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Summary

‘This thesis is a comprehensive study of nonlinear modelling and control of small underwater
vehicles. Most of the findings have been published by the author through recent interna-
tional conferences and journals.

The 6 degree of freedom (DOF) underwater vehicle equations of motion are written in a
compact form inspired by the representation used in robot manipulator control. The model
is based on an extensive study of the existing hydrodynamical literature. Particular atten-
tion is paid to the modelling of the thruster dynamics. It is shown how a precise model of
the highly nonlinear thruster forces can be exploited in the nonlinear control systern design.
These new results are verified by open water experiments.

1t is shown how deterministic and random disturbance models can be augmented to the
the vehicle’s equations of motion. Statistical descriptions of waves and root-mean-square
analyses are discussed in depth.

Some new contributions to stick-fixed and stick-free stability analyses of underwater vehicles
in 6 DOF are discussed. These stability criteria are based on well known techniques like the
Routh’s stability criterion, Lyapunov’s linearization method, Lyapunov’s direct method for
autonomous systems and advanced Lyapunov theory like Barbalat's Lyapunov-like lemma
for non-autonomous systems.

Underwater vehicles performing coupled manoeuvres at some speed are known to be highly
nonlinear in their dynamics. The obvious way to compensated for these nonlinearities is by
applying nonlinear control system techniques. In nonlinear control design emphasis is placed
on design simplicity. It is shown how well known properties of the nonlinear equations of
motion can be exploited to yield a relatively simple control design. The following three
nonlinear design techniques are studied in detajl:

e Feedback linearization techniques.
e Sliding control.

e Passivity based control.
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These are used to illustrate how adaptive autopilots for velocity, orientation and posttion
control can be designed. It is also shown how environmental disturbances can be relatively
easily compensated for when designing the nonlinear autopilot. This study is mainly based

on sirnulation results.

Finally, optimal state estimation is discussed. It is shown how Kalman filtering techniques
can be used in state estimation, wild-point detection and filtering. Since the vehicle’s
hydrodynamic parameters only are partly known for most underwater vehicles, it is desirable
to have a navigation system which is independent of the vehicle we are using. Hence, the
state estimators are only based on the kinematic equations of motion which implies that we
can design two independent state estimators, each designed for:

¢ Istimation of linear velocities and position.
¢ Estimation of angular velocities and Euler angles.

State-of-the-art sensor units are used to illustrate the different concepts. This investigation
is partly based on computer simulations and experimental results.
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Nomenclature

Vectors and Matrices

Bold types are used exclusively to denote vectors and matrices.

Symbols

Symbol Definition

a Commanded acceleration

A Area, projected area

A System matrix

B Buoyancy force

B Input matrix, thruster configuration matrix

BG Distance between CG and CB

BM Distance between the vehicle’s metacentre and CB

Bt Generalized inverse of B

C Matrix of Coriolis and centrifugal terms

Ca Matrix of Coriolis and centrifugal terms due to hydrodynamic added mass
CB Centre of buoyancy

Cp Drag coefficient

cG Centre of gravity

Ci; Rotation matrix describing a rotation j about the i-axis

Ciut Inertia coefficient

Ccr Centre of pressure

Chrs Matrix of Coriolis and centrifugal terms due to rigid body forces
c” Matrix of Coriolis and centrifugal terms referred to the earth-fixed coordinate system
dg Vector of quadratic damping terms due to skin friction and drag
D Diameter

D Matrix of dissipative (damping) terms
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Matrix of linear damping terms due to potential damping
Mairix of linear damping terrns due to skin friction and drag
Matrix of quadratic damping terms due to skin friction and drag
Damping matrix due to umbilical ‘

Damping matrix due to viscous effects

Damping matrix referred to the earth-fixed coordinate system
Euler parameter vector, prediction error vector

Euler parameter i {i=1..4)

Kinetic energy

Force vector

Force vector referred to the vehicle-fixed coordinate system
Acceleration of gravity

Vector of gravitational and buoyancy forces

Vector of gravitational and buoyant forces referred to the earth-fixed coordinate sy
Distance between the vehicle's metacentre and CG

Transfer function, water depth

Transfer function matrix, wave height

Significant wave height

Wave number

Distance between the vehicle’s CG and keel line

Identity matrix

Inertia tensor referred to the vehicle-fixed coordinate system
Moment of inertia about x-axis

Moment of inertia about y-axis

Moment of inertia about z-axis

Product of inertia about x- and y-axes

Product of inertia about x- and z-axes

Product of inertia about y- and z-axes

Cost function

Open water advance coefficient

Linear and Angular velocity transformation matrix

Linear velocity transformation matrix

Angular velocity transformation matrix

Hydrodynamic moment component about x-axis (rolling moment)
Keulegan-Carpenter’s number

Regulator gain matrix

Non-dimensional thrust coefficient

Non-dimensional torque coefficient

Length of vehicle, loop transfer function matrix
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Wave spectrum
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Control input vector




g ¥ggess<sgs

Service speed

Fluid motion velocity component in the x-direction

Relative fluid motion velocity component in the x-direction
Linear velocity component of ¢ in y-direction {sway)

Disturbance vector

Earth-fixed vector of linear velocity components

Fluid motion velocity component in the y-direction

Relative fluid motion velocity component in the y-direction
Vehicle-fixed vector of linear velocity components

Volume, vehicle speed, noise covariance matrix, Lyapunov function
Volume of displaced fluid

Advance velocity at the propeller

Linear velocity component of ¢ in z-direction (heave), wake fraction number
Measurement noise vector

Fluid motion velocity component in the z-direction

Relative fluid motion velocity component in the z-direction
Weight of the vehicle

Measurement noise covariance matrix, positive definit ~ weighting matrix
Surge position referred to the earth-fixed reference f: ame

The x-coordinate of CB

The x-coordinate of CG

The x-coordinate of CP

Earth-fixed vector of position and Euler angle components
Desired state vector

Earth-fixed vector of linear velocity components

Earth-fixed vector of angular velocity components

Earth-fixed tracking error vector

Hydrodynamic force component along x-axis

State error covariance matrix

Earth-fixed coordinate system

Vehicle-fixed coordinate system

Sway position referred to the earth-fixed reference frame
Measurement vector

The y-coordinate of CB

The y-coordinate of CG

The y-coordinate of CP

Hydrodynamic force component, along y-axis

Output covariance matrix

Heave position (depth) referred to the earth-fixed reference frame



xi

Zp
2G
2p

Z

The z-coordinate of CB
The z-coordinate of CG
The z-coordinate of CP
Hydrodynamic force component along z-axis

Greek Symbols

r
)

¢

Ca
Co
Co

n

7
Ny
M
o
.
TR
713
46

‘lQ‘g‘b e e DD

TA
Th
T
Tp
TE
TFK
TH
To

Positive definite weighting matrix

Rudder angle

Wave elevation

Wave amplitude

Damping ration in pitch

Damping ratio in roll

White noise

Vector of linear and angular velocity components

Vector of linear and angular fluid velocity components
Mechanical efficiency

Thruster open water efficiency in undisturbed water

vector of relative linear and angular velocity components
Relative rotative efficiency

Linear displacements

Angular displacements

Angle of pitch, Euler angle

Parameter vector

Wave length, closed loop bandwidth, eigenvalue, forgetting factor
Vector of Lagrange multiplicators

Water density

Mass density of vehicle

Standard deviation

Force and moment vector

Force and moment vector due to hydrodynamic added mass
Force and moment vector due to hydrodynamic potential damping
Force and moiment vector due to restoring forces

Diffraction force and moment vector

Force and moment vector due to ¢w and ¢p

Froude-Kriloff force and moment vector

Hydrodynamic force and moment vector due to ¢g, ¢w and dp
Force and moment vector referred to the vehicle-fixed coordinate systern




List of Tables

2.1 Notation used in the 6 DOF underwater vehicle equations of motion. . . .. 20
2.2 Velocity potential, dispersion relation, pressure, velocity and acceleration for
regular sinusoidal propagating waves on finite and infinite water depth ac-

cording to linear (Airy) theory. . . ... ... .. ... L, 24
3.1 General operability limiting criteria for marine vehicles, Faltinsen (1990a). . 71
3.2 Criteria with regard to accelerations and roll, Faltinsen (1990a). . . ... .. 72

6.1 Summary of continuous-discrete extended Kalman filter, Gelb et al. (1988). . 134

xiii



Xiv

LIST OF TABLES




List of Figures

2.1

2.2

2.3

2.4

2.5
2.6

2.7

2.8

2.9

2.10

2,11

2.12

2.13

3.1
3.2

The rotation sequence according to the xyz-convention showing both the linear

(u,v,w) and angular (p,q,r) velocities. . . . . ... .. .. .......... 10
The inertial, earth-fixed non-rotating coordinate system XY Z and the body-
fixed rotating coordinate system X,¥,Z,. . . .o oot 15

Breaking limit: % = %%, small-volume and large-volume limit: % = b and
dragforce dominated and massforce dominated limit: 47. H is the wave

height, D is the cylinder diameter and ) is the wave length. . ........ 28
Linear (dotted} and quadratic damping (solid) versus relative velocity u,. . . 38
The NEROV ducted thruster, Sagatun and Fossen (1991a) . . ... ... .. 40

Block diagram of the thruster inner loop feedback control system where 7 is
the propeller revolution measurement and ny is the desired propeller revolu-

Bon. ... 41
Open loop frequency response of the NEROV thruster, Sagatun and Fossen
(1991a}. The upper plot illustrates the thruster gain in air {marked by o) and
water (marked by x) as a function of the logarithmic frequency. The lower

plot is the corresponding phase. . . .. ... ... .. ............ 42
Experimental results showing the actual (broken line) and the desired (line)
propeller revolution versus time for the NEROV thruster. . . . . .. ... .. 43
Non-dimensional thruster characteristics K7, Kg and 75, as a function of pos-

itive advance coeficient J, (ahead direction). . . . . .. .. ... ... .... 45
Non-dimensional experimental thruster characteristics K7 versus the advance
coeflicient J, for the NEROV vehicle, Sagatun and Fossen (1991a).. . . . . . 46
Non-dimensional thruster characteristics K, and Kty in the x- and y-directions
respectively as functions of J, and angle o (deg) between the thruster and ve-
hiclespeed. . . ... ... .. L 46
Thruster force T as a function of propeller revolutions n for different speeds

of advance V. . .. .. o 47
Desired thruster force 74 versus time for Vy = 0m/fs. . .. .. ... ... .. 49
PM-spectrum: S(w) = & BN 65
Wave spectrum approximation (w, = 1,({ =1 and o = L P 68

Xv




XVi

LIST OF FIGURES

4.1

4.2
4.3

5.1

5.2
5.3
5.4
5.5
5.6

5.7

5.8
5.9

5.10

5.11
5.12
5.13
5.14
5.15
5.16
5.17

5.18
6.1

6.2
6.3
6.4
6.5

6.6
6.7

Straight line, directional and position motion stability for a typical small

underwater vehicle when a constant disturbance f(t) = v, is injected for t > 2. 75
Transverse transition stability, Allmendinger (1990). . . . . ... . ... . . . 76
A typical plot of the open-loop poles of a metacentric stable underwater vehicle. 83

The EAVE-EAST Proportional Integral Derivative Controller, Venkatachalam

etal (1985) . . ... ... 90
Linear Quadratic Optimal Autopilot . . ... ............ . .. . . 91
NODINTERE DEEGHPURE .« « » om0 15 58 B8 B £ 518 55 o0 0 e ot e 5 5 98
Calculation of the commanded acceleration (q-frame formulation). . . . . . . 98
Calculation of commanded acceleration (x-frame formulation). . .. ... .. 100
Adaptive feedback linearization applied to the nonlinear underwater vehicle

SAUBLIGNE G MOOMOI + « v w3 3 3 508 8 55 B me e o 104
Desired and actual outputs in surge, sway, heave and yaw for the adaptive

autopilot (x-frame formulation). . . .. .. ... .. ... .. .. . ... . . . 107
SISO sliding control applied to underwater vehicles . . .. ... .. ... .. 109
Performance study of the sliding controller (solid) and the PD-controller (dot-

ML )s: 167 5 5 0 o o o v v I e e 112
Control inputs and sliding surfaces for the PD-controller and the sliding con-

BEOIBEL, . s s 10 om0t e e o s e ) o o 3 B ESTRTE b ke e 112
MIMO sliding control applied to underwater vehicles . ... ...... ... 116
Parameter estimates, actual position and control input. . . .......... 119
Nonlinear adaptive autopilot design for underwater vehicles . . . . . . . . . . 120
Performance study of PBAC, VS-PBAC and PD-controller . . . . ... ... 125

Control inputs and measure of tracking for PBAC, VS-PBAC and PD-controller125
Sea current velocities in the earth-fixed and the vehicle-fixed reference frame. 128
Desired outputs (upper plots) and tracking errors (lower plots) in surge, sway,

heave andiyaw. « o 595 555 6 % 5 F BB E BEE Ko w55 129
Control inputs for the PBAC with feedforward term. . . . .. ........ 130
Optimal estimation of position and linear velocities based on position mea-
i e T L T T . 136
Optimal estimation of position and linear velocities based on position and
acceleration measurements. . . . . .. ... ... ... L. 138

Upper left: actual (dotted) and estimated (solid) positions, upper right: po-
sition errors, lower left: actual (dotted) and estimated (solid) linear velocities

and lower right: linear velocity errors. . . . . . ... ... ... ....... . 139
Optimal estimation of Euler angles and angular rates. . . . ... .... ... 141
Optimal estimation of Euler angles and angular rates. . . . . ... ... ... 142
Experimental results: rolling motion. . . . . ... ... .. ........ .. 144

Experimental results: pitching motion. . . . ... ... .. .. ... ... . . 145




Preface

I am grateful to my supervisor Professor Jens G, Balchen at the Division of Engineering
Cybernetics (NTH) whose enthusiasm, creativity and overall knowledge in the general field
of control engineering has been of invaluable help in the preparation of this thesis. Profes-
sor Jens G. Balchen has also been my main motivation for a doctoral study in engineering
cybernetics.

I am particular grateful to my college and friend Svein I. Sagatun at the Division of Engi-
neering Cybernetics (NTH) for his enthusiasm, encouragement and moral support. His help
has been invaluable since we started o work together in 1987. Since then, we have designed
and built the NEROV underwater vehicle and published several papers together in interna-
tional journals. Svein I. Sagatun’s eagerness and optimism has been extremely appreciated,
particularly on days when the realization of the NEROV vehicle, and this thesis, seemed
quite unrealistic.

I would like to thank Knut Streitlien at the Department of Qcean Engineering (MIT) for his
suggestions concerning Chapter 2 addressing the nonlinear modelling of underwater vehicles.
Besides this, Professor Odd M. Faltinsen, Professor Harald Aa. Walderhaug, Associate Pro-
fessor Bjgrn Sortland at the Department of Marine Technology (NTH) bave provided many
useful suggestions and discussions. Asgeir Sgrensen at the Division of Engineering Cyber-
netics (NTH) should be thanked for his stimulating discussions in marine hydrodynamics.

I am also grateful to Professor Olav Egeland at the Division of Engineering Cybernetics
(NTH) for his good support, stimulating discussions and judicious suggestions.

I would like to thank the excellent staff at the mechanical workshop at the Division of En-
gineering Cybernetics (NTH) for building the NEROV vehicle. Stefano Bertelli’s expertise
and energy was invaluable in the experimental set-ups and hardware design. 1 am grateful to
Erik Lehn, Senior Research Engineer at MARINTEK who helped us to design the NEROV
thruster. His sincere help in the preparation of the NERQV thruster open water test was
highly appreciated. I would like to thank Mathias Handlykken, Senior Research Engineer at
SEATEX A/S and Jacob Li Simonsen, Senior Research Engineer at Robertson Tritech A/S
for their stimulating discussions and suggestions in the design of the NEROV sensor system.

xvil



®viii

@ystein Baltzersen, Research Scientist at the Continental Shelf and Petroleumn Technology
Research Institute (IKU) is also to be thanked for his kind help with the UPOS underwater

positioning system.

I am grateful to my colleagues Jan O. Hallset, Geir Mathisen and @roulf J. Rgdseth at
the SINTEF Autonomous System Group for their suggestions and stimulating discussions
during the design process of the NEROV vehicle. Jens G. Balchen, Olav Egeland, Ola-Erik
Fjellstad, Svein I. Sagatun and Asgeir Serensen should also be thanked for helping me re-
ducing the number of typographical errors to an acceptable level,

The thesis also benefits from all the useful comments and enthusiasm of many of the students
who took my course in Control and Guidance in the spring term 1991 at NTH. I appreciate
the assistance from Stewart, Clark at NTH, who has helped me improve the English in this
thesis. Finally, T am most grateful for the financial support from the Royal Norwegian Coun-
cil for Scientific and Industrial Research through the Center for Robotic Research (NTH)
and the Fulbright Foundation which helped to make this work possible.

Thor 1. Fossen



Chapter 1

Introduction

Norway has long recognized the importance of the ocean to its economy, security and en-
vironment. Hence, Norway’s economic interests are highly tied to areas such as oil and
gas exploration, merchant shipping and the fisheries. We believe that the development of a
new generation of unmanned underwater vehicles as well as underwater vehicle-manipulator
systems will be crucial for future oil and gas exploration. The nzed will be particular acute
as the costs of inspection, maintenance and repair (IMR) of subsea production facilities,
pipelines and platform structures will drastically rise with increasing water depths. The use
of divers in deep water is hazardous and limited due to obvious physiological limitations.
Hence, it is desirable to replace them by underwater robotic vehicles. As major developers
of off-shore technology, Norwegian industry and research institutes have recognized the need
for more advanced underwater vehicle systems. A result of this is the increased activity in
underwater robotics at the Norwegian Institute of Technology.

This thesis considers the nonlinear modelling and control of underwater vehicles. It has
been written such that readers that are unfamiliar with hydrodynamics and advanced con-
trol theory should be able to understand the mathematical and physical formulations. Both
the derivation of the nonlinear mathematical model and control theory are general enough
to be applied to a large class of marine vehicles like submarines, submersibles, oil platforms
and ships. Nevertheless, the intention with the thesis is to derive and discuss high perfor-
mance, robust and computionally effective controllers for small unmanned underwater vehi-
cles. These are conveniently classified as remotely operated vehicles (ROVs) and autonomous
underwater vehicles (AUVs). The term ROV is used for small untethered and tethered re-
motely operated underwater vehicles while the term AUV will be used for small untethered
underwater vehicles which are autonomous with respect to information and energy. Further
it is convenient to distinguish between complete autonomity and semi-autonomity. Com-
plete autonomity implies that the vehicle must be antonomous with respect to both energy
and information. Hence, semi-autonomous vehicles could be understood as vehicles which
have some communication with a human operator. Though, the sophistication of AUVs has

1



2 CHAPTER 1. INTRODUCTION

broken new ground, adequate high energy sources for propulsion as well as good signal trans-
mission in water are the basic limitations of today AUV systems. For instance, a propulsion
system based on battery energy greatly limits the vehicle’s endurance time. Another problem
limiting the commercial use of AUV systems is the insufficiency of underwater navigation
systems. Most ROV underwater navigation systems are based on

hydroacoustic transducers and receivers e.g. long base-line systems (LBS}), which highly
limit the vehicle’s operating area.

The control system techniques discussed can be applied to autopilot design, dynamic posi-
tioning (DP) and the tracking of general time-varying reference trajectories in 6 degrees of
freedom (DOF'). Lower DOF controllers where the influence of e.g. the rolling and pitching
motion are neglected are easily obtained by a reduction of the general control law. It is shown
that for more advanced manoeuvres, nonlinear control design techniques are superior to con-
ventional linear control design techniques when applied to ROVs. Existing ROV systems are
usually designed for a simple crab-wise motion with one monovariable controller e.g. using
the proportional, integral and derivative (PID) type for each DOF. Nonlinear multivariable
controllers allow the ROV to perform more coupled manoeuvres, Improved performance can
be further obtained by applying the results from adaptive and robust control theory.

The experiments and simulation studies in this thesis are exclusively based on the use of
the Norwegian Experimental Remotely Operated vehicle (NEROV), which was designed by
my college Svein 1. Sagatun and the author during the academic year 1990-1991, Fossen and
Balchen (1991) and Sagatun and Fossen (1991c). The NEROV vehicle is an AUV which is
build at the Division of Engineering Cybernetics at the Norwegian Institute of Technology
(NTH) in Trondheim. The vehicle is energy-autonomous, but it has an optional cornmuni-
cation cable for remote control. Hence, if desirable complete autonomity can be achieved as
a routine matter. A general description on the research programme on AUVs in Norway are
described in Rgdseth (1990) while a description of the Norwegian research programmes in
the general field of advanced robotic systems is found in Egeland {1991).

Recently, the control of the combined motion of underwater vehicle-maripulators has been
discussed in the technical literature. Coordination of the motion between the underwater
vehicle and the manipulator arm is often referred to as macro-micro control. Macro-micro
control of underwater vehicle-manipulator systems is not discussed in this thesis. However,
some recently results can be found in Fossen (1991) and Mahesh et ol. ( 1991).
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UNDERWATER VEHICLE APPLICATIONS 3

1.1 Underwater Vehicle Applications

Small underwater vehicles can be used in a large number of applications, such as:

Non-destructive testing of underwater structures: Offshore IMR of underwater
structures like oil-platforms, bottom templates etc. are well known ROV applications.
The ROV tether is not practical when inspecting complex underwater structures. In
such cases the ROV operator has to manoeuvre the vehicle within an underwater
structure where a large number of wires and legs are present. AUVs would be easier
fo operate in such hostile environments.

Hydrographic Survey: Low cost unmanned ROV and AUV systems are expected
to replace manned survey launches in hydrographic surveys of offshore waters.

Deep seabed mining: Commercial exploitation of deep seabed minerals like cobol
and sulphides has been studied excessively during the last decade. The first full-scale
mining test is expected to be performed already in 1994 by a Japanese research team.
ROVs and AUVs are expected to play an increasingly role in deep sea surveying and
the transport of underwater minerals.

Aquaculture: ROVs and AUVs can be used as instrument platforms for in situ
observations and survey of fish without affecting their behaviour. Underwater vehicle
systems are expected to be useful tools for fisheries research and sea farming.

Military applications: Military applications for AUVs are numerous, especially in
underwater search and intelligence gathering operations. The use of an AUV as a
mobile sensor platform will reduce both the costs and risks of such operations. A
typical application is detecting of mines by a sonar.

1.2 Why Nonlinear Modelling and Control ?

A large number of operating conditions: Small underwater vehicles are assumed
to be able to operate over numerous operating points with no specific speed dominat-
ing. Aircraft and submarines are usually linearized about different constant forward
speeds. Linear control theory and gain scheduling techniques can then be applied to
each of the vehicle’s operating points. When designing controllers for small under-
water vehicles with dominating speeds in both the longitudinal and lateral directions,
nonlinearities caused by e.g. hydrodynamic forces like quadratic lift and drag forces,
can be significant. Therefore, in order to obtain high performance for such systems,
nonlinear modelling and control techniques should be considered.

Design simplicity: Nonlinear control design of underwater vehicle systems can be
simpler and more intuitive than their linear counterparts. Exploring the physics and
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a priori information of the underwater vehicle dynamics and kinematics often yields
a relative simple control design. A typical example is nonlinear feedback linearization
techniques which can be applied for a large number of mechanical systems like robot
manipulators, aircraft and underwater vehicles. Successful implementations of robot
manipulators are well documented in the technical literature.

¢ Improved Robustness and Performance: Linear control theory is based on the
assumption that the physical system is linearizable. However, in mechanical systems
there are many hard nonlinearities like Columb friction, hysteresis, actuator dead-zones
and saturation. Besides this, nonlinearities are imposed by dynamics and kinematics
of the underwater vehicle. Understanding and modelling these effects are crucial to
the robustness and performance of the ROV. Nonlinear control design techniques allow
the designer to directly compensate for the nonlinear dynamics in the model.

¢ Reduced Model Emperfectness: A linear approximation of a nonlinearity will have
both parametric and structural uncertainty. If the structure of the nonlinearity is
known, which is often the case for mechanical systems, the nonlinearity can be in-
cluded directly in the model. Then, only parametric uncertainty has to be considered.
Parametric uncertainties can be compensated for by applying adaptive or robust con-
trol design techniques.

1.3 The Contribution of the Thesis

1.3.1 Experimental Contribution

The experimental contribution of this thesis is primarily based on the design and building
of the the NEROV vehicle. During the design process a large number of laboratory and
full-scale experiments have been performed. Some of these results are found in:

(i) Section 2.8. Open water test of ducted thruster.
The results from the open water thruster experiments are published in Fossen and
Sagatun{1991a, 1991b).

(ii) Section 2.8. Performance of the inner loop thruster servo.

(ili) Chapter 6.3. Experimentdl verification of the NEROV vehicle’s sensor system. The
results are published in Fossen and Balchen (1991).

(iv) Appendiz A. Determination of the hydrodynamical coefficients of the NEROV vehicle.

The design and testing of the NEROV vehicle is described more closely in the following five
internal reports:
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¢ Design Study of the NEROV Vehicle (Sagatun and Fossen (1990b)).
¢ The NEROV Propulsion System (Sagatun and Fossen (1991a)).

e The NEROV Computer System (Sagatun and Fossen (1991b)).

¢ The NEROV Equations of Motion (Fossen and Sagatun (1991c)).

¢ The NEROV Sensor System (Fossen and Sagatun (1991d)).

1.3.2 Theoretical Contribution

The theoretical contribution of the thesis can be briefly summarized as:

(i) Chapter 2. Formalization and derivation of the nonlinear underwater vehicle equations of
motion in 6 DOF. Nonlinear modelling of thruster forces, Section 2.8, is considered in
detail. The results are published in Fossen (1990), Fossen and Sagatun(1991a, 1991b).

(ii) Sections 4.1.3 - 4.1.4. Derivation of longitudinal and lateral stick-fixed stability criteria
for underwater vehicles in 6 DOF.,

(iit) Section 4.2.1. Application of Lyapunov stability theory in stick-fixed stability analyses.
1t is shown how Lyapunov’s Direct Method can be used to prove the well known
stability criterion of Abkowitz (1964) for straight line stability of marine vehicles.

(iv) Sections 5.2.2-5.2.5. Formalization of 6 DOF nonlinear controllers for underwater ve-
hicles based on feedback linearization techniques. Both vehicle-fixed velocity schemes
(g-frame formulation) and earth-fixed position and orientation schemes (x-frame for-
mulation) are considered.

(v) Section 5.3.2. Formalization and derivation of a MIMO sliding controller for nonlinear

minimum phase systems with arbitrary relative degree. The results are published in
Fossen and Foss (1991).

(vi) Section 5.3.4. A first attempt at applying a nonlinear recursive prediction error method
to sliding control of underwater vehicles, The results are published in Fossen and
Balchen (1988).

(vii) Section 5.4.1. The representation of the adaptive controller of of Slotine and Benedetto
(1990) is simplified. The symbolic representation of the new regressor matrix is ad-
vantageous when considering systems with a large number of unknown parameters e.g.
underwater vehicles in 6 DOF, Fossen and Sagatun(1991a, 1991b).

(viii) Section 5.4.1. A new variable structure passivity based adaptive controller
(V5-PBAC) is derived. The control scheme is published in Fossen and Balchen (1991).
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(ix) Section 5.4.2. It is shown how slowly-varying environmental disturbances can be com-
pensated for by adding an adaptive feedforward term to the adaptive controller. Global
stability is proven for the new scheme, Fossen and Balchen (1991).

(x) Section 5.4.3. Derivation of a new hybrid controller combining adaptive and sliding
mode control. The parameter update law estimates unknown parameters in the dy-
namic equation while a discontinuous (switching) term is added to the control law
to compensate for uncertainties in the input matrix. Hence, uncertainties in the
thruster characteristics can be compensated for. The results are published in Fos-
sen and Sagatun(1991a, 1991b}.

1.4 Qutline of the Thesis

The remaining chapters and appendices consider the following:

Chapter 2 is a detailed description of nonlinear modelling of underwater vehicles in 6 DOF.
The nonlinear equations of motion are written in a compact form intended for nonlinear
contirol system design and simulation. Kinematics, Newton’s laws of angular and linear
momentum and general hydrodynamics are discussed in detail.

Chapter 3 describes how deterministic and random distnrbances can be incorporated in
the vehicle equations of motion. Statistical descriptions of waves and root-mean-square
(RMS) analyses are used to illustrate the ideas.

Chapterd discusses linear and nonlinear stability criteria for underwater vehicies. This
includes the definitions of straight line, directional, position motion and metacentric
stability. Lyapunov stability theory for autonomous and non-autonomous systems is
used to illustrate the concepts of nonlinear stick-fixed and stick-free stability, respec-

tively.

Chapter 5 describes how nonlinear control design techniques can be applied to under-
water vehicle autopilot design. Feedback linearization techniques, sliding control and
passivity-based adaptive control are discussed in detail. The control of linear and angu-
lar velocities of the vehicle as well as the vehicle position and orientation are discussed.
Computer simulations are used to illustrate the different control design techniques.

Chapter 6 shows how optimal state estimation (Kalman filtering) can be applied to un-
derwater navigation systems. The sensor systems discussed are based on standard

off-the-shelfes sensors for the measuring of position, velocity and acceleration.

Chapter 7 contains the conclusions and recommendations for future work.
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Appendix A describes the NEROV nonlinear equations of motion. The weight, balance
data and numerical values for hydrodynamic added mass and damping are also en-

closed.

Appendix B is a mathematical proof of Eq. 5.21.
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Chapter 2

Mathematical Modelling

2.1 Coordinate Systems

In control and guidance applications, the most used kinematic representations are Euler
angles and quaternions. Both repiesentations will now be described in more detail.

2.1.1 Euler Angles

It is desirable to describe the orientation of marine and flight vehicles relative to the earth.
If we denote the local body-fixed coordinate system X,Y,Z, and the earth-fixed coordinate
system XY Z, Fig. 2.2, a vehicle’s flight path relative to the earth-fixed coordinate system
is given by a linear velocity transformation

Ve = J1(¢,9,'f)) Vo

where v, = (4,5, 2)7 is the linear velocity vector in the earth-fixed coordinate system and
v, = (u,v,w)T is the linear velocity vector in the local coordinate system. The notation
is according to the SNAME (1950) notation. The coordinate transformation matrix Jiis
related through the functions of the Euler angles: roll{ ¢ ), pitch( 8 ) and yaw( %) , Abkowitz
{1969) and Roskam (1982). The coordinate transformation matrix J 1 13 orthogonal i.e.
JTJ, = I. The inverse linear velocity transformation can be written as:

UV, = Ji_l(¢a95 ?;b) v, = Jf(d’i 9’ d)) Ve
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(1) Rotation over heading
angle ¥ about Z 3
Note thatw ,=w |

e ALk ——————

Y3
Y,
I, "
9 1
(2) Rotation over pitch X, .
angle © about Y, !
Notethatv ,=v | b ez Y v,
!
6
2, g,
vl
“ o (3) Rotation over roll
"NE ] angle ¢ about X,
if Y Note thatu . =u

Figure 2.1: The rotation sequence according to the xyz-convention showing both the linear
(u,v,w) and angular (p,g,7) velocities.
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It is conventional to describe J; by three rotations. Note, that the order in which these
rotations are carried out is not arbitrary. In control and guidance applications it is cornmon
to use the xyz-convention specified in terms of Euler angles for the rotations. Let X3Y3Z,
be the coordinate system obtained by translating the earth-fixed coordinate system XY Z
parallel to itself until its origin coincides with the origin of the body-fixed coordinate system.
Then, the coordinate system X3¥3Z; is rotated a yaw angle ¢ about the Zs axis. This yields
the coordinate system X,Y;7,. The coordinate system X,Y32; is rotated a pitch angle 6
about the Y3 axis. This yields the coordinate system X;Y1Z,. Finally, the coordinate system
X1Y1Zy is rotated a bank or roll angle ¢ about the X; axis. This yields the body-fixed
coordinate system X,Y,Z,, see Fig. 2.1. The rotation sequence is written as:

Jl-l(‘ﬁ’ 0,¢)= Cr4CyeCoy

Here C;; is a rotation matrix describing a rotation angle j about the i-axis. The basic
rotation matrices are defined as:

1 0 0 cd 0 —sd ey s 0
C$.¢ = 0 CQS S¢5 C!ha = 0 1 0 Cz‘u:, = —S’lf) C’!/) 0
0 —s¢ e 6 0 of 0 01

where s - = sin(-},¢ - = cos(-) and ¢ - = tan(-). Since the coordinate transformation matrices
C,; are orthogonal matrices, J; is simply found as:

J1(¢:9!¢) = (Cx,¢cy,ocz,¢) == C CT\GC

which yields

cpcl  —spod - cpsfsd  sPsd 4 cpedal
Ji(¢,0,9) = | stpcl  ched + spsOsip  —cipsd + sbsiped
50 chsg ched

The body-fixed angular velocity vector w, = (p,q,r)" and the Euler rate vector w, =
(1,6, )7 are related through a transformation matrix J; as:

We = JZ(qug"’[’) Wo

This relationship should not be interpreted as a coordinate transformation because the Euler
angles can not be treated as coordinates. They simply express how the body-fixed coordinate
system is orientated with respect to the inertial reference frame. Hence, the tra,nsformatlon
matrix J; does not satisly the orthogonal coordinate transformation property i.e. J5* # J¥.
The transformation can be expressed as:
P 0 0
Wo=| 0| +Cey| b |+C.3Cy0 0 | =J7%(¢,8,%) w. (2.1)
0 0 P
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This relationship is verified by inspection of Fig. 2.1. Equating Eq. 2.1 yields

1 0 58
JH$0,%) =10 cp chss
0 —s¢ cep

J3 is then

1 s¢té  cotd
¢, 0,9) = {0 e —sé }
0 s¢/cld cé/ch

Notice that J; is singular for a pitch angle of § = + 90°. For ships this is not a problem
while both underwater vehicles and aircraft may operate close to this singularity. In such
cases, the kinematic equations can be described by two Euler angle representations with
different singularities. Another possibility is to use a quaternion representation. This is the
topic of the next section.

Summarizing the results from this section implies that the kinematic equations can be ex-
pressed in a compact form as:

[::Z ] = J(¢,0,%) { :’,] where J = { N 09) J2(¢?5’¢)} (2.2)

or according to the SNAME (1950) notation:

[i;]z[,ngzg) .n?mg)] [Z;] =  @=J@)

Here @, = (v,y,2)7 is the position vector and &, = (¢,0,%)7 is a vector of Euler angles,
both referred to the inertial reference frame. The vehicle-fixed linear and angular velocity
vectors are denoted as ¢, = (u,v,w)7 and ¢, = (p, ¢, 7)7, respectively.

2.1.2 Quaternions

An alternative to the Euler angle representation is a four-parameter method based on quater-
nions or Cayley-Klein parameters, Kane et al, (1983). The singularity of the matrix J 2{®3)
for 8 = £ 90° can be avoided by using four parameters to describe the three basic rotations.
Euler's theorem of rotation states that:

Every change in the relative orientation of two rigid bodies or reference frames
Ry and Rp can be produced by means of a simple rotation of BRg in R,.
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Let A = (A, A2, A3)7 be the unit vector which Ry is rotated about and 6 the angle frame
Rpg is rotated. The Euler parameter vector e is defined as:

€1
. A si P
€9 Sin 2
e = = 8
€3 CO8 3
€4

Hence, the transformation between the inertial reference frame and the vehicle-fixed reference

frame can be expressed as:
@] _[Jie) © & }
e 0 Jiye) q:

where the Euler parameter vector must be integrated subject to the constraint e} + e2 + 2+
ef = 1. The transformation matrices are, Sagatun (1991),

e ~el—el+el  2erer — eges) 2(ere3 + eze4)
Ji(e) = 2(e1es +ezey) —eltel—el+el  2eses — ereq) , Jri(e) = J;r(e)
2(8163 e 6264) 2(6263 + 8164) -—ef - 6% -+ eg + (ig
and

€4 —e€3 €3

_1 €3 €4 —€31 T _}.
T} =51 o o o | + J2&)Ja(e)=slas

—€; —€2 €3

The relationship between the Euler angles @3 = (¢,0,%)T (xyz-convention) and the Euler
parameters is simply, Egeland (1985),

b = atan (j_%..)

_ “'Jl(e)31
6 = atan2 (cos P Ji(e) +siny J1(8)21)
sin ¥ Jy(e)1z —~ cos ¢ J1(e)23)
sinty Ji{ehs + cost Ji(e)n

¢ = atan2 (

When transforming the gravitational forces to the vehicle-fixed reference frame, the gravita-
tional components may be expressed as functions of the Euler angles or the Euler parameters.
This will be discussed more detailed in Section 2.4.3.
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2.2 Newton’s Second Law

For underwater vehicles it is desirable to derive the equations of motion for an arbitrary ori-
gin in a local body-fixed coordinate system to take advantages of the vehicle’s geometrical
properties. The dynamic behaviour of an underwater vehicle is described through Newton’s
laws of linear and angular momentum. By formulating Newton’s laws in a body-fixed coor-
dinate system, hydrodynamic and kinematics forces and moments remain constant due to
changes of the vehicle’s orientation relative to the global earth-fixed reference frame. When
deriving the equations of motion it will be assumed: (1) the vehicle is rigid and (2) the earth
is fixed in space. The first assumption eliminates the consideration of forces acting between
individual elements of mass while the second eliminates forces due to the earth’s motion
relative a star-fixed reference system. In space based control and guidance applications it
is usual to use a star-fixed reference frame while marine vehicles like ships and underwater
vehicles, usually are related to an earth-fixed reference frame.

Consider Newton's 2nd laws in terms of conservation of both linear and angular momentum:

d  dr
S &Gt = [ oagdv + | gas .
d dr
fv S x Dypdv = fv r X pagdV + js r x fdS (2.4)

where © = r, 4+ 75 is defined in Fig. 2.2 and py4 is the mass density of the vehicle. The
applied forces are divided into surface forces and volume forces denoted with the volume
integration [, dV and the surface integration [ dS, respectively. Time derivatives measured
in XYZ and X,Y,Z, are related through:

c=¢+w, Xc (2.5)

Here ¢ = % is the time derivative in XY Z y € is the time derivative in X,Y,Z, and w, is the
angular velocity vector. Notice that

Wo =W+ W, X Wo =,

which states that the angular acceleration vector w, is independent of the reference system.
Evaluating the left-hand-side of Eq. 2.3 yields:

d dr _ d dfo dfG B . .
Jy @@V = J, (G + iy = [, (%0 + #a)padv (2.6)

Here we have used the fact that: v, = 5‘-},—“ and #g = i‘%ﬁ. The assumption of a rigid vehicle

and that the origin in X,Y,Z, is fixed implies that: #¢ = 0. Applying Eq. 2.5, yields the
following useful relations:



2.2, NEWTON’S SECOND LAW 15

fds

Y, re

ro\
r X

A

Figure 2.2: The inertial, earth-fixed non-rotating coordinate system XY Z and the body-
fixed rotating coordinate system X,Y,Z,.

Ta = Tg4+W,Xrg=Ww, X g
T = W, XTg+ W, X Tg =W, XTg +w, X (W, X rg)
o, = D,= V4w, XV, (2.7)

Substituting Eq. 2.7 into Eq. 2.6 yields:

.[v (B, 4 wo X Vo +Wo X P+ W, X (Wy X 7)) padV = ]v pagdV +]3de (2.8)

If we assume that the vehicle has constant mass i.e. m = f,, padV, Eq. 2.8 simplifies to:

(2.9)

Here we have collected all the external forces in the term f,. The equation for the angular
momentum can be rewritien in a similar manner. Consider Eq. 2.4,

b (B, w, X D, + W, X 76 + Wy X (Wo X 76)) = fo
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dr dr d {dr
/V('C"l?><&?)PAdV+LT><ﬁ(g{)ﬂAdv=LrXpAng+[S?xde
Since%x‘;—?:ﬁandrzro—krg, we obtain:

./V(f‘o + Tg) X ’l"pAdV = ‘/‘;(?‘o + fc;) X pagdV + _[9(r° + TG) x de

From this expression we can eliminate the terms recognized as the linear momentum, Eq.
2.3, i.e

rox\(/;i‘pAdV—fV pAng—[s de):(}

0

which yields;

,/V o X (;'o -+ ig)pAdV == L *a X pagdV +[9‘.“G X fdS (2.10)
Substituting the result of Eq. 2.7 into Eq. 2.10 we finally obtain:

j;?'g X (0, +w, X v, + &, x Ta+ w, X (w, ) padV =
]V re X pAng+/SrG x fdS (2.11)
Observe that it is possible to rewrite the ast term on the left-hand-side of Eq. 2.11 by using

the vector triple product expansion a x (b x ¢) = (a-c)-c(a- b) with @ = b = w, and
¢ = rg, which yields:

/V e X (W, X (w, X rG)) padV = /V ra X {w, (W, - rg) —rg (w, - w,)) padV

= fv PG X W, (W, - 7g) padV — ]V e X rg (w, - Wo) padV
0

By using the definition of the inertia tensor I 0

(calculated with respect to the local origin),
it is possible to rewrite:

/VrG X (Wo X 16) padV = I,

_/; TG X W, (W, ) padV = wo X (I,w,)



2.2. NEWTON’S SECOND LAW 17

where
Iz “’“I«:y ""'Ixz
Iyw -5, I, ~I,
"”'I:vz ""'Iyz Iz

Here I, I, and Iare the moments of inertia about the x,y and z-axes and I, I, and I,
are the products of inertia defined as:

I.=fy (yz + 32) padV 3 Iy = Jyv 2y padV
ID‘ = fV (:E2 + ZQ) PAdV ) Ixz = fv Tz ,ﬂAdV
i, = fV (32 + 92) PAdV 3 Iyz = fV ¥z pAdV

Applying these definitions implies that Eq. 2.11 finally can be written as:

mrg x ¢, + mrg x (wo X vo)'*‘Io“"o'i'wo X (Io""’a) = M,

(2.12)

Here we have collected the external moments on the right-hand-side of Eq. 2.11 into the
vector term m, and assumed the mass and inertia tensor to be constant. Eqs. 2.9 and 2.12
are usually written in the notation of SNAME (1950) i.e.,

fo =(X,Y,Z,)T ,theexternal forces

m, = (K, M, N,)7 ,the moment of external forces

v, = (u,v,w)T , the velocity of the origin

w, =(pgr)¥ , the angular velocity about the origin

r¢ = {2a,¥c,2¢)] , the body-fixed centre of gravity (CG)

Applying this notation to Egs. 2.9 and 2.12 yields:

m (i~ vr +wg—26(¢® +r’) +yelpg — 7} + 2elpr +9)] = X,
m o~ wp+ur —yo(r? 4+ p*) + zelgr — p) + z6lgp+7)] = Y,
m b —ug+vp - z6(p* + ¢*) + zo(rp ~ @) + yo(rg +5)] = Z,
Ip+ (L — L)gr — {# + pg) L. + (7'2 - qz)Iyz + (pr — §)1zy
+mye(w —ug +vp) — zg(d —wp+ur)] = K, (2.13)
Ig+ (I - Lyp—{p+qr)ly, + (P2 - Tz)Iza: +{gp — f‘)Iyz
+m[zg(t —vr + wq) — ae{w ~ug+op)] = M,
LA+ (I, ~ I)pg — ¢+ o)1y + (92 - Pz)Ixy +(rq — p)l.s
+mze(t —wp+ur) —yg(t —vr+wq)] = N,

This is probably the most used representation of Newton’s laws in control and guidance
applications i.e. Newton's laws formulated in a body-fixed coordinate system with an arbi-
trary origin and constant mass and inertia tensor. The three first' equations represent the
translational motion while the three last equations represent the rotational motion, totally 6
degrees of freedom (DOF). It is desirable to select the axes of the local coordinate system to
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be the principal axes of inertia of the vehicle. This simplifies the equations above, because
the terms including the products of inertia become zero. This is automatically satisfied if the
xy- , xz- and yz-planes are planes of symmetry. If the local origin is chosen to coincide with
the CG i.e. g = (0,0,0)7, the complexity of the above equations will be further reduced.
Applying these assumptions to Eq. 2.13 yields:

Il

m(tt — vr + wq)
m{d —wp+ur) =
m(w — ug +vp) =
Lp+ (1, - Iy)‘]’” =
Lg+ (Ix - Iz)rP
Ly + (Iy - Ix)Pq

It is usual to describe ships only in sway and yaw. Assuming the forward speed u = u, to
be constant and that r, = (24,0, 2¢)7, suggests:

il

FERNS ¢

m{0 + ur +267) = Y,
L+ meg(® + ur) N,

il

The 6 DOF nonlinear equations, Eq. 2.13, can be written in a more compact form as:

Mg G+ Crs(qlqg =T, (2.14)

Here ¢ = (u,v,w,p,q,r)" is the body-fixed linear and angular velocity vector and T, =
(Xos Yo, Z,, Ko, My, N,)T is a generalized vector of external forces and moments. The rigid-
body inertia matrix M rp is recognized as:

)T

m 0 f 0 mzg —myg
0 m 0 —mzg 0 meg

_ 0 0 m myg ~—mzg 0
Mra=1 0 i my L Loy e
mag ] —mzg Iy 1, —Iy,

—myYyG meg 0 —‘I;;z "‘Iyz Iz

Notice that the rigid-body inertia matrix M pp is symmetrical i.e. Mpgp = M ?23- The
Coriolis terms w, x v, and centrifugal terms w, X w, are collected in the matrix:

Cra(g) =

[ —mr mg m(yge + 2gv) —-mzgq —Tnzer
mr 0 —mp —mysp m{zgr 4 Fip} —-mygr

—mq mp [+] —mzigp —mraq m{zep + ¥39)

—m{ygy+ £} mygr migp 4] —lyrq = Insp 4 Izv Iysr + fxyp — Tyq
mI g —mlzg5r + z25p) migq Iyeq+ Izzp — Izr a m}’:zr w leyqd Izp
mzgr mygr -m{zgr+ yge) ~ly:r—Ifeyp+ Iyq  Izar+ Izyg =~ Izp 6
This particular choice implies that the matrix Crp is skew-symmetrical t.e. Cpg = ~Chp.

The skew-symmetric property will be exploited in the adaptive control design in Section
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5.4.1. The generalized vector T, consists of a large number of external forces and moments
acting on the vehicle. It is convenient to write 7, as a sum of vectors components, namely:

To=TH+Ty+Ty+7Tp

where the subscripts correspond to the following forces:

¢ Hydrodynamic forces due to radiation and excitation Tp :

1. Radiation induced forces due to the forced body oscillations:
- added mass
- potential damping
- restoring forces

2. Excitation forces due to a restrained body:

- Froude-Kriloff forces
- diffraction forces

e Viscous damping Ty :
- linear damping
- quadratic damping
e Umbilical forces 7y :
® Propulsion forces rp :
- thruster forces
- thruster momentum drag

- contro] surfaces

- variable ballast-displacemnent system

The contribution from each of these terms will be discussed more detailed in the next sections.
If no excitation forces are present it will be shown that the n DOF equations of motion for

an underwater vehicle can be expressed in a compact form as:
Mq+C(q)q + D(4)q + g(z) = B(§) v
& = J(2)q

where € R", ¢ € R" and w € R*. M is an n x n inertia matrix including hydrodynamic
added mass, C is an n x n nonlinear matrix including Coriolis, centrifugal and added mass
terms, I is an n x n matrix of dissipative terms, such as potential damping, viscous damping
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and skin friction, B is an n x p input matrix including the thruster characteristics and g is
an n X 1 vector of restoring forces and moments. These terms will be interpreted in the next
sections. The transformation matrix J has already been described in Section 2.1. For a 6
DOF model the state vectors are defined as: @ — (€, 4,2,6,0, )7 and g =(uv,v,w,p,q,r)7,
where ¢ is a virtual vector, c.f. Table 2.1. If excitation forces are considered the nonlinear
equations of motion can be written in terms of the relative fluid motion. This will be
described more closely at the end of Chapter 2. For readers that are unfamiliar with basic
hydrodynamics, the next section addressing regular wave theory is recommended to study.

Table 2.1: Notation used in the 6 DOF underwater vehicle equations of motion.

body-fixed forces | body-fixed linear and earth-fixed positions
DOF and moments angular velocities and Euler angles
1 surge X u X
2 sway Y v ¥
3 heave Z w Z
4 roll K p ¢
5 pitch M q #
6 yaw N r ¥

2.3 Basic Hydrodynamics

The wave induced motions and loads on ships, underwater vehicles and offshore structures
can be described by regular waves i.e. incident regular sinusoidal waves of small steepness.
Small wave steepness implies that the waves are far from breaking. It is possible to obtajn
results in irregular sea by linearly superposing the results from regular wave components.
This is done by adding a large number of regular waves of different amplitudes, wavelengths
and propagation directions.

2.3.1 Regular Wave Theory

Regular wave theory is based on potential theory. The derivation of linear wave theory (Airy
theory) for propagating waves is found in many textbooks e.g. Newman (1977) and Faltinsen
(1990a). Let ¢ be a velocity potential describing the fluid velocity vector: v{z,y,z,t) =
(u,v,0)7 at time ¢ at a point @ = (z,y,2)7 in a Cartesian coordinate systemn which is fixed
in space. The relationship between the fluid velocity and the velocity potential is
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_ v 00 00 03]
v_tim{%,ay,-b;]

The derivation of the velocity potential is based on the following assumptions:

(2.15)

(1) The velocity potential should satisfy the Laplace’s equation. This is based on the
assumption that the water is incompressible i.e. the fluid density p = const. The
continuity equation for an incompressible fluid is:

. du v Ow
dzvv—v-v—ga—:+5~g+né~;—~

Combining Eqs. 2.15 and Eq. 2.16 yields Laplace’s equation:

0 (2.16)

Fo 0% 0%
2p— Ly T LT
V=Gt oz T g2 "

A potential flow is said to be irrotational if

Vxov= _a_?f_@ .a_umg_u_). Qg_@ T.—O
“{\8y 8z)'\8z &8x)'\8z 8y}

everywhere in the fluid. The velocity potential of an irrotational, incompressible fluid
is then found by solving the Laplace’s equation with relevant boundary conditions on
the fluid.

(2) The sea bottom condition is simply that

a¢ _
(-é.;) z=h =0

This ensures that the vertical velocity at the seabed z = h (2 positive downwards)
where h is the mean water depth, should be zero.

(3) The dynamic free-surface condition is simply that the water pressure is equal to the
constant atmospheric pressure p, on the surface. For inviscid fluids the pressure p
follows from Bernoulli's equation:

1 7 09
P pgz -+ 507w + p = C(t)

Here C(t) depends on time only. The dynamic pressure pp is defined as:
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__ 9
Let the free-surface be defined as
z={(z,y,1t) (2.17)

where { is the wave elevation. If we choose C as the constant atmospheric pressure on
the surface p,, then

2 2 2
_gC+%§+é[(%§) + (g—z) + (%) ] =0 on z=((z,y,t) (2.18)

Notice that the free-surface condition, Eq.2.18, is nonlinear. Linear theory is based on
a first order Taylor expansion of Eq. 2.18 around the mean free-surface z == 0 i.e.

86,1) = 9(0,1) + 25220 4 0(¢%) ~ 8(0,)

Indeed, this is a good approximation for small waves. This finally yields:

This approximation can be improved by introducing higher order terms e.g. a Stoke’s
expansion, Newman {1977).

(4) The kinematic free-surface condition simply states that a fluid particle is assumed to
stay on the free surface. Defining

F(SC, Y, Z,t) =z C(l‘,y,t)
implies that the substantial derivative

DF(z,y,t) 4aF _
Di _8t+v'VF_O~

or equivalently
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¢  0¢3( a4 0¢
e —_—— —— e — =0} = 3 at

at 3:1:6a:+6y5y 0z on z=({(z,9,%)

where the expression for v has been used in Eq. 2.15. By a first order Taylor expansion
it is possible to transfer the free surface position {(z,y,1) to the mean surface at z =0
which yields the kinematic surface condition:

o _ (o0
ot~ \ 8z =0

It is straightforward to show, see e.g. Walderhaug (1990), that the wave velocity potential
satisfying all these assumptions is

_ gCacosh k(h - z)

ow w cosh kh

sin(wt — k)

Here (4 is the wave amplitude, & is the mean water depth, ¢ is the acceleration of gravity, ¢
is the time variable,  is the direction of wave propagation and z is the vertical coordinate (z
is positive downwards). The complete expressions are given in Table 2.2. The wave number
k is defined as:

2n
=

where A is the wave length. The connection between the circular frequency w and the wave
period T is

o
T

W

According to potential theory, the total pressure in the fluid is the sum of the dynamic and
static pressure i.e.: pror = pp + pgz + po, where py is the constant atmospheric pressure
on the surface. Let A be the wave length and h be the water depth, then it is common to
classify the water depth as:

e Infinite water depth: % >1

h 1
<3<3

gp-

¢ Finite water depth:

e Shallow water: % >

B~
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Table 2.2: Velocity potential, dispersion relation, pressure, velocity and acceleration for
regular sinusoidal propagating waves on finite and infinite water depth according to linear

(Airy) theory.

Finite water depth Infinite water depth
Velocity potential: dw = 2o coshklhz) oot kzx wo= Bde~Figing  pa
w cosh kR w
Connection betwesn wave number
& and circular frequency w: w? = kgtanh kh w? = kg
Connection between wavelength
A and wave period T A= £7% tanh Zp A= ALT2
Wave profile: ¢ = (4 cos(wt ~ kx) ¢ = (4 cos{wt — kz)
Dynamic pressure: P = ~p9Ca DBEAS2) contiot - kx)  pp = —pgCae—t? cos(wt — ke
con [2
x-component of velacity: Ug = —w(y SRER) o (wt — ke ty = —u(ae™% cos(wt — ko
! cosh k !
z-component of velocity: Wy = ~wly 5195':3-—:&-5%1 sin(wt — kz)  wy = ~wCae” ¥ sin(wt — kz)
x-component of acceleration: thy = wi(s %’—E—‘l sin(wt — kz) ty = w e~ % sin(wt — kz)
z-component of acceleration: y = —wch%’O—fé%}ﬂws(wt ~kx) oty = —w?ae7 cos(wt — kx)

2.3.2 Wave Induced Forces in Regular Waves

For small motions (assuming no currents) the total velocity potential ¢ror is written as a
sum of three components, Faltinsen (1990b),

dror = dw + ép + dr
where

e ¢w is the incident regular wave velocity potential.
® ¢p is the diffraction potential caused by reflection when the vehicle is restrained.

© ¢r = 3%, $r; is the sum of the radiation potentials in 6 DOF caused by forcing
the vehicle to oscillate with the wave excitation frequency, when there are no incident
waves.,
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The wave induced force due to the velocity potential ¢ror is simply found by integrating
the expression for the total pressure over the vehicle’s surface S:

./ f d¢ror

where n = (n;,na,n3)7 is the unit vector normal to the body surface defined to be positive
into the fluid. Linear regular wave theory implies that wave induced forces acting on a
rigid vehicle can be superpositioned into two sub-problems, Faltinsen (1990a), (1) radiation
induced forces and moments and (2) excitation forces and moments.

(1) Radiation induced forces and moments

Radiation induced forces and moments act on the vehicle when the vehicle is forced to
oscillate with the wave excitation frequency. There are no incident waves. The hydrodynamic
forces are identified as:

- Added mass due to the inertia of the surrounding fluid.
- Potential damping due to the energy carried awaey by generated surface waves.

- Restoring terms due to Archimedes.

These forces are due to the radiation potential, i.e. the potential ¢p created by the forced
oscillation of the vehicle when there are no incident waves. It is possible to show that the
total forces and moments due to the radiation potential can be written as

rr=p [ [ 28 ~ - A}~ By - Cn (2.19)

where 9 is a 1 X 6 vector of linear (1, 93,73} and angular (n4,75,76) displacements. This
expression is found from solving a boundary layer problem for the radiation velocity potential,
Faltinsen {1990a). Both the added mass matrix A{w) and the damping matrix B(w) depend
on the wave excitation frequency w, the shape of the body, the distance from the free-surface,
the seabed and pearby structures. On the contrary, the C matrix representing the restoring
forces and moments, will be independent of the wave excitation frequency. All these terms
will be described more closely in the following sections.
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(2) Excitation forces and moments

Excitation forces and moments are acting on the vehicle when the vehicle is restrained from
oscillating and there are incident regular waves. They are classified as:

- Froude-Kriloff (FK) forces due to ¢y .
- Diffraction forces due to ¢p.

The FK-forces and moments are found by integrating the pressure induced by the undis-
turbed waves while the diffraction forces and moments are due to the pressure created by
the vehicle when the waves are reflected from the vehicle, i.e.

rgzpff%“indS—hpf/?gTDndS (2.20)

Here #w is the wave potential and ¢p is the diffraction potential i.e. the velocity potential
created from the reflection. The most commonly used wave potential is that of Table 2.2.
"The diffraction potential can be solved from a boundary value problem similar to that
of the radiation problem. If only the wave excitation loads are of interest and not the
detailed pressure distribution, the so-called Haskind relation can be applied. Haskind (1954)
developed relations, based on Green’s identities of potential theory, that allow diffraction
forces for the 6 DOF’s to be found from the radiation potential for the appropriate DOF.
This makes it unnecessary to find ¢p. In its original form it is assumed that the structure
has zero forward speed and that no currents are present. if the body is totally submerged,
has a “small volume” and the whole body surface is wetted, a special solution of Eq. 2.20
exists. By “small volume” we mean that a characteristic cross-sectional dimension of the
body is small relative to the wavelength X. For a vertical cylinder “small volume” means
that A > 5D, where D is the cylinder diameter. ROVs are usually within this limit. If the
subscript f denotes the fluid motion, Eq. 2.20 can then be approximated as:

75 & Mpx ity + Alw)it, + B(w)i, (2.21)

The first term corresponds to the FK-force while the last terms represent the diffraction
forces. The matrix M px may be interpreted as the FK-inertia matrix i.e. the inertia ma-
trix of the displaced fluid.

Linearizing Newton'‘s laws of linear and angular momentum about zero velocity with orly
wave induced forces as external forces, yields:

Mprpit =1+ 75

Note that viscous and control forces are neglected in this expression. Substituting the
expressions for 7x and g into the expression for Newton's laws, yields the linear equations
of motion:
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(Mgp + A(w)) it + B(w)ip + Cn — (Mg + A(w)) 71y — B(w)ip; =0

Note that the added mass and damping matrices are functions of the incident wave fre-
quency i.e. A(w) and B(w). For bodies that are small compared to the wavelength, totally
submerged and satisfying Mrx = Mpp i.e. neutrally buoyant vehicles with homogeneous
mass distribution, the linear equations of motion can be combined to give

(Mpp + A(w)) 1, + B(w)f), +Cn =0

where 9, = -1, is the relative fluid velocity over the submersible. It should be noted that
this is based on the assumption that water is an inviscid fluid. This implies that viscous
damping terms e.g. skin friction and drag should be added to yield a complete model. This
problem will be addressed in Section 2.4.3. Another effect to be considered, is the change in
the frequency of encounter. If the vehicle is moving with a velocity I/ and w is the incident
wave frequency, then the frequency of encounter w, can be expressed as:

we =w+ kU cos 8

Here {8 is the heading angle between the vehicle and the wave propagation direction and &
is the wavenumber. This simple relationship is based on the Doppler effect. In deep water,
the dispersion relation w? = kg implies that:

2
w

We = W+ —— cos §
g

2.3.3 Morison’s Equation

Since a typical ROV has many cylindrical elements exposed to the surroundings, it is im-
portant to estimate the forces on these. According to Morison et al. {1950) the horizontal
force dF on a strip dz of a vertical cylinder can be written as:

D2
dF::pT—TZ——dzCMﬁf+%pCDDdzuf|u;|

-~ ~
Mass foree Drag force

Here D is the cylinder diameter and u; is the horizontal component of the undisturbed fluid
velocity. Morison’s equation can only be applied for small-volume structures, c.f. Fig. 2.3.
Both the drag coefficient Cp and inertia coefficient Cps will be functions of the Reynolds
number, the Keulegan-Carpenter number, the relative current number and the roughness
ratio Faltinsen (1990a). The Reynolds number and Keulegan-Carpenter number are defined
as:
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H
5 E=th
Dragforces are
A No waves possible dominating
Massforces are
. dominati
Reflection minating
and diffraction \
are important D
large-volume 5 small-volume
Mae-Camy and Fuchs Morison’s equation o

theory
Figure 2.3: Breaking limit: % = %%, small-volume and large-volume limit: % = § and
dragforce dominated and massforce dominated limit: 4x. H is the wave height, D is the
cylinder diameter and ) is the wave length.

rRe=Y2 ko=
v D

where U is the characteristic free-stream velocity, v is the kinematic viscosity coefficient,
U is the amplitude of the oscillatory planar flow velocity and T is the wave period. When
applying potential theory for a circular cylinder: Cpr = 2. In this case, half the contribution
comes from the FK-force and the other half from the diffraction force. If viscous effects are
accounted for, Cas will differ from 2. The last term in Morison’s equation suggests that the
viscous damping force should include a quadratic damping term.
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2.4 Radiation Induced Forces

As described in the previous section, the radiation induced forces involves the problem of
finding the added mass, potentiai damping and restoring terms. For an underwater vehicle in
6 DOF these terms will generally be nonlinear. The radiation induced forces and moments
can be expressed as:

TR(EL Q:m) = TA(&*: ('I) + 'rB("I) + Tc(ﬂ!)

where the subscripts 4, B and C denote the nonlinear added mass, damping and restoring
terms, respectively.

2.4.1 Added Mass

Like the rigid-body kinematics, it is desirable to separate the added mass terms in terms
which belong to an added mass matrix M 4 and a matrix of Coriolis and centrifugal terms
Ca(g). For underwater vehicles this implies that the added mass forces and moments can
be written as:

Ta(@,q) = ~M 44 — Ca(§)q

where 74 = (X4,Yg, Za, K4, M4, N, )7 is the total added mass force and moment vector.
The added mass terms represent the fluid particles surrounding the submerged body that are
accelerated with it. Any motion of the vehicle induces a motion in the otherwise stationary
fluid. In order to allow the vehicle to pass through the fluid, the fluid must move aside
and then close behind the vehicle. As a consequence, the fluid passage processes kinetic
energy that it would lack if the vehicle was not in motion. Lamb (1932) gives the following
expression for the fluid kinetic energy E expressed as a quadratic form of the body axis
velocity vector components:

1, .
By = ‘Z“QTMA‘I (2.22)

Here M 4 is a 6 x 6 added mass matrix. For a rigid body body moving in an ideal fluid the
added mass matrix is symmetricalie. M, = M ﬁ. In & real fluid these 36 elements may all
be distinct. Experience has shown that the numerical values of added mass in a real fluid
are usually in good agreement with those obtained from ideal theory, Wendel (1956). The
added mass matrix is simply written as:

[ Xa Xo Xo X X; Xi
Y, Y Yo Y Y Y
Zi Zy Zy Z; Z; Z
Ma==\k K Ki K, K; K. | + Ma>0
_Nﬁ Nt') Nu'; N;i Nq; N’;N
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The notation of SNAME (1950) is used in this expression; e.g. the hydrodynamic added
mass force ¥, along the Y-axis due to an acceleration 4 in the x-direction is writéen as:

ay

u

Y) =Yt where Y; =

This definition implies that the hydrodynamic derivatives XY, 2y, Ky, M;, N;: correspond-
ing to the diagonal of the added mass matrix M 4, will all be negative. Equating Eq. 2.22
(assuming M, = M ) yields:

2By = —-Xuu'— Yl — Z,u? o 2Yy0w — 2Xwu — 2X,up
~Hp? — Myq® — Nur? . 2Miqr — 2K;rp — 2K;pq
=2p(Xpu + V3o + Zyw)
—2¢{Xju + Yv + Zyw)
~2r(Xsu+ Yiv + Ziw) (2.23)

The added mass terms are obtained from potential theory. The method is based on assuming
inviscid fluid, no circulation and that the body is completed submerged in an unbounded
fluid. The last assumption is violated at the seabed, near underwater installations and at
the surface, Consider K. irchhoff s equations in cormponent form, Milne-Thomson {1968):

408, _ 0B on,

& ou T "oy " T, X

408, OE. _ 9E,

dta;— - p@w r@u 4

d O — a_E.’i_, _3@&_.2

dt dw qé’u pa 4

408, OB Q{f_nr,ﬁ%_ 98,
adp = o TG T, T3 4
408, u?&_w%+ OB, 9B
dt 9¢ = " dw u TPy " op 4
doB. _ OB, 8B, OB, og,
@ = o TV Tig, G N (224)
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Substituting Eq. 2.23 into Eq. 2.24 gives the following expressions for the added mass terms,
Imlay (1961):

X4 = Xt~ Xo(w + ug) + X3¢ + Zywg + Z;q*
+X5v + Xpp + Xo — Yor — Yirp — Yir®
—Xsur — Yywr
+Yovg+ Zipg — (Y; - Zi)gr

Ya = Xod+Yow+ Y4
+Yi0 + V3P + Yir + Xyvr — Yoop + Xir? + (X — Z)rp — Zyp?
—Xa(up ~ wr) + Xyur — Zywp
—Zipq + Xgqr

Zs = Xg(d— wq) + Zyw + Zi§ — Xiug — quz
+Yab + Zsp + Zif + Yivp + Yerp + Ypp®
+Xoup + Yowp
—Xivg — (X5 — Yy)pg — Xegr

Ka = Xgt+ Zph + Kiq — Xywu + Xpug — Youw? — (Y ~ Zi)wg + Mg
+Y, 0 + Kpp + Kit + Y0 — (¥ Z:)or + Zyop — Myr? — Kyrp
+Xouv ~ (Y; — Zy)ow — (¥; + Z)wr — Yywp — X;ur
+(Y: + Z;)vq + Kepg ~ (My ~ Ni)gr

My = Xy(i+wq)+ Z;(w0 — uq) + Mg — Xo(u® — w?) — (Zy ~ Xo)wu
+Y50 + Kip + Myt + Yyor — Yivp — Ke(p® — r*) + (K; — Ni)rp
—Youv + Xjow — (X; + Z; )(up ~ wr) + (X5 — Zi }(wp + ur)
—M;pg + Kyqr

Ny = X+ Zetb + Mg + X + Yowu — (X; — Yy)ug ~ Zwg — Kyq?
+Yi0 + Kep+ Net — Xov? — Xoor ~ (X — Yi)op + Mirp + K;p*
—(Xa = Yo)uv — Xgvw + (X + Yp)up + Yiur + Zwp
—(Xg + Y5)vg — (Kp ~ My)pg — Kegr (2.25)

Iralay (1961) has arranged the equations in four lines with longitudinal components on the
first line and lateral components on the second line. The third line consists of mixed terms
involving u or w as one factor. If one or both of these velocities are large enough to be
treated as a constant the third line may be treated as an additional term to the lateral
equation of motion. The fourth line contains mixed terms that usually can be neglected as
second order terms. Many of the added mass derivatives contained in the general expressions
for added mass are either zero or mutually related when the body has various symmetries,
Imlay (1961). A more detailed discussion of added mass terms is found in Humphreys and
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Watkinson (1978). Extracting the added mass defivatives corresponding to the velocity
coupling terms yields:

[' 0 0 ] 6 . C}f st ]

0 0 0 ¢ g ¢

. 0 0 0 C3 C% 0
Ca(q) = 0 _Citi _024 OA 055 036
-C¥ 0 —c% ~CP¥ 0 3
__016 __026 0 "C}G __CSB 0 _J

where
CP = ~Xyu—Yyv~ Zyw— Zsp— Ziq ~ Zir CP = Xiu+ Xgv + Xyw + Xep+ X0 + Xpr
C¥=Xu+t Yo+ Yw+ Yip+ Yiq+ Yir C¥=—Xiu—Ypv~ Ziw— Kip— Myq~ N;r
034 = X,u + Yov+ Zow + Z,jp+ qu + Zer st = Xq;u + Yq-v + Zq-w + Kép-{- Mq;q + Mir

s t-‘u—-X,-,v—Xﬁ,iD'-X;aP“'XdQ‘X*" C36 = ﬁu_)gv—zﬁme,gmegq—Kﬁr
Ci = - ,.,u_Y,-,vat;,w~Y,5p—Y;q—Y,=r

This particular choice implies that the matrix C4 is skew-symmetrical i.e. C 4 = mCﬁ.
A common assumption is to neglect the contribution from the ofi-diagonal elements in the
added mass matrix M 4- This yields the following simple €4 matrix:

[ 0 0 0 0 -Zyw Yo
0 0 0 Zaw 0 —Xiu
. 0 0 0 —Yov  Xu 0
Cale)=| ¢ —Zw Yo 0 -No M,
Zyw 0 —Xiu Nr 0 ~Kzp
—~Y.-,v Xﬁu ] ~—Avigq K,; 0 J

2.4.2 Potential Damping

The contribution from the potential damping terms compared to other dissipative terms like
viscous damping terms are usually neglectable for underwater vehicles operating at great
depth. Nevertheless, underwater vehicles operating close to the free surface should consider
the potential damping effect. Especially, small underwater vehicles with a non-streamlined
body e.g. vehicles build as an open space-frame with buoyant elements and equipment
mounted within the frame, should consider the effect from the potential damping terms.
The linear potential damping can be modelled as:

T8(q) = ~Dpq

where Dy is a positive definite matrix (Dg > 0), of linear damping coeflicients:
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X, X, Xo X, X, Xo]
Y. ¥, Y, ¥, Y, Y
D T By L Zy Z, Z
B="| K, K., Ko, K, K, K:
M, M, M, M, M, M,
' N. N, N, N, N, N, |

Often it is convenient to include the linear potential damping terms in the viscous forces
rather than separating these effects.

2.4.3 Restoring Forces and Moments

In the hydrodynamic terminology, the gravitational and buoyant forces are called restoring
forces. The restoring forces and moments can be written as:

Te(x) = —g(=)

where g(#) is a 6 x 1 nonlinear vector. The gravitational force f acting on the underwater
~ vehicle acts through the centre of gravity: rg = (zs, ¥a, zg)T of the vehicle. Similar the
buoyant force f acts through the centre of buoyancy: rg = (xB,yp,28)". The restoring
forces will have components along the respective body aves. Both the gravitational force
and the buoyant force will also produce moments about these axes.

Let m be the mass of the vehicle including water in free floating spaces, V the volume of fluid
displaced by the vehicle, g the acceleration of gravity and p the fluid density. According to
the SNAME (1950) notation, the vehicle’s weight is defined as: W = rng while the buoyancy
force is defined as: B = pgV. By applying the results from Section 2.1, the weight and
buoyancy force can be transformed to the body-fixed coordinate system with:

0 0
meJfl(‘i’}g,ﬁb) [0 } ’ B::J-l—l(qé?a?i!))[ﬂ }
W B

where J, is a coordinate transformation matrix defined in Section 2.1. Let T(z) be a
generalized vector in the body-fixed coordinate system consisting of both the gravitational
and the buoyant forces and moments, namely:

fo—fn ]

rex fo—re X fp

Tol{z) = [

Notice that the z-axis is positive downwards. Equating this expression yields
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I (W — B) s
— (W~ B) cfs¢
| = (W—=58)clec¢ .
9l@)=| _ (yoW — ypB) clcd + (26W — 25 B) c0s¢ (2.26)
(2¢W ~ zpB) s + (zeW —~ 2pB) chcé
| — (2cW — 25B) cls¢ — (yeW — yaB) s8 |

Eq. 2.26 is the Euler angle representation of the hydrostatic forces and moments. An
alternative representation is found by applying the quaternion representation:

[ — 2(W —_ B) (6163 - 6264)
~ 2(W — B) (ezes + e1e4)

(W = B) (1 + ¢ ~ el — )

(yeW — ypB) (&} + €2 — €2 — e3) + 2 zgW — zpB) (eze3 + ere4)
— 2(2gW ~ 2pB) (eye3 — ezeq) — (xgW — zpB) (e 4 €2 — e — e2)
| = 2(@cW — 2pB) (e2e5 + e1e4) + (ygW - yBB) (e1e3 — ezey)

gle) = (2.27)

where the Euler parameters ¢; (i=1..4) are defined in Section 2.1. For neutrally buoyant
underwater vehicles with homogeneous mass distribution (W = B) the expression for the
restoring forces and moments is quite simple. Let the distance between the centre of gravity
and the centre of buoyancy be denoted as BG where:

BG = (BG., BG,, BG.)" = (25 — 25, yg ~ yp, 76 — zp)T
Hence, Eq. 2.26 can be written as:

r 0 1
0

0

9(x) = ~BG,W clcd + BG,W chsp
BG.W s+ BG,W cfco
~-BG,W cfsg — FG}W s

2.5 Excitation Forces

When applying potential theory, the fluid motion was assumed to be irrotational. This
implies that we only consider the linear velocity components of the fluid ie.

LA
gy = (ufavf:wfa()?(}vO)T

Let u, & y—u Hor2u—y sand w, £ w-y ¢ be the relative linear fluid velocity components.
Hence, ¢, = (uy, v,,w,,p, ¢,7)T can be interpreted as the relative fluid velocity vector.
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Linear Theory:

In linear theory the wave induced forces and moments acting on the vehicle can be written as
the sum of the radiation induced forces and moments and the excitation forces and moments,
c.f. Section 2.3.2:

Trr To
TE Tr

where

7K is the Froude-Kriloff forces and moments
Tp is the diffraction forces and moments

T is the excitation forces and moments

Tr is the radiation induced forces and moments

Nonlinear Theory:

In the nonlinear case, Ty cannot be written as a sum of linear elements. The forces and

moments due to the radiation and diffraction potential are nonlinear functions of the relative
" velocity vector q, and relative acceleration vector q.. Let the contribution from the radiation
and diffraction induced forces and moments be denoted with the combined vector term 7. p,
then the sum:

TH=TFK + TR+D

could be used to describe the nonkinear hydrodynamic forces and moments caused by waves.
These new terms are described more closely in the next sections.

2.5.1 Froude-Kriloff Forces
The Froude-Kriloff force and moment vector can be expressed as:
TFK(‘};,&;) =Mrk§;

Here M rk can be interpreted as the FK-inertia matrix. Coriolis and centrifugal terms will
not appear in the general expression for the FK forces and moments since we have assumed
the rotational fluid motion to be zero ie. p; = g5 =ry = 0. Let V be the volume of the
displaced fluid and p be the fluid density, hence the mass of the displaced fluid must be

m= pV

The moments and products of the inertia of the displaced fluid are:
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L=fe @’ +2%)pdV , Toy=fo aypdV
{y = fV (xz + zz)pdv ] {a:z = fv :z:zpdV
IZ = fV (1:2 + yz)pdv 1 Iyz = fv yzpdV

Applying the results from Section 2.3.2 the FK-inertia matrix for a small volume completely
submerged body, c.f. Eq. 2.14, is:

m 0 0 0 Mip —MWMyp
0] i 0 —~Tizg 0 mzpg
Mopw = 0 0 T Wmyp ~fizpg 0
FE= 0 —~fizp mys Ta: "Txy ““'Tz z
g 0 —mzp —_I_xy Ty —Tw
—myp Thrp 0 -—-T;” —Tyz T,

Since we have assumed that g, & (%g,04,24,0,0,0), we only have to calculate the first
three columns of M px to obtain the vector M pg g i

2.5.2 Diffraction Forces
Linear Theory:

We recall that in the linear case, the diffraction forces and moments were linearly superpo-
sitioned as:

TD(“II':&)') = _A‘}j - B‘if

Nonlinear Theory:

In the nonlinear case it was suggested writing the diffraction forces and moments directly
as functions of the relative fluid motion. Hence, the combined expression for the nonlinear
radiation and diffraction induced forces and moments can be expressed as:

1‘R+D(§B, Qﬂ qr) = _Mﬁér - CA(Q?)&:’ - DB(.I;‘ - g(a")
which yields:
TH(miér'l&r) = Trr + Thryp = MFK‘}J' - MA&T - CA(@r)q'r - Dqu mg(ag)

This is simply the nonlinear counterpart to Eq. 2.28. When no excitation forces are present,
the general expression for vy simplifies to

Ty(2,4,§) = Tr(%,4,§) = ~Mad — Ca(§)q — Dpq — g(x)
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2.6 Viscous Wave Loads and Damping

The viscous effects for underwater vehicles are mainly caused by

e Linear skin friction due to laminar boundary layers.
¢ Quadratic skin friction due to turbulent boundary layers.

* Quadratic drag due to vortex shedding (Morison’s equation).

The viscous damping forces and moments 7y will be functions of the relative fluid motion.
In the range of Reynold’s numbers in which underwater vehicles typically operate, flow
is turbulent. Hence the drag force is approximated by the square law resistance arising
from Morison’s equation. We recall that the quadratic drag force in the x-direction can be
expressed as, ¢.f. Section 2.3.3:

1
f= ""'2“P Cp A uy|u,|

where A is the projected cross-sectional area , Cp is the drag-coefficient based on the rep-
resentative area and p is the fluid density. The drag coefficient Cp depends on both the
Reynolds number and the orientation of the vehicle. The skin friction will give a linear
and quadratic contribution to the drag force. Experiments verify that the total drag on the
vehicle could be fairly described as the sum of a linear and quadratic drag component. This
is illustrated in Figure 2.4

A generalization of Morison’s equation could be to use a truncated second order Taylor series
expansion to describe the viscous damping in 6 DOF. This suggests that the viscous damping
could be written as:

TV(q.Ir) = —'DL ér - dQ("Ir) —h.o.t. (2‘29)

where Dy, is a 6 x 6 positive definite matrix (Dy, > 0) of linear damping terms and do{q,)
18 6 x 1 vector of non-negative quadratic damping terms. The linear coefficients can be
expressed as:

(Xe Xo Xu X, X, X,

Y. ¥, Y. Y, Y, Y

_ |\ 2 2z, 2, 2, Z, Z
Po=-p k, K, K, K, K,
M, M, M, M, M, M,

| M. N, N, N, N, N, |

while the quadratic counterpart is written as:
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Figure 2.4: Linear (dotted) and quadratic damping (solid) versus relative velocity u,.

I q:: Xq |4, T
q& YQ lqu

. 2. Zq 14,
dQ(qr) = - qu KZ llz II
‘?;MQ (4, |
L ¢ Nolq,]

where |q,| = ( Jur|, Jo-}, fwrl, 1pl, lgl, I ). The matrices Xo, Yo, Zq, K, Mo and Nq
are 6 x 6 negative definite matrices of hydrodynamic coefficients. The first matrix is written
as]

[ Xt Xl KXol Xuppl Xulgl X ]
Yol Yol Yo Yo Yo Yigy

XQ:: Zwlul Ztu|‘ui Zw[w| wap| Zw|q| Zwtr|
Kpu)  Kppy K Kol Koot Kopr)

M Mqlvl Mqlw§ Mt;'lpl M4|9| Mqlf!
L Mol Nowl Nepwl Nepp Neyp Nopoy

Similar expression are obtained for the other matrices in dg. The expression Eq. 2.29 in-
cludes both the effects from the skin friction and the vortex shedding. It is quite complicated
to determine the hydrodynamic coefficients in this expression, especially the off-diagonal ele-
ments. The cross-coupling terms can be neglected in many applications. On the other hand,
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the diagonal elements can be obtained from simple experiments. Hence, a frequently used
approximation to Eq. 2.29 is

X.,+X“M ] 3} ¢} ¢ 0 2]
o Y. + Y”|”| |un| 1 1] 0 0
. o 0 0 2w+ Zi|w]| Jwy | 0 ¢} O .
Tv(¢;) = 0 o 0 Kp + Ky Io] 0 0 q-
a o 0 0 Mo+ Mg lgl o]
1] 0 0 4] 0 Nr+ Nejy I

A more convenient representation of Eq. 2.29 is

TV(é‘r) = _Dv(q'r) {.Ir

where Dy is a positive definite matrix of both linear and quadratic damping terms.

2.7 Umbilical Forces

Umbilical cables are used for both power supply and communication to underwater vehicles.
Ship heave may cause large dynamic loads which can lead to vibrations (strumming) of the
cable. Hence, hydrodynamic drag may be so dominating that it overcomes the vehicle's
propulsion system. The hydrodynamical loads can be split into three components; normal
drag force f,, tangential drag force f; and lift force fi, Dand and Every (1983). The steady
state normal force, tangential force and lift force per unit length acting on the cable can be
described as:

1 i 1
fa= §PCD,,DU§ fr = §PCD=D’03 fi= §PCD,DU,21

where v, and v, are the normal and tangential velocity, respectively while Cp,, Cp, and Cp,
are the drag coefficients. It is usual to treat f., f; and f; independently. The total umbilical
forces and moments can be expressed as

Tu = '—DU((I!‘) ‘.Ir

The umbilical cable configuration can be optimized by numerical simulations. In particular
it is desirable to reduce the static and dynamic force at the lower end of the cable such that
ROV operations are less affected by strurnming effects. This is described in more detail by
Lie et al. (1989).
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2.8 Propulsion and Control Forces

Small underwater vehicles are usually manoeuvred with thrusters and control surfaces. The
efficiency of the control surfaces depends on the speed of the vehicle. This is due to the fact
that the lift force is proportional to the square of the velocity. However, control surfaces
are particularly useful in trim and depth changing manoeuvres. Submersibles can also be
designed with variable ballast-buoyancy systems for trim and depth control. Besides this,
more modern devices like water jets can be used. In this section it will be shown that the
propuision forces and moments 7p € £" can be described as

Tp=B(q)u (2.30)
where w € ®* is an input vector and B is an n x p inpuf matrix depending on the vehicle’s
speed. To obtain a unique expression for B is a non-trivial task due to a large number of
complex unmodelled hydrodynamic effects e.g. cavitation or interactive forces and moments
due to a number of thrusters mounted within an open ROV frame. The thruster forces are
determined by performing an open water test where the propeller revolution, thruster force
and thruster moment are all measured. Control surfaces can be tested in a similar manner
e.g. in a cavitation tunnel. Finally, these tests can be used to determine the elements in the
B matrix.

2.8.1 Thruster Forces

In this section the thruster forces and moments will be described by Eq. 2.30. The experi-
mental results are based on the thruster shown in Figure 2.5.

r—“—‘]' the oxiginal OMC housa
[ extension to il the

244mm

418mm l

|
f
|
Figure 2.5: The NEROV ducted thruster, Sagatun and Fossen (1991a)
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Actuator dynamics:

A thruster can simply be a small DC motor designed for underwater operating conditions.
A speed-controlled motor can be described as, see e.g. Balchen (1963),

di .
La-t- = —Ri— Kpyw+vs
dw
JEE- = Kyi—Q (2.31)

where ¢ is the current, vg is the input voltage, L is the inductance, R is the resistance and
J is the moment of inertia. The field current iy is assumed to be constant and Ky = kyiy
where k; is 2 motor constant. ¢ is the propeller torque. From Eq. 2.31 it is straightforward
to find the motor transfer function

_ w(s) _ K
Pmotor(8) = v,(s) (1 + Tis)(1 + Tes)

Here K is a motor constant while T3 and T, are two time constants.

Experimental Results: Inner Loop PID-Controller

The NERQV propulsion system is based on six 24 V {00 W permanent magnet motors which
are made by the Outboard Marine Corporation, Sagatun and Fossen (1991a). By eztending
the motor house we were able to fit a tachogenerator inside the unit, see Fig. 2.5. A frequency
response generator was used to obtein the open loop frequency response. The ezxperimental
results are shown in Figure 2.7, The tachogenerator was used to design an analog inner loop
PID-controller. A block diagram illustrating the inner loop feedback control system is shown
in Figure 2.6.

g n

t PID Thruster ~ |—f Tacho-
. generator

7

Figure 2.6: Block diagram of the thruster inner loop feedback control system where n is the
propeller revolution measurement and ng4 is the desired propeller revolution.

Consider the regulator transfer function

hprp(s) = Kp (1 +Trs)(1 + Tps)
PID - Tys 1+ Tfs
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Figure 2.7: Open loop frequency response of the NEROV thruster, Sagatun and Fossen
{1991a). The upper plot illustrates the thruster gain in air (marked by o) and water (marked
by x) as a function of the logarithmic frequency. The lower plot is the corresponding phase.

This suggests that the regulator time constants should be selected as T = 1y = 013 s,
Tp = T; =0.05s and Ty ~ 0.1 Tp = 0.005 s which yields the loop transfer function

KpK

i{s) = hpip(s) hmotor (8) = m

The thruster bandwidth can be improved by simply increasing the regulator gain Kp. For the
NEROQOYV thruster the closed loop bandwidth was found to be we = 20rad/s. The performance
of the control system for a sampling rate of 50H z is shown in Figure 2.8. If the PID-controller
yields poor performance e.g. as a result of significant actuator dynamics and non-linearitics
like hysteresis, a model-based controller should be considered. Adaptive sliding controllers for
systems with significant actuator nonlineqr dynamies are described in Yoerger et al. (1990)
and Fossen (1990).
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Thruster Hydrodynamics

Small underwater vehicles usually operate over a considerable speed range with no specific
speed dominating. For such vehicles the performance of the ducted thrusters will be a func-
tion of advance velocity Vy at the propeller, propeller revolutions n and propeller diameter
D. The non-dimensional open water characteristics are defined in lerms of the open water

advance coefficient J,, Dand and Every (1983),

'y
The non-dimensional thrust and torque coefficients Ky and Kq and thruster open water
efficiency 7, i.e. the efficiency in undisturbed water, are defined as
T K= @ ) _Jo Ky
T mjn|Di 7 ReT pnln| D5 T T gp Ko
where p is the water density and T and @ are the propeller thrust and torque, respectively.
The total thruster efficiency is defined as

Jo

(2.32)

AT0T = N * 1D * Mar

where 1y is the mechanical efficiency {typically 0.8-0.9) and 5, is the propulsion efficiency
defined as:

| R
ND =Ny 1 Nr Where qu—%—l
—w

Here the relative rotative efficiency ng is defined as: 5y = 78 /M. which simply is the ratio
between the propeller efficiency when wakes are present and the open water efficiency. tis the
thrust deduction number (typically 0.05-0.2) and w is the wake fraction aumber (typically
0.05-0.3) relating the advance speed at the propeller V4 with the vehicle speed V as

VA =(1 —'U))V

By carrying out an open water test a unique curve is obtained, see Figure 2.9, where J, is
plotted against Kp and Keg.
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QOpen water test

0.5

0.15}+ PN y

0 0.05 0.1 Q.15 02 025 0.3 0.35 04 045 0.5
T

Figure 2.9: Non-dimensional thruster characteristics Kz, Kq and %, as a function of positive
advance coefficient J, (ahead direction).

Experimental Resulfs: Open Water Test

For the NERQYV thruster an open water test was performed in the towing tank atf the Norwe-
gian Marine Technology Research Institute (MARINTEK) in Trondheim. The experimental
results from this test are shown in Figures 2.10 and 2.11. It should be noted that the Ky
and Kg curves will depend on the orientation of the thruster relative to the direction of the
speed of the vehicle. An experiment showing this effect for the NEROV thruster is shown in
Figure 2.11.
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0.6
To

Figure 2.10: Non-dimensional experimental thruster characteristics Ko versus the advance
coeflicient J, for the NEROV vehicle, Sagatun and Fossen (1991a).
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Jo

Figure 2.11: Non-dimensional thruster characteristics Kr, and K7, in the x- and y-directions
respectively as functions of J, and angle « (deg) between the thruster and vehicle speed.
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From the K¢ curves it is seen that the thruster force T' is highly nonlinear. This is best
tlustrated in Figure 2.12, where

T = [{Dll KT (JO(VA!n$ D)) n |n!

is plotted versus the speed of advance Vy and propeller revolutions n. When designing the
control system the effect of this nonlinearity should be compensated for.

T[N}
100
Va=0 m/s
80 50,2 (/3]
ol Va=0.4 m/s
Vau=0.6 m/s
@ ' ' © NS V08 i
20k . S Va=1.0 m/s)
0 .
20f i
-40 .
B0k i
80} J
100 s s i . .
-15 -10 -5 \] 5 10 15

[rev/s]

Fligure 2.12: Thruster force T as a function of propeller revolutions n for different speeds of
advance V.

Approximation of Nonlinear Thruster Characteristics
Fossen and Sagatun(1991a, 1991b) suggest that the thruster force can be approximated as
T = p D' Kr(J,) nin

Here K7 is the estimate of the non-dimensional thrust coefficient. For positive J,, Fig. 2.10
suggests that Kr can be linearly interpolated as

Kp(J) =a+8J,

where o and 3 are two constants. If the vehicle’s velocity Vi is measured at time k&, the
advance coefficient J, ; can be approximated as
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(1-w)Vi

JO fag e
' nk_1D

Here w is the wake fraction number and ny.; is the measurement of the propeller revolution
at time & — 1. A control input vector % = (uy, ...,u,)? with elements

uj = aglng] =y = sgn(uy) yflu
where n; is the propeller revolution of thruster ; and sgn is signum function

1 if >0
sgn{z}=4 0 if =0
-1 if <0

shows that the elements in the input matrix B can be expressed as

Bij(q) ~ pD* K1, (J,) , i=1l.n, j=1.p (2.33)

Here IA{T_.J is the nonlinear approximation corresponding o thruster input u; = n;|n;}. Hence,
the thruster force and moment vector can be expressed as

Tr = B(§)u (2.34)

where B is an n X p input matrix. Feedback linearization techniques as well as monovariable

control design techniques e.g. of PID-type, require that u can be calculated through an
inverse transformation

u = BYq)rp (2.35)

where B! can be interpreted as a generalized inverse of B. This raises the question of
whether it is possible to select B! in some optimal manner. The answer is yes, if excessive
use of control efforts, i.e. means of saving energy are important. Hence, the minimization of
an energy cost function should be considered. This matter is discussed in Section 2.8.4.

Experimental Results: Force Controlled Thruster

Although the NEROV thruster is a speed controlled thruster, force control can be obtained
by exploiting the resulls from the open water test i.e. Egs. 2.39 and 2.3{. For simplicity
we assumed that the advance speed at the propeller was zero i.e. Vi = 0m/s. Hence, the
relationship between the desired thruster force 7, (N) and the desired propeller revolution
ng (rev/s) can be expressed as

Ta = p D* IA{T(O) ndlndl



2.8. PROPULSION AND CONTROL FORCES 49

For the NEROV wehicle D = 0.24 m, p = 1000 kg/m® and K7(0) ~ 0.23 (Bollard pull).
Hence ng can be calculated by applying the inverse transformation

|74l

8 sgn ——
ng g (Td) p D KT(O)

corresponding to the more general expression Eq. 2.35. The desired thruster force corre-
sponding to the lower plot in Figure 2.8 is shown in Figure 2.18.
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Figure 2.13: Desired thruster force ; versus time for Vi =0m/s.

Uncertainties in the experimental data, Ky , can be compensated for in the outer loop control
design. This is described more closely in Section 5.4.3.

2.8.2 Thruster Momentum Drag

Momentum drag is a hydrodynamic effect that couples the thruster jet velocity with the
vehicle's speed. An active thruster that moves at an angle to the main motion of the vehicle
will change the momentum in the fluid, Dand and Every {1983). This is because the fluid
which passes through the thruster must be accelerated from rest up to the speed of the
vehicle. This change in momentum is balanced by an additional drag acting on the vehicle.
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For underwater vehicles this effect can be significant because such vehicles often have a large
number of thrusters mounted in different directions within a space-frame structure. Hence
an underwater vehicle will suffer from momentum drag when performing numerous coupled
manoeuvres. The contribution of momentum drag can be found from open water tests. For
a thruster which is perpendicular to the vehicle speed vector

U=+vu? 492 432

momentum drag f; is shown to satisfy
fj=kpADUJ‘U jﬂl..p

where k is a coefficient, p is the water density, Ap is the duct cross-sectional area, vj is
the thruster jet velocity and u is vehicle speed. Open water tests of the thruster can give
satisfactory values for k. Interactions between the thruster and the vehicle can affect &
significantly. Hence, best results are obtained by performing the test with the whole vehicle
when trying to decide the coefficient k. The drag forces will also cause a moment

m=7rpx f

where 7p = (2,,yp, 2p)7 is the centre of pressure.

2.8.3 Variable Buoyancy Systems

These systems can be used separately or combined with the existing propulsion and trim
system. A variable buoyancy system (VBS) can be used for depth and trim changing op-
erations. In dynamic positioning (DP} applications neutral buoyancy and a constant trim
are of particular interest. Variable buoyancy systems are limited in practical applications
for underwater vehicles mainly because they are cost excessive, Triantafyliou and Amzallag
(1984). A small AUV based on a variable buoyancy system was built and tested in Norway
by SIMRAD Subsea A/S and SINTEF Automatic Control in 1985, This vehicle was also
equipped with two thrusters, two control surfaces and a built-in television camera, Kleppaker
et al. (1986). The control surfaces were used to pitch the vehicle while the VBS was used
for the depth changing operations.

A gas generation system can be used to vary the buoyancy force fs. Consider a tank which
contains both water and gas. The area of the water surface A(h) will be a function of the
water height h. Hence, the buoyancy force is simply

fa = fh ! pgA(h)dh

where p is the water density and H is the total height of the tank. The control philosophy
for a variable buoyancy system is based on volume control i.e. controlling the volume of
the displaced water., A more general discussion on variable ballast-displacement and trim
systems is found in Allmendinger (1990).
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2.8.4 Optimal Distribution of Propulsion and Control Forces

For underwater vehicles where the input matrix B is an non-square matrix and p > n,
i.e. equal or more control inputs than controllable DOF, it is possible to find an “optimal”
distribution of control energy, for each DOF, Fossen and Sagatun (1991b). A comprehensive
study of the thruster allocation of dynamic positioned ships is found in Jenssen (1980).
Consider the linear quadratic energy cost function

Min J = é—uTWu subject to Tp = Bu

where W is positive definite, usually diagonal energy weighting matrix. For underwater
vehicles which have both control surfaces and thrusters, the elements in W should be selected
such that using the control surfaces is much more inexpensive than using the thrusters i.e.
providing a means of saving battery energy. Defining the Lagrangian

L{u,A) = éuTWu + AT(rp — Bu)

where the parameter vector A is the Lagrange multipliers. Differentiating the Lagrangian L
with respect to u yields

Vel = Wu~BTA =90
From this we obtain:
u=WBT) (2.36)
By using the fact that
Tp = Bu= BW'BTA

and assuming that BW ' B” is nonsingular, we find the following optimal solution for the
Lagrange multiplicators

A= (BW™'BT) 1y
Substituting this result into Eq. (2.36) yields the generalized inverse
Bl, = w-BT(BW-1gT)~ (2.37)
In the case when all inputs are equality weighted, i.e. W = I ,» Eq. (2.37) simplifies to
B'= B"(BB")"!

Notice that for the square case Bl is simply equal to B,
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2.9 Determination of Hydrodynamic Coefficients

A large number of experimental methods can be used to determine forces and moments
associated with variations in linear and angular velocity and acceleration. Typical facilities
are the rotating arm, the free oscillator, the forced oscillator, the curved-flow tunnel and
the curved models in a straight flow facility. Nevertheless, it is difficult to determine all
hydrodynamic coefficients for an underwater vehicle in § DOF. It is necessary to know these
coefficients with reasonable accuracy to obtain a a good model of the vehicle. One promising
technique has been developed by a research team at the David Taylor Model Basin in 1957.
They applied a device called the Planar Motion Mechanism (PMM) System, Gertler (1959).
The PMM system can be used to experimentally determining all of hydrodynamic stability
coefficients in 6 DOF. These includes static stability coefficients, rotary stability coefficients
and acceleration derivatives.

Besides this some hydrodynamic coefficients can be determined by theoretical and semi-
empirical methods. For ships strip theory has been successfully applied, for instance. An-
other promising approach is system identification (S1) techniques, Tinker (1982). SI tech-
niques are economical in tank time and provide a more direct answer free from the cumulative
error of measuring many coefficients individually. The disadvantage is the quite harsh re-
quirement of persistent excitation of the control input sequence. Indeed, this requirement
can be hard to satisfy for a general vehicle in 6 DOF.

2.10 Underwater Vehicle Equations of Motion

The linear and nonlinear underwater vehicle equations of motion can be expressed in compact
forms by applying the results from the previous sections.

2.10.1 Nonlinear Equations of Motion

The nonlinear underwater vehicle equations of motion will first be derived for an undisturbed
underwater vehicle {(no fluid motion) and secondly for an underwater vehicle exposed to
sinusoidal waves (equations of relative motion).

Neo Fluid Motion

In this case the nonlinear underwater vehicle equations of motion can be expressed in a
compact form as:
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e Vehicle dynamics:

Mg+ C(¢)q + D(¢)q +g(=) = B(¢)u (2.38)

¢ Kinematics

&= J(z)q (2.39)

Here € ", ¢ € " and w € R7. The scalar n corresponds to the number of DOF while p
is simply the number of control inputs. The kinematic transformation matrix J is defined in
Section 2.1. M is an n X n inertia matrix including hydrodynamic added mass. The inertia
matrix M can be written as:

M=Mpp+ M,

where M pp is defined in Section 2.2 and M 4 is defined in Section 2.4. This yields the
following inertia matrix (n = 6):

m— X; ~-X; ~ X -X3 mzg — X4 —mye — X¢
-—X{, m — Y,'J —Yu', —M2g ~ Yp '-Yé mxeg — Y,-
M = —Xu -Y, m — 2y myg - Ly ~mag — Z3 —-Z;
-X; -mig — Yy mys — Ly Iz - Ky ~fey—~ Ky —Izz—K;
mzg — X; -¥; -mag~ 2y —Iry—K; [Ty—M; —~Tyz— M;
~myg — Xy mzg-Y; —Z; —Izz - K; —Iyz— M; Iz— Ny

By applying the results from the previous sections, the C and D matrix can be found in a
similar manner as:

C(q) = Crp(q) + Calq)
D(q) = D+ Dy(g) + Dv(q)

These expressions will be quite complicated in the general case. It is common to reduce
the complexity of the model by neglecting a large number of coupling terms from symmetry
considerations. The n X p input matrix B is defined in Section 2.8 while the n x 1 vector of
restoring forces and moments g is defined in Section 2.4.3.

Nonlinear Equations of Relative Motion

A more general representation of the nonlinear equations of motion is found when including
the fluid motion due to waves. Recall that the fluid velocity vector was defined as:

q; 4 (ug,vg,y,0,0,0)7 while the relative fluid velocity vector is 4. = ¢ — q;. Hence, the
combined equations of motion can be written as:
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MRB& - MFK&f + MA&:- + [CRB(dr) + CA(QrH ér

+[Ds+ Du(q,) + Dv(4,))§, + g(x) = B(q)u
For a neutrally buoyant underwater vehicle with homogeneous mass distribution:
Mpg = Mpgg
Hence, the nonlinear equations of relative motion simplify to:
Mg, + C(4,)4. + D(,)q, + g(=) = B(¢)u (2.40)
The kinematic equations will of course be equal to the case with no fluid motion. The

equations of relative motion are quite useful for the simulation of underwater vehicles when
sealoads are of interest. The fluid motion vector can be found from linear wave theory.

Simplicity Considerations of the Inertia Matrix

The general expression for the inertia matrix M can be considerably simplified by exploiting
different body symmetries. It is straightforward to verify the following three cases:

(i} xz-plane of symmetry (port/starboard symmetry).

LT 0 mya 0 ms 4]
0 ma2 3} Mys o Maog

M = may 0 33 o m3as 0
i Mi2 4] My 0 M4

s o] My 0 mss Q

0 mgy 0 a4 [t} Mg

(ii) xz- and yz-planes of symmetry (port/starboard and fore/aft symmetries).

™y 0 0 0 mys 1}
[} maz Q Moy ] 0
_ i} 1] maa 0 o [¢]
M - 0 My Q figg i} 13
M5y 0 ¢} 1} Mys ¢
4] o) 1] o 0 Tgg

(iil) xz-, yz- and xy-planes of symmetry (port/starboard, fore/aft and bottom/top
syminetries).

oo oo
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Useful Properties of the Nonlinear Equations of Motion

The nonlinear representation Eqs. 2.38 and 2.39 have some useful properties which can be
exploited in the nonlinear control design. From linear algebra a square matrix A is said to

be:

(i) Positive definite: sTAs >0 V s.
(i) Symmetric: 4 = A7,
(iii) Skew-symmetric: A =~A7 = sTAs=0V s.
These properties can be observed for different matrices in the nonlinear equations of motion.

The nonlinear control design techniques discussed in the next sections are based on the
following properties:

M = M7 > 0. Theinertia matrix is symmetrical and positive definite. Newman (1977) has
shown that for a rigid body moving in an ideal fluid the inertia matrix is symmetrical.
In a real fluid these 36 elements may all be distinct. Experience has shown that the
numerical values of added mass in a real fluid are usually in good agreement with those
obtained from ideal theory, Wendel (1956).

sT(M ~2C)s = 0 V s. This requires that the dissipative forces are not included in
C. In robotics it is usual to calculate C by using the Christoffel symbols, Ortega and
Spong (1988). For a marine vehicle, M will depend on the wave frequency and thus
the vehicle's speed. This relationship is hardly known. Nevertheless, by assuming that
M == ( for each sea condition, this implies that only € must be skew-symmetrical.
Indeed, this is satisfied.

D > 0. The damping matrix will always be dissipative.

Alternative Representation of the Nonlinear Equations of Motion

Differentiating Eq. 2.39 yields
&=Ji+Jqg < G=JUi-JTJ s
Applying this result to the nonlinear ROV equations of motion, Eqs. 2.38 and 2.39 yields

M*(x)é + C*(z,)2 + D*(e, )& + g"(=) = B*(2)u (2.41)

where
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M*(z) = JTpg-t
Cz,2) = JN(C-MI1 T
DY z,2) = JTpg-t
g'(z) = J7g
B'(z,&) = J TR (2.42)

il

It is straightforward to show that M = M7 > 0 implies that M* = (M*)T > 0. Similar
D > 0 implies that D* > 0. The skew-symmetric broperty can be verified by differentiating
M™ with respect to time, which yields

M = J-T(M ~ M I ) g1
This in turn implies that
M -20" = J7I(M - 2¢) !

Since M — 2C is skew-symmetric, M " — 2C* must also be skew-symmetical.

2.10.2 Linear Equations of Motion

The linearized equations of motion are obtained by defining the state vector as @ = (z, D)7
where &, = (u, v, w, p, ;)7 and @, = (#,9,2,¢,8,9)7. The control imput vector is simply
denoted as u. Hence, Eqgs. 2.38 and 2.39 can be linearized about an equilibrium point

x, = (m;f;,wg;)T as:

M Az = Xn Azy + Xlz Axy + §1 Au
A:bg = ZQ] [:\5!’21 (243)

Here Ae =2 — 2, Ay = u— U, and M is the vehicle’s inertia matrix while the matrices
A and B are defined as

v (a(cm) + D(ml))) y (ag(azg))
O, @<=, 023 ] gy
— 6J(a:2)) = _ {8B(z;)
Ay = [ T2 = [ ST
“ ( 63}2 Tr=0q, i 8231 &1=L1,

If we linearize J(2,) about the zero roll, pitch and yaw angles, then Ay is simply equal to
the identity matrix. Letting
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M_}Z'“ M_lzlz M_1§1
A= - - — - — B=| ———
A ] 0 0

and dropping the delta notation for the perturbed state and control input vector, yields the
standard state space representation:

= Az + Bu (2.44}

Linear Decoupled Equations of Motion

In the stability analysis of underwater vehicles it is convenient to decouple the linear mo-
tion into (1) the longitudinal and (2) the lateral motion. This is based on the following
assumptions:

It will be assumed that the deviations from the linear model are so small that higher
order terms can be neglected. This assumption may be quite unrealistic if the vehicle
is performing coupled manoeuvres at some speed.

The kinematic transformation matrix will be chosen as the identity matrix i.e.
J{x} = I. This corresponds to linearizing the kinematic equations about the zero roll,
pitch and yaw angles.

Constant or zero control inputs. This is of particular interest in “stick-fixed” stability
analyses of the vehicle.

The xz-plane is a plane of symmetry (port/starboard symmetry).

The vehicle is neutrally buoyant i.e. B =W with B = mg and W = pgV.

(1) Equations of Longitudinal Motion

The longitudinal equations of motion can be used to describe the vehicle's motion in
surge, heave and pitch. This includes diving, climbing and forward speed changing
manoeuvres. For small underwater vehicles the longitudinal equations of motion are
obtained from Eq. 2.43, which yields:

m— Xy ~Xg mzg ~Xg O i X -Xe =X, 0 u X(®

— X m - Zy —-mxg~Z; 0 W + ~Zy =Zw ~Z _ 0 w | _§ Z(D)

mig—-X; —mzig -2 Iy — M, 0 q My ~My -My, BGW g - M)
0 0 o 1 [} 0 O -1 0 [4 Q

Here X(t), Z(t) and M(t) are externally applied disturbances.
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(2) Equations of Lateral Motion

The lateral equations of motion describe the vehicle’s motion in sway, roll and yaw.
They are written as:

m-Yg —mizg~-Yy mzg-Y: 0 0 o v -¥ -V 0 0 v

~mzg ~ Y3 Iz - Ky ~Izz— Ky 0 0 P ~-Ky -Kp -K. BGWwW 0 r
mzg - Y —Tzz — K, Iz — Ny [ o+ -N, ~Np -N, -BG.W ¢ r =

0 ] 0 10 é 0 -1 ] 0 0 ¢

0 0 0 0 1 " o 0 -1 0 0 ¥

Here Y'(t), K(t) and N(t) are externally applied disturbances.

This representation can also be used to describe the linear motion of ships.

Linear Ship Steering Equations of Motion

The standard linear ship steering equations of motion are usually obtained by neglecting the
roll mode from the general linear expression for the lateral motion, Astrém and Kallstrém

(1976), Kallstrém (1979), Blanke (1981) etc. The 3 DOF equations of motion can be written
as:

m-—Y, mag-Y: 0 v ~Y, mu,-Y. 0 v Y;
mrg—N; [z2—N; 0 Fl+ | —-N, mzgu,— N, 0 ro| = Nyl 6
0 0 1 A 0 -1 0 ) ]

which corresponds to the compact form:

M&+Dai=Bé

Here @ = (v,r,%)T is the state vector, § is the rudder angle and u = wu, = constant is
the ship’s service speed. Note that for ships it is common to use a non-symmetric inertia
matrix i.e. Y; # N,. Especial care most be taken since ID can be negative definite in this
representation. This is due to the fact that D consists of both Coriolis terma. {(mu,r) and
damping terms (Y,, ¥;, N,, N,). Indeed, the off-diagonal term u, > 0 can make the matrix
negative definite. The corresponding state space representation is

v a1 arg ] v bl
?'." = | ayn ayp 0 T -+ bz é
U4 0 1 0]+ 0

It follows that the transfer function relating the rudder angle and heading angle can be
written as:

Yt
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_ P(s) K(1 4 T3s)

&(s) (14 Tus)(1 + Tps)

kh(s)

For large tankers this expression is usually approximated as:

K
)= Sr T

which is the so-called Nomoto model. Nonlinear versions of the ship steering equations are
discussed by Abkowitz (1964), Norrbin (1970), Blanke (1981), Zhou (1987), etc.

Standard Equations of Motion for Underwater Vehicle Simulation

In Kalske (1989) a survey of the motion dynamics of subsea vehicles is given. This report
includes a survey of the equations of motion for submarine simulation and remotely oper-
ated vehicles. Modelling and simulation of small underwater vehicles are discussed in Lewis
et al. (1984). A detailed description of the nonlinear and linear motion dynamics of the
University of New-Hampshire Experimental Underwater Vehicle (UNH-EAVE) is found in
Humphreys and Watkinson (1982). The Norwegian Experimental Remotely Operated Ve-
hicle (NEROV) nonlinear equations of motion, Fossen and Sagatun (1991c), are given in
Appendix A. The standard equations of motion for submarine simulation from the David
Taylor Model Basin Naval Ship Research and Development Cuenter {DTMSRDC) are de-
scribed in detail by Gertler and Hagen (1967) and Feldman (1979).
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Chapter 3

Disturbance Analysis

This chapter discusses deterministic and random disturbances. Statistical descriptions of
waves and root-mean-square (RMS) analyses are discussed in depth. The wave disturbance
model used in this chapter is general enough to be applied to most marine vehicles. For
simplicity, the linear ship steering equations of motion are used in the numerical example.

3.1 Linear Equations of Motion

Consider the linear state space model of a marine vehicle

2 = Az +Cv
y = Daz+4w with W = E{w(t)w’(r)) (3.1}

where z is the state vector, v is the disturbance vector and y is the output vector. The
more general state space model

&2 = Az + Bu+Cv
y = Dz+w

where u is the control input vector e.g. chosen as
w = le + GQ’U

can also be expressed in the form of Eq. 3.1, since

y = D+ w (3.2)

Hence, we will exclusively consider systems with no control inputs.

61
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3.2 Disturbance Descriptions

It is convenient to distinguish between deterministic and random disturbances. These two
disturbance descriptions are briefly described in this section.

3.2.1 Responses to Deterministic Disturbances

Responses of the system states @(t) and outputs y(¢) can be derived for arbitrary distur-
bances v(t) by using the Duhamel integral or by time convolution. We have

t
2(t) = eA2(0) + [ AIC o(r) dr
and

y(t) = DeA'a(0) + [ DACIC v(r) dr + w(y)

3.2.2 Responses to Random Disturbances

If the disturbances are random variables with statistical mean E{v(t)) = %(¢) and covariance
matrix E(v(t)vT(r)) = V (¢, 7), then the response of the system states and outputs will have
to be described in statistical terms. It can be shown that the mean is (assuming #(0) and
v{t) to be uncorrelated)

t
z(t) = eA‘z(G) +/ eAt-nc T(r) dr
while the covariance matrix is
t T '
BE(w(t)x? (1)) = A E(e(0)2T(0))ed ™ + [ [ eACICE @) (s)CTeA 0= drds

A special solution is obtained if v(t) is white-noise i.e. E(v{t)v™(r)) = V,6(t — ). The
steady-state covariance matrix of the system states is defined as

X = lim E(x(t)x’(r))
which satisfies the Lyapunov equation
AX+XAT+ev,CT =0

provided that A is stable. In a similar manner, the steady-state output covariance matrix
is defined as

Y = lim E(y(t)y”(r))
which yields (assuming E{w(t)w? (1)) = W)
Y =DXDT+W,
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3.2.3 Power Spectral Density Definitions

The system outputs can be written as
y(s) = H(s)v(s) where H(s)= D(sI - A)"'C
The power spectral density (PSD) is defined as
Pyy(w) = H(jw)Pyo(w)H"(jw)
where H*(jw) = HT(~jw). For monovariable systems the PSD is simply

By (@) = [h(w)f fou(w)

The PSD describes how the output energy is distributed at different frequencies. If v is
white noise, it can be shown that the mean-square response of the output y; is equal to the
area under the corresponding PSD curve i.e.

Y; = hm E(y.(t) = = 'Mf i (w

where o, is the root mean square (RMS) of output y;. In a similar manner the cross
covariance is defined as

Vi = Jim B0 (7)) = = [ By, () do

The requirement that v(t) should be white noise can be relaxed by simply generating v(¢)
as

v(s) = H(s)n(s)

with #(s) as white noise. Hence, v(s) can be can be used to describe coloured noise by
defining an adequate transfer function matrix H,(s}. This is the topic for the next sections.

3.3 Statistical Description of Waves

The wave elevation of a long-crested irregular sea propagating along the positive x-axis can
be written as the sum of a large number of wave components i.e.

N
C = Z A;; sin(wjt - kjil? + éj) (3.3)

i=1

where, A; is the wave amplitude, w; is the wave frequency, ¢; is a random phase angle and



64 CHAPTER 3. DISTURBANCE ANALYSIS

is the wave number, with A; as the wave length. The wave amplitude can be expressed as a
wave spectrum S(w) as

Aj = 25(&)_-,: )Aw

where, Aw is a constant difference between successive frequencies. The instantaneous wave
elevation is Gaussian distributed with zero mean and variance o2 defined as:

o? mfowS(w) dw

The wave spectrum can be estimated from wave measurements. For fully developed seas it
is common to use the so-called Pierson-Moskowitz (PM) spectrum, Myrhaug (1986), which
can be expressed as:

S(w) = & @1

where A and B can depend on a variety of parameters. The PM-spectrum is shown in Figure
3.1. Some classifications are as follows:

¢ The Pierson-Moskowitz (PM) Spectrum. A frequently used one-parameter de-
scription of the (PM) spectrum for fully developed sea (North-Atlantic Ocean) is
A=00081g> B=074 (%)“

where U is the velocity of the wind 19.5 m over the water surface.

© The ITTC (International Towing Tank Conference) Spectrum. Instead of
using the velocity of the wind as a parameter, significant wave height Hj; (mean of
the highest one third of the waves) can be used. The ITTC spectrum is defined as:

A=00081g" B =0.0323 (Fi'}-;)2 = %%—1—
1/3

The relationship between H, 3 and U is:

2
H}/3 = 021 g—
g
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S(w)
2.5

1.5

2w

Figure 3.1: PM-spectrum: S(w) = ﬁ.,— e~ (Bl

¢ The ISSC (International Ship and Offshore Structure Congress) Spectrum.
This representation uses the mean frequency & i.e. the frequency corresponding to the
spectrum’s centre of area. The parameters are

A=011 Hyw* =044 "

6y

Hence, the mean wave period is defined as T = 4,

e JONSWAP (Joint North Sea Wave Project) Spectrum.

The JONSWAP spectrum can be used to describe a not fully developed sea. Thus, the
JONSWARP spectrum is more peaked than the fully developed spectra. The parameters
in the JONSWAP spectrum are based on measurements from the North Sea (finite
water depth). The parameters are

where, a = 0.0081 for the PM-specirum. The peak frequency wp is related to the
velocity of the wind as:
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wp = 0.87 %
The peak value of the JONSWAP Spectrum is increased by multiplying S(w) with a
factor
—ter 2
)]
where

1<y <7 where 7:&’%@
P)p

o, for w < wp
o =
oy for w > wp

wp is the peak frequency

Hasselmann et al, (1973) suggest the following values for the spectrum’s parameters:

71=33
¢, = 0.07 and o, = 0,09

g T —0.22
o = 0.076 ( 75)

g g T -0.33
wp=T0% (a) (5?)

where z is the length of the water surface exposed to wind and U s the velocity of the
wind,

We can simulate irregular sea by using the following expression for the horizontal fluid
velocity component, Faltinsen (1990a),

N
up =Y w;Azets sin{w;t — &z + ¢;)
i=1

Here w; should be chosen as a random frequency in each frequency interval {(w; — Aw/2,w; +
Aw/2) to avoid the expressions repeating themselves. ¢; is a random phase angle. N should
be chosen as a large number, typically N = 1000. This depends on the selection of the
maximum and minimum frequency components. The wave elevation is found from Eq. 3.3.
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3.4 Applications to Marine Vehicles

In this section we will show how root-mean-square analyses can be used when designing
autopilots.

Linear Approximation of the PM-Spectrum

A linear approximation of the PM spectrum can be obtained by writing

y(s} = h(s)n(s) , n(s) is white noise

Puy(w) = lh(jw)’:! Brm = lh(jw)!z

Here y{s) is the wave amplitude and 5(s) is a white noise source with power spectrum

Ppp(w) = 1.0
Seelid et al. {1983) suggest choosing the transfer function h{s) as
2o (Z)
h(s) = 0 3.4
O TR + &7 oy
where o, ( and w, are the spectrum’s parameters. Hence, substituting s = jw yields
. JUa ()
h(jw) = e

(1= (2% +32¢(5)
This in turn implies that

. 20o ()
R{(3w)| = Lo
| (7 )l \KI — (f;";)?)z n 4(2(53)2

Hence,

PN |5 o)
¢"yy(W) = 1h(3w)! ‘?Snn( ) - (1 _ (w%)z)z + 4(2(;%)2

From this it is seen that ¢,,(0) = 0 and that the maximum value of ¢y, (w) is obtained for
W= Wy 1.e.

max bun(w) = by (wo) = 07
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Figure 3.2: Wave spectrum approximation (w, = 1, ¢ = I and & = 1),
A linear state space model can be derived from
t
¥+ 20w, y +w? j y{(7) dr = 20w,
Q

by letting z; = [} y(r) dr and z; = y. Hence,
.’.&1 - 0 1 Iy 0
2=l ] 2] [ ]

=10 1][2]

The transfer function, Eq. 3.4, cannot be used to generate . This is easily seen from
Lim s y(s) = 2(ow,
Nevertheless, this problem can be solved by using the strictly proper transfer function:

9(3} 3 2(a(x)s
o (L+20(E) + (Z)2)
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Example: Horizontal Motion of a Ship

Consider the linear ship steering equations of motion

v ayy Gz 0 v -~ v by
7." = | @y agy 0 T + bt 8
i 0 1 0 (] 0

Let the fluid velocity component vy in the y-direction be described by

Ue) =

. g} = m ,  1(s) is white noise

This in turn implies that

(s* +2bs+ (20 + b} 4+ 2abs™ + a® 57%) wy(s) = kp(s)

Augmenting the ship steering equations of motion with the wave disturbance model, yields

[ 5 T o1 [b] 0]
?:? F a1y alz 0 0 0 —a5n 0 v ' [-
7 r b, 0
'I/; g1 das 0 0 0 a2t 0 - ¢ 0 0
. 1o 1 0 0o o 0 0 e lel ol ssloly
IS o 0 0 o 1 0 0 o 0 0
T2.f 6 6 0 0 0 | 0 o 0 0
3.1 0 0 0 —a® —2ab —(2a+b%) 26| 3/ "
_.'134|f i _;1':4,[_’ L 0 | I i

If the heading angle 1 is measured by o fluz-gate compass, for instance, the corresponding
measurement equation is:

»=[0010000]| azy | +w
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Numerical Values:

Consider the following model of a typical cargo vessel, Astrém and Wittenmark (1989),

aj; = —077 a1y = --U34 bl = 017
gy == -3.39 a2 = ~-1.63 bz = ~1.63

Let the wave disturbance model be described byra=c=k=1andb=2, Hence,

[—0.77 ~0.3¢ 0 0 0 077 0 0.17
-3.99 -163 0 0 0 399 o ~1.63
¢ 1 00 0 0 o9 0
A=} 0 0 00 1 0o ol B=| o
0 0 00 0 1 o 0
0 0 00 0 0 1 0

[ 06 0 0 -1 ~4 —6 —q 0 |

T
C=[0000001] D=[06010000]
The system eigenvalues are

(0
—2.4418
0.0416
MA)=1{ -1
-1
-1
| -1

which implies that the vehicle is open-loop unstable. A simple PD-controller
u=Ge , G={0310000]
can be used to stabilize the ship. This yields the Jollowing closed-loop eigenvalues

~(.6746
—0.4661
—6.1493
)\(A +BG)=1{ ~1
-1
-1
—1
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Solving the Lyapunov equation
(A+B@X +X(A+B&T +cv,CcT=0

with Vo, = I, yields the steady-state covariance matriz:

0.0115 -0.0009 0.0072 —-0.0188 0.0127 0.0101 -0.0196
—0.0009  0.0079 0.0000 —0.0036 -—0.0073 0.0120 0.0058
0.6072 —0.0000 00051 —-0.0126 0.0056  0.0073 —0.0120
X = —-0.0188 —0.0056 —0.0126 0.1563 -0.0000 -0.0313  0.0000
0.0127 —-0.0073  0.0056 --0.0000 0.0313 —0.0000 —0.0312
0.0101  0.0120 0.0073 —0.0313  0.0000 0.0312  0.0000
—0.0186  0.0058 —0.0120 0.0000 ~-0.0313 -0.6000 0.1563

Hence, the expression for the steady-state oulput covariance matriz:
Y = DXD”
yields
Yy = 0.0051
This in turn implies that:
Ty = /Yoy = 0.0712

If we want to calculate the RMS-value for the lateral acceleration ay,,, c.f. Eq. 2.13, we
must consider the expression

Ay, = U+ Up¥
where u, is the ship’s service speed. By using the foct that ¢ is
0 = dn(v — vp) + agr + bagar + bogatd
we obtain
D=an {an+bgrtu) bags 0 0 —ay 0]

Hence, the RMS-value for the lateral acceleration ay,, with v, = 5mfs is

= 0.0492 g

O-aycg Qyeyg
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According to Table 3.2 this satisfies the lateral acceleration requirement for “intellectual
work”. The vertical acceleration criterion can be checked in a similar manner by consid-
ering the vehicle’s longitudinal equations of motion i.e. the state vector & — (u,w, q, ¢, 0)7.

Operability Limiting Criteria for Marine Vehicles-

Some operability limiting criteria for marine vehicles based on RMS-values are shown in
Table 3.1 and 3.2.

Table 3.1: General operability limiting criteria for marine vehicles, Faltinsen (1990a).

Merchant Naval  Fast small
ships vessels  craft

Vertical acceleration at forward 0.275 g (L <100 m) 0275 g 0.65 g
perpendicular (RMS-value) 005g(L>330m)*
Vertical acceleration at bridge

(RMS-value) 0.15 ¢ 02¢g 0.275 g
Lateral acceleration at bridge

(RMS-value) 012 g 0.1g 0.1g
Roll (RMS-value) 6.0 deg 4.0 deg 4.0 deg

Table 3.2: Criteria with regard to accelerations and roll, Faltinsen (1990a).

Root mean square criterion

Vertical Lateral

acceleration acceleration Roll Description

020 g 6.10 g 6.0 deg Light manual work
0.15 ¢ 0.07g 4.0 deg Heavy manual work
0.10 g 0.05 g 3.0 deg Intellectual work
0.05¢g 0.04 g 2.5 deg Transit passengers
0.02¢g 0.03 g 2.0 deg Cruise liner

'The limiting criterion for lengths between 100 and 330 m varies almost linearly between the values I =
H00m and L = 330 m, where L is the length of the ship.



Chapter 4

Stability Analysis

4.1 Basic Stability Definitions

Stability of an underwater vehicle can be defined as the ability of returning to an equilibrium
state of motion after a disturbance without any corrective action, such as use of thruster
power or control surfaces. Hence, manoeuvrability can be defined as the capability of the
vehicle to carry out specific manoeuvres. Excessive stability implies that the control effort
will be excessive while a marginally stable vehicle is easy to control. Thus, a compromise
between stability and manoeuvrability must be made. For aircraft as well as underwater
vehicles it is common to distinguish between stick-fized and stick-free stability. These terms
can be understood as:

e Stick-fixed stability implies investigating the vehicle’s stability when the control
surfaces are fixed and when the thrust from all the thrusters is constant.

o Stick-free stability refers to the case when both the control surfaces and the thruster
power are allowed to vary. This implies that the dynamics of the control gystem also
must be considered in the stability analysis.

‘These terms will be described more closely in the next sections.

4.1.1 Straight line, Directional and Position Motion Stability

Straight line, directional and position motion stability can be understood by considering a
linear second order system in the form:

m3 + di + ko = f(t)

Here m is the mass, d¢ represent the damping force, kz is the restoring force and f(t)
is a function of external disturbances and control inputs. From a physical point of view,
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mass is known to be positive (m > 0) and damping is known to be dissipative (d > 0).
The eigenvalues A, ;, the natural frequency w and the damping ratio ¢ for the second order

system are;

\ \/? ¢ d
= ; W= f—y - = e
b2 2m m 22k m

In control and guidance applications stability can be classified according to how external
disturbances affect the vehicle’s motion. The following cases are of particular interest, c.f.
Figure 4.1:

¢ Instability (k < 0): For the unstable vehicle one of the eigenvalues will have a
positive real part. This occurs when Re{},} < 0 and Re{l;} > 0.

 Straight Line Stability (k = 0):

Consider an uncontrolled underwater vehicle moving in a straight path. If the new path
is straight after a disturbance in yaw the vehicle is said to have straight line stability.
The direction of the new path will usually differ from the initial path because no
restoring forces are present., This property is observed in surge, sway, heave and yaw
for marine vehicles. The eigenvalues are: Ay = ——;?; < 0and Ay = 0.

e Directional Stability (k > 0):
Directional stability is a much stronger requirement than straight line stability. Di-
rectional stability requires the final path to be parallel to the initial path. The vehi-
cle is said to be directionally stable if both eigenvalues have negative real parts i.e.
Re{A12} < 0. Two types of directional stability are observed:

1. Non-oscillatoric ( d* — 4mk >0 ):
This implies that both eigenvalues are negative and real.

2. Oscillatoric ( d* — 4mk <0 ):
This corresponds to two imaginary eigenvalues with negative real parts.

Directional stability is observed for the uncontrolled vehicle in roll and pitch where
metacentric restoring forces are present. For a fully submerged vehicle the condition
k > 0 simply implies that the centre of gravity must be below the centre of buoyancy.
Directional stability in yaw cannot be obtained without corrective action from a control
system, for example.

Positional Motjon Stability

Positional motion stability implies that the underwater vehicle should return to its
original path after a disturbance. This is generally impossible in surge, sway, heave
and yaw for an uncontrolled submersible without using thrust or control surfaces.
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Figure 4.1: Straight line, directional and position motion stability for a typical small under-
water vehicle when a constant disturbance f(t) = v, is injected for £ > 2 s.
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4.1.2 Metacentric Stability

A frequently used term in hydrostatics is metacentric stability. For underwater vehicles the
transition period i.e. the period when the vehicle is diving from a surfaced position to the
vehicle is completed submerged, is of particular interest. Consider a surfaced vehicle where
G denotes the centre of gravity, B denotes the centre of buoyancy, K is the keel line and M
is the vehicle’s metacentre. Hence, it is straightforward to verify that, c.f. Figure 4.2,

GMr = KB+BMr-KG

GM;, = KB+ BM, - KG

where the subscripts T and L denote transverse and lateral quantities, respectively.

Heaight above
keei ling
4
T M
3
GM,_
G BG
3
BM
BG
B J—
| S } KG
e z
KB
K
Surfaced design diving Submerged design
condition condition
surfacing

Figure 4.2: Transverse transition stability, Allmendinger (1990).

For small roll and pitch angles BMy and BM, are given by
S — I
BMr == BM; =22
Ty Ty
where I; and I, are the moments of area of the waterplane about the x- and y-axes, respec-
tively and V is the volume of the displaced water. For surfaced marine vehicles transverse
and longitudinal metacentric stability are obtained by requiring that, Allmendinger {1990):
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W’r>0 WL>0

Transverse metacentric stability implies that the vehicle will return to its original path after
a disturbance in roll while lateral metacentric stability guarantees stability of the pitching
motion. For a completely submerged vehicle, the conditions GM¢ > 0 and GM > 0 simply
reduce to

BG >0

which is the well known requirement that the centre of gravity should be below the centre
of buoyancy for a metacentric stable underwater vehicle. This is shown in Figure 4.2.

4.1.3 Longitudinal Stability Criterion

In the stability analysis of underwater vehicles it is convenient to use the linearized equations
of motion such that the well known stability techniques of Routh and Hurwitz, for example,
can be applied. It is also desirable to use a non-dimensional version of the equations of
motion based on U? = u? + v* + w?, since the hydrodynamic derivatives depend upon the
square of the forward speed. Another parameter used in the scaling procedure is the vehicle’s
length L. Hence, the non-dimensional time could be defined as t/ = %t. The non-dimensional
system will be described as the “prime-system”. Consider the non-dimensional longitudinal
equations of motion

m’ - X} -X: mlzg - X 0 o -XL =X} —X;; 0 u' X't}

-X! m! - ZL -m'zh, - Z, 0 1'b’ + ~Z, -2, -Z§ 0 w | _ 1 Z'{(H

mfzl — X& —m'zl, — Zé I, - M‘; 0 g M, M, -M| m'y, 7 | M)
[} 0 [} 1 L 4} ¢} -1 0 ' 0

where the prime notation denotes the non-dimensional quantities defined as:

W =g w = o ¢ =% 0 =0 m' = 1
=% =% w=0f Xi=£h Xi=f%
Y=gk Leps  lisfn G-ph Mi=gh
Xo=gom Xo=yqip X=gpis Z-thy Z-thm
Li=pon Mi=pis Mo=gls M= rom

From the longitudinal equations of motion the pure pitching motion can be expressed as

(I, — M;) 6 — M, § + BG,W 0 = M*(¢)
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where all interactions and disturbances are collected in the term M *(t). This equation can
be used to describe the oscillatoric behaviour in pitch. Let the characteristic equation of the
second-order pitching motion be written as:

A+ 2 wp A+ wi=0.
The roots of the characteristic equation are

A= —Cowskjwy /1 — (3

Hence, the natural frequency wy and the damping ratio (s for the pitching motion are:

y ’ BC.W . -M,
=N ¢ =
I, — M, 2/ BG,W(I, — M;)

This in turn implies that the natural period in pitch can be expressed as

27 I, ~ M,
T :——:2 ot Sk |
¢ Ly i TTG,W

This expression is quite useful when designing marine vehicles. It is seen that a reduction
in the moment of inertia (I, — M;) or an increase of the vertical distance between the centre
of gravity and centre of buoyancy B(,, and the vehicle's weight W, will reduce the natural
pitch period. To derive a stability criterion for the overall longitudinal motion, let us consider
the quatric characteristic equation

AV BYR OV DA+ E=0

corresponding to the longitudinal equations of motion. After some laborious calculations,
the following expressions were found for the coefficients A, B,C, D and E:

A = mymaymss — mizmag 4+ Imysmysmas ~ My 1ms ~ miymes

B = —dysmly+ dzsmyzmys + dsamizmiy — dagamiy + dssmiyimas — dysmysmas — dsymysmgg
—dgsmiitmag — dssmiimas + dismyamas + dgimigmas + dizmsgs + dgymistngs — diymig
+d3gmyymys — digmiamss — daymyamsg + dyymasmss

C = my,(miimas — miy) + ~dasdsamsy + dasdssmiy + dasdsimis + disdsamig — diadssrng s
—daidssmya — disdazmys + disdasmus — dagdsmys + dagdggmg — disdsymag + di1dssmaa
+disdalmas — diidasmas + diadsimay — dyydygmas — dyadalmss + dyydagmss

D= ~disdasdsy + diadysds: + disdardss — dydssdss — dyadardsg + dy1dazdyy
+my; (dzamny ~ dismas — dgymyz + dy1mas)

E = my,(didss — diada)
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Here m;; and d;; are the elements of the non-dimensional inertia matrix M’ and damping
matrix D', respectively. The longitudinal stability criterion can be derived by requiring
that the roots of the characteristic quatric have negative real parts. A simple way to do
this is by applying Routh’s stability criterion. Forming the so-called Routh array from the
characteristic quatric yields:

A C E
B D 0
Bc;w E g
D{BC-AD)~BE 0

BC~AD

Hence, sufficient and necessary conditions for the underwater vehicle to be stable are:

() A,B,C,D,E>0
(i) BC—AD>0
(iit) D(BC — AD) —~ B’E > 0

This corresponds to requiring that all coefficients should be positive and that the elements
in the first column of the Routh array should be positive. The first condition A > 0 is
automatically satisfied because A is recognized as the determinant of the inertia matrix
which is known to be positive. Since the vehicle is a dissipative system, we have:

dll d13
d31 d33

—Xy =X,

g _z :X:;Z:U_X:UZ:1>O

Hence, the condition E > 0 reduces to m~y, > 0 which is satisfied if:
BG. >0

This expression simply states that the centre of gravity should be vertically below the centre
of buoyancy. Indeed, this is the well known condition for metacentric stability of a fully
submerged vehicle. At high speed v, — 0 which implies that the stability quatric becomes
a cubic polynomial. This can be explained by the vehicle being oscillatoric at low speed
(directional stable) while at infinite speed the vehicle only has straight-line stability.
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4.1.4 Lateral Stability Criterion

Recall that the lateral equations of motion were written as:

m' =¥ —m -] miz-¥ 0 0 o ~Yy  -¥: -y 0 0 v Yie)
~m'zl. - Y] L -K, -, -K! 0 0 B =K, -K -K. m'y o 'y K'(t)
miay -yl or ki N 0 o [ [ [+) =N N N mime o || v | = | wee

[ ] 0 1 0 ¢’ o -1 0 0 0 ¢ 0
0 0 ] 0 1 L o 0 -1 0 0 4 0

where the prime denotes the non-dimensional quantities defined in a similar manner as in
the longitudinal case. It is straightforward to verify that the vehicle’s rolling motion can be
described by:

(I — K;) ¢ — K, ¢+ BG,W ¢ = K*(1)

Here all cross-coupling terms and disturbances are collected in the term K *(t). Hence, the
natural frequency wy and the damping ratio (s for the rolling motion are:

" l BG,wW c ~K,
=T ¢ = ——
I, - K; %/ BG.W(I, — K;)

which suggests the following expression for the natural period of the oscillatoric behaviour
in roll:

D I, — K,
Td’ = — /AT ——-——-«p
Wy BG z W
The characteristic equation corresponding to the lateral equations of motion can be expressed
as:

(AM 4+ BN+ CN¥ 3+ DA+ E) A =0

where
A = o, 9 — 2 2
= MyaMaqties — MigMas + 2MaqgtggMys ~ Maymis — md,mes
_ 2 3
B = —dsemyy + dasmaamae + desmaamos ~ daamis + desmagmmag — dasmigsmas ~ dgamagmag

~da5myymag - dgamarmag + dastzamas + deatogimas + dasmagmag + dagimgsMias — daamie
+dsamaames — daamasmes — dapmasmes + dygmygmeg
C = —dysdgamyy + dgadesmas + dasdsamos + dysdsamay — daadegmag — dyadssmag + daadssMae
—dasdaemys — daadezmnos + dasdssmaos — dasdsamag + daadgemas — dogdesmag + dapdagmyg
+dasdeamys — dazdeatnag — dasdazmes + dagdgames
+m7: (magmes — mig) + myx(maamas ~ magmae)
D = dydssdsy — daadasdsy — daadasdss + dapdagdes — daadaades + dyzdysdes
+mYz(dasman — daemnos — dagmas + dagmae) + my, (dessmys — dagmag — degmag -+ daymes)
E = mv.{dasdss — daadas) + m7: (dpadss — dagdss)
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Here m;; and d;; are the elements of the non-dimensional inertia matrix M’ and damping
matrix I}, respectively. Hence, the lateral stability criterion is derived by forming a Routh
array similar to the longitudinal case, which yields:

(i) A,B,C,D,E>0
(i) BC ~ AD >0
(iii) D(BC —~ AD) — B®E > 0

These are the necessary and sufficient conditions for stick-fixed stability. As in the longitu-
dinal case, the condition A > { is trivial due to the positiveness of the inertia matrix while
the condition £ > 0 simply states that:

BG. _ YN, - YN,
BG, ~ V'K ~Y'K!

At infinite speed v, ~» 0 and «, — 0. This in turn implies that £ — 0. Hence, the
metacentric righting moment in the rolling motion is lost. We also note that metacentric
stability has no effect on the yawing motion. The longitudinal and lateral stability criteria
indicate whether a submarine is stable or not, but they give little or no indication as to the
degree of stability.

4.1.5 Stability Requirements Based on Eigenvalues

In stick-fixed stability analyses, the eigenstructure decomposition can be used to determine
whether the nonlinear system is local stable. The fundamental way to do this is by applying
Lyapunov’s linearization method which was published in 1893 by the Russian mathematician
Alexandr Mikhailovich Lyapunov. Lyapunov’s work (Probléme Générale de la Stabilité de
Mouvement) includes both Lyapunov’s linearization method and Lyapunov’s direct method.
A translation of this work is found in Lyapunov (1907). Consider the nonlinear system

&= f(a)

which can be linearized around the equilibrium point & = 0 as:

. — == af
z=Az+ f, ., A= (3;) T=0

Let the eigenvalues be denoted as A. Then the following theorem can be used to determine
if the original nonlinear system is locally stable at the equilibrium point & = 0.
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Theorem 1 (Lyapunov’s Linearization Method)

¢ If the linearized system is strictly stable i.e.

Re{M{A)} <0 for i=1.n

then the equilibrium point is asymptotically stable for the nonlinear system.

¢ If the linearized system is marginally stable i.e.
Re{Xi(A)} <0 for i=1.n

then the equilibrium point may be stable, asymplotically stable or unstable for the non-
linear system.

e If the linearized system is unstable i.e.

Re{Ai(4)} > 0 for some i
then the equilibrium point is unstable for the nonlinear system.

It should be noted that for marine vehicles the A matrix will depend on the vehicle’s speed.
This suggests that the linear model should be made non-dimensional before an eigenstruc-
ture decomposition is performed. A typical plot of the open loop poles (eigenvalues) of a
metacentric stable underwater vehicle is shown in Figure 4.3. The two complex conjugate
poles represent the rolling and pitching motion, respectively. For a metaceniric stable vehicle
their real parts will be strictly negative while they are positive for the metacentric unstable
vehicle. The 4 negative real poles correspond to stable modes in surge, sway, heave and yaw
while the 4 multiple poles in the origin are caused by pure integrations of the linear and
angular velocities in surge, sway, heave and yaw.,

4.2 Nonlinear Stability Theory

Nonlinear stability analysis of underwater vehicles is non-trivial due to the relatively complex
structure of the nonlinear underwater vehicle equations of motion. Nevertheless, advanced
Lyapunov theory for autonomous and non-autonomous systems is applicable in both the
stick-fixed and stick-free stability analysis.
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Figure 4.3: A typical plot of the open-loop poles of a metacentric stable underwater vehicle.

4.2.1 Lyapunov’s Direct Method Applied to Stick-Fixed
Stability Analyses

Stick-fixed stability analyses for marine vehicles concerns the problem of finding stability
criteria based on the hydrodynamic derivatives. For a linear model of ships this is quite
simple, thanks to the well known techniques of Routh and Hurwitz. This section shows
that an alternative approach based on Lyapunov’s direct method, Lyapunov (1907), can be
applied in the nonlinear case. Indeed, this approach also verifies well known criteria for
linear stick-fixed stability. Lyapunov’ s direct method only has validation for autonomous
systems. A nonlinear system is said to be aulonomous if the system’s state equation can be
expressed as

z = f(z)

where the nonlinear function f is not allowed to explicitly depend on time. For such systems,
a scalar Lyapunov function can be applied to determine whether the system is stable or not.
Lyapunov’s direct method for autonomous systems, see e.g. Balchen (1990) or Slotine and
Li (1991), simply states:
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Theorem 2 (Lyapunov’s Theorem for Global Stability)
Assume that there exists a scalar function V(&) with continuous first derivatives satisfying:

e V{x) is positive definite
e V(z) is negative definite
e V(x) — oo as ||=|} ~ o0
then the equilibrium point ®* satisfying f(x*) = 0 is globally asymptotic stable.

For marine vehicles the Lyapunov function V can be chosen to represent the system’s total
mechanical energy. Consider the Lyapunov function candidate

. Iop e T
Vie,&) = 5 & M*(z) @ +f g*(z) dz
where M™ and g* are defined in Eq. 2.42. V can be interpreted as the sum of the kinetic
and potential energy of the vehicle. Hence, zero energy corresponds to the equilibrium point
# =0 and & = 0. Instability corresponds to a growth in mechanical energy while asymptotic
stability implies the convergence of mechanical energy to zero. Differentiating V with respect
to time (assuming M* = (M™*)T) yields:
. . | R
V=& (M*(z)i+g"()) + 5 e M &
Hence the expression for V can be rewritten as:
. . Y . 1,p s o eny
V=47 (M*(@) + C(2,8)i +9°(2) 4 37 (M" —2C°(2,2)) &
Applying the skew-symmetric property: &7 (M - 2C" Y& =0V @, yields
V=aT (M*& + C*(z,2) + g*(2))

In stick-fixed stability analyses, the dynamics of the control inputs is neglected. Hence, we
simply consider the autonomous system:

M*(z)z + C*(2, )& + D*(&,2)& + g"(z) = 0
Applying this equation to the expression for V, finally yields:
V=-2"D"

According to Theorem 2, sufficient conditions for stick-fixed stability (assuming J(a) to be
non-singular) are:
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(i) M* = JTMJ™* > 0 which is satisfied if the inertia matrix M > 0.
(ii) D* = J-TDJ! > 0 which is satisfied if the damping matrix D > 0.

The first condition simply states that the inertia of the system must be positive definite.
Indeed, this is satisfied for marine vehicles. The second condition simply states the system
must be dissipative. A special solution to these results is obtained by considering the well
known linear ship steering equations of motion.

Example: Application to the Linear Ship Dynamics

The above derived stick-fized stability criterion can easily be related to the vehicle’s hydrody-
namic derivatives. This is best illustrated by considering the linear ship steering equations of
motion. Linearizing the ship dynamics about the constant forward speed u = u, and assuming
that M = M7 suggests the model

MG+ Dg=0

where

m-=Y, mze-Y: ) n -Y, mu,-Y. vi_g
mxg— N, Iz—N; s —N, mzgu, — N, r|

Notice, that the two terms mu, and magu, arising from the linearization of the C maitriz,
are included tn the D matriz instead. This is done to avoid the difficulties with the skew-
symmetric property which is violated i.e. Ci; # —Cji, when we are only considering 2 DOF
(sway and yaw). Requiring that det(D) > 0 yields:

Yu(N; — magu,) — N(Y, —mu,) >0
This verifies the well known stability condition of Abkowitz (1964), for the straight line
stability of ships.

4.2.2 Barbalat’s Lyapunov-Like Lemma Applied to Stick-Free
Stability Analyses

Lyapunov’s direct method cannot be applied to non-autonomous systems. By non-autonomous
systems we mean systems that can be expressed as

& = f(w.1)

where f explicitly depends on the time ¢. Stability analysis techniques for non-autonomous
systemn can be used to study the motion stability of a system tracking a time-varying reference
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trajectory. It is well known that the motion stability problem can be transformed into
an equivalent stability problem around an equilibrium point by considering the system’s
error dynamics instead of the system’s state dynamics. Although the original system is
autonomous, tracking of time-varying trajectories implies that the equivalent system will be
non-autonomous. For non-autonomous systems it is convenient to use Barbilat’s lemma to
prove global stability, Barbalat (1959):

Lemma 1 (Barbilat’s Lemina)
If the function g¢(t) has a finite limit as t — oo, is differentiable and g(t) is uniformly
continuous, then g(t) — 0 ast — oo,

A Lyapunov-like version of Barb#lat’s lemma is found in Slotine and Li (1991):

Lemma 2 (Barbilat’s Lyapunov-Like Lemma for Global Stability)
Assume that there exists o scalar function V(z,t) satisfying:

e V(z,t) is lower bounded

° V(a:,t) 15 negative semi-definite

e V(x,t) is uniformly continuous in time
then V(z,t) — 0 as t — oo.

Sufficient conditions for the first and last condition are:

Remark 1 (Lower boundness)
A sufficient condition for the scalar function V(,t) to be lower bounded is that Vie,t) s
posilive semi-definite i.¢.

V(a:,t)20 Vtzto

Remark 2 (Uniform Continuity) _
A sufficient condition for a differentiable function V(z,t) to be uniformly continuous is that
its derivative V(1) is bounded Vit > t,.

In this section, it will be shown how Barbilat’s Lyapunov-like lemma can be used in stick-
free stability analysis of underwater vehicles. The design methodology is best illustrated by
considering a simple example.
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¥xample: Nonlinear Feedback Linearization -

Assume that we want to _control the vehicle’s linear and angular velocities. Let the error
dynamics be denoted as ¢ = ¢ qy where ¢, is the desired state vector. For mechanical
systems, Slotine and Li (1987) suggest defining a Lyapunov-like function candidate:

N l;T -
V(g,t) = 54 Mg

which can be interpreted as the “pseudo kinetic” energy of the vehicle. Differentiating V' with
respect to time (assuming M = MT) yrelds:

V=g (M§+C(@)d)

Here we have used the skew-symmetric property: (}T(M ~2C)q =0 V §. Substituting Eq.
2.38 into the expression for V yields:

V=4 (Bu-Mi,~Ci,~ Di,~9)~§ Di
This suogests that the control law should be selected as
u=B*M§,+Cq,+Dq, +9 - Kpg)
where K'p is a positive definite regulator gain matriz of appropriate dimension. Hence,
V=g (D+Kp)§ <0

Notice that V <0 implics that V(t) < V(0), and therefore that q is bounded. This in turn
implies that V is bounded. Hence, V must be uniformly continuous. Finally, application of
Barbdlat’s lemma shows that V — 0 which implies that § q — 0 ast— oo.
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Chapter 5

Autopilot Design

Conventional autopilot design based on linear theory starts from the assumption that the 6
DOF underwater vehicle equations of motion can be fairly described as a linear model lin-
earized around an equilibrium point. This may be a rough approximation for many control
and guidance applications. Indeed, underwater vehicles performing coupled manoeuvres at
some speed are known to be highly nonlinear in their dynamics and kinematics. In such
cases autopilots based on linear control theory can yield poor performance. It is a common
assumption that linear control design is much simpler than its nonlinear counterpart. How-
ever, exploiting the structure of the nonlinear equations of motion often yields a relative
simple nonlinear autopilot design. This will be shown in this chapter. The following topics
are emphasized:

e Conventional autopilot design
¢ Autopilot design based on feedback linearization techniques
¢ Autopilot design based on sliding control

o Passivity-based adaptive autopilot design

5.1 Conventional Autopilot Design

This section briefly describes two frequently used linear control design techniques in the
autopilot design of marine vehicies.

5.1.1 Proportional Integral Derivative (PID) Control

Most existing ROV-systems use a series of single-input single-output {SISO) controllers of
P-type where each coniroller is designed for the control of one DOF. PID-controllers are used

89
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only in more advanced ROV systems. This suggests that the desired forces and moments
are calculated as
. 14
= Kp, #(t) + Ko, ;f,-(t)uf,,/ G(r)dr for i=1,.,6

where Kp, Kp, and K; are the regulator gains and #; is the tracking error for the i-th
DOF, respectively. The input matrix is then used to calculate the control input vector u,

c.f. Section 2.8.4.
u= BT(('])‘T

This approach is extremely sensitive to uncertainties in the input matrix B as well as the
non-optimal tuning of the regulator parameters due to the time-varying behaviour of the hy-
drodynamic parameters. Hence, such autopilots should be used for vehicles which are meant
to perform low speed non-coupled manceuvres such as a simple “crab-wise motion”. An
example of this approach, is the control system of the EAVE-EAST vehicle at the University
of New-Hampshire, Venkatachalam ef al. (1985). A block diagram of the control system is
shown in Fig. 5.1.

Desirad
position
) . K ol _Jr 1Y | venicle X
_ D - Dynarnics g o
T

= " Resat function

Figure 5.1: The EAVE-EAST Proportional Integral Derivative Controller, Venkatachalam
et al. (1985)

As seen from the figure, the PID-control system for the EAVE-EAST vehicle is modified to
handle saturation and integral wind-up.
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5.1.2 Linear Quadratic Optimal Control Design

Jinear quadratic (LQ) optimal control design is based on minimization on the linear quadratic
serformance index representing the control objective. Consider the iinear state space model:

z mt Az + Bu+Cv
y = Dz

where @ is the state vector, u is the input vector, v is the disturbance vector and ¥ is the
desired output vector. Let J be a performance index weighting the tracking error vector

against the control power i.e.
. Lo g
MinJ =5 f (#7Qy + v Pw) dr

Here P > 0 and @ > 0 are the weighting matrices and ¥ = ¢y — ¥y, is the tracking error
vector. The commanded input vector is denoted y..

v
Y ]
G, C
Y, U l X X y
—_— G, -—-—--Llk * B ‘T o p H—*+
L A j=
G, (e

Figure 5.2: Linear Quadratic Optimal Autopilot
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The optimal solution is well known, see e.g. Athans and Falb (1966), and can be written as:

u=G e+ Gy, + Gy

A block diagram of the control system is shown in Fig. 5.2. Assuming y, = const. and
v = const. yield the following steady-state solution:

G, = -P'BTR,
G. = -P'BT(A+ BG,)"TD?Q
Gs; = P'BT(A+ BG,)"TRsC

Here Rs is the steady-state solution of the algebraic Riccati equation (ARE):
RsA+A"Rs - RsBP'BTR; + DTQD =0

Optimal state estimation (Kalman filiering) can be used to realize the autopilot in the case
when not all states are measured. For instance, the LQG /LTR design methodology have been
applied to underwater vehicles by Milliken (1984) and Triantafyllou and Grosenbaugh (1991).
Loop shaping techniques like the LQG/LTR (Loop Transfer Recovery) design methodology,
allow the designer to deal with robustness issues in a systematic manner. Indeed, robust
stability (RS) can be guaranteed if bounds on the uncertainties are known. On the contrary,
robust performance (RP) is still an unsolved problem. A linear controller design can be
checked for RP by performing a structured singular value analysis. This technique is often
referred to as the u—analysis technique in the technjcal literature, see e.g. Maciejowski
(1990). Nevertheless, the design of a so-called g—optimal controller is still an active area for
research.

5.2 Feedback Linearization

In this section feedback linearization techniques are discussed. Parametric uncertainties are
discussed in the context of self-tuning and adaptive feedback linearization schemes. The
basic idea with feedback lincarization is to transform the nonlinear systems dynamics into
a linear system. Conventional control techniques like pole placement and linear quadratic
optimal control theory can then be applied to the linear system. In robotics, this technique is
commonly referred to as computed torque control. The basic idea of nonlinear decoupling is
quite old, Freund (1973). More recent work, such as Sastry and Isidori (1989) has formalized
the idea to a large class of nonlinear systems.
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5.2.1 Review of Input-Output Feedback Linearization
Nonlinear Affine Systems

Let us first consider MIMO aonlinear systems which are linear in control or affine, Sastry
and Isidori (1989). These systems can be expressed as

z = flz)+ Gz)u
¥y = h{z) (5.1)

with & € ®*, y € ™, uw € R? and f(=) , G(x) and h(z) smooth. Differentiating the
output y with respect to time yields

y = Ho(2)f(z) + Ho(2)G(z)u

where H (&) = g%(a;_cl is the Jacobian. This control problem may be reduced to that of

controlling the linear system
g=v
where the choice: v = 4, — Kp(y — y,) vields the error equation

e+ Kpe=10 (5.2)

Here K p is a positive definite regulator gain matrix of appropriate dimension, y, is the
desired output vector and e = y — y, is the tracking error vector. If the system Eq. 5.1 is
square i.e. m = p, and H,(z)G(=) is nonsingular for all @ € R", the actual control input
vector # could be calculated as:

w = (H(2)G(=)) " [v - He(2) f(2)]

This approach fails if H (2)G(x) is singular. In the singular case we must continue
to differentiate the output y; until one of the control inputs appear. Let r; denote the
system’s relative degree i.e. the smallest number of differentiations the output y; has to be
differentiated for one of the control inputs to appear. The total relative degree is defined as
72 7y + .. + T Let us consider the case of r < n. Defining G = lg,,...,g,] and

dhi(z) k()
th’j: Wf(m): ngh’]m 5z g](m)
as the Lie derivatives of h; with respect to f and g, respectively, implies that Eq. 5.1 can
he expressed as in Sastry and Isidori (1989),
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y ) e Lghi+ 3 Lg (LF" hiu, (5.3)

(=S|

where (7 = 1,2,...,m). The smallest integer 7; is found by requiring that at least one of
the Lie derivatives Lg.( L;é‘lhj) # 0 V @. Notice that if the control input does not appear

after at least r; differentiations the system will not be controllable. Let G*(z) be the m xm
decoupling matrix defined as

Lg,(L}7h) .. Lg (L} h)
G'(z) = : 5
Lg,(LF " hn) .. Lg (LF k)

and
=) ={ L}‘hl,...,L}"‘hm )T

Hence, Eq. 5.3 can be expressed in a compact form as:

yir Uy
=G (e)] (5.4
,(,’;"') Uy

The equivalent linear system to be controlled is:
y =, j=1m (5.5)
If G*(x} is non-singular the nonlinear feedback control law

v =(G"(=))7 [o — (=) (5.6)

yields the decoupled system Eq. 5.5 directly. A system with relative degree (ry,...,7y,) can
be transformed into a so-called normal form by applying a diffeomorphism (¢, z) = T{x)
defined as:

C}l = hy §21 = thl r} = L}]:—lhl
G =hn G Lghn o (0= L7,

where ¢ denotes the external dynamics. Using the fact that & = 7-1(¢, z) implies that Eq.
5.4 can be expressed as
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élj = Czj

5= Iy Z (¢ 2
i = Q
where (7 =1,2,...,m) and

z= QS(C,Z) + W(CT z)u (57)

The state vector z denotes the internal dynamics and

$((,2) = LygG(e)
Vii(C, 2) Lg (=)
where (k = 1,..,n —r) and (i = 1,...,m). The zero-dynamics of the nonlinear system is

defined as the dynamics of the system when the outputs are constrained to be identically
zero i.e. {(t) = 0. This is obtained by choosing the control inputs as:

ult) = - [G"(T740,2))] 7 £(T7Y0,2))

Eliminating » from Eq. 5.7 yields the zero dynamics:

&= $(0,2) — (0,2) [G(T7(0,2))] £1(T71(0,2))

Notice that the zero dynamics are made unobservable by state feedback. The nonlinear sys-
tem Eq. 5.1 is said to be non-minimum phase if the zero dynamics are unstable and asymp-
totically minimum phase if the zero dynamics are asymptotically stable, Byrnes and Isidori
(1984). For minimum phase systems, feedback linearization results in bounding tracking if
the desired motion trajectory is bounded. The proof is given in Sastry and Isidori (1989).
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Input-Output Feedback Linearization of a more General Model Class

Although Eq. 5.1 is a fairly general model description, not all systems can be modelled using
this structure. A feedback linearization scheme for the more general model class

& Flx,u)
v = h(z)

is derived in Fossen and Foss (1991). Let +, be the smallest nurnber of differentiations of the
output y; for one of the derivatives u; to appear, then

y‘g‘b) — L;{-hJ + 6_61; (L}J—lhj) @ , i=L..,m

or equivalentiy

F yg'n) o

= f(z,u) + G(=z,u)

yim Um

where fi(z,u) = L;éhj(a:) and
L (L’;;“h,) B (L;é“lhl)

o (1 ) - s (27 )

The nonlinear control law (assuming that G(a, w) is non-singular)

G(z,u) =

. — -1
U= (G(ac, u)) {'v — fla, u)]
yields the decoupled system:

yﬁ-m =v; for j=1,...,m
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‘Exampie: Nonlinear Thruster Interactions

This new approach allows the designer to model nonlinear thruster interactions,
for ezample, more closely. In other words, underwater vehicle systems in the
form .

Mg+ C(9)q + D(4)q +g(x) = (¢, u)

where the control force and moment vector T is not linear in conirol, i.e. the input
vector w. We recall from Section 2.8 that the thruster force could be approzimated
as:

(1--w)V

T~ pD* A =
p D (a+ B J,)nln| where J 7

which is equivalent to
7= by u |uf + by ¢ Jul

with by = pD*a and by = pD3(1 — w)B. The input is simply u = n while the
vehicle’s speed is ¢ = V. This justifies the use of the more general model class,

Feedback linearization techniques are easily applicable to the nonlinear underwater vehicle’s
equations of motion. This is illustrated in the next two sections.

5.2.2 Decoupling in the Vehicle-Fixed Reference Frame
g-frame Formulation

The decoupling of the vehicle’s dynamics in the vehicle-fixed reference frame will be denoted
as the g-frame formulation. The control objective is to transform the vehicle dynamics into
a linear system ¢ = a,, where a, can be interpreted as a commanded acceleration vector.
The g-frame formulation should be used to control the vehicle’s linear and angular velocities.
Consider the nonlinear ROV dynamics, Eq. 2.38, which can be compactly expressed as:

M+ n(z,§) = B(g)u (538)

Here « and ¢ are assumed to be measured and n is the nonlinear vector:

n(&,q) = C(¢)q + D(q)q +g(=)

The nonlinearities can be cancelled out by simply selecting the control law as
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l
<
o

ROV - g

() [{

Figure 5.3: Nonlinear Decoupling

u = BY() [Ma, +n(¢,2))

where the commanded acceleration vector a, can be chosen by e.g. pole placement or linear
quadratic optimal control theory. Let A be the control bandwidth, ¢, the desired linear and
angular velocity vector and § = ¢ — ¢, the velocity tracking error. Then the commanded

acceleration vector
a, = g, — /\&
yields the first-order error dynamics
M (§~a)=M (q+1q) =0
The calculation of the commanded acceleration vector is shown in Figure 5.4.
Qa

Tq - . ijd “ H
g;+Aq; = Ar, o oa,=q,—A¢ |

A

Figure 5.4: Calculation of the commanded acceleration (q-frame formulation).

The reference model is simply chosen as a first-order model with 7, as the commanded input
vector. Note that in steady state ¢,{c0) = r,.
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Example: Surge Velocity Control System

Consider a simplified model of a marine vehicle in surge
" mutdulusT

The commanded acceleration is caleulated as:
ag = g — Mu — uy)

This suggests that the control law should be calculated as:

7 =m{tg ~ Mu —uqg)) + dJulu

In robotics, it is usual to choose the commanded acceleration as
a, = i~ 20q - 3’g
where ¢ is the manipulator joint angles. This yields the second-order error dynamics:
M (G—a)=M(q+22g+\§) =0

For underwater vehicles the virtual vector ¢ has no physical meaning. If the control objective
is to control the vehicle’s position and orientation in the earth-fixed reference frame, the
following approach should be used instead.

5.2.3 Decoupling in the Earth-Fixed Reference Frame
x-frame Formulation

In the x-frame formulation the vehicle’s dynamics and kinematics are decoupled into the
earth-fixed reference frame ie. & = a, where a, can be interpreted as the earth-fixed
commanded acceleration. The robotic counterpart to the x-frame formulation is feedback
linearization in task-space coordinates, see e.g. Egeland (1987). The representation discussed
in this section is the basis for the adaptive feedback linearization scheme presented in Section
5.2.5. Consider the ROV’s dynamics and kinematics

Mi+n(q,=) = B(q)u
z=J(z)q (5.9)
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where J{x) is the kinematic transformation matrix and where both 2 and g are assumed
measured. Differentiation of the kinematic equation with respect to time yields

§=J"&E-Jg)
The nonlinear control law

u=B'(¢) [Ma, +n(¢,=)] (5.10)

applied to the ROV eguations of motion, yields:

M(Gg—a,)=MJI & ~Jg—Ja,)=0
Defining

M =J7"MJ" and a,=Jg+Ja,
yields the linear decoupled system:

M (&—-a,)=0
This suggests that the commanded acceleration @, should be chosen as:
a; = &g — 208 -~ N@

In the implementation of the control law, Eq. 5.10, the commanded acceleration in the
g-frame is calculated as:

a; = J Y a, ~ Jgq)

This is shown in Figure 5.5. The reference model is chosen such that the commanded input
vector 7, 1s equal to the steady state reference vector i.e. xq{00) = 7,

&4
T4
T4

a;

— &g 22024 + Ny = A, @y = &g — 2)& — \&

¥

k 4

a, = I Ha, — J§)|—in

Figure 5.5: Calculation of commanded acceleration (x-frame formulation).
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Example: Heading Control System

Consider the simplified model of an underwater vehicle in yaw
mrddirir=7 p=r

Hence, the commanded acceleration can be calculated as:

Gz = T4 — 2A(r — rq) — ’\2(¢ - ¢d)

where ry is the desired angular velocity and g is the desired heading angle. For
this particular example a, = a,, which yields the decoupling control law:

T = m(f‘d - 2A(r — 1) _Az('»b_”bd}) +d|r|r

5.2.4 Self-Tuning Feedback Linearization

A self-tuning controller (STC) can be defined as a controller where the parameters are
calculated on-line by a (recursive) parameter estimator. STC based on ARMAX models has
been tested out on the Seapup ROV by Goheen (1986). Both nonlinear feedback linearization
and sliding control techniques can be combined with a parameter estimator to improve their
performance. A large number of recursive prediction error methods (RPM) are available for
this purpose. The most known parameter estimators are probably the recursive least square
(RLS) and the recursive maximum likelihood (RML) methods. We will exclusively use least
square estimation to illustrate the idea of self-tuning feedback linearization. The feedback
linearization control law, Eq. 5.10, can be replaced by

u = BY(q) [Ma, +4(g,2)]

where the hat denotes the parameter estimates. Consider the nonlinear underwater vehicle
equations of motion Eq. 5.9 which can be parameterized as:

T = Mq-}'n((!')m) =d5(q:‘h‘v)e

Here @ is a known regressor matrix of appropriate dimension and @ is the unknown parameter
vector. Hence, the prediction error can be defined as

E(t) = qﬁ(qa‘bw) é =T

where 8 is the estimated parameter vector.
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Least-Square Estimation

The unknown parameters can be estimated by using a least-square scheme with constant
forgetting factor X. Consider the cost index

. 1 gt '

Min J = :‘:3_.[ e'A(‘"T)eT(T)e(T) dr
o

The forgetting factor (typically 0.96-0.99) ensures that past data are given less influence

than current data in the estimation of the current parameters. This is particularly useful

when dealing with time-varying parameters. The solution of the minimization problem is

weil known and can be written as

6=-P)dTe (5.11)
with the gain update

d
(P =-AP 4+ T

dt

In the implementation of the LS algorithm it is desirable to rewrite the gain update such

that the matrix inversion of P is avoided. Using the fact that

4 _ d — - d -1
=(P'P)=0 = # P =-P7 Z(P) P

vields

%(P) = AP - PeTop

To avoid the difficulties with vanishing gain in the absence of persistent excitation, numerous
techniques can be used. For instance, the gain update can be modified to

d
PV =X P-1,Pé 0P (5.12)

where A; tends to increase the adaption gain and A, tends to decrease the adaption gain.
The choices of A; and )\, are discussed by Landau and Lozano (1981). On-line parameter
estimation should not be used to estimate a large number of parameters. Like other indirect
schemes, self-tuning feedback linearization requires that the system must be persistently
exciting (PE) i.e. parameter convergence occurs if 37 > 0 and § > o > 0 such that

1 s+T
BT > ?f BB (1) dt>al | V s,

This requirement is quite harsh when considering a general underwater vehicle in 6 DOF.
The requirement of PE can be removed by using direct adaptive control schemes, instead.
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In a direct adaptive control scheme global asymptotic stability of the tracking error can be
proven without requiring the parameter error vector to converge te zero. This condition can
be relaxed to one where the parameter error vector must be bounded i.e. & < co. This is the
topic for the next section. Parameter convergence is described more closely in e.g. Anderson

et al. (1986). .

5.2.5 Adaptive Feedback Linearization

The adaptive feedback linearization scheme for robot manipulators is usually formulated in
the g-frame, i.e. in the joint coordinates. This is due to the fact that for a large number of
robot manipulators, the desired task-space coordinates can be transformed to desired joint
coordinates by applying the manipulator’s inverse kinematics. However, in control and guid-
ance applications the kinematic transformation does not exist. Nevertheless, this problem
can be avoided by formulating the adaptive parameter updating law directly in the x-frame.
One such approach uses the vehicle’s Jacobian instead of the unknown inverse kinematics.

Previous work by Horowitz and Tomizuka (1986) is based on Popov’s hyperstability theory
which can be used to prove global stability for the overall system. However by applying
Lyapunov-like stability theory for non-autonomous systems the derivation of the adaptive
scheme is often much simpler. This means that the application of Barbilat’s Lyapunov-like
lemma, implies that we can avoid solving the Popov integral inequality and the Kalman-
Yakubovitch lemma. This is advantage as the mathematical manipulations required to
satisfy the requirements imposed by the Popov integral inequality can be quite laborious. In
this section it will be shown how the original scheme proposed by Horowitz and Tomizuka
(1986) can be relatively easily represented in the x-frame by applying Lyapunov-like stability
theory.

x-frame Formulation
Again, consider the nonlinear equations of motion Eq. 5.8. Taking the control law to be
u=BY(q) [Ma,+(e,q)|
where the hat denotes the adaptive estimates, yields the error dynamics:
M(i —a,) = (B — M)a, + ((z, ) ~ n(2,))

Since, the underwater vehicle equations are assumed to be linear in their parameters, we can
apply the parameterization

(M~ M)a, + (#(=,q) — n(x,q)) = D(=, q,2,)

where 6 = 8 — 6 is the parameter error vector.
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Figure 5.6: Adaptive feedback linearization applied to the nonlin.ar underwater vehicle
equations of motion

Using the result a, = J§ + J a,, yields:
MJI Y& - a,) = ¥(2,§,a,)0

Premultiplying this expression with J~% and letting M* = J-TMJ"! yields the x-frame
error dynamics:

M*(&—a,)=J Td(z,4,a,)0
By pole placement we choose the commanded acceleration vector as
ay =&~ 22~ & , A>0
and
5=2a+ A&
Hence, the error dynamics can be expressed as:

M*(5+ As) = I "d(x,q,a,)8
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To prove global stability we propose to use a Lyapunov-like function candidate:
Vs, 8,t) = % (sTM*s + éTré) , M*=(M"T
Differentiating V with respect to time (assuming M~ = 0 ) yields
. - S
V=sTM's+0 I

where I' is a positive definite weighting matrix of appropriate dimension. Substituting the
error dynamics into the expression for V yields:

V=-Xs"TM*s+(s7T"® + éTr)é
This suggest the parameter update law {assuming 8 = 0):
§ = ~ D@7 (5, q,a,)J () 8
which finally yields:
V=-3Ms<0

Hence, global stability and asymptotic convergence of & to zero are guaranteed by applying
Ba,rba,lat s Lyapunov-like lemma. We also notice that the parameter vector 8 will be bounded
ie. 8 < oo, Hence, PE is not required to guarantee the tra,cklng error to converge to
zero. Slotine and Li (1987) have showed that the assumpt:on of M™ = 0 can be removed
by applying the skew-symmetric property sT(M — 2C*)s = 0 together with passivity
theory. This is described more closely in Section 5.4. A more general approach which allows
the time-varying matrix M to be included in the control law is discussed by Johansson
(1990). He shows that the algorithm of Slotine and Li (1987) actually can be viewed as
a special case of a more general direct adaptive control law based on Lyapunov stability.
This approach is particularly interesting since global stability is proven by using a Lyapunov
function instead of Barbilat’s Lyapunov-like lemma. An alternative to adaptive feedback
linearization techniques is the explicit model reference adaptive control (MRAC) scheme of
Landau and Lozano (1981). This scheme has been successfully applied to underwater robotic
vehicles by Yuh {1990).
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Simulation Study: Adaptive Autopilot for the NEROV Underwater Vehicle

Consider the following simplified 4 DOF model of the NEROV vehicle in surge, sway, heave
and yaw:

M‘]+C(Q)q+D(Q)q:T 3 q:(u:vtwaj')iﬂ
e=J=)q , z = (c,y,z,9)"

The expressions and numerical values for M, C, D and J are found in Appendiz A.
The adaptive control law is:

Ma, + C(§)q + D(§)q = ¥(q,a,)
g = I '@7(q,a)J () s

T

i

The z-frame formulation is used to control the vehicle’s position (z,y, z) and heading
angle 1. We chose the reference model and the commanded acceleration vector as:

Reference model: &y + 2Aa, + /\2:cd = Ay,
Commanded acceleration: a, = &4 — 2\& - &
a, =JYa, — J§)

On the contrary, if we want to control the vehicle’s linear and angular velocities (u,v,w,r) the
g-frame formulation should be used. In the simulation study, the initial parameter estimates
were chosen as 8(0) = 0. The desired and actual outputs for: A = 1, I' = 0.001 I and
@ sampling rate of 10 Hz are shown in Figure 5.7. From the figure, it is seen that the
performance of the adaptive controller is extremely good. Also note that the tracking error
converge to zero after a while.
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5.3 Sliding Control

The sliding control design methodology is described in detail by Slotine and Li {1991).
Sliding control has been applied successfully in the control of underwater vehicles. Yoerger
and Slotine(1984, 1985) have proposed to use a series of single-input single-output (SISO)
continuous time controllers based on sliding mode control. Recent work by Yoerger and
Slotine (1991) discusses how adaptive sliding control can be applied to underwater vehicles.
Cristi et al. (1990) discuss adaptive sliding mode control of AUVs in the dive plane. Sliding
mode controilers have been successfully implemented for the JASON vehicle Yoerger et al.
(1986) and the MUST vehicle Dougherty and Woolweaver (1990). The experiments show that
sliding mode controllers have significant advantageous to traditional linear control theory.

5.3.1 SISO Sliding Control Applied to Underwater Vehicles

This approach is based on a slightly modified version of the sliding controller proposed by
Yoerger and Slotine (1984) and Yoerger and Slotine (1985). Consider the simplified ROV

modei:

Migi+nl@) =7 and d&i=¢ i=1.6

where all kinematic and dynamic cross-coupling terms terms are neglected. Here, #; is
the input, M;; is the diagonal element of the inertia matrix M and n; corresponds to the
quadratic damping term in the nonlinear vector n i.e.

Lo I e R

K 0
Iy — M;
0 Iz

|l coooc o

Ny

. T
n(‘l) = ["“Xului ulul, "leul olv], _Zwlwl wiwl, "pripl pipl, ”‘Mqiql glgls "-Nr}rl T|Tll

Uncertainties in the model are compensated for in the control design. For notational sim-
plicity, let us write the ROV model as:

mi+diglt =7 where m>0; d>0

Here m = My, d || = ni(¢:) and 7 = 7;. We also assume that both & and z are measured.
Define a measure of tracking (sliding surface)

sm.%:—{—/\.%
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‘where Z == & — 4 is the tracking error and A is the control bandwidth. It is convenient to
define a virtual reference z, satisfying

T, =ig— A = s=g-—i,
Consider the scalar Lyapunov-like function candidate
1 2
V(s,t)nyns , m>0
Differentiating V with respect to time (assuming rh = 0) yields

V:sm(:’i—:ﬁr)ms('rud]éjiwm:f:,)t—~d|93]32+s(7mm:°é,-—d|a':[a':,)

Tg Eq g

N

Ty = &g — AT . >
mi + d|z|d == ] " G =3, M\ >

8 =1I—g, >

ko

k sgn(-)

Iy

Figure 5.8: SISO sliding control applied to underwater vehicles
Taking the control law to be
T:ﬁt:ﬁ,—i—(ﬂéj:&,—kds-—ksgn(s) v ka>0

where i and d are the estimates of m and d, respectively, yields
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V= —(katd|d])s®+ (s, +d|ilt, )s —k |s|
Here 2 = i — m and d = d — d. Conditions on the switc};ing gain k are found by requiring
that V' < 0. The particular choice
k> |mé, +d & &) +7 with 750
imnplies that
V< ~(kitdld])s”—nls| <0

This is due to the fact that ( ks+d|#[ ) > 0 V &. Note that V < 0 implies that V() < V/(0),
and therefore that s is bounded. This in turn implies that V is bounded. Hence V must be
uniformly continuous. Finally, application of Barbilat’s lemma then shows that s — 0 and
thus & —» 0 as t — oo.

CLattering

It is well known that the switching term ksgn(s) can lead to chattering. Chattering must be
eliminated for the controller to perform properly. Slotine and Li (1991) suggest to smooth
out the control law discontinuity inside a boundary layer by replacing the sgn(-) function in
the control law with

1 if 2 >1
sat(s/¢)y =14 s/ f 1< 5<1
-1 if 5 <1

where ¢ should be interpreted as the boundary layer thickness. This substitution will in
fact assign a lowpass filter structure to the dynamics of the sliding surface s. The boundary
layer thickness can also be made time-varying to exploit. the maximum control bandwidth
available. This is described more closely in Slotine and Li (1991).
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Simulation Study: SISO Sliding Control Applied to an Underwater Vehicle

Consider the simplified model of an underwater vehicle in surge:

Cmitdiiz| =T (5.13)
with m = 200 kg and d =50 kg/m.

The SISO sliding controller can be expressed as:
T =", +d|lE — ks s —ksat(s/d) , ka>0 (5.14)

The following two cases were studied:

¢ (1) PD-controller:

= 0 kq = 500
¢ (2) Sliding controller:
m =06m n:’a <0.5m
d =154d d <0.5d
ko= (i +di]a,) | +01 ks =200

Notice that the first case simply corresponds to the PD control law:
T —kysm ki - Ak &

In the simulation study the closed loop bandwidth was chosen as: A =1 for both conirollers.
The boundary layer thickness was chosen as ¢ = £ 0.35 for the shiding controller while the
sampling rate was set at 10 Hz. The simulation results are shown in Figure 5.9 and 5.10.
It is seen from the figures that the performance of the sliding controller is much better than
the performance of the PD-controller. Note that conirol input for the sliding controller is
relatively smooth due to the lowpass filter structure of the boundary layer.



112 CHAPTER 5. AUTOPILOT DESIGN
(m] . desired Position {glsls} . desired yelocity .
0 1'0 2I0 310 40
time {s] time fs]
[mj} . {nvs] .
0.3 posmo!n eITox 0.4 . veloc:t!y EITOF

-0.2

time [s]

time [s]

Figure 5.9: Performance study of the sliding controller (solid) and the PD-controller (dotted).
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5.3.2 Sliding Control of MIMO Noulinear Systems
MIMO Nonlinear Systems with Arbitrary Relative Degree

These results are published in Fossen and Foss (1991) and are mainly an extension of the
results of Slotine and Li (1991). The sliding design methodology is described in detail by e.g.
Utkin (1977) and Slotine (1983). The basic idea of sliding controller design is to provide a
systematic approach to the problem of designing a robust controller in the case of modelling
inaccuracies. This can be achieved by replacing the error equation, Eq. 5.2, by

8-+ k.x sgn(s) = w(t) where k& >sup|wi(t)|; i=1,2,..,m
t

Here 8 is a measure of tracking and w(#) represents all the external signals. The switching
term k.x sgn(s) can be interpreted as a vector of elements k; sgn(s;). If all k; satisfy the
above inequality, then s goes to zero in finite time. Define a sliding surface, Fossen and Foss

(1991),

d .
si=(7+ Aj)ite; where e; =y; — ¥4 (5.15)
where }; is a positive scalar specifying the control bandwidth and y;.4 is the desired trajectory.
For systems of relative degree r; = 1, Eq. 5.15 simply vields s; = e;. Define a virtual
reference vector ag with elements ay; such that

=9 —ag; , j=l..m (5.16)
For the system
ygn) Uy
D | = =)+ GY(w)
yr trn

where f* and G” are defined in Section 5.2.1, we propose a control law (assuming G*(z) is
non-singular)

w = (& (2)) {ad — (=) - k.x sgn(s)] (5.17)

Here the hat denotes the estimates of the nonlinear functions. The bounds of the elements k;
may be derived by applying Barbilat’s lemma. Notice, that the existence of w is influenced
by the choice of the controlled variables y i.e. the existence of the inverse of G*(x).
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Assume that the parametric uncertainties in the nonlinear functions F* and G* satisfy the
following bounds

| =) - f1(2) 1 <76, (5.18)
G'(&)= (I+A)G (x) , |A;I<Uy

where (i = 1,...,m), ( = 1,...,m) and (A) < 1. Consider a Lyapunov-like function
candidate:

1
V(s t) = -2~3T3 (5.19)

Differentiating V'(8,t) with respect to time and substituting Eqs. 5.4, 5.16, 5.17 and 5.18
yields

V=2sT5=5" [ (F =)+ Aoy - -+ A) k.x agn(s) } (5.20)
From this it is seen that if k; > ki ¥ i where the vector k' satisfies
I-O)YK =6+Ulou—F(x)|+n (5.21)
with U as an m x m matrix with elements Uy; and U defined as
Uny “~Ug ... U
— Uy U —Usm
U=| . L (5.22)
Ymi TUm2 ... Umm
the sliding condition
VS-n"]sl=> ~mlsl<0 , >0 (5.23)
=1

1s satisfied. Hence, applying Barbilat’s Lyapunov-like lemma ensures that 8 — 0 and thus
e — O . The proof is found in Appendix B.
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5.3.3 MIMO Sliding Control Appliéd to Underwater Vehicles

It is straightforward to apply the results from the previous sections to the MIMO underwater
vehicle equations of motion. For attitude control of Hamiltonian spacecraft Slotine and
Benedetto (1990} suggest using a Lyapunov-like function candidate

Visd)=5"M"s , M* = (M >0

to prove global stability. This function can also be applied in the stability analyses of
underwater vehicles in 6 DOF. Differentiating V with respect to time yields:

V=s8"Ms+ —;«sTM*s ~87C"s + s7C"s
Define a measure of tracking s such that
§=&+ Xk where & =z —=my is the tracking error
and a virtual reference vector ®, satisfying
8= & — &, where =, =2y A&

Applying the skew-symmetric property sT(M " C*)s = 0 V¥ s to the expression for V
yields

V=s"M"&-2)+s7C"@—i)
Substituting the nonlinear ROV model, Eq. 2.41, into the expression for V yields:
V=-5s"D"s+ s (B — M*é, — C*#, — D"i, —g*)

Fossen and Sagatun(1991a, 1991b) show that the representation of the control law of Slotine
and Benedetto (1990) can be simplified by defining a virtual reference vector g, satisfying
the transformation

é" = J(w) q'r
From this we obtain
q, = J‘l(a:) &,
g, = J7(®) (& — J(2)J Nz} &,)
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¢ JTrlels=%+irz -
ROV (¢ o Tr =g — AE
@, = &g — AT
éer*la}" .
g, = JN&, — JT'%,)
9 )+ D) L q,
Q- ()+D() pe
7 g,
JTK ple
k.x sgn(J~!. )

Figure 5.11: MIMO sliding control applied to underwater vehicles

Hence, the expression for V can be expressed as

V=-s'Ds+(J's)7(Bu— My, ~Cq, ~ Dg, — g) (5.24)

Let us initially assume that the input matrix B is known and restrict our discussion to
underwater vehicles with equal or more control inputs than controllable DOF i.e. P = n.
Hence, a generalized inverse B! can be used in the decoupling. Uncertainties in the input
matrix matrix will be treated in Section 5.4.3. Let the estimates of the the terms M ,C, D
and g be denoted as M, €, D and g, then the nonlinear control law, Fossen and Sagatun
(1991a), is

u:Bf[Mijvr-é-C'r},-i-bd,-l-g— J'Kps —k.x sgn(J"ls)J]

Feedforward term PD—controller Robustifying term

where K p is a positive semi-definite regulator gain matrix of appropriate dimension and the
operator .x is used to denote the Schur product i.e. element-by-element multiplication.
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This in turn implies
V = —sT(D" + Kp)s + (I 's) (84, + Cq, + Di, +§) — k¥ | J s |
Here M =M ~M ,C=C—-C,D=D—-D and §g=§—g . This suggests that the

elements k; of the switching gain vector k should be chosen as:

k2| Mg, + C(@)g, + D(@)q. +3@)Ni+m , m>0 (5.25)
This in turn implies
V<—s"(D*+Kp)s—n7 (J7's) <0

This is due to the fact that the dissipative matrix D > 0 and the regulator gain matrix
Kp 2 0 implies that (J TPpI '+ K p) > 0. Hence, 8 is bounded and V' is uniformly
continuous. Therefore, Barbélat’s lemma ensures that 8 — 0 and thus 8 — 0 as t — oo.

In Section 5.4.1 it will be shown that adaptive and sliding control can be successfully com-
bined to reduce the parametric uncertainties. Hybrid (adaptive and sliding) control compen-
sating for uncertainties in the input matrix B is discussed in Section 5.4.3. An alternative
approach to an adaptive controller is using a STC. This is the topic for the next section.

5.3.4 Self~Tuning Sliding Control

A nonlinear RPE method has been applied in the self-tuning sliding controller proposed by
Fossen and Balchen (1988). The STC is simulated for an underwater vehicle in 3 DOF. Let
us assume that the parameter estimates satisfy the following bounds

19,-—@,'155;' , Jj=1.r

where r is the number of parameters and @ is an unknown parameter vector found from the
linear parameterization

T=Mg+C(§)g+ D(§)q+g(z) = 8(§,9,2) 0

where @ as a known regressor matrix . This requires that ¢, ¢ and ® are measured. The
switching gains in Eq. 5.25 can be replaced by

k:' ZZ!@U(QsiIam) é]l.*-rfl 1 7]€>0
j=1

where (i=1,2,...,n) and §; is the uncertainty of the j-th parameter estimate. This in turn
suggests that the control law should be calculated as

T = [Mij,+éqr+bq,+§—~JTKD3—k.xsgn(J‘1s)]
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where the hat denotes the estimated parameters. “The unknown parameters are updated
according to Egs. 5.11 and 5.12. As in the self-tuning feedback linearization case, PE is
required to guarantee the parameter error to converge to zero. This suggests that the self-
tuning sliding controller should only be used when a relatively small number of parameters
are to be estimated. If this is not the case, the direct adaptive control scheme presented in
the next section could be advantageous.

Simulation Study: Self-Tuning Sliding Control Applied to an Underwater Vehicle
Again, consider the simplified ROV model in surge
mi+de|tj=71
with m = 200 kg end d = 50 kg/m. The parameter and regressor vectors are
P=(i |Ez) , 6=(m d)"
while the prediction ervor is defined as:
e=980—r

Hence, the parameter vector is updated as:

.
A

¢ = —PdT¢
P = \P-PsTop
In the simulation study the sampling rate was set at 10 Hz. The initial parameter estimates

were chosen as m(0) = d(0) = 0 while the initial adaption gain was chosen as P(0) =101,
The simulation was performed with A = 0.96 and the control input was simply chosen as

. t
T=T, sm(%T)

with 7, = 15 and T = 10. The convergence of the parameter estimates are shown in Figure
5.12.
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Figure 5.12: Parameter estimates, actual position and control input.

Notice that the estimated parameters converge to their actual values in less than 15 seconds

due to the PE conirol input.

The wehicle should perform a self-test each time the ROV

undergoes a configuration change. The self-test could simply be a cycle of known inputs to
each thruster. Then, the parameter estimates obtained from the self-test should be used to

calculate the sliding control law Fq. 5.14.
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5.4 Passivity Based Adaptive Control Design

In this section a passivity based adaptive autopilot design for underwater vehicles will be
discussed. The proposed autopilct is general enough for dynamic positioning as well as
tracking of a time-varying reference trajectories in 6 DOF. The autopilot design will be
divided into three steps: (1) parameter estimation, {2) adaptive compensation of sea currents
and (3) compensation of input uncertainties. A block diagram of the autopilot is shown in

Figure 5.13.
J
¥ E]

x4 8 T (. u : *
»osl ) oo o~ JTKp wo—wone BTl rov] ¢
— i 1 F Sl 3 >
A dsj"'
J! -
L g g
o —I 7 ¢
parameter
. estimation
—w —"vlb_”_
current
estimation
i —k % sgn(-)
input uncertainty
4 @
[ » P
»ile J

Figure 5.13: Nonlinear adaptive autopilot design for underwater vehicles

As seen from the block diagram, the inner loop (Section 5.4.1) represents the parameter
update law. The next loop is an adaptive feedforward term for the compensation of slowly
varying sea currents (Section 5.4.2). Finally, the third loop shows how uncertainties in the
input matrix due to partly known thruster characteristics can be compensated for by adding
a discontinuous term to the adaptive control law (Section 5.4.3). This loop compensates for

uncertainties due to the expression:
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w=8G)r (5.26)
which is strongly influenced of the accuracy of the estimate
By =pD' Kr,(J), i=1,2.n j=12.p

Generation of the desired force and moment vector T can be done by applying direct adaptive
control theory. This is the topic for the next section.

5.4.1 Global Stable Adaptive Control Design
(i) PBAC

Passivity based adaptive control (PBAC) schemes, Slotine and Li (1987), Sadegh and Horowitz
(1987) and Kelly and Carelli (1988), exploit the skew -symmetric property of M — 2C, c.f.
Ortega and Spong (1988). The parameter update law in this section is based on an extension
of the results of Slotine and Li (1987) and Slotine and Benedetto (1990) to underwater vehi-
cles. The results are published in Fossen and Sagatun(1991a, 1991b). Consider the nonlinear
underwater vehicle equations of motion, Eq. 2.41,

M*(x)z + C*(z,&)& + D*(x, )& + g*(x) = J Tt

Assume the desired trajectory: #;, &4 and =4 to be bounded. Let # = & — a4 be the
tracking error and 8 be the parameter error vector. Define a measure of tracking s as

s=&+ )2 (5.27)

where X is a strictly positive constant which may be interpreted as the control bandwidth.
It is convenient to rewrite Eq. 5.27 as

8=&— @, where 2, =a&4— A&

To prove global stability, Slotine and Benedetto (1990) suggest using a Lyapunov-like func-
tion candidate

V(s,8,) = (8TM"3 + éTré) . M= (M >0

b o=

where I' is a symmetric positive definite weighting matrix of appropriate dimension. Differ-
entiating ¥ with respect to time and using the skew-symmetric property &% (M~ —2C*) & =
0V a, yields:

. 2T
V==s"D"s+0 Ie+s" (7 7r - M*s, ~C*&, — D¢, — g*)
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Fossen and Sagatun{1991a, 1991b) define a virtual vector q, which satisfies the transforma-
tion:

& = J(z) 4,

Hence, the virtual reference vectors ¢, and g, can be calculated as:

‘i’r = J_l(m)d:,. .
g, = J ()@, — J(2)T N (=)a,)

We now notice that the unknown terms M*, C*, D" and g* can be parameterized as
M&, + C*é, + D', +g" = T [M§, +Cq, + Dg, + g] = I Td(2,4,4,,4,) 0

where 8 is an unknown parameter vector and @ is a known regressor matrix of appropriate
dimension. We have here assumed that the terms M™, C*, D* and g* are linear in their
parameters. By using g, instead of &, in the parameterization, the transformation matrix
J{®} is avoided in the expression for the regressor matrix. This yields:

. 2T
Ve=—s"Ds+(J s (r-00)+0 Id (5.28)

Let the control law be chosen as

r=®0—-J"Kps (5.29)

where @ is the estimated parameter vector and K p is a symmetric positive regulator gain
matrix of appropriate dimension. Then, the parameter update law

é = _'F_IQT(m) éa q.‘r’ &f)J_l(z) 8
yields
V=—sT(Kp+D)s <0

This is due to the fact that the dissipative term D > 0 implies that D* = J"TDJ! > 0.
Hence, global stability is guaranteed by applying Barbilat’s Lyapunov-like lemma. This
in turn implies that the tracking error vector converges to zero i.e. & — { and that the
parameter error vector is bounded i.e. |{8|| < co. The boundness of the parameter error
vector and the global asymptotic stability of the tracking error allows a large number of
parameters to be estimated. Global asymptotic stability of the parameter error vector cannot
be guaranteed without requiring the input vector to be PE.
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(ii) VS-PBAC

An alternative parameter update law can be found by deriving a variable structure passiv-
ity based adaptive controller (VS-PBAC). The variable structure model reference adaptive
controller (VS-MRACQ) of Tso et al. (1991) uses the parameterization of Craig (1988} which
requires both acceleration measurements and that the estimated inertia matrix is invertible.
These limiting conditions may be removed by applying the parameterization of Slotine and
Li (1987). In this section it will be shown that it is straightforward to generalize the results
of Tso et al. (1991) to the scheme of Slotine and Li {1987). The results are published in
Fossen and Balchen {1991).

Define a Lyapunov-like function candidate:
V(s,8,1) = ésTM*s , M =M >0
Hence, Eq. 5.28 reduces to:
V=-6TD's+(J'8)(r -0 8)
Let the control law be
r=¢0-J"Kps

where @ is the estimated parameter vector and K is a symmetric positive definite regulator
gain matrix of appropriate dimension. This in turn implies that:

V =—sT(D" + Kp)s+ (J'8)T®(0 - 0)

We know notice that the last term in the expression for V can be written as:

(J 1) d(8 — 8) = (6; — 6)(®T T '),
i=1
Then, the parameter update law

b= ~07 sgn (87T )], 10l S O;

yields
V=—s"(Kp+D)s-3 0|07 ;Y 0, (7T 's); <0
g1 =1

Assuming ||®]| < oo, Barbilat’s Lyapunov-like lemma ensures that & — 0, thus the tracking
error vector & converges to zero.



124 CHAPTER 5. AUTOPILOT DESIGN

- Simulation-Study: Simplified Model of an Underwater Vehicle

The performance of the PD-controller, the PBAC and the VS-PBAC was compared by study-
ing a simplified model of an underwater vehicle in surge:

mE+difx| =71
Here m = 150 kg and d = 50 kg/m. The adaptive control law is:
T=thi, 4 d|¢é, - Kps , Kp>0
The following three cases were studied:

¢ (1) PD-controller:

m=0
d=g
e (2) PBAC:
2 |
m=——Z.s 7 = .001
m
J:-iuﬁﬁ Y2 = 0.001
Y2
e (3) VS-PBAC:
= —m* sgn(i,s) m* > |m|
d=d* sgn{|z|z,s) d" > {d|

In the simulations we chose m(0) = d(0) = 0 for the adaptive controller and m* = 1.5 |m)|,
d* = 1.5 |d| for the VS-PBAC. The regulator gain was chosen as Kp = 150 for all three
cases. The sampling rate was set at 20 Hz. The simulation results are shown in Figures
5.14 and 5.15. It is scen that the performance of the VS-PBAC is extremely good except for
the chattering in the control input. Hence, implementation of the VS-PBAC requires that
the control input must be filtered. This will probably reduce some of the performance. The
PBAC dlso performs quite well particularly compared to the somewhat sluggish performance

of the PD-controller. It is seen that the performance of the PBAC is improved after a while
as a result of the parameter convergence.
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time [s] time [s]

Figure 5.14: Performance study of PBAC, VS-PBAC and PD-controller
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Figure 5.15: Control inputs and measure of tracking for PBAC, VS-PBAC and PD-controller
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5.4.2 © Adaptive Compensation of Current Induced Disturbances

Sea currents may dramatically reduce the performance of the control system. Fossen and
Balchen (1991) suggest adding an adaptive feedforward term to the nonlinear control law
to compensate for slowly varying environmental disturbances. Hence, in the nonlinear un-
derwater vehicle equations of motion, we will assume that the earth-fixed current velocity
components Zy, 5 and Z; are constant or at least slowly varying. The current velocity vector
referred to the vehicle-fixed reference frame is:

ug g
Ve | = Jl_l(¢s 63 d’) g.f
‘LUf i’f

where the coordinate transformation matrix J; is defined in Section 2.1. We will also assume
that all terms which include components of the fluid velocity vector can be lumped together
into a total current disturbance vector ¥ such that:

MG+ C()g+D(g)g +g(x) +v(t) =1

v=mn(t) , n(t)is white noise (5.30)

The assumption that current disturbances can be linearly superpositioned in the nonlinear
equations of motion radically reduces the number of parameters to be estimated. The disad-
vantage of this assumption is that model misalignments are imposed. However, simulations
show that this is an extremely good assumption. The corresponding x-frame representation

of the model is:
M*(z)e + C*(z,®)2 + D*(z,2)2 + g*(z) + v*(z) = J T (x)r
Here, the new term o™ is defined as:
v'(z) = J Ta)w

Consider a modified Lyapunov-like function candidate:

V(s,0,8,1) = %(sTM*s +87ré + PTW o)

where I" and W are symmetric positive definite weighting matrices. % = & — v is the
environmental disturbance error vector. Hence, the expression for V is modified to

. 2T, .
V=-"Ds+ (T s (r—00-v)+8 I'd++ Wi
where @ is found from the standard linear parameterization:

Mg.+Cq, +Dq, +g=9(x,q,q,,q,) 8
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Adding an adaptive feedforward term in the nonlifi¢ar control law Eq. 5.29 yields

r=00+4—-J'Kps (5.31)

This in turn, suggests that the parameter adaption laws should be chosen as

é = "PnlﬁT(T’aQ:iln (},.)J—}(:B) 8

b=-WlI ) s (5.32)
which yields
V=-s"(Kp+D)8<0

Hence, it is seen that slowly varying environmental disturbances can be compensated for by
using the modified control law Eq. 5.31 where the feedforward term is updated through Eq.
5.32.

Simulation Study: Dynamic Positioning of the NEROV Vehicle

Again, consider the { DOF NEROV nonlinear equations of relative motion, Appendiz A.
This corresponds to the state vectors ® = (x,y,2,9)} and ¢ = (u,v,w,r)T. The adaptive
controller suggests that we write the system in the form of Eq. 5.80. Fluid motion in the z-
and y-directions (u; and vy ) caused by currents suggests that the unknown disturbance vector
should be chosen as

v = (v 020 v3)T

for the model in Appendiz A, Hence, the adaptive controller should be based on the “current-
free” terms:

m - Xy 0 0 0 0 —mr 0 Yiv
- 0 m— Y{,. G f . _ mr 0 0 —X,;u
M = 0 0 m-2Zy O Cle)=} % o o o
] 0 0 I, - N; | Yo Xouw O 0
Xo + Xuplud 0 0 0 ] g
n) — 0 Yu + Yypo|fvl 0 0 —
D(q) =- 0 0; " Zu + Zy bl ¢ 9(2) = 0
Q 0 0 Nr+Nr|r5t"| E 1]
Kr, K, 0 0 0 0 cp —-s¥p 0 O
o 0 0 ~-Kv,, Kg,, 0 0 Jiz) = s ey 00
B(q) = 0 0 0 0 Kp, Ky @=1% o 10
K7, LK1, 0 0 ] 9 0 0 01
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where all components of the fluid motion vector are removed. The desired outputs in surge
and sway were fized at x4 = 1 and yq = 1 m while the depth was switched between 24 = 2 m
and zg = 3 m. The desired heading angle was shifted between ¥y = +30 deg, see Figure 5.17,
m/fs and z; = 0.0 m/s was

An unknown constant current with &; = 0.9 m/s, g5 = —0.8

injected after t = 5s. Hence,

us cosy siny 0 Ty
v | =1 —sing cosyp 0
wy 0 0 1 3y

The current induced disturbance used in the simulation study are shown in Figure 5.16

s

0.5)

0.5

Ve

-1.5
0

Figure 5.16: Sea current velocities in the earth-fixed and the vehicle-fixed reference frame.
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Surge Sway

0.2 T Heave T 0.3 4 i

time [s] time s}

Figure 5.17: Desired outputs (upper plots) and tracking errors (lower plots) in surge, sway,
heave and vaw.
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The regulator parameters were chosen as Kp =diag(500,500, 500, 250), I' = 8.001 I,
W = 0.001 I and A == 1. The sampling rate was set at 10 Hz. The tracking errors for the
PD-controller and the PBAC are shown in Figure 5.17. The control inputs for the PBAC
are shown in Figure 5.18.

ul-ub frev/s}
20 Y ! T ' T

-15}- : L f U S N

5 10 15 20 25 30

time [s}

Figure 5.18: Control inputs for the PBAC with feedforward term.

Notice that there is a relatively small increase in the tracking error at t = 5s where the
current disturbances are injected. This shows that the adaptive controller yields high per-
formance even for relatively large current velocities as well as model misalignments. The
errors in the regressor matriz, due the assumption that current disturbances could be linearly
superpositioned in the nonlinear underwater vehicle equations of motion, did not the reduce
the performance of the controller. Other simulations also verified this.

5.4.3 Compensation of Input Uncertainties

It is well known that input uncertainties, c.f. Eq. 5.26, are crucial for the robustness
of the control system. For underwater vehicles this uncertainty is due to partly known
thruster and control surface characteristics. This problem was first studied by Fossen and
Sagatun(1991a, 1991b). They suggest that the input uncertainty can be incorporated in the
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control design simply by assuming that the uncertainties on the input matrix B were on
multiplicative from

Blg)=(I+4)B(g) , |4A;]<Uy (5.33)

Here I is the n x n identity matrix and A is an n x n unknown uncertainty matrix.

Hybrid (Adaptive and Sliding) Control
Substituting Eq. 5.33 into Eq. 5.28 yields

V= -s"D's+(J7s)T [(I1+ A) Bu— 6] +8'10
Taking the control law to be, Fossen and Sagatun{1991a, 1991b),
u= B ['ﬁémJTKDs—k.x sgn(J'ls)} , Kp=>0
yields
V=—s"(D"+Kp)s+(J'9)" [A (S8 - J Kps)~ (I +A) k.x sgn(J"5)]

After some straightforward calculations it is possible to show that the switching gain vector
k should be selected such that the elements k; > k! Vi where k' is

K =I-0U)" U886~ I Kps |+

Here the matrix U is defined in Eq. 5.33 and the matrix U is defined as

Ui U ... U
o= —gm Uaa ‘ —fvfzn
—&nl —Un2 ... Unn

The proof basically follows that of Eq. 5.21 in Appendix B. Substituting these expressions
into the expression for V finally yields:

V< —sT (D + Kp)s—n' (J7'8) <0

As in the previous case, Barbilat’s lemma ensures that 8 —+ 0 and thus & — Q as ¢t — 00. A
simulation study of the controller is found in Fossen and Sagatun(1991a, 1991b).
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Integral Control

Although the controllers discussed in this chapter all are of PD-type, integral action can
be obtained by simply letting f; #(7) dr be the variable of interest. Hence, the measure of
tracking 8 = & + A& should be replaced by:

o= 120+ Azfot:i:(‘r)dr
This in turn implies that the adaptive control law
T=00-J"Kps
can be expressed as

Y A t
T=00-JT (Kpz+22Kp&+ NKp f &(7)dr)
Ry L i I
K3 Kp Kj

where Kp, Kp, and K are the proportional, derivative and integral gains, respectively.



Chapter 6

Optimal State Estimation

When designing underwater navigation systems it is sought to design the state estimator
in such a manner that the measurement model does not dependent on the vehicle's hydro-
dynamic parameters. The time-varying behaviour of the hydrodynamic parameters due to
unknown disturbances and different operating conditions can drastically reduce the perfor-
mance of the state estimator. We also require a navigation system which is independent of
the vehicle we are using. Hence, we will exclusively use the vehicle’s kinematic equations in
our design.

The navigation system can be designed by applying well known Kalman filtering techniques
to combine the different sensors in an “optimal” manner. Under certain conditions like
observability, a state estimator (Kalman filter) also allows us to estimate the unmeasured
states. In this chapter, we will show how the different sensors can be integrated in two
independent state estimators, each designed for:

e Estimation of position ®; = (z,y,2)T and linear velocities ¢, = (u, v,w)7.
o Estimation of Euler angles &, = (¢,6,%)7 and angular velocities ¢, = (p,q,r)".

Recall that all the proposed nonlinear autopilots in the previous chapter were based on full
state feedback i.e. the assumption that: @ = (z,v, 2, 4,0,%)" and ¢ = (u,v,w,p, g,r)T were
measurable. In many applications this is not realistic. Hence, we will show how acceptable
estimates of # and ¢ can be obtained. The state vector estimates will be denoted by & and
g, respectively.

133
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6.1 Review of Optimal State Estimation

In control and guidance applications it is convenient to use a continuous-discrete version
of the extended Kalman filter to design the integrated navigation system. This particular
representation of the Kalman filter allows us to use coritinuous models for both the state
estimator and error covariance propagation while the state estimate update and error covari-
ance update are discrete. This implies that the continuous models can be sampled at a very
high sampling rate to avoid numerical difficulties while the measurement update rate can be
chosen differently for each sensors. This is particularly useful when having a large number of
sensors with different bandwidths. A summary of the continuous-discrete extended Kalman
filter is given in Table 6.1.

Table 6.1: Summary of continuous-discrete extended Kalman filter, Gelb et al. (1988).

System model & = f(x(t), 1) + v(t); v(t) ~ N(0, V(1))
Measurement model Y= hi(e(te)) twe; k=12 wp~NO,W)
Initial conditions z(0) ~ N(&,, X,)

Other assumptions Elv(t)ywl] =0 for all k and all ¢t

State estimate propagation

F(@(t),1)
A(@(),1) X (1) + X(2) AT(&(t),1) + V(1)

& o
Error covariance propagation | X =

Gain matrix Ki = Xx()D{(&()) [Du(&4()) Xe() DI (2:()) + W]
State estimate update E(+) = 25(-) + K [y — hi(&(-))]
Error covariance update Xx(+) zﬁ[I — K D(84(-))] X(-) I — K Dy(a:(-))]" +

XD (@)W D) X k()

Definitions A((t),t) = 2 3:’:(:) -

D(4(-)) = 2t

Lc(:)::i:(t)

T(t)=& (-
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Recall from Sectjon 2.1 that the kinematic equations can be expressed as:

ézl = Jl(wQ} Q‘II; Ty = ($!y:z)T; QI = (usvaw)T
xy = Jz(m2) “]2;" &y = ((,'15, 6)¢)T; Q?, == (pa q, T)T

where Jy(23) and J,(2;) are two transformation matrices. This decoupled structure will be
exploited in the next sections.

6.2 Estimation of Position and Linear Velocities

Underwater positioning of underwater vehicles are usually based on hydroacoustic navigation
like super short base-line (SSBS), short base-line (SBS) and long base-line (LBS) systems. In
the Ocean Basin Laboratory at the Marine Technology Center, MARINTEK the measure-
ments from four hydroacoustic transducers can be used to calculate the earth-fixed position
vector (X, ¥, z). The hydroacoustic positioning system can be improved by integrating a
depth sensor in the measurement model. Similarly the linear velocities can be measured by
using a Doppler sonar. However, a Doppler sonar is often found too expensive for many
commercial applications.

Example I: Position Measurements

A hydroacoustic positioning system can be combined with a pressure meter. This suggests
the following measurement models:

¢ Pressure meter:
The static pressure at a depth z is modelled as

Y1=pgz +po

where p, is the atmospheric pressure at the water surface, p is the water density and
g is the acceleration of gravity.

¢ Hydroacoustic navigation system:

The distance between the transducer and the vehicle can be expressed as

p=yE -2 —pP -y i=2,3,.,n

where (z:,yy, ) is the global position of sensor number i.
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The position measurement system is shown in Figure 6.1. Notice that if n > 3 we have
redundancy in the sensor system since only three measurements are required to calculate
the global position (%,9,2). Redundant measurements can be used to improve the state
estimates since it reduces the sensitivity to wild-points.

Hydroacoustic
positioning system

Pressure meter N

Figure 6.1: Optimal estimation of position and lineas velocities based on position measure-
ments.

The design can be further improved by including acceleration measurements in the mode],
This is illustrated in the next example,
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Example II: Position and Acceleration Measiirements

¢ Linear acceleration meter:

We recall from Newton’s 2nd law of linear momentum, Section 2.2, that the linear
accelerations can be expressed as:

ar = t—or+wg— (¢ + )+l (pg— )+ L, (pr + ¢
ay = v—wp+tur—I,(r*+p*)+L,(gr —p) + L (gp+ 7)
a: = w—ug+vp—L,(p" + @)+ ley(rp — §) + Ly (rg + p)

where {I;,,1y;,1.;) is the distance between the location of the i-th acceleration meter
and the vehicle’s centre of gravity. It is necessary to bias the output from the vertical
acceleration meter to allow for the acceleration component of 1¢g due to gravity. Com-
pensating for the effect of gravity, c.f. Section 2.4.3, suggests that the output from the
acceleration meters can be written as

Ty sinl&'-l—E
g
: ay
ny = —Cosf)smqﬁ-{-;w
a,
n, = 1-cos¢9cos¢)+-;?—

where the outputs n,,n, and n, are in ¢g. Note that the output n, is biased with 1g.

Figure 6.2 shows how the acceleration measurement can be included in the state estimator.
This design is superior to the first design since more sensor information is available. The
first example is based on the assumptions that the jerk can be described as white noise
i.e. #® = n(t) where 5(f) as white noise. This assumption can be violated if the vehicle’s
acceleration is changing fast. The first method can also yield poor velocity estimates if the
position measurements are noisy.

Simulation Study: Estimation of Linear Velocities

In the simulation study we used a measurement model similar to that in Example I to de-
scribe two of the hydroacoustic transducers located in the Ocean Basin Laboratory at NTH.
Besides this we included a« model of one single depth sensor in the measurement model. The
measurement noise used in the simulation study was obtained from ezperimental time-series
of the hydroacoustic transducers and a Keller EI-72 pressure meter. From Figure 6.1 it is
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Hydroacoustic
positioning systen

Pressure meter -

Acceleration
meters

Figure 6.2: Optimal estimation of position and linear velocities based on position and accel-
eration measurements.

seen that the estimator can be decoupled in one model for surge, sway and heave, respectively,
Hence, the state and error covariance propagation can be written as:

. 010

h,=Am=|0 0 1|4; t=1.3
0 060

)%; = A Xi(t) + Xi(t) AT + vV i=1.3

where 1; = (i1, iz, ia)? and V; = diag (vi1,viz, via). The corresponding state updates af
time k are:

lt) = G+ Ky [oe~ &)
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Map(t) = () + K2 [y — ()]

Mas(+) = Taul-}+ K [z — 2(-)]
This simple structure can only be applied to systems where the number of sensors are equal
to the number of positions to be estimated. We must also require that there is an inverse

mapping of the physical measurement model y = h(z,y,z) such that the state vector can be
calculated as (z,y, 2)7 = h™'(y). Indeed, this is true for the system:

yl = pgz+pa+m1
¥, = JE—2 P+ (y~3) 42— 2)2 +we
Yo = (@ —2)P 4 (y ~ 1) + (2 — 22)2 4wy

Here (21,31, 21} and (23,y2, z2) are the fized locations of the hydroacoustic transducers and
w; (i=1,2,8) is the measurement noise. The simulation results are shown in Figure 6.3.

1 X~, ¥- and z-position fm] 0.01 position errors [m]
! - !

0.005 FE NS IPLUNE, W1 BRI T
¢
-0.005
: -0.01

1 i 0015 :
0 5 10 0 5 10
time [s] time [s]
0.4 a, v andgw {m/s] 0.2 velacity elgrrors [m/s]

5 10

time [s} time [s]

Figure 6.3: Upper left: actual (dotted) and estimated (solid) positions, upper right: position
errors, lower left: actual (dotted) and estimated (solid) linear velocities and lower right:
linear velocity errors.



140 CHAPTER 6. OPTIMAL STATE ESTIMATION

6.3 Estimation of Euler Angles and Angular
Velocities
In this section we will describe how an optimal state estimator for the estimation of Euler

angles and angular rates can be designed. The sensor system is based standard inexpensive
Sensors.

Example III: Euler Angles and Angular Rate Measurements

The most basic sensors which can be used to measure the Euler angles and the angular rates
are:

¢ Inclinometers:

An inclinometer responds to the normal component of the gravitational acceleration.
For an underwater vehicle this implies that we can only measure the roll and pitch
angle and not the heading angle since there is no horizontal gravitational acceleration
component. Hence, the measurement model can be written as:

1= ¢
Yo =46

e Compass:

The vehicle’s heading angle can be measured by applying a simple flux-gate compass
which can be described with the measurement meodel:

Yz = ¢

¢ Angular rate sensors:

Angular rate sensors can be used to measure the Euler axis rates:

¢ = ptsingtanf g+ cosgtand r

= cos¢pq—singr
1& _ ?in_d{ COSQS

T
cos @ cos @
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or the vehicle-fixed rates

= é—sin@iﬁ
¢ = cosd b+ cosfsing o
—sin ¢ 8 + cos 8 cos ¢ ¥

i

The most simple sensors are usually based on the last principle. In Figure 6.4 it is shown
how two inclinometers, a compass and a three-axial vehicle-fixed angular rate sensor can
be integrated in a Kalman filter. This approach uses the three-axial rate sensor as inpuf
for the state estimator. An alternative method is shown in Figure 6.5 where all the sensor
measurements are included in the output vector y.

¢, 0

Inclinometers >

Compass .

=
3
I‘O‘

Angular rate
sensor

Jof)

F

Figure 6.4: Optimal estimation of Euler angles and angular rates.

It should be noted that the sensor systems discussed in this chapter are not the only solution
to the underwater navigation problem. There are, of course, other sensor configuration.
By applying more expensive sensors like gyroscopes, Doppler sonars etc, different block
diagrams can be obtained. Nevertheless, the basic ideas of underwater integrated navigation
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systems have been discussed. The proposed block diagrams are easy to implement and quite
inexpensive compared to more advanced sensor s

ystems used in military applications, for
example.

Compass *g
Inclinometers

h{-)

Angular rate gyro |92, I3 (&) *2

Figure 6.5: Optimal estimation of Euler angles and angular rates.

Experimental Results: The NEROV Sensor System

The experimental results are based on the NEROV sensor system, Fossen and Sogatun
(1991d), which consists of the following sensors:

¢ One ARS-C331-1A three-axial rate sensor (Watson Industries Inc.)

e Two LSOP-90 electric inclinometers (Schaevitz Inc.)

¢ One RFC-250 flux-gate compass (Robertson Tritech A/S).
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These sensors are used to measure the Euler angles and the body-fired angular rates. The
sensors are inlegrated in ¢ Kalman filter structure similer to that in Figure 6.5. In the
ezperiment o sampling rate of 20 Hz was used. The initial measurement covariance matriz
was chosen as

I T T 2 2 2
W(G) = arag (ainc! Tiner Teompr Trater arate!drate)

with the following values for the sensors static standard deviations:
Tine = 0.30 deg
Teomp = .75 deg
Urate = 0-25 deg/s

A sitmple wild-point algorithm was designed by updating the measurement covarience matrix
as (i=1..6):

where oi(k) is the standard deviation of the i-th measurement at time k and « is a constant
typically chosen in the interval 3 < o < 9. A continuous version of the Kalman filter was
used i.e,

& = A &(t)+ K(t) [y(t) - h(&())]
h{2(t)) = D &(t)

where
03x3 I3x3 03x3 ISx:B .
A= O3z Osxa Iays D= | Iy K(t) = XDTW-(¢)
03x3 03><3 03x3 03x3

The steady state error covariance matriz satisfies
AX + XAT _XDTW-'DX +V =0
This equation can be solved off-line for all possible “wild-point combinations” of the diagonal

elements in W. Since the state estimator consists of three integrators, we decided to choose
the covariance matriz V' as:

i
5 T*? I3, Gaxs O3xs
1
V= Oaxa ;%% Ixs Oaxa
2
O3xa Oaxa Tv? Isxs

where T' is the sampling rate and v is the mazimum deviation in jerk ie. |&®| < v. This
relationship was obtained by simply integrating the constant v three times. The experimental
results for the rolling and pitching motion are shown in Figures 6.6 and 6.7, respectively.
The NEROV sensor system is described more closely in Fossen and Sagatun (1991d) and
Tilman Hansen and Osen (1991).



144 CHAPTER 6. OPTIMAL STATE ESTIMATION
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Figure 6.6: Experimental results: rolling motion.
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20 . Actual (dotted) and estimated (solid) pitch angle [deg]

60 ; s ; f s
0

time [s]

40 . Actual‘ (dotted)‘ and estifnated (splid) ang|ular mte[in pitch]{deg[sl .

time [s]

3 . ‘Pitch angle estimation error [deg]

il i
0 m
Nys . i
2 . ; :

(8] 1 2 3 4 5 6 7 8 9 10
time {s]}

5 . . Angqlar rate ffstimation error in pitch [qegls}

.5 1 1 i s
O 1 2 3 4 5 6 7 8 9 10

time [s]

Figure 6.7 Experimental results: pitching motion.
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Chapter 7

Conclusions and Recommendations

This chapter concludes the work already presented and suggests areas where additional
studies would be beneficial.

7.1 Conclusions

The main purpose of this work have been to derive a comprehensive 6 DOF nonlinear ROV
model and investigate the feasibility of nonlinear control system techniques for the auntopilot
design for underwater vehicles.

The main motivation for using nonlinear models and control theory is that small underwater
vehicles are known to operate over a large number of operating points with no specific speed
dominating. Thus a linear control design will be quite laborious, since linearization and
gain scheduling techniques must be applied to each of the vehicle’s operating points. A
nonlinear model should also be used if the vehicle is allowed to perform coupled manoeuvres
at some speed. Another advantage of a nonlinear design is that the nonlinear kinematics,
thruster forces and hydrodynamic forces due to quadratic drag, Coriolis, centrifugal and
added mass coupling terms etc. can be understood and compensated for in the control
design. Understanding and modelling these effects can also be used to improve the robustness
and performance of the ROV. Uncertainties due to partly known thruster characteristics
can particularly yield poor performance. The experimental thruster characteristics of the
NEROV vehicle were obtained from an open water test to illustrate this problem. These
results were used to derive a nonlinear model of the thruster forces. Uncertainties in the
experimental data were compensated for in the control design.
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It is shown how the nonlinear underwater vehicle equations of motion can be written in a
compact form nearly similar to the representation used in robot manipulator control i.e.

e Vehicle dynamics:

Mq+C(4)q + D(§)g +g(z) = B(¢)u (7.1}

¢ Kinematics

& = J(z)q (7.2)

This representation is highly advantageous when designing nonlinear controllers which are
based on the well known properties of mechanical system analyses like the positiveness of
the damping matrix (D > 0), the positiveness and symmetry of the inertia matrix (M =
MT > 0) and the skew-symmetry of M — 2C. By exploiting these properties it is shown
how advanced nonlinear control theory yields a relative simple autopilot design. Indeed,
advanced nonlinear control design was found often to be simpler and more intuitive than its
linear counterpart. The following three nonlinear control design techniques are discussed in
depth:

¢ Feedback linearization techniques.
e Sliding control.

e Passivity based control.

Based on the nonlinear equations of motion, Egs. 7.1 and 7.2, globally stable autopilots for
underwater vehicles were both derived in the earth-fixed and vehicle-fixed reference frames.
These representations are classified as:

(i) g-frame formulation.
In the q-frame formulation the vehicle’s controller is formulated in the vehicle-fixed
reference frame, This representation is intended for control of the vehicle’s linear and
angular velocities. Only the vehicle’s dynamic equation of motion, Eq. 7.1, is used by
the controller.

(i) x-frame formulation.
The x-frame formulation is intended for position and orientation control. Hence, the
vehicle's controller is formulated in the earth-fixed reference frame in this representa-
tion. Both the vehicle’s dynamic and kinematic equations of motion, Eqs. 7.1 and 7.2,
are used by the controlier.
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Model Imperfectness due to parametric uncertainties is compensated by deriving adaptive
and self-tuning versions of the above control schemes. For the passivity based adaptive
controller a new parameterization which simplifies the representation of the adaptive con-
troller was derived. The adaptive scheme has also been modified to deal with slowly varying
environmental disturbances by adding an adaptive feedforward term to the nonlinear con-
troller. Especial care has been taken to compensate for input uncertainties due to partly
known thruster characteristics. This was done by deriving a hybrid {adaptive and sliding)
controller. Global stability is proven for all controllers by applying Barbilat’s Lyapunov-
like lemma. An experimental model of the NEROV vehicle was used in the simulation study.

Some new contributions to stick-fixed and stick-free stability analyses of underwater vehicles
in 6 DOF have been discussed. These stability criteria were based on well known techniques
like the Routh’s stability criterion, Lyapunov’s linearization method, Lyapunov’s direct
method for autonomous systems and advanced Lyapunov theory like Barbélat’s Lyapunov-
like lemma for non-autonomous systems.

Finally, navigation systems for underwater vehicles have been discussed. All the proposed
sensor systems were based on optimal filtering and state estimation (Kalman filtering). Since
a ROV’s hydrodynamic parameters are not perfectly known, a state estimator should be de-
signed such that it is independent of the vehicle’s hydrodynamic parameters. This was
achieved by exclusively using the kinematic equations of motion. Experimental and simmu-
lation results based on the NEROV sensor system were used to verify two of the proposed
methods,

7.2 Recommendations for Further Work

It is hoped that the NEROV vehicle will be operative in spring 1991 such that the nonlinear
controllers can be implemented and tested in the Ocean Basin Laboratory at the Marine
Technology Center (MARINTEK). These experiments should be compared with the perfor-
marnce of a state-of-the-art linear controller. The complexity of the chosen model as well as
the robustness for errors in the regressor matrix have to be investigated more closely.

Particular focus should be placed on environmental disturbances. Although the PBAC dis-
cussed in this thesis can compensate for slowly varying disturbances like sea, currents, special
attention should be given to waves, In the wave affected zone it might be natural to separate
the vehicle’s model into a low frequency (LF) and a high frequency part (HF) similar to the
approach used in dynamic positioning of ships by Balchen et al. (1976). For underwater
vehicles capable of moving in 6 DOF this is still an unsolved problem, mainly due to the
difficulties of estimating the wave motion when model uncertainties are present.
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A future application could be to replace the hydroacoustic navigation system with e.g. an un-
derwater camera to determine the earth-fixed x- and y-coordinases. Hence, offshore pipeline
tracking and inspection could be performed with a fully autonomous underwater vehicle.
Besides this, AUVs can also be used in telerobotic research. In teleoperation it is desirable
to remove the time delay in the communication channel caused by a hydroacoustic commu-
nication link, for instance. This could easily be tested in the Ocean Basin Laboratory.



Appendix A
The NEROV Vehicle

A.1 The NEROV General Arrangement
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A.2 The NEROV Equations of Motion

The underwater vehicle equations of motion are based on the following assumptions:

1. The axes of the local coordinate system were found to deviate with less than 2 degrees
with the principal axes of inertia of the vehicle. This suggested that the inertia tensor
could be chosen as a diagonal matrix i.e. Ly=1,=1,=10

2. The vehicle’s origin was chosen to coincide with the CG ie. rg = (0,0,0)7
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3. xz- and yz-plane symmetries suggested that the vehicle’s CB could be described with
only one component, namely 75 = (0,0, zg)7.

4. The vehicle is neutrally buoyant which implies that W = B,

5. Only diagonal elements of the added mass matrix’ M 4 and damping matrix I are
considered.

Underwater Vehicle Dynamics and Kinematics

The NEROV equations of motion can be expressed in a compact form as

Mg, + C(4,)4, + D{(4,)¢, + g(=) = B(q,) u
¢ =J(z)q

Here M is an n x n inertia matrix including hydrodynamic added mass, C is an n x n
nonlinear matrix including Coriolis, centrifugal and added mass terms, D is a 6 x 6 matrix
of dissipative terms, such as potential damping, viscous damping and skin friction, B is an
n X p input matrix, g is an n x 1 vector of restoring forces and moments and J is an n X n
transformation matrix. For the NEROV vehicle it was convenient to derive both simplified
6 DOF and 4 DOF models.

Simplified 6 DOF Model {(n=6, p=6)

m— Xy 0 0 0 0 0
0 m— Y, 0 H 0 0
_ 0 0 m - Ly 0 0 0
M = ) 0 0 I — Ky 0 0
9 1 0 0 I, — My 0
0 ] 0 0 0 I, — N;
0 T my 0 — Zo Uy Yo,
mr 0 —~mp Zywy 0 Xty
Coy —myg mp 0 ~Yov, Xty 0
Cle,) = 0 ~Zyw, Yyt 0 (I. - Ni)r —(I, - My)q
Zywy 0 —Xau, (I, — Niyr 0 (I — Kp)p
Yo, Xyu. 0 (Iy — M@)q —(I; - K:)p 0
Xu +Xu|u|h“f% 0 o [0 ¢ 0
3} Yu + Yviu”'uri 0 0 ¢ 0
<y 0 0 Zw + Zutw) ] 0 o 0
D(q,) = - 0 0 0‘ I Kp + Kypp)lpd G 0
Q 0 Y] 4] Mq+Mq|q||q, Q
0 0 o 0 o N+ Nyjpjiri
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0
0
_ 0
g(z) = z5B cosfsin ¢
zgB sinf
0
Kq, Ky, 0 0 0 0
0 0 - K, K, 0 0
oy 0 0 0 0 Kr,, Koy,
B(9) = 0 0 IsKpy, —LKn, 0 0
0 0 0 0 ~lIs Ky, leKTy
—4Kg, bLEg, O 0 0 0

The 6 DOF kinematic transformation matrix J{z) is described in Section 2.1.

Simplified 4 DOF Model (n=4, p=6)

This model is based on the additional assumption that the vehicle is metacentre stable such
that the vehicle’s rolling and pitching motion can be neglected This in turn requires the
vehicle to be “balanced” such that BG, >> 0.

m— Xy 0 0 0 ] ~mr 0 Y;v,
_ 0 m - Yy 0 0 <y me 0 0 —Xzus
M = 0 0 m-Zy 0 Cla)=1 0 0 0
0 0 6 I, - N: -Yor, Xgu, 0 0
Xu +Xu|u|1‘"-l“| 0 o o} 8
- 0 Yo + Yoruiloel 0 o _
D(Qr) == It] QI ;v Zw + Zw|w||wrl 1] g(a:) - 0
0 0 V] Ny +N,,|,.|{r'| 0
KTn KTm 0 0 0 0 C‘Q’) -—81,b 0 0
o 0 0 -Kp, K, 0 0 REREX
B(q) = 0 0 0 0 Kpn, Kn, J@)=17% 9 1 ¢
LKy, LEKr, 0 0 0 0 ¢ 0 0 1
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A.3 Simulation Model

Some of the hydrodynamic parameters of the NEROV vehicle were found by full-scale ex-
periments in the Ocean Basin Laboratory at the Marine Technology Research Institute
(MARINTEK), Fossen and Sagatun (1991¢).

The simulation model used in this thesis is based on the following numerical values:

(1) Hydrodynamic Derivatives and Damping Coefficients:

Xo = -30 kg X, = -80 kg/s Xup = -120 kg/m
Yo = -110kg Y, = -110 kg/s Yo = -200 kg/m
Zy = -80 kg Ly = -100 kg/s Lol = -150 kg/m
K, = -15kgm K, = -30kgm/s Kpypy = -50kgm
M; = -20kgm M, = -40kgm/s My, = -40kgm
Ne = -lkgm N, = -l0kgm/s Ny = -15kgm

(2) Weight and Balance Data:

The weight and balance data were found by simple experimental set-ups at the Division
of Engineering Cybernetics (NTH), Fossen and Sagatun (1991c). The z-axis is positive
upwards,

zg = 0Om zg = 0Om

Yy¢ = Om yg = O0m V. = 0.0183m?
2 = 0m zg = {0.04m m = 180kg

I, = 25kgm? I, = 29kgm? I, = 28kgm?
Iy = 0kgm? I: = 0kgm? I, = Okgm?
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Proof of Equation 5.21

Consider Eq. 5.20 which can be expressed as:

V=s"[(f = F)+ Alau— )~ (1 + A) kx sgn(s) |

= is; ff-f+ iAU(ad’j ~f) = (U4 Au) ki sgnlsi) — Y. Ay kj sgn(s;)

j=1 j=1, 3

Recall that the uncertainties are assumed to satisfy the following bounds:
| @)=~ fi(=) 1< &
Gz} = (T+A)G (x) , |A;ISUy
where (1 = 1,...,m}, {j =1, ...,m) and 7(A) < 1. Hence
V< —n7ls| = —Zm lsg €0, (>0, i=1,..,m)
i=1
if the switching gains k; satisfy

(U-U) bz~ 3 Ughi+6+3 Uslaw - 7] +m:

J=1, g i=1

for (z =1,..,m}. This in turn implies that there exists a k; > k! for (¢ = 1,..,m) such that:

1-Uy Usy Usm ; Uy e .. hm e
Uz, i-Us Unm k & Uy Up Uz Lear = 47 1?.1
: : : N B DR el B - : 5 T
) ’ ) ! " . ' _ Fe m
Upni Un2 oo 1= Unmn ko b Umni Umz .. Umm fodm = fm | 7
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Defining a matrix U as:

U11 ’—Ulz ‘"“‘Ulm
-ﬁm _ _I‘]21 U22 . ”"‘:D.r2m
—Ymt Um2z ... Umm

finally yields

T-U)k'=6+U]as—F(2) | +7

which concludes the proof.
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