replication

Figure 1.3: Cost vs. requirements for different replication strategies. For a
system with very low requirements, a non-tolerant system may be the best
solution, for a system with strict requirements, the active replication may be
the best. Inbetween, the passive replication strategy may be the best solution.

scenario
"better than worst case"
Possible

Worst case scenario

Runtime, backupOverheadRuntime, primary

Runtime, backupOverheadRuntime, primary

Task start Deadline time

���������
���������
�������
�������

�����������
�����������
���������
���������

Figure 1.4: A passive replication strategy that will not work in a worst case
scenario, might still improve the reliability of the system.

6 Chapter 1. Introduction

0.999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n,
 G

(t
)

Cdf of runtime distribution in replicated system

t
dlFault−free

WCET

G(t
dl

)

Figure 1.5: Using the run-time distribution to find the probability of a deadline
miss.

greatly due to the extra time used during fault handling. By studying the run-
time distributions of the tasks when they may be affected by faults, information
on how suitable the replication strategies are for a given system can be found.

For a system with hard deadlines (i.e. the system does not tolerate that
a task miss its deadlines), the probabilities of deadline misses can be found
by using the task’s run-time’s cumulative distribution function, as shown in
figure 1.5. If the deadline is at tdl and the task’s run-time distribution has a cdf
of G(t), the probability of a deadline miss, i.e. the probability that the task is
not finished at tdl will be 1−G(tdl).

For a system with soft deadlines (i.e. the system tolerates deadline misses,
but late results degrade the system’s performance), lateness can be given a cost

1.3. Goals and contributions of the work 7

function, which can be used together with the run-time distribution to find a
mean cost for each execution [25].

Thus, by developing run-time distribution models, the background for rea-
soning about a replication strategy’s suitability for a real-time system and for
choosing the most optimal of several strategies, becomes more complete than
when using only a worst-case execution time analysis.

1.3 Goals and contributions of the work

The goal of this work has been to develop generic runtime distribution models
for some common classes of passive replication systems. This in order to have
a tool to analyze the probabilities that a system may be able to tolerate faults
and still have the time-critical tasks meet their deadlines.

There exist many different types of passive fault tolerant systems, fault de-
tectors, fault models etc. Part of the work has been to investigate how different
choices of fault detectors affect the run-time models. The effect the use of inho-
mogeneous replicas, i.e. systems where the different replicas perform the same
task, but are not mere copies of each other, has on the model is also investigated.
The choice of which models to derive is based on these investigations.

The runtime distribution models are derived using methods known from
traffic theory, and are functions of distributions of the modeled system, like
the fault-free run-time of the replicas, and the fault probabilities. A goal has
been to present the derivation of the runtime models in a way that makes the
same method easy to use when deriving runtime models for system types not
presented in the work.

Some simple examples are given on the use of the runtime distribution mod-
els, and results from the derived models are compared to the results from discrete
event system simulation.

Summary of the main contributions

• A developed argument for why some real-time systems may benefit from a
passive replication fault tolerance strategy if a runtime distribution anal-
ysis is done in order to determine the suitability of this strategy.

• It has been shown how methods used for analysis in queuing and traffic
theory can be adapted for the purpose of developing runtime distribution
models for tasks in a passively replicated system.

8 Chapter 1. Introduction

• A developed argumentation for how the main differences between the
mathematical model structures stem from whether homogeneous or in-
homogeneous replication is used, and the fault detection methods that are
used in the system. Furthermore, it is shown how many other differences
between systems can be described using only different parameter distribu-
tions while keeping the structure of the mathematical models unchanged.

• Runtime distribution models have been developed for

– Homogeneous and inhomogeneous systems using a watchdog mecha-
nism for fault detection.

– Homogeneous and inhomogeneous systems using a timeout mecha-
nism for fault detection.

– Homogeneous and inhomogeneous systems using acceptance tests for
fault detection.

• Runtime models for some other system variants have also been developed
together with an argumentation that the method used for developing the
models can be used to develop runtime models for other systems that are
not covered by this work directly.

• The application of the models has been demonstrated through examples,
and the results have been compared to results from simulation.

Organization of the thesis

The thesis is organized as follows:

Chapter 2 gives a review of the theoretical background for the work.

Chapter 3 gives a textual description of the systems that are modelled.

Chapter 4 contains the derivation of the mathematical run-time models for
the systems.

Chapter 5 contains examples on how the mathematical models can be used,
and a description of the simulator that was used for comparison.

Chapter 6 contains discussions on this work as well as suggestions for future
work.

Chapter 7 contains the conclusions to the thesis.

1.3. Goals and contributions of the work 9

Appendices A– E provide the contents of papers [45, 46, 47, 49, 48] for easy
reference. The layout of the papers and the section numbering have been
changed to fit the format of the rest of the thesis, and reference numbers
have been changed to refer to the bibliography at the end of the thesis.
Apart from this content is the same as in the original papers.

10 Chapter 1. Introduction

Chapter 2

Dependable real-time
systems

Because real-time computer systems are used for controlling other processes,
the failure of the computer system may lead to the loss of control. This will,
depending on the controlled system, often be very costly, and it may even lead
to catastrophic results. Systems used for tasks where the consequences of failure
can be severe need to be highly dependable: The probability of failure occur-
rences must very low, and if a failure occurs, the failure consequences should
be the least malign possible. If it is feasible to get the system running again, it
should be in the failed state only for a short period of time, and so on.

This chapter gives a brief overview of some dependability terminology and
different fault tolerant mechanisms that are used later in this work. The chapter
is not meant as an in-depth explanation of dependability theory.

2.1 System reliability

This section contains some brief background on dependability and definitions
used in this work. Definitions of dependability attributes are given, as well as
the definition of failures, errors and faults. Some common ways of classifying
faults and failures are discussed, and, as this work focuses on real-time systems,
a discussion on deadline failures and the hardness of deadlines is given.

12 Chapter 2. Dependable real-time systems

2.1.1 Dependability attributes

Laprie and Kanoun [27] give a list of dependability attributes:

Availability: The readiness for usage.

Reliablilty: The continuity of service.

Safety: The nonoccurrence of catastrophic consequences on the environment.

Confidentiality: The nonoccurrence of the unauthorized disclosure of infor-
mation.

Integrity: The nonoccurrence of improper alterations of information.

Maintainability: The ability to undergo repairs and evolutions.

This work focuses mainly on the system reliability, the probability of system
failure and how passive redundancy changes the failure probability when there
also are deadlines that the system’s tasks must meet.

Some definitions that often are used in dependability theory [15, 39] are
given below.

Time to failure

The time from when a component is put into operation until it fails is called
the time to failure. This time is modelled as a random variable T , that has a
cumulative distribution function

F (t) = Pr[T ≤ t] (2.1)

and a probability density function

f(t) =
d

dt
F (t) = lim

∆t→0

Pr[t < T ≤ t + ∆t]
∆t

(2.2)

For some systems, other variables may be more suitable than time, e.g. for
a vehicle, it may be better to use the distance the vehicle has driven. For other
systems, a discrete value may be the most suitable, like the number of times a
component is used or the number of physical shocks it has endured.

2.1. System reliability 13

Reliability

The reliability function (also called survivor function) of a component is defined
as the probability that the component does not fail in the interval 〈0 , t].

The reliability function of a component is given by

R(t) = 1− F (t) = Pr[T > t] (2.3)

As with the time to failure, other variables may be more suitable than time.
For instance, a component that has a probability S of not failing each time
it is used, reliability can be given as a function of the number of times n the
component is used.

R(n) = Sn (2.4)

Hazard function

The hazard function is defined as the probability that a component that is
working at time t will fail in the time interval 〈t, t + ∆t] when ∆t → 0.

It can be shown that the hazard function is given by

z(t) =
f(t)

1− F (t)
=

f(t)
R(t)

(2.5)

Mean time to failure

The mean time to failure is the expected value of the time to failure T , defined
by

MTTF = E[T] =
∫ ∞

0

tf(t)dt (2.6)

Availability

If a component can be repaired or exchanged with a working component if it
should fail, availability is a useful measure, given by the probability that the
component is working at a time t. If the state of a component is given by the
state variable X(t) that is 1 if the component is working, and 0 if the component
has failed, the availability function of the component is

A(t) = Pr[X(t) = 1] (2.7)

14 Chapter 2. Dependable real-time systems

λ

µ

1 0

Failed stateWorking state

Failure

Repair

Figure 2.1: A simple model of a repairable component

If the uptimes of a repairable component is exponentially distributed, with
a failure rate of λ, and the downtimes is exponentially distributed with a repair
rate of µ, as shown in the model in figure 2.1, the availability of the system is
given by

A(t) =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ)t (2.8)

For many systems, the time-variant parts of the availability function will
often “die out” over time. The availability function will often rapidly converge
toward the limiting availability, which becomes a useful measure:

A = lim
t→∞

A(t) (2.9)

Another useful measure is the average availability, the mean proportion of a
time interval where the component has been available.

Aav(0, τ) =
1
τ

∫ τ

0

A(t)dt (2.10)

When a system has been in service for a long time, the average availability
can often be expressed as a function of the mean time to failure and the mean
time to repair (MTTR).

Aav =
MTTF

MTTF + MTTR
(2.11)

2.1. System reliability 15

For many components, the average availability when τ approaches infinity,
is the same as the limiting availability.

lim
τ→∞

Aav(0, τ) = A (2.12)

For systems that can not be repaired, or systems where a failure will be
catastrophic, reliability is often a better measurement than availability.

2.1.2 Faults, errors, and failures

If a system fails, i.e. stops working correctly, there must be a cause to the
failure. The system may have been in an erroneous state, which itself has been
caused by a fault in the system.

Definitions of failures, errors, and faults are given below [3].

Failure: Deviation of the delivered service from compliance with the specifica-
tion. Transition from correct service delivery to incorrect service delivery.

Error: Part of a system state which is liable to lead to failure. Manifestation
of a fault in a system.

Fault: Adjudged or hypothesized cause of an error. Error cause which is in-
tended to be avoided or tolerated.

As listed in the definitions, faults may cause errors, and errors may lead to
failure. A failure in one system may also be considered a fault in a system that
depends on the system that failed.

For a system that consists of components, which themselves may be sys-
tems consisting of components, a failure in one of the components may cause
an error in the system, and can thus be considered a fault in the system. This
component failure can itself be caused by a failure in one of the component’s
subcomponents. In a fault-tolerant system that consists of replicated compo-
nents, the fault tolerant mechanism’s task is to hinder that the failure of one
of the components propagates further, so the failure of the component does not
cause the failure of the system as a whole.

As an example of faults, errors and failures, consider a server that runs
some tasks for a client. Figure 2.2 shows what may happen if a bit in the
server’s memory is flipped due to radiation. The faults, errors and failures in
this scenario are:

Fault – server: Radiation causes a bit to be inverted in the server’s memory.

16 Chapter 2. Dependable real-time systems

Speed: 3.34 2.72
Angle: 3.26

Current system state

3 Server

Client

Decrease
Increase
speed

4

10010101 10110101

Radiation
1

2

Figure 2.2: Fault (1), error (2) and failure (3) of a server. The server failure
causes a fault in the server’s client (4)

2.1. System reliability 17

Error – server: The altered state of the server caused by the inverted bit.

Failure – server: Because of the error, the server delivers an incorrect result
to the client.

Fault – client: The client gets an incorrect value from the server.

Further propagation: The fault causes an erroneous state in the client, which
again may lead to the failure of the client. If there is a system depending
on the client, the failure of the client can be viewed as a fault for this
system, and so on.

2.1.3 Classification of faults and failures

To get a good overview, and thus a better understanding, of how different faults
and failures affect the system, it is useful to group faults and failures in different
classes.

Faults are often classified after the cause of the faults, whether the fault
is introduced during the design or manufacturing of the component or after
the component is put into operation, or whether the faults are permanent or
disappear by themselves. Failures are often classified after the way that the
component fails, and the severity of the failure. If the faults or failures occur
independently of each other or if they are correlated is also an important way
of classifying the faults and failures when modeling.

Cause of faults

A way of classifying faults is after the cause of the fault. For a physical system,
the wear of a structure or physical damage to a component may be the cause of
a failure. Errors made by programmers of software system are not uncommon,
and some of these can be difficult to detect before the software is put into
operation. A computer system consists of both hardware and software, and is
subject to both physical and logical faults.

Some common classes of failure causes in a computer system are:

Design faults: Mistakes during the design of the system and/or components
that the system consists of, so that the system does not work as intended.
Design faults may occur in both hardware and software. Because of the
faults’ nature, all components based on the faulty design are affected.

18 Chapter 2. Dependable real-time systems

Manufacturing faults: Faults may be introduced during the manufacturing
of a component. This can be caused by both human errors and the failure
of the tools and manufacturing equipment that is used. The same faults
may be present in several components of the same manufacture.

Wear and aging: The physical, i.e. hardware, part of a computer system
is, as other physical systems, subject to wear and aging of components,
which can cause faults. The faults are usually permanent, i.e., present
until repaired, or intermittent, i.e. the effect of the faults “come and go”.

User faults: The “wrong use” of the system is a source of many faults, both
in software and hardware. Deleting or overwriting the wrong files in a
computer system, or manually turning off the power of equipment that
needs to be on, are examples of user faults.

Environment: Radiation or electromagnetic noise may cause contents of mem-
ory or transmissions to change, and overheating of a system may cause
unwanted behaviour. More severe occurrences like fires or floods may
cause permanent damage to components, and several components may be
damaged by the same occurrence.

Temporal behavior of faults

Another important classification of faults is the temporal behaviour of the faults,
i.e. whether the faults are present until the affected component is repaired or if
they disappear by themselves. Usually, three classes that describe the temporal
behaviour of faults are used, as shown in figure 2.3.

Permanent fault: When a permanent fault occurs, the fault will stay until
the affected component is repaired or replaced.

Transient fault: A transient fault will either occur only once or for a short
period of time, then it will disappear.

Intermittent fault: An intermittent fault is a fault that, when it occurs, will
change between an active state where it may affect the system (i.e. cause
errors) and a passive state where it does not affect the system.

An example of a permanent fault is the physical damage of a component
because of an environmental effect or due to wear. As long as the damaged
component is in the system, the fault is present, and the fault will not disappear

2.1. System reliability 19

Intermittent fault

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

No fault

Fault occurs

Fault present

No fault Fault present

Fault occurs

Fault
disappears

Permanent fault

Transient fault

No fault
Fault
active

Fault
passive

Fault occurs

Fault activates

Fault
deactivates

Fault Present

Figure 2.3: Temporal behavior of faults.

20 Chapter 2. Dependable real-time systems

by itself. Design or programming errors may also result in permanent faults in
a software system.

Radiation causing bits in a component to be flipped, or temporary electro-
magnetic noise1 disrupting a transmission, will result in transient faults. These
faults will disappear after occurring, and can usually not be repaired. User
errors and short-term environmental disturbances may also lead to transient
faults.

A loose wire that changes between being “connected” and “disconnected”,
or components that change properties as temperature changes, are examples of
intermittent faults. These faults may seem to disappear by themselves (as tran-
sient faults), but the same faults recur at a later time. Poor synchronization
leading to race conditions in software components may also appear as intermit-
tent faults.

Correlation between faults

When modeling faults, the correlation between fault occurrences may be an
important consideration. Several faults often occur as the result of a common
cause, a failure of a component may propagate as faults in several other parts
of the system, and environmental effects, like electromagnetic noise, may cause
several faults that occur nearly simultaneously.

Software faults are seldom independent. If copies of the same component
are used in a redundant system, a fault in one component is present in the other
components. Thus, in a redundant system using copies of the same component,
a failure due to a software fault may affect all the components. Even when using
multiversion redundancy, assumptions of independent failure may be wrong [9],
as faults present in the different versions are more likely to coincide than in a
purely independent model.

Often, faults are modelled as independent, with no correlation between the
fault occurrences. Using a constant hazard function and a negative exponen-
tial distributed time between faults makes each fault occurrence in the model
independent on the previous, and this fault behavior model often makes the
mathematical modeling easier. This model is often considered a “good enough”
approximation of fault behaviour, even if the real fault behavior may differ from
this.

1For the electromagnetic noise scenario, the fault may also be considered a permanent or
intermittent fault, e.g. if a signal transmission line is placed in the vicinity permanent source
of electromagnetic noise, the fault will likely recur, and it can be “repaired” by shielding or
moving either the affected equipment or the noise source.

2.1. System reliability 21

In most of this work, an independent fault model, where faults occur as if
generated by a poisson process, is used. As mentioned earlier, this makes the
mathematical modeling easier and the models “cleaner”, while the models still
can be considered a “good enough” approximation of the actual timing behavior
of a redundant component group.

Failure modes

There are several ways that a component can fail, ranging from crashes where
the component simply stops working to situations where the component deliv-
ers incorrect results. Different failure modes may have different effect on the
system that the component is a part of, and the methods used to detect that a
component has failed will also only cover certain failures. It is therefore useful
to classify failure modes. Some of the most common classes used are [39, 32]:

Notified failure: The failure causes the component to stop all execution, and
the other parts of the system are immediately notified of the failure. This
failure mode is in many ways the “ideal” way a component may fail, as
the detection of the failure is already given.

Stop failure: The failure causes the component to stop all execution, but the
other components are not notified of the failure.

Omission failure: A scheduled message is not sent, not transmitted, or not
received.

Timing failure: Messages arrive too late, too early, or out of order. This class
of failure modes is important to consider in real-time systems. Deadline
failures, i.e. the situation where results from a computation arrive after a
given deadline, will be discussed further in section 2.1.4.

Value failure: The value of a response from a component does not comply
with the system specification. Value failures are often subdivided into
consistent failures, where several users get the same incorrect results, and
inconsistent failures where different users do not get the same results. In-
consistent failures are also called Byzantine failures, after the “Byzantine
generals problem”[26, 36]

The Byzantine failures is often considered the worst case. The inconsistent
behaviour can make it difficult to determine if the failure is present, as the failure
detector may see an acceptable result while the system that is using the result

22 Chapter 2. Dependable real-time systems

gets an unacceptable result, and if there are several redundant components, it
can be difficult to determine which of the components that has failed. It has
been argued [19] that these failures are a very rare occurrence compared to other
failure modes.

Criticality of failures

It is also common to classify failures after the consequences a failure has. Some
failure modes may be considered less malign than others. In a typical database
system, a stop failure would be better than a failure causing the corruption of
data. In a system controlling an industrial process, a failure causing a shutdown
of the process may be better than a failure causing the process to run out of
control.

One of the goals in making dependable systems is to make the system so
that if a failure occurs, the failure mode should be the least malign possible.

The severity of failures is important when deciding the reliability require-
ments of a system. If the failure of a system leads to “minor annoyances”,
the failures should not occur “too often”, and the required reliability may be
achieved without using any fault tolerance. If the failure may lead to catas-
trophic results, reliability requirements are very strict, and much effort must be
put into ensuring that the system meets these requirements.

2.1.4 Deadline faults and failures

In a real-time system, an important class of failures is the failure of a task to
meet its deadline, i.e. for a task to work correctly, it does not only have to
produce correct results, but also to produce these results at the correct time.

In this work, the term deadline failure is used to describe the failure of a
task to meet its deadline. As explained in 2.1.2 this failure will be considered
as a fault in the system relying on the results of the task, and may cause errors
and failures in this system.

In literature on real-time systems [24, 8, 41], it is normal to classify the
deadlines in hard and soft after the system’s ability to tolerate the faults caused
by deadline misses. Systems with soft deadlines are able to tolerate missed
deadlines with some degradation in the provided service, while in systems with
hard deadlines, missed deadlines will lead to a system failure. Furthermore, the
class of soft deadlines is sometimes divided further into soft and firm, where
the results from a task that misses a soft deadline may still be of some value

2.1. System reliability 23

0

1

No deadline

V
al

ue
 o

f r
es

ul
ts

0

1

Soft deadline

V
al

ue
 o

f r
es

ul
ts

0

1

V
al

ue
 o

f r
es

ul
ts

Soft deadline, followed by
a hard or firm deadline

0

1

V
al

ue
 o

f r
es

ul
ts

Hard or firm deadline

t
dl

t
dl1

t
dlt

dl2

Figure 2.4: The value of a task’s results arriving before and after the deadline
for different kinds of deadlines.

to the system, while the results from a task that misses a firm deadline are
valueless.

In this work, the following definitions are used for different deadlines:

Hard: The results from a task are valueless if they arrive after the deadline.
Furthermore, deadline misses will cause failure of the system, and can not
be tolerated.

Soft: The value of the results from a task decreases if they arrive after the
deadline, but they do not necessarily become valueless. The system will,
to a certain extent, tolerate missed deadlines.

24 Chapter 2. Dependable real-time systems

Firm: The results from a task are valueless if they arrive after the deadline,
however, the system is able to tolerate the missed deadline, i.e., late results
can be discarded without causing the system to fail.

The value of the results as a function of time for different kinds of systems
is shown in figure 2.4.

Note that it is not unusual that a soft deadline is followed by a firm deadline
(i.e. while the results may have some value after the soft deadline, they may
eventually become valueless) or hard deadline (i.e. while some lateness may be
tolerated, very late results may cause the system to fail). This is shown in the
bottom left graph, where the time tdl1 is the soft deadline where the results
begins to lose their value, and the time tdl2 is the firm or hard deadline, where
the results are valueless.

While systems tolerate that soft and firm deadlines are missed “once in a
while”, several deadline misses in a short timeframe may cause system failure.

2.2 Software fault-tolerant methods

To be able to create systems with high reliability requirements, fault tolerance
is necessary. While a first approach to high reliability is fault avoidance, i.e.
the use of methods that lessens the probability of introducing the faults in the
first place, creating completely fault-free systems is very costly, and may be
infeasible.

Fault tolerance are methods used to allow the system to operate in the
presence of faults, i.e. hinder that faults in the system don’t propagate to a
situation where the system itself fails. This means that the system itself must
be able to detect errors in and failures of its components, and do some corrective
action to hinder propagation.

2.2.1 Fault tolerant structures

For a system to be able to be fault tolerant, some redundancy in the system is
needed. Redundancy can be classified using three dimensions, time, resource,
and information redundancy. A specific fault tolerant strategy may have re-
dundancy in one, two or all three dimensions.

2.2. Software fault-tolerant methods 25

Resource redundancy

In fault tolerant structures using resource redundancy, extra resources are added
to the system, so that the system may continue its service even if one part of
the system fails.

In a computer system, this is typically done by adding more hardware. For
example, a task can be executed on several nodes, usually concurrently. If one
instance of a task or a node should fail, the others could still be able to execute
properly. If the fault detection coverage is perfect, the system should be able
to tolerate the failure of all but one of the executions.

Another example is the use of several redundant disks. If one of the disks
should fail so it becomes unavailable or the data it stores is corrupted, the other
disks may still provided the needed service. A third example is to provide several
possible routes through a network to ensure connection if one link should fail.

In a real-time system, resource redundancy is usually preferred. If several
instances of a task is computed concurrently (usually called active replication),
all fault-free instances of the task should be able to finish at their normal execu-
tion times, thus the risk of the task missing the deadline is lessened. A timeout
mechanism can be implemented to hinder that the results from the group of
replicas is delayed beyond the deadline even if some of the replicas finish late.

Concurrent execution of several replicas also gives an advantage in fault
detection. Because several results from the task are present, the results can be
voted upon, and replicas delivering results that differ too much from the others
can be considered faulty and masked out of the group. Voting is discussed
further in section 2.2.2.

Even if the execution of the replicas is not concurrent, the time to correct
a fault could be reduced if a hot backup is already prescheduled on another
node [12], thus combining resource and time redundancy. If the primary replica
succeeds its task, the scheduled slot for the backup is freed for other purposes.

Executing several instances of a task on several nodes also helps the system
to tolerate permanent hardware faults. For larger and safety critical systems,
the different nodes may be spread over several rooms or compartments, thus
minimizing the risk of a common environmental cause (like a fire or other acci-
dent) to cause failures in all nodes at the same time.

The main drawback of a system using resource redundancy is the extra
resources required. Extra processing power is needed to execute the different
replicas, which will increase cost, power consumption and space needed for the
system. For many large systems, these requirements are easily met, but in
smaller systems, like embedded systems, the feasibility of using more resources

26 Chapter 2. Dependable real-time systems

may be limited.

Time redundancy

If a failure is detected in a component, the time redundancy approach is to redo
the failed operation, thus using extra time to correct the failures. A typical
example of this approach is the retransmission of erroneous or lost packets in a
networking system.

In a computer system, one use of time redundancy is to replicate components
in a way that only one of the components is active, while the rest are passive. If
the active component (or primary) should fail, the failed task is rerun on one of
the backups, and this backup continues to provide service to the system as the
new primary. These systems are called passive replication systems or primary
– backup systems.

Unlike the active replication systems, where all replicas run the task and
consequently get their states updated, the backups in a passive replication sys-
tem are not automatically up to date. Because of this, a mechanism that keeps
consistency between the replicas is needed. Different strategies for updating the
backups exist. In systems where the backups are cold, backups are not updated
during normal execution, i.e. backups are updated only in failure situations,
when a backup becomes a primary. With warm backups, the state of the repli-
cas are updated regularly, causing more overhead than with the cold strategy
during normal execution but less overhead during failure situations, and with
hot backups, the backups are updated as often as necessary to make them ready
to take over as the primary at any instant. For a strong consistency system, a
backup that takes over as the primary must be updated to the exact same state
as the former primary had before it failed, while in a weak consistency system,
the backup must be updated to a state sufficiently near the state of the former
primary, which can lessen the time needed for updating.

The system state, or parts of the state, can be saved at checkpoints during
the execution of a task. If an error is detected, the execution rolls back to a
previous checkpoint, retrieves the stored state, and retries the execution from
the checkpoint.

Depending on the system, the criteria for optimization of checkpoint place-
ment may vary[50, 11, 25]. Using many checkpoints results in higher overhead
during normal operation, but shortens the time needed to recover from a fail-
ure situation. For a typical general-purpose system, checkpoints are typically
placed in ways that optimize average performance, while in real-time system, a
minimization of lateness due to failure recovery is often the criteria, while the

2.2. Software fault-tolerant methods 27

average performance is less important.
If a checkpointed process communicates with other processes, a rollback may

cause rollbacks in other parts of the system, and checkpoints ought to be placed
in a manner that minimizes the probability and size of rollback chain reactions.

As systems using time redundancy are the main topic of this work, a more
in-depth view of time-redundant systems is presented in chapter 3.

Information redundancy

Information redundancy is based on providing more information than is strictly
needed, so that the needed information can be extracted even if part of the total
provided information is erroneous or missing.

In its simplest form, this can be done by providing the same information sev-
eral times, i.e. transmitting messages several times or creating several backups
of data, so that the data is available even if one copy is destroyed or corrupted.
However, to detect and correct minor errors that occur during transmission
or storage, using several copies is too time and resource consuming for most
systems.

The use of error correcting codes [13, 38, 6] is an effective way to use infor-
mation redundancy to detect and correct errors in transmission and storage of
data. By adding extra information to the data when transmitting or storing it,
many of the errors that occur during transmission or storage can be corrected.

Another way of using information redundancy is to provide several versions
of a program in a replication system. This is discussed further in 2.2.3.

2.2.2 Fault detection methods

If a fault tolerant system shall be able to correct faults, it must also be able to
detect that a fault has occurred, i.e. it must have mechanisms for detecting that
components or data the system consists of have either failed or are erroneous.
There are several ways this can be done [20].

Notified Failures

As noted in section 2.1.3, the notified failure mode causes the rest of the system
to be aware of the failure when it occurs. These failures will thus be detected
regardless of the use of fault detectors. Typical examples are failures causing
exceptions caught by the operating system, or exceptions raised by the failed
component itself.

28 Chapter 2. Dependable real-time systems

Watchdogs

A way of detecting stop failures is to make the components create “I’m alive”
signals while it is operating, and monitoring these signals.

There are typically two different mechanisms for when these signals are cre-
ated, they can be created as “heartbeats”, i.e. the component will generate
signals automatically as long as it is in operation, or they can be generated by
request from the fault monitor, i.e. the fault monitor asks the component if it
is still alive. If no there is no “I’m alive” signal registered for a reasonable time,
the component is suspected of having suffered from a stop failure.

The fault monitoring described in the passive replication schemes of Fault
Tolerant CORBA [35] is an example of a watchdog fault detection mechanism.

Timeout

Another time-based fault detection mechanism is to set a timeout for the results
of computations, i.e. if a component does not deliver its results in what is
considered a reasonable time, the component is considered failed. This detection
mechanism will detect omission and some timing failures in addition to stop
failures.

In a system with active replication, this method can be used in addition to
voting, so omissions or timing failures in one of the components do not delay
the results from the replicated group as a whole.

In systems where extra time is used to improve already acceptable results
(e.g. imprecise computation systems), timeouts can be used to break off the
result improvement so that the task will meet its deadline. For systems using
an active imprecise replica in addition to a main precise replica, a timeout may
be used to trigger the use of the results from the imprecise replica [8, 22].

The use of timeouts will detect stop failures, omission failures and some
timing failures. To make sure that only “real” failures are detected, the timeout
value has to be set to the same or later point of time than the task’s worst-
case execution time. This means that failures will be detected after the failed
component should have sent its results. This method may therefore give less
time for corrective action than the watchdog method.

Voting

In a system where several active replicas are used to produce the same results,
comparison of the results, or voting, can be used to detect value failures in
components.

2.2. Software fault-tolerant methods 29

Several voting strategies exist [29]. One of the most common voting strate-
gies is majority voting, where the majority of the results must be sufficiently
equal2 to be used. Components producing results that differ from the majority
are usually considered as failed and are masked out. This strategy will fail if
there is no majority or if the majority of the results is incorrect.

The requirements of the majority voter can be relaxed, so that the group
with the highest number of sufficiently equal results is chosen, whether this
group forms the majority or not. This voting strategy is called plurality voting.
If there is no distinct plurality, or if the plurality is incorrect, this voting strategy
will fail.

In some systems, results cannot be expected to be equal, even when they are
correct. In a system where several redundant sensors are used, the measured
values can often be expected to differ. The sensor types may be based on
different measurement principles, or they may be distributed physically, thus
measuring local variations in the process. Also, in many systems, it can be
expected that noise will affect the results. A median voter uses the median
result from the components, and will thus be correct if the majority is correct,
even if the results are not equal. A weighted average voter produces a new result
from the weighted average of the results. Components that produce results that
differ too much from the rest can be considered as failed and are masked out.

It should be noted that some faults are introduced during the design of the
components, and may thus be present in several, or all, of the replicas used to
produce the results. If the replicas all produce equal, but incorrect results, none
of the voting strategies will detect this.

Error-detecting code

In data storage and transmission, extra information can be stored with the data
to detect if the data has been corrupted.

A very common and simple method to detect errors in this way is using an
extra parity bit. For each group of bits an extra bit is added, with a value that
makes the total number of “ones” in the group even (for even parity) or odd
(for odd parity). Thus, single bit errors in the group will be detected.

Cyclic redundancy code (CRC) is used for detecting errors in larger amounts
of data, and is typically able to detect error bursts of a given length (typically
a function of the length of the code used). Many different cyclic redundancy

2In many systems, results from the different replicas cannot be expected to be exactly
equal, thus the term sufficiently equal is used.

30 Chapter 2. Dependable real-time systems

codes exist. The parity bit, described above, can be considered a very simple
form of the CRC.

In some applications, error detection is not enough, and as discussed in
section in 2.2.1, it is also possible to use extra information to be able to correct
errors in the data. This is useful for real-time systems, as retransmission may
be too time consuming, for systems that have no feedback from the receiver
to the transmitter, or in systems where it is impractical for the transmitter to
retransmit the data.

Error detection codes is used to detect value failures if these failures are
caused by errors in transmission or corruption of storage, but can only be used
to detect and correct errors that occurred between the coding and decoding of
the data. Thus errors occurring before coding (or after decoding) will not be
detected by these methods.

Acceptance test

If there is only a single active replica that is used to produce results in the
system, ordinary voting is not possible. It is, however, often possible to check if
the results are reasonable by using an acceptance test or reasonability check [37].

An acceptance check may control if the results from the computation con-
forms to some of its specifications, but it is often not able to verify the correct-
ness of the results.

To create an acceptance test, there must exist a way to differ between “ac-
ceptable” and “unacceptable” results. A test that gives “false positives”, i.e.
marks a result as faulty even if it is correct, may create more problems than it
solves.

A typical acceptance test may be to compute the inverse of the task’s com-
putation and compare this to the task’s input parameters, an approach that can
be useful if the inverse exists and is relatively fast to compute. Other tests may
be to check if the results have some necessary properties based on the input
parameters (e.g. if the task sorts a list, check if the sorted output has the same
number of elements as the unsorted input), or that they fulfill an easy to verify
part of the specification (e.g. check if the output of the list sorter is sorted).

An example of using tests can be found in [33], where several programs
creating the shortest possible palindromes from the input strings were tested.
Various tests checked if the output formats where as specified, if the results
actually were palindromes and that they were based on the input string, etc.

The acceptance test detects some value failures, as long as the failure causes
the results to be “unacceptable” so they do not pass the test. Erroneous results

2.2. Software fault-tolerant methods 31

may still “pass” the test if the results seem acceptable.
Acceptance test is used to detect value failures in a way that uses less re-

sources than the typical voting mechanism, as there is no need for several active
replicas.

2.2.3 Homogeneity of replicas

Many replication systems are based on using copies of the same component as
replicas, which for most systems gives a reasonable protection against failures.
Most faults that affect one of the components will usually be tolerated even if
all the replicas are exact copies of the affected component.

If the faults are introduced in the design phase, however, using copies of
the same component in all replicas means that the same faults are present in
all replicas. If a failure in one replica is caused by a design fault, it is a high
probability that all the replicas will fail due to the same fault. Using components
that have different design, but perform the same tasks, can thus improve the
system’s dependability further.

In this work, the term homogeneous system is used for replication systems
where the components that the system consist of are of the same design, while
an inhomogeneous system is a system where the replicas3 differ in the internal
design. The components of a heterogeneous system are usually the same from
a “black-box” perspective.

Homogeneous fault tolerant systems

Using homogeneous replicas is, of course, the simplest approach for creating a
replicated system. A common design for all the replicas makes both development
and maintenance easier and less costly, while still providing tolerance for a wide
range of faults.

A major problem with using homogeneous replicas is that faults that are
introduced in the design of a component are common for all replicas of the com-
ponent. If there is a fault introduced during the implementation of a software
component, all copies of the component will have the same fault, and if one
copy fails, the others are likely to fail in the same way.

3For an inhomogeneous system, “alternate” would be a better term than “replica”. In this
work, “replica” is used for components in both homogeneous and inhomogeneous systems.

32 Chapter 2. Dependable real-time systems

Inhomogeneous fault tolerant systems

As some faults may be introduced in the design or implementation process of
the components, it is sometimes useful to have a system where the redundant
components are of different design, so that if one of the components fail due
to a design fault, the others may still work properly as it is unlikely that the
different designs have the same faults.

A well known approach in software replication is the N -version program-
ming [2], using several active replicas of different design. The results from the
replicas are voted upon, and replicas that produce results that differ from the
others are suspected of failure and can be masked out.

In the description of recovery blocks [37], a block consists of several alter-
nate ways of solving a problem. If the results from the first alternate fail an
acceptance test, the next alternate in the block is tried out.

In real-time systems, a backup component that is able to provide acceptable,
but not necessarily very good, results fast can be useful. If the slower, but more
precise, components should fail, using a fast, imprecise backup may result in a
higher probability that the deadlines are met. The use of imprecise backups is
discussed below.

Imprecise backups

In some real-time systems, the timeliness of the results may be of greater im-
portance than the precision of the results. In some systems, getting occasional
results that are suboptimal may be acceptable. Imprecise computation [28] is a
computing technique that aim for increased timeliness at the cost of precision
of the results.

Typically, a task consists of a mandatory part that gives an acceptable (but
still improvable) result and one or more optional parts that refine this result.
As long as the mandatory part is completed, the optional parts can be omitted
if there is insufficient time to complete them.

Another way to utilize imprecise results is by using imprecise backup replicas.
If a task can be solved using either a slow method giving precise results, or a
fast method giving imprecise results, the imprecise method can be used as a
backup solution.

In an active replication system, the precise and imprecise results are com-
puted simultaneously. If the precise results are ready within deadline, these
results are used, otherwise, the imprecise results are used [8, 22]. This way,
the deadline of the precise computation can be changed from a hard to a firm

2.2. Software fault-tolerant methods 33

deadline; as long as the computation of the imprecise results always meet the
deadline, the results from the precise computation can be discarded if the dead-
line is missed.

For a passive replication system, using the imprecise method as a backup
can decrease the time used for the rerun and thus increase the probability for
getting results within the deadline. In some systems, it may also be possible
to activate the imprecise backup (i.e. changing from a passive to an active
replication system), if the precise replica has not finished its computation when
the deadline draws near [14].

Figure 2.5 shows two ways of using imprecise computation. In the mandatory
and optional parts system, the task is divided into two or more parts: A manda-
tory part that will give acceptable (i.e. good enough to not cause a failure, but
still improvable) results, and one or more optional part that will improve the
precision of the results. If there is no time to complete the optional parts (or if
the optional part fails), the results from the mandatory part are used. In the
precise primary and imprecise backup system, there are two methods of solving
the task, the precise method is normally used, but in extraordinary situations
(e.g. failure of the primary), the imprecise backup is used.

34 Chapter 2. Dependable real-time systems

Get acceptable
results

Refine resultsRefine results

Mandatory part

Optional part

Input

Precise output

Imprecise output

Primary method

Backup Method

time−consuming
algorithm

fast
algorithm

Input Precise output

Imprecise output

a. Method consisting of mandatory and optional parts

b. Precise primary method and imprecise backup method

Complex

Simple

Figure 2.5: Two ways of using imprecise computations

Chapter 3

Fault tolerant mechanisms
using time redundancy

As described in chapter 2, systems using time redundancy strategies for fault
tolerance are the kind of systems that are most likely to experience problems
when there are deadlines involved, and for that reason, these systems are the
main focus of this work.

In this chapter, some basic fault tolerance mechanisms using passive replica-
tion are described further, with focus on how different structures and strategies
will affect the mathematical models derived later in this work.

3.1 Description of the modelled systems

The classes of systems that are modelled can be described as servers using
passive replication mechanisms to achieve fault tolerance. In these systems,
there is one active primary object and several passive backup objects that either
are pure replicas of the primary, or alternates that perform the same tasks as
the primary.

In this section, the basic system structures of passive replication systems are
described as well as a basic description of the timing of the systems when a fault
occurs.

36 Chapter 3. Fault tolerant mechanisms using time redundancy

A more detailed view of the system. The client does not need to "know" the detailsSystem as seen by
the client

Set
Primary

Group Control/Fault Detection

Log State

Request/Reply
Request/Reply

Request/Reply

Update State

Other task Other task Other task

Log Log Log Log

Host 1 Host 2 Host 3 Host N

State

State State State

Server

Client Client

Server group
Interface

Group
Manager

Primary

Backup Backup Backup

Figure 3.1: The mechanisms needed for fault tolerance are usually hidden from
the client

3.1.1 System structure

In this section, some different strategies in the physical distribution of the repli-
cas, keeping the consistency between the replicas and detecting faults are dis-
cussed, as well as if the choice of different strategies will change the mathematical
equations or the distributions used in the equation.

The system as seen from the client

The client does not necessarily need to “know” the structure, physical distribu-
tion or the fault tolerance mechanisms of the server, other than the interface.
Also, the occurrence of faults, as long as they are tolerated, may also be trans-
parent to the client, i.e. the server, including its fault tolerance mechanism can
be seen as a black box from the client, as shown in figure 3.1.

The client will thus not experience the faults that occur to the server, unless

3.1. Description of the modelled systems 37

these faults lead to a server failure. This happens when the fault tolerance
mechanism is not able to detect or correct the fault, or when the time used for
fault tolerance exceeds what is acceptable in a real-time system.

The server

In addition to the replicas of the server objects, a passively replicated server will
typically have some functions for managing the replicas, like selecting the replica
that shall function as the primary, instantiate new replicas if needed, keep track
of which nodes that are non-faulty and reachable and keep consistency between
the replicas. Also, mechanisms for fault detection are necessary. Some of, or all
of these management functions may be replicated themselves, e.g. as a part of
each of the server replicas.

Physical distribution of the server

The different replicas, as well as the components for managing the fault tolerance
mechanisms are typically distributed over several nodes, using the nodes hosting
the backups primarily for other tasks. For some systems, it may be possible or
desirable to have several parts of the redundant system on a single node.

The physical distribution of the system will affect the system’s ability to
tolerate faults, as permanent faults will typically not be tolerated in a single-
node system. The timing distributions for detection and correction of faults, as
well as fault rates, will also be affected by the physical structure of the server.

While the range of tolerated faults and many of the parameters used in the
mathematical model are affected by the physical structure of the server, the
mathematical model itself is unchanged, as the activities of detecting a fault,
reacting to the fault and making one of the backups the new primary, and
rerunning the task that failed on the new primary are done in the same order
regardless of the system’s physical structure and the time distribution for these
activities.

Consistency between replicas

To ensure consistency, the state of the primary is logged. If a failure is detected
in the primary object, one of the backup objects is updated, if necessary, to
the primary’s state before the failure. For some systems, it is not necessary to
update the new primary to the exact state the failed primary had. Instead, a
state sufficiently near the primary’s state (i.e. weak consistency) may be “good

38 Chapter 3. Fault tolerant mechanisms using time redundancy

enough”, thus making it possible to save some time in the updating process
[52].

If inhomogeneous backups are used, the backup is updated to the state
corresponding to the former primary’s state. Conversion of the states between
the different kinds of replicas is either done as a part of the logging process,
creating extra overhead during normal operation, or as a part of the updating
process, making fault correction take more time.

The strategies used for logging the state of the primary and updating the
backups may vary greatly, resulting in varying degrees of overhead during nor-
mal operation and during fault correction. Logging may be incremental, i.e.
only changes to the state are logged, or by taking full snapshots of the pri-
mary’s state, i.e. the complete state of the primary is logged, or a combination
where a snapshot is taken, then a limited number of changes are logged, before
a new snapshot is taken. In the same manner, the updating of the backups
may be only in fault situations, each time the primary completes a transaction
successfully, or at regular intervals, typically as full snapshots of the primary’s
state is taken.

For instance, logging only incremental changes in the primary, combined
with only updating the backups when needed, will create little overhead during
normal operation, while fault correction will take long time. On the other hand,
mirroring the primary’s state directly in the backups after each transaction will
create much overhead during normal operation, but fault correction will be fast.

While the strategies chosen to log and update the backups will greatly affect
some of the distributions used in the models, like the fault correction distribu-
tion, they have no direct impact on the structure of the models that are derived
in this work.

Fault detector

As the system needs to know when to start the fault correction, it needs to be
aware of when the active replica has suffered from a failure. The fault detector
is therefore an important part of the passive replication system.

Of the fault detection methods discussed in section 2.2.2, the following are
suitable for a passive replication system:

Watchdog: There is regular communication between the active object and
the fault detector, so the fault detector gets messages indicating that the
active object “is alive”. If the fault detector does not get a message in
what is considered a reasonable time, it is assumed that the active object

3.1. Description of the modelled systems 39

has failed. This fault detection mechanism will thus be able to detect stop
failures.

Timeout: A maximum time is set for the task to finish its execution. If the
task is not finished within this time limit, it is assumed that the active
object has failed. In addition to stop failures, omission failures will be
detected by this mechanism.

Acceptance test: The results (or partial results) from the task are checked
to see if they meet a set of criteria that all acceptable results must meet.
Many value failures can be detected with this mechanism.

The time between a fault occurrence and the detection of the fault is greatly
dependent on the fault detection mechanism, and the different mechanisms will
change the structure of the mathematical models. A further discussion on how
the different fault detection mechanisms affect the mathematics is discussed in
section 3.2.

Prescheduled backup

In [12], it has been proposed to use a passive replication system where the
backups are prescheduled, i.e. a “hot” (ready to run) backup is scheduled to
run some time after the latest expected finishing time for the primary. If the
primary fails, the backup runs as scheduled, if there is no failure, the scheduled
slot for the backup is freed.

As the backup will start to run at a fixed time regardless of when a fault is
detected, the runtimes of tasks in this kind of systems can mathematically be
treated as the runtimes in systems using timeout as a fault detection mechanism,
with the timeout set to the start of the backup schedule and no time used for
correction.

Checkpointed systems

In a checkpointed system, a task is divided into several parts, with checkpoints
between these parts. The state of the server is recorded when the task reaches a
checkpoint, so if a fault is detected, the task can be restarted from the previous
checkpoint, i.e. it is not necessary to rerun the whole task from the beginning.

If fault occurrences and the correction of these occurrences can be handled
within each part of the task, without affecting earlier or later parts, and if the

40 Chapter 3. Fault tolerant mechanisms using time redundancy

runtime of part i, including any fault handling that is necessary, is ti, the total
runtime of an N -part task is given by

ttot =
N∑

i=1

ti (3.1)

If ti is distributed by the probability density function gi(t), the whole task
has a distribution that can be described as the convolution of the distributions
of each part

gtot(t) = g1(t) ∗ g2(t) ∗ · · · ∗ gN (t) (3.2)

It should be noted that the timing of systems rolling back more than one
checkpoint at a time becomes much more complex to model mathematically.

3.1.2 Timing

Figure 3.2 illustrates how the system behaves during normal operation and
during fault situations.

Fault-free runtime

During normal, non-faulty operation, the timing of the task execution is straight-
forward, and similar to the timing of a task in a non-fault-tolerant system,
though there may be some overhead due to the fault tolerance mechanism, e.g
the “I’m alive” signaling in systems using watchdogs and time used to state
logging. In this work, this time is called the “fault-free runtime”.

Fault detection time

When a fault occurs, there will be some time from the fault occurrence to the
fault is detected, which in this work is called the “fault detection time”. For
watchdog fault detectors, this can be modelled as a stochastic time after fault
occurrence, with a distribution that is a function of the “I’m alive” signaling
frequency, the number of signals that can be missed before the detector reacts
and so on. In systems using timeouts or acceptance tests as fault detectors,
the detection time will be a part of other parameters, the timeout value or the
normal runtime and test time, and a separate detection time is therefore not
modeled.

3.1. Description of the modelled systems 41

Normal operation

Active

Task start Task finish

Fault and detection

Fault
occurence

Fault

New
Active

Correction and rerun

detected

time

time

time

Rerun task
Task finish

Failed
Active

�������
�������
�������
�������

�������
�������
�������
������� !

�������
�������
�������

�������
�������
�������

 !

���������
���������
���������
���������

���������
���������
���������
���������

Passive

Passive

Passive

Figure 3.2: The Fault occurrence – Detection – Correction – Rerun cycle of a
passive replication system

42 Chapter 3. Fault tolerant mechanisms using time redundancy

Fault correction time

When a fault is detected, it usually takes some time before the system is able to
rerun the task. The backup that shall function as the new active replica must
be brought up-to-date, it may be needed to alert other parts of the system, and
other overhead may occur [17]. The time from a fault is detected to system is
ready to rerun the task on a backup is called the “fault correction time” in this
work.

Test time

In systems using acceptance tests, some time is needed to run the tests. This is
called the “test time” in this work.

3.1.3 Fault models

In most of the models, we model faults as independent, generated by a poisson
process with a constant intensity. This is a common assumption in reliability
modelling, and enables us to model when the fault occurs, which is necessary
in the models where the detection mechanism is based on watchdogs.

For models where the exact time the fault occurs is not necessary, like in
systems using timeout or acceptance test for fault tolerance, it is also possible
to use a constant probability that a replica fails.

There is a possibility that several faults will occur during the execution of
a single task. If a new fault occurs during the correction of the previous fault,
or during the rerun of a task, the new active replica is affected, and the whole
detection – correction – rerun cycle will recur. If the new fault occurs before
the previous fault is detected, it affects only the already failed replica, and in
most of the models there is no need to model any further effect of the fault.
For systems where several effects of faults are modeled, new faults leading to
a different failure mode of the running replica may affect the system. If, for
instance, the running replica has suffered from faults leading both to value and
omission failures, the omitted results cannot be tested for the value failures.

3.2 Fault detection models

The fault detection mechanism used in the system will affect the mathematics
used in the models. In this work, three classes of fault detectors are modeled. In
the watchdog model, the time of the fault is detected is dependent on the time

3.2. Fault detection models 43

of the fault occurrence, in the timeout model, the time of fault detection is a
constant time after the start of the execution of the task, and in the acceptance
test model, faults are detected by a test that is run after a replica has finished
its execution.

This section gives a brief description of the different fault detection models,
as well as a notified failure model, and explains how the timing differ between
the models.

Notified failures

If the component that fails has a notified failure mode, the fault detection mech-
anisms are instantly aware of the failure, and the fault correction mechanism
can be activated right away.

In a mathematical model, this means that the time when the component
fails has to be modeled. As the detection is instant, no detection time needs to
be modeled.

If the primary fails, and the time of the failure is tf , the time from a task is
started to the fault is detected is given by.

tdet = tf (3.3)

If there is one failure, and the time to prepare and run the backup is tb, the
total runtime of the task is

trun = tf + tb (3.4)

Watchdogs

If the component that fails has a silent failure mode, and the detection is based
on watchdogs, there will be some time from the failure occurs to the fault
detection mechanisms are aware of the failure.

As with the notified failure model, to model a watchdog mechanism, the
time when the failure occurs has to be modelled. In addition, the time from the
failure occurrence to the detection needs to be added. This fault detection time
has a distribution that is a function of the signaling strategy, like time between
the “I’m alive” signals and the maximum time the system will wait for such a
signal before the component is considered failed.

Notified failures can also be modeled into this detection time distribution as
a pulse, scaled after the relative frequency of notified to silent failures, at t = 0
in the detection time distribution’s pdf.

44 Chapter 3. Fault tolerant mechanisms using time redundancy

If the primary fails, the time to the failure is tf , and the from the failure
to the detection of the failure is td, the total time from a task is started to the
failure is detected is given by

tdet = tf + td (3.5)

If there is only one failure, and the time to prepare and run the backup is tb,
the total runtime of the task is

trun = tf + td + tb (3.6)

Timeout

To model the runtime distribution of a system using detection based on timeout
of final or temporary results, the time when the failure occurs is not needed for
the model, as the time when the fault is detected is given independently of the
failure time. For a system that has failed, the time from execution start to
failure plus the detection time will always be a constant.

If the primary fails, and the timeout is set to tto, the time from a task is
started to the failure is detected is the same as the timeout

tdet = tto (3.7)

The runtime of the task if there is one failure is

trun = tto + tb (3.8)

where tb is the time used to prepare and run the backup.

Acceptance test

As with the timeout detection mechanism, the time when the failure occurs is
not needed for the model. We assume that the failures that are detected with
this mechanism do not affect the normal runtime of the component. We must,
however add some extra time for the testing of the results. This time will be
added to the normal runtime both for faulty and non-faulty runs.

If the primary fails, the time to test is ttest, and the runtime for the primary
is tp, the time from a task is started to the detection of the failure is

tdet = tp + ttest (3.9)

If the time used to prepare and run the backup is tb, the total runtime of the
task in case of one failure is

trun = tp + tb + 2ttest (3.10)

3.2. Fault detection models 45

������������
��������
������������������	�		�	

Acceptance Test

Notified Failure

Watchdog

Timeout

!

!

!

!

!
Component Fails

Failure is detected

Normal operation

Undetected silent failure

Undetected omission failure

Undetected value failure

Acceptance test

"I’m alive"

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��������������������������������������� ������������������

���������
� ��

Test

Start

Test

Finish

��
��

Timeout

��������������������
��������������������

No

"I’m alive"

signal"I’m alive"

Figure 3.3: Time to detect failure of a component for different detection mech-
anisms

46 Chapter 3. Fault tolerant mechanisms using time redundancy

3.3 Homogeneous and inhomogeneous replica-
tion

In many fault tolerant systems, all the replicas in the server are instances of the
same component. This makes design and implementation of the system easier,
as diverse components for the same tasks are not needed, and updating the state
space of a backup means to make it identical as the state space of the primary.
This is often considered a “good enough” design, and enables the system to
tolerate many of the faults that may occur.

As mentioned in 2.2.3, it may be desirable to use diverse components for
replication. The variation in components can give the system protection against
a wider range of faults, as some of the faults may be introduced during the
design, implementation, or manufacture of the component, and it is probable
that these faults recur when run on an identical component.

In real-time systems, the use of imprecise backups can increase the proba-
bility of a task that has suffered from a fault occurrence to reach its deadline,
at the cost of the accuracy of the results when the backups are used. During
normal operation the system will use a precise primary object, but if this should
fail, a faster, less accurate backup object is used.

Because there are scenarios where inhomogeneous replication is used, it is
reasonable to develop models for both homogeneous and inhomogeneous repli-
cation systems.

Mathematically, the difference between homogeneous and inhomogeneous
replication systems is large enough that different models have been developed
for the two.

For the homogeneous replicas, the same execution time is expected for all
replicas given the same input parameters. This means that for a given task, the
time use is constant for all replicas. For non-homogeneous replicas, the same
execution time is not expected for all replicas, even if the distributions are the
same. In this work, the runtime for two inhomogeneous replicas are modelled
as independent. While this is not true for many systems, dependence between
the runtimes of two variants of a task makes the models much more complex.

As an example of the mathematical difference between runtimes in a ho-
mogeneous and an inhomogeneous replicated system, consider a replicated task
in which all methods implementing the task have a runtime that is uniformly
distributed between ta and tb, as shown in figure 3.4a.

If a task has to be run twice on a homogenous replicated system, it will
use the same runtime for both runs. This results in a new uniform distribution

3.3. Homogeneous and inhomogeneous replication 47

a. Probability density function, single run

b. Probability density function, two runs in a homogeneous system

c. Probability density function, two runs in an inhomogeneous system

t
a t

b

2t
a 2t

b

2t
a 2t

b
t
a
+t

b

Figure 3.4: Difference in resulting distributions for homogeneous and inhomo-
geneous systems.

between 2ta and 2tb, as shown in figure 3.4b.
If the task has to be run twice on a non-homogeneous replicated system, the

runtime will be different for the two runs, resulting in a triangular distribution
with minimum 2ta, mode ta + tb and maximum 2tb, as shown in figure 3.4c.

Generalized, if the run-time distribution for the methods implementing a
task has a moment generating function M(s), and the task is run i times, the
resulting moment generating function for the total runtime will be M(is) if
the methods are homogeneous and M(s)i if the methods are inhomogeneous.
Thus, the resulting distributions will be the same for the homogeneous and

48 Chapter 3. Fault tolerant mechanisms using time redundancy

inhomogeneous system only if the task is run only once, i.e. i = 1, or if the
runtime is deterministic, i.e. M(s) = e−τs, where τ is the runtime.

3.4 The timing models

As shown in section 3.2, separate models for the three main fault detection
strategies, watchdogs, timeout, and acceptance test, must be developed. Sec-
tion 3.3 shows that the difference between homogeneous and inhomogeneous
replication is large enough that separate models are needed for the two. As
discussed in section 3.1, many other important differences between passive repli-
cation systems do change the timing distributions that are used in the mathe-
matical models, but not the model structures themselves.

This results in six basic models: A model for a homogeneous and an inho-
mogeneous system using each of the fault detection strategies.

In addition, it can be useful to develop mathematical models for other fault
processes, and for systems using combined fault detection.

Chapter 4

Derivation of the
mathematical models

In this chapter, mathematical models for the runtime distributions for some of
the passive fault tolerant structures described in chapter 3 is derived.

It should be noted that while the mathematical models presented in this
chapter cover many different systems, there will always be system structures
that are not covered by any of the models presented. It is, however, believed
that the methods used to derive the runtime distribution models in this chapter
also may be useful for deriving runtime distributions for many systems with
structures not described in this work.

4.1 Introduction to the mathematics

The runtime distributions derived in this chapter are functions of distributions
that are characteristic for the modeled systems, like the fault-free runtime distri-
bution and the distribution of the time used for fault correction. The functions
derived are tied to the structure of the modeled system, e.g. if the fault-free
runtime distribution of the system changes, but the structure of the system
remains unchanged, the structure of the function used to model the system
remains unchanged while the parameters, i.e. the distribution, change.

50 Chapter 4. Derivation of the mathematical models

4.1.1 Moment-generating functions

In the mathematical expression used in this chapter, the distributions will be
represented in the form of their moment-generating functions, or mgf. While
the use of moment-generating functions in many ways may seem more complex
and less intuitive than the probability density function or the cumulative dis-
tribution function, mgfs are usually easier to use when expressing distributions
as functions of other distributions. Many useful properties of the mgf can be
found in common textbooks on the laplace transform, traffic theory, and control
engineering [4, 16, 23].

Definition

Consider a random variable X which is distributed with probability density
function f(t) and cumulative distribution function F (t). The moment generat-
ing function F(s) is defined as the expectation value of e−sX .

F(s) = E[e−sX] (4.1)

This can be viewed as the laplace transform of the probability density func-
tion:

F(s) = L(f(t)) =
∫ ∞

0

e−stf(t)dt =
∫ ∞

0

e−stdF (t) (4.2)

It should be noted that the moment-generating function, unlike the probabil-
ity density function and the cumulative distribution function, is not a function
of time (hence the use of the variable s instead of t).

4.1.2 The method

The method used to develop the models is basically the same as used by Klein-
rock [21] to derive the expression of the busy period of queuing systems.

The basic steps in developing the models are

1. Set up the expression for the probability of a given number of discrete
events, Pr[φ = k]. In the expressions in this chapter, the discrete events
are faults affecting the system.

2. Set up the expression for the total runtime Y = X0 +X1 + · · ·+Xn where
the time used for each part X1 · · ·Xn is given, and the number of discrete
events k is given. This usually means that Y can be set up as sums of

4.1. Introduction to the mathematics 51

constant times, where the number of and type of the elements in the sum
are dependent of k.

3. Set up the expectation function for e−sY , with the same conditions to
time use and number of discrete events as in the previous steps, i.e. the
expression for E[e−sY |Xi = xi, φ = k].

4. Remove the condition to the number of discrete events from the expecta-
tion function that was set up in the previous step. This is done by calculat-
ing the sum E[e−sY |Xi = xi] =

∑∞
k=0 E[e−sY |Xi = xi, φ = k] Pr[φ = k].

5. Remove the condition to the time use. If the part Xi is distributed with
the cumulative distribution function Fi(t), the condition on time use is
removed by solving the integral E[e−sY] =

∫∞
0

E[e−sY |Xi = xi]dFi(xi).
By using equation 4.2, the results of this integral becomes an expression
of the moment generating function Fi(s).

4.1.3 Limiting the number of replicas

When the description of the modelled systems was presented in chapter 3, limits
to the number of replicas were not discussed. As a base for the models, a system
where there always is a spare replica is used. As a result, there is a theoretical
possibility that there can be a limitless number of faults occurring to the task,
and thus, a limitless number of new replicas used for running the task.

In the mathematical models, the possibility of infinite faults and reruns will
appear as an infinite sum. This can be a problem to handle mathematically,
and a practical problem when the models are to be used for actual systems.

In a physical system, there is a limit to how many replicas can be used for a
task, and because the execution of each replica takes some time, there will also
be a limit to how many faults and reruns that can occur in a real-time system
before a deadline miss is certain.

In this work, two different ways of solving this problem are presented, both
resulting in models with a limit N to the number of faults that can occur to a
single task. The first sets N as the limit to the number of faults a task is able
to tolerate before the system fails. The second ignores any faults that occur
to a task after the Nth fault has occurred. Figure 4.1 illustrates how the two
models handles more than N faults.

As the fault probability is usually very low in the first place, N does not
have to be a very large number before both models are a good approximate of
the theoretical system with infinite replicas.

52 Chapter 4. Derivation of the mathematical models

�������
�

����������
������������������������

������������
	�	
�

������������������

Fault 1 Fault 2 Fault N Fault N+1

Time used to run task

Fault detection time

Fault correction time

System failure

Fault N+1 is ignored

Fault N+1 leads to failure

Task finish

���
�

��
�
��
�

��
�
��
�

��
�
��
�

������
���
������
���
���
�
���
�

������
���
��
�

������
���
��
�

���������������
������
���

��
 � � � � � � � � � � � � � � � � � � � �

!�!!�!!�!
!�!
"�""�""�"
"�"

#�##�##�#
#�#
$$$
$

%%&
&

''(
(

))*
*

+�++�+,�,,�, -
--
...

Figure 4.1: Two ways of handling more than N faults

N + 1 faults cause a certain failure

There is an upper limit to the number of faults that can occur to a single
task before the system fails. This will give the simplest solution, as the fault
occurrence equations for the Nth fault will be the same as for earlier faults. This
model will also be a more accurate description of a physical system where the
number of replicas that can be used actually are limited and where the system
will fail if all replicas have failed.

A problem with creating the models using this solution, is that the proba-
bility of failure gives a runtime distribution with a possibility of the task never
finishing its execution, i.e. limt→∞G(t) < 1.

The resulting distribution can therefore not be used in analysis where a
“complete” distribution is needed, e.g. when using this distribution as the
service time in a steady-state analysis of a queuing system, the results will be
an infinite queue. It will, however, be reasonable to use this kind of distribution
when analyzing the possibility of system failures.

The distributions derived using this method will not be marked any special
way, i.e. g(t), G(t) and G(s) is used to describe these distributions.

No more than N faults

There is an upper limit to the number of faults that can occur to a single task,
and any further faults will be ignored. This will give more complex equations,
as a variant fault occurrence equation has to be used for the Nth part of the

4.1. Introduction to the mathematics 53

system (i.e., the Nth replica that cannot fail). However, as the tasks in this
model always finish at some time, i.e. limt→∞G(t) = 1, the results can be used
for analysis where this is an important property. The solution derived from this
method can be viewed as a system that has run for a long time but never has
failed.

The distributions derived using this method will be marked with a tilde, i.e.
g̃(t), G̃(t) and G̃(s) is used to describe these distributions.

4.1.4 Naming of distributions used in the models

In this work, a distribution’s probability density function is given a function
name with a lower-case letter (e.g. f(t)), the cumulative distribution function
is given a function name with an upper-case letter (e.g. F (t)), and the moment-
generating function is given a function name with a bold-face letter (e.g. F(s)).
Function names with the same letter and index indicate the same distribution,
e.g. fα(t), Fα(t), and Fα(s) all describe the same distribution.

In the models and the equations used to derive them, the following distri-
butions are used. It should be noted that some of the function names have
meanings that vary between the models:

g(t), G(t), G(s) The distribution of the runtime of the task in a system where
faults may occur, i.e. the runtime distribution models that are derived.
No special marking indicates that the system fails if more than N faults
occur.

g̃(t), G̃(t), G̃(s) The distribution of the runtime of the task in a system where
faults may occur, and where the number of faults to a single task are
limited to N .

m(t), M(t), M(s) The distribution of the fault-free runtime of a method per-
forming the task. If indexed (e.g. Mi(s)), i = 0 indicates the runtime
distribution of the primary method.

d(t), D(t), D(s) In a system using watchdogs as fault detection, this is the
distribution of the fault detection time. This is the interval between the
time when a fault occurs and the time when the fault tolerance mechanism
begins to act on that fault occurrence. If indexed, i = 0 indicates the fault
detection time distribution for a fault in the primary method.

d(t), D(t), D(s) In an acceptance test system, this is the distribution of the
test time.

54 Chapter 4. Derivation of the mathematical models

c(t), C(t), C(s) The distribution of the fault correction time. This is the time
the fault tolerance mechanism use from the detection of a fault to a backup
object is ready to rerun the task. If indexed, i = 1 indicates the time to
update the first backup.

aτ (t), Aτ (t), Aτ (s) For a watchdog system, this is the time to a replica fails
in a failed run where the fault-free runtime would have been τ . If two
fault-free runtimes are indicated (e.g. Aτ1,τ2(s)), it implies that the fault
rate changes after the time indicated first, and that the total fault free
run-time is the sum of the two times.

atoi(t), Atoi(t), Atoi(s) For a timeout system, this is the distribution of time
from a failed run of replica i starts to timeout.

ai(t), Ai(t), Ai(s) In a system that combines timeout and acceptance test, this
is the distribution of the time from a failed run of replica i starts to
either a timeout or the beginning of the acceptance test, weighted on the
probabilities of different kinds of failures.

4.2 Systems using watchdogs for fault detection

In this section, the expressions for systems with watchdogs as a fault detection
mechanism are derived. In these systems, faults are modelled as causing a silent
stop failed condition, which is detected by an external fault detector. This
model can also be used on other mechanisms that detect faults in a component
while it is, or should be, running, like notified failures and errors detected by a
component’s own exception handler.

4.2.1 The fault model

The faults are modelled as generated from a poisson process with intensity λ.
Many reliability models deal with changing fault rates, due to “infant mor-

tality”, maturity and wear of components. If a reliability model deals with a
changing fault rate, λ(t) due to these effects, the changes in fault rates are usu-
ally extremely slow compared to the single run of a task, which is the time frame
this work is operating with. Using a fixed fault-rate is therefore a reasonable
approximation.

4.2. Systems using watchdogs for fault detection 55

If the execution of a method takes the time τ , the probability that at least
one fault happens before the execution ends is given by

Pr[φ ≥ 1] = 1− e−λτ (4.3)

Given that a fault occurs during the execution, the cumulative density function
(cdf) for the time from the start of the execution to the fault occurs is given by

Aτ (t) =
{

1
1−e−λτ (1− e−λt) , 0 ≤ t ≤ τ

1 , t > τ
(4.4)

This distribution has the probability density function

aτ (t) =

{
λe−λt

1−eλτ , 0 ≤ t ≤ τ

0 , t > τ
(4.5)

and the moment generating function

Aτ (s) =
1− e(λ+s)τ

1− e−λτ

λ

λ + s
(4.6)

Fault model with varied fault rates for different parts of the system

It may also be useful to be able to vary the fault rate between different compo-
nents. This can be done to model different effects, e.g. using components for
backup that are more reliable than the primary component, lower fault proba-
bility for the correction phase than for running a method, fault bursts, where the
first fault marks the start of a higher fault rate, or the possibility that several
components are affected by the same faults.

In the models with changing fault rates, λmi is used for the fault rate during
execution of the ith backup, and λci is used for the fault rate during the updating
of the ith backup.

The time τ used to prepare a backup and run a method is divided into the
time τc used to prepare a backup and τm used to run the method on the backup.
During the correction time (the time used to prepare a backup), the fault rate
is λc, while during the time used to run a method, the fault rate is λm.

The probability that at least one fault happens during the time τc + τm is
given by

Pr[φ ≥ 1] = 1− e−λcτce−λmτm = 1− e−(λcτc+λmτm) (4.7)

56 Chapter 4. Derivation of the mathematical models

Given that a fault occurs during the execution, the cumulative distribution
function for the time between the start of the interval and the fault occurrence
is given by

Aτc,τm(t)

=

1
1−e−(λcτc+λmτm) (1− e−λct) , 0 ≤ t < τc

1
1−e−(λcτc+λmτm) (1− e−(λc−λm)τceλmt , τc ≤ t < τc + τm

1 , t ≥ τc + τm

(4.8)

This corresponds to the probability density function

aτc,τm(t)

=

1
1−e−(λcτc+λmτm) λce

−λct , 0 ≤ t < τc
1

1−e−(λcτc+λmτm) λme−(λc−λm)τceλmt , τc ≤ t < τc + τm

0 , t ≥ τc + τm

(4.9)

and the moment-generating function

Aτc,τm(t)

=
1

1− e−(λcτc+λmτm)

(
(1− e−τc(λc+s))

λc

λc + s

+ (e−τc(λc+s) − e−(τc(λc+s)+τm(λm+s)))
λm

λm + s

) (4.10)

4.2.2 Inhomogeneous systems

As described in 3.3, the systems are divided into inhomogeneous and homoge-
neous replication systems. For an inhomogeneous system, there is independency
between the fault-free runtimes of the primary and the backups. The distribu-
tion of these runtimes may be the same, however.

First, a model where the time used for detection and correction of the fault
is 0 is derived, i.e., in this model, the task will start running on a backup replica
as soon as a fault occurs.

For a system where the runtimes for the replicas are inhomogeneous xi, where
x0 indicate the runtime for the primary replica, the number of faults φ before
one of the replicas completes a fault-free execution is given by the probability
function

Pr[φ = k] =
{

e−λx0 , k = 0
e−λxk

∏k−1
i=0 (1− e−λxi) , k > 0

(4.11)

4.2. Systems using watchdogs for fault detection 57

The total runtime of a system with φ faults is given by

Y = rφ + X0 + X1 + · · ·+ Xφ−1 (4.12)

where Xi is the time to fault for each faulty run, and rφ is the runtime for the
fault-free run.

What is sought after is the distribution of the total time use,

G(t) = Pr(Y ≤ t) (4.13)

expressed by the mgf

G(s) =
∫ ∞

0

e−stdG(t) = E[e−sY] = E[e−s(r+X0+X1+···+Xφ−1)] (4.14)

We start by introducing conditions on run-times and number of faults

E[e−sY |rφ = xφ, φ = k] = E[e−s(xk+X0+X1+···+Xk−1)]
= E[e−sxke−sX0e−sX1 · · · e−sXk−1]

(4.15)

Because the runtimes xk and X0 · · · Xk−1 are independent, this can be
rewritten as

E[e−sY |rφ = xφ, φ = k] = E[e−sxk]E[e−sX0]E[e−sX1] · · ·E[eXk−1] (4.16)

As the runtime in a faulty run would have been xi if there had been no fault,
the time to fault Xi is distributed by Axi(t) described in equation 4.4. This
means that E[e−sXi] = Axi(s), and equation 4.16 can be rewritten as

E[e−sY |rn = xn, φ = k] = E[e−sxk]
k−1∏

i=0

Axi(s) (4.17)

The next step is to remove the condition on the number of faults. This is
done by taking the sum of the products of the expectation function where the
number of faults is k and probability of k faults, for each k.

E[e−sY |rn = xn] =
∞∑

k=0

E[e−sY |rn = xn, φ = k] Pr(φ = k) (4.18)

By doing this with the fault probability function 4.11 and the expectation
function 4.17, the resulting expectation function is

E[e−sY |rn = xn]

= e−sx0e−λx0 +
∞∑

k=1

e−sxke−λxk

k−1∏

i=0

Axi(s)(1− e−λxi)

= e−(λ+s)x0 +
∞∑

k=1

e−(λ+s)xk

k−1∏

i=0

(1− e−(λ+s)xi)
λ

λ + s

(4.19)

58 Chapter 4. Derivation of the mathematical models

As discussed in 4.1.3, there are some problems working further with the
equation as it has an infinite sum. As described, two different “workarounds”
are used, where G(s) describes a system that fails if there are more than N
faults, and G̃(s) describes a system where more than N faults cannot occur.

The equation with a maximum of N faults before a failure is given by:

E[e−sY |rn = xn]

= e−(λ+s)x0 +
N∑

k=1

e−(λ+s)xk

k−1∏

i=0

(1− e−(λ+s)xi)
λ

λ + s

(4.20)

The condition on time use is removed by integrating the expression with
respect to the runtime distributions

G(s) = E[e−sY]

=
∫ ∞

0

· · ·
∫ ∞

0

E[e−sY |rn = xn]dM0(x0) · · · dMN (xN)
(4.21)

By using the properties of the moment generating function (eq. 4.2), we get

G(s)

= M0(λ + s) +
N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)
k−1∏

i=0

(1−Mi(λ + s))
(4.22)

Equation 4.22 shows the mgf for the distribution of the runtime in a passive
replicated fault tolerant system without the fault detection and fault correction
times, where more than N faults will lead to the failure of the system.

If we use the model where no more than N faults may happen during a single
task, we have to change the fault probability function to

Pr[φ = k] =

e−λx0 , k = 0

e−λxk

k−1∏

i=0

(1− e−λxi) , 0 < k < N

N−1∏

i=0

(1− e−λxi) , k = N

(4.23)

By using this fault probability function to remove the condition of a given

4.2. Systems using watchdogs for fault detection 59

number of faults, we get the expectation function

E[e−sY |rn = xn]
= e−(λ+s)x0

+

(
N−1∑

k=1

e−(λ+s)xk

k−1∏

i=0

(1− e−(λ+s)xi)
λ

λ + s

)

+ e−sxN

N−1∏

i=0

(1− e−(λ+s)xi)
λ

λ + s

(4.24)

When the conditions on time use is removed, we end up with

G̃(s)
=M0(λ + s)

+

(
N−1∑

k=0

(
λ

λ + s

)k

Mk(λ + s)
k−1∏

i=0

(1−Mi(λ + s))

)

+
(

λ

λ + s

)N

MN (s)
N−1∏

i=0

(1−Mi(λ + s))

(4.25)

Equation 4.25 shows the mgf for the distribution of the runtime in a passively
replicated fault tolerant system without fault detection and fault correction
delays, where faults after the Nth fault is ignored.

Adding the fault correction delay

We will now expand the expression by adding the delay for fault correction.
The correction process consists of updating and readying a backup object, so
that the state of this object reflects the state of the failed primary object, and
the backup is ready to be used as the new primary. We assume that faults may
happen during the correction process.

This can be done by changing the equations 4.11–4.25 so that the correction
time is included. Equation 4.11 is changed to

Pr[φ = k] =

e−λx0 , k = 0

e−λ(xk+yk)(1− eλx0)
k−1∏

i=1

(1− e−λ(xi+yi)) , k > 0
(4.26)

60 Chapter 4. Derivation of the mathematical models

and equation 4.17 is changed to

E[e−sY |rn = xn, cn = yn, φ = k]

=

e−sx0 , k = 0

e−s(xk+yk)Ax0(s)
k−1∏

i=1

Axi+yi
(s) , k > 0

(4.27)

where the cn is the correction time for replica n.
The expression is otherwise derived as for the system without correction

time. Using the fault probability function 4.26 to remove the condition on
number of faults in the expectation function 4.27 yields

E[e−sY |rn = xn, cn = yn]
= e−(λ+s)x0

+
N∑

k=1

(
λ

λ + s

)k

e−(λ+s)(xk+yk)

(1− e−(λ+s)x0)
k−1∏

i=1

(1− e−(λ+s)(xi+yi))

(4.28)

Removing the conditions on runtimes and correction times gives the moment-
generating function for the system with fault correction time included:

G(s)
= M0(λ + s)

+
N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

(1−M0(λ + s))
k−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))

(4.29)

Equation 4.29 can also be derived by combining the correction time with the
run time for the replicas, i.e. let the run time for replica n be distributed with
pdf cn(t) ∗mn(t) where ∗ is the convolution operator. In the mgf domain, this
corresponds to a normal multiplication, i.e. C(s)M(s).

For the model where faults after the Nth are ignored, the fault probability

4.2. Systems using watchdogs for fault detection 61

function is given by

Pr[φ = k] =

e−λx0 , k = 0

e−λ(xk+yk)(1− eλx0)
k−1∏

i=1

(1− e−λ(xi+yi)) , 0 < k < N

(1− eλx0)
N−1∏

i=1

(1− e−λ(xi+yi)) , k = N

(4.30)

Using this probability function to remove the condition on the number of
faults from the expectation function 4.27 gives the expectation function

E[e−sY |rn = xn, cn = yn]
= e−(λ+s)x0

+
(N−1∑

k=1

(
λ

λ + s

)k

e−(λ+s)(xk+yk)

(1− e−(λ+s)x0)
k−1∏

i=1

(1− e−(λ+s)(xi+yi))
)

+
(

λ

λ + s

)N

e−s(xN+yN)

(1− e−(λ+s)x0)
N−1∏

i=1

(1− e−(λ+s)(xi+yi))

(4.31)

Removal of the timing conditions yields

G̃(s)
= M0(λ + s)

+
(N−1∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

(1−M0(λ + s))
k−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))
)

+
(

λ

λ + s

)N

MN (s)CN (s)

(1−M0(λ + s))
N−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))

(4.32)

62 Chapter 4. Derivation of the mathematical models

Equation 4.32 shows the mgf for the distribution of the runtime in a passively
replicated fault tolerant system with a watchdog fault detector, where faults
after the Nth are ignored, and where there is no fault detection delay

Adding the fault detection delay

The equation is expanded further by adding the delay used for fault detection.
During this time, the replica that is running is already in an erroneous state, so
new faults happening during this time can be ignored.

The probability on the number of faults will thus be the same as for a system
without fault detection, i.e. equation 4.26.

The expected time use for a system where k faults occur will be

E[e−sY |rn = xn, cn = yn, dn = zn, φ = k]

=
{

e−sx0 , k = 0
e−s(xk+yk)Ax0(s)

∏k−1
i=1 Axi+yi(s)e

−szi , k > 0
(4.33)

The mgf for a system with fault detection and fault correction times included
is otherwise derived the same way as for the systems without detection, resulting
in the moment-generating system for the inhomogeneous watchdog system

G(s)
= M0(λ + s)

+
N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

(1−M0(λ + s))D0(s)
k−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))Di(s)

(4.34)

Equation 4.34 gives an expression for the total runtime of a task in passive
fault tolerant systems with inhomogeneous replicas using watchdogs as fault
detection, where more than N faults lead to the failure of the system, as a
function of the distributions of the fault free runtimes, the correction times,
and the fault detection times of the systems.

For the model where more than N faults are ignored, the fault probability

4.2. Systems using watchdogs for fault detection 63

equation 4.30 is used, giving the moment-generating function

G̃(s)
= M0(λ + s)

+
(N−1∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

(1−M0(λ + s))D0(s)
k−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))Di(s)
)

+
(

λ

λ + s

)N

MN (s)CN (s)

(1−M0(λ + s))D0(s)
N−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))Di(s)

(4.35)

Equation 4.35 gives an expression for the total runtime of a task in passive
fault tolerant systems with inhomogeneous replication using watchdogs for fault
detection, where there can be no more than N faults occurring to a single task.

4.2.3 Homogeneous systems

In the homogeneous system, the same method is tried as a backup as in the
primary. Because the same methods with the same input parameters are used
for both the primary and the backups, the time used to complete a given task
will be the same for all replicas. We also assume that all backups are in the
same state, so that for multiple failures, the times used to update the backups
are the same for all backups. As described in 3.3, using the inhomogeneous
model with the same distribution for all replicas will not be a solution for this
problem, as the same runtime distribution for all replicas does not ensure the
same runtime for all backups.

The steps used in the derivation of this model are the same as used for the
heterogeneous system.

The work described here is an updated version of the work presented in [46].
As for the heterogeneous system, the runtime distribution in a system where

the detection and correction time is negligible is derived first.
For a system where the runtime for a task on a replica is x, the probability

function for the number of faults that occurs is

Pr(φ = k) = e−λx(1− e−λx)k (4.36)

64 Chapter 4. Derivation of the mathematical models

When there is a possibility of faults occurring, the total running time of the
task will be

Y = r + X0 + X1 + · · ·+ Xφ−1 (4.37)

where r is the runtime for the fault free run, Xi is the time until abortion of a
faulty run, and φ is the number of faulty runs.

We wish to find the distribution of the total time use for the task, expressed
by this distribution’s moment generating function

G(s) =
∫ ∞

0

e−stdG(t) = E[e−sY] = E[e−s(r+X0+X1+···+Xφ−1)] (4.38)

By introducing conditions on the runtime and the number of faults, we get
the expectation function

E[e−sY |r = x, φ = k] = E[e−s(x+X0+···+Xk−1)]
= E[e−sxe−sX0 · · · e−sXk−1]

(4.39)

As the times x and X0 · · ·Xk−1 are independent of each other, and since
E[e−sXi] = Ax(s), the expectation function can be rewritten as

E[e−sY |r = x, φ = k] = E[e−sx]E[e−sXk−1] · · ·E[e−sX0]
= E[e−sx](Ax(s))k (4.40)

The condition on the number of faults is removed by multiplying the prob-
ability for a given number of faults k with the expectation function where k
faults are given, and summing the products for all possible number of faults.

E[e−sY |r = x] =
∞∑

k=0

E[e−sY |r = x, φ = k] Pr(φ = k) (4.41)

This results in the expectation function

E[e−sY |r = x] =
∞∑

k=0

e−xs(Ax(s))ke−λx(1− e−λx)k

= e−x(λ+s)
∞∑

k=0

((1− e−x(λ+s))
λ

λ + s
)k

(4.42)

Again, we use this as a base to get two results, where G(s) describes a system
that will fail if more than N faults occur to the same task and G̃(s) describes
a system that no more than N faults may occur to the task.

4.2. Systems using watchdogs for fault detection 65

By setting a maximum number of faults N before the system fails, the ex-
pectation function becomes

E[e−sY |r = x] = e−x(λ+s)
N∑

k=0

((1− e−x(λ+s))
λ

λ + s
)k (4.43)

The condition on time use is removed by integrating this function with re-
spect to the runtime distribution

G(s) = E[e−sY] =
∫ ∞

0

E[e−sY |r = x]dM(x) (4.44)

This gives us the distribution with the moment-generating function

G(s) =
N∑

k=0

λ

λ + s

(
k∑

i=0

(−1)i

(
k
i

)
M((i + 1)(λ + s))

)
(4.45)

Equation 4.45 shows the mgf for the distribution of the runtime of a task in
a homogeneous passive replication where the time used to detect and correct a
fault is negligible and where more than N faults will lead to the failure of the
system.

If the model where no more than N faults may occur to a single task, the
probability function for the number of faults has to be rewritten to

Pr[φ = k|φ ≤ N] =
{

e−λx(1− e−λx)k , k ≤ N − 1
(1− e−λx)N , k = N

(4.46)

Using this fault probability function to remove the condition on the number
of faults yields the expectation function

E[e−sY |r = x] = e−x(λ+s)

(
N−1∑

k=0

((1− e−x(λ+s))
λ

λ + s
)k

)

+ e−sx((1− e−x(λ+s))
λ

λ + s
)N

(4.47)

By removing the condition on time use, we get the moment-generating func-
tion

G̃(s) =

(
N−1∑

k=0

λ

λ + s

k
(

k∑

i=0

(−1)i

(
k
i

)
M((i + 1)(λ + s))

))

+
λ

λ + s

N
(

N∑

i=0

(−1)i

(
N
i

)
M(iλ + (i + 1)s)

) (4.48)

66 Chapter 4. Derivation of the mathematical models

Equation 4.48 shows the mgf for the distribution of the runtime of a task
in a passively replicated fault tolerant system, where the time used for fault
detection and correction is negligible and faults after the Nth are ignored.

Adding time for fault correction

The expression is expanded by adding the time used for fault correction. We
assume that a fault may happen during the fault correction process. As there
is no correction during the initial run of the method, we have to distinguish
between the initial run and the following runs. The modification is done by
changing the probability function for the number of faults (equation 4.36) and
the conditional expectation function (equation 4.40).

The new probability function for the number of faults is

Pr[φ = k] =
{

e−λx , k = 0
e−λ(x+y)(1− e−λx)(1− e−λ(x+y))k−1 , k ≥ 1

(4.49)

where c is the time used for fault correction.
The conditional expectation function is changed to

E[e−sY |r = x, c = y, φ = k]

=
{

e−sx , k = 0
e−s(x+y)Ax(s)Ax+y(s)k−1 , k > 0

(4.50)

Using the probability function 4.49 to remove the condition on the number
of faults in expectation function 4.50 yields the expectation function

E[e−sY |r = x, c = y]
= e−(λ+s)x

+
N∑

k=1

(
λ

λ + s

)k

e−(λ+s)(x+y)

(1− e−(λ+s)x)(1− e−(λ+s)(x+y))k−1

(4.51)

Removing the conditions on time use gives the moment generating function

G(s)
= M(λ + s)

+
N∑

k=1

(
λ

λ + s

)k (k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s))C((i + 1)(λ + s))
)

(4.52)

4.2. Systems using watchdogs for fault detection 67

Equation 4.52 shows the moment generating function of the runtime distri-
bution of a task in a homogeneous passive replicated system where correction
starts as soon as a fault occurs, and where more than N faults to a single task
lead to a system failure.

For a system where there can be no more than N faults occurring to the
same task, the probability function for the number of faults is given by

Pr[φ = k] =

e−λx , k = 0
e−λ(x+y)(1− e−λx)(1− e−λ(x−y))k−1 , 1 ≤ k < N
(1− e−λx)(1− e−λ(x+y))N−1 , k = N

(4.53)

Using this fault probability function, we get the following expectation func-
tion when removing the condition on the number of faults

E[e−sY |r = x, c = y]
= e−(λ+s)x

+
N−1∑

k=1

(
λ

λ + s

)k

e−(λ+s)(x+y)

(1− e−(λ+s)x)(1− e−(λ+s)(x+y))k−1

+
(

λ

λ + s

)N

e−s(x+y)(1− e−(λ+s)x)(1− e−(λ+s)(x+y))N−1

(4.54)

The moment generating function for the total runtime will then be

G̃(s)
= M(λ + s)

+
(N−1∑

k=1

(
λ

λ + s

)k (k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

+
(

λ

λ + s

)N (N−1∑

i=0

(−1)i

(
N − 1

i

)
(M(iλ + (i + 1)s)

−M((i + 1)λ + (i + 2)s))C(iλ + (i + 1)s)
)

(4.55)

Equation 4.55 describes the moment-generating function for the runtime
distribution of a homogeneous watchdog system where there is no fault detection
delay, and where any faults occurring to a single task after the Nth are ignored.

68 Chapter 4. Derivation of the mathematical models

Adding the fault detection delay

The expression is expanded further by adding the fault detection time.
As the running object has already failed, and no new objects are running, we

assume that new faults happening during fault detection time can be ignored.
Unlike the task execution time and the correction time distributions, we

cannot assume that the fault detection times are homogeneous, and we have to
use the same methods as for the inhomogeneous system to model this. We can,
however, assume that all fault detection times have the same distribution.

While we still have the same fault number probability as in equation 4.49,
we have to modify equation 4.50 to

E[e−sY |r = x, c = y, di = zi, φ = k]

=

e−sx , k = 0

e−s(x+y)Ax(s)Ax+y(s)k−1
k−1∏

i=0

e−szi , k > 0
(4.56)

where di is the time used for detecting the fault in the ith replica
The steps for deriving the expression are the same as for the systems without

fault detection.
For a system that fails if more than N faults occur to the same task, the

runtime distribution is given by

G(s)
= M(λ + s)

+
(N∑

k=1

(
λ

λ + s
D(s)

)k

(k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

(4.57)

Equation 4.57 shows the moment-generating function for the runtime distri-
bution for a task in a passive replication system where the replicas are homoge-
neous, the fault detection is based on a watchdog mechanism, and where more
than N faults happening to a single task will lead to the failure of the system.

For the system model where no more than N faults may occur to a single

4.2. Systems using watchdogs for fault detection 69

task, the runtime distribution is given by

G̃(s)
= M(λ + s)

+
(N−1∑

k=1

(
λ

λ + s
D(s)

)k

(k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

+
(

λ

λ + s
D(s)

)N

(N−1∑

i=0

(−1)i

(
N − 1

i

)
(M(iλ + (i + 1)s)

−M((i + 1)λ + (i + 2)s))C(iλ + (i + 1)s)
)

(4.58)

Equation 4.58 shows the moment-generating function for the runtime distri-
bution of a task in a passive replication system where the replicas are homoge-
neous, the fault detection is based on a watchdog mechanism, and where any
faults to a single task after the Nth are ignored.

4.2.4 Systems with multiple fault rates

It can sometimes be useful to use a model of a system where the fault rates
are not the same for all the replicas. Examples are when we can assume that
there is a possibility that the same fault will recur when the task is rerun on the
backup, when faults arrive in bursts, or when it is believed that some replicas
are considered more reliable than others.

Here, an inhomogeneous replication system with changing fault rates is mod-
eled. Each replica i has a separate fault rate λci during backup preparation and
λmi during method execution.

For this system, the probability of a given number of faults is given by

Pr[φ = k]

=

e−λm0x0 , k = 0
e−(λckyk+λmkxk)

(1− e−λm0x0)
∏k−1

i=1 (1− e−(λciyi+λmixi))
, k > 0

(4.59)

70 Chapter 4. Derivation of the mathematical models

As for the systems with a constant fault rate, an expectation function for
e−sY , where Y is the runtime, is created with conditions to the number of faults
and the time use.

E[e−sY |rn = xn, cn = yn, dn = zn, φ = k]

=

e−sx0 , k = 0

e−sxk+ykAx0(s)
k−1∏

i=1

Ayi,xi(s)e
−szi , k > 0

(4.60)

For a system that will fail if more than N faults occur to the same task, the
removal of the condition on the number of faults yields

E[e−sY |rn = xn, cn = yn, dn = zn]
= e−(λm0+s)x0

+
N∑

k=1

e−(λck+s)yke−(λmk+s)xk

(1− e−(λm0+s)x0)
λm0

λm0 + s
e−sz0

k−1∏

i=1

(
(1− e−yi(λci+s))

λci

λci + s

+ (e−yi(λci+s) − e−(yi(λci+s)+xi(λmi+s)))
λmi

λmi + s

)
e−szi

(4.61)

Removing the time condition yields

G(s)
= M0(λm0 + s)

+
N∑

k=1

Ck(λck + s)Mk(λmk + s)

(1−M0(λm0 + s))
λm0

λm0 + s
D0(s)

k−1∏

i=1

(
(1−Ci(λci + s))

λci

λci + s

+ (Ci(λci + s)−Ci(λci + s)Mi(λmi + s))
λmi

λmi + s

)
Di(s)

(4.62)

Equation 4.62 shows the moment generating function of the runtime of a
task in an inhomogeneous, passive replication system with a watchdog fault
detection mechanism, where the fault rates may differ among the parts of the

4.2. Systems using watchdogs for fault detection 71

system, and where more than N faults occurring to a single task leads to the
failure of the system.

If no more than N faults can occur to the same task, the probability function
for the number of faults changes to

Pr[φ = k]

=

e−λm0x0 , k = 0
e−(λckyk+λmkxk)

(1− e−λm0x0)
k−1∏

i=1

(1− e−(λciyi+λmixi))
, 0 < k < N

(1− e−λm0x0)
N−1∏

i=1

(1− e−(λciyi+λmixi)) , k = N

(4.63)

Using this fault probability function to remove the condition on the number
of faults from the expectation function 4.60 yields

E[e−sY |rn = xn, cn = yn, dn = zn]
= e−(λm0+s)x0

+
(N−1∑

k=1

e−(λck+s)yke−(λmk+s)xk

(1− e−(λm0+s)x0)
λm0

λm0 + s
e−sz0

k−1∏

i=1

(
(1− e−yi(λci+s))

λci

λci + s

+ (e−yi(λci+s) − e−(yi(λci+s)+xi(λmi+s)))
λmi

λmi + s

)
e−szi

)

+ e−s(xN+yN)

(1− e−(λm0+s)x0)
λm0

λm0 + s
e−sz0

N−1∏

i=1

(
(1− e−yi(λci+s))

λci

λci + s

+ (e−yi(λci+s) − e−(yi(λci+s)+xi(λmi+s)))
λmi

λmi + s

)
e−szi

(4.64)

72 Chapter 4. Derivation of the mathematical models

Finally, removing the conditions on time yields the mgf

G̃(s)
= M0(λm0 + s)

+
(N∑

k=1

Ck(λck + s)Mk(λmk + s)

(1−M0(λm0 + s))
λm0

λm0 + s
D0(s)

k−1∏

i=1

(
(1−Ci(λci + s))

λci

λci + s

+ (Ci(λci + s)−Ci(λci + s)Mi(λmi + s))
λmi

λmi + s

)
Di(s)

)

+ CN (s)MN (s)

(1−M0(λm0 + s))
λm0

λm0 + s
D0(s)

k−1∏

i=1

(
(1−Ci(λci + s))

λci

λci + s

+ (Ci(λci + s)−Ci(λci + s)Mi(λmi + s))
λmi

λmi + s

)
Di(s)

(4.65)

Equation 4.65 shows the moment generating function of the runtime dis-
tribution for a task in an inhomogeneous passive replication system with a
watchdog-based fault detection mechanism, where the fault rates differ between
the parts of the system, and where no more than N faults may occur to the
task.

4.3 Systems with timeout as a fault detection
method

In this section, expressions for the timing in systems where timeout of the
method return is used as a fault detection method are derived. Unlike the
watchdog fault detection, the faults are not detected by checking the components
while they run. Instead, a component is considered as failed if the results from
running a task on the component do not arrive before a timeout. Normally,
this causes the faults to be detected at a later time than for the watchdog
mechanism, thus the execution of a task is slower in the case of a fault, however,

4.3. Systems with timeout as a fault detection method 73

the implementation of this fault detection method is fairly simple, and the
mechanism covers both silent and omission failures.

The naming of the distributions used in the derivation of the expressions in
this section is the same as for the systems using watchdogs as fault detection,
with the exception of the time to fault and fault detection times that are added
together to form the distribution atoi(t), which in these equations is a dirac
pulse at the timeout for replica i.

It should be noted that the expressions derived in this section are only valid
if the worst case execution time for running a task on a replica is less than or
equal to the time set as the timeout, i.e., it is assumed that the only way the
timeout can be triggered is in the case of a failed replica.

4.3.1 The fault models

For the timeout system, two different fault models are used. The first is the
poisson process model, the same model as used in the watchdog system.

The other fault model is a fixed fault probability model, where a replica (or
correction process) has a fixed probability of failing. Unlike the models where a
watchdog fault detector is assumed, it is not necessary to know the exact time
when a fault occurs in the timeout based models, so it is possible to use the
fixed fault probability model.

Faults generated by a poisson process

As in the previous section, faults are modelled as generated from a poisson
process with intensity λ. If the execution of a method takes the time τ the
probability that at least one fault happens before the execution time ends is
given by equation 4.3

If a fault occurs to the running task, causing the active component to fail,
this will be detected at the timeout, τi for component i. The distribution of
this time can therefore be expressed with a dirac pulse as the pdf.

atoi(t) = δ(t− τi) (4.66)

This distribution has the moment generating function

Atoi(s) = e−τis (4.67)

If faults may occur during the correction of a task, and there is a timeout
function on the correction, the model must reflect the possibility of two timeouts,

74 Chapter 4. Derivation of the mathematical models

Correction
start

Correction
finish

Correction
timeout

Task
finish

Task
timeout

time

Correction Rerun

i
y

i
x

τ
ci

τ
mi

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

Figure 4.2: Correction and rerun of a task in a system with timeout detection.
Faults during correction are detected at the correction timeout, faults during
the rerun of the task are detected at the task timeout.

one for correction and one for the actual run. Figure 4.2 shows the correction
and rerun timing with the normal, fault-free times and the timeouts.

If the timeout for correction of component i is set to τci, the normal, non-
faulty correction time is yi, the timeout for the actual runtime of a component
is τmi after the start of the run, and the normal, non-faulty runtime of the
component is xi, given that at least one fault occurs, the distribution for the
detection time is given by the pdf

atoi(t) =
1− e−λyi

1− e−λ(yi+xi)
δ(t− τci) +

1− e−λxi

1− e−λ(yi+xi)
e−λyiδ(t− (yi + τmi))

(4.68)

This distribution has the mgf

Atoi(t) =
1− e−λyi

1− e−λ(yi+xi)
e−sτci +

1− e−λxi

1− e−λ(yi+xi)
e−(λ+s)yie−sτmi (4.69)

A fixed fault probability for each replica

As the exact time when the fault occurs is not needed in this model, it is also
possible to use a fault model that only specifies the probability that a replica

4.3. Systems with timeout as a fault detection method 75

has failed.
If κmi is the probability that the task running on replica i is correct, and κci is

the probability that updating and preparing replica i is correct, the probability
that at least one fault occurs in replica i is given by

Pr(φ ≥ 1) = 1− κciκmi (4.70)

For a system where there can be no faults in (or where there is no timeout
detector for) the correction of a task, equations 4.66–4.67 can be used as they
are for the detection time.

If faults may occur during correction, and there is a timeout function on the
correction, the distribution for the detection time is given by the pdf

atoi(t) =
1− κci

1− κciκmi
δ(t− τci) +

(1− κmi)κci

1− κciκmi
δ(t− (yi + τmi)) (4.71)

and the corresponding mgf

Atoi(s) =
1− κci

1− κciκmi
e−sτci +

(1− κmi)κci

1− κciκmi
e−syie−sτmi (4.72)

4.3.2 Inhomogeneous systems

The runtime distribution for the systems with timeout as a fault detection
method is derived the same way as for the systems with watchdog fault de-
tection. Instead of using a fault detection delay after a fault occurs, a fault will
always be detected at the timeout, regardless of when the fault occurs. Thus,
equations 4.11–4.16 can be used as they are for a system where there is no fault
correction delay.

Using equation 4.16 and E[e−sXi] = Atoi(s), where Atoi(s) is defined in
equation 4.67, we get

E[e−sY |rφ = xφ, φ = k] = E[e−sxk]
k−1∏

i=0

Atoi(s) (4.73)

Removing the condition on the number of faults from this expectation func-
tion, using the fault probability function 4.11, yields the new expectation func-
tion

E[e−sY |rn = xn] = e−(s+λ)x0 +
∞∑

k=1

e−(s+λ)xk

k−1∏

i=0

e−τis(1− e−λxi) (4.74)

76 Chapter 4. Derivation of the mathematical models

For a system that fails if the number of faults occurring to a single task is
larger than N , removing the time conditions gives a runtime distribution with
the moment-generating function

G(s) = M0(λ + s) +
N∑

k−1

Mk(λ + s)
k−1∏

i=0

e−τis(1−Mi(λ)) (4.75)

Equation 4.75 shows the moment-generating function for the runtime distri-
bution in a passive replication system with inhomogeneous replicas where the
fault detection is based on timeouts, there is no extra time used for fault cor-
rection, and where more than N faults to a single task lead to the failure of the
system.

If there can be no more than N faults, the fault probability function 4.23 is
used to remove the condition on the number of faults, resulting in the expecta-
tion function

E[e−sY |rn = xn] =

e−(s+λ)x0 +

(
N−1∑

k=1

e−(s+λ)xk

k−1∏

i=0

e−τis(1− e−λxi)

)

+ e−sxN

N−1∏

i=0

e−τis(1− e−λxi)

(4.76)

Removing the conditions on time use gives the moment-generating function

G̃(s) =M0(λ + s) +

(
N−1∑

k=1

Mk(λ + s)
k−1∏

i=0

e−τis(1−Mi(λ))

)

+ MN (s)
N−1∏

i=0

e−τis(1−Mi(λ))

(4.77)

Equation 4.77 shows the moment-generating function for the runtime distri-
bution in an inhomogeneous passive replication system where the fault detection
is based on timeouts, there is no extra time used for fault correction, and where
there can be no more than N faults occurring to a single task.

Adding the fault correction delay

As explained in 4.3.1, the expression for time to fault detection gets somewhat
more complicated when fault correction is added, faults may occur in both the
correction and rerun part of the task execution, and there is a timeout function

4.3. Systems with timeout as a fault detection method 77

both on the correction part and the rerun part. If there is no separate timeout
function for the correction part, equation 4.75 or 4.77 can be used by substituting
Mi(s) with Mi(s)Ci(s).

As there is no correction of the primary, equation 4.67 is used for the distri-
bution of the time to fault detection for the primary, Ato0. The equation 4.69
is used for the distribution of the time to fault detection for the backups.

The expectation function with condition to number of faults and the time
use is similar to the equation 4.27:

E[e−sY |rn = xn, cn = yn, φ = k] =

e−sx0 , k = 0

e−s(xk+yk)Ato0(s)
k−1∏

i=1

Atoi(s) , k > 0
(4.78)

Using the fault probability function 4.26 to remove the condition on the
number of faults in 4.78 yields the expectation function

E[e−sY |rn = xn, cn = yn] =
e−(λ+s)x0

+
∞∑

k=1

e−(λ+s)(xk+yk)

e−sτm0(1− e−λx0)
k−1∏

i=1

e−sτci(1− e−λyi) + e−sτmie−(λ+s)yi(1− e−λxi)

(4.79)

Limiting the number of faults before failure to N , and removing the time
use conditions yields the moment-generating function

G(s) =
M0(λ + s)

+
N∑

k=1

Mk(λ + s)Ck(λ + s)

e−sτm0(1−M0(λ))
k−1∏

i=1

e−sτci(1−Ci(λ)) + e−sτmiCi(λ + s)(1−Mi(λ))

(4.80)

Equation 4.80 shows the moment-generating function for the runtime dis-
tribution in a passively replicated system with timeout fault detection and in-
homogeneous replicas, where more than N faults to a single task lead to the
failure of the system.

78 Chapter 4. Derivation of the mathematical models

For the model where no more than N faults may occur to a single task, the
fault probability function 4.30 is used to remove the condition on number of
faults from the expectation function 4.78. The resulting expectation function
becomes

E[e−sY |rn = xn, cn = yn] =
e−(λ+s)x0

+
(N−1∑

k=1

e−(λ+s)(xk+yk)

e−sτm0(1− e−λx0)
k−1∏

i=1

e−sτci(1− e−λyi) + e−sτmie−(λ+s)yi(1− e−λxi)
)

+ e−s(xN+yN)

e−sτm0(1− e−λx0)
N−1∏

i=1

e−sτci(1− e−λyi) + e−sτmie−(λ+s)yi(1− e−λxi)

(4.81)

The condition on time use can then be removed, giving the moment gener-
ating function

G̃(s) =
M0(λ + s)

+
(N−1∑

k=1

Mk(λ + s)Ck(λ + s)

e−sτm0(1−M0(λ))
k−1∏

i=1

e−sτci(1−Ci(λ)) + e−sτmiCi(λ + s)(1−Mi(λ))
)

+ MN (s)CN (s)
e−sτm0(1−M0(λ))
k−1∏

i=1

e−sτci(1−Ci(λ)) + e−sτmiCi(λ + s)(1−Mi(λ))

(4.82)

Equation 4.82 shows the moment-generating function for an inhomogeneous
passive replication system with timeout as a fault detection method, where there
can be no more than N faults occurring to a single task.

There is no extra detection time that needs to be added.

4.3. Systems with timeout as a fault detection method 79

4.3.3 Homogeneous systems

The runtime distribution of a homogeneous system using timeout as a means for
fault correction is derived in a similar way as the homogeneous watchdog-based
system.

For a system with no extra time used for fault correction, equations 4.36–
4.39 from the homogeneous watchdog-based system can be used as they are, but
with Xi symbolizing the time to fault detection instead of the time to fault.

Using the time to fault detection distribution from equation 4.67, the expec-
tation function 4.39 can be written as

E[e−sY |r = x, φ = k] = E[e−sx](Atoi(s))k (4.83)

for the timeout system.
Removing the conditions on the number of faults from this expectation func-

tion, using the fault probability function 4.36, yields the new expectation func-
tion

E[e−sY |r = x] =
∞∑

k=0

e−(s+λ)xe−kτms(1− eλx)k (4.84)

By limiting the number of faults before failure to N and removing the timing
condition, the moment-generating function for the runtime distribution is found

G(s) =
N∑

k=0

e−kτms

(
k−1∑

i=0

(−1)i

(
k
i

)
M((i + 1)λ + s)

)
(4.85)

Equation 4.85 shows the moment-generating function for the runtime distri-
bution of a task in a passive replication system with homogeneous replicas and
timeout-based fault detection, where there is no time used for correction, and
where the system will fail if more than N faults occur to a single task.

If there can be no more than N faults occurring to a single task, the fault
probability function 4.46 is used to remove the condition on the number of
faults, yielding the expectation function

E[e−sY |r = x] =(
N−1∑

k=0

e−(s+λ)xe−kτms(1− eλx)k

)
+ e−sxe−Nτms(1− eλx)N (4.86)

80 Chapter 4. Derivation of the mathematical models

The moment generating function is found by removing the condition on the
number of faults:

G̃(s) =(
N−1∑

k=0

e−kτms

(
k−1∑

i=0

(−1)i

(
k
i

)
M((i + 1)λ + s)

))

+ e−Nτms

(
N−1∑

i=0

(−1)i

(
k
i

)
M(iλ + s)

) (4.87)

Equation 4.87 shows the moment-generating function for the runtime distri-
bution in a passive replication system with homogeneous replicas and timeout-
based fault detection, where there is no extra time used for correction, and
where no more than N faults may occur to a single task.

Adding the fault correction delay

As with the model for heterogeneous systems, a separate timeout for the cor-
rection process is assumed. Equation 4.67 is used for the timeout function for
the primary, and is given the name Ato0(s) here. Equation 4.69 is used for the
timeout function for the backups, and is given the name Ato(s) here.

When the time for fault correction is added, the expectation function with
conditions to the times and number of faults becomes

E[e−sY |r = x, c = y, φ = k] ={
e−sx , k = 0
e−s(x+y)Ato0(s)(Ato(s))k−1 , k > 0

(4.88)

Removing the condition on the number of faults, using the fault probability
function 4.49, yields the expectation function

E[e−sY |r = x, c = y] =
e−(λ+s)x

+
∞∑

k=1

e−(λ+s)(x+y)(1− e−λx)e−τms

((1− e−λy)e−τcs + (1− e−λx)e−(λ+s)ye−τms)k−1

(4.89)

Limiting the number of faults before failure to N and removing the condition
on the runtime and correction time gives the final moment generating function

4.3. Systems with timeout as a fault detection method 81

for the total runtime distribution in this system:

G(s) =
M(λ + s)

+
N∑

k=1

k−1∑

j=0

(
k − 1

j

)
e−(k−j)τmse−jτcs

(
k−j∑

i=0

(−1)i

(
k − j

i

)
M((i + 1)λ + s)

)

(
j∑

i=0

(−1)i

(
j
i

)
C((i + k − j)λ + (k − j)s)

)

(4.90)

Equation 4.90 shows the mgf for the distribution of the runtime of a task
in a homogeneous passive replication system based on a timeout fault detection
method, and where more than N faults in a single task lead to the failure of the
system.

For a model where any faults after the Nth are ignored, the fault probability
function 4.53 is used to remove the condition on the number of faults, resulting
in the expectation function

E[e−sY |r = x, c = y] =
e−(λ+s)x

+
(N−1∑

k=1

e−(λ+s)(x+y)(1− e−λx)e−τms

((1− e−λy)e−τcs + (1− e−λx)e−(λ+s)ye−τms)k−1

)

+ e−s(x+y)(1− e−λx)e−τms

((1− e−λy)e−τcs + (1− e−λx)e−(λ+s)ye−τms)N−1

(4.91)

Finally, removing the condition on time use from the expectation function

82 Chapter 4. Derivation of the mathematical models

yields

G̃(s) =
M(λ + s)

+

N−1∑

k=1

k−1∑

j=0

(
k − 1

j

)
e−(k−j)τmse−jτcs

(
k−j∑

i=0

(−1)i

(
k − j

i

)
M((i + 1)λ + s)

)

(
j∑

i=0

(−1)i

(
j
i

)
C((i + k − j)λ + (k − j)s)

))

+
N−1∑

j=0

(
N − 1

j

)
e−(N−j)τmse−jτcs

(
N−j∑

i=0

(−1)i

(
N − j

i

)
M(iλ + s)

)

(
j∑

i=0

(−1)i

(
j
i

)
C((i + N − j − 1)λ + (N − j)s)

)

(4.92)

Equation 4.92 shows the mgf for the distribution of the runtime of a task
in a homogeneous passive replication system where fault detection is based on
timeouts, and there can be no more than N faults to a single task.

4.3.4 Using a fixed fault probability

The derivation for the system with a fixed fault probability for each replica is
derived as in 4.3.2, however, the following probability function for the number
of faults is used instead of 4.11.

Pr[φ = k] =
{

κm0 , k = 0
κmk

∏k−1
i=0 (1− κmi) , k > 0

(4.93)

Using this probability function to remove the condition on the number of
faults in equation 4.73, yields the expectation function

E[e−sY |rn = xn] = κm0e
−sx0 +

∞∑

k=1

κmke−sxk

k−1∏

i=0

e−τis(1− κmi) (4.94)

4.3. Systems with timeout as a fault detection method 83

If more than N faults lead to failure, removing the timing conditions gives
a runtime distribution with the moment generating function

G(s) = κm0M0(s) +
N∑

k=1

κmkMk(s)
k−1∏

i=0

e−τis(1− κmi) (4.95)

Equation 4.95 shows the moment generating function for an inhomogeneous
passive replication system based on a timeout fault detection method, where a
fixed fault probability for each replica is used instead of a poisson fault process,
and where there is no extra time used for fault correction.

If there can be no more than N faults, the moment generating function can
be found by letting κmN = 1 in equation 4.95.

Adding the fault correction delay

In systems where there is a possibility of faults during correction and a timeout
function on the correction part of the system, the expectation function 4.78 is
used, but with the distribution for the time to detection, Atoi(s) taken from
equation 4.72 for i > 0.

The fault probability function for this system is

Pr[φ = k] =
{

κm0 , k = 0
κmkκck(1− κm0)

∏k−1
i=1 (1− κmiκci) , k > 0

(4.96)

Removing the condition on the number of fault yields the expectation func-
tion

E[e−sY |rn = xn, cn = yn] =
κm0e

−sx0

+
∞∑

k=1

κmkκcke−s(xk+yk)(1− κm0)e−sτm0

k−1∏

i=1

(1− κci)e−sτci + (1− κmi)κcie
−syie−sτmi

(4.97)

Limiting the number of faults before failure to N and removing the condition

84 Chapter 4. Derivation of the mathematical models

on time use yields the moment generation function

G(s) =
κm0M0(s)

+
N∑

k=1

κmkκckMk(s)Ck(s)(1− κm0)e−sτm0

k−1∏

i=1

(1− κci)e−sτci + (1− κmi)κciCi(s)e−sτmi

(4.98)

Equation 4.98 shows the moment generating function of the runtime of a
task in a fault tolerant system where the fault detection is based on timeouts,
where the fault probability for running and correction of the task on each replica
is fixed, and where more than N faults occurring to a single task will lead to
the failure of the system.

If there can be no more than N faults in the system, the moment-generating
function can be found by setting κmN = κcN = 1 in equation 4.98.

4.4 Systems with acceptance failure detection

In this section, expressions for the runtime distributions in systems where ac-
ceptance tests are used as a fault detection method are derived.

In these systems, a method implementing a task runs to completion, and the
results are then tested. If the results pass the test, the task is finished, if they
fail the test, a value failure is assumed, and the task is rerun.

As the methods runs to completion regardless of the faults, no separate time
to failure or time to detection distributions is needed. However, the time used
to test the results needs to be modelled. The distribution of the test time is
given the moment-generating function D(s). As with the timeout systems, the
exact time of when a fault occurs is not modelled, so both the poisson process
fault model and the fixed fault probability model can be used.

4.4.1 Inhomogeneous systems

Using the poisson process fault model, the probability that faults occur to k
replicas is given by the probability function 4.26

A task where faults are detected in φ replicas will have the total runtime

Y = r0 + d +
φ∑

i=1

ci + ri + d (4.99)

4.4. Systems with acceptance failure detection 85

where ri is the runtime for replica i, d is the test time and ci is the time used
to get replica i ready to run.

As before, we set up an expectation function for e−sY with conditions to
time use and number of faults

E[e−sY |rn = xn, cn = yn, d = z, φ = k] =

e−sx0e−sz , k = 0

e−sx0e−sz
k∏

i=1

e−s(yi+xi)e−sz , k > 0
(4.100)

Removing the condition on the number of faults, using the fault probability
function 4.26 yields the expectation function

E[e−sY |rn = xn, cn = yn, d = z] =
e−(λ+s)x0e−sz

+
∞∑

k=1

e−s(k+1)ze−(λ+s)(xk+yk)

(e−sx0 − e−(λ+s)x0)
k−1∏

i=1

(e−s(xi+yi) − e−(λ+s)(xi+yi))

(4.101)

Limiting the number of faults before failure to N and removing the condi-
tions on time use gives the moment generating function

G(s) =
M0(λ + s)D(s)

+
N∑

k=1

Mk(λ + s)Ck(λ + s)D((k + 1)s)

(M0(s)−M0(λ + s))
k−1∏

i=1

(Mi(s)Ci(s)−Mi(λ + s)Ci(λ + s))

(4.102)

Equation 4.102 shows the moment generating function of the runtime distri-
bution in an acceptance test based passive replication system, where more than
N faults to a single task lead to the failure of the system.

If the number of faults that can occur to a single task is limited to N , the
fault probability function 4.30 is used to remove the condition on number of

86 Chapter 4. Derivation of the mathematical models

faults from the expectation function 4.100, resulting in the expectation function

E[e−sY |rn = xn, cn = yn, d = z] =
e−(λ+s)x0e−sz

+

(
N−1∑

k=1

e−s(k+1)ze−(λ+s)(xk+yk)

(e−sx0 − e−(λ+s)x0)
k−1∏

i=1

(e−s(xi+yi) − e−(λ+s)(xi+yi))

)

+ e−s(N+1)ze−s(xN+yN)

(e−sx0 − e−(λ+s)x0)
N−1∏

i=1

(e−s(xi+yi) − e−(λ+s)(xi+yi))

(4.103)

Removing the conditions on time use yields the moment-generating function

G̃(s) =
M0(λ + s)D(s)

+

(
N−1∑

k=1

Mk(λ + s)Ck(λ + s)D((k + 1)s)

(M0(s)−M0(λ + s))
k−1∏

i=1

(Mi(s)Ci(s)−Mi(λ + s)Ci(λ + s))

)

+ MN (s)CN (s)D((N + 1)s)

(M0(s)−M0(λ + s))
k−1∏

i=1

(Mi(s)Ci(s)−Mi(λ + s)Ci(λ + s))

(4.104)

Equation 4.104 shows the moment generating function for the runtime of a
task in an inhomogeneous passive replication system with acceptance test fault
detection, where there can be no more than N faults occurring to a single task.

4.4.2 Homogeneous systems

As with the watchdog and timeout systems, a model for a system with homo-
geneous replicas with acceptance test as fault detection is derived.

A task where faults are detected in φ replicas will have a total runtime given
by

Y = (φ + 1)r + (φ + 1)d + φc (4.105)

4.4. Systems with acceptance failure detection 87

where r is the time used to run the task on one replica, d is the test time, and
c is the fault correction time.

The expectation function of e−sY with conditions to the number of faults,
the runtime, test time and correction time becomes

E[e−sY |r = x, c = y, d = z, φ = k] = e−sxe−sz(e−s(x+y)e−sz)k (4.106)

Using the number of faults probability function from 4.49 to remove the
condition on the number of faults yields

E[e−sY |r = x, c = y, d = z] =
e−(λ+s)xe−sz

+
∞∑

k=1

e−(k+1)sze−(λ+(k+1)s)xe−(λ+ks)y

(1− e−λx)(1− e−λ(x+y)))k−1

(4.107)

Setting the maximum number of faults before failure to N and removing the
timing conditions gives the moment-generating function

G(s) =
M(λ + s)D(s)

+
N∑

k=1

D((k + 1)s)
k−1∑

i=0

(−1)i

(
k − 1

i

)

(M((i + 1)λ + (k + 1)s)−M((i + 2)λ + (k + 1)s))
C((i + 1)λ + ks)

(4.108)

Equation 4.108 shows the moment-generating function for a task in an accep-
tance test based passive replication system where the replicas are homogeneous,
and where more than N faults occurring to a single task lead to the failure of
the system.

If there can be no more than N faults occurring to the task, the fault prob-
ability function 4.53 is used to remove the condition on the number of faults.

88 Chapter 4. Derivation of the mathematical models

This results in the expectation function

E[e−sY |r = x, c = y, d = z] =
e−(λ+s)xe−sz

+
(N−1∑

k=1

e−(k+1)sze−(λ+(k+1)s)xe−(λ+ks)y

(1− e−λx)(1− e−λ(x+y)))k−1

)

+ e−(N+1)sze−(N+1)sxe−Nsy

(1− e−λx)(1− e−λ(x+y)))N−1

(4.109)

Removing the timing conditions gives the moment-generating function

G̃(s) =
M(λ + s)D(s)

+
(N−1∑

k=1

D((k + 1)s)
k−1∑

i=0

(−1)i

(
k − 1

i

)

(M((i + 1)λ + (k + 1)s)−M((i + 2)λ + (k + 1)s))

C((i + 1)λ + ks)
)

+ D((N + 1)s)
N−1∑

i=0

(−1)i

(
N − 1

i

)

(M(iλ + (N + 1)s)−M((i + 1)λ + (N + 1)s))
C(iλ + Ns)

(4.110)

Equation 4.110 shows the moment-generating function for the runtime dis-
tribution of a task in a homogeneous passive replication system with acceptance
test-based fault detection, where there can be no more than N faults occurring
to a single task.

4.4.3 Using a fixed fault probability

For a system with a fixed fault probability 1− κi for each replica i, the number
of faults probability function becomes

Pr[φ = k] =
{

κ0 , k = 0
κk

∏k−1
i=0 (1− κi) , k > 0

(4.111)

4.5. Other systems 89

Using this fault probability function to remove the conditions on the number
of faults from the expectation function 4.100 results in the following expectation
function

E[e−sY |rn = xn, cn = yn, d = z] =
κ0e

−sx0e−sz

+
∞∑

k=1

κke−s(xk+yk)e−s(k+1)z

(1− κ0)e−sx0

k−1∏

i=1

(1− κi)e−s(xi+yi)

(4.112)

Limiting the number of faults before failure to N , and removing the timing
conditions gives the moment-generating function

G(s) =
κ0M0(s)D(s)

+
N∑

k=1

κkMk(s)Ck(s)D((k + 1)s)

(1− κ0)M0(s)
k−1∏

i=1

(1− κi)Mi(s)Ci(s)

(4.113)

Equation 4.113 shows the moment generating function for the runtime dis-
tribution of a task in an acceptance test based passive replication system where
there is a fixed fault probability for each replica, and where more than N faults
to a single task lead to a system failure.

If there can be no more than N faults to a single task, 4.113 can be used
with κN = 1.

4.5 Other systems

The previous sections in this chapter do cover run-time distribution models for
many systems, but there are of course many similar systems that can not be
modelled using the derived equations as they are, and where modification of the
models has to be used.

In this system, an example of such a modification, a system class using both
timeout and acceptance test as fault detectors, is derived.

Also, a short description of how the derived equations can be used in a simple
checkpointed system is presented.

90 Chapter 4. Derivation of the mathematical models

4.5.1 Combination of timeout and acceptance tests

Combining the timeout detection with acceptance tests can be useful, as they
together can detect a wide range of failures. The timeout can detect crash and
omission failures, while the acceptance test can detect some value failures, and
combined, failures in all three categories are detected.

In this section, a runtime model of a system that combines the two is devel-
oped. In the modelled system, crash or omission failures are caught when the
system reaches timeout. If there is no timeout, the acceptance test will check
the results for value failures. If a component failure is detected, correction and
rerun is performed as in the other modelled systems.

The fault model

For simplicity, the fault model with fixed fault probability for each part of the
system is used. For each replica i, there is a probability κcoi that readying the
replica (i.e. the correction process) does not cause a crash or omission failure,
there is a probability κmoi that running the replica does not cause a crash or
omission failure, and there is a probability κvi that there is no value failure
detected when testing the results.

If a replica fails, there are three possibilities of where the failure is detected:

• Crash or omission failure during correction, detection is at the timeout for
the correction, τci

• No crash or omission failure during correction, but crash or omission failure
during the execution of a replica. Detection is at the timeout for the
execution, τmi after the execution started.

• No crash or omission failure, but a value failure detected by the acceptance
test.

For a system where there is no correction time (e.g. the primary replica
when the task execution starts), the time to failure detection is distributed with
the pdf

anci(t) =
1− κmoi

1− κmoiκvi
δ(t− τmi) +

1− κvi

1− κmoiκvi
κmoiδ(t− (xi + z)) (4.114)

which has the mgf

Anci(s) =
1− κmoi

1− κmoiκvi
e−sτmi +

1− κvi

1− κmoiκvi
κmoie

−s(xi+z) (4.115)

4.5. Other systems 91

If there is a correction time, and a separate timeout function for this, the
time to failure detection is distributed with the pdf

ai(t) =
1− κcoi

1− κcoiκmoiκvi
δ(t− τci) +

1− κmoi

1− κcoiκmoiκvi
κcoiδ(t− (yi + τmi))

+
1− κvi

1− κcoiκmoiκvi
κcoiκmoiδ(t− (yi + xi + z))

(4.116)

which has the mgf

Ai(s) =
1− κcoi

1− κcoiκmoiκvi
e−sτci +

1− κmoi

1− κcoiκmoiκvi
κcoie

−syie−sτmi

+
1− κmoi

1− κcoiκmoiκvi
κcoiκmoie

−s(yi+xi+z)

(4.117)

Deriving the equation

As in the previous systems, we start with the number of faults probability model

Pr[φ = k] ={
κmo0κv0 , k = 0
κcokκmokκvk(1− κmo0κv0)

∏k−1
i=1 (1− κcoiκmoiκvi) , k > 0

(4.118)

and an expectation function with condition to the number of faults and the
times used on each part of the system

E[e−sY |rn = xn, cn = yn, d = z, φ = k] ={
e−s(x0+z) , k = 0
e−s(xi+yi+z)Anc0(s)

∏k−1
i=1 Ai(s) , k > 0

(4.119)

Removing the condition on the number of faults yields the expectation func-
tion

E[e−sY |rn = xn, cn = yn, d = z] =
κmo0κv0e

−s(x0+z)

+
∞∑

k=1

κcokκmokκvke−s(xk+yk+z)

((1− κmo0)e−sτm0 + (1− κv0)κmo0e
−s(x0+z))

k−1∏

i=1

(1− κcoi)e−sτci + (1− κmoi)κcoie
−syie−sτmi

+ (1− κvi)κcoiκmoie
−s(xi+yi+z)

(4.120)

92 Chapter 4. Derivation of the mathematical models

Limiting the number of faults before failure to N and removing the condi-
tions on time use, gives the moment generating function

G(s) =

κmo0κv0M0(s)D(s) +
N∑

k=1

κcokκmokκvkMk(s)Ck(s)D(s)

((1− κmo0)e−sτm0 + (1− κv0)κmo0M0(s)D(s))
k−1∏

i=1

(1− κcoi)e−sτci + (1− κmoi)κcoiCi(s)e−sτmi

+ (1− κvi)κcoiκmoiMi(s)Ci(s)D(s)

(4.121)

Equation 4.121 describes the moment generating function of the runtime of
a combined timeout and acceptance test system, as a function of the fault-free
runtimes, the correction times, the timeouts and the probabilities that failures
does not occur.

4.5.2 Simple checkpointed systems

In the simple checkpointed system, the task is partitioned into N parts, with
checkpoints between the parts. Before entering a new part, the state is logged.
Each part i has a run-time distribution with mgf Gi(s). When an error is
detected, the system goes back to the latest checkpoint, restarting the part in
which the error was detected. This can be viewed as running a series of fault
tolerant tasks, where the total runtime can be viewed as a convolution of the
runtime for all parts of the system.

Given a checkpointed method consists of N parts where a fault detected in
a part is corrected within the same part. Each part i have a run-time, including
any fault fault handling, distributed by Gi(t). The total runtime distribution of
the system will then be equal to the convolution of the runtime distribution for
all the parts, which, when written as a moment-generating function, becomes
the product of the mgfs of the runtimes for the parts:

Gtot(s) =
N∏

i=1

Gi(s) (4.122)

4.6 System structures with models not derived

As mentioned in the introduction to the chapter, there are of course systems
with structures that do not fit with any of the models in this work. Many of

4.6. System structures with models not derived 93

Part 3 is rerunFault event

Part 4Part 3Part 2Part 1

�
�
�

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

Figure 4.3: Program consisting of several fault-tolerant parts. If an error is
detected in one of the parts, the affected part, not the whole program, is rerun.

the models not presented here can, however, be derived in the same way as the
models that are derived in this work.

This section presents some thought about some system structures that are
not modeled in this work, where the derivation of the models are less straight-
forward than the ones given in the work. It can be viewed as suggestions for
future work, but also as a caution of some of the “pitfalls” that must be avoided
when developing new models.

4.6.1 Combination of timeout and acceptance tests, with
failure probabilities dependent on previous failure
modes

In 4.5.1, a system where timeout and acceptance tests were combined for fault
detection was described, and the runtime model for the system was derived. In
the model, the fault model used different probabilities for value and omission
failures, and the probabilities could also be varied between the different replicas.

A use for varying failure probabilities between the replicas is to model faults
like design faults, that are inherent in the system, so that for a system where
the primary fails, the backups have a higher probability of failure. A weakness
with the model as it is, is that the failure mode of the primary is disregarded
when it comes to the failure probabilities of the backups.

If, for instance, we want a model where a failure of the primary leads to a
higher probability for the same mode of failure of the backup, but no change in

94 Chapter 4. Derivation of the mathematical models

the probabilities for other failure modes, the model presented in 4.5.1 cannot
be used.

To create a mathematical model for this system, the number of detected
faults probability function must be changed so that not only the number of
faults, but also the types of faults are a part of the function, e.g.

Pr(φv = kv, φmo = kmo, φco = kco) = · · · (4.123)

As shown in figure 4.4, there can be several paths to a given number of
failures, which must be reflected in the fault probability functions. For a system
without correction failures, and the failure probabilities as shown in figure 4.4,
the detected fault probability function becomes

Pr(φv = kv, φmo = kmo) =(
kv∏

i=0

1− κvi

)(
kmo∏

i=0

1− κmoi

)(
kmo∑

i=0

κmoi

)kv

(4.124)

When adding the probabilities for correction failures, the probability func-
tion becomes more complex.

The time to detection function must also be changed. As the distributions
and timeout values used in the model may vary between the replicas, the se-
quence of failures can be of importance also here, e.g. the timing distribution
of a run that reaches timeout in the primary followed by a non-acceptance in
the first backup can be different from a run that has a non-acceptance in the
primary followed by a timeout of the backup.

The factors discussed here show that the full mathematical model for the
runtime in this system can be very complex, but it should still be possible to
derive using the methods described in this chapter.

The difference between the resulting distributions from this model and an
approximation using the model derived in 4.5.1 will be very small for most
systems, as the models will differ on the probabilities of the backups’ failures,
while the primary is unaffected.

4.6.2 Nested fault tolerant structures

It can often be desirable to design a fault tolerant structure out of parts that
also are fault tolerant. For instance, a task that is replicated may itself be built
from parts that also are replicated, as shown in figure 4.5.

At first, it may seem logical to find the runtime distributions in a way similar
to the simple checkpointed system described in 4.5.2, e.g. using one of the

4.6. System structures with models not derived 95

(No. detected value failures, No. detected omission failures)

1−κ 1−κ

1−κ 1−κ

1−κ 1−κ

more value
failures

more omission
failures

1

2

mo0 mo1

mo0 mo1

mo0 mo1

mo0 mo1 mo2

mo0 mo1 mo2

κ (1−κ) κ (1−κ)

κ (1−κ) κ (1−κ) κ (1−κ)

κ (1−κ)
v0 v0 v0

v1 v1 v1

0,0 0,1 0,2

1,0 1,1

2,0 2,1

1,2

2,2

States given as

Figure 4.4: If one omission and one value failure occurs during the running of
a task, there are two possible ways this can happen. In path 1, the omission
failure occurs first, in path 2, the value failure occurs first. If there are more
failures, more paths are possible

96 Chapter 4. Derivation of the mathematical models

Fault detection mechanism

�������������
�������������
��������������������������

���������������������������������������
��������������������������������������� ���������������������������������������

��
���������������������������������������

	�	
	�		�	

�

�

�

������
���
������
���

Part 1 Part 2 Part 3

Task
start

Task
finish

Primary execution

Backup of part 2

Backup of whole task

Figure 4.5: Nested fault tolerant structure. If a fault is detected after part 2,
only part 2 is rerun. If a fault is detected at task finish, the whole task is rerun.

4.7. Summary of main results 97

previously derived models to find the runtime distribution of part 2, and then
use this runtime distribution as a part of the “fault-free” runtime distribution
for the whole task in figure 4.5. For a system where different and independent
faults are detected at the end of part 2 and the end of the task, this may also
be a correct solution.

If, however, the same faults or faults that are correlated can be detected at
the end of part 2 and the end of the task, using the solution described above is
not correct. Seen from the last fault detector, the task itself has the possibility
to correct some of the occurring faults before reaching the detection mechanism,
so the “inner” fault tolerance structure of part 2 will affect the fault probabilities
of the “outer” fault tolerant structure of the whole task, which must be reflected
in the model.

4.6.3 Checkpointed systems that roll back further than
the last checkpoint

A problem with the checkpointed system described in 4.5.2 is that there some-
times is a need for rolling back to an earlier checkpoint than the last, as a
detected error may have a cause that occurred prior to the last checkpoint.
Some checkpointed fault tolerant systems will therefore roll back more than one
checkpoint, or even restart the task if certain criteria (e.g. recurrence of faults
detected at the same checkpoint) is fulfilled.

A fault tolerant structure with a checkpoint strategy that allows rolling back
more than one checkpoint will require a more complex mathematical runtime
distribution model. The number of checkpoints that are rolled back, how far
back it is possible to roll back before the whole task must be restarted, and
other rollback strategy decisions may vary. This may lead to several different
models, each customized to a given strategy.

4.7 Summary of main results

This section contains a summary of the results found earlier in the chapter.

The inhomogeneous system with watchdog fault detection

For a fault tolerant system based on passive, inhomogeneous replicas and a
watchdog fault detection system, where more than N faults lead to the failure

98 Chapter 4. Derivation of the mathematical models

of the system, the run-time distribution of a single task is given by equation 4.34:

G(s)
= M0(λ + s)

+
N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

(1−M0(λ + s))D0(s)
k−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))Di(s)

If there can be no more than N faults occurring to the system, the runtime
is given by equation 4.35:

G̃(s)
= M0(λ + s)

+
(N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

(1−M0(λ + s))D0(s)
k−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))Di(s)
)

+
(

λ

λ + s

)N

MN (s)CN (s)

(1−M0(λ + s))D0(s)
N−1∏

i=1

(1−Mi(λ + s)Ci(λ + s))Di(s)

The homogeneous system with watchdog fault detection

For a passive replication system based on homogeneous replicas and a watchdog
based fault detector, where more than N faults to a single task lead to a system
failure, the mgf of the runtime of a task is given by equation 4.57:

G(s)
= M(λ + s)

+
(N∑

k=1

(
λ

λ + s
D(s)

)k

(k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

4.7. Summary of main results 99

If there can be no more than N faults occurring to a single task, the runtime
distribution is given by equation 4.58:

G̃(s)
= M(λ + s)

+
(kmax−1∑

k=1

(
λ

λ + s
D(s)

)k

(k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

+
(

λ

λ + s
D(s)

)N

(N−1∑

i=0

(−1)i

(
N − 1

i

)
(M(iλ + (i + 1)s)

−M((i + 1)λ + (i + 2)s))C(iλ + (i + 1)s)
)

System with changing fault rates and watchdog based fault detection

For a passive replication system with watchdog-based fault detection, where the
fault rate may change between different parts of the system, and where more
than N faults lead to the failure of the system, the runtime distribution is given
by the moment-generating function in equation 4.62:

G(s)
= M0(λm0 + s)

+
N∑

k=1

Ck(λck + s)Mk(λmk + s)

(1−M0(λm0 + s))
λm0

λm0 + s
D0(s)

k−1∏

i=1

(
(1−Ci(λci + s))

λci

λci + s

+ (Ci(λci + s)−Ci(λci + s)Mi(λmi + s))
λmi

λmi + s

)
Di(s)

100 Chapter 4. Derivation of the mathematical models

If there can be no more than N faults occurring to a single task, the runtime
distribution is given by equation 4.65:

G̃(s)
= M0(λm0 + s)

+
(N∑

k=1

Ck(λck + s)Mk(λmk + s)

(1−M0(λm0 + s))
λm0

λm0 + s
D0(s)

k−1∏

i=1

(
(1−Ci(λci + s))

λci

λci + s

+ (Ci(λci + s)−Ci(λci + s)Mi(λmi + s))
λmi

λmi + s

)
Di(s)

)

+ CN (s)MN (s)

(1−M0(λm0 + s))
λm0

λm0 + s
D0(s)

k−1∏

i=1

(
(1−Ci(λci + s))

λci

λci + s

+ (Ci(λci + s)−Ci(λci + s)Mi(λmi + s))
λmi

λmi + s

)
Di(s)

Inhomogeneous system with timeout fault detection

For an inhomogeneous passively replicated fault tolerant system with timeout
as a fault detection method, and where more than N faults occurring to a
single task lead to the failure of the system, the runtime is distributed with a
moment-generating function given by equation 4.80:

G(s) =
M0(λ + s)

+
N∑

k=1

Mk(λ + s)Ck(λ + s)

e−sτm0(1−M0(λ))
k−1∏

i=1

e−sτci(1−Ci(λ)) + e−sτmiCi(λ + s)(1−Mi(λ))

4.7. Summary of main results 101

If faults after the Nth are ignored, the runtime is distributed with the
moment-generating function given by equation 4.82:

G̃(s) =
M0(λ + s)

+
(N−1∑

k=1

Mk(λ + s)Ck(λ + s)

e−sτm0(1−M0(λ))
k−1∏

i=1

e−sτci(1−Ci(λ)) + e−sτmiCi(λ + s)(1−Mi(λ))
)

+ MN (s)CN (s)
e−sτm0(1−M0(λ))
k−1∏

i=1

e−sτci(1−Ci(λ)) + e−sτmiCi(λ + s)(1−Mi(λ))

Homogeneous system with timeout fault detection

For a homogeneous passive replication system with timeout-based fault detec-
tion where more than N faults to a single task lead to the failure of the system,
the moment-generating function for the runtime distribution of a task is given
by equation 4.90:

G(s) =
M(λ + s)

+
N∑

k=1

k−1∑

j=0

(
k − 1

j

)
e−(k−j)τmse−jτcs

(
k−j∑

i=0

(−1)i

(
k − j

i

)
M((i + 1)λ + s)

)

(
j∑

i=0

(−1)i

(
j
i

)
C((i + k − j)λ + (k − j)s)

)

102 Chapter 4. Derivation of the mathematical models

If there can be no more than N faults occurring to a single task, the runtime
distribution has a moment-generating function given by equation 4.92:

G̃(s) =
M(λ + s)

+

N−1∑

k=1

k−1∑

j=0

(
k − 1

j

)
e−(k−j)τmse−jτcs

(
k−j∑

i=0

(−1)i

(
k − j

i

)
M((i + 1)λ + s)

)

(
j∑

i=0

(−1)i

(
j
i

)
C((i + k − j)λ + (k − j)s)

))

+
N−1∑

j=0

(
N − 1

j

)
e−(N−j)τmse−jτcs

(
N−j∑

i=0

(−1)i

(
N − j

i

)
M(iλ + s)

)

(
j∑

i=0

(−1)i

(
j
i

)
C((i + N − j − 1)λ + (N − j)s)

)

System with fixed fault probability and timeout fault detection

For an inhomogeneous timeout system where the fault probability model is
based on a fixed fault probability for each part of the system instead of the
poisson fault process, the run-time is given by the moment generating function
in equation 4.98:

G(s) =
κm0M0(s)

+
N∑

k=1

κmkκckMk(s)Ck(s)(1− κm0)e−sτm0

k−1∏

i=1

(1− κci)e−sτci + (1− κmi)κciCi(s)e−sτmi

If there can be no more than N faults occurring to a single task, equation 4.98
is used with κmN = κcN = 1.

4.7. Summary of main results 103

Inhomogeneous system with acceptance test

For an inhomogeneous passive replication system where the fault detection is
based on acceptance tests, and where more than N faults to a single task leads
to the failure of the system, the runtime distribution of a task is given by the
moment-generating function in equation 4.102:

G(s) =
M0(λ + s)D(s)

+
N∑

k=1

Mk(λ + s)Ck(λ + s)D((k + 1)s)

(M0(s)−M0(λ + s))
k−1∏

i=1

(Mi(s)Ci(s)−Mi(λ + s)Ci(λ + s))

If there can be no more than N faults occurring to the system, the runtime
distribution is given by the moment-generating function in equation 4.104:

G̃(s) =
M0(λ + s)D(s)

+

(
N−1∑

k=1

Mk(λ + s)Ck(λ + s)D((k + 1)s)

(M0(s)−M0(λ + s))
k−1∏

i=1

(Mi(s)Ci(s)−Mi(λ + s)Ci(λ + s))

)

+ MN (s)CN (s)D((N + 1)s)

(M0(s)−M0(λ + s))
k−1∏

i=1

(Mi(s)Ci(s)−Mi(λ + s)Ci(λ + s))

Homogeneous system with acceptance test

For a passive replication system with homogeneous replicas where the fault
detection is based on acceptance tests, and where more than N faults to a single
task leads to the failure of the system, the runtime of a task in the system is

104 Chapter 4. Derivation of the mathematical models

distributed with a moment-generating function given by equation 4.108:

G(s) =
M(λ + s)D(s)

+
N∑

k=1

D((k + 1)s)
k−1∑

i=0

(−1)i

(
k − 1

i

)

(M((i + 1)λ + (k + 1)s)−M((i + 2)λ + (k + 1)s))
C((i + 1)λ + ks)

If there can be no more than N faults occurring to a single task, the run-
time distribution of a task is given by the moment-generating function in equa-
tion 4.110:

G̃(s) =
M(λ + s)D(s)

+
(N−1∑

k=1

D((k + 1)s)
k−1∑

i=0

(−1)i

(
k − 1

i

)

(M((i + 1)λ + (k + 1)s)−M((i + 2)λ + (k + 1)s))

C((i + 1)λ + ks)
)

+ D((N + 1)s)
N−1∑

i=0

(−1)i

(
N − 1

i

)

(M(iλ + (N + 1)s)−M((i + 1)λ + (N + 1)s))
C(iλ + Ns)

System with fixed fault probability and acceptance test

For an inhomogeneous acceptance test system where there is a fixed fault prob-
ability for each replica, the run-time of the system is given by the moment-
generating function in equation 4.113:

G(s) =
κ0M0(s)D(s)

+
N∑

k=1

κkMk(s)Ck(s)D((k + 1)s)

(1− κ0)M0(s)
k−1∏

i=1

(1− κi)Mi(s)Ci(s)

If there can be no more than N faults occurring to a single task, equa-
tion 4.113 is used with κN = 1.

4.7. Summary of main results 105

System combining timeout and acceptance test

For an inhomogeneous system with both timeout and acceptance test as fault
detection and fixed fault probabilities for the different fault types in each part
of the system, the run-time of the system is given by the moment-generating
function in equation 4.121:

G(s) =

κmo0κv0M0(s)D(s) +
N∑

k=1

κcokκmokκvkMk(s)Ck(s)D(s)

((1− κmo0)e−sτm0 + (1− κv0)κmo0M0(s)D(s))
k−1∏

i=1

(1− κcoi)e−sτci + (1− κmoi)κcoiCi(s)e−sτmi

+ (1− κvi)κcoiκmoiMi(s)Ci(s)D(s)

If there can be no more than N faults to a single task, equation 4.121 is used
with κmoN = κcoN = κvN = 1.

106 Chapter 4. Derivation of the mathematical models

Chapter 5

Use of the models

In chapter 4, mathematical models for run-time distributions in various pas-
sive replication systems were developed. In this chapter, it is shown through
examples how the models and the results from the models can be used.

To be able to “see” the run-time distributions, the distributions have to be
transformed from the moment-generating function domain to the time domain,
so this chapter also contains a short description on how MATLAB and Simulink
can be used for a numerical transform from moment-generating functions to
cumulative distribution functions.

To be able to compare the results from the mathematical models with results
generated in another way, a discrete-event simulator that simulated the timing
behavior of passive fault tolerant systems was developed. This chapter also
contains a description of the simulator used.

5.1 The simulator

A discrete event simulator was developed to simulate the behavior of different
passive replication systems. Simulating the systems is in many ways a more
intuitive approach than using the mathematical models developed in chapter 4,
however, the results from the simulator are less accurate. The main goal with
the simulator was to enable comparison of the results from the mathematical
models with results generated in a different way, thus having an “acceptance
test” for the results.

The simulator used in this work was first presented in [47].

108 Chapter 5. Use of the models

5.1.1 Simulator structure

Because of the various fault tolerance mechanisms that were to be simulated,
the simulator was built in a way that the parts of it could be changed easily to
match the different simulated systems. The main parts of the simulator and the
communication between them is shown in figure 5.1.

Client

The client part of the simulator creates process objects, which are sent to the
server.

Server

The main part of the simulator is the server, which implements both the normal
service and the fault handling of the system. The operation of the server depends
on the fault detection mechanism that is simulated.

Server operation in watchdog and timeout systems

During normal, fault-free operation, the server with watchdog or timeout fault
detection operates as a two-state (Idle and Busy) machine. The fault-free
behaviour is the same for both versions of the server.

When a process object arrives from the client, the time of the arrival is
logged.

If the server is in the Idle state during process arrival, a processing time
is drawn from the runtime distribution, and the server changes state to Busy,
and the time for start of processing is logged.

If server is in not the Idle state, the process is enqueued. If the queue is not
empty when the processing of a process object is finished, the processing of the
first object in the queue is begun immediately, and the start of the processing
time is logged.

When the processing of a process object is finished and the queue is empty,
the server reenters the Idle state.

During fault handling, the server will operate according to the chosen fault
tolerance behaviour.

If the server receives a fault object while it is in the Busy or Correction
state, it will enter the Error state. The watchdog server will draw a fault
detection time from the fault detection time distribution, while the timeout
server will calculate the time remaining to timeout and use this as the fault

5.1. The simulator 109

fault generator

Client

Network

Server

Observer

Network

fault generator

Server

Figure 5.1: Main structure of the simulator

110 Chapter 5. Use of the models

fault arrivalprocess arrival

queue

IDLE

BUSY
fault
arrival

ERROR
fault
detected

CORRECTION

Fault corrected

finished
service and
empty

finished
service and
non−empty
queue

Figure 5.2: State machine diagram for the server part of the simulator in a
watchdog or a timeout system

correction time. If the server is in the Idle or Error state, the arrival of the
fault object is ignored as there is either no process that the fault affects, or the
fault affects an already erroneous process.

The server will remain in the Error state for the duration of the fault detec-
tion time, then it will enter the Correction state. A correction time is drawn
from the fault correction time distribution, when this time is up, the server will
return to the Busy state (unless a new fault arrived while it was in the Correc-
tion state). For inhomogeneous systems, a new time is drawn from a runtime
distribution, for homogeneous system, the runtime that was drawn when the
processing of the process object started is used.

A state machine diagram for the server operation in a watchdog or timeout
system is shown in figure 5.2.

Server operation in acceptance test systems

During normal operation, the acceptance test system has three states, Idle,
Busy and Testing.

When a process object arrives from the client, the time of the arrival is
logged.

5.1. The simulator 111

TESTING

IDLE

BUSY
fault
detected

CORRECTION

process arrival

fault corrected

finished
service

no fault and
nonempty
queue

no fault and
empty queue

Figure 5.3: State machine diagram for the server operation in an acceptance
test system

If the server is in the Idle state when the process arrives, a service time is
drawn from the service time distribution, the server changes state to Busy, and
the start of processing time is logged.

If the server is not in the Idle state when the process arrives, the process is
enqueued.

When the processing time is up, the server enters the Testing state, and a
test time is drawn from the test time distribution. The server will remain in
the Testing state for the duration of the test time.

If there has been no fault arrival during the service, the server will enter the
Idle state when the test time is finished if there is no enqueued process objects.
If there is a process in the queue, the server will enter the Busy state and start
service on the first process in the queue.

If there has been a fault arrival, the server will enter the Correction state
after the test time is finished. A correction time is drawn from the correction
time distribution, and the server will restart the service on the process when
the correction time is finished, entering the Busy state.

A state machine diagram for the server operation in an acceptance test
system is shown in figure 5.3.

112 Chapter 5. Use of the models

Fault generator

The fault generator part of the simulator sends out fault objects that will trigger
a fault event in the server. When a fault is created, a random time is drawn
from a negative exponential distribution to decide when the next fault is to be
created.

Observer

The observer is an object that collects data from the simulation and presents
these data on a form that can be read by the data processing program. This
was done by writing the results as text in a .m file, using a format that Matlab
could read.

Network and Network fault generator

A simulator part for the network and a network fault generator was planned,
but never implemented. As the main focus of this work has been on faults that
occur when a task is processed on the server, this part was not prioritized.

5.1.2 Implementation

The simulator was implemented in C++ using the ADEVS library. The de-
scription provided here is meant as a brief overview of how the simulator was
implemented.

ADEVS

ADEVS [1] (A Discrete EVent System simulator) is a C++ library for con-
structing discrete event simulators, developed by James Nutaro and released
under the GNU Lesser General Public Licence. It provides a simulator engine,
a random generator with the possibility to draw from several common distribu-
tions, and basic classes that can be used as the simulator’s building blocks.

The library was suitable for building the simulator described here. The
documentation of the library was a bit lacking, and there were some minor
problems with the version used (adevs-1.2)1. Most notably did the triangular
function of the rv (random variable) class not draw values from a triangular

1There are later versions of the library available, but as the simulator worked after some
workarounds were implemented, it has not been investigated whether the problems have been
fixed in these versions.

5.2. Calculating the results numerically 113

distribution. It was, however, possible to create workarounds once the problems
was discovered.

Program structure

The simulator was created using the ADEVS staticDigraph class, and using
the functions staticDigraph::add and staticDigraph::couple to build the
structure described in 5.1.1.

The main parts described in 5.1.1 were implemented as specializations of
the ADEVS atomic class. The atomic class is the basic building block of the
simulator which provides handling of communication between the parts of the
simulator and handling of internal and external events.

The Client, Fault generator, and Observer were implemented as classes that
were direct specializations of the atomic class, while the different variants of
servers all are specializations of a BaseServer class, which again is a specializa-
tion of the atomic class.

Faults and Processes are classes that are specializations of the ADEVS object
class. Objects of these classes are passed as messages between the parts of the
simulator, and the process objects also function as containers for simulator
results.

A Random class, specialized from the ADEVS rv class was also created,
providing an interface for drawing random values that was specialized for this
simulator.

5.1.3 Handling and presentation of results

The results from the simulation were written to a text file in MATLAB’s .m-file
format, and read by MATLAB.

To present the results in a form that could be compared to the results from
the numerical calculations using the equations from chapter 4, a cumulative
distribution function was created from the simulation results using MATLAB’s
ecdf (empirical cumulative distributed function) function.

5.2 Calculating the results numerically

As the mathematical models are written in the moment-generating function
domain, and most of the results that are used are in the time domain, the
equations have to be inverse-transformed in some way.

114 Chapter 5. Use of the models

While a symbolic inverse-transform is possible for many systems, this ap-
proach is both time-consuming and complicated. Also, as the equations describe
functions of distributions, new inverse transforms have to be calculated when
distributions are changed. Because of this, the time-domain results used in the
examples were calculated numerically.

This was done by building a model of the moment-generating function us-
ing Simulink. The moment-generating function of a distribution can be seen as
the laplace transform of the distribution’s probability density function. Thus,
describing the moment-generating function of a distribution as a control sys-
tem’s transfer function and calculating this “control system’s” step response,
will generate the distribution’s cumulative distribution function.

An example of how the structure of a Simulink model can be built for gener-
ating the cumulative distribution function from the moment generating function
of a watchdog-based system is shown in figure 5.4.

It should be noted that as this method of calculating the cumulative distri-
bution function may suffer from the same problems as other continuous system
simulations, like numerical instability.

5.3 Examples

This section presents some examples of the use of the models derived in chap-
ter 4. For some of the examples, results are compared to results from simulation,
using the simulator described in 5.1. The examples in this section are:

Example 5.1 shows the use of and comparison of the runtime models for
watchdog systems, using both the homogeneous and inhomogeneous sys-
tem model and both strategies for handling more than N faults. Results
are compared with simulator results, and a short description on how the
results can be used for finding reliability as a function of the number of
runs is given.

Example 5.2 shows how the parameters from the previous system can be
changed and the resulting runtime models. In the example, this is used for
optimizing the interval between “I’m alive” signals with respect to hard
deadlines.

Example 5.3 gives a short example on how the model of the watchdog sys-
tem with inhomogeneous replicas can be used in a system where the dis-
tributions vary between the different replicas. Results are compared to
simulator results.

5.3. Examples 115

lambda

s+lambda

Transfer Fcn2

lambda

s+lambda

Transfer Fcn1

lambda

s+lambda

Transfer Fcn

basetilde

To Workspace3

Faultfree

To Workspace2

Nontolerant

To Workspace1

base

To Workspace

Step

In2 Out2

M2_s

In2 Out2

M2_lambdas

In2 Out2

M1_lambdas1

In2 Out2

M1_lambdas

In2 Out2

M0_s

In2 Out2

M0_lambdas2

In2 Out2

M0_lambdas1

In2 Out2

M0_lambdas

In1 Out1

D1_s

In1 Out1

D0_s1

In1 Out1

D0_s

In1 Out1

C2_s

In1 Out1

C2_lambdas

In1 Out1

C1_lambdas1

In1 Out1

C1_lambdas

Figure 5.4: Model for generating the cumulative density function from the mo-
ment generating function

116 Chapter 5. Use of the models

Example 5.4 shows how the model can be used to analyze the effect of using
imprecise replicas in a watchdog system. The results are compared to
simulator results.

Example 5.5 shows the use of the model for a timeout system. Results are
compared to simulator results.

Example 5.6 shows how the model can be used to analyze the effect of using
imprecise replicas in a timeout based system. Results are compared to
simulator results.

Example 5.7 shows the use of the model for acceptance test systems. Results
are compared to simulator results.

Example 5.8 shows the use of the model for the system that combines ac-
ceptance test and timeout as fault detection. Results are compared to
similar systems that are affected by the same failures, but where one of
the detection mechanisms is missing, and undetected faults lead to system
failure.

Example 5.9 shows the use of the model in a system with checkpoints, where
acceptance test and timeout fault detection are performed at each check-
point. In the example, the model is used to optimize the number of check-
points with respect to hard deadlines.

5.3.1 Some common distributions used in the examples

In most of the examples, a set of example distributions will be used. As the
goal of this chapter is to show how the mathematical models are used, the
distributions are chosen with the intent of being easy to use, i.e. it should be
easy to draw random values from them in simulator programming, and it should
be easy to derive their moment generating function and model these in Simulink.

For the fault-free runtimes, the following distributions were used:

mα A triangular distribution with minimum time 6, maximum time 10, and
mode 8

mβ A deterministic runtime of 9

mγ A deterministic runtime of 3, used to model a fast, imprecise method

The following correction time distributions were used:

5.3. Examples 117

cα A uniform distribution with minimum time 0 and maximum time 5

cγ A uniform distribution with minimum time 0 and maximum time 1, used
to model the update time for an object with a small statespace used as an
imprecise backup

For detection time, the following distribution was used:

dα A uniform distribution with minimum time 1 and maximum time 3

The timeout values used for the different distributions are set to the maxi-
mum value for each of the distributions.

For acceptance test time, the following distribution was used:

dβ A deterministic test time of 1

The cumulative distribution functions for these distributions are shown in
figure 5.5

These distributions have the following probability density functions and the
corresponding moment generating functions:

mα, the triangular runtime distribution

mα(t) =

0 , 0 ≤ t < 6
t− 6

4
, 6 ≤ t < 8

10− t

4
, 8 ≤ t < 10

0 , t ≥ 10

(5.1)

Mα(s) =
e−6s − 2e−8s + e−10s

4s2
(5.2)

mβ , the deterministic runtime distribution

mβ(t) = δ(t− 9) (5.3)

Mβ(s) = e−9s (5.4)

mγ , the runtime distribution for imprecise backups

mγ(t) = δ(t− 3) (5.5)

Mγ(s) = e−3s (5.6)

118 Chapter 5. Use of the models

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs of runtime distributions

mα
mβ
mγ

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Cdfs of correction time distributions

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 c
or

re
ct

io
n

cα
cβ

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

time

P
ro

ba
bi

lit
y

of
 fa

ul
t d

et
ec

tio
n

Cdf for fault correction time distribution

dα

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 a
cc

ep
ta

nc
e

te
st Cdf for acceptance test time distribution

dβ

Figure 5.5: Cumulative distribution functions for the distributions listed in 5.3.1

5.3. Examples 119

cα, the correction time distribution

cα(t) =

{ 1
5

, 0 ≤ t < 5

0 , t ≥ 5
(5.7)

Cα(s) =
1− e−5s

5s
(5.8)

cγ , the correction time distribution for imprecise backups

cγ(t) =
{

1 , 0 ≤ t < 1
0 , t ≥ 5 (5.9)

Cγ(s) =
1− e−s

s
(5.10)

dα, the fault detection time distribution

dα(t) =

0 , 0 ≤ t < 1
1
2

, 1 ≤ t < 3

0 , t ≥ 3

(5.11)

Dα(s) =
e−s − e−3s

2s
(5.12)

dβ , the acceptance test time distribution

dβ(t) = δ(t− 1) (5.13)

Dβ(s) = e−s (5.14)

For some of the examples, other distributions may be used. Distributions
other than those listed here will be presented in the actual examples.

5.3.2 Systems using watchdogs as a fault detection mech-
anism

First, examples of systems using fault detection based on watchdogs will be
presented. All the systems have the same backup structure: One primary and
two backups. This makes it possible to use the same equations for all the
systems, and change the distributions and fault rate to match each system. By

120 Chapter 5. Use of the models

using the equations for watchdog systems derived the in previous chapter, 4.34,
4.35, 4.57, and 4.58 with N = 2, we get the following equations to use in the
examples:

Equation for a system with inhomogeneous backups, where more than N
faults leads to failure of the system:

Ginhom(s)
= M0(λ + s)

+
λ

λ + s
M1(λ + s)C1(λ + s)(1−M0(λ + s))D0(s)

+
(

λ

λ + s

)2

M2(λ + s)C2(λ + s)(1−M0(λ + s))D0(s)

(1−M1(λ + s)C1(λ + s))D1(s)

(5.15)

Equation for a system with inhomogeneous backups, where there can be no
more than N faults:

G̃inhom(s)
= M0(λ + s)

+
λ

λ + s
M1(λ + s)C1(λ + s)(1−M0(λ + s))D0(s)

+
(

λ

λ + s

)2

M2(s)C2(s)(1−M0(λ + s))D0(s)

(1−M1(λ + s)C1(λ + s))D1(s)

(5.16)

Equation for a system with homogeneous backups, where more than N faults
leads to the failure of the system:

Ghom(s)
= M(λ + s)

+
λ

λ + s
(M(λ + s)−M(2(λ + s)))C(λ + s)D(s)

+
(

λ

λ + s

)2

((M(λ + s)−M(2(λ + s)))C(λ + s)

− (M(2(λ + s))−M(3(λ + s)))C(2(λ + s)))D(s)2

(5.17)

Equation for a system with homogeneous backups, where there can be no

5.3. Examples 121

more than N faults:
G̃hom(s)
= M(λ + s)

+
λ

λ + s
(M(λ + s)−M(2(λ + s)))C(λ + s)D(s)

+
(

λ

λ + s

)2

((M(s)−M(λ + 2s))C(s)

− (M(λ + 2s)−M(2λ + 3s))C(λ + 2s))D(s)2

(5.18)

Example 5.1 A basic system
In the first example, the triangular distribution mα is used for both primary

and backup methods, with the correction time distribution cα and detection
time distribution dα. The mean time between faults, 1

λ is set to 10 000.
The goal with this example is to show how the mathematical models devel-

oped in chapter 4 are used, and how the results from these models compare to
simulated results. Further, the results from the models of the homogeneous and
inhomogeneous systems are compared, as well as results from the different ways
of handling more than N faults described in 4.1.3.

As both the homogeneous and the inhomogeneous system models are to be
used in the example, a distribution that shows the difference between the two
models is used. As the inhomogeneous and homogeneous systems will behave
the same if deterministic times are used, the triangular runtime distribution mα

is chosen for this example. For the inhomogeneous system, the same distribution
is used for both the primary and the backups.

For both the homogeneous and inhomogeneous system, the simulator was
set to 500 000 runs.

Figure 5.6 shows the calculated (from eq. 5.15) and simulated cumulative
density functions for the execution time in the inhomogeneous system, while
figure 5.7 shows the calculated (from eq. 5.17) and simulated cumulative density
for the execution time in the homogeneous system.

Calculated and simulated results
While the curves of the simulated and calculated results are quite similar,

the simulated results seem to have less faults than the calculated results for the
inhomogeneous system, and more faults than the calculated for the homogeneous
system.

For both the homogeneous and the inhomogeneous system, 400 of the 500 000
task runs in the simulation should have experienced faults for a perfect match
between the simulated and calculated results. In the simulation of the inho-
mogeneous system, 378 tasks (5.5% fewer than expected) experienced faults,

122 Chapter 5. Use of the models

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for runtimes in inhomogeneous replication system

Simulated
Calculated
Fault free
Non−tolerant

Figure 5.6: Cumulative density functions for the inhomogeneous watchdog sys-
tem described in example 5.1.

while for the simulation of the homogeneous system, 412 tasks (3.0% more than
expected) experienced faults.

Simulator results closer to the calculated results could probably have been
achieved by increasing the number of simulator runs. To achieve this, the ob-
server part of the simulator must be changed so it presents the results from the
simulation in a format that is easier for Matlab to handle, as Matlab seemed to
have problems handling more than approximately half a million results in the
format currently produced by the simulator.

When comparing the two methods of getting results, the simulator is more
intuitive, as the structure of the simulator in many ways matches the structure
of the simulated system. The downside is the large number of simulator runs

5.3. Examples 123

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for runtimes in homogeneous replication system

Simulated
Calculated
Fault free
Non−tolerant

Figure 5.7: Cumulative density functions for the homogeneous watchdog system
described in example 5.1.

needed to get “good” results. While using the mathematical models developed
in chapter 4 is not as intuitive as the simulator, the computation is faster and
easier to implement once the equations are in place. It should be noted that for
the numerical generation of results that were used in the examples, numerical
errors may occur.

Inhomogeneous and homogeneous systems
For the system parameters chosen in this example, the difference in the

runtime distributions of a homogeneous and an inhomogeneous system is quite
small, as shown in figure 5.8. The results seem slightly better for the inhomoge-
neous system. The difference between the two is highest around t = 20.5, where
the probability of completion is 1 − 8.0 × 10−5 for the inhomogeneous system

124 Chapter 5. Use of the models

15 20 25 30
0.9995

0.9996

0.9997

0.9998

0.9999

1

time

pr
ob

ab
ili

ty
 o

f c
om

pl
et

ed
 e

xe
cu

tio
n

Cdfs for runtimes in inhomogeneous and homogeneous systems

inhomogeneous
homogeneous

Figure 5.8: Comparison of the cdfs of the inhomogeneous and homogeneous
systems in examplé 5.1

and 1− 9.2× 10−5 for the homogeneous system.
The same runtimes are used for both the primary and the backups in the

homogeneous systems, and this causes the observed run-time distributions for
the backups to be somewhat skewed toward longer runtimes, as there is a higher
probability that tasks with long runtimes will fail with the fault model used. In
the inhomogeneous systems, the runtimes of the backups are unaffected by the
runtimes of the primary.

More than N faults
The difference between G(t) and G̃(t) is, for this example, quite small. The

difference between the two is at maximum after all backups have had a chance
to run. The system where more than N faults are ignored will of course reach

5.3. Examples 125

30 32 34 36 38 40 42 44 46 48 50
1 − 5E−9

1 − 4E−9

1 − 3E−9

1 − 2E−9

1 − 1E−9

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for runtimes

inhomogeneous
inhomogeneous
homogeneous
homogeneous

Figure 5.9: Comparison of the cdfs of the distributions for g (solid) and g̃
(dotted) for the inhomogeneous and homogeneous systems in example 5.1

a failure probability of 0, while the failure probability for a system where more
than N faults lead to failure is around 9× 10−10, as shown in figure 5.9.

Reliability as a function of the number of runs
Assuming that the fault tolerance mechanism makes the system able to tol-

erate any faults except timing faults, the cumulative distribution functions can
be used to make models of the system’s reliability as a function of the number
of runs. If the system fails when a task’s runtime exceeds a deadline of tdl, the
probability that the system works after n task runs is

Rtdl
(n) = G(tdl)n (5.19)

Figure 5.10 shows the probability of system survival as a function of number
of runs for different deadlines. As the curves show, the improvement is not very

126 Chapter 5. Use of the models

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Reliability as a function of number of runs for different deadlines

number of runs

P
ro

ba
bi

lit
y

of
 s

ys
te

m
 s

ur
vi

va
l

nontolerant

t
dl

=10

t
dl

=15

t
dl

=20

t
dl

≥ 25

Figure 5.10: Reliability functions for different deadlines for the inhomogeneous
system in example 5.1

high for a system where the deadline is below 15. If a fault occurs in such a
system, the probability that the fault is detected and the backup has finished
its rerun before the deadline is not very high. For deadlines around 20, the
improvement in the systems reliability is significant. For deadlines above 25,
the improvement is very good, even if the task still will fail to meet its deadline
in the worst-case single fault scenario.

Example 5.2 Changing the parameters
In this example, the inhomogeneous system from example 5.1 is used as a

base, but with some parameter changes. The goal with the example is to show
how the results change when some parameter changes are applied, and how the

5.3. Examples 127

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs of runtimes with varied fault detection times and overhead

x=1
x=2
x=3
x=4
x=5

Figure 5.11: Cumulative density functions for the systems in example 5.2.

models can be used in an optimization problem.
In this example, it is assumed that the signaling used by the fault detection

in the system cause some overhead, and that the overhead is larger for higher
signaling frequencies.

This is modelled by letting the execution time of a method be increased with
an overhead when the detection time is shortened.

A variable x is used to represent the changes in signaling frequency, higher
x means shorter time between the “I’m alive” signals. The detection time is set
to be uniformly distributed between 1

x and 3
x , so that for x = 1, the distribution

dα is used.

Dx(s) = Dα(
s

x
) (5.20)

128 Chapter 5. Use of the models

15 20 25 30

0.99991

0.99992

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs of runtimes with varied fault detection times and overhead

x=1
x=2
x=3
x=4
x=5

Figure 5.12: Cumulative density functions for the systems in example 5.2, details

The triangular distribution mα is used for the fault free runtime for primary
and backups, with an added constant overhead that increases the execution time
by 0.1x

Mx(s) = e−0.1xsMα(s) (5.21)

The results for the system with x equal to 1, 2, 3, 4 and 5 is shown in
figures 5.11–5.12.

The results show that for the systems in this example, the system with x = 3
has the highest probability of completion for 11.3 < t < 24.6, while x = 4 has the
highest probability of completion for 24.6 < t < 38.7. For t > 38.7, system with
x = 1 performs best, as the extra time used for overhead in the other systems
also gives a slightly higher fault probability. A summary of the probabilities of

5.3. Examples 129

deadline miss for different deadlines is given in table 5.1, with the values for the
systems with least probability of deadline misses in boldface.

Non- x
tdl tolerant 1 2 3 4 5
10 8.00×10−4 2.07×10−3 5.83×10−3 1.21×10−2 2.09×10−2 3.21×10−2

15 8.00×10−4 5.64×10−4 4.89×10−4 4.77×10−4 4.80×10−4 4.90×10−4

20 8.00×10−4 1.19×10−4 7.21×10−5 6.55×10−5 6.68×10−5 7.15×10−4

25 8.00×10−4 7.83×10−7 2.68×10−7 2.33×10−7 2.31×10−7 2.42×10−7

30 8.00×10−4 8.79×10−8 4.03×10−8 3.32×10−8 3.25×10−8 3.42×10−8

35 8.00×10−4 6.09×10−9 1.81×10−9 1.51×10−9 1.51×10−9 1.60×10−9

40 8.00×10−4 9.18×10−10 9.37×10−10 9.66×10−10 9.97×10−10 1.02×10−9

Table 5.1: Probability of deadline miss for the systems described in example 5.2
at different deadlines

Example 5.3 A simple inhomogeneous system
In this example, the model of a system where the primary and backup dis-

tributions vary is presented. The primary uses the triangular distribution mα,
the backups use the deterministic mβ . The detection and correction times are
distributed as in example 5.1, dα and cα respectively. The mean time between
faults is set to 10 000. Simulator results are used for comparison, and the sim-
ulator is set to run the task 500 000 times.

The goal with this example is to show that the mathematical models for
inhomogeneous watchdog-based systems can be used when the runtime distri-
bution for the primary and the backups vary.

The resulting cumulative distributions are shown in figure 5.13.
From the figure, it can be seen that the results from the simulated system

seems “worse” than the results from the numerical calculation, with a slightly
higher fault rate. As with the systems in example 5.1, the number of simula-
tor runs that are affected by faults should have been 400 for an exact match,
while in the simulation, the number of affected runs were 414, 3.5% more than
expected. Apart from the higher than expected number of faults, the curve for
the simulated results follows the curve for the calculated results closely.

Example 5.4 A system utilizing imprecise backups
In this example, a system using fast, but imprecise backups is modeled. For

the primary’s runtime distribution, the triangular distribution mα is used, for

130 Chapter 5. Use of the models

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for runtimes in inhomogeneous replication system

Simulated
Calculated
Fault free
Non−tolerant

Figure 5.13: Cumulative density functions for the inhomogeneous watchdog
system described in example 5.3.

the backup runtimes, the fast deterministic distribution mγ is used. The fault
detection time is the same for all replicas, dα. It is assumed that the time used
to bring the backups up to date is shorter than for the other examples, so the
correction time distribution cγ is used. The mean time between faults, 1

λ is set
to 10 000. For the simulated results, the simulator was set to 500 000 runs.

The resulting cumulative distributions, compared to the results of the “pre-
cise” inhomogeneous system described in example 5.1, is shown in figure 5.14.
The system with imprecise backups has a better temporal behavior than the
precise system, which is quite notable for times less than 22. If the execution
of the task in this example has a hard deadline tdl < 22 and the system is able
to tolerate impreciseness in some of the results, the use of imprecise backups

5.3. Examples 131

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1
Cdfs for runtimes in system with imprecise backups

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Simulated
Calculated
Precise backups

Figure 5.14: Cumulative density functions for the system with imprecise backups
described in example 5.4.

would greatly improve the performance of the system.
Note that the primary runs do not experience fewer faults in this system

than in the system with precise backups, even if the curves in figure 5.14 may
give this impression. The reason of the seemingly lower fault rate is because
early detection of faults in the primary may cause the backup to finish its run
before the normal worst-case execution time of the primary.

The simulator results seem to follow the calculated results. As with the other
systems using the mα distribution as primary and a mean time between faults of
10 000, the expected number of fault-affected simulator runs are 400 out of the
500 000. The results shows 415 affected runs, 3.75% more than expected. For
the timing region shown in figure 5.14, the simulation shows a slightly higher

132 Chapter 5. Use of the models

probability of task completion than the calculated results.

5.3.3 Systems using timeout as a fault detection method

In the next examples, systems using timeout as a fault detection method are
presented.

As with the watchdog systems, a structure with one primary and two backups
is used for both the examples. For these examples, only the inhomogeneous
system where more than N faults leads to the failure of the system is used.
Using the equation 4.80 with N = 2, we get the following equation to use in the
examples:

G(s) =
M0(λ + s)
+ M1(λ + s)C1(λ + s)e−sτm0(1−M0(λ))
+ M2(λ + s)C2(λ + s)e−sτm0(1−M0(λ))
(e−sτc1(1−C1(λ)) + e−sτm1C1(λ + s)(1−M1(λ)))

(5.22)

Example 5.5 A basic system
As with the first example for watchdog systems, the triangular distribution

mα is used as runtime distribution for both primary and backup methods, and
cα is used for the fault correction distribution. The timeout for the task execu-
tion, τmi, is set to 10 for both primary and backups, and the timeout for fault
correction, τci, is set to 5. The mean time between faults, 1

λ , is set to 10 000.
For the simulated results, the simulator was set to run the task 500 000 times.

The calculated and simulated results are shown in figure 5.15. As is to be
expected, there is no improvement in the system’s fault tolerance if there is a
hard deadline at t < 16, as the completion of a rerun of the task is not possible
before this time. With deadlines at t < 24, the improvement in the system’s
fault tolerance is quite good.

Compared to the watchdog system in example 5.1, the timeout system per-
forms worse, as faults are detected later. It should be noted that this example
and example 5.1 both use the same distributions, without modeling any extra
overhead due to “I’m alive” signaling, which is needed for the watchdog system,
but not for the timeout system. Implementing a timeout mechanism is fairly
simple, and it can also detect omissions from tasks that suffer from non-silent
failures.

The simulator results follow the calculated results quite closely for this ex-
ample, with faults in 395 of the 500 000 runs, the expected number was 400.

5.3. Examples 133

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1
Cdfs for runtimes in system using using timeout

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Simulated
Calculated
Fault free
Non−tolerant

Figure 5.15: Cumulative distribution function for the system with timeout fault
detection described in example 5.5.

Example 5.6 Using imprecise backups
In this example, a system with timeout fault detection and fast, imprecise

backups is modeled.
In this example, the triangular distribution mα is used as the runtime dis-

tribution for the primary method, while the fast deterministic mγ is used as
the runtime distribution for the backups. For the correction time distribution,
cγ is used. Timeouts are set to the worst case time use for each distribution,
i.e. τm0 = 10, τm1 = 3, and τc1 = 1. As with earlier examples, the mean time
between faults, 1

λ , is set to 10 000, and the simulator is set to run the system
500 000 times.

The calculated and simulated results, compared to the calculated results

134 Chapter 5. Use of the models

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for runtimes in system with imprecise backups

Simulated
Calculated
Precise backups

Figure 5.16: Cumulative distribution function for the system with timeout fault
detection and imprecise backups described in example 5.6.

of the precise system from example 5.5 are shown in figure 5.16. As can be
expected, the use of the imprecise backups results in a great temporal improve-
ment, which can be useful if the system has deadlines between 14 and 25.

In this example, there is little difference between the simulated and calcu-
lated results. Of the 500 000 simulator runs, 397 runs suffered from faults, the
expected number was 400.

5.3. Examples 135

5.3.4 Systems using acceptance test as a fault detection
method

In the next example, a system using acceptance test as a fault detection method
is presented. For the example, equation 4.102 with N = 2 is used:

G(s) =
M0(λ + s)D(s)
+ M1(λ + s)C1(λ + s)D(2s)(M0(s)−M0(λ + s))
+ M2(λ + s)C2(λ + s)D(3s)(M0(s)−M0(λ + s))
(M1(s)C1(s)−M1(λ + s)C1(λ + s)

(5.23)

Example 5.7 A basic acceptance test system
As with the first examples using watchdog and timeout fault detection, the

triangular distribution mα is used as the runtime distribution for the primary
and backups for this system, and the distribution cα is used for correction time.
The time used for running the test is distributed with dβ . The mean time
between faults, 1

λ is 10 000. As with the other systems, the simulator is set to
run the task 500 000 times.

Simulated and calculated results are shown together with calculated results
for a fault-free and non-fault tolerant system in figure 5.17. Note that for the
fault-free and non-fault tolerant systems, there is no test time.

As with the timeout systems, systems with deadlines near the primary’s
WCET gain no improvement in reliability from using acceptance test as a fault
detection method for this system. It is, however, the only of the modeled fault
detection method that can detect if a value failure has occurred.

Simulation shows a higher fault rate than expected, with 418 fault-affected
runs in of the 500 000. As with the other systems, the expected number of
affected runs were 400. The curves of the calculated and simulated results
otherwise seems to follow each other.

5.3.5 Systems combining acceptance test and timeout

As with the other examples, a system consisting of one primary and two backups
are used for the acceptance test and timeout combination system.

By using equation 4.121 with N = 2 we get the following equation for the

136 Chapter 5. Use of the models

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for runtimes in acceptance test system

Simulated
Calculated
Fault free
Non−tolerant

Figure 5.17: Cumulative density functions for the acceptance test system in
example 5.7.

examples.

G(s) =
κmo0κv0M0(s)D(s)
+ κco1κmo1κv1M1(s)C1(s)D(s)
((1− κmo0)e−sτm0 + (1− κv0)κmo0M0(s)D(s))

+ κco2κmo2κv2M2(s)C2(s)D(s)
((1− κmo0)e−sτm0 + (1− κv0)κmo0M0(s)D(s))
((1− κco1)e−sτc1 + (1− κmo1)κco1C1(s)e−sτc1

+ (1− κv1)κco1κmo1M1(s)C1(s)D(s))

(5.24)

For comparison, systems with the same fault mechanisms, but without the

5.3. Examples 137

detection mechanisms is used, where an undetected fault leads to the failure of
the system

For a system without timeout mechanisms, the equation for the runtime
model can be found by using equation 5.24 and letting the timeout values τco

and τmo approach ∞, i.e. let e−sτ = 0.

Gnoto(s) =
κmo0κv0M0(s)D(s)
+ κco1κmo1κv1M1(s)C1(s)D(s)(1− κv0)κmo0M0(s)D(s)
+ κco2κmo2κv2M2(s)C2(s)D(s)(1− κv0)κmo0M0(s)D(s)
(1− κv1)κco1κmo1M1(s)C1(s)D(s)

(5.25)

For a system with no detection on value failures, equation 4.98 is used with
N = 2 and with Mi(s) substituted with κviMi(s). In this model, tasks suffering
from undetected value failures will appear as having an infinite runtime.

G(s) =
κmo0κv0M0(s)
+ κco1κmo1κv1M1(s)C1(s)(1− κmo0)e−sτm0

+ κco2κmo2κv2M2(s)C2(s)(1− κmo0)e−sτm0

(1− κco1)e−sτc1 + (1− κmo1)κco1C1(s)e−sτc1

(5.26)

Example 5.8 A simple system combining timeout and acceptance test
In this example, the triangular distribution mα is used for primary and

backups, the uniform distribution cα is used for correction time distribution,
and dβ is used for the test time distribution. The timeout for method execution,
τmi, is set to 10, and the timeout for correction, τci is set to 5 for all the replicas.

The probability that replica i should fail due to an omission or crash failure
during method execution, 1 − κmoi, or a value failure, 1 − κvi, is both set to
4× 10−4, and the probability of an omission or crash during correction, 1−κcoi

is set to 2.5 × 10−4 for all i. These values gives approximately the same fault
probabilites as if the faults were generated by a poisson process with mean time
between fault occurrences of 10 000, which is used in most of the other examples
presented here.

The results is shown in figure 5.18, together with the results of system having
only one of the detection mechanisms.

As can be expected, the combined fault tolerance mechanism performs better
than the systems having only one of the mechanisms. As both the systems with
only one mechanism have a probability of an undetected failure of 4×10−4 in the

138 Chapter 5. Use of the models

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for timeout/acceptance test systems

Combined
timeout/acc. test
Timeout only
Acc. test only

Figure 5.18: Cumulative distribution function for the combined timeout and
acceptance test system described in example 5.8, compared to systems with the
same fault probabilities, but with only one of the fault detection methods.

primary run, tasks in these systems will never have a probability of successful
completion above 1− 4× 10−4.

For systems hard deadlines earlier than t = 20, the improvement in reliability
is not very high, as there is too little time to detect failures and rerun the task
within the deadline, This reliability increases steadily with higher deadlines,
and at tdl = 26, the improvement is quite good, with a failure probability of
7.8× 10−7.

Example 5.9 Use of checkpoints
In this example, a task consisting of 12 subtasks is investigated. The task

5.3. Examples 139

is partitioned into m parts consisting of n subtasks, so that mn = 12. The
goal with the example is to examine the best way of partitioning the task for
different deadlines.

Part 4

Subtask 6subtask 1 subtask 2 subtask 3 subtask 4 subtask 5 subtask 7 subtask 8 subtask 9 subtask 10 subtask 11 subtask 12

Part 1 Part 2 Part 3

Figure 5.19: A task partitioned in 4 parts, each consisting of 3 subtasks.

Each of the 12 subtasks has a fault-free runtime that is uniformly distributed
between 1 and 2.

Msub(s) =
e−s − e−2s

s
(5.27)

For a part consisting of n subtasks, the fault-free runtime for the part will be
distributed as a convolution of n subtasks, resulting in the moment-generating
function

M(s) = Msub(s)n (5.28)

The timeout is set at the maximum runtime for a part. As each subtask has
a maximum runtime of 2, the timeout value of a part consisting of n subtasks
becomes

τm = 2n (5.29)

The time used to run an acceptance test, in addition to other overhead, is 1
per part

D(s) = e−s (5.30)

The correction time is also 1 per part

C(s) = e−s (5.31)

The probability that a subtask experiences an omission failure during normal
runtime (1−κmosub) or a value failure (1−κvsub) is both 10−4. The probability
of an omission failure during correction is also 10−4.

κmosub = κco = κvsub = 1− 10−4 (5.32)

140 Chapter 5. Use of the models

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for timeout/acceptance test system divided into several parts

Nontolerant
1 part
2 parts
3 parts
4 parts
6 parts
12 parts

Figure 5.20: Comparison of the cdfs of distributions for a task divided into
different numbers of parts

For parts consisting of n subtasks, a failure in one subtask means the whole
part has failed. Thus, for a part consisting of n subtasks, the probabilities of
not experiencing failures are

κmo = κn
mosub (5.33)

κv = κn
vsub (5.34)

The runtime distribution and fault probability is the same for primary and
backups. If a given part fails more than 2 times during the execution of a single
task, the whole task is considered failed. Thus, equation 5.24 can be used for
the runtime distribution for each part.

5.3. Examples 141

20 25 30 35 40 45 50
0.997

0.9975

0.998

0.9985

0.999

0.9995

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs for timeout/acceptance test system divided into several parts

Nontolerant
1 part
2 parts
3 parts
4 parts
6 parts
12 parts

Figure 5.21: Comparison of the cdfs of distributions for a task divided into
different numbers of parts, details

The runtime distribution for a task consisting of m parts, each with a runtime
distribution Gi(s) is found using equation 4.122:

G(s) =
m∏

i=1

Gi(s)

The task partitions that are used in this example are

• 1 part of 12 subtasks (i.e., no division of the task)

• 2 parts of 6 subtasks

• 3 parts of 4 subtasks

142 Chapter 5. Use of the models

30 32 34 36 38 40 42 44 46 48 50

1 − 9E−6

1 − 8E−6

1 − 7E−6

1 − 6E−6

1 − 5E−6

1 − 4E−6

1 − 3E−6

1 − 2E−6

1 − 1E−6

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Cdfs of timeout acceptance test system divided into several parts

1 part
2 parts
3 parts
4 parts
6 parts
12 parts

Figure 5.22: Comparison of the cdfs of distributions for a task divided into
different numbers of parts, details

• 4 parts of 3 subtasks

• 6 parts of 2 subtasks

• 12 parts of 1 subtask

The cumulative distribution function of the results are shown in figures 5.20–
5.22.

If there is a hard deadline at tdl, and the only possibilities of a system failure
is a deadline miss or a single task failing more than 2 times, examining the results
show that a system without fault tolerance performs better than or as well as
the fault tolerant systems at tdl < 25.4. This system does not have the overhead
from the fault tolerance mechanisms, and there is a high probability that if a

5.3. Examples 143

fault occurs in any of the other systems, it will not be tolerated within the time
limits.

For 25.4 < tdl < 26.0, the 3-part system performs best, but only slightly
better than a non-tolerant system.

For 26.0 < tdl < 32.4, the 4-part system performs best, and the improvement
in fault tolerance begins to show; the system failure probability for this system
is more than halved from the non-tolerant system at tdl = 29.

The 6-part system performs best for 32.4 < tdl < 40.9, and the 12-part
system performs best for tdl > 40.9. At around tdl = 40, the system failure
probabilities for these systems are in the 10−9 range.

A summary of the deadline miss probabilities for different deadlines is shown
in table 5.2

Non- Number of parts
tdl tolerant 1 2 3 4 6 12
24 2.40×10−3 2.40×10−3 2.41×10−3 3.40×10−3 2.46×10−2 0.501 1.00

25 2.40×10−3 2.40×10−3 2.40×10−3 2.41×10−3 3.40×10−3 0.163 1.00

26 2.40×10−3 2.40×10−3 2.40×10−3 2.39×10−3 2.39×10−3 2.46×10−2 1.00

28 2.40×10−3 2.40×10−3 2.39×10−3 2.14×10−3 1.81×10−3 2.00×10−3 0.978

30 2.40×10−3 2.40×10−3 2.15×10−3 8.36×10−4 3.05×10−4 4.10×10−4 0.501

32 2.40×10−3 2.40×10−3 1.26×10−3 3.56×10−5 5.59×10−6 7.25×10−6 2.43×10−2

35 2.40×10−3 2.39×10−3 3.15×10−5 3.77×10−6 2.41×10−6 6.02×10−7 1.20×10−4

40 2.40×10−3 1.49×10−3 4.23×10−6 2.48×10−7 4.52×10−9 1.20×10−9 3.57×10−9

45 2.40×10−3 1.98×10−4 1.38×10−6 4.94×10−9 1.21×10−9 6.00×10−10 2.16×10−10

Table 5.2: Probability of deadline miss for the systems described in example 5.9
at different deadlines

144 Chapter 5. Use of the models

Chapter 6

Discussions and suggestions
for future work

This chapter contains discussions about the developed models, as well as some
suggestions for future work.

6.1 Fault models

In the runtime models developed, the fault models have been relatively simple,
either using a poisson arrival fault process, or a constant success probability
for each replica. These fault models are fairly easy to understand and use in
mathematical models, and are thought to be “good enough” for modeling in
many systems.

The timeframe of the models is the runtime of one task, and the use of more
complex fault models may often be unnecessary. For a larger timeframes, e.g.
when using the results to calculate the reliability of the system as a function of
the number of runs like in example 5.1, modeling effects like maturity and wear
can be done by changing the fault rates for each run.

For all systems using the constant success probability and for one of the
systems using the poisson arrival process (section 4.2.4, the fault probabilities
can be changed within the same system, so that primaries and backups may
have different fault probabilities. While it is not shown in the work, all the
derived models using the poisson arrival fault process can be modified so that
fault rates may vary between the replicas.

146 Chapter 6. Discussions and suggestions for future work

Faults resulting in failure modes that are not detected by the fault detection
mechanism and faults that are not tolerated by the system are not part of any of
the models, i.e. only the faults that the fault tolerant system is able to handle are
modeled. The unmodeled faults may be important in the analysis of a system. In
section 4.5.1, a system with several fault types was modeled, and in example 5.8
it was shown how the lack of a fault detection mechanism could be modeled.
Similar expansions can be done with the other models. For models where faults
leading to different failure modes are modeled, dependencies between failures of
the same mode may cause the models to become very complex.

6.2 Models of other systems

While the models presented in chapter 4 cover a wide range of passively repli-
cated systems, there will always be systems that do not fit into any of these
models. In section 4.6, some concrete examples of system structures where the
derived models cannot be used “as they are” are presented. It is believed that
the method for deriving runtime distributions used in this work can be used for
many other system models.

In the models presented here, the effect on the runtimes when running tasks
in a computer system also running several other tasks is not considered. Schedul-
ing and queuing of several differently prioritized fault tolerant tasks will of course
affect the total time from a task is ready till it finishes. The models presented
here can be used as an “actual processing time” model for tasks in a multitask
scheduling or queuing system model.

6.3 Use of the models

A major problem with the models presented here is that the use of the models is
not very easy. The use of moment-generating functions cannot be considered to
be “well known”, and the transforms between time-based distribution functions
and moment generating functions may be difficult for many users. Creating
computer tools that provide an easy to use interface to the models is therefore
necessary.

To use the models, it is assumed that the fault rates and several distribu-
tions, like the distributions for fault free runtimes and the correction times are
known, which may not be the case. Using approximations to fault rates and
distributions may be necessary, which will result in some uncertainty to the re-

6.3. Use of the models 147

sults. It can, however, be assumed that the same approximations must be used
for other models.

148 Chapter 6. Discussions and suggestions for future work

Chapter 7

Conclusion

In this work, mathematical run-time distribution models for several system
classes using passive replication are developed.

The models are expressed as functions of the modeled system’s fault rates,
the fault free runtime distributions, the distributions of the times used to ready
one of the backups, as well as the distributions of the time used to detect a fault,
the time used to test the results with an acceptance test and/or the system’s
timeout values, depending on the fault detection mechanisms used.

It has been argued that the main differences between the models are the
fault detection mechanisms used and whether the replicas are homogeneous or
inhomogeneous. Other variants of the system structure can often be described
as changes of the parameter distributions.

The models that were developed were models for systems using watchdogs,
timeouts and acceptance tests as fault detection. For each test type, two mod-
els, one with homogeneous and one with inhomogeneous replicas, was developed
using a poisson fault arrival process as fault model. For the watchdog fault de-
tection system, an additional model for an inhomogeneous system using different
fault rates for the different replicas was developed. For the systems using time-
out and acceptance test, additional models using inhomogeneous replicas and a
fixed fault probability for each of the replicas was developed. The model of a
system using fixed fault probabilities and both timeout and acceptance test for
fault detection was also developed.

How the models can be used has been demonstrated with simple examples,
among these are examples on how the results can be used for finding probability
of missed deadlines, determine the reliability of a system as a function of num-

150 Chapter 7. Conclusion

ber of runs, and optimizing the “I’m alive” signalling frequency or checkpoint
placement with respect to hard deadlines. Some of the results were compared
to results from a discrete event simulator that was developed for this purpose.

Not only the models themselves, but also the method used to derive the
models is important. While this method is similar to methods used in many
models in queuing theory, this work has shown that it can also be used for
deriving the runtime distribution models of tasks in passively replicated fault
tolerant systems. It is also believed that the same method can be used for
deriving the run-time distribution model for many systems not presented in
this work.

Appendix A

Fault Tolerance Methods in
Component-Based
Real-Time Systems

By Åsmund Tjora and Amund Skavhaug

This extended abstract was presented at the work in progress session held
in connection with the Euromicro DSD Symposium and Euromicro Conference
in Dortmund, Germany, September 2002 [45].

152
Appendix A. Fault Tolerance Methods in Component-Based

Real-Time Systems

A.1 Introduction

Many, if not most, of today’s real-time applications will, in addition to timing
requirements, also have fault tolerance requirements. It is therefore important
to look at the combination of real-time and fault tolerant systems in order to
determine if the use of a fault tolerance mechanism will cause a missed deadline.
For a real-time system, a missed deadline is considered a fault, and it is therefore
necessary to analyze the time used to tolerate a fault if the fault happens during
a method call. If a fault is tolerated, but the mechanisms used to tolerate the
fault leads to a missed deadline, the mechanisms may be unsuitable for a real-
time system, depending on the real-time system’s characteristics.

OMG’s CORBA standard is the open standard technology base for het-
erogeneous systems, and it is used in a wide variety of applications. There-
fore, we have studied the CORBA specification for fault tolerant systems. The
replication styles described in Fault Tolerant CORBA we are looking at are
COLD PASSIVE, WARM PASSIVE, ACTIVE and ACTIVE WITH VOTING.

For these, we want to find the time and resource overhead both in normal
operation, and time use in a fault situation.

A.2 Analysis

We are currently using a very simple model for determining the time used in
case of a fault. The worst case time use is calculated adding the time used to run
a method, tm, to the time used to detect a fault, td, and the time used for the
fault tolerance mechanism to tolerate the fault, tlcp for cold passive replication,
and tlwp for warm passive replication. We are only considering cases where
only one fault occurs during a method call. This is a reasonable assumption if
we don’t consider correlated faults. (Correlated faults are not tolerated in the
methods described in the FT CORBA specification.)

A.2.1 Cold passive replication

The COLD PASSIVE replication style is based on having several backup (sec-
ondary) objects, and copying the state of primary object into a secondary if the
primary object fails. The state of the primary object is logged, and when the
primary fails, the state of the new primary is set from the log.

At normal operation, this replication style uses relatively little resources and
time. There will be some overhead as the object’s state is logged, but in most

A.2. Analysis 153

cases, it should not be necessary to do this operation during a time critical
method call.

If the primary object fails, the state of one of the secondary objects must be
set from the log. The method must be run again on the new object. For a worst
case, the time used to run a method on an object that fails is td + tlcp + 2tm
where td is the time used to detect a fault, tlcp is the time used to set the state of
the secondary object from log and make it the primary, and tm is the time used
to run the method. Depending on the relative length of these times and the
type of deadlines, this replication style can be unusable (i.e. if there are hard
deadlines, or if td and tlcd are long compared to tm) or they may be usable (i.e.
the system tolerates some missed deadlines, and td and tlcd are short compared
to tm)

A.2.2 Warm passive replication

The WARM PASSIVE replication style is based on having a set of passive ob-
jects, and periodically copying the state of the active into the passive objects.
Because of this, if the active object fails, the time to activate a passive object
will be shorter than with the COLD PASSIVE method.

At normal operation, the time and resource use will be small, as with
COLD PASSIVE. Updating the states of the passive objects will take more time
than just logging the state of the active object, but as with COLD PASSIVE,
it is usually not necessary to do this during time-critical operations.

In case of a fault, this replication style has the advantage of having the
secondary objects in a state that is close to the state of the primary object.
Because of this, only the latest updates to the secondary object’s state have
to be made. The time to update the state of the secondary object, tlwp, is
therefore smaller than the time used to set and update a secondary object using
the COLD PASSIVE replication style, tlcp. The worst case will have the same
form as with COLD PASSIVE, td + tlwp + 2tm.

A.2.3 Active replication

With the ACTIVE replication style, there are several objects that are running
the method calls. Because of this, all objects in a replicated group will have the
same state.

At normal operation, this replication style will have a higher time and re-
source use than the PASSIVE replication styles, as all the replicated objects

154
Appendix A. Fault Tolerance Methods in Component-Based

Real-Time Systems

must run the method. The resource manager must also suppress duplicate re-
quests and replies from the replica objects, so that the object group acts as
only one object. For a case where all the objects in the group are running on
one processor, the time used for a normal call will be n tm + trm where n is
the number of objects in the group and trm is the resource manager overhead.
Because it may be necessary to create new objects when one of the objects in
the group fails, this replication style will also need a state logging mechanism.

In case of a fault, the replicas will still be running, and the time use will not
change dramatically. This makes the time used for a method call deterministic,
even in the case where one of the objects in the group fails. If the system
tolerates the time used for normal operation, it should also tolerate the time
used in case of a fault.

If the time used to run a method call is high with respect to the time used
to make a passive object active, the PASSIVE methods should be more effective
than the ACTIVE.

A.2.4 Active replication with voting

ACTIVE WITH VOTING is a replication style that is similar to ACTIVE, but
results from the different replicas are voted upon. This method will thus tolerate
some faults that the other methods don’t tolerate. However, as the ACTIVE
replication style, this style uses more time and resources in normal operation
than the PASSIVE replication styles.

A.3 Discussion

As mentioned, the model we currently use to determine time use is very simple,
and is only intended to get a rough overview of the replication styles described.
For many cases, it may even be too simple to get a good overview of which of
the replication styles are best suited for the real-time system.

Although we, for the simple model, consider it a reasonable assumption
to ignore the possibility of multiple faults during one method execution, this
possibility should be considered in more complex models.

A.4 Future work

In our future work, we are going to develop a better model for time use in fault
situations. We want to create a probability density distribution for the time

A.4. Future work 155

use of a (possibly faulty) method execution. In this model, we will also look
at the possibility for multiple independent faults occurring in the total method
execution time. The goal of this model is to make it easier to determine the
probability of fault recoveries leading to deadline faults.

We also want to look at other mechanisms in the FT CORBA specification,
such as the fault detection and the logging mechanisms. As there are two ways
of logging the state of an object, logging its entire state or logging the updates
to the state, it may be useful to investigate what the best combination of these
two are in different kind of systems.

156
Appendix A. Fault Tolerance Methods in Component-Based

Real-Time Systems

Appendix B

A General Mathematical
Model for Run-Time
Distributions in a Passively
Replicated Fault Tolerant
System

By Åsmund Tjora and Amund Skavhaug

This paper was presented at the Euromicro Conference on Real-Time Sys-
tems in Porto, Portugal, July 2003 [46]. c©2003 IEEE.

158
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

Abstract

In many systems, passive replication is used as a method for fault tolerance.
A problem with using passive replication i real-time systems is that it can be
difficult to analyze the time used by the system if a fault should occur.

In this paper we present a general mathematical model for the run-time
distribution of a method in a fault tolerant system where a passive replication
technique is used. The model gives this distribution as a function of the run-
time distribution of the method in a fault-free system. We also demonstrate how
this can be used to compute the probability of a missed deadline in a simple
fault-tolerant system.

B.1 Introduction

Many of today’s real-time applications will, in addition to the timing require-
ments, also have fault tolerance requirements. It is therefore important to look
at the combination of real-time and fault tolerant systems, in order to determine
if the use of a fault tolerance mechanism will cause a missed deadline. It may
be necessary to analyze the time used by the fault tolerance mechanisms when
a fault occurs, since a missed deadline is also considered a fault in a real-time
system. If a fault is tolerated, but the mechanism used to tolerate the fault
leads to a missed deadline, this mechanism may be unsuitable for a real-time
system, depending on the characteristics of the system.

In real-time systems, it has been common to use some kind of active repli-
cation for fault tolerance, that is, several replicas of one object is running at
the same time. This gives a more deterministic temporal behaviour in case of
faults, and it also provides the possibility for detecting a wider range of faults,
since the results from the different replicas can be compared. However, this
replication strategy also uses a lot of resources.

For general systems, one of the more popular groups of fault tolerance mech-
anisms is the mechanisms based on passive replication. In passive replication,
we have only one active object, and all the replicas are passive. This limits the
resource requirements, as only one object in the replicated group runs at one
time, and it is also easier to implement than many other replication mechanisms.

When the primary object fails in a passive replication system, one of the
secondary objects must be brought up to date, and it must then rerun the
method. A problem with using this kind of replication strategy in a real-time
system is that it may be difficult to analyze the time used when a fault occurs.

B.2. The passive replication method 159

It may therefore be hard to see if this replication strategy is suitable for the
real-time system, or more generally, to which degree one can fulfill real-time
and reliability requirements.

While both fault tolerance and real-time are quite mature fields, and there
are other works that describe the performance of fault tolerant methods, like [10]
and [51], we have not seen any other attempts to derive a general expression for
the temporal behaviour of methods in passive replicated systems, which is the
focus of our paper.

The rest of the paper is organized as follows:

• Section B.2 describes the model of a passive replication system that we
have used as a base for deriving the mathematical model.

• Section B.3 describes the basic mathematical model, where the time used
for fault detection and fault correction is ignored.

• Section B.4 describes how the mathematical model can be extended by
adding the times used for fault detection and fault correction.

• In section B.5 we show an example on how the model can be used for a
simple system.

• Section B.6 contains discussions and conclusion to the paper.

B.2 The passive replication method

In this section, we will describe the replication method model we use as a base
for the mathematical formulae. This model is based on the cold passive and
warm passive replication methods described in Fault Tolerant CORBA [34].

In a passive replication system, there will be one active primary object and
several passive secondary objects. The state of the primary object is logged, and
if the primary object fails, the state of one of the secondary objects is updated
from the log. This object will then be the new primary, and it will rerun the
method that the failed object was running when it failed.

In our model, fault detection is based on some kind of “heartbeat” system;
the fault detector will either regularly ask the primary object if it is alive or it
will listen to “heartbeats” created by the primary. If the fault detector doesn’t
get a response in what is considered a reasonable time, it will assume that the
primary object has failed, and the fault correction system will begin to work.

160
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

����������
���������� ����������

����������
�� ����

������	
	
�

�
�
�

time

Method
start

Fault
occurs

Fault is
detected

Backup object

method

Method
finish

Time used to run method

Fault detection time

Fault correction time

Finishing time
for a "fault−free"
system

starts rerunning

Figure B.1: Time used in case of a fault in a passive replication system

When a fault is detected, the fault correction system will prepare one of the
secondary objects by updating its state from the log. When this object is up to
date, it will be the new primary object, and it will start rerunning the method
that the failed object was running.

The time use for one such fault occurence is illustrated in figure B.1.

B.3 A simple time model of a passively repli-
cated fault tolerant method

This section describes how to model the time use of a fault tolerant method,
using a passive replication strategy. For simplicity, we will assume that the
time used for fault detection and fault correction are negligible. We will in later
sections show how we can include these times to make a more complete model.

B.3. A simple time model of a passively replicated fault tolerant
method 161

The method used to derive the time distribution is similar to the method used
by Kleinrock [21] to derive the expression for the duration of a busy period. The
idea is to derive the time distribution’s probability generating function, defined
by

F(s) ≡ L(
dF (t)

dt
) =

∫ ∞

0

e−stdF (t) (B.1)

where L(·) is the laplace transform, by first assuming a given running time and
a given number of faults, and then removing these assumptions.

In this paper, we will use function names with uppercase letters to describe
distribution functions (example: M(t)), lowercase letters to describe probability
density functions (example: m(t)), and calligraphy letters to describe probabil-
ity generating functions (example: M(s)).

B.3.1 The original fault-free system

We want to look at a method, which during normal operation has a running
time described by the distribution function M(t).

M(t) = P (Y ≤ t|φ = 0) (B.2)

where P (·) is the probability function, Y is the finishing time of the method,
and φ is the number of faults.

This function will have the corresponding probability density function (pdf)
m(t)

m(t) =
dM(t)

dt
(B.3)

and the probability generating function (pgf) M(s)

M(s) =
∫ ∞

0

e−stdM(t) (B.4)

B.3.2 The fault model

We model the faults as independent events. Many replication strategies have
limits to the kind of faults they protect against, and independent faults are often
a good enough model for the kind of faults the replication system is designed to
tolerate. Using independent faults in the model will also make the model much
simpler than using other fault models.

162
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

The faults are generated by a poisson process with intensity λ. The proba-
bility of at least one fault happening during a time interval [0, τ] is

pτ = 1− p0τ = 1− e−λτ (B.5)

where p0τ = e−λτ is the probability of no faults occuring in the interval.
Given that a fault occurs during the time interval [0, τ], the time used until

the fault occurs is given by the distribution

Hτ (t) =
{

1
1−e−λτ (1− e−λt) , 0 ≤ t ≤ τ

1 , t > τ
(B.6)

This gives us the pdf

hτ (t) =

{
λe−λt

1−e−λτ , 0 ≤ t ≤ τ

0 , t > τ
(B.7)

and the pgf

Hτ (s) =
1− e−τ(λ+s)

1− e−λτ

λ

λ + s
(B.8)

B.3.3 The model of a system where faults may occur

We now want to make the model of the running time of a system where faults
may occur.

When there is a possibility of faults occuring, the total running time of the
system will be

Y = r + X1 + X2 + · · ·+ Xφ (B.9)

where r is the running time for the fault free run, Xi is the time until abortion
of a faulty run, and φ is the number of faulty runs.

We wish to find the distribution of the total time use,

G(t) = P (Y ≤ t) (B.10)

expressed by this functions probability generating function

G(s) =
∫ ∞

0

e−stdG(t) = E[e−sY]

= E[e−s(r+X1+X2+···+Xφ)]
(B.11)

where E[·] is the expectation function.

B.3. A simple time model of a passively replicated fault tolerant
method 163

We now introduce conditions on the running time and the number of faults.

E[e−sY |r = x, φ = k] = E[e−s(x+X1+···+Xk)]
= E[e−sxe−sX1 · · · e−sXk]

(B.12)

Because of independency and since E[e−sXi] = Hx(s), we can write this as

E[e−sY |r = x, φ = k] = E[e−sx]E[e−sXk] · · ·E[e−sX1]
= E[e−sx](Hx(s))k (B.13)

We now want to remove the condition on the number of faults. This is done
by taking the sum of the products of the expectation function (equation B.13)
and probability of k faults, for each k.

E[e−sY |r = x] =
∞∑

k=0

E[e−sY |r = x, φ = k]P [φ = k] (B.14)

The probability function for the number of faults is given by

P [φ = k] = e−λx(1− e−λx)k (B.15)

This gives us the function

E[e−sY |r = x] =
∞∑

k=0

e−xs(Hx(s))ke−λx(1− e−λx)k

= e−x(λ+s)
∞∑

k=0

((1− e−x(λ+s))
λ

λ + s
)k

(B.16)

To get to a final result, we will have to set an upper bound for the number
of faults. As the probability of having a high number of faults is very low, and
the fault tolerance mechanisms have a limited number of passive objects they
can use anyway, this will be a reasonable approximation. To do this, we will
need to modify the probability function for the number of faults, since we will
not allow any more faults to happen if we have reached the upper bound.

P [φ = k|φ ≤ kmax]

=
{

e−λx(1− e−λx)k , k ≤ kmax − 1
(1− e−λx)kmax , k = kmax

(B.17)

The new equation will then be

Tkmax(s) = E[e−sY |r = x, φ ≤ kmax]

= e−x(λ+s)

(
kmax−1∑

k=0

((1− e−x(λ+s))
λ

λ + s
)k

)

+ e−sx((1− e−x(λ+s))
λ

λ + s
)kmax

(B.18)

164
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

The final step is to remove the condition on the time use for running the
method.

G(s) =
∫ ∞

0

T (s)dM(x) (B.19)

By using the definition of the probability generating function (equation B.1),
we see that it will be possible to describe G in terms of M.

For a maximum number of faults kmax, we get the expression

G(s)

=

(
kmax−1∑

k=0

λ

λ + s

k

(
k∑

i=0

(−1)i

(
k
i

)
M((i + 1)λ + (i + 1)s)

))

+
λ

λ + s

kmax

(
kmax∑

i=0

(−1)i

(
kmax

i

)
M(iλ + (i + 1)s)

)

(B.20)

Without assuming anything about the distribution of M(t), this expression
can not be transformed back to time domain.

B.4 Extending the model

In this section, we will show how the model can be extended, by incorporating
times for fault correction and fault detection.

B.4.1 Adding time for fault correction

We assume the time used for fault correction can be described by the distribution
function C(t), with the corresponding pdf and pgf c(t) and C(s).

We assume that a fault may happen during the fault correction process. As
there is no correction during the initial run of the method, we have to distinguish
between the initial run and the following runs. We now have to modify the
expectation function (equation B.13) to

E[e−sY |r = x, c = ε, φ = k]

=
{

e−sx , k = 0
e−s(x+ε)Hx(s)Hx+ε(s)k−1 , k > 0

(B.21)

B.4. Extending the model 165

and the probability function for the number of faults (equation B.15) to

P [φ = k]

=
{

e−λx , k = 0
e−λ(x+ε)(1− e−λx)(1− e−λ(x−ε))k−1 , k ≥ 1

(B.22)

where c is the time used for fault correction.
When the condition on the number of faults is removed, we get the equation

E[e−sY |r = x, c = ε]
= e−xse−xλ

+
∞∑

k=1

e−(x+ε)sHx(s)(Hx+ε(s))k−1e−λ(x+ε)

(1− e−λx)(1− e−λ(x+ε))k−1

= e−x(λ+s)

+ e−(x+ε)(s+λ)(1− e−x(λ+s))
∞∑

k=1

(1− e−(x+ε)(λ+s))k−1 λ

λ + s

k

(B.23)

As before, we need to put an upper bound to the number of faults. We
modify the probability function for the number of faults

P [φ = k]

=

e−λx , k=0
e−λ(x+ε)(1− e−λx)(1− e−λ(x−ε))k−1 , 1≤k<kmax

(1− e−λx)(1− e−λ(x−ε))kmax−1 , k=kmax

(B.24)

and get the new function

Tkmax(s)
= e−x(λ+s)

+ e−(x+ε)(s+λ)(1− e−x(λ+s))(
kmax−1∑

k=1

(1− e−(x+ε)(λ+s))k−1

(
λ

λ + s

)k
)

+ e−s(x+ε)(1− ex(λ+s))

(1− e−(x+ε)(s+λ))kmax−1

(
λ

λ + s

)kmax

(B.25)

We can now get the equation for G(s).

G(s) =
∫ ∞

0

∫ ∞

0

T (s)dM(x)dC(ε) (B.26)

166
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

By using the definition of the pgf, we see that G(s) can be expressed by
products of M(·) and C(·).

G(s)
= M(λ + s)

+
(kmax−1∑

k=1

(
λ

λ + s

)k

(k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)λ + (i + 1)s)

−M((i + 2)λ + (i + 2)s))

C((i + 1)λ + (i + 1)s)
))

+
(

λ

λ + s

)kmax
(kmax−1∑

i=0

(−1)i

(
kmax − 1
i

)

(M(iλ + (i + 1)s)

−M((i + 1)λ + (i + 2)s))C(iλ + (i + 1)s)
)

(B.27)

B.4.2 Adding the fault detection delay

We assume the time used from a fault occurs to the fault is detected fault
described by the probability distribution I(t), the density function i(t) and the
generating function I(s).

As the running object has already failed, and no new objects are running, we
assume that new faults happening during fault detection time can be ignored.

While we still have the same fault number probability as in equation B.22,
we have to modify equation B.21 to

E[e−sY |r = x, c = ε, i = α, φ = k]

=
{

e−sx , k = 0
e−s(x+ε)Hx(s)Hx+ε(s)k−1e−sαk , k > 0

(B.28)

where i is the time used for fault detection.

B.4. Extending the model 167

By removing the condition on the number of faults we get the equation

E[e−sY |r = x, c = ε, i = α]
= e−xse−xλ

+
∞∑

k=1

e−(x+ε)sHx(s)(Hx+ε(s))k−1

e−sαke−λ(x+ε)(1− e−λx)(1− e−λ(x+ε))k−1

= e−x(λ+s)

+ e−(x+ε)(s+λ)(1− e−x(λ+s))
∞∑

k=1

(1− e−(x+ε)(λ+s))k−1

(
λ

λ + s

)k

e−sαk

(B.29)

Putting an upper bound to the number of allowed faults gives us the equation

Tkmax(s)
= e−x(λ+s)

+ e−(x+ε)(s+λ)(1− e−x(λ+s))(
kmax−1∑

k=1

(1− e−(x+ε)(λ+s))k−1

(
λ

λ + s

)k

e−sαk

)

+ e−s(x+ε)(1− ex(λ+s))

(1− e−(x+ε)(s+λ))kmax−1

(
λ

λ + s

)kmax

e−sαkmax

(B.30)

Finally, we can now get the equation for G(s) by removing the conditions of
time use.

G(s) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

T (s)dM(x)dC(ε)dI(α) (B.31)

By using the definition of the pgf, we see that G(s) can be expressed by

168
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

products of M(·), C(·) and I(·).
G(s)
= M(λ + s)

+
(kmax−1∑

k=1

(
λ

λ + s
I(s)

)k

(k−1∑

i=0

(−1)i

(
k
i

)
(M((i + 1)λ + (i + 1)s)

−M((i + 2)λ + (i + 2)s))

C((i + 1)λ + (i + 1)s)
))

+
(

λ

λ + s
I(s)

)kmax

(kmax−1∑

i=0

(−1)i

(
kmax − 1
i

)
(M(iλ + (i + 1)s)

−M((i + 1)λ + (i + 2)s))C(iλ + (i + 1)s)
)

(B.32)

This is our main result, which, as we will demonstrate, is a versatile tool.

B.5 Example

We will now show how this equation can be used for a simple system.
We have an object with a method that in normal operation has a determinis-

tic running time τr. This object is replicated in a passive replication system with
2 backup objects. The fault detection and fault correction times are uniformly
distributed in the intervals [0, τd] and [0, τc]. The fault rate is λ

This gives us the system functions

M(t) = H(t− τr) (B.33)
M(s) = e−τrs (B.34)

C(t) =
{

t/τc , 0 ≤ t ≤ τc

1 , t > τc
(B.35)

C(s) =
1− e−τcs

τcs
(B.36)

I(t) =
{

t/τd , 0 ≤ t ≤ τd

1 , t > τd
(B.37)

B.6. Discussions and Conclusion 169

I(s) =
1− e−τds

τds
(B.38)

where H(t) is the unit step function.
We will use equation B.32 with kmax = 2.

G(s)
= M(λ + s)

+ λ
λ+sI(s)((M(λ + s)−M(2λ + 2s))C(λ + s))

+(λ
λ+sI(s))2((M(s)−M(λ + 2s))C(s)

−(M(λ + 2s)−M(2λ + 3s))C(λ + 2s))

(B.39)

Because finding the inverse laplace transform may be difficult for many sys-
tems, we used Matlab and Simulink to numerically transform the expression to
the time domain. The results for the system with parameters τr = 1, τd = 0.5,
τc = 0.1 and λ = 0.01 is shown in figure B.2.

The model can be used for various purposes, like finding the probability of
missing the deadline. With the parameters above, G(2) = 0.997. This means
that if the deadline is at t = 2, there will be a 0.3% chance that this system will
miss the deadline each time the method is run.

The model can also be used to determine how sensitive the system is to
changes in the parameters. Figure B.3 shows how the distribution changes
when we change the times used for fault detection. The figure shows curves for
τd = 0.5, τd = 0.4, τd = 0.3, τd = 0.2 and τd = 0.1. For a deadline at t = 2, the
chance of a deadline miss varies from 0.3% at τd = 0.5 to 0.1% at τd = 0.1.

B.6 Discussions and Conclusion

In our model, we are assuming a fault model where we will have independent
faults. While this model is, in many cases, “good enough”, and simple replica-
tion systems often cannot protect against many fault types that require other
fault models, there may be cases where the fault model should be changed.

The model is also limited to the kinds of fault detection methods that it
can represent. The model as it is described here can only be used if there is
no dependency between the time used for fault detection and the time when
a fault occurs. This makes the unmodified version of the model unsuitable for
systems where fault detection is based on checking the return values, or where
fault detection is based on timeout of the method return. It should, however, be
possible to modify the model to suit these and other fault detection methods.

170
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

0.5 1 1.5 2 2.5 3 3.5 4
0.985

0.99

0.995

1

1.005

t

pr
ob

ab
ili

ty
 o

f h
av

in
g

fin
is

he
d

at
 t

G(t)
M(t)

Figure B.2: M(t) and G(t) for the example system, details

We have derived an expression for the run-time distribution for a method in
a fault tolerant system where passive replication is used. This expression, which
is on the probability generating function form, is a function of the distributions
of the running time in a fault-free system, the fault detection time, and the time
used for fault correction.

We have also shown how this can be used for a simple system, and how
we can use the results to determine the probability of a deadline fault and the
sensitivity to parameter changes.

B.6. Discussions and Conclusion 171

0.5 1 1.5 2 2.5 3 3.5 4
0.985

0.99

0.995

1

1.005

t

pr
ob

ab
ili

ty
 o

f h
av

in
g

fin
is

he
d

at
 t

τ
d
=0.1

τ
d
=0.5

Figure B.3: The system’s sensitivity to changes in fault detection time

172
Appendix B. A General Mathematical Model for Run-Time

Distributions in a Passively Replicated Fault Tolerant System

Appendix C

Assessing Reliability of
Real-Time Distributed
Systems

By Åsmund Tjora and Amund Skavhaug

This paper was presented at the 1st ERCIM Workshop on Software-Intensive
Dependable Embedded Systems in Porto, Portugal, August 2005 [47].

174
Appendix C. Assessing Reliability of Real-Time Distributed

Systems

Abstract

Serial replication structures are used in fault tolerance mechanisms in systems.
Analysing the timing behaviour of systems using these mechanisms can be dif-
ficult, however, it is necessary to do this kind of analysis if the systems are to
be used in real-time applications.

In this paper, two ways of analysing the timing behaviour in such systems
are studied, a simulator and an analytical model. Some of the strengths and
weaknesses of these methods are discussed, and it is demonstrated with an
example how they can be used.

C.1 Introduction

Many of today’s real-time applications will, in addition to the timing require-
ments, also have reliability requirements. It is therefore important to study the
combination of real-time and fault tolerant systems. A fault tolerance mecha-
nism may be able to detect and correct a number of faults, however, in a real-
time system, it is possible that the same mechanism introduces new faults if the
time it uses for detection and correction causes the system to miss a deadline.
Because of this, a fault tolerant mechanism may give very little improvement to
the reliability of a system, depending on the system’s characteristics.

For many real-time systems, it has been common to use a parallel fault
tolerance structure, that is, several replicas of one object are run simultaneously.
This will give a deterministic temporal behaviour even if a fault is detected in
one of the replicas, and comparision of the results from the different replicas can
be used as an extra fault detection mechanism. On the negative side, parallel
fault tolerance mechanisms needs extra resources.

In a system using a serial fault tolerance structure, only one instance of an
object is active at one time, while the other replicas are passive. If a fault
is detected, the task running on the object is stopped, and one of the passive
replicas is made active. The task is then rerun on this new active object. The
mechanisms based on serial structures use fewer resources than those based on
parallel structures, making them quite popular in general purpose systems. In
real-time systems, the time used for detecting a fault, updating the states of the
replica, and rerunning the task may cause deadline misses. When considering a
fault tolerance mechanism based on a serial structure for a real-time system, it
is therefore important to analyse the time used by such a system.

In this paper, two main methods of analysing the timing behaviour of a

C.2. The model of the fault-tolerant system 175

fault tolerant system are presented: Analytical models of the behaviour, and
simulation.

Analytical models give precise results, and once a model is developed for
a system, the same model can often be used with little or no modification
in similar systems. However, the mathematical expressions can become quite
complicated, even for a simple system, and such models are therefore not always
easy to understand or use.

Simulation may give good results, and is often easier to understand and use
than analytical models. A problem with simulations is that they have to be run
a large number of times if events with a low probability of occuring are to be
studied.

C.2 The model of the fault-tolerant system

The system that we are modelling is a simple Client-Server system where the
server is using a fault tolerant mechanism based on a serial structure. The
model we are using for the fault tolerance mechanism is based on the cold and
warm passive replication methods described in Fault Tolerant CORBA [34].

In the system, there is one active primary object and several passive sec-
ondary objects. The state of the primary object is logged, and if the primary
object fails, the state of one of the secondary objects is updated from the log.
This object will now be the new primary, and the task that was running on the
failed object will be rerun.

In the system, fault detection is based on some kind of watchdog mecha-
nism. A fault detector will either ask the primary object if it is “alive”, or the
primary object will generate “heartbeats” that the fault detector will listen to.
In both cases, if the fault detector doesn’t get a response in what is considered a
reasonable time, it is assumed that the primary object has failed, and the fault
correction mechanisms will start to work.

When a fault is detected, the fault correction mechanism will prepare one
of the secondary objects by updating its state from the log. When the object is
up to date, the task that was running will be rerun on it. The timing behaviour
of the system in a case where a fault occurs is shown in figure C.1.

We also have to consider cases where several faults occurs during the service
of one task.

If a new fault occurs after the correction of the previous fault has started,
the whole detection-correction-rerun cycle has to be restarted. However, if the
fault occurs before the previous fault is detected, it will have no extra effect on

176
Appendix C. Assessing Reliability of Real-Time Distributed

Systems

����������
���������� ����������

����������
�� ����

������	
	
�

�
�
�

time

Method
start

Fault
occurs

Fault is
detected

Backup object

method

Method
finish

Time used to run method

Fault detection time

Fault correction time

Finishing time
for a "fault−free"
system

starts rerunning

Figure C.1: Timing behaviour of system during a fault

the system, since it is still the already faulty object that is active.

C.3 The Analytical Model

The analytical model we use is the one presented in [46]. The expressions are
derived using a method similar to the one used to find the distribution of the
busy period in queuing systems, as presented by Kleinrock in [21].

In the expressions, we use the moment generating functions (mgf) of the dif-
ferent distributions. A distribution’s moment generating function is the laplace
transform of its probability density function (pgf), i.e. F(s) =

∫∞
0

e−stf(t)dt.
In this paper, we use calligraphic letters (i.e. F(s)) to represent a distribu-

tion’s moment generating function and normal lowercase letters (i.e. f(t)) to
represent the distribution’s probability density function.

The model gives us the moment generating function, G(s), of the run-time

C.3. The Analytical Model 177

distribution for a fault-tolerant system based on a serial structure as a function
of the moment generating functions of the fault-free run-time, the fault detection
and correction times and the fault intensity. Mathematical tools may then be
used to transform the mgf back to the time domain.

We assume that the time used to run a fault-free method is given by the
pdf m(t), the time used to detect faults is given by the pdf i(t), and the time
used to correct a fault (i.e. updating the state of a passive object and restarting
method on this object) is given by the pdf c(t), and that these distributions
have the moment generating functions M(s), I(s), and C(s). We also assume
that the faults are independent and that fault arrivals can be modelled by a
poisson process with intensity λ.

Given these parameters, the mgf of the run-time distribution in a system
where faults may occur is given by

G(s)

= M(λ + s) +
(∞∑

k=1

(
λ

λ + s

)k

I(ks)

(k−1∑

i=0

(−1)i

(
k − 1

i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

(C.1)

There is an infinite sum in the expression. This is explained by the fact
that there always will be a possibility that the system will fail again while a
task that has failed before is still running. This also makes it possible that an
infinite number of faults may occur during the running of the same task. The
infinite sum can be approximated to a finite sum in two ways:

• Assuming that only a finite number N faults will happen during the run-
time of one task, so that no new faults will occur after this.

• Assuming that the task will fail if the number of faults occuring during
the running of one task exceeds N .

178
Appendix C. Assessing Reliability of Real-Time Distributed

Systems

The mgf for the first approximation is given by

G1(s)

= M(λ + s) +
(N−1∑

k=1

(
λ

λ + s

)k

I(ks)

(k−1∑

i=0

(−1)i

(
k − 1

i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

+
(

λ

λ + s

)N

I(Ns)
(N−1∑

i=0

(−1)i

(
N − 1

i

)

(M(iλ + (i + 1)s)−M((i + 1)λ + (i + 2)s))

C(iλ + (i + 1)s)
)

(C.2)

while the mgf for the second is given by

G2(s)

= M(λ + s) +
(N∑

k=1

(
λ

λ + s

)k

I(ks)

(k−1∑

i=0

(−1)i

(
k − 1

i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

(C.3)

If there is a low probability that a fault occurs during the running of a
task, the probability of several independent faults occuring during the same
task becomes so small that these approximations are reasonable. Also, since
the systems we are analysing have deadlines, and each fault will take some time
to detect and correct, there can only be a finite number of faults before we are
guaranteed to miss the deadline.

A difference between the two approximations is that the first approximation
models a system that will never fail completely, while the second will always
have a small probability that the running of a task is never finished.

C.4. The Simulator 179

C.4 The Simulator

The simulator is designed as a simple server-client system, as shown in figure C.2.
For the system presented in this paper, the network part is omitted.

fault generator

fault generator

Observer

ServerServer

NetworkNetwork

Client

Figure C.2: Structure of a simple client-server simulator.

180
Appendix C. Assessing Reliability of Real-Time Distributed

Systems

C.4.1 The Client

In the system presented here, the client part of the simulator functions mostly
as a generator of an object type called process. At regular intervals, the client
generates a new process object, which is time-stamped and sent to the server.
When the network part of the model is used, it also receives process objects
that are returned from the server, time-stamps them, and sends them to the
observer.

C.4.2 The Fault Generator

The fault generator is a “pure” generator that creates fault objects at intervals
drawn from a negative exponential distribution. These are sent directly to the
server.

C.4.3 The Server

During normal operation, the server function is quite straightforward. When a
process object arrives, it is placed in a queue. If the server is idle when this
happens, or if it has just finished a service while the queue is not empty, it will
take the next object in the queue. It will then set its status to busy, draw a
service time from the service time distribution, and set the next event to happen
when this time is up.

When a fault object arrives, the server will set its status to error, draw a
time from the detection time distribution, and set the next event (i.e. the fault
detection event) to happen when this time is up. When the fault is detected,
the server sets is status to correction and draws the time to the next event from
the correction time distribution. After the fault is corrected, the server returns
to busy, and restarts service on the process object by setting the next event to
happen after the service time.

A simplified state machine diagram for the server is shown in figure C.3

C.4.4 The Observer

The observer receives process objects that has finished running. The data from
these objects are extracted and presented in a way that a program used for data
analysis can read.

C.5. Example 181

Fault corrected

CORRECTION

detected
fault

ERROR

arrival
fault

BUSY

IDLE

queue
empty
service and
finished

process arrival

Figure C.3: Simplified state machine diagram for the server model.

C.4.5 Implementation

The simulator is implemented in C++, using the ADEVS discrete event simu-
lator framework [1] as a base. For data analysis, Matlab is used.

C.5 Example

We will now look at the results from the mathematical model and the simulator
for a simple system.

C.5.1 System parameters

For the fault free running time, we have chosen a triangular distribution with
minimum time 6, maximum time 10 and the mode at 8.

m(t) =

0 , 0 ≤ t < 6
t−6
4 , 6 ≤ t < 8

10−t
4 , 8 ≤ t < 10

0 , t ≥ 10

(C.4)

182
Appendix C. Assessing Reliability of Real-Time Distributed

Systems

The fault detection time is uniformly distributed with a minimum time 1 and a
maximum time 3.

i(t) =

0 , 0 ≤ t < 1
1
2 , 1 ≤ t ≤ 3
0 , t > 3

(C.5)

The fault correction time is uniformly distributed with a minimum time 0 and
a maximum time 5.

c(t) =
{

1
5 , 0 ≤ t ≤ 5
0 , t > 5 (C.6)

These distributions have the following moment generating functions:

M(s) =
e−6s − 2e−8s + e−10s

4s2
(C.7)

I(s) =
e−s − e−3s

2s
(C.8)

C(s) =
1− e−5s

5s
(C.9)

The mean time between faults is set to 10000.
The maximum number of faults during the run of one method for the analyt-

ical model is set to 2. While this may seem like a very small number, the effect
of modelling more faults in this system is very small, while it makes the expres-
sion much larger. Using equation C.3, the mgf for the run-time distribution for
the system is found to be

G1(s) =
M(λ + s)
+(λ

λ+s)I(s)
(M(λ + s)−M(2λ + 2s))C(λ + s)
+(λ

λ+s)2I(2s)
((M(λ + s)−M(2λ + 2s))C(λ + s)
−(M(2λ + 2s)−M(3λ + 3s))C(2λ + 2s))

(C.10)

Since the inverse transform of the mgf will be quite complicated, Matlab and
Simulink is used to numerically transform the results to the time domain.

The simulator is set to run 100000 tasks. Matlab is used to evaluate and
present the results from the simulator.

C.5. Example 183

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure C.4: Results from the simulation and the analytical model

C.5.2 Results

We plot the cumulative density functions (cdf) of the finishing times, using
the results from the simulator and the analytical model together, as shown in
figure C.4. If we zoom in on the plot as in figure C.5, we can se that the
analytical results (solid line) and the simulator results (dashed line) follow each
other quite closely, with an exception in the area around t = 20, where the
simulator results show a somewhat lower probability of finishing at this time
than the results from the analytical model. The curves also show the cdfs of
a non-faulty system (top dotted line) and a non-fault-tolerant system (bottom
dotted line).

The graphs clearly shows that the improvement caused by the fault tolerant
mechanism is almost negligible if the deadline is close to 10, while the improve-

184
Appendix C. Assessing Reliability of Real-Time Distributed

Systems

10 12 14 16 18 20 22
0.998

0.9985

0.999

0.9995

1

1.0005

Figure C.5: Details of results from the simulation and the analytical model
together with the fault-free and non-fault-tolerant distributions

ment is quite good if the deadline is around 20.
The results can be used to determine the probability that a task with a

deadline will succeed or fail. If, for instance, we set the deadline to 20, the
probability of a failure is 1.2 · 10−4. Had there been no fault tolerance mecha-
nism, this probability would have been 8.0 · 10−4.

By changing parameters, we can see how the fault detection and correction
times affect the system. As an example, we add 5 to the fault correction time,
so it is uniformly distributed between 5 and 10:

c(t) =

0 , 0 ≤ t < 5
1
5 , 5 ≤ t ≤ 10
0 , t > 10

(C.11)

C.6. Discussion and conclusion 185

10 12 14 16 18 20 22 24 26 28 30
0.998

0.9985

0.999

0.9995

1

1.0005

Figure C.6: Results showing the effect of adding a delay of 5 to the fault cor-
rection

C(s) =
e−5s − e−10s

5s
(C.12)

The results are plotted with the earlier results in figure C.6, showing that
the delay in fault correction times causes the fault tolerant mechanism to be
almost ineffective if the deadline is 20 or less.

C.6 Discussion and conclusion

In the models presented here, we assume that all faults are independent, and
we also only model faults that can be detected and corrected by the simple
fault tolerance mechanism described in section C.2. In many cases this is good
enough for the analysis of a system.

186
Appendix C. Assessing Reliability of Real-Time Distributed

Systems

If the behaviour of other fault classes, detection and correction mechanisms
are known, expanding the simulator so it is able to handle these, is, in most
cases, not very difficult. The difficulty of expanding the analytical model varies
greatly, depending on how the faults affect the system and how the detection
and correction mechanisms work.

In this paper, two different ways of creating models for the study of the
timing behaviour of a fault tolerant real-time system, the simulator and the
analytical model, and how the results from these can be used to find the failure
probability of methods running on this kind of system are shown.

Some of the strengths and weaknesses of these models are discussed.
Both the simulator and the analytical models have the potential to be ex-

panded, so they can be used to study a wider range of fault types, detection
methods, correction methods and fault tolerant structures.

Appendix D

A Mathematical Model for
Run-Time Distributions in
a Fault Tolerant System
with Nonhomogeneous
Passive Replicas

By Åsmund Tjora, Amund Skavhaug, and Poul E. Heegaard

This paper was presented at the ERCIM/DECOS Workshop on Dependable
Embedded Systems in Gdansk, Poland, September 2006 [49]. The proceedings
of this workshop have not yet been published.

188
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

Abstract

Structures based on passive replication are used as a fault tolerance mechanism
in many systems, some times with variation in the replicas used. The analysis of
timing behaviour in such systems is a difficult task, but this analysis is necessary
if the systems shall be used in real-time applications.

In this paper, we consider services with requirements both to reliability and
timeliness. The paper focuses on fault tolerant systems with passive replication
at the component level, where a new replica is instantiated when the primary
fails. The instantiation and take-over on failure will affect the service response
time, and a mathematical model and expression is developed in order to quantify
the effect of failures on the system response time distribution. The expression
enables evaluation quantification of the service time guarantees given.

The use of the mathematical model is demonstrated on selected examples
and its validity is compared to systems simulation of the same examples.

D.1 Introduction

Many real-time applications will, in addition to the timing requirements, also
have reliability requirements. To fulfill these reliability requirements, some kind
of fault tolerance mechanism might be neccessary. A fault tolerance mechanism
may be efficient in detecting and correcting errors, however, if the extra time
used for this causes deadline misses, the mechanism itself has introduced new
faults. Because of this, some common fault tolerance mechanisms may give very
little improvement to the system’s reliability, depending on the system’s real-
time requirements. The effect of using fault tolerance mechanisms in real-time
systems is therefore an important study, as noted in [43].

In many real-time fault tolerant systems, it has been common to use active
replication structures, i.e., the task is run on several replicas simultaneously.
This will give deterministic temporal behaviour even if errors are detected in
one of the replicas, and comparision of results from the different runs can be
used as a fault detection mechanism. On the negative side, these fault tolerance
mechanisms requires extra hardware resources.

In fault tolerant systems systems using a passive replication structure, only
one object running the task is active, while backup objects are passive. If an
error is detected, the task is stopped, and one of the backup objects is prepared
and made active. The task is then rerun on this object. Because only one of
the replicas is running at a given time, these fault tolerance mechanisms use

D.1. Introduction 189

less resources than the mechanisms based on active replication, making them
popular, especially in general purpose systems. However, because of the extra
time needed to detect an error, prepare a backup object and rerun the task,
this kind of fault tolerance mechanisms are exactly the kind that may cause
real-time applications to miss deadlines.

This does not mean that this type of fault tolerance mechanism is unsuitable
for use in real-time applications; there is still a possibility that many of the
faults can be tolerated within the time limits, thus improving the reliability
of the system without the need for a more resource consuming fault tolerance
mechanism. Analyzing the time use in these systems is therefore important in
order to determine how much the reliability of the system can be improved while
the tasks still meet their deadlines.

In many fault tolerant systems, the methods used to run the task are the
same in all replicas. This makes the design of the system easier, and is often
considered “good enough”. In some system it is desirable to use different meth-
ods that perform the same task in the different replicas [2, 37]. Some faults may
be a part of the program code itself, and will therefore appear in all replicas
unless there is a difference between the replicas. Thus, varying the replicas may
give protection against a wider range of faults.

In real-time systems, the timeliness of the results may be a higher priority
than the precision of the results [28]. In some systems, using a fault tolerance
system with backups that can provide results fast at the cost of the precision
of the results, may be desirable, as it improves the chances of the task meeting
its deadline. During normal operation, a method that gives results with high
presision is used. When an error is detected, a faster, but less accurate method,
is used.

In previous papers [46, 47], we have shown how timing in fault tolerant
systems based on passive replication can be analyzed if the timing behaviour is
the same in all replicas.

This paper, we focus on systems using passive replication with inhomoge-
neous replicas as a fault tolerance mechanism. We present a mathematical
expression for the service times of tasks running in these kinds of systems, thus
making it easier to decide if this kind of fault tolerance mechanism is applicable
for the real-time system. Examples on using this expression are given, and the
results are compared with simulations.

The paper is organized as follows:

• Section D.2 describes the class of passive replication fault tolerant systems
that we have used as a base for the mathematical models.

190
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

• Section D.3 describes the mathematical model, and how it is derived.

• Section D.4 gives examples on how the mathematical model can be used
as a method to analyse the timing behaviour in different systems, among
them systems where the timing distributions are different between replicas
and systems with imprecise backups.

• Secton D.5 contains discussions and conclusion of the paper.

D.2 The modelled system

The class of systems we are modeling can be described as a server that is using
a fault tolerant mechanism based on passive replication. The model we are
using was originally based on the cold and warm passive replication methods
described in Fault Tolerant CORBA [34]. We have modified the model so that
while the replicas used for backup perform the same services as the primary
replica, they are not necessarily the same, so the service time distribution may
vary between the replicas.

The different replicas as well as the components for managing the fault
tolerance mechanism may be on the same node, or they may be distributed over
several nodes, as shown in figure D.1. While the physical distribution of the
system may affect the timing distributions in the model and the system’s ability
to tolerate certain faults, the mathematical model itself will not be affected by
the physical structure of the server.

In the modelled system, there is one active primary object and several passive
backup objects. The state of the active object is logged. If the primary object
fails, one of the backup objects is updated to a state corresponding to the state
the primary had before the task started to run, and this backup is made active
and used to rerun the task the primary was running. The conversion of the
states between the different kinds of replicas is either done as a part of the
logging process, creating extra overhead during normal operation, or during
fault correction, making the correction process take more time.

Fault detection is here supposed to be based on some kind of watchdog
mechanism, which often is the case in real-time systems. There is regular com-
munication between the active object and a fault detector, so the fault detector
gets messages indicating that the active object “is alive”. If the fault detector
doesn’t get a message from the active object in what is considered a reasonable
time, it is assumed that the active object has failed, and the fault correction
mechanism is activated. It is thus mainly faults that cause the running object

D.2. The modelled system 191

���������
���
��������� ������������ ���������������

���������������

��
�

Node 1 Node 2 Node 3 Node 4

Network

���������	�		�		�	
�
�

�
�

���������� �

�
������

������������������ ������������ ������������

Active replica

Passive replicas

Components that are not a part of the fault tolerant system

������������������ �������������������� ����������
������

Figure D.1: Fault tolerant system with replicas distributed over several nodes

to be irresponsive or to crash that are tolerated. Some other faults that cause
errors that can be observed by an external fault detection mechanism while the
object is running, e.g. errors that cause the object to raise an exception, can
also be covered by this model as long as the fault tolerance mechanism’s way of
correcting the faults is the same.

When a fault is detected, the fault correction mechanism will prepare one
of the backup objects to run the task. The state of the object is updated from
the log, and the task that was running on the failed object will be rerun on on
the backup. The timing behaviour of the system when a fault occurs is shown
in figure D.2.

There is a possibility that several faults will occur during the service of one
task, something that must be reflected in the model. If a new fault occurs
during the correction of the previous fault, or during the rerun of the task, the
whole detection–correction–rerun cycle will recur. However, if the fault occurs
before the previous fault is detected, it will have no additional effect, as the
active object it affects has already failed.

Faults are modelled as independent, generated by a poisson process with a
constant intensity, a common assumption in reliability modelling.

192
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

Fault
occurs

Fault is
detected

Backup object
finish

Finishing time
for a "fault−free"
system

starts rerunning

Fault detection time

Fault correction time

Time used to run task on primary

Time used to run task on backup

Task Task

task
start

�������������������� ����������
����������
���
�

���
�

	
��
��
�
��

���
���

time

Figure D.2: Timing behaviour of system when a fault occurs

D.3 The mathematical model

The mathematical model is derived using the same method that we used for
homogeneous replication systems in [46], which is based on the method used by
Kleinrock [21] to derive the busy period in a queueing system.

D.3.1 Notation

For all equations, function names with normal capital letters (F (t)) indicate cu-
mulative distribution functions, function names with normal lower-case letters
(f(t)) indicate probability density functions, while function names with calli-
graphic letters (F(s)) indicate moment generating functions. Function names
with the same letter and index indicate the same distribution, e.g. Fα(t), fα(t)

D.3. The mathematical model 193

and Fα(s) are the cdf, pdf and mgf for the same distribution.
In the equations, we will use the following naming conventions for the dif-

ferent distributions:

G(t), g(t), G(s) The runtime distribution for the fault-tolerant system.

Mi(t), mi(t), Mi(s) The fault-free runtime distribution for replica i. i = 0
indicates the runtime for the primary replica.

Ci(t), ci(t), Ci(s) The fault correction time distribution for replica i. i = 1
indicates the time used to prepare the first backup object.

Ii(t), ii(t) Ii(s) The fault detection time distribution for replica i. i = 0 indi-
cates the time used to detect a fault in the primary object.

Hτ (t), Hτ (s) The time-to-fault in a faulty run where the fault-free runtime
would have been τ .

D.3.2 The fault model

The faults are modelled as generated from a poisson process with intensity λ.
If the execution of a method takes the time τ , the probability that at least one
fault happens before the execution ends is given by

pτ = 1− e−λτ (D.1)

Given that a fault occurs during the execution, the cumulative density function
(cdf) for the time from the start of the execution to the fault occurs is given by

Hτ (t) =
{

1
1−e−λτ (1− e−λt) , 0 ≤ t ≤ τ

1 , t > τ
(D.2)

This distribution has the moment generating function (mgf)

Hτ (s) =
1− e(λ+s)τ

1− e−λτ

λ

λ + s
(D.3)

D.3.3 The system without detection and correction delays

First, we look at a model where the time used for detection and correction of
the fault is 0, i.e., as soon as a fault occurs, the task will start running on a
backup replica.

194
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

For a system where the runtimes for the replicas are inhomogeneous xi, where
x0 indicate the runtime for the primary replica, the number of faults φ before
one of the replicas completes a fault-free execution is given by the probability
function

P [φ = k] =
{

e−λx0 , k = 0
e−λxk

∏k−1
i=0 (1− e−λxi) , k > 0

(D.4)

The total runtime of a system with φ faults is given by

Y = rφ + X0 + X1 + · · ·+ Xφ−1 (D.5)

where Xi is the time to fault for each faulty run, and rφ is the runtime for the
fault-free run.

What we wish to find is the distribution of the total time use, expressed by
the mgf

G(s) =
∫ ∞

0

e−stdG(t)

= E[e−sY]
= E[e−s(r+X0+X1+···+Xφ−1)]

(D.6)

We start by introducing conditions on run-times and number of faults

E[e−sY |rφ = xφ, φ = k]
= E[e−s(xk+X0+X1+···+Xk−1)]
= E[e−sxke−sX0e−sX1 · · · e−sXk−1]

(D.7)

Because the runtimes xk and X0 · · · Xk−1 are independent, we can rewrite
this as

E[e−sY |rφ = xφ, φ = k]
= E[e−sxk]E[e−sX0]E[e−sX1] · · ·E[eXk−1]

(D.8)

Using E[e−sXi] = Hxi(s), we can rewrite this as

E[e−sY |rφ = xφ, φ = k] = E[e−sxk]
k−1∏

i=0

Hxi(s) (D.9)

We now remove the condition on the number of faults. This is done by
multiplying the probability for a given number of faults with the runtime for

D.3. The mathematical model 195

that number of faults, and summing these products:

E[e−sY |rn = xn]

= e−sx0e−λx0 +
∞∑

k=1

e−sxke−λxk

k−1∏

i=0

Hxi
(s)(1− e−λxi)

= e−(λ+s)x0 +
∞∑

k=1

e−(λ+s)xk

k−1∏

i=0

(1− e−(λ+s)xi)
λ

λ + s

(D.10)

A problem with this equation “as it is” is the infinite sum in it, which makes
it difficult to work with. This can be explained as no limit to the number of
faults that can happen during the execution of a single task. To work around
this problem, we set a maximum number of faults, N , that can happen to a
single task and still be tolerated by the system. If more than N faults happen
to the system during the execution of a single task, we consider the system to
have failed. Even for a relatively low N , this is a reasonable approximation of
the system’s behaviour, since the probability of faults happening is usually very
low. Also, because of the extra time used to tolerate faults, we can assume that
a task will miss the deadline, and thus fail anyway, if there is more than N
faults.

The equation with a maximum of N faults before a failure is given by:

E[e−sY |rn = xn]

= e−(λ+s)x0 +
N∑

k=1

e−(λ+s)xk

k−1∏

i=0

(1− e−(λ+s)xi)
λ

λ + s

(D.11)

The condition on time use is removed by integrating the expression with
respect to the runtime distributions

G(s)
= E[e−sY]

=
∫ ∞

0

· · ·
∫ ∞

0

E[e−sY |rn = xn]dM0(x0) · · · dMN (xN)
(D.12)

By using the definition of the moment generating function, we get

G(s)
= M0(λ + s)

+
N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)
k−1∏

i=0

(1−Mi(λ + s))
(D.13)

196
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

Equation D.13 shows the mgf for the distribution of the runtime in a serial-
structured fault tolerant system without the fault detection and fault correction
times.

D.3.4 Adding the fault correction delay

We will now expand the expression by adding the delay for fault correction. The
correction process consists of updating the backup objects, so that the state of
these objects reflects the state of the primary object. We also assume that faults
may happen during the correction process.

This can be done by changing the equations in D.3.3 so that the correction
time is included. Equation D.4 is changed to

P [φ = k] =
{

e−λx0 , k = 0
e−λ(xk+yk)

∏k−1
i=0 (1− e−λ(xi+yi)) , k > 0

(D.14)

and equation D.9 is changed to

E[e−sY |rn = xn, cn = yn, φ = k]

=
{

e−sx0 , k = 0
e−s(xk+yk)Hx0(s)

∏k−1
i=1 Hxi+yi(s) , k > 0

(D.15)

The expression is otherwise derived as in D.3.3. This gives us the mgf for
the system with fault correction time included:

G(s)
= M0(λ + s)

+
N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

k−1∏

i=0

(1−Mi(λ + s)Ci(λ + s))

(D.16)

where C0(s) = 1; since the primary replica is considered to be up to date, the
correction time for this replica is always zero, i.e. c0(t) = δ(t).

Equation D.16 can also be derived by combining the correction time with
the run time for the replicas, i.e. let the run time for replica n be distributed
with pdf cn(t) ∗mn(t) where ∗ is the convolution operator, which in the mgf
domain corresponds to a simple multiplication, i.e. C(s)M(s).

D.4. Examples 197

D.3.5 Adding the fault detection delay

The equation is expanded further by adding the delay used for fault detection.
During this delay, the method that is running is already in an erroneous state,
so new faults happening during this time can be ignored.

The probability on the number of faults will thus be the same as for a system
without fault detection, i.e. equation D.14.

The expected time use for a system where k faults occurs will be

E[e−sY |rn = xn, cn = yn, dn = zn, φ = k]

=
{

e−sx0 , k = 0
e−s(xk+yk)Hx0(s)

∏k−1
i=1 Hxi+yi

(s)eszi , k > 0
(D.17)

The mgf for a system with fault detection and fault correction times included
is derived the same way as in D.3.3. This gives the final result:

G(s)
= M0(λ + s)

+
N∑

k=1

(
λ

λ + s

)k

Mk(λ + s)Ck(λ + s)

k−1∏

i=0

(1−Mi(λ + s)Ci(λ + s))Ii(s)

(D.18)

Equation D.18 gives an expression for the total runtime for the class of fault
tolerant systems described in section D.2 as a function of the distributions of
the fault free runtimes, the correction times, and the fault detection times of
the systems. We regard this as the main result of the paper.

We will now show how the results can be used for various systems.

D.4 Examples

In this section we will show how the equation derived in the previous section
can be used for analysing the timing behaviour in several systems, and compare
the results with simulator results.

For simplicity, we let all systems in the examples use the same structure;
one primary and two backup objects. We can then use the same equation for all

198
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

systems, and vary the parameters and distributions according to the systems we
are analyzing. The equation we use is found by setting N = 2 in equation D.18

G(s) = M0(λ + s)
+ λ

λ+sM1(λ + s)C1(λ + s)(1−M0(λ + s))I0(s)

+
(

λ
λ+s

)2

M2(λ + s)C2(λ + s)
(1−M1(λ + s)C1(λ + s))I1(s)
(1−M0(λ + s))I0(s)

(D.19)

Because the inverse transform of the moment generating functions we get
from this expression will be quite complicated, Matlab and Simulink is used to
numerically transform the results to the time domain.

Given that the fault-tolerant system makes the occurence of failures, except
timing failures, negligible, and that the deadlines are hard (i.e., timing faults
will lead to the failure of the system), the reliability function for the system can
be expressed as

R(n) = G(tdl)n (D.20)

where tdl is the deadline and n is the number of times the task is performed.
For each system, the calculated cdf of the system’s completion time is plotted

together with the cdf of the results from the simulations, and the reliability
functions for the system with different deadlines are plotted and compared to
the reliability function for a non-fault tolerant system.

D.4.1 The simulator

We have created a simple simulator for simulating the passive replication fault
tolerant systems described in section D.2. The simulator was developed using
C++ and the ADEVS framework for discrete event simulations [1]. A block
diagram of the simulator is shown in figure D.3.

In the systems presented here, the client and fault generator functions as
pure generators of respectively process and fault objects, which are sent to the
server part of the simulator.

During normal operation, the server part of the simulator is quite straight-
forward. When the server starts the service on a process object, a running time
is drawn from the running time distribution, and if no event occurs during this
time, the service ends when the time is up.

If a fault object arrives while the server is busy, the server will enter an error
state, and a fault detection time will be drawn from the fault detection time dis-
tribution. When the fault detection time is up, the server will enter a correction

D.4. Examples 199

fault generator

fault generator

Observer

ServerServer

NetworkNetwork

Client

Figure D.3: Structure of a simple client-server simulator.

state, and draw a correction time from the correction time distribution. When
the fault is corrected, the server will reenter the busy state, and a new running
time is drawn for the process object. A simplified state machine diagram for
the server part of the simulator is shown in figure D.4.

In both the fault-free and the faulty runs, the starting and ending time of
the service is logged and sent to the observer part of the system, which presents
the times in a format that can be read by Matlab.

The details of the simulator are discussed in [47].

200
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

Fault corrected

CORRECTION

detected
fault

ERROR

arrival
fault

BUSY

IDLE

queue
empty
service and
finished

process arrival

Figure D.4: Simplified state machine diagram for the server part of the simula-
tor.

For each example, the simulator is set to run the task a reasonably large
number of times, 500000. The results from the simulator are analyzed using
Matlab.

D.4.2 A basic system

First, we look at a system where the distributions for run-time, fault correction
and fault detection is the same for both the primary and the backup methods.

System parameters

For the fault-free running time, we choose a triangular distribution with a min-
imum time 6, maximum time 8, and mode 10.

m0(t) = m1(t) = m2(t) =

0 , 0 ≤ t < 6
t−6
4 , 6 ≤ t < 8

10−t
4 , 8 ≤ t < 10

0 , t ≥ 10

(D.21)

D.4. Examples 201

The fault detection time is uniformly distributed with a minimum time 1
and a maximum time 3.

i0(t) = i1(t) =

0, , 0 ≤ t < 1
1
2 , 1 ≤ t ≤ 3
0 t > 3

(D.22)

The fault correction time is uniformly distributed with a minimum time 0
and a maximum time 5.

c1(t) = c2(t) =
{

1
5 , 0 ≤ t ≤ 5
0 , t > 5 (D.23)

These distributions have the following moment generating functions:

M0(s) = M1(s) = M2(s) =
e−6s − 2e−8s + e−10s

4s2
(D.24)

I0(s) = I1(s) =
e−s − e−3s

2s
(D.25)

C1(s) = C2(s) =
1− e−5s

5s
(D.26)

The mean time between faults is set to 10000. This is an unrealistically high
fault rate, but is chosen as it limits the number of simulation runs needed to
get usable results.

Results

Details of the calculated and simulated cdf for this system is shown in figure D.5
The reliability functions for the system with different deadlines is plotted in

figure D.6, together with the reliability function for a non-fault tolerant system.
This shows that for this example, the improvement in reliability is negligible for
deadlines near 10, while it is much improved for deadlines over 20.

D.4.3 Heterogeneous systems

In the second example, we look at systems where the primary is different from
the backups.

202
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

8 10 12 14 16 18 20 22 24 26 28 30
0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

time

pr
ob

ab
ili

ty
 o

f c
om

pl
et

ed
 e

xe
cu

tio
n

Figure D.5: Cumulative density function for the runtime distribution of the
system described in D.4.2. The solid line shows the cdf calculated using the
equation derived in the paper, the dashed line shows the cdf calculated from
the simulator results.

System parameters

For the first system, we let the primary method have a deterministic running
time of 9.

m0(s) = δ(t− 9) (D.27)

M0(s) = e−9s (D.28)

The backups’ running times are distributed with a triangular distrubution
with the same parameters as in the previous example, i.e. equations D.21
and D.24 are used.

D.4. Examples 203

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of runs, n

re
lia

bi
lit

y,
 R

(n
)

t
dl

=24

t
dl

=22

t
dl

=20

t
dl

=18

t
dl

=16

t
dl

=14

t
dl

=12

t
dl

=10

non−fault tolerant
system

Figure D.6: The reliability functions for the system in D.4.2 with different
deadlines, compared to the reliability function for a non-fault tolerant system

The fault correction and detection times are the same as in the previous
example.

For the second system, we switch the distributions for the primary and
backup running times, so that the primary has a triangular distributed running
time and the backups have a deterministic running time.

Results

The calculated and simulated cdf of the first system is shown in figure D.7, while
the calculated and simulated cdf of the second system is shown in figure D.8.

The reliability of the two systems at different deadlines is shown in figure D.9.
Both systems have a poor improvement in reliability when the deadline is near

204
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

8 10 12 14 16 18 20 22 24 26 28 30
0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

time

pr
ob

ab
ili

ty
 o

f c
om

pl
et

ed
 e

xe
cu

tio
n

Figure D.7: Cumulative density function for the runtime of the first system
described in D.4.3. The solid line indicates the calculated results, the dashed
line indicates the simulated results.

10. At these deadlines the second system has a better reliability, because the
average runtime of this system is better, and it will thus have a lower probability
of faults with the fault model we use. For higher deadlines, the two systems has
about the same reliability function, with a slightly higher reliability for the first
system if the deadlines are over 20.

D.4.4 Imprecise systems

In the final example, we will look at a system with a precise, but slow, primary
method and imprecise, but fast, backup methods.

D.4. Examples 205

8 10 12 14 16 18 20 22 24 26 28 30
0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

time

pr
ob

ab
ili

ty
 o

f c
om

pl
et

ed
 e

xe
cu

tio
n

Figure D.8: Cumulative density function for the runtime of the second system
described in D.4.3. The solid line indicates the calculated results, the dashed
line indicates the simulated results.

System parameters

For the primary method, we use the same triangular distribution as described
in earlier examples. The backups have a deterministic running time of 1.

m1(t) = m2(t) = δ(t− 1) (D.29)

M1(s) = M2(s) = e−s (D.30)

Because of the relatively simple structure of the backups, we assume that the
time used to bring them up to date is much shorter than for the backups in the

206
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of runs, n

re
lia

bi
lit

y,
 R

(n
)

t
dl

=24

t
dl

=22

t
dl

=20

t
dl

=18
t
dl

=16

t
dl

=14

t
dl

=12

t
dl

=10

non−fault tolerant
system

Figure D.9: Reliability functions for the systems described in D.4.3 at different
deadlines. The solid lines indicate the first system, the dashed lines indicate the
second system.

other example systems, and that it is distributed uniformly between 0 and 1.

c1(t) = c2(t) =
{

1 , 0 ≤ t ≤ 1
0 , t > 1 (D.31)

C1(s) = C2(s) =
1− e−s

s
(D.32)

The fault detection times are as in the previous examples.

D.4. Examples 207

8 10 12 14 16 18 20 22 24 26 28 30
0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

time

pr
ob

ab
ili

ty
 o

f c
om

pl
et

ed
 e

xe
cu

tio
n

Figure D.10: Cumulative density functions for the runtime distribution of the
system with imprecise backups described in D.4.4. The solid line indicates the
calculated results, the dashed line indicates the simulated results. The dotted
line indicates the probability of getting a precise result.

Results

The results are plotted in figure D.10, and show that we can get good timing
results for this system if we allow results to be imprecise in the case of faults.
The dotted line show the probability that the results are precise.

The reliability of the system with different deadlines are shown in figure D.11,
showing a significant improvement in reliability even for a deadline of 10. For a
deadline of 14, the system shows a very high reliability.

208
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of runs, n

re
lia

bi
lit

y,
 R

(n
)

non−fault tolerant
system

t
dl

=10

t
dl

=12

t
dl

=14

Figure D.11: Reliability for the system described in D.4.4 at different deadlines.

D.5 Discussions and conclusion

In the models we present here, we assume that faults are independent, and can be
detected and corrected by the fault tolerance mechanism discussed in section D.2
or similar mechanisms. While this often will be good enough for the analysis of
a system, there will be times when other fault behaviours and other detection
and correction mechanisms must be modelled, e.g. non-independent faults or
non-fail-silent behaviour, and fault detection by acceptance tests. While not
covered by our present work, we believe that a mathematical model of the
timing behaviour in such systems can be derived in a similar way as the one we
used in section D.3. This will be pursued in future work.

In this paper, we have derived an expression for the run-time distribution of
a method in a fault tolerant system based on passive replication where inhomo-

D.5. Discussions and conclusion 209

geneous replicas are used. This expression is a function of the distributions of
the fault free runtimes, the fault detection times and the fault correction times
in the system. We believe this to be a useful tool for the analysis of fault tolerant
real-time systems. To demonstrate this, we have shown how these equations can
be used for several example systems, and how they can be used to determine the
probability of missed deadlines, and the corresponding reliability characteristics
of the system.

210
Appendix D. A Mathematical Model for Run-Time Distributions in

a Fault Tolerant System with Nonhomogeneous Passive Replicas

Appendix E

Run-time Distributions in
Passively Replicated
Systems Using Timeout and
Acceptance Fault Detection

By Åsmund Tjora and Amund Skavhaug

This paper was presented at the ERCIM/DECOS Workshop on Dependable
Embedded Systems in Lübeck, Germany, August 2007 [48]. The proceedings of
this workshop have not yet been published.

212
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

Abstract

Fault tolerance based on passive replication is common in many systems. If this
kind of fault tolerance mechanism is to be used in a real-time system, timing
analysis is necessary, as the fault tolerance mechanism itself may cause timing
faults.

There are different ways of detecting when the primary replica has failed,
one of them is to use a timeout to detect crash and omission failures, another
to run acceptance tests on the results, which detects some value failures. As
these two detection strategies cover different kinds of failures, it can be useful
to combine them.

In this paper, a mathematical model for the timing behaviour of a system
with passive replication, where a combination of timeout and acceptance test is
used for fault detection, is derived.

Examples are given to demonstrate how the model can be used for calculation
of deadline miss probabilities, and further how this can be used for checkpoint
placement optimisation.

E.1 Introduction

Many real-time systems will, in addition to the timing requirements, have re-
quirements to reliability. To fullfill the reliability requirements, a fault toler-
ance mechanism might be necessary. While the fault tolerance mechanism may
detect and correct many of the faults that occur to the system, it may also
introduce new faults if the extra time used for detection and correction cause
deadline misses. Because of this, the reliability improvement given by some
fault tolerance mechanisms may be very small, depending on the system’s real-
time requirements. The effect of using fault tolerance mechainsms in real-time
systems is therefore an important study, as noted in [43].

In fault tolerant real-time systems, using active replication structures, i.e.
structures where a task is run on several replicas simultaneously, has been com-
mon. Even if errors are detected in some of the replicas, the non-erroneous
replicas will still be able to produce results within the deadlines. In addition,
comparision of the results from the different replicas can be used as fault de-
tection, increasing the range of faults that can be detected. On the negative
side, running several replicas of the same task simultaneously do require extra
hardware resources, which can be costly.

Passive replication strucures are less resource consuming. In these struc-

E.1. Introduction 213

tures, only one of the replicas running the task is active, while the other tasks
are passive. If an error is detected in the active replica, it is stopped, and one
of the backup replicas is prepared and made active. The task that ran on the
failed replica is then rerun on the new active replica. Because of the extra time
used to detect a fault, prepare a backup, and rerun the task, these fault tolerant
mechanisms may cause deadline misses if used in a real-time system.

This does not mean that passive fault tolerant structures are unsuitable for
all real-time applications. It is still possible that many of the faults are tolerated
within the deadlines, thus improving the system’s reliability without using a
more resource consuming fault tolerance mechanism. Analysis of the time use
becomes necessary to determine how much the reliability can be improved while
the task still meets its deadlines.

For the fault tolerant system to function properly, it is necessary to have a
mechanism that determines when the active replica has failed. Using a timeout
on the execution of a task is a fairly simple fault detection mechanism. If
the task has not finished its execution within a given time, it is considered
an omission failure. Another fault detection mechanism is to run acceptance
tests [37] on results from the task. These tests may detect some value failures,
but are usually unable to determine the correctness of the results. Combining
timeout and acceptance tests makes the system able to detect omission failures
and some value failures.

In earlier works [46, 47], we have derived runtime models where we have
focused on a fault detection mechanism where the task periodically signals that
it is “alive” to the fault detector, and where it is assumed that the running
replica has failed if the “alive” signals disappears. In those systems, the faults
are detected a time after fault occurrence that is independent of the remaining
execution time of the task. In this paper, the runtime model for systems using
a combination of timeout and acceptance test for fault detection is derived.

The rest of the paper is organized as follows:

Section E.2 gives a textual description of the modelled systems.

Section E.3 contains the derivation of the mathematimal model for the run-
time distribution.

Section E.4 contains examples of the use of the model

Section E.5 contains discussions and the conclusion of the paper.

214
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

Set
Primary

Host 1 Host 2 Host 3 Host N

State

State State State

Client

Server group
Interface

Group
Manager

Primary

Backup Backup Backup

Request/Reply

Request/Reply

Log State

Update State

Group Control/Fault Detection

Other task Other task Other task

Log Log Log Log

Figure E.1: A passively replicated task in a distributed system

E.2 Description of the modelled system

The class of systems that are modelled can be described as a server using passive
replication mechanisms to achieve fault tolerance. In these systems, there are
one active primary replica and several passive backup replicas. The replicas, as
well as the fault tolerance mechanisms may be on the same node, or they may be
distributed over several nodes, as shown in figure E.1. The physical distribution
of the system will affect the timing distributions used in the models, as well as
the system’s ability to tolerate some faults, but the models themselves will not
be affected by the physical structure of the server.

When operating normally, the state of the primary replica is logged. The
log is used when updating the passive replicas and when creating new replicas.

E.3. Deriving the mathematical model 215

The strategy for updating the passive replicas may vary. Frequent updates will
cause more overhead during normal operation than infrequent updates, but as
a result, the backups will have a state that are closer to the primary’s state, so
the time used to update the backups in a fault situation is shorter.

Two fault detection mechanisms are used. The timeout mechanism detects
if the primary replica does not deliver results within a set maximum time, thus
faults causing omission and silent failures are detected by this mechanism. The
acceptance test checks the results to see if they meet criteria that all acceptable
results must meet, and can thus detect some value failures.

When a fault is detected, the fault tolerance mechanism prepares one of the
backups to run the task. The state of the backup is updated from the log, and
this backup becomes the new primary. The task is then rerun. The timing
behaviour of the system when faults occur is shown in figure E.2.

Faults are modeled using constant fault probabilities for each part of the ex-
ecution (i.e. running the task on the primary, correction, and rerun on backup)
of the system. As the faults are detected at either the timeout or after the ac-
ceptance test, we need to know that a fault has occured and whether it caused
a value or an omission failure, but we do not need the exact time of the fault
occurences.

There is a possibility that several faults occur during the service of one task.
If a new fault occurs during the correction of previous faults or during the rerun
of the task, a new detection–correction–rerun cycle will recur. If more than one
fault occur before detection, the detection will be at the timeout if at least one
of the faults cause an omission failure and at the acceptance test if all faults
cause value failures.

E.3 Deriving the mathematical model

The mathematical model for the total runtime distribution of the tasks in the
fault tolerant system is a function of the distributions for the fault free runtimes
of the tasks, the acceptance test times, and the time between a fault detection
and the rerun of the task (called correction time in this work), as well as the
timeout values and the fault probabilities. The derivation of the expression is
similar to the derivation of the busy period in queueing systems [21].

The distributions used in the expressions are represented by their moment-
generating functions, which can be viewed as the laplace transform of the prob-

216
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

Fault detection event

���
���
���������������������������
��������������������� ���

���
������

���
��� 	�	�		�	�		�	�	

�
�

�
�

�
�
 ����������
����������

��
�
������
���
����������
�����
�����
����������

���
������
���
������

������
������
���������
���

Timeout finish
Task

finish
Task

rerun
starts
Backup

rerun
starts
Backup

Task start

Task start

time

time

a.

b.

Primary run, fault cause omission failure

Primary run, fault cause value failure

Backup run

Acceptance test

Correction time

�������������������������
�������������������������
��

Figure E.2: Timing of the fault tolerant system when a fault is detected at
timeout (a) and when a fault is detected by the acceptance test (b)

ability density function:

F(s) = L(f(t)) =
∫ ∞

0

e−stf(t)dt =
∫ ∞

0

e−stdF (t) (E.1)

E.3. Deriving the mathematical model 217

In this work, moment-generating functions are given boldface function names
(e.g. F(s)), probability density functions are given lower-case function names
(e.g. f(t)), and cumulative distribution functions are given upper-case function
names (e.g. F (t)). Different represenations of the same distributions are given
the same letter and index (e.g. Fα(s), fα(t), and Fα(t) are different represen-
tations of the same distribution).

The function names used in this work are

G(s), g(t), G(t) The runtime distribution of a task in a system where faults
may occur and be tolerated, i.e. the runtime distribution that are derived
in this section.

Mi(s), mi(t), Mi(t) The fault-free runtime distribution of a task on replica i.

Ci(s), ci(t), Ci(t) The correction time distribution, i.e. the distribution of the
time used from a fault in replica i − 1 is detected to replica i is ready to
rerun the task.

D(s), d(t), D(t) The distribution of the time used for acceptance test.

Ai(s), ai(t), Ai(t) The distribution of the time used from a failed run of the
task on replica i starts to the fault detection.

E.3.1 The fault model

As described in the previous section, a fault model with fixed fault probability
for each part of the system is used. For each replica i, there is a probability κcoi

that there is no omission failure while readying the replica (i.e. the correction
process), there is a probability κmoi that there is no omission failure while
running the replica, and there is a probability κvi that there is no value failure
detected when testing the results.

If a replica fails, there are three possibilities of where the failure is detected:

• Omission failure during correction, detection is at the timeout for the
correction, τci

• No omission failure during correction, but omission failure during the exe-
cution of the task. Detection is at the timeout for the execution, τmi after
the execution started.

• No crash or omission failure, but a value failure detected by the acceptance
test.

218
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

The probability for at least one of these failures occur while running replica
i is given by

Pr(φ ≥ 1) = 1− κcoiκmoiκvi (E.2)

For a run where there is no correction time (e.g. the primary replica when
the task execution starts), a fault may be detected either at the timeout, τmi

after the execution starts, or after the normal runtime xi and the acceptance
test time z. The time to failure detection is distributed with the pdf

anci(t) =
1− κmoi

1− κmoiκvi
δ(t− τmi)

+
1− κvi

1− κmoiκvi
κmoiδ(t− (xi + z))

(E.3)

which has the mgf

Anci(s) =
1− κmoi

1− κmoiκvi
e−sτmi

+
1− κvi

1− κmoiκvi
κmoie

−s(xi+z)

(E.4)

If there is a correction time, and a separate timeout function for this, a
fault may be detected at the timeout for the correction τci, after the normal
correction time yi and the timeout for the runtime τmi, or after the correction,
normal runtime and acceptance test, yi + xi + z. The time to failure detection
is distributed with the pdf

ai(t) =
1− κcoi

1− κcoiκmoiκvi
δ(t− τci)

+
1− κmoi

1− κcoiκmoiκvi
κcoiδ(t− (yi + τmi))

+
1− κvi

1− κcoiκmoiκvi
κcoiκmoiδ(t− (yi + xi + z))

(E.5)

which has the mgf

Ai(s) =
1− κcoi

1− κcoiκmoiκvi
e−sτci

+
1− κmoi

1− κcoiκmoiκvi
κcoie

−syie−sτmi

+
1− κmoi

1− κcoiκmoiκvi
κcoiκmoie

−s(yi+xi+z)

(E.6)

E.3. Deriving the mathematical model 219

E.3.2 Deriving the model

We start with a model of the number of detected faults, i.e. the number of
reruns that is necessary to get an accepted result

Pr[φ = k] =

κmo0κv0 , k = 0
κcokκmokκvk(1− κmo0κv0)
×∏k−1

i=1 (1− κcoiκmoiκvi)
, k > 0

(E.7)

If there are k reruns, where the time to fault detection for a failed run of the
task on replica i takes the time Xi, the correction time for replica k is yk, the
runtime for replica k is xk, and the test time is z, the total runtime of the task
is given by

Y = X0 + X1 + · · ·+ Xk−1 + yk + xk + z (E.8)

We can now create an expectation function for E−sY with conditions to
runtimes rn, correction times cn and acceptance test time d and the number of
faults φ

E[e−sY |rn = xn, cn = yn, d = z, φ = k] =
e−s(X0+X1+···+Xk−1+yk+xk+z) (E.9)

As the times in this expression are independent, and by using the time to
detection derived previously, i.e. E[e−sXi] = Ai(s), the expectation function
can be rewritten as

E[e−sY |rn = xn, cn = yn, d = z, φ = k] ={
e−s(x0+z) , k = 0
e−s(xi+yi+z)Anc0(s)

∏k−1
i=1 Ai(s) , k > 0

(E.10)

Removing the condition on the number of faults is done by multiplying the
probability of a given number of faults (from equation E.7) with the expectation
function (from equation E.10) for that given number of faults, and summing the
results

E[e−sY |rn = xn, cn = yn, d = z] =
∞∑
0

E[e−sY |rn = xn, cn = yn, d = z, φ = k] Pr(φ = k) (E.11)

220
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

This yields the expectation function

E[e−sY |rn = xn, cn = yn, d = z] =
κmo0κv0e

−s(x0+z)

+
∞∑

k=1

κcokκmokκvke−s(xk+yk+z)

((1− κmo0)e−sτm0 + (1− κv0)κmo0e
−s(x0+z))

k−1∏

i=1

(1− κcoi)e−sτci + (1− κmoi)κcoie
−syie−sτmi

+ (1− κvi)κcoiκmoie
−s(xi+yi+z)

(E.12)

A problem with this equation “as it is” is that there is an infinite sum in
it. This can be explained as no limit to the number of faults that can occur,
and thus no limit to the number of reruns that is necessary to get an acceptable
result. To work around this, we set a maximum to the number of faults, N , that
can occur and still be tolerated by the system. If more than N faults occur,
we consider the system to have failed. Even for a relatively low N , this is a
reasonable approximation of the system’s behaviour, as the probability of faults
occuring is usually very low. Also, because of the extra time used to tolerate
faults, we can assume that a task will miss its deadline, and thus fail anyway,
if more than N reruns are needed. It is also possible to model a system where
there cannot be more than N faults, by setting κcoN = κmoN = κvN = 1

The conditions to time use are removed by integrating the expression with
respect to the distributions, e.g., removing the condition to the acceptance test
time is done with the integral

E[e−sY |rn = xn, cn = yn] =∫ ∞

0

E[e−sY |rn = xn, cn = yn, d = z]dD(t)
(E.13)

Limiting the number of faults before failure to N and removing the condi-
tions on time use for all runtimes, correction times and test times, gives the

E.4. Example of use 221

moment generating function

G(s) =
κmo0κv0M0(s)D(s)

+
N∑

k=1

κcokκmokκvkMk(s)Ck(s)D(s)

((1− κmo0)e−sτm0 + (1− κv0)κmo0M0(s)D(s))
k−1∏

i=1

(1− κcoi)e−sτci + (1− κmoi)κcoiCi(s)e−sτmi

+ (1− κvi)κcoiκmoiMi(s)Ci(s)D(s)

(E.14)

Equation E.14 describes the moment generating function of the runtime of
a combined timeout and acceptance test system, as a function of the fault-free
runtimes, the correction times, the timeouts and the probabilities that failures
does not occur, and is the main result of this work.

E.4 Example of use

In this section, we will give some examples on how the models can be used.
For the examples a system consisting of one primary and two backups is

used, i.e. equation E.14 is used with N = 2:

G(s) =
κmo0κv0M0(s)D(s)
+ κco1κmo1κv1M1(s)C1(s)D(s)
((1− κmo0)e−sτm0 + (1− κv0)κmo0M0(s)D(s))

+ κco2κmo2κv2M2(s)C2(s)D(s)
((1− κmo0)e−sτm0 + (1− κv0)κmo0M0(s)D(s))
((1− κco1)e−sτc1 + (1− κmo1)κco1C1(s)e−sτc1

+ (1− κv1)κco1κmo1M1(s)C1(s)D(s))

(E.15)

For comparison, systems with the same fault mechanisms, but without one
of the detection mechanisms, and where an undetected leads to the failure of
the system is used.

A system without the timeout mechanisms can be modelled as a system
where an omission failure will lead to an infinite response time, and can be
modeled by letting the timeout values in equation E.15 approach ∞ (i.e. let

222
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

e−sτ = 0):

Gnoto(s) =
κmo0κv0M0(s)D(s)
+ κco1κmo1κv1M1(s)C1(s)D(s)
(1− κv0)κmo0M0(s)D(s)

+ κco2κmo2κv2M2(s)C2(s)D(s)
(1− κv0)κmo0M0(s)D(s)
(1− κv1)κco1κmo1M1(s)C1(s)D(s)

(E.16)

The timing distribution for a system without acceptance test can be derived
in a way similar to equation E.14, where a timing failure leads to the failure of
the system, here modeled as an infinite response time:

G(s) =
κmo0κv0M0(s)
+ κco1κmo1κv1M1(s)C1(s)(1− κmo0)e−sτm0

+ κco2κmo2κv2M2(s)C2(s)(1− κmo0)e−sτm0

(1− κco1)e−sτc1 + (1− κmo1)κco1C1(s)e−sτc1

(E.17)

In the examples MATLAB and Simulink are used to numerically calcu-
late the example systems’ cumulative distribution functions from the moment-
generating functions.

E.4.1 A basic system

In the first example, a basic replication system is modelled, to show how the
expression derived in the previous chapter can be used.

The following parameters are used:
The fault-free runtimes for both the primary and the backups are distributed

with a triangular distribution with minimum time 6, maximum time 10 and
mode 8:

m0(t) = m1(t) = m2(t) =

0 , 0 ≤ t < 6
t− 6

4
, 6 ≤ t < 8

10− t

4
, 8 ≤ t < 10

0 , t ≥ 10

(E.18)

M0(s) = M1(s) = M2(s) =
e−6s − 2e−8s + e−10s

4s2

(E.19)

E.4. Example of use 223

The times used for correction is distributed uniformly between 0 and 5 for
all replicas:

c1(t) = c2(t) =

{ 1
5

, 0 ≤ t < 5

0 , t ≥ 5
(E.20)

C1(s) = C2(s) =
1− e−5s

5s
(E.21)

The acceptance test time is 1:

d(t) = δ(t− 1) (E.22)

D(s) = e−s (E.23)

Timeout values are set to 10 for execution of a task on a replica and 5 for
the correction. The omission failure probability is set to 4× 10−4 for execution
and 2.5×10−4 for correction, and the value failure probability is set to 4×10−4.

The resulting cumulative distribution function for this system, compared to
systems with only timeout or acceptance test as a fault detection method, is
shown in figure E.3. The figure shows that there is very little improvement
in the reliability of this system from a non-tolerant system if there is a hard
deadline before t = 20. This is to be expected, as a task where a fault occurs
must be run at least twice. Also as expected, the systems with only one of the
fault detection mechanism will not achieve a failure probability lower than the
probability of an undetected fault.

Between t = 20 and t = 26, the probability of completed execution increases
steadily. If the combined detection mechanism is able to detect all faults except
deadline faults, and there is a hard deadline, the system as a whole will only fail
if all there is a missed deadline or if all the replicas fail. The probability of failure
is 7.8 × 10−7 if the deadline is at t = 26, which is a significant improvement
from the 8 × 10−4 failure probability of a non-tolerant system. For a deadline
at t = 30, the failure probability is 5.7× 10−7, and for a deadline at t = 50 the
failure probability is 8.8× 10−10.

E.4.2 A system with checkpoints

In this example, a task that can be partitioned into subtasks is investigated.
Checkpoints can be placed between the subtasks, at each checkpoint, fault de-
tection is performed, and the system’s state is saved. If a fault is detected, the

224
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

8 10 12 14 16 18 20 22 24 26 28 30
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

Combined
timeout/acc.test

Timeout only

Acceptance test only

Figure E.3: Cumulative distribution functions for the system described in E.4.1,
compared to systems with the same fault probabilities, but with only one of the
fault detection methods.

execution restarts from the previous checkpoint. Using checkpoints generates
much overhead, and several criteria and optimization methods for the number
and placement of checkpoints exists [11, 25, 50]. In this example, we will show
how the derived run-time distribution model can be used to optimize the number
of checkpoints using the probability of deadline miss as a criteria.

The task consists of 12 subtasks, each with a fault-free runtime that is uni-
formly distributed between 1 and 2:

Msub(s) =
e−s − e−2s

s
(E.24)

If the part between to checkpoints consists of n subtasks, the fault-free run-
time of the part will be distributied as a convolution of the distribution of the

E.4. Example of use 225

n subtasks, resulting in the moment-generating function

M(s) = Msub(s)n (E.25)

The timeout value for a part is set to the maximum runtime of the part, i.e.
if a part consists of n subtasks, the timeout is set to 2n.

The time used to run an acceptance test, in addition to any overhead related
to the checkpoint is set to 1 per part:

D(s) = e−s (E.26)

The correction time is also set to 1 per part:

C(s) = e−s (E.27)

For each subtask, the probability of an omission failure during normal execu-
tion or a value failure is both set to 10−4, for a part of n subtasks, the probability
of these failure types is 1− (1− 10−4)n. The probability of an omission failure
during correction is also set to 10−4.

As the execution goes back to the beginning of the part upon fault detection,
each part can be viewed as a fault tolerant system with a timing distribution
found by equation E.15. If a task consists of m parts, and each part i has the
runtime distribution Gi(s), the total runtime distribution of the task becomes

G(s) =
m∏

i=1

Gi(s) (E.28)

In this example, the task can partitioned in the following ways:

• 1 part of 12 subtasks (i.e. no partitioning of the task)

• 2 parts of 6 subtasks

• 3 parts of 4 subtasks

• 4 parts of 3 subtasks

• 6 parts of 2 subtasks

• 12 parts of 1 subtask

226
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

20 25 30 35 40 45 50
0.997

0.9975

0.998

0.9985

0.999

0.9995

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

No fault tolerance
1 part
2 parts
3 parts
4 parts
6 parts
12 parts

Figure E.4: Cumulative distribution functions for the systems described in E.4.2.

The resulting cumulative density functions are shown in figure E.4, with
closer details in figure E.5.

If there is a hard deadline at tdl, and the only possibilities of a system failure
is a deadline miss or a single part failing more than 2 times, the results show
that a nontolerant system performs better than or as good as the other systems
if tdl < 25.4, with a failure probability of 2.4 × 10−3. The non-tolerant system
does not have any overhead from the fault tolerance mechanisms, and there
is a high probability that the other systems are not able to tolerate any fault
occurences within this deadline.

For 25.4 < tdl < 26.0, the 3-part system has a failure probability that is
slightly lower than the non-tolerant system.

For 26.0 < tdl < 32.4, the 4-part system has the lowest failure probability,
and the improvement in the systems’ reliability begins to show. For this system,

E.4. Example of use 227

30 32 34 36 38 40 42 44 46 48 50

1 − 9E−6

1 − 8E−6

1 − 7E−6

1 − 6E−6

1 − 5E−6

1 − 4E−6

1 − 3E−6

1 − 2E−6

1 − 1E−6

1

time

P
ro

ba
bi

lit
y

of
 c

om
pl

et
ed

 e
xe

cu
tio

n

1 part
2 parts
3 parts
4 parts
6 parts
12 parts

Figure E.5: Cumulative distribution functions for the systems described in E.4.2,
details.

a deadline at 30 gives a failure probability of 3.1 × 10−4, and for tdl = 32, the
failure probability is 5.6× 10−6.

The 6-part system has the lowest failure probability for 32.4 < tdl < 40.9,
for tdl = 35 the failure probability is 6.0 × 10−7, and for tdl = 40, the failure
probability is down to 1.2× 10−9.

For deadilines higher than 40.9, the 12-part system has the lowest failure
probability, below 10−9.

228
Appendix E. Run-time Distributions in Passively Replicated

Systems Using Timeout and Acceptance Fault Detection

E.5 Discussions and conclusion

In the model presented here, a very simple fault model is used, with constant
probabilities for certain failure modes. This makes the models easier to derive
and use, and it is possible to approximate some other fault models, like a poisson
arrival fault process, to this model. Only replica failures that are detected by
the timeout and acceptance test fault detection mechanisms are considered in
the model. While the timeout will cover all silent and omission failures, there
is a possibility that value failures pass the acceptance tests and lead to system
failures. The equations can be expanded upon to also model this behavior.

In this paper, we have derived an expression for the run-time distributions
of tasks in a fault tolerant system based on passive replication, where timeouts
and acceptance tests are used as fault detection mechanisms. The expression is
a function of the fault-free run-time distributions of the task on the replicas, the
acceptance test time distribution, the distribution of the fault correction times,
and the timeout values, as well as the probabilities of non-failure of the replicas.
We believe that this can be a useful tool for the analysis of fault tolerant real-
time system. The use of the model has been demonstrated on example systems,
showing how the model can be used to determine the probability of missed
deadlines, as well as how it can be used for optimization of checkpoint placement
in a hard real-time system.

Bibliography

[1] Adevs: A discrete event system simulator.
http://www.ece.arizona.edu/˜nutaro/index.php.

[2] Algirdas Avižienis. The n-version approach to fault-tolerant software. IEEE
Transactions on Software Engineering, SE-2(12), December 1985.

[3] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic concepts and taxonomy of dependable computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, January–March 2004.

[4] Jens G. Balchen. Reguleringsteknikk Bind 1. Tapir Forlag, 1988.

[5] Jerry Banks, John S. Carson, II, and Barry L. Nelson. Discrete-Event
System Simulation. Prentice Hall, second edition, 1996.

[6] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near shannon
limit error-correcting coding and decoding: Turbo-codes. In Conference
Record, IEEE International Conference on Communications, volume 2,
pages 1064–1070, Geneva, May 1993.

[7] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Probabilistic
scheduling guarantees for fault-tolerant real-time systems. In Proceedings
of the 7th International Working Conference on Dependable Computing for
Critical Applications., pages 339–356, San Jose, 1999.

[8] Alan Burns and Andy Wellings. Real-Time Systems and Programming
Languages: Ada 95, Real-Time Java and Real-Time POSIX. Pearson Ed-
ucation Limited, third edition, 2001.

230 Bibliography

[9] Dave E. Eckhardt and Larry D. Lee. A theoretical basis for the analysis of
multiversion software subject to coincident errors. IEEE Transactions on
Software Engineering, SE-11(12):1511–1517, December 1985.

[10] Sachin Garg, Yennun Huang, Chandra M. R. Kintala, Kishor S. Trivedi,
and Shalini Yajnik. Performance and reliability evalutation of passive repli-
cation schemes in application level fault tolerance. In Digest of Papers
of the Twenty-Ninth Annual International Symposium on Fault Tolerant
Computing, June 1999.

[11] Erol Gelenbe. On the optimum checkpoint interval. Journal of the Associ-
ation for Computing Machinery, 26(2):259–270, April 1979.

[12] Sunondo Ghosh, Rami Melhem, and Daniel Mossé. Fault-tolerance through
scheduling of aperiodic tasks in hard real-time multiprocessor systems.
IEEE Transactions on Parallel and Distributed Systems, 8(3):272–284,
March 1997.

[13] R. W. Hamming. Error detecting and error correcting codes. The Bell
System Technical Journal, 26(2):147–160, April 1950.

[14] Ching-Chih Han, Kang G. Shin, and Jian Wu. A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software faults. IEEE
Transactions on Computers, 52(3), March 2003.

[15] Arnljot Høyland and Marvin Rausand. System Reliability Theory. John
Wiley and Sons, 1994.

[16] Villy Bæk Iversen. Data- og teletrafikteori. Den Private Ingeniørfond, 1999.

[17] Hagbae Kim and Kang G. Shin. Evaluation of fault tolerance latency from
real-time application’s perspectives. IEEE Transactions on Computers,
49(1), January 2000.

[18] K. H. Kim. Designing fault tolerance capabilities into real-time distributed
computer systems. In Proceedings of the Workshop on the Future Trends
of Distributed Computing Systems in the 1990s, September 1988.

[19] K. H. Kim. Fair distribution of concerns in design and evaluation of
fault-tolerant distributed computer systems. Computer Communications,
17(10):699–707, October 1994.

Bibliography 231

[20] K. H. Kim. Issues insufficiently resolved in century 20 in the fault tolerant
distributed computing field. In Proceedings of the 19th IEEE Symposium
on Reliable Distributed Systems, October 2000.

[21] Leonard Kleinrock. Queuing Systems Vol 1: Theory. John Wiley and Sons,
1975.

[22] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani,
Wolfgang Schwabl, Christoph Senft, and Ralph Zainlinger. Distributed
fault-tolerant real-time systems: The mars approach. IEEE Micro, 9(1):25–
40, February 1989.

[23] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons,
seventh edition, 1993.

[24] C. M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997.

[25] C.M. Krishna, Kang G. Shin, and Yann-Hang Lee. Optimization criteria
for checkpoint placement. Communications of the ACM, 27(10):1008–1012,
October 1984.

[26] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, July 1982.

[27] Jean-Claude Laprie and Karama Kanoun. Software reliability and system
reliability. In Michael R. Lyu, editor, Handbook of Software Reliability
Engineering, pages 27–69. McGraw-Hill, 1996.

[28] Jane W. S. Liu, Wei-Kuan Shih, Kwei-Jay Lin, Riccardo Bettati, and Jen-
Yao Chung. Imprecise computations. Proceedings of the IEEE, 82(1), Jan-
uary 1994.

[29] Paul R. Lorczak, Alper K. Caglayan, and Dave E. Eckhardt. A theoretical
investigation of generalized voters for redundant systems. In Proceedings
of the IEEE Fault-Tolerant Computing Symposium, pages 444–451, Los
Alamitos, 1989. IEEE.

[30] The MathWorks, Inc. Getting Started with MATLAB 7, 2007.

[31] The MathWorks, Inc. Simulink 7 Reference, 2007.

232 Bibliography

[32] Hein Meling. Adaptive Middleware Support and Autonomous Fault Treat-
ment: Architectural Design, Prototyping and Experimental Evaluation.
Dr.ing. thesis, NTNU, 2006.

[33] Meine J. P. van der Meulen and Miguel A. Revilla. Experiences with the
design of a run-time check. In Janusz Górski, editor, Computer Safety, Re-
liability, and Security. 25th International Conference, SAFECOMP 2006.
Proceedings, pages 302–315, Gdansk, September 2006. Springer.

[34] Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification, ver 2.6, December 2001.

[35] Object Management Group. The Common Object Request Broker: Core
Specification, Version 3.0.3, March 2004.

[36] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the Association for Computing Machinery, 27(2):228–
234, April 1980.

[37] Brian Randell. System structure for software fault tolerance. IEEE Trans-
actions on Software Engineering, SE-1(2), June 1975.

[38] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, June 1960.

[39] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems:
Design and Evaluation. Digital Press, second edition, 1992.

[40] Amund Skavhaug. A Holistic Approach to Development of Dependable In-
dustrial SCADA Systems. With Emphasis on Cost Effectiveness. Dr.ing.
thesis, NTNU, 1997.

[41] William Stallings. Operating Systems: Internals and Design Principles.
Prentice Hall, third edition, 1998.

[42] William Stallings. Data & Computer Communications. Prentice-Hall, sixth
edition, 2000.

[43] John A. Stankovic. Misconceptions about real-time computing: A serious
problem for next-generation systems. Computer, October 1988.

Bibliography 233

[44] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, third edition,
1996.

[45] Åsmund Tjora and Amund Skavhaug. Fault tolerance methods in
component-based real-time systems. In Proceedings of the WIP-session
held in connection with Euromicro Conference, Dortmund, 2002.

[46] Åsmund Tjora and Amund Skavhaug. A general mathematical model for
run-time distribution in a passively replicated fault tolerant system. In
Proceedings of the 15th Euromicro Conference on Real-Time Systems, pages
295–301, Porto, July 2003.

[47] Åsmund Tjora and Amund Skavhaug. Assessing reliability of real-time dis-
tributed systems. In Proceedings of the 1st ERCIM Workshop on Software-
Intensive Dependable Embedded Systems, pages 59–64, Porto, August 2005.

[48] Åsmund Tjora and Amund Skavhaug. Run-time distributions in passively
replicated systems using timeout and acceptance fault detection. In Pro-
ceedings of the ERCIM/DECOS Workshop on Dependable Embedded Sys-
tems, Lübeck, August 2007. Proceedings not yet published.

[49] Åsmund Tjora, Amund Skavhaug, and Poul E. Heegaard. A mathematical
model for run-time distributions in a fault tolerant system with nonhomo-
geneous passive replicas. In Proceedings of the ERCIM/DECOS Workshop
on Dependable Embedded Systems, Gdansk, September 2006. Proceedings
not yet published.

[50] John W. Young. A first order approximation to the optimum checkpoint
interval. Communications of the ACM, 17(9):530–531, September 1974.

[51] W. Zhao, L. E. Moser, and P. M. Melliar-Smith. End-to-end latency of a
fault-tolerant corba infrastructure. In Proceedings of the Fifth IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing,
2002. (ISORC 2002), pages 189–198, 2002.

[52] Hengming Zou and Farnam Jahanian. A real-time primary-backup repli-
cation service. IEEE Transactions on Parallel and Distributed Systems,
10(8):533–548, June 1999.

