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Recovery of Independent Sparse Sources From
Linear Mixtures Using Sparse Bayesian Learning
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Abstract—Classical algorithms for the multiple measurement
vector (MMV) problem assume either independent columns for
the solution matrix or certain models of correlation among
the columns. The correlation structure in the previous MMV
formulation does not capture the signals well for some applica-
tions like photoplethysmography (PPG) signal extraction where
the signals are independent and linearly mixed in a certain
manner. In practice, the mixtures of these signals are observed
through different channels. In order to capture this structure,
we decompose the solution matrix into multiplication of a sparse
matrix composed of independent components, and a linear mixing
matrix. We derive a new condition that guarantees a unique
solution for this linear mixing MMV problem. The condition can
be much less restrictive than the conditions for the typical MMV
problem in previous works. We also propose two novel sparse
Bayesian learning (SBL) algorithms, independent component
analysis sparse Bayesian learning (ICASBL) and fast independent
component sparse Bayesian learning (FASTICASBL), which
capture the linear mixture structure. Analysis of the global and
local minima of the ICASBL cost function is also provided, and
similar to the typical SBL cost function it is shown that the local
minima are sparse and that the global minima have maximum
sparsity. Experimental results show that the proposed algorithms
outperform traditional approaches and can recover the signal
with fewer number of measurements in the linear mixing MMV
setting.

Index Terms—Sparse Bayesian learning (SBL), multiple mea-
surement vectors (MMV), compressed sensing (CS), independent
component analysis (ICA).

I. INTRODUCTION

Sparse signal recovery and compressed sensing are being
increasingly used in the area of signal reconstruction [1]–[4].
Both topics are applicable in a wide range of applications such
as imaging [5], [6], biomedical signal processing [7]–[9], radar
signal processing [10]–[12], and remote sensing [13]. A typical
noiseless single measurement vector (SMV) problem employs
the following model,

y = Φx, (1)

where Φ ∈ RM×N (M � N ) is a known dictionary matrix,
x ∈ RN×1 is an unknown sparse vector with r nonzero
elements, and y ∈ RM×1 is the measurement vector. In the
SMV problem, the task is to estimate the vector x. To ensure
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a unique global solution, the number of nonzero entries in x
has to be less than the following threshold [14],

‖x‖0 <
Spark(Φ)

2
, (2)

where ‖x‖0 denotes the number of nonzero elements of the
vector x and Spark(Φ) is defined as the smallest number of
columns of Φ that are linearly dependent [14].

There are many applications such as electroencephalogram
(EEG) [15] and photoplethysmogram (PPG) [7] signal es-
timation where a sequence of the measurement vectors are
available (See Section VIII-D for more details about rPPG
and PPG applications.). In such cases, the model in (1) can
be generalized into the multiple measurement vector (MMV)
problem

Y = ΦX, (3)

where Y =
[
y1y2 · · ·yL

]
∈ RM×L is the observation

matrix consisting of L measurement vectors, and X =[
x1x2 · · ·xL

]
∈ RN×L is an unknown matrix (in this paper,

we consider L � N ). One approach for solving the MMV
problem is to consider it as multiple SMV problems and solve
for each column of X separately. However, a key assumption
in the MMV model is that the support (i.e. indexes of nonzero
entries) of every column in X is identical (referred as the
common sparsity assumption in literature [16]), which enables
us to solve the MMV problem by the following optimization

min
X
R(X), subject to Y = ΦX, (4)

where R(X) denotes a count of the number of nonzero rows
of X. This MMV optimization can recover uniquely X with
less restrictive condition [17],

R(X) <
Spark(Φ) + Rank(Y )− 1

2
. (5)

The condition in (5) is less restrictive than the condition (2)
in SMV whenever Rank(Y ) > 1.

In signal reconstruction for applications like PPG or remote
PPG (rPPG), the desired signal is often contaminated with
artifacts and noise which are independent [18]–[20]. The in-
dependent components are mixed and observed through some
channels or sensors. Mathematically speaking, each column of
Y represents a linear mixture of these signals; i.e.,

Y = ZA, (6)

where Z ∈ RM×L whose columns, zi, include the non-sparse
sources, for example PPG and rPPG signals in time domain,
and A ∈ RL×L is an unknown full-rank mixing matrix. The
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problem in (6) is called instantaneous blind source separation
(BSS) problem. The problem of estimating Z or A from Y
has been well discussed in BSS and independent component
analysis (ICA) literature [21]. Many algorithms were proposed
to solve (6) by finding the sources as independent as possible
using an information-theoretic cost function such as minima
of KullbackLeibler divergence or maximization of cumulants
[22]–[25], or high-order cross-cumulants [26]–[28]. ICA is
applied first for extracting rPPG [18], [29] and PPG [19], [30]
signals, and then discrete cosine domain (DCT) or fast Fourier
transformation (FFT) is employed to obtain the heart rate.
However, the resolution of FFT or DCT and the performance
of ICA algorithms decrease when a small number of samples
are available. This results in a poor estimate of the heart rate
[31], [32].

The vectors zi can be sparse in a domain D with the basis
in dictionary matrix Φ. For instance PPG and rPPG signals
are sparse in DCT or FFT domain. One can write

Z = ΦS, (7)

where S =
[
s1s2 · · · sL

]
∈ RN×L is an unknown source

matrix including L source vectors. Using (6) and (7), X
including linear mixtures of the sources in domain D can be
written as

X = SA. (8)

Considering the model in (8) for the solution matrix leads to a
new class of MMV problems. It will be explained in Section III
that the uniqueness condition for recovery of X can be further
relaxed compared to the general MMV model.

In [33]–[36], algorithms based on generalized morphologi-
cal component analysis (GMCA) were proposed which takes
advantage of the sparse representation of Z using the basis
in Φ to estimate Z and A. In classical instantaneous BSS
problem, estimating either Z or equivalently A solves the
problem in (6), but there are an infinite number of S which
satisfy (7) or an infinite number ofX which satisfy (3). In PPG
or rPPG application, using classical BSS algorithms, which
estimate Z and A, may not be useful. This is because the
recovery of the locations of nonzero elements in S or nonzero
rows of X is the main parameter of interest because these
locations include the heart rate frequency information. The
union of the supports of si or the support of X involves
the nonzero elements’ locations. In Section III, we show
mathematically that recovery of S requires more restrictive
conditions compared to recovery of X . Therefore, it is vital
to have the exact recovery of the support for X.

Many different algorithms have been proposed to recover
the sparsest vector x for the SMV problem. One approach
is to obtain a sparse representation through a greedy search
algorithm like orthogonal matching pursuit (OMP). It was
shown in [37], [38] that under specific conditions, OMP could
find the sparsest representation of the signal. In addition,
a popular approach is a regularization framework where a
regularization penalty is introduced to promote sparsity. An
example of this is using the `p norm to approximate `0 norm
which is a popular analytical approach. In particular, when

p is equal to 1, this leads to a convex optimization prob-
lem [39], [40]. Other regularization penalty functions, with
fewer theoretical guarantees, lead to the reweighted `1 and `2
norm minimization algorithms [3], [41]–[43] which practically
provide superior sparse recovery performance over `1 norm
minimization. In addition to the regularization framework,
many algorithms have been developed based on a Bayesian
framework [44]–[47]. One of the important group of Bayesian
approaches was proposed in [48], [49] and extended in [50]–
[54]. In [51], the sparse Bayesian learning (SBL) algorithm
was introduced for the SMV problem. One advantage of
SBL is that all the local minima are sparse (‖x∗‖0 ≤ M ).
Moreover, the SBL algorithm enjoyed having fewer number
of local minima than the classical algorithms like the focal
underdetermined system solver (FOCUSS) family [3], [16].

It has been shown that sparse recovery performance can be
considerably improved compared to SMV algorithms while
using multiple measurement vectors [16], [55], [56]. Con-
sequently, many SMV algorithms were extended to address
the MMV problem. For example, variants of OMP were
proposed for recovering MMV that shared a joint sparsity
pattern [57], [58]. In addition to the extensions of the OMP
approaches, the regularization frameworks were developed for
joint sparse recovery [16], [55]. Among the MMV approaches,
Bayesian algorithms have attracted much attention due to their
recovery performance. In the family of Bayesian algorithms,
the extensions of SBL were developed for MMV [50], [59]–
[61]. For instance, a block sparse Bayesian learning framework
was presented in [60], which transformed an MMV problem to
an SMV problem in order to capture the structure of nonzero
rows ofX. The algorithm was extended in [59]. In [60], it was
shown that the performance of sparse recovery was improved
by modeling the structure of the nonzero rows of X.

Among the algorithms for MMV, Bayesian approach offers
superior performance [62] as well as flexibility by captur-
ing different models for X motivated by the needs for the
various applications [53], [60], [63]. Most of existing MMV
algorithms assume that each row of X is independent and
identically distributed (i.i.d). This is not suitable for many real-
world scenarios, since practically rows of X will have certain
structures, like temporal structure. In [53], it was shown that
the recovery performance of exiting algorithms was affected
by the temporal structure. To overcome this problem, the AR-
SBL algorithm was proposed in [53] where each row of X
was modeled as a first order autoregressive (AR) process with
the AR coefficients learned from the observations. In [60], the
authors generalized the correlation model to be arbitrary and
developed the temporal multiple sparse Bayesian learning (T-
MSBL) algorithm which performed well for some real world
signals [64]. In this algorithm, the covariance of the i’th row of
X, was estimated in the learning procedure in order to capture
the temporal structure. However, these approaches might not
be accurate in some other applications, where X is a results of
mixtures of independent sparse components, such as in image
separation [33], [65], [66], and PPG signal extraction [7], [8],
[67].

Motivated by applications such as PPG and rPPG, we first
introduce a new model for X with a new correlation structure
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in (8) for the MMV problem. Based on the model, we
obtain a new uniqueness condition for recovery of X from
the observation matrix Y . This condition can be much less
restrictive than the conditions obtained in the previous works
for the general MMV model. In addition, a novel algorithm
is proposed called independent component analysis sparse
Bayesian learning (ICASBL) based on the independence as-
sumption on the sources in S. Analysis of the global and
local minima of the ICASBL cost function is also provided,
similar to the typical SBL formulation that ensures sparsity of
local minima and the sparsest property of global minima. For
practical use, a fast algorithm is needed. For this purpose, we
propose fast independent component analysis sparse Bayesian
learning (FASTICASBL) by using some approximations. The
simulation results show the superiority of sparse recovery
performance of our proposed algorithms ICASBL and FAS-
TICASBL.

The main contributions of this paper are as follows:

• A new class of MMV model for capturing linear mixtures
of independent sparse signals.

• A new condition for recovering X uniquely in the linear
mixing MMV model. The new uniqueness condition is
less restrictive than that of the general MMV model in
certain regime.

• A corresponding Bayesian algorithm, ICASBL, for solv-
ing the linear mixing MMV problem.

• A fast version of ICASBL algorithm.
• Analytical proof that ICASBL cost function enjoys spar-

sity of local minima and sparset global minima, similar
to the original SBL.

The rest of the paper is organized as follow. Section II
introduces the new model for X and the formulation of
the sparse recovery problem based on the new structure. In
Section III, the uniqueness condition for X based on the new
model is presented. In Section IV, the ICASBL algorithm is
presented. FASTICASBL algorithm is derived in Section VI.
Section VII provides analytical results on the global and local
minima of the ICASBL cost function. Section VIII provides
experimental results to support the efficacy of the developed
algorithms. Finally, conclusions are drawn in the last section.

Notations:

• ‖s‖0, ‖s‖1, ‖s‖2, ‖A‖F denote the `0 norm of the vector
s, the `1 norm of s, the `2 norm of s and the Frobenius
norm of matrix A, respectively.

• R(X) denotes the number of nonzero rows in the matrix
X .

• diag{a1, · · · , aL} denotes a diagonal matrix with diago-
nal elements being a1, · · · , aL.

• For a matrix A and a vector s, A(i,j), and s(i) denote
the element that lies in the i-th row and the j-th column
of A and i-th element of s respectively.

• A ⊗ B represents the Kronecker product of the two
matrices A and B. Tr(A) denotes the trace of A. AT

denotes the transpose of A.
• vec(A) denotes the vectorization of A formed by stack-

ing its columns into a single column vector.
• A(k), a(k) and Θ(k) show matrix A, the vector a and

Fig. 1. Visual representation of the structure in (8).

the set Θ(k) updated in the k’th step of the proposed
algorithm, respectively.

II. PROBLEM STATEMENT

The targeted MMV problem to be solved contains the
solution matrix X which includes linear mixtures of the
sources in domain D, can be written as

Y = ΦX, X = SA. (9)

The multiplication of the source matrix S and the mixing
matrix A results in X, which consists of L linear mixtures
of the sources. The i’th column of S consists of a sparse
vector with ri number of nonzero elements, i.e. R(si) =
‖si‖0 = ri. There is no other structure imposed on S other
than the fact that each column of S is sparse. Since A is
a full-rank matrix and independent from S, this implies that
Rank(X) = Rank(S).

Fig. 1 shows visually the structure described by (8) where
each row of S can have fewer number of nonzero elements
compared to X while both S and X have the same number
of nonzero rows. Later, it will be shown that recovering S and
A with the structure in (8) can help to recover X with fewer
number of measurements M .

The sparsest representation of S is the solution to the
following optimization problem,

(P0) : min
S,A

L∑
i=1

‖si‖0, subject to Y = ΦSA,X = SA

and

√√√√ L∑
j=1

(
A(i,j)

)2
= 1. (10)

In general, solving (P0) requires enumerating all the subsets
of set {1, · · · , N} for all si. The complexity of such a subset-
search algorithm grows exponentially with the dictionary size
N . The global minimum of (10) leads to S which is as sparse
as possible.

Remark 1. In (10), the solution S has the least number of
nonzero elements. Since the aim of the MMV problem is to
find X, in this paper X = SA is also called as the solution.
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Remark 2. In this work it is assumed that the following
condition holds

Rank(Y ) = Rank(X).

III. UNIQUENESS IN THE `0 NORM MINIMIZATION

We now discuss two aspects of the MMV problem in (10).
They are conditions for uniqueness for X, and recovery of A
and S from X.

Initially, a condition is found that leads to a unique solution
for X by minimizing the `0 norm in (10) for a known
matrix A. Then, we derive a condition for the case with an
unknown matrix A. It is shown that these conditions can be
less restrictive than the condition derived for the typical MMV
problem in (5) assuming row sparsity.

A. Uniqueness condition for recovering matrix X

This subsection deals with the uniqueness condition for X
while minimizing (10). In previous MMV works, R(X) is
minimized, however, in this paper we minimize

∑L
i=1‖si‖0.

The value of R(X) depends on the locations of the nonzero
elements of S. R(X) is equal to or larger than the sparsity of
each column of S and is equal to or less than the summation of
nonzero elements of S; i.e., maxi {ri} ≤ R(X) ≤

∑L
j=1 rj .

The lower bound is obtained when the support of each column
of S is a subset of the support of the column of S with
the highest number of nonzero elements. The upper bound
is attained when there is no common support between the
columns of S. This shows that X is less sparse than S; i.e.,
R(X) ≥ ri for all i.

In the following two theorems, the sufficient conditions are
found for a unique X to the problem (P0) if A is known, and
later for an unknown A. An example is provided which shows
solving (10) can be less restrictive than minimizing R(X).

Theorem 1. Let source matrix S̃ ∈ RN×L with columns
s̃i ∈ RN×1 and each column is a sparse vector with ri nonzero
elements. If matrix Ã is known and full-rank, matrix X will
be a unique solution to the problem (P0), if Y = ΦS̃Ã,
X̃ = S̃Ã, and

max
i
{ri} <

Spark(Φ)

2
. (11)

Furthermore X = X̃.

Proof. See appendix A.

If A is known, the MMV problem in (3) and (8) can be
changed into L SMV problems. Therefore, the source with
the highest number of nonzero elements imposes the most
restrictive condition as given in (11).

Now a sufficient condition is found such that the solution,
X = SA, to (P0) is unique when A is unknown and full-
rank.

Theorem 2. Let source matrix S̃ ∈ RN×L with columns
s̃i ∈ RN×1 and each column is a sparse vector with ri nonzero
elements. With an unknown full-rank matrix Ã, matrix X̃ will

be a unique solution to the problem (P0), if Y = ΦS̃Ã,
X̃ = S̃Ã, and

max
i
{ri}+

L∑
j=1

rj < Spark(Φ). (12)

Proof. See appendix B.

By the following example, it is shown that the condition
obtained in (12) can be much less restrictive than the condition
given in (5).

B. Example

Let vectors si for i ∈ {1, · · · , L} be r-sparse and matrix
A be full-rank. Assume that the columns of S do not have
common support. Then the number of nonzero rows of X is
Lr. For solving (4), the condition (5) has to be satisfied. For
this example it is given by

L(2r − 1) + 1 < Spark(Φ), (13)

while if the problem (10) is solved, then, using (12), the unique
condition for this example is given by

r + Lr < Spark(Φ). (14)

The left hand side of (13) is larger than (14) if L > 1 and
r > 1. Fig. 1 shows the problem (10) when the columns of
the matrix S have no common support. It can be seen that S
is sparser than X.

C. Condition for estimating the matrices S and A up to a
permutation and a scale

The uniqueness condition for recovery of X from Y was
discussed. Although X can be uniquely recovered under the
condition (12), infinite number of solutions for S and A
exist. For example if the solution is written as X̃ = S̃Ã,
the multiplication of the matrices S̃′ = S̃D−1P−1 and
Ã′ = PDÃ also gives X̃, where P is a permutation matrix
and D is a diagonal matrix. In a practical scenario, any
solution like {S̃′, Ã′} is acceptable because the target is to
extract the desired sources up to a scale. The scale ambiguity
can be easily avoided by assuming a constant for the norm
of each row of A. In this paper, the `2 norm of each row of
matrix A is set to 1 to avoid the scale ambiguity.

Now lets discuss the condition under which the matrices S
and A can be estimated up to a permutation and a scale.

Theorem 3. Let {S̃, Ã} be a solution to the problem (10).
Let s̃i and s̃j be ri-sparse and rj-sparse, respectively, with
no common support for i 6= j. Any other global minima will
be obtained by S∗ = S̃P for a permutation matrix P if the
condition (12) is satisfied.

Proof. See Appendix C.

If there is no further assumption on source and mixing ma-
trices, the permutation and scale ambiguities are unavoidable.
However, since the sources are separated from each other, all
the possible solutions are acceptable.
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Remark 3. In order to obtain a unique X from optimiz-
ing (10), there is no need for s̃i with no common support.

In the following sections, we propose two algorithms that
recover the sources S̃, Ã, and X̃.

IV. INDEPENDENT COMPONENT ANALYSIS BASED SPARSE
BAYESIAN LEARNING

A Bayesian framework is used to estimate S and A. This
is motivated by the flexibility of the Bayesian framework for
incorporating structure and the success of the SBL family
of algorithms. This work develops an SBL type algorithm
for the problem of interest. Assuming the observations are
contaminated with noise, the observation model is as follows

Y = ΦSA+N ,

X = SA, (15)

where matrix N ∈ RM×L is the observation noise matrix.
It is convenient to convert the matrix formulation to an

equivalent vector problem for tractability and for algorithm
development. For this purpose the following definitions are
useful.

Definition 1. A linear transformation vecm,n(.) : Rm×n →
Rmn×1 of a matrix B ∈ Rm×n converts the matrix into a
column vector as

vecm,n(B) =
[
B(1,1), · · · ,B(m,1),B(m,2), · · · ,B(m,n)

]T
,

vec−1
m,n

([
B(1,1), · · · ,B(m,1),B(m,2), · · · ,B(m,n)

]T)
= B.

If the operator vec is applied to both sides of (15), it results

vecN,M (Y T ) =vecN,M ((ΦSA)T ) + vecN,M (NT )

=(Φ⊗AT )vecN,L(ST ) + vecN,M (NT ),
(16)

where the operator ⊗ denotes Kronecker product.
For the sake of simplicity, let yv = vecL,M (Y T ), sv =

vecL,N (ST ), nv = vecL,M (NT ) and φA = Φ ⊗AT , then,
we can write (16) as

yv = φAs
v + nv. (17)

This leads to an SMV problem where the dictionary ma-
trix φA is not known because of its dependence on the
unknown A. To model the noise, let elements in the noise
vector be independent and identically Gaussian distributed,
i.e., nv(i) ∼ N (0, σ2), where nv(i) is the i’th element in n

and σ2 is the noise variance. The likelihood of model (17)
is obtained by

p(yv|sv;A, σ2) = (2πσ2)−
LM
2 exp

(
− 1

2σ2
‖yv − φAs

v‖22

)
,

(18)

In order to find a sparse sv to (18), a prior distribution for sv

is necessary. Following the SBL approach [51], it is assumed
a Gaussian prior for sv as

p(S; Γ) = p(sv; Γ) =

L∏
i=1

N∏
j=1

(2πγij)
− 1

2 exp

(
−
S2

(i,j)

2γij

)
,

(19)

where γij are hyperparameters controlling the prior variance
of each element of matrix S and matrix Γ is

Γ =


γ11

γ12

. . .
γLN

 . (20)

By proper choice of a prior on the hyperparameters Γ, one
can impose a super-Gaussian prior on S which are known
to be sparsity inducing [45]. However, based on the past
experience with SBL a non-informative prior has been found to
be sufficient and useful [51], [60]. This is equivalent to, from
an algorithmic point of view, considering Γ as a deterministic
unknown. This is the approach adopted in this work. For fixed
values of the hyperparameters governing the prior on sv , the
posterior density of the sources given the measurements is
Gaussian and is given by

p(sv|yv; Θ) = (2π)−
LN
2 |Σsv |−

1
2

exp

(
−1

2
(sv − µ)

T
Σ−1

sv (sv − µ)

)
, (21)

where the hyperparameters Θ = {Γ, σ2,A} and the mean,
µ, is

µ = σ−2ΣsvφA
Tyv, (22)

and the covariance matrix, Σsv , is

Σsv = (σ−2φTAφA + Γ−1)−1. (23)

Consequently, given the hyperparameters Γ, σ2, matrix A,
and the observations, the maximum aposteriori probability
(MAP)/minimum mean squared error (MMSE) estimate of sv

is given by

ŝv = µ =
(
φTAφA + σ2Γ−1

)−1
φTAy

v. (24)

The estimation of the source matrix is readily obtained as

Ŝ = vec−1
N,L(ŝv). (25)

The sparsity of ŝv is controlled by γij in Γ. During the
estimation procedure, when γij tends to zero, the associated
(L(i− 1) + j)’th element of ŝv tends to zero or the associated
element in i’th row and j’th column of Ŝ tends to zero.

Evidence maximization or Type-II maximum likelihood
is exploited for estimating the hyperparameters [48]. The
hyperparameters can be learned from marginalizing the obser-
vations over sv and then performing ML optimization. In the
following section, we discuss the learning of hyperparameters
in detail.

V. HYPERPARAMETER ESTIMATION

In order to find the hyperparameters Θ, the expectation
maximization (EM) algorithm is utilized for maximizing
p(yv; Γ, σ2,A).

p(yv; Γ,A, σ2) =

∫
p(yv|sv;A, σ2)p(sv; Γ)dsv

=(2π)−
LM
2 |Σyv |−

1
2 exp

(
−1

2
(yv)

T
Σ−1

yv yv
)
,

(26)
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where Σyv = σ2I + φAΓφTA. Minimizing L(Θ) in the
following equation is the same as minimizing − log p(yv; Θ),
because they are equal up to an additive constant,

L(Θ) = log |Σyv |+ (yv)
T
Σ−1

yv yv, (27)

where Σyv = σ2I + φAΓφTA. The actual EM formulation
proceeds by treating sv as hidden variables and then max-
imizing the following objective function with respect to the
parameters,

max
Γ,σ2,A

Esv|yv;Θ

{
p
(
yv, sv; Γ, σ2

)}
, (28)

where p
(
yv, sv; Γ, σ2

)
= p

(
yv|sv;A, σ2

)
p (sv; Γ) . The

parameters are updated as follows. Detailed derivation of
the parameter update procedure is presented in Appendix D.
Hyperparameters γij are updated as

γ
(k+1)
ij =

(
Σ

(k)
sv

)
(i+j)

+
(
µ

(k)
(i+j)

)2

. (29)

The variance σ2 is updated as(
σ2)(k+1)

=
‖y − φA(k)µ(k)‖22

ML

+

(
σ2
)(k)∑N

i=1

∑L
j=1

(
1−

(
γ

(k)
ij

)−1 (
Σ

(k)
sv

)
(i+j)

)
ML

. (30)

In order to update A, the term Esv|yv;Θ(k)

{
‖yv − φAs

v‖22
}

is minimized with respect to A leading to the following update
rule

A(k+1) =
(

ES|Y ;Θ(k)

{
STΦTΦS

})−1

× ES|Y ;Θ(k)

{
STΦT

}
Y ,

(31)

where ES|Y ;Θ(k)

{
STΦT

}
is given by

ES|Y ;Θ(k)

{
STΦT

}
=vec−1

L,N

(
µ(k)

)
ΦT , (32)

and the (i, j)th element of the matrix ES|Y ;Θ(k)

{
STΦTΦS

}
is given by(

ES|Y ;Θ(k)

{
STΦTΦS

})
(i,j)

= Tr
(
ΦTΦES|Y ;Θ(k)

{
sjs

T
i

})
.

(33)

The elements of ES|Y ;Θ(k)

{
sjs

T
i

}
can be obtained by

ES|Y ;Θ(k)

{
S(i,j)S(v,p)

}
=
(
Σ

(k)
sv

)
(i′,j′)

+ µ
(k)
(i′)µ

(k)
(j′), (34)

where i′ = j+L(i−1) and j′ = p+L(v−1). After obtaining
A(k+1), the `2 norm of each row of A(k+1) is set to 1.

We refer to the algorithm including learning rules (23), (24),
(29), (30) and (31) as independent component analysis based
sparse Bayesian learning (ICASBL).

VI. FAST INDEPENDENT COMPONENT ANALYSIS SPARSE
BAYESIAN LEARNING

We will show in Section VIII that the proposed ICASBL
algorithm performs well in terms of recovery performance.
However, the algorithm is not fast because the dimension of
the parameters to be learned jointly is high as a result of using
the vectorization operator. The dictionary matrix Φ in MMV

problem is M × N while the defined dictionary matrix for
ICASBL, φA, is ML × NL. To develop a fast variant, we
change the MMV problem in (15) to L SMV problems by a
right multiplication of A−1 to both sides of (15),

Ȳ = ΦS + N̄ , (35)

where N̄ = NA−1 and Ȳ has independent columns. For
each column of Ȳ , one can write

ȳi = Φsi + n̄i, (36)

where ȳi and n̄i are the i’th column of Ȳ and the i’th column
of N̄ , respectively. By ignoring the correlation among the
columns of N̄ , we consider (36) as L SMV problems for
1 ≤ i ≤ L, i.e., we assume

E{n̄i(j)n̄i(k)
} ≈ 0, j 6= k,

Cov (n̄i) ≈ σ̄2I, (37)

where σ̄2 is estimated in the learning procedure. By this
assumption, the columns of Ȳ are independent. The learning
rules are now similar to the SBL approach in [51] and are
listed below. The posterior density of si given ȳi is given by

p(si|ȳi; Γi, σ̄2) = (2π)−
LN
2 |Σsi |

− 1
2 (38)

exp

(
−1

2
(si − µi)TΣ−1

si
(si − µi)

)
,

where

µi = ŝi =
(
σ̄−2ΦTΦ + Γ−1

i

)−1
ΦT ȳi, (39)

and Γi (using the MATLAB notations),

Γi = Γ(i : L : i+ L(N − 1)) = diag([γ1i · · · γNi]). (40)

The covariance matrix

Σsi
=
(
σ̄−2ΦTΦ + Γ−1

i

)−1
, (41)

where

γ
(k+1)
ji =

(
Σ(k)

si

)
(j,j)

+
(
ŝi

(k)
(j)

)2

=
(
Σ(k)

si

)
(j,j)

+
(
µi

(k)
(j)

)2

.

(42)

The parameter σ̄2 is updated by

(
σ̄2)(k+1)

=
‖Ȳ (k) −ΦS(k)‖2F

ML

+

(
σ̄2
)(k)∑N

i=1

∑L
j=1

(
1−

(
γ

(k)
ji

)−1 (
Σ

(k)
si

)
(j,j)

)
ML

, (43)

where ‖.‖F denotes Frobenius norm.
The matrix A can be updated by (31), (32) and (33). By

considering Ȳ (k) = Y
(
A(k)

)−1
and the approximation for
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the covariance of N̄ , the following approximation can be made
using (36) to develop updates for A,

ES|Y ;Θ(k)

{
S(i,j)S(v,p)

}
=ES|Ỹ (k);Θ(k)

{
S(i,j)S(v,p)

}
≈S(k)

(i,j)S
(k)
(v,p),

=µ
(k)
j(i)
µ(k)
p(v)

for j 6= p, (44)

ES|Y ;Θ(k)

{
S(i,j)S(v,p)

}
=
(
Σ(k)

sj

)
(i,v)

+ S
(k)
(i,j)S

(k)
(v,p),

=
(
Σ(k)

sj

)
(i,v)

+ µ
(k)
j(i)
µ(k)
p(v)

,

for j = p. (45)

Using (44) and (45), the approximation of
ES|Y ;Θ(k)

{
STΦTΦS

}
is obtained. After obtaining A(k+1),

we set the `2 norm of each row of A(k+1) to 1.
We refer to the sparse recovery algorithm based on (39),

(41), (42), (43) and (31) as fast ICASBL (FASTICASBL).
According to the approximation in (37), we expect the FAS-
TICASBL algorithm to perform well when σ2 is small or goes
to zero.

VII. ANALYSIS OF GLOBAL MINIMA AND LOCAL MINIMA

In the following subsections, the properties of the cost
function L is analyzed.

A. Analysis of the Global Minima

In our analysis, S̃ is considered as the sparsest solution
with matrix Ã providing X̃ = S̃Ã. The following theorem
shows that the other solution of (10) other than S̃ and Ã can
be obtained by a permutation matrix and a diagonal matrix,
i.e. S∗ = S̃P and A∗ = P−1Ã, which leads to the unique
matrix X̃. All the solutions in the form of S∗ and A∗ are
acceptable. Using the following theorem, it is shown that S∗
are the global minima of the cost function L in (27).

Theorem 4. Let the noise variance σ2 → 0, matrix A be a
full-rank matrix, and the sparsest solution to (10) be S̃ with
ri-sparse columns with no common support, and the variance
vector γ̃ = diag(Γ̃). Assume that the condition (12) is satisfied
giving a unique solution for (10) which is denoted by X̃ .
The global minimum of (26) is achieved at γ̂ = diag(Γ̂) = γ∗
which is used to obtain ŝ = vec(Ŝ∗) by (24) where the matrix
S∗ is obtained only by permuting the matrix S̃.

Proof. See Appendix E.

Theorem 4 ensures that the objective function being mini-
mized has the desired global minima.

B. Analysis of Local Minima

In this subsection we discuss about the local minima prop-
erty of the cost function L in (27) with respect to γ, in which
φA = Φ ⊗ AT for a fixed A. The lines of proofs for the
lemmas and the theorem in this subsection are similar to the
proofs in [51] and are extended with some considerations for
the cost function L in our work.

Lemma 1. log(Σyv ) = log(|σ2I+φAΓφTA|) is concave with
respect to γ, where γ = diag(Γ).

This can be proved by the composition property of concave
functions [68].

Lemma 2. The term (yv)
T
Σ−1

yv yv equals a constant C for all
γ satisfying the ML linear constraints b = Gγ.

b ,yv − σ2u, (46)

G ,φAdiag(φTAu), (47)

where G is a full-rank matrix and u is any fixed vector such
that (yv)

T
u = C.

Proof. See Appendix F.

Lemma 1 and Lemma 2 are used to find a bound for local
minima in the following theorem.

Theorem 5. Every local minimum of L is achieved at a sparse
solution, i.e., ‖γ‖0 < ML, irrespective of the presence of
noise.

Proof. See Appendix G.

This shows that the local minima of L have less than
ML nonzero elements. Since the global minima of L have
the number of nonzero elements less than M , we are more
interested in the local minima with the number of nonzero
elements less than M .

Lemma 3. If σ2 goes to 0, for every local minimum which
satisfies ‖γ̂‖0 ≤M, the i’th nonzero element of γ̂ is obtained
by

γ̂(i) =
(
ŝv(i)

)2
, for i s.t. γ̂(i) 6= 0, (48)

where ŝv is the basic feasible solution to yv = φAs
v .

Proof. See Appendix H.

By Lemma 3, a closed form for γ̂(i) is achieved at the global
minimum.

Here we mention the differences between the local minima
analysis of γ for T-MSBL and ICASBL. Let γT ∈ RN be a
vector including hyperparameters for the T-MSBL algorithm.
The nonzero elements of the estimated vector γT corresponds
to the nonzero rows ofX. Based on Theorem 2 in [60], ‖γT ‖0
is less or equal than ML. This bound is the same as what we
obtained in Theorem 5 for γ at local minima. However, the
size of γT is N by 1 while the size of γ in Theorem 5 is
NL by 1. Unlike γ in this work, the bound for γT is only
meaningful when ML < N.

VIII. EXPERIMENTAL RESULTS

A simulation study is conducted in order to evaluate the
performance of our algorithms compared to other algorithms.
All the experiments include 500 independent trials. In each
trial, every entry of the dictionary matrix Φ ∈ RM×N is
generated by a Gaussian distribution with unit variance as
in [51]. The matrix S̃ ∈ RN×L is the source matrix whose
columns are sources. The matrix Ã is generated by a Gaussian
distribution where the norm of each row of Ã ∈ RL×L is
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set to be one. The matrix X̃ is obtained by X̃ = S̃Ã. The
observation matrix Y is constructed by Y = ΦS̃Ã+N where
N is a zero-mean Gaussian noise with variance σ2.

Two criteria are used to evaluate the algorithms. One
criterion is the percentage of the support truly recovered, i.e.,

α =
eX̂
R(X̃)

, (49)

where eX̂ is the number of row indexes in the support of X̃
that is not in the support of X̂. The solution matrix X̃ has
K nonzero rows with K being calculated in each experiment
after generating X̃. The support of X̂ includes the indexes
of the K rows with the largest `2 norms (Note that K is not
an input to the proposed algorithms). Then, α is calculated.
In order to evaluate the performance of support recovery, the
mean and median of α are calculated in (49) over all trials.
The median is also used because some values of α may be
unusually large for a small number of runs which leads to the
calculated mean to be non-informative. In noisy scenarios, the
normalized mean square error (MSE) is also used as a measure
of performance given by

Normalized MSE =
‖X̂ − X̃‖2F
‖X̃‖2F

. (50)

Normalized MSE and α defined in (49) and (50) describe
the estimation performance of X̃. In order to evaluate perfor-
mance of the estimate of Ã, Amari error, eA, defined in [69]
is used:

eA =
L∑

i=1

 L∑
j=1

|H(i,j)|
maxk |H(i,k)|

− 1

+
L∑

j=1

(
L∑

i=1

|H(i,j)|
maxk |H(k,j)|

− 1

)
,

(51)

where the matrix H equals ÃÂ−1. Intuitively, Amari error
can be employed to measure how much matrix H is close to
DP for a diagonal matrix D and a permutation matrix P .
Since the traditional MMV algorithms do not estimate A, one
of the successful BSS algorithms called EBM in [70] is used
to obtain Â from X̂.

In the experiments, our ICASBL and FASTICASBL algo-
rithms are compared with the following algorithms:
• T-MSBL, proposed in [60]. 1

• Compressive multiple signal classification (CSMUSIC),
proposed in [71]. 2

• The regularized Multiple FOCUSS (MFOCUSS), the
regularized MFOCUSS algorithm proposed in [16].3 The
re-weighted p-norm of X appears in the MFOCUSS cost
function. We set p = 0.8, as suggested by the authors.

• We also set p = 1 for MFOCUSS to evaluate the
performance of the reweighing `1 minimization.

For trials, the noise variances are known for all algorithms
except ICASBL, FASTICASBL and T-MSBL.

1The MATLAB code was downloaded at http://sccn.ucsd.edu/∼zhang/
TMSBL code.zip

2The MATLAB code was downloaded at http://bispl.weebly.com/
compressive-music.html

3The MATLAB code was downloaded at http://dsp.ucsd.edu/∼zhilin/
MFOCUSS.m
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Fig. 2. Mean of α in terms of number of measurements M .
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Fig. 3. Median of α in terms of number of measurements M .

The experiments have been carried out using the MATLAB
software on an Intel Core i7 CPU 2.7 GHz processor and
16 GB RAM.

A. Recovery of sources with different numbers of measure-
ments

In this experiment, the performance of the algorithms is
studied in terms of number of measurements. The dictionary
matrix Φ is of size M×N, where N = 125 and M is increased
from 40 to 110. The matrix S̃ is of the size 125×6 where each
column has 10 nonzero elements. The location of the nonzero
elements of s̃i for 1 ≤ i ≤ 6, are independent uniform random
integer variables from 1 to 125.

In Fig. 2, the mean of α over all runs is presented. As
expected, all algorithms performed better as the number of
measurements M increases. The ICASBL approach outper-
forms the other approaches especially when the number of
samples is low. This means that if the solution matrix X̃ can
be decomposed in to two matrices S̃ and Ã, where matrix S̃
has independent components, then the performance of support
recovery is increased dramatically. Fig. 3 shows the median
of α in terms of number of measurements. The median for
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Fig. 4. Amari error in terms of number of measurements M .

the ICASBL is zero for the scenarios with M more than 60.
Fig. 4 shows Amari error in terms of number of measurements.
Our algorithms estimate the mixing matrix better than other
algorithms. There are two facts that need to be considered.
First, the mixing matrix estimation accuracy depends on how
well X̃ is estimated. Second, the estimation performance of
mixing matrix depends on the number of independent samples
available [72]; i.e., R(S). The correlation structure among
source samples deteriorates the ICA methods’ performance or
mixing matrix estimation accuracy [73]. Therefore, increasing
M does not necessarily improve the performance of mixing
matrix estimation.

B. Multiple measurement vectors with different number of
independent sources

This experiment evaluates the performance of algorithms
when different number of sources are available. The dictionary
matrix Φ is 70 × 125. The matrix S̃ is of the size 125 × L
where each column has 10 nonzero elements. L is increased
from 2 to 6. The location of the nonzero elements of s̃i for
2 ≤ i ≤ 7, are uniform random integer variables from 1 to
125. The value of each nonzero element is generated from a
Laplacian distribution with unit variance.

Fig. 5 and Fig. 6 show the mean and the median of α in
terms of the number of independent components increasing
from 2 to 7. Since each column of S̃ is independent from
the other columns, higher number of nonzero rows of X̃ is
obtained by increasing the number of independent sources.
Therefore, the higher number of independent components, or
higher

∑L
i=1 ri, results in worse recovery performance for dif-

ferent algorithms while the number of measurements M is the
same (See Theorem 2). Both proposed algorithms outperform
the other algorithms as the number of measurements is fixed.
The ICASBL and FASTICASBL could improve the quality
of recovery dramatically compared to other approaches as the
number of independent components becomes higher.

Fig. 7 shows the average time consumption for each al-
gorithm, i.e. if ti is the processing time for an algorithm
to solve the problem in the i’th trial, then, the average
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Fig. 5. Mean of α in terms of number of sources L.
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Fig. 6. Median of α in terms of number of sources L.

time consumption is 1
Nt

∑Nt

i=1 ti where Nt is number of
trials. It can be seen that the performance improvement by
ICASBL and FASTICASBL is at the expense of increased
time consumption. The time consumption grows as the number
of independent sources increases. In comparison with TMSBL
algorithm, the FASTICASBL and ICASBL algorithms have
higher number of hyperparameters to be estimated.

C. Recovery ability at different noise levels

In this experiment, the algorithms are evaluated under noisy
observations condition. The signal to noise ratio (SNR), i.e.
SNR = ‖ΦX̃‖2F/‖N‖2F , is in the range from 40dB to -5dB.
The dictionary matrix Φ is 40× 125. The matrix S̃ is of the
size 125 × 3, where each column has 10 nonzero elements.
The location of the nonzero elements of s̃i for 1 ≤ i ≤ 3, are
uniform random integer variables from 1 to 125.

Fig. 8, Fig. 9 and Fig. 10 show the average of α, median
of α and normalized MSE over 100 runs in terms of SNR
respectively. As the SNR increases, the performance for all
approaches is improved. In the noisy scenario, ICASBL out-
performs all the algorithms and the performance of FASTI-
CASBL decreased compared to the noiseless scenario. The
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Fig. 7. Average Time Consumption in terms of number of sources L.
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Fig. 8. Mean of α in terms of SNR.

deterioration can be attributed to the approximation applied
on the covariance of noise in (37). In Fig 8, it can be seen
that FASTICASBL provides a better performance when SNRs
are larger than 70 dB.

Fig. 11 shows the Amari error in terms of SNR. All
algorithms have better performances as SNR increases. Both
proposed algorithms outperform competing algorithms for the
SNR values larger than 10 dB.

D. Real Data

In this experiment we evaluate the algorithms for a real
application. First we describe briefly the problem of heart rate
estimation from a face recording.

PPG is an electro-optic scheme for measuring the tissue
blood volume pulses [74]–[76]. The vital signs such as heart
rate and respiratory rate can be estimated using extracted PPG.
PPG can be monitored by pulse oximeter or remotely using
a video camera recording showing a part of the skin, for
example, the face.

The reason that rPPG can be measured by a recording is that
the blood’s hemoglobin absorbs light differently than other
tissues over the time. When arterial blood volume changes
during the cardiac cycles, light absorption of the human skin
fluctuates [77]. Non-contact PPG or rPPG captures the color
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Fig. 9. Median of α in terms of SNR.
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Fig. 10. Normalized MSE in terms of SNR.

variations in time during the recording. Heart rate can be
estimated by recording tiny color variations along with minor
light intensity variation of the skin.

One of the main issues is the estimation of the PPG signal
spectrum to find the frequency related to heart rate. FFT and
DCT have low resolution when a low number of samples is
available [31], for example, in the case of short videos [32].
In [7], [31], it has been shown that the sparsity assumption on
PPG and rPPG signals results in a higher accuracy.

Generally a framework for heart rate estimation employs
the following steps.
• Region of interest (ROI) registration: This step deals

with finding a part of the recording suitable for rPPG
estimation.

• ROI tracking: The ROI is found in the video frames.
• Preprocessing, noise and motion artifacts removal.
• Heart rate estimation.
The proposed algorithms can be employed in heart rate

estimation. Since detection and tracking are not the purpose
of this paper, we used face recording of a person sitting still
in front of the video camera. The frame rate was 30 frames
per second (fps). The forehead was selected as ROI. After
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Fig. 11. Amari error in terms of SNR.

tracking ROI, in the preprocessing step, three one-dimensional
signals from RGB channels are extracted. Human heart rate
frequency in resting condition is typically in the range of
40 beat per minute (bpm) to 180 bpm, where the signals
were filtered in order to remove undesired coefficients. In this
experiment we used partially known support assumption by
removing the coefficients in the range of [0 - 0.6] Hz and
[3 - 15] Hz. Φ is the DCT transformation matrix including
the columns corresponds to [0.6 - 3] Hz. We estimate the
matrix Ŝ whose columns are the estimated PPG signal, noise
and motion artifacts in DCT domain. The matrix Â is the
estimated mixture coefficients. A pulse oximeter measuring
heart rate frequency was used as a reference.

The error is simply obtained by the absolute value of the
difference of the estimated heart rate by the algorithms and
that measured by the pulse oximeter. Fig. 12 shows the error
of heart rate estimation by the algorithms. The red line in
the middle of each box shows the median of the error. The
edges of the box are the 25th percentile, q1, and the 75th
percentile, q3. The sign “+” shows outliers which represent
the values larger than q3 + 1.5(q3 − q1). As it can be seen in
Fig. 12, the proposed algorithms outperformed CSMUSIC and
TMSBL. Since MFOCUSS algorithm failed in the experiment,
we removed the related results for a clearer presentation.

IX. CONCLUSION

We addressed a multiple measurement vector (MMV) model
in practical scenarios, where the columns of the solution X̃
were dependent and the number of measurements vectors was
small. It was shown that existing algorithms performed poorly
when the columns of the solution X̃ could be decomposed
into a sparse matrix S̃ with independent columns and a full-
rank square matrix Ã. To address the problem, we considered
the blind source separation (BSS) model for matrix X which
could be decomposed into product of a source matrix with in-
dependent columns and a mixing matrix. Based on the model,
we derived a new condition for uniqueness in the `0 norm
minimization problem in (10). Based on this framework, we
developed two algorithms; i.e., independent component anal-
ysis sparse Bayesian learning (ICASBL) and fast independent
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Fig. 12. The error of heart rate estimation.

component analysis sparse Bayesian learning (FASTICASBL).
The latter was faster but involves some approximations. Ex-
periments showed that the proposed algorithms had superior
performance compared to state-of-the-art algorithms. Based
on the experimental results, FASTICASBL performed better
than ICASBL and all other algorithms in noiseless scenarios,
while ICASBL was the most successful algorithm in the noisy
case. Theoretical analysis was also provided showing that the
proposed sparse Bayesian learning (SBL) objective function
had desirable global and local minima properties.

APPENDIX A
PROOF OF THEOREM 1

Proof. If the two sides of (3) are multiplied with Ã−1, we
obtain

Y ′ = ΦS̃, (52)

where Y ′ is Y Ã−1. Columns of Y ′ are independent from
each other and the columns of S̃ are also independent.
Therefore, (11) is L SMV problems. All columns of S̃ will
be uniquely recovered, if

‖s̃i‖0 <
Spark(Φ)

2
for all i. (53)

The most restrictive condition would correspond to the column
of S with the highest number of nonzero elements; i.e.,
maxi{ri} < Spark(Φ)/2. The inequality in (53) proves the
theorem.

APPENDIX B
PROOF OF THEOREM 2

Assume matrices {S̃, Ã} and {Š, Ǎ} denote two solutions
to the problem (P0) such that X̃ = S̃Ã and X̌ = ŠǍ, where
S̃ ∈ RN×L, Š ∈ RN×L, Ã ∈ RL×L and Ǎ ∈ RL×L. The
matrices S̃ and Š have the same number of nonzero elements.
Note that unlike previous MMV works, since R(X) is not
minimized, R(X̃) and R(X̌), are not necessarily the same.

One can write using (3),

0 =Φ
(
X̃ − X̌

)
. (54)
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By multiplying Ã−1 to both sides of (54), the following
equation is obtained

0 =Φ
(
S̃ − X̌Ã−1

)
= ΦV , (55)

where S̃ − X̌Ã−1 = V . Using (55), one can write that

‖vi‖0 ≤max
i
{‖s̃i‖0}+R

(
X̌Ã−1

)
≤max

i
{ri}+

L∑
j=1

rj , (56)

where vi is the i’th column of V . The condition on Spark(Φ)
in (12); i.e., maxi{ri} +

∑L
j=1 rj < Spark(Φ), implies that

for any vector v such that v ∈ Ker(Φ), the number of nonzero
elements of v must be larger than maxi{ri} +

∑L
j=1 rj .

Using (56), the number of nonzero elements of vi is less than
Spark(Φ). Therefore, V = 0 or X̃ = X̌. This completes the
theorem.

APPENDIX C
PROOF OF THEOREM 3

Let {S̃, Ã} and {Š, Ǎ} be the solutions to (10). If the
condition in (12) is satisfied, Theorem 2 proves that the matrix
X̃, obtained by minimizing (10), is unique. Therefore,

X̃ = S̃Ã = ŠǍ. (57)

By multiplying Ǎ−1 to the both sides of (57), it is obtained
that S̃ÃǍ−1 = Š. Since the columns of S̃ have disjoint
supports and the number of nonzero elements of S̃ and Š
are equal, ÃǍ−1 has one nonzero element in each row. Since
ÃǍ−1 is full-rank and square, one can write ÃǍ−1 = PD
for a permutation matrix P and a diagonal matrix D. Due to
the fact that the `2 norm of each row of Ã and Ǎ equals 1,
then, D is a unit matrix. This completes the theorem.

APPENDIX D
DETAILS OF PARAMETER UPDATE

Here the details of the derivation of hyperparameters
are described. We maximize Esv|yv;Θ

{
p
(
yv, sv; Γ, σ2

)}
=

Esv|yv ;Θ

{
p
(
yv|sv;A, σ2

)
p (sv; Γ)

}
using fix point iteration

in terms of hyperparameters by treating sv as hidden variable

γ
(k+1)
ij = arg max

γij>0
Esv|yv;Θ(k)

{
p
(
yv, sv; Θ(k)

)}
= arg max

γij>0
Esv|yv,Θ(k)

{
p(sv; Γ(k))

}
=ES|Y ;Θ(k)

{
S2

(i,j)

}
=Esv|yv;Θ(k)

{(
sv((i−1)N+j)

)2
}
. (58)

Likewise, an update rule for σ2 can be incorporated as [51]

(
σ2
)(k+1)

=
‖y − φA(k)µ(k)‖22

ML

+

(
σ2
)(k)∑L

i=1

∑L
j=1

(
1−

(
γ

(k)
ij

)−1 (
Σ

(k)
sv

)
(i+j)

)
ML

. (59)

Only the term p
(
yv|sv;A, σ2

)
depends on A, we can

estimate A by minimizing Esv|yv;Θ(k)

{
‖yv − φAs

v‖22
}
,

Esv|yv ;Θ(k)

{
‖yv − φAs

v‖22
}

= Esv|yv ;Θ(k)

{
‖Y −ΦSA‖2F

}
= ES|Y ;Θ(k)

{
Tr (Y −ΦSA) (Y −ΦSA)

T
}

= ES|Y ;Θ(k)

{
Tr(−2Y TΦSA+AATSTΦTΦS)

}
. (60)

The matrix A is obtained by solving the following equation

ES|Y ;Θ(k)

{
∇A‖Y −ΦSA‖2F

}
= 0. (61)

Using (60), one can write (61) as

ES|Y ;Θ(k)

{
∇A‖Y −ΦSA‖2F

}
= ES|Y ;Θ(k)

{
−2STΦTY + 2STΦTΦSA

}
= −2ES|Y ;Θ(k)

{
STΦT

}
Y + 2ES|Y ;Θ(k)

{
STΦTΦS

}
A.

(62)

Then, the matrix A is updated by the following equation

A(k+1) =
(

ES|Y ;Θ(k)

{
STΦTΦS

})−1

ES|Y ;Θ(k)

{
STΦT

}
Y .

We find ES|Y ;Θ(k)

{
STΦT

}
as

ES|Y ;Θ(k)

{
STΦT

}
=ES|Y ;Θ(k)

{
ST
}

ΦT

=vec−1
L,N

(
ES|Y ;Θ(k)

{
vecL,N

(
ST
)})

ΦT

=vec−1
L,N (µ) ΦT . (63)

With some algebraic effort, the i’th and j’th element of the
matrix κ = ES|Y ;Θ(k)

{
STΦTΦS

}
is found as

κ(i,j) = ES|Y ;Θ(k)

{
sTi ΦTΦsj

}
= ES|Y ;Θ(k)

{
Tr
(
sTi ΦTΦsj

)}
= Tr

(
ΦTΦES|Y ;Θ(k)

{
sjs

T
i

})
. (64)

In order to find ES|Y ;Θ(k)

{
sjs

T
i

}
, the term

ES|Y ;Θ(k)

{
S(i,j)S(v,p)

}
should be obtained

ES|Y ;Θ(k)

{
S(i,j)S(v,p)

}
= Esv|yv ;Θ(k)

{
sv(j+L(i−1))s

v
(p+L(v−1))

}
=
(
Σ

(k)
sv

)
((j+L(i−1)),(p+L(v−1)))

+ µ
(k)
(j+L(i−1))

µ
(k)
((p+L(v−1)))

.

(65)

APPENDIX E
PROOF OF THEOREM 4

For the sake of convenience we consider the equivalent
model (17) instead of (15). The cost function from (27)
includes two terms: the logarithm of determinant of Σyv and
(yv)

T
Σ−1

yv yv . While the later term is strictly greater than zero
and bounded by some finite bound C for all Γ, A and σ2, the
first term goes to minus infinity by reducing the determinant of
Σyv to zero. As such, the minimum of L(Θ) occurs whenever

|Σyv | = |σ2I + φAΓφTA| = 0, (66)

while maintaining some finite bound C such that

0 ≤ (yv)
T

(σ2I + φAΓφTA)−1yv ≤ C. (67)
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For demonstrating that γ̃ or equivalently Γ̃ satisfies the con-
dition in (66), we find a bound for ‖γ̃‖0. Using (12) one can
write for

∑L
i=1 ‖s̃i‖0 that

max
i
{ri}+

L∑
j=1

rj <Spark(Φ) ≤M + 1

L∑
j=1

rj <M + 1−max
i
{ri}

‖γ̃‖0 <M. (68)

It shows that Rank(Γ̃) is less than M. The condition (66) is
satisfied with Γ = Γ̃, σ2 = 0 and Rank(Γ̃) < Rank(φA) =
Rank(Φ⊗A) = ML. This happens because

Rank(Σyv ) = Rank(φAΓ̃φTA) ≤ ‖γ̃‖0 < M. (69)

Therefore, Σyv ∈ RML×ML is not full-rank, and its deter-
minant is zero as in (66) which completes the proof. It is
shown in Theorem 3 that if the condition (12) is satisfied the
other global minimum of (10) are different up to permutation
of the solution S̃. These solutions are also acceptable due to
unavoidable scale and permutation ambiguities which emanate
from BSS problem if no further assumption is made on
sources and the mixing matrix. Therefore, the other acceptable
solutions are S∗ = S̃P with the variance γ∗ = diag(Γ∗) and
A∗ = P−1Ã for some permutation matrix P . These solutions
are also global minima of L in (27). This is simply true
because Y = ΦS∗A∗ and the number of nonzero elements
of S∗ equals to S̃, or ‖γ∗‖0 = ‖γ̃‖0.

APPENDIX F
PROOF OF LEMMA 2

The proof follows along the lines of Lemma 2 in [51]. If A
is fixed, the constraint (yv)

T
(σ2I + φAΓφTA)−1yv = C is

subsumed by the constraint (σ2I + φAΓφTA)−1yv = u. By
some manipulations, we will obtain

yv − σ2u =(σ2I + φAΓφTA)u− σ2u

=(φAΓφTA)u

=φAdiag
(
φTAu

)
γ. (70)

This completes the proof.

APPENDIX G
PROOF OF THEOREM 5

The proof follows along the lines of Theorem 2 in [51] by
considering the fact that the

Rank(φA) = Rank(Φ⊗AT ) ≤ML. (71)

Consider the optimization problem

min : f(γ)

subject to Gγ = b,γ ≥ 0, (72)

where b and G are defined in (46) and (47), and f(γ) =
log(|Σyv |). It can be seen that the optimization problem (72) is
optimizing a concave function over a closed, bounded convex
polytope. Clearly, for a fixed A, any local minimum of L, e.g.

γ∗, must also be a local minimum (72) optimization problem
with

C = (yv)
T
u = (yv)

T
((σ∗)2I + φAΓ∗φTA)−1yv. (73)

According to [78, Theorem 6.5.3], the minimum of (40) is
achieved at an extreme point. Furthermore, based on the
Theorem in [78, Chapter 2.5] the extreme point is a basic
feasible solution, i.e., a solution with at most ML nonzero
values. Therefore, the local minima are at sparse solutions.

APPENDIX H
PROOF OF LEMMA 3

The proof follows along the lines of Lemma 3 in [51]. For
the sake of simplicity we assume that ‖γ̂‖0 = M, then, there
are M basis of φÂ corresponding to nonzero elements of γ̂,
where φÂ = Φ⊗ ÂT and Â is the estimated mixing matrix.
Lets denote Γ̄, γ̄ and φ̄Â as the nonzero diagonal elements of
Γ̂, the nonzero elements of γ̂ and the corresponding columns
of φÂ respectively. The likelihood can be written as

L = log
(∣∣φ̄ÂΓ̄φ̄T

Â

∣∣)+ yT
(
φ̄ÂΓ̄φ̄T

Â

)−1
y

= log
(∣∣φ̄Â

∣∣ ∣∣Γ̄∣∣ ∣∣φ̄T
Â

∣∣)+ yT
(
φ̄ÂΓ̄φ̄T

Â

)−1
y

=2 log
(∣∣φ̄Â

∣∣)+

M∑
i=1

log γ̄(i) +

M∑
i=1

s̄2
(i)

γ̄(i)
, (74)

where s̄2
(i) = φ̄−1

Â
y. Then, the gradient of (74) is formed as

∂L

∂γ̄(i)
=

1

γ̄(i)
−
s̄2

(i)

γ̄2
(i)

. (75)

By setting (75) to zero, we obtain γ̄(i) = s̄2
(i) and clearly,

‖ŝ‖0 = ‖γ̂‖0 which completes the lemma.
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