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A B S T R A C T

This thesis introduce a new parameterization of the model space in global
inversion problems. The parameterization provides an explicit representa-
tion of the model space with a basis constrained on a priori information
about the problem at hand. It is able to represent complex model structures
with few parameters, and thereby enhancing the speed of the inversion,
as the number of iterations needed to converge is heavily scaled with the
number of parameters in stochastic, global inversion methods. A standard
Simulated Annealing optimization routine is implemented, and further ex-
tended to be able to optimize for a dynamically varying number of variables.
The method is applied on inversion of marine CSEM data, and inverts both
synthetic and real data sets and is able to recover resistivity profiles that
demonstrate good resemblance with provided well bore log data. The trans-
dimensional, self-parameterizing Simulated Annealing algorithm which is
introduced in this thesis proves to be superior to the regular algorithm with
fixed parameter dimensions.
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1
I N T R O D U C T I O N

In this thesis we introduce a new parameterization of the model parameter
space in an inversion problem. It is applied on inversion of geophysical
CSEM (controlled source electromagnetic) data, but the general idea also
applies to other problem instances. Generally speaking, a set dobs of data is
observed, the task is then to find a model m that through the relation d =
G (m) reproduce this observed data, where G is an operator which describe
the explicit relationship between the model and the resulting data. The
best model is found by an optimization routine which for some norm || · ||,
minimizes the distance ||d−dobs||.

The model m is in this case the resistivity at a given set of locations
below the seabed. The governing equations, represented by the operator G ,
that relates the model to the data is Maxwell’s equations. The observable
physical phenomenon is the resulting electromagnetic field from which the
data d is obtained.

Assume that the model consists of n locations at which the resistivity is
to be decided, assume further that each location is treated independently
such that in order to find the best model, one need to optimize n parame-
ters. Now, assume that the stochastic optimization routine has a complexity
such that it requires O (n logn) function evaluations before termination. As
a modest example, consider a 1D model which consist of n = 100 locations
where the resistivity is to be decided. A 2D square model with similar grid
spacing would then consist of n = 104 unknowns, whereas a cubic 3D model
would consist of 106 unknowns to be decided. If one assume that the func-
tion evaluation is of O (1) (extremely modest) and that the elapsed time in
the 1D inversion is 1000 s, then the elapsed time of the full 3D inversion
would be about 347 days.

Now, imagine that you could represent the model in terms of ñ << n pa-
rameters, say ñ = 10 in the 1D case, ñ = 100 in the 2D case and ñ = 1000
parameters in the 3D case. Then the full 3D inversion would be finished
in about 4 hours, or 0.05 % of the original time. Although just a superficial
thought experiment, it alludes that a reduction in the parameter dimen-
sionality has a great potential in terms of reducing computational costs. In
addition, function evaluations is much more costly in 3D inversion than in
1D inversion. For a global inversion in three dimensions to be computation-
ally feasible, the number of function evaluations need to be reduced. It is
worth mentioning that the analysis above applies to stochastic or global in-
version schemes as the number of iterations needed scales heavily with the
number of parameters. Local inversion schemes with gradient based opti-
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2 I N T R O D U C T I O N

mization routines, which is normally used in 3D CSEM inverion, does not
scale that heavily with the number of parameters.

This dramatic reduction of parameters is the main motivation behind
this parameterization, and what makes it different from plane layered model
representations used in e.g. (Roth and Zach, 2007) and (Ray and Key, 2012).
Models which in a plain layered model is represented with about 30 param-
eters, could be represented with less than 10 parameters with this new
parameterization. Also the geologically restricted basis makes this repre-
sentation intuitive and physically meaningful, which is a desired property.

This thesis propose a parameterization of the model space which in an
intuitive and explicit way, utilize a priori information of the original model
to create a restricted basis on which the parameterization is built. With
this, the objective is to significantly reduce the number of parameters and
still maintain a good representation of the model.

This parameterization is applied on inversion of CSEM data. Marine
CSEM is a method which maps the resistivity profile beneath the seabed
and will be further explained in Chapter 2. A 1D model of the sub seabed
is assumed, and the actual parameterization of this one dimensional sub
seabed model is presented in Chapter 3. Chapter 4 discusses the underlying
physics given this model assumption, and derives the governing equations
which relates the resistivity model to the resulting electromagnetic field. In
order to find the models which minimizes the misfit, a Simulated Anneal-
ing optimization routine is chosen, the discussion of which is addressed to
Chapter 5. This concludes the first part, which aims to establish a sufficient
theoretical background to cover the topics presented in this thesis.

While part one lay the theoretical foundation of what is discussed in
this thesis, part two is devoted to how the task is carried out. Practical
issues concerning implementation and other solution procedure issues is
discussed in Chapter 6, while results and accompanying discussion is pre-
sented in Chapter 7.

The appendix will provide necessary information in terms of different
algorithmic parameter values which goes in the attached program code, in
order to be able to completely reproduce some of the results presented in
this thesis.



Part I

T H E O R E T I C A L B A C K G R O U N D





2
T H E C O N T R O L L E D S O U R C E E L E C T R O M A G N E T I C
T E C H N I Q U E

The marine controlled source electromagnetic (CSEM) method is a geophys-
ical technique with many applications. It was first used to measure basalt
properties in the Pacific ocean. In the petroleum industry, its main purpose
is to expose accumulations of hydrocarbon by mapping the resistivity be-
low the seabed. The resistivity in the various sedimentary layers below the
seabed is obtained through inversion of CSEM data. Supplemented with
seismic techniques, it serves as a great tool for subsurface hydrocarbon ex-
ploration. Commercially, in the petroleum industry, it is a relative new field,
starting around year 2000 (Eidsmo et al., 2002). Since then, a great num-
ber of surveys have been successfully conducted (Constable, 2010). For a
historical overview and development of the method, the reader is referred
to (Constable, 2010) and (Constable and Srnka, 2007).

A detailed description of the sub seabed resistivity profile is interesting
because of the difference in resistivity in the different sub seabed formation
layers. It is particularly interesting because of the large resistivity contrast
between hydrocarbon saturated reservoirs and the surrounding sedimen-
tary layers saturated with aqueous saline fluids. The marine CSEM method
utilizes this fact and make it a valuable tool in the petroleum industry.

Sea water is quite conductive with a conductivity of about 4 S/m, whereas
the formation beneath the seabed has variable resistivity values of order 1
Ωm to 10Ωm (remember the reciprocal relationship between the resistivity
ρ, and the conductivity σ, ρ = 1/σ). Hydrocarbon saturated reservoirs will
have resistivity of order 102 Ωm, significantly more resistive than the sur-
rounding sediments. Air is also is very resistive with a resistivity of order
1016 Ωm, and is therefore a major contributor to the field response detected
by the receivers.

However, the sub seabed resistivity profile is not easy to obtain, but can
be mapped indirectly by inversion of CSEM data. In summary, the elec-
tromagnetic field responses are measured at the desired locations. Then,
a guess is made on how the resistivity profile is, and calculates the field
response at the same locations due to this guessed model. With both the ob-
served field data and the synthetic field data, a comparison is made of those
two and difference is calculated using some misfit function. An optimization
routine is used to minimize this misfit function, and this optimization rou-
tine will guide the search of new models to a final model which produce an
electromagnetic field response with minimum misfit. This minimum misfit
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6 T H E C O N T R O L L E D S O U R C E E L E C T R O M A G N E T I C T E C H N I Q U E

model is then accepted as the best approximation to the true model based
on the observed field.

2.1 C S E M D A T A S A M P L I N G

Before any data analysis and interpretation can be done, one need to gather
data. Two different electromagnetic surveying methods are the magnetotel-
luric (MT) method and the controlled-source electromagnetic (CSEM) method.
In the MT method, the naturally occurring electric and magnetic field is
measured. This low-frequency electromagnetic field is generated by the so-
lar winds as it interacts with the earth’s magnetic field. It has low reso-
lution, but penetrates greater depths than the CSEM method (Constable
and Weiss, 2006). Contrary to the naturally occurring electromagnetic field
used in the MT method, the CSEM method uses an electromagnetic field
generated from a controlled source.

Figure 2.1: Illustration of CSEM-sampling.

Figure 2.1 illustrates the basic concept. A vessel is towing an electromag-
netic dipole antenna (source) over a grid of detectors (receivers) stationed
at the seabed. The dipole source emits low frequency electromagnetic waves
into the surroundings, both up towards the sea surface and down into the
seabed. The the electromagnetic waves penetrate and interact with the
matter it propagates through, and the resulting field is detected at the
seafloor by receiving dipoles (Eidsmo et al., 2002).

The source is a dipole antenna which is towed after the vessel about 30
m above the grid of receivers. This source emit a continuous signal, and the
source positions referred to in this paper corresponds to the mid of the time
interval in the fast Fourier transform.



2.1 C S E M D A T A S A M P L I N G 7

Figure 2.2: A 2D Illustration of signal propagation from dipole source (a) to re-
ceiver (b, red). A dipole antenna (a) is towed through the sea water,
emitting electromagnetic radiation which propagates through and in-
teract with different media before the response is observed by the re-
ceiver (b, red)). This figure illustrate the main contributions to the total
response; sea-surface propagation (I), direct field (II), seabed (III), tar-
get reflection (IV), and target guiding (V). The different media present
is air (1), sea water (2), sub sea formation (3) and the resistor (4).

Different signal propagation paths from the source to one of the receivers
are illustrated in Figure 2.2. With reference to this figure, the different con-
tributions are: the sea surface response (I), the direct field (II), the lateral
wave along the seabed (III), the ray reflected from the thin layer (IV), and
the guided wave in the resistive reservoir (V). These are the main contrib-
utors, but their contribution varies in different situations. At short offsets
(< 2 km) between the source and receiver, the direct field (III) dominates
the received signal, whereas at longer offsets the dominating contributions
are those from the sea surface (I) and the resistor (V) (Løseth, 2007). If the
reservoir has a low resistivity, the subsurface waves tend to pass through
the reservoir instead of being refracted back up to the receivers. If the resis-
tor (often termed the target) is not present, there will be no guiding effect
of the signal. A model without a resistive reservoir is often termed the back-
ground model.

The ability to detect a hydrocarbon saturated reservoir is highly depen-
dent on the thickness and resistivity of the reservoir. Sometimes it is diffi-
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cult to differ between the two contributions, this is in situations when the
detection ability is very sensitive to the product of the two parameters. This
product is sometimes termed transverse resistance or simply resistivity-
thickness-product (Ansari et al., 2012).

2.2 I N V E R S I O N

The overall objective is to map the resistivity profile below the seabed, some-
thing that is not directly obtained by measuring the field. One have to find
a resistivity model that sufficiently reproduce the observed data, and the
assumption is that this model is a good candidate for the true model. Find-
ing this model is done by inversion, and this problem can be stated as:
given the observed data, find a model that best explain the observed data.
In general, there is several solutions to this problem, i.e. the solution is not
unique and the problem is therefore ill-posed. The next paragraph will try
to give a simple and superficial description of the process.

One begin with an initial model, that is, a guess of the resistivity profile
below the seabed. The number of locations where one wants to calculate the
resistivity is thus the number of unknowns in this problem, and through-
out this project, this number is denoted Nl with the subscript l because
of the plane layered model assumption used in this thesis (see Chapter 4).
This model is then used as input in the so called forward processing en-
gine which solves a system of differential equations in order to determine
the field response given this model. This field is often labeled FSynth, as
opposed to the observed field which is labeled FObs, here F is chosen as
a generic representation of the different field components. The exact na-
ture of the field F, is explained below, but this general field is now used in
the derivation for simplicity. In the synthetic model used in the simulation,
the set up, i.e. source and receiver positions, transmitter frequency etc. is
the same as when the observed data was acquired. The created synthetic
data is then compared with the observed data, and depending on the fit, the
model is accepted or rejected. The fit, or equivalently, the misfit is measured
with a misfit function, and an optimization routine is used to minimize this
misfit function. If rejected, the optimization routine determines a new re-
sistivity model which in turn is given as input in the forward engine. This
loop continues until a satisfactory model is found.

In the following chapters, details concerning the model parameterization,
the forward solver and the optimization will be further explained.



3
M O D E L PA R A M E T E R I Z A T I O N

This chapter explains how the sub seabed resistivity profile is parameter-
ized. That is, how to represent the unknown model which is to be deter-
mined. This discussion will be about a 1D model, but the arguments is eas-
ily extended to 2D or 3D. The goal is to determine the resistivity at a given
number of locations below the seabed. One approach would be to determine
the resistivity at a evenly spaced set of locations. Say, from z = 500 m to
z = 2500 m with a spacing h = 10 m would result in N = 201 parameters to
be determined. In two dimensions, a 2000 m × 2000 m square with a 10 m
squared grid spacing would result in 40401 free parameters, and for a sim-
ilar cube, 8120601 free parameters. As is evident, this is a vast number of
unknowns to be calculated at each iteration of the optimization, so a smart
parameterization of the model space could be highly beneficial with respect
to lowering the computation cost.

The idea presented in this thesis is to represent the model space as a
function ρ(z), where the parameters needed to determine this function are
the free parameters to be optimized. The total number of free parameters
used in this parameterization is denoted N. The form of the function is
based on prior knowledge about the general geology beneath the seabed,
with the purpose of keeping the number of parameters low whilst main-
taining a good representation of the resistivity profile.

The potential of a significant reduction of forward calls in the inversion
is the main motivation behind this idea, a reduction which would certainly
increase with the model dimensionality. Also, since the basis is restricted
by a priori information about the sub seabed formation, it gives a intuitive
and physically meaningful representation of the geology.

3.1 R E S I S T I V I T Y P R O F I L E F U N C T I O N

This parameterization of the sub seabed consists of three types of terms.
A polynomial term, a set of Heaviside step functions and a set of Gauss
functions

ρ(z;x)= ρp(z;xp)+ρr(z;xr)+ρg(z;xg). (3.1)

9



10 M O D E L PA R A M E T E R I Z A T I O N

3.1.1 Polynomial term

The polynomial will have the form

ρp(z;xp)=
Np∑

np=0
cnp (z− zwd)np , Np ≥ 0, z > zwd, (3.2)

where the fixed constant zwd is the water depth and xp = (c0, . . . , cNp )ᵀ. The
coefficients cnp are thus the free parameters, resulting in Np +1 parame-
ters to be determined. This polynomial is included mainly because of the
contribution of the two first terms in the sum. The constant term to shift
the resistivity in the whole model, and the 1st order term to represent a
possible compression trend which is that due to gravity, the resistivity is
increasing with increasing depth. This compression effect is due to the fact
that the increase of pressure will generally lead to an increase in resis-
tivity (Zhang, 2011). Higher order terms is also possible to include, and
together, these polynomial terms will represent the trending background
model. For practical purposes Np ≥ 0 which imply that the constant term
is always included. This constant c0, is bounded below by some reasonable
positive value, e.g. the water resistivity. If included, the higher order terms
are allowed to attain negative values. Although not necessarily geologically
meaningful, the first order term is also allowed to attain negative values for
the sake of generality.

3.1.2 Resistor term

ρr(z;xr)=
Nr∑

nr=1
ρr

nr
[H(z− zr

nr
)−H(z− zr

nr
− t)], Nr ≥ 0, z > zwd (3.3)

where ρr
nr

is the resistivity, zr
nr

is the upper boundary of resistor number
nr and xr = (ρr

1, . . . ,ρr
Nr

, zr
1, . . . , zr

Nr
)ᵀ. H is the Heaviside step function and t

is the thickness of the layers, which is fixed. One could of course also opti-
mize for the thickness of the resistor layer, however, because of the trans-
verse resistivity relation discussed earlier, this is deprecated since it would
just complicate the problem without adding particularly useful information.
This yields 2Nr free parameters to be determined. These terms are included
to model possible thin, hydrocarbon saturated layers in the sub seabed for-
mation. By thin it is meant that we make the fixed parameter t small com-
parable to typical hydrocarbon target thickness. The Heaviside function is
appropriate since resistivity can differ with several orders of magnitude
within just a few centimetres if one encounters a resistive layer. The num-
ber of resistor terms to include is Nr and could be zero, in which case this
term would completely disappear. The resistivity parameters is constrained
as ρr

nr
∈ [ρmin

r ,ρmax
r ], where ρmin

r is some small, positive value, and ρmax
r is
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some reasonable upper bound. The depth parameters is constrained by the
model size such that it can only attain values that is physically meaningful
within the framework of the physical 1D model space.

3.1.3 Gauss function term

ρg(z;xg)=
Ng∑

ng=1
βng

1√
2πw2

ng

exp

{
− 1

2w2
ng

(z− zg
ng )2

}
, Ng ≥ 0, z > zwd (3.4)

where βng is an amplitude amplifying factor, wng is a measure of the width
of the bell curve, and zg

ng is the depth at which the bell curve is centered,
xg = (β1, . . . ,βNg , zg

1 , . . . , zg
Ng

,w1, . . . ,wNg ), that is, 3Ng free parameters. The
Gauss terms is included for smoothing purposes, but also to model layers of
the geology which resistivity differs from the background. As for the resis-
tor terms, one could choose not to include any Gaussian terms. The ampli-
fying factors βng are unbounded, but for practical reasons, some lower (pos-
sibly negative) and upper bounds are set. The width is naturally bounded
below by some positive value, ideally greater than t, but this was not imple-
mented. For practical reasons, it is also bounded above by some large value.
The center of the Gauss function is bounded by some reasonable bounds,
but contrary to the resistor depth, these parameters can attain values out-
side the boundaries of the physical 1D model, the reason for this is simply
to be able to include small parts of one of the tails of the bell curve in the
resistivity profile.

3.1.4 Final representation

The resulting resistivity profile is then governed by

ρ(z;x)= ρp(z;xp)+ρr(z;xr)+ρg(z;xg)

=
Np∑

np=0
cnp (z− zwd)np +

Nr∑
nr=1

ρr
nr

[H(z− zr
nr

)−H(z− zr
nr

− t)]

+
Ng∑

ng=1
βng

1√
2πw2

ng

exp

{
− 1

2w2
ng

(z− zg
ng )2

}
, z > zwd

(3.5)
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with the following constraints

0≤Np ≤ Nmax
p (3.6a)

0< cmin
0 ≤c0 ≤ cmax

0 (3.6b)

cmin
p ≤cnp ≤ cmax

p , 1≤ np ≤ Np (3.6c)

0≤Nr ≤ Nmax
r (3.6d)

0< ρmin
r ≤ρr

nr
≤ ρmax

r , 1≤ nr ≤ Nr (3.6e)

z1 ≤ zmin
r ≤zr

nr
≤ zmax

r < zNl , 1≤ nr ≤ Nr (3.6f)

0≤Ng ≤ Nmax
g (3.6g)

βmin
g ≤βng ≤βmax

g , 1≤ ng ≤ Ng (3.6h)

zmin
g ≤zg

ng ≤ zmax
g , 1≤ ng ≤ Ng (3.6i)

0< wmin
g ≤wng ≤ wmax

g , 1≤ ng ≤ Ng (3.6j)

0< ρmin ≤ρ(z;x). (3.6k)

The last restriction follows from the physical restriction of positive resis-
tivity.

In total, this parameterization results in N = 1+ Np + 2Nr + 3Ng free
parameters which values is to be determined by the optimization routine.

3.1.5 Transdimensional parameterization

In the above presentation, the parameters Np, Nr and Ng are assumed
fixed. It simplifies the implementation as most optimization routines, origi-
nally are designed for a fixed number of dimensions in the parameter space.

If initial information about the sub seabed topology is available, one can
adjust the number of parameters accordingly. Say, one expect to see one
hydrocarbon saturated layer and one layer with rocks more resistive than
the background, in addition one expects there to be a compression trend.
Then it would be natural to include one resistor term and one Gaussian
term in addition to the first two polynomial terms. One would then need to
determine the best value for 7 parameters.

However, in many situations one cannot make such assumptions. A more
general approach is therefore to also optimize for the parameters Np, Nr
and Ng. With this, one could hope that the algorithm itself would adjust
to the best suited number of parameters. In this thesis, both a fixed dimen-
sional and trans-dimensional approach is explored.



4
F O R WA R D S O LV E R

Figure 4.1: Simple illustration
of one dimensional
plane layer model.

This chapter aims to derive an analytical ex-
pression of the electromagnetic field compo-
nents from a horizontal electric dipole source
in a transverse isotropic layered model, il-
lustrated in Figure 4.1. Because of this sim-
plified model and additional simplifying as-
sumptions, it is possible to attain a fast
quasi-analytic evaluation of the resulting
field, which is implemented in the forward
solver used to calculate the resulting field in
this thesis. Note that, contrary to everything
else treated in this thesis, this modeling tool
which calculates these field expressions de-
rived in this chapter is not implemented from
scratch by the author. An already existing
software developed at EMGS (Electromag-
netic Geoservices ASA) is used, but the theory
behind is included here for completeness.

This derivation is an excerpt of a more rig-
orous treatment of this field which can be
found in (Løseth and Ursin, 2007). In addi-
tion to (Løseth and Ursin, 2007), multiple ref-
erences is made to (Ursin, 1983) and (Stovas and Ursin, 2003), for more
information about this topic, the reader are referred to these papers and
the references therein.

4.1 M A X W E L L’ S E Q UA T I O N S

Maxwell’s equations in the time domain (Griffiths, 1999) are

∇·D(x, t)= γ (4.1a)

∇·B(x, t)= 0 (4.1b)

∇×E(x, t)+ ∂

∂t
B(x, t)= 0 (4.1c)

∇×H(x, t)− ∂

∂t
D(x, t)=J(x, t). (4.1d)

Here, E is the complex electric field vector and H is the complex auxil-
iary magnetic field vector. The density of free charges is given by γ (com-
monly symbolized as ρ, but in this thesis, ρ is reserved to resistivity), and

13
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ω = 2π f is the angular frequency. D is the electric displacement vector,
B the magnetic field vector and J the current density vector (Løseth and
Ursin, 2007). The del operator is in the time domain the vector differential
operator ∇=

(
∂
∂x

∂
∂y

∂
∂z

)ᵀ
, and when applied on a vector field F, ∇·F is the

divergence and ∇×F the curl of the field. In this chapter, x is used to denote
the physical location such that E(x) is the electric field at x. Anywhere else
in this thesis, x is used to denote the vector of free parameters that is to be
optimized. It should be clear out of context which is which, and should not
cause any confusion.

By introducing the Fourier transform pair

F̂(x,ω)=F (F(x, t))(ω)=
∞∫

−∞
F(x, t)e−ıωt dt, (4.2a)

F(x, t)=F−1(F̂(x,ω))(t)= 1
2π

∞∫
−∞

F̂(x,ω)eıωt dω. (4.2b)

for F ∈ {E,H} one can transform Maxwell’s equations from the time domain
to the frequency domain. Applying the Fourier transform on Equation 4.1
yields Maxwell’s equations in the frequency domain

∇·D(x,ω)= γ (4.3a)

∇·B(x,ω)= 0 (4.3b)

∇×E(x,ω)+ ıωB(x,ω)= 0 (4.3c)

∇×H(x,ω)− ıωD(x,ω)= (J0 +Jc)(x,ω). (4.3d)

This is so since the Fourier transform is linear, and

∂

∂t
F(x, t)= ∂

∂t

 1
2π

∞∫
−∞

F̂(x,ω)eıωt dω


= 1

2π

∞∫
−∞

ıωF̂(x,ω)eıωt dω

=F−1(ıωF̂(x,ω))

such that

F

(
∂

∂t
F(x, t)

)
=F

(
F−1(ıωF̂(x,ω))

)= ıωF̂(x,ω).

Note that, although the expressions in Equation 4.3 are in the frequency
domain, the hat notation F̂ from the Fourier transform is omitted for conve-
nience as it should not cause any misunderstanding. In Equation 4.3d, the
current density J is split into an external source term Js and a conduction
current density term Jc (Griffiths, 1999).
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In macroscopic media, the constitutive relations between the field quan-
tities can be very complicated. The following simplifying assumptions is
therefore applied. Nonlinear effects found in ferro-electric and ferromag-
netic materials are not taken into account. Only (piecewise) homogeneous
regions are considered, and possible non-local effects in space of the ma-
terial parameters are ignored (Løseth and Ursin, 2007). The constitutive
relations may then be written as

D(x,ω)= ε(ω)E(x,ω)

B(x,ω)=µ(ω)H(x,ω)

and in the conductive media the relation between the conduction current
density Jc and the electric field is given by Ohm’s law

Jc(x,ω)=σ(ω)E(x,ω), (4.5)

where ε is the electric permittivity and µ is the magnetic permeability of
the medium, σ is the electric conductivity. The parameters ε, µ and σ are
tensors of order two and rank one.

As a source for the electromagnetic field, an electric dipole antenna is
used. An infinitesimal electric dipole with general orientation can be rep-
resented by a periodic line current of length l = (lx l y lz)ᵀ with current
amplitude I(ω), yielding

Js(x,ω)= I(ω)(lx l y lz)ᵀδ(r)

where r= x−xs is the distance from the source, and δ is the Dirac delta.
In planar stratified media the electromagnetic properties vary in one

direction only. Consider the model assumption illustrated in Figure 4.1
and let the medium properties vary in the z-direction. A transformation
between the the time domain and frequency wave number domain is de-
scribed by the Fourier transform pair

F̂(kx,ky, z,ω)=
∞∫

−∞

∞∫
−∞

∞∫
−∞

F(x, t)e−i(kxx+ky y−ωt) dxdydt, (4.6a)

F(x, t)= 1
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

F̂(kx,ky, z,ω)ei(kxx+ky y−ωt) dkxdkydω. (4.6b)

Analogous to the transformation to the frequency domain, ∂
∂x → ıkx, ∂

∂y →
ıky and ∂

∂t →−ıω which yield Maxwell’s equations in the frequency wave
number domain

∇·D(kx,ky, z,ω)= γ (4.7a)

∇·B(kx,ky, z,ω)= 0 (4.7b)

∇×E(kx,ky, z,ω)− ıωB(kx,ky, z,ω)= 0 (4.7c)

∇×H(kx,ky, z,ω)+ ıωD(kx,ky, z,ω)= (J0 +Jc)(kx,ky, z,ω). (4.7d)
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Here, in the wave number domain, the del operator is ∇= (
ıkx ıky

∂
∂z

)
,

analogous to the time domain differential operator. Note that also here
the hat notation is omitted, also the explicit notation showing dependency
(kx,ky, z,ω) will be left out in the rest of this chapter. The quantities will be
in the frequency wave number domain unless otherwise stated.

From Equation 4.7c with the magnetic source term (∇×E− ıωB=−JM),
and Equation 4.7d one obtain the following set of equations

ıkyEz −
∂E y

∂z
− ıωBx =−JM

x (4.8a)

∂Ex

∂z
− ıkxEz − ıωBy =−JM

y (4.8b)

ıkxE y − ıkyEx − ıωBz =−JM
z (4.8c)

ıkyHz −
∂Hy

∂z
+ ıωDx − J c

x = Js
x (4.8d)

∂Hx

∂z
− ıkxHz + ıωD y − J c

y = Js
y (4.8e)

ıkxHy − ıkyHx + ıωDz − J c
z = Js

z . (4.8f)

4.1.1 Transverse isotropy in the vertical direction

Transverse isotropy in the vertical direction (TIV) means that the electro-
magnetic properties of a medium are rotationally symmetric about the ver-
tical z-axis. In layers where this is the case, the material constants simplify
to

ε=


εh 0 0

0 εh 0

0 0 εv

 , µ=


µh 0 0

0 µh 0

0 0 µv

 , σ=


σh 0 0

0 σh 0

0 0 σv


where the subscript h and v stands for horizontal and vertical directions
respectively. The conduction current density is given by Ohm’s law (Equa-
tion 4.5) and, considering only a horizontal electric dipole oriented along
the x-axis, the y and z components of the source term is zero while the x
component is given as

Js
x = I(ω)lxδ(z− zs) (4.9)

and the source is located in xs = (0 0 zs)ᵀ. This infinitesimal dipole is a
good approximation for a physical dipole with finite length when the length
is much smaller than the wavelength (l << λ) and when one is far away
from the dipole (|r>>λ), where λ is used to denote the emitted wavelength.
Introduce the complex valued constant ε̃ = ε+ ıσ/ω and let px = kx/ω and
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py = ky/ω. Then, by algebraically eliminating Ez and Hz, the above sys-
tem in Equation 4.8 reduces to the coupled system of ordinary differential
equations

∂Ex

∂z
+ ıω

(
−µhHy +

p2
x

ε̃v
Hy −

px py

ε̃v
Hx

)
= 0 (4.10a)

∂E y

∂z
+ ıω

(
px py

ε̃v
Hy +µhHx −

p2
y

ε̃v
Hx

)
= 0 (4.10b)

−∂Hy

∂z
+ ıω

(
ε̃hEx −

p2
y

µv
Ex +

py px

µv
E y

)
= Jx (4.10c)

∂Hx

∂z
+ ıω

( px py

µv
Ex + ε̃hE y −

p2
x

µv
E y

)
= 0 (4.10d)

or (
d
dz

I + ıωA
)
b= s (4.11)

where I is the 4×4 identity matrix, and the system matrix is given as

A =
(

0 A1

A2 0

)

with

A1 = 1
ε̃v

(
µhε̃v − p2

x −px py

−px py µhε̃v − p2
y

)

and

A2 = 1
µv

(
µvε̃h − p2

y px py

px py µvε̃h − p2
x

)
.

The field components is gathered in b = (Ex E y − Hy Hx)ᵀ and the
source vector is given as s= (0 0 J0

x 0)ᵀ. When assuming that the source
and receiver layers enjoy this TIV property, the expressions above can be
used to calculate the resulting horizontal field at the receiver. In addition,
the vertical components follows directly from Equation 4.10, and are given
as

Ez = 1
ε̃v

(−pxHy + pyHx
)

(4.12a)

Hz = 1
µv

(
pxE y − pyEx

)
. (4.12b)



18 F O R WA R D S O LV E R

4.2 D E C O M P O S I T I O N I N T O U P - G O I N G A N D D O W N - G O I N G F I E L D S

In order to solve Equation 4.10 it is convenient to decompose the wave vec-
tor b into up- and down-going waves via a propagation vector w. In order
to achieve this, just a simple transformation of Equation 4.10 is needed
(Ursin, 1983).

The system matrix A is diagonalizable if it has four linearly independent
eigenvectors. In this case, the spectral decomposition of A is

AQ =QΛ,

with Λ being a diagonal matrix containing the eigenvalues of A along its di-
agonal, and Q is a matrix which columns is the corresponding eigenvectors.
Introduce the mode field vector

w=Q−1b=
(
u
d

)
(4.13)

which can be expressed as a vector consisting of vectors describing up-going
and down-going waves (Ursin, 1983). Each of these vectors consists of a s-
polarized and p-polarized component. The polarization of the wave is com-
monly referred to as the direction at which the electric field oscillates. When
the wave is polarized such that the electric component is perpendicular to
the plane of incidence it is called s-polarized. When the electric component
is parallel with the plane of incidence, it is referred to as p-polarization.
The plane of incidence is the plane spanned by the wave propagation vec-
tor and a vector normal to the boundary surface. The electromagnetic field
can be decomposed into a TE-mode (transverse electric mode) and TM-
mode (transverse magnetic mode) and this is what is done in Equation 4.13,
hence the name mode field vector for w. The electromagnetic field compo-
nent where the electric field is normal to the plane of incidence is termed as
the TE-mode, and likewise the electromagnetic field component where the
magnetic field is normal to the plane of incidence is termed the TM-mode.
This is similar to s- and p-polarization, and a wave in TE-mode is the same
as s-polarization while TM-mode is the same as p-polarization. Modes are
often used to describe wave propagation in waveguides where electric and
magnetic fields in the direction of propagation can occur. TE-mode is thus
the mode where there are no electric field in the direction of propagation,
and the TM-mode is when there are no magnetic field in the direction of
propagation. Different disciplines will attach different meanings to these
terms, and in this thesis the explanation above is used. Also, both the po-
larization terminology and mode terminology is used throughout the rest
of this report.

With this, the differential equation in Equation 4.11 transforms to the
system

dw
dz

=−
(
ıωΛ+Q−1 dQ

dz

)
w+Q−1s. (4.14)
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The term with the derivative of the eigenvector matrix describes possible
medium variations. If one consider a homogeneous medium with no vertical
change in the medium properties this term vanish. One can also discretize
the medium variations into piecewise homogeneous regions which are con-
nected by applying appropriate boundary conditions. In this case, the term
also vanish, which yield the decoupled system

dw
dz

=−ıωΛw+Q−1s (4.15)

with solution of in a source free region

wn(z)= wn(z0)exp{−ıωλn(z− z0)}, n = 1,2,3,4, (4.16)

since the eigenvalue matrix is diagonal

Λ=
(
λ̂ 0

0 −λ̌

)
, with λ̂=

(
λ1 0

0 λ2

)
and λ̌=

(
−λ3 0

0 −λ4

)
. (4.17)

The eigenvalues can be organized such that λ1 =−λ3 and λ2 =−λ4, this re-
veals that the mode-field vector w consists of up-going (u) and down-going
(d) field constituents. This propagation vector can be used to describe prop-
agation of electromagnetic fields in homogeneous regions, across interfaces,
and in a system of layers (Amundsen et al., 2006), (Løseth and Ursin, 2007).
Represent propagation of w downwards in the positive z-direction as P̌ and
the propagation upwards as P̂ (Løseth and Ursin, 2007). In this way, for
zb > za

w(zb)= P̌(zb, za)w(za), (4.18a)

w(za)= P̂(za, zb)w(zb), (4.18b)

which imply that

P̂(za, zb)= P̌−1(zb, za). (4.19)

That is, the propagation matrix P̌(zb, za) relates the up-going and down-
going field components propagating downwards at zb to the up-going and
down-going field components propagating downwards at za. Similarly, the
propagation matrix P̂(za, zb) relates the up-going and down-going field com-
ponents propagating upwards at za to the up-going and down-going field
components propagating upwards at zb (Orfanidis, 2008). In the homoge-
neous source-free region which solution is given in Equation 4.16, the down-
ward propagator matrix is thus

P̌(zb, za)=
(
e−ıωλ̂(zb−za) 0

0 eıωλ̌(zb−za)

)
. (4.20)

For the upward propagator matrix, this is obtained using Equation 4.19.
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When propagating across a source, w is discontinuous. Denote the trans-
formed source in Equation 4.14 as

Q−1s=Σ=
(
Σ̂

Σ̌

)
(4.21)

where Σ̂ denotes the upward radiation and Σ̌ the downward radiation. Let
zs be the source position, and let z+s and z−s be the position just below and
above the source, respectively. Then, propagation across a source can be
described as

w(z+s )=Σ(zs)+w(z−s ) (4.22)

(Løseth and Ursin, 2007).

4.2.1 Reflection and transmission response

In order to derive expressions for the propagator matrices, properties of
the electromagnetic field when propagating through boundaries will be uti-
lized. When an incident electromagnetic wave (say EI and HI) propagates
towards and interacts with the boundary between two layers with their re-
spective material constants, it gives rise to a reflected wave (ER and HR)
and a transmitted wave (ET and HT). By applying appropriate boundary
conditions, one can relate the reflected and transmitted field amplitudes
to the amplitude of the incident field. These boundary conditions can be
deduced from the integral representation of Maxwell’s equations (Equa-
tion 4.1), and are given as

D⊥
1 −D⊥

2 = γ f (4.23a)

B⊥
1 −B⊥

2 = 0 (4.23b)

E∥
1 −E∥

2 = 0 (4.23c)

H∥
1 −H∥

2 =J f
c ×n. (4.23d)

These are the boundary conditions at a boundary between two different
media, medium 1 and medium 2. The unit normal vector n is perpendic-
ular to the surface between the two, and is pointing in the direction from
medium 2 to medium 1. The surface carries a surface density γ f of free
charges and surface density Jc of free currents. The superscripts ()⊥ and
()∥ denotes the field components perpendicular to and parallel with the sur-
face respectively (Griffiths, 1999). The reflection and transmission relations
between the incident, reflected and transmitted field is denoted R and T
respectively. When considering propagation through several layers with a
more general anisotropy than TIV (remember that up until now, only the



4.2 D E C O M P O S I T I O N I N T O U P - G O I N G A N D D O W N - G O I N G F I E L D S 21

source and receiver layers is assumed TIV), R and T will in this derivation
be 2×2 matrices

R =
(

Rss Rsp

Rps Rpp

)
, T =

(
Tss Tsp

Tps Tpp

)
(4.24)

which consists of reflection and transmission coefficients relating the re-
flection and transmission amplitudes to the amplitude of a s-polarized and
p-polarized incident wave, hence the subscripts. Capitalized R and T will
be used to denote reflection and transmission responses from propagation
through several layers whilst r and t will be used considering reflection and
transmission through a single interface. At first, R and T will be used to
derive expressions of the propagation matrices P. How to calculate R, T, r
and t will be discussed in Section 4.2.7 and Section 4.2.8.

Figure 4.2: Reflection and transmission from an unit incident field.

Consider a unit incident field propagating downwards (and upwards)
through an isotropic upper (and lower) half-space as illustrated in the left
(and right) of Figure 4.2, respectively. Figure 4.2 then describes the reflec-
tion and transmission fields due to this incident field in the region between
the interfaces za and zb, zb > za. This region between za and zb may contain
several layers or just one single interface, but no source (Ursin, 1983).

4.2.2 Downwards propagation

At first, downward propagation from z1 to zNl is considered. The mode field
at zNl relates to the mode field at z1 via the propagator matrix as

w(zb)= P̌(zb, za)w(za). (4.25)
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Referring to the left of Figure 4.2, the layer below the interface at zb
there is only down-going field components, so that in terms of the incident
field

w(zb)=
(

0
d(zb)

)
=

(
0

Ť

)(
Ǐs

Ǐ p

)
(4.26)

and at the layer above za

w(za)=
(
u(za)

d(za)

)
=

(
Ř

I

)(
Ǐs

Ǐ p

)
. (4.27)

where Ǐs and Ǐ p are s- and p-polarized unit incident wave amplitudes corre-
sponding to the up/down decomposition. Now, inserting Equation 4.26 and
Equation 4.27 into Equation 4.25 yields(

0

Ť

)
=

(
P̌11 P̌12

P̌21 P̌22

)(
Ř

I

)
(4.28)

where P̌11 and P̌22 are the upper left and lower right 2×2 sub-matrices in
P̌ respectively. P̌12 and P̌21 are accordingly the upper right and lower left
2×2 sub-matrices.

With the same reasoning in the right case of Figure 4.2

w(zb)=
(
u(zb)

d(zb)

)
=

(
I

R̂

)(
Îs

Î p

)
, (4.29)

and

w(za)=
(
u(za)

0

)
=

(
T̂

0

)(
Îs

Î t

)
. (4.30)

Inserting Equation 4.29 and Equation 4.30 into Equation 4.25 yields(
I

R̂

)
=

(
P̌11 P̌12

P̌21 P̌22

)(
T̂

0

)
. (4.31)

Solving Equation 4.28 and Equation 4.31 for the reflection and transmis-
sion matrices yields

T̂ = P̌−1
11 (4.32a)

R̂ = P̌21P̌−1
11 (4.32b)

Ř =−P̌−1
11 P̌12 (4.32c)

Ť = P̌22 − P̌21P̌−1
11 P̌12. (4.32d)
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4.2.3 Upwards propagation

In a similar fashion, expressions for the reflection and transmission matri-
ces can be found when considering propagation upwards in the negative
z-direction. The mode field above z1 relates to the mode field below zNl via
the propagator matrix as

w(za)= P̂(za, zb)w(za). (4.33)

The relations between the incident, reflected and transmitted field is the
same as in the upward propagation case, so referring to the left of Fig-
ure 4.2, inserting Equation 4.26 and Equation 4.27 into Equation 4.33,
yields(

Ř

I

)
=

(
P̂11 P̂12

P̂21 P̂22

)(
0

Ť

)
(4.34)

and in the right case, inserting Equation 4.29 and Equation 4.30 into Equa-
tion 4.33(

T̂

0

)
=

(
P̂11 P̂12

P̂21 P̂22

)(
I

R̂

)
. (4.35)

Combining Equation 4.34 and Equation 4.35 yields the following expres-
sions

Ť = P̂−1
22 (4.36a)

Ř = P̂12P̂−1
22 (4.36b)

R̂ =−P̂−1
22 P̂21 (4.36c)

T̂ = P̂11 − P̂12P̂−1
22 P̂21. (4.36d)

4.2.4 Propagation matrices expressions

From Equation 4.32 and Equation 4.36 the following expressions for the
downward and upward propagator matrices follows

P̌(zb, za)=
(

T̂−1 −T̂−1Ř

R̂T̂−1 Ť − R̂T̂−1Ř

)
, (4.37a)

P̂(za, zb)=
(
T̂ − ŘŤ−1R̂ ŘŤ−1

−Ť−1R̂ Ť−1

)
. (4.37b)
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or, in terms of the mode field vector

w(zb)=
(

T̂−1 −T̂−1Ř

R̂T̂−1 Ť − R̂T̂−1Ř

)
w(za), (4.38a)

w(za)=
(
T̂ − ŘŤ−1R̂ ŘŤ−1

−Ť−1R̂ Ť−1

)
w(zb). (4.38b)

4.2.5 System of layers containing a source

In this section we will derive expressions for the mode-field vector w in the
layers above and underneath the source. Use Figure 4.3 and the subsec-
tions above for reference on the different expressions.

Figure 4.3: Reflection and transmission in a multilayered system. R̂s (and Řs) is
the reflection in the source layer from all interfaces above (and below)
the source due to incident up-going (and down-going) radiation from
the source. T̂u (and Ťd) is the transmission at layer u (and d) from all
interfaces between layer u (and d) and the source due to incident up-
going (and down-going) radiation from the source. hatRa (and Řb) is
the reflection from all interfaces above (and below) layer u (and d) due
to up-going (and down-going) radiation from the source. Řu (and R̂d) is
the reflection from all the interfaces below (and above) layer u (and d)
due down-going (and up-going) radiation at the source.
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First, the mode field above the source w(z), z < zs will be derived. Con-
sider downward propagation from z anywhere above the source down to
the source at z−s

w(z−s )= P̌(z−s , z)w(z). (4.39)

By comparing Figure 4.3 with Figure 4.2 and inserting the corresponding
expressions into Equation 4.37a one get the following expression for the
up-going fields just above the source

u(z−s )= T̂−1
u u(z)− T̂−1

u Řud(z). (4.40)

Now, since there is only one source, and this is below z, the down-going
fields at z will only be the reflected up-going fields at z, so d(z) = R̂au(z),
with this

u(z−s )= T̂−1
u (I − ŘuR̂a)u(z). (4.41)

Inverting this yields the following expression for the mode-field

w(z)=
(

I

R̂a

)
u(z)=

(
I

R̂a

)
(I − ŘuR̂a)−1T̂uu(z−s ). (4.42)

In order to derive an expression for u(z−s ), consider downward propaga-
tion from the source to the bottom most layer

w(zNl )= P̌(zNl , z+s )w(z+s )= P̌(zNl , z+s )[w(z−s )+Σ(zs)] (4.43)

where the last relation follows from Equation 4.22.
In the lower half space, the region below zNl , there are only down-going

fields. This is so since it is assumed to be only one source, which lay above
zNl , and since there are no interfaces below zNl to reflect on. Furthermore,
the down-going field just above the source is just the reflected up-going field
d(z−s ) = R̂su(z−s ), again because there is only one source layer, all down-
going fields above the source must be reflected up-going fields. With this,
Equation 4.43 can be written as(

0
d(zNl )

)
= P̌11

(
I −Řs

P̌−1
11 P̌21 P̌−1

11 P̌22

)[(
u(z−s )

R̂su(z−s )

)
+

(
Σ̂(zs)

Σ̌(zs)

)]
, (4.44)

where the relation Řs =−P̌−1
11 P̌12 from Equation 4.32c is used. From this,

u(z−s )= (I − ŘsR̂s)−1(−Σ̂+ ŘsΣ̌),

and inserting this into Equation 4.42, yields the expression of the total
mode-field above the source

w(z)=
(

I

R̂a

)
(I − ŘuR̂a)−1T̂u(I − ŘsR̂s)−1(−Σ̂+ ŘsΣ̌), z < zs. (4.45)
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Now, the mode-field below the source w(z), z > zs will be derived with the
same procedure as with the mode-field above the source. Consider upward
propagation from z anywhere below the source up to the source at z+s

w(z+s )= P̂(z+s , z)w(z). (4.46)

Again, by comparing Figure 4.3 with Figure 4.2 and inserting the corre-
sponding expressions into Equation 4.37b yields the following expression
for the down-going fields just above the source

d(z+s )=−Ť−1
d R̂du(z)− Ť−1

d d(z). (4.47)

Since there is only one source, and this is above z, the up-going fields at z
will only be the reflected down-going fields at z, so u(z)= Řbd(z), with this

d(z+s )= Ť−1
d (I − R̂dŘb)d(z). (4.48)

Inverting this yields the following expression for the mode-field

w(z)=
(
Řb

I

)
d(z)=

(
Řb

I

)
(I − R̂dŘb)−1Ťdd(z+s ). (4.49)

In order to find an expression for d(z+s ), consider the upwards propaga-
tion from the source to the topmost interface z1

w(z1)= P̂(z1, z−s )w(z−s )= P̂(z1, z−s )[w(z+s )−Σ(zs)].

In the upper half-space, the region above z1, there are only up-going fields,
and the up-going field at the source equals the reflected response from
the down-going field u(z+s )= Řsd(z+s ). Corresponding to Equation 4.44, this
leads to(

u(z1)

0

)
= P̂22

(
P̂−1

22 P̂11 P̂−1
22 P̂12

−R̂s I

)[(
Řsd(z+s )

d(z+s )

)
−

(
Σ̂(zs)

Σ̌(zs)

)]
(4.50)

where R̂s = −P̂−1
22 P̂21 is from Equation 4.36c. The down-going field vector

just below the source now becomes

d(z+s )= (I − R̂sŘs)−1(Σ̌+ R̂sΣ̂),

and the mode-field vector anywhere below the source z > zs, is found by
inserting this into Equation 4.49

w(z)=
(
Řb

I

)
(I − R̂dŘb)−1Ťd(I − R̂sŘs)−1(Σ̌− R̂sΣ̂), z > zs. (4.51)
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4.2.6 Eigenvalues and eigenvectors

Now, consider again the system in Equation 4.11, restated here for conve-
nience(

d
dz

I + ıωA
)
b= s

which for TIV media has the system matrix

A =
(

0 A1

A2 0

)
with

A1 = 1
ε̃v

(
µhε̃v − p2

x −px py

−px py µhε̃v − p2
y

)
and

A2 = 1
µv

(
µvε̃h − p2

y px py

px py µvε̃h − p2
x.

)
The field components is given in b = (Ex E y −Hy Hx)ᵀ and the source
vector for a horizontal electric dipole is given as s = (0 0 J0

x 0)ᵀ. The
eigenvalue matrix Λ and the eigenvector matrix Q in the spectral decompo-
sition of A

AQ =QΛ

is stated. Λ= diag(λ1,λ2,λ3,λ4) where

λ1 =−λ3 =
√
µhε̃h −

µh

µv
(p2

x + p2
y), (4.52a)

λ2 =−λ4 =
√
µhε̃h −

ε̃h

ε̃v
(p2

x + p2
y). (4.52b)

Because of symmetry in the up-going and down-going field constituents

Q = 1p
2

(
QE QE

QH −QH

)
(4.53)

and

Q−1 = 1p
2

(
Qᵀ

H Qᵀ
E

Qᵀ
H −Qᵀ

E.

)
. (4.54)

If the medium enjoy the TIV property, the eigenvector sub-matrices are
given by

QE = 1
pr

 py

√
µh
λ1

px

√
λ2
ε̃h

−px

√
µh
λ1

py

√
λ2
ε̃h

 , and QH = 1
pr

 py

√
λ1
µh

px

√
ε̃h
λ2

−px

√
λ1
µh

py

√
ε̃h
λ2

 .

(4.55)

where pr =
√

p2
x + p2

y.
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4.2.7 Reflection and transmission at single interfaces

Before calculating the expressions of R and T, expressions of r and t will
be derived. In the same way as R and T represents reflection and transmis-
sion through multiple layers, r and t represents reflection and transmission
through one single interface. From the boundary conditions of Maxwell’s
equations (Equation 4.23) one can see from Equation 4.23c and Equation 4.23
that the horizontal components given by b = Qw are continuous across an
interface. When there are no free currents at the surface, this means that
Q(z−j )w(z−j ) = Q(z+j )w(z+j ), where z−j and z+j are the z-coordinates on each
side of the interface at z j. Thus the propagator matrices across the inter-
face becomes

P̌(z+j , z−j )=Q−1(z+j )Q(z−j ), and P̂(z−j , z+j )=Q−1(z−j )Q(z+j ). (4.56)

The expressions in for the reflection and transmission matrices is given
in Equation 4.32 and Equation 4.36. Together with the expressions of the
propagator matrices in Equation 4.56 and the expressions of the eigenvalue
matrices given in Equation 4.53 and Equation 4.54, the expressions of re-
flection and transmission over one interface follows

t̂ = P̌−1
11 = 2

[
(Q̂+

E)ᵀQ̂−
H + (Q̂+

H)ᵀQ̂−
E
]−1

(4.57a)

r̂ =−P̂−1
22 P̂21 =−[

(Q̌−
H)ᵀQ̌+

E + (Q̌−
E)ᵀQ̌+

H
]−1 [

(Q̌−
H)ᵀQ̂+

E − (Q̌−
E)ᵀQ̂+

H
]
(4.57b)

ř =−P̌−1
11 P̌12 =−[

(Q̂+
E)ᵀQ̂−

H + (Q̂+
H)ᵀQ̂−

E
]−1 [

(Q̂+
E)ᵀQ̌−

E − (Q̂+
H)ᵀQ̌−

E
]
(4.57c)

ť = P̂−1
22 = 2

[
(Q̌−

H)ᵀQ̌+
E + (Q̌−

E)ᵀQ̌+
H

]−1
. (4.57d)

Here, the superscripts ()− and ()+ refers to the eigenvector matrices in
the upper and lower homogeneous layers, respectively, the other notations
follow the same nomenclature defined earlier.

In the case of TIV, one can get the following explicit representations from
Equation 4.55

ť =

2

√
µ−hµ

+
hλ

−
1λ

+
1

µ+hλ
−
1 +µ−hλ+1

0

0 2

√
ε̃−h ε̃

+
h+λ−2λ+2

ε̃−hλ
+
2 +ε̃+hλ−1

 , ř =

µ+hλ
−
1 −µ−hλ+1

µ+hλ
−
1 +µ−hλ+1

0

0
ε̃−hλ

+
2 −ε̃+hλ−2

ε̃−hλ
+
2 +ε̃+hλ−1

 , (4.58)

t̂ = ť and r̂ =−ř.

4.2.8 Recursive calculation of R and T

The reflection and transmission response from a stack of layers can be cal-
culated by multiplying together the propagator matrices of the respective
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layers. In simulations, this procedure may be numerically unstable, so a
recursive calculation is proposed. This procedure can be used to calculate
reflection and transmission responses in a stack of piece-wise homogeneous
layers between the interfaces za and zb (za < zb), which do not contain any
sources, see Figure 4.2. Appropriate initial values will be provided at the
respective boundary interfaces za and zb.

First, the downward reflection and transmission matrices Ř and Ť will
be derived. Consider propagation from zb upwards through a stack of layers
to z+j , from there, through the interface at z j up through one layer to z+j−1.
In terms of the propagator matrix, this becomes

P̂(z+j−1, zb)= P̂(z+j−1, z−j )P̂(z−j , z+j )P̂(z+j , zb) (4.59)

For P̂(z+j , zb), the reflection and transmission matrices in the right column
of Equation 4.37b are denoted Ř j+1 and Ť j+1, respectively. Correspondingly,
the reflection and transmission matrices in P̂(z+j−1, zb) is denoted Ř j and Ť j,
respectively. The propagator across the single interface at z j is also given
by Equation 4.37b, but here the reflection and transmission matrices will
be denoted r j and t j since it is only through one interface. The propagation
through the homogeneous layer is given by the inverse of the propagator
matrix in Equation 4.20. After some calculations, the following recursion
formulas are obtained

Ř j = eıωλ̂h j
[
t̂ jŘ j+1

(
I − r̂ jŘ j+1)−1) ť j + ř j

]
eıωλ̌h j (4.60a)

Ť j = Ť j+1
(
I − r̂ jŘ j+1

)−1 ť j eıωλ̌h j , (4.60b)

where h j = z j − z j−1, j ∈ {a,a+1, . . . ,b}, and λ̂ and λ̌ are the eigenvalue sub-
matrices in layer j. The initial values are Řb = 0 and Ťb = eıωλ̌hb .

In a similar manner, down-going propagators can be used to derive recur-
sive formulas for R̂ j and T̂ j,

R̂ j = eıωλ̌h j+1
[
t̂ jR̂ j−1

(
I − ř jR̂ j−1)−1) t̂ j + r̂ j

]
eıωλ̂h j+1 (4.61a)

T̂ j = T̂ j−1
(
I − ř jR̂ j−1

)−1 t̂ j eıωλ̂h j+1 , (4.61b)

for j ∈ {a,a+1, . . . ,b}. Here, R̂ j−1 and T̂ j−1 describe the reflection and trans-
mission at z−j whilst R̂ j and T̂ j describe the reflection and transmission at

z−j+1. The initial values are given as R̂a = 0 and T̂a = eıωλ̂ha and the eigen-
value sub-matrices are those in layer j+1.

As is further shown in (Løseth and Ursin, 2007), these recursive expres-
sions simplify in TIV media, Ř = R̂ᵀ and Ť = T̂ᵀ. Furthermore, the off-
diagonal elements, referring to coupling of the TE- and TM-modes, are zero,
which imply that Ř = R̂ and Ť = T̂. The following recursive relation is valid
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for both the TE-mode and the TM-mode and will therefore only be denoted
by the scalar R and T,

R j =
r j +R j+1

1+ r jR j+1
e2ıωλh j (4.62a)

T j =
t jT j+1

1+ r jR j+1
eıωλh j . (4.62b)

The initial conditions is Rb = 0 and Tb = eıωλhb , and the validity is as in
the general case. The expressions are equal for the two polarizations with
exception of the eigenvalues, which for the TE-mode is given by the scalar
λ=λ1 and for the TM-mode by the scalar λ=λ2.

4.3 F I N A L F I E L D C O M P O N E N T E X P R E S S I O N S

We are now in the position to derive the final expressions for the field com-
ponents from a horizontal electrical dipole in TIV medium. For a horizontal
electric dipole

Σ̌=− 1p
2
Σ̂=− 1p

2
Qᵀ

Esh
E

where the source vector is split as s = sE +sM and sE =
(
sv

E

sh
E

)
. This follows

from Equation 4.21 and that for a horizontal electric dipole, s= (0 0 Jx 0)ᵀ,
that is sM = 0 and sv

E = 0. Furthermore Jx is given in Equation 4.9 which
yield

Σ̌=−Σ̂=− Ilxp
2pr

(
pyEs

pxM
−1
s

)
,

E =
√
µh

λ1
, and M =

√
ε̃h

λ2

and the subscript s means that the value of the material constants are
those of the source layer. Using Equation 4.45 we get for z < zs

b=
(
bE

bH

)
=Qw(z < zs) (4.63a)

= 1p
2

(
QE(I + R̂a)(I − ŘuR̂a)−1T̂u(I − ŘsR̂s)−1(I + Řs)Σ̌

QH(I − R̂a)(I − ŘuR̂a)−1T̂u(I − ŘsR̂s)−1(I + Řs)Σ̌

)
(4.63b)

= 1p
2

(
QER̂A

QHR̂D

)
Σ̌ (4.63c)
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and for z > zs, using Equation 4.51

b=
(
bE

bH

)
=Qw(z > zs) (4.64a)

= 1p
2

(
QE(Řb + I)(I − R̂dŘb)−1Ťd(I − R̂sŘs)−1(I + R̂s)Σ̌

QH(Řb − I)(I − R̂dŘb)−1Ťd(I − R̂sŘs)−1(I + R̂s)Σ̌

)
(4.64b)

= 1p
2

(
QEŘA

QHŘD

)
Σ̌. (4.64c)

Written explicitly, the electric and magnetic field components in the fre-
quency wave number domain, when the source and receiver layers are
transverse vertical isotropic and the source is a horizontal electric dipole,
becomes

Ex =− Ilx

2p2
r

[
EEs p2

yR
A
11 +

E

Ms
py pxR

A
12 +

Es

M
px pyR

A
21 +

1
MMs

p2
xR

A
22

]
(4.65a)

E y =− Ilx

2p2
r

[
−EEs px pyR

A
11 −

E

Ms
p2

xR
A
12 +

Es

M
p2

yR
A
21 +

1
MMs

py pxR
A
22

]
(4.65b)

Hx =+ Ilx

2p2
r

[
Es

E
p2

yR
D
11 +

1
EMs

py pxR
D
12 +MEs px pyR

D
21 +

M

Ms
p2

xR
D
22

]
(4.65c)

Hy =− Ilx

2p2
r

[
−Es

E
px pyR

D
11 −

1
EMs

p2
xR

D
12 +MEs p2

yR
D
21 +

M

Ms
py pxR

D
22

]
(4.65d)

and the horizontal components follows from Equation 4.12b

Ez =− Ilx

2ε̃v

[
MEs pyR

D
21 +

M

Ms
pxR

D
22

]
(4.66a)

Hz = Ilx

2µv

[
EEs pyR

A
11 +

E

Ms
pxR

A
12

]
. (4.66b)

Here, R → Ř for z < zs and R → R̂ for z > zs.

4.3.1 TIV or isotropy in all layers

In the case where all layers are TIV or isotropic, the reflection and transmis-
sion response simplifies. Consider the matrix expressions in Equation 4.63
and Equation 4.64

R =
(
R11 R12

R21 R22

)
, (4.67)
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where R refers to all R matrices in Equation 4.63 and Equation 4.64. Let
Equation 4.67 represent the reflection and transmission response in a TIV
or isotropic layer from an anisotropic stack of layers due to a source in a
TIV or isotropic medium. Then the subscript 1 is related to the TE-mode
and the subscript 2 is related to the TM-mode such that R11 represent the
emitted TE-polarization and resulting TE-mode, R12 represent emitted TE-
mode and resulting TM-mode. Likewise R21 represents emitted TM-mode
and resulting TE-mode while R22 represents both emitted and resulting
field is in TM-mode.

As mentioned above, at interfaces with more complicated anisotropy than
TIV, the off-diagonal in the reflection and transmission matrices, R and T
respectively, are nonzero. If, however the off-diagonal elements are zero, R

is diagonal. Moreover, if all layers in the model are TIV or isotropic, the
responses for the TE-mode and TM-mode are given by the same scalar ex-
pression. Written out this means that R12 =R21 = 0, RA

11 =RA
22 =RA and

RD
11 =RD

22 =RD in our particular case (Løseth and Ursin, 2007). Although
given by the same expression, let R11 be denoted by RE and let R22 be
denoted by RM .

For z < zs this is given explicitly as

R̂A = T̂u
1+ R̂a

1− ŘuR̂a

1+ Řs

1− ŘsR̂s

R̂D = T̂u
1− R̂a

1− ŘuR̂a

1+ Řs

1− ŘsR̂s

and for z > zs

ŘA = Ťd
Řb +1

1− R̂dŘb

1+ R̂s

1− R̂sŘs

ŘD = Ťd
Řb −1

1− R̂dŘb

1+ R̂s

1− R̂sŘs

This reduces the expression of the horizontal field components to

Ex =− Ilx

2p2
r

[
EEs p2

yRA + 1
MMs

p2
xRA

]
(4.70a)

E y =− Ilx

2p2
r

[
−EEs px pyRA + 1

MMs
py pxRA

]
(4.70b)

Hx =+ Ilx

2p2
r

[
Es

E
p2

yRD + M

Ms
p2

xRD

]
(4.70c)

Hy =− Ilx

2p2
r

[
−Es

E
px pyRD + M

Ms
py pxRD

]
(4.70d)

and for the vertical components

Ez =− Ilx

2ε̃v

M

Ms
pxRD (4.71a)

Hz = Ilx

2µv
EEs pyRA. (4.71b)
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In order to get the quantities the in Equation 4.70 back to the spatial
domain, the inverse Fourier transform given in Equation 4.6b is applied.
In case of TIV or isotropy in all layers, the double Fourier integral over the
horizontal wave numbers kx and ky can be simplified to a single integral in
terms of Bessel functions and a polar horizontal wave number kr. Introduce
polar coordinates as

r =
√

x2 + y2, x = r cosβ, y= rsinβ,

kr =
√

k2
x +k2

y, kx = kr cosα, ky = kr sinα.

where α is the polar angle in the wave number domain and β is the angle in
the spatial domain and r is the polar radius. With this, the double integral
from Equation 4.6b without the time and frequency part becomes

∞∫
−∞

∞∫
−∞

F(kx,ky)eı(kxx+ky y)dkxdky =
∞∫

0

2π∫
0

krF(kr,φ)eı(krrsinφ) dφdkr,

where φ=α−β+π/2. And thus the Fourier transform from the wave number
domain to the spatial domain is given as

F(r,β)= 1
(2π)2

∞∫
0

∞∫
0

krF̂(kr,φ)eıkrrsinφdφdkr. (4.73)

Note that no we are still in the frequency domain, no transform to time
domain is made. In what follows, the expression of the final polar spatial
field components from a horizontal electric dipole in TIV or isotropic media
Er(r,β), is derived. The derivation of the other field components Eβ(r,β),
Ez(r,β), Hr(r,β), Hβ(r,β), Hz(r,β) is similar.

Let

gE
A = EEsR

E
A, gM

A = 1
M

1
Ms

RM
A

gE
D =−Es

E
RE

D , gE
D =− M

Ms
RE

D

such that the field components from Equation 4.70 becomes

Ex(kr,α)=− Ilx

2p2
r
[gE

A p2
y + gM

A p2
x]

=− Ilx

2
[gE

A sin2α+ gM
A cos2α]

E y(kr,α)=− Ilx

2p2
r
[−gE

A px py + gM
A px py]

=− Ilx

2
[−gE

A sinαcosα+ gM
A sinαcosα]
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since px = kx/ω, py = ky/ω and pr = kr/ω. Furthermore

sin2α= sin2(φ+β−π/2)

= 1
2

[cos2φcos2β−sin2φsin2β+1]

cos2α= cos2(φ+β−π/2)

= 1
2

[−cos2φcos2β+sin2φsin2β+1]

sinαcosα= sin(φ+β−π/2)cos(φ+β−π/2)

=−1
2

[cos2φsin2β+sin2φcos2β]

Now, introduce the Bessel functions, with the integral representation

Jn(z)= (−1)n

2π

∫ 2π

0
eınφeızsinφdφ. (4.77)

Since ∫ 2π

0
cosφeızsinφdφ= 0 ∀z,∫ 2π

0
sin2φeızsinφdφ= 0 ∀z,

the first three functions can be described as

J0(z)= 1
2π

∫ 2π

0
eızsinφdφ

J1(z)= −1
2π

∫ 2π

0
[cosφ+ ısinφ]eızsinφdφ

= 1
2πı

∫ 2π

0
sinφeızsinφdφ

J2(z)= −1
2π

∫ 2π

0
[cos2φ+ ısin2φ]eızsinφdφ

= 1
2π

∫ 2π

0
cos2φeızsinφdφ.

Since the terms cosφ and sin2φ do not contribute to the Bessel expansion,
this means that in practice

sin2α→ 1
2

[cos2φcos2β+1]

cos2α→ 1
2

[−cos2φcos2β+1]

cosαsinα→−1
2

cos2φsin2β
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and

Ex(kr,α)=− Ilx

4
[gE

A cos2φcos2β+ gE
A − gM

A cos2φcos2β+ gM
A ]

E y(kr,α)=− Ilx

4
[gE

A cos2φsin2β− gE
A cos2φsin2β].

Transforming these using Equation 4.73 gives the following representa-
tion in the spatial domain

Ex(r,β)=− Ilx

8π

∫ ∞

0
kr[gE

A J2(rkr)cos2β+ gE
A J0(rkr)

−gM
A J2(rkr)cos2β+ gM

A J0(rkr)]dkr

E y(r,β)=− Ilx

8π

∫ ∞

0
kr[gE

A J2(rkr)sin2β− gM
A J2(rkr)sin2β]dkr

The cylindrical components are obtained through the rotation
Fr

Fβ

Fz

=


cosβ sinβ 0

−sinβ cosβ 0

0 0 1




Fx

Fy

Fz

 .

This, together with the property of the Bessel functions J0(z) + J2(z) =
2
z J1(z), yields the final expression for the field components

Er =− Ilx

4π
cosβ

[
I M

A0 +
1
r

(I E
A1 −I M

A1)
]

(4.83a)

Eβ =− Ilx

4π
sinβ

[
−I E

A0 +
1
r

(I E
A1 −I M

A1)
]

(4.83b)

Hr = Ilx

4π
sinβ

[
−I E

D0 +
1
r

(I E
D1 −I M

D1)
]

(4.83c)

Hβ =− Ilx

4π
cosβ

[
I M

D0 +
1
r

(I E
D1 −I M

D1)
]

(4.83d)

Ez = Ilx

4π
ıcosβ
ωε̃v

∫ ∞

0
k2

r gM
D J1(rkr)dkr (4.83e)

Hz = Ilx

4π
ısinβ
ωµv

∫ ∞

0
k2

r gE
D J1(rkr)dkr (4.83f)

where the Hankel transforms are given as

I E
A0 =

∫ ∞

0
kr gE

A J0(rkr)dkr, I E
A1 =

∫ ∞

0
gE

A J1(rkr)dkr (4.84a)

I M
A0 =

∫ ∞

0
kr gM

A J0(rkr)dkr, I M
A1 =

∫ ∞

0
gM

A J1(rkr)dkr (4.84b)

I E
D0 =

∫ ∞

0
kr gE

D J0(rkr)dkr, I E
D1 =

∫ ∞

0
gE

D J1(rkr)dkr (4.84c)

I M
D0 =

∫ ∞

0
kr gM

D J0(rkr)dkr, I M
D1 =

∫ ∞

0
gM

D J1(rkr)dkr. (4.84d)

can now be solved with a numerical integration method (Løseth and
Ursin, 2007).
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4.4 F A S T H A N K E L T R A N S F O R M

In order to solve Equation 4.83, the integrals in Equation 4.84 needs to
be evaluated numerically. This section describes a method called the Fast
Hankel Transform used to evaluate Hankel transforms, which are integrals
of the type

F(r)=
∫ ∞

0
f (λ)Jν(λr)dλ (4.85)

where Jν is an νth order Bessel function of the first kind (Johansen and
Sørensen, 1979). Due to the oscillatory behaviour of Jν (and possibly f ),
standard quadrature methods applied to these integrals tends to have con-
verge, or they may not converge at all if the integral is divergent. The Fast
Hankel Transform implemented with digital filters which was proposed in
(Ghosh, 1971) tends to handle some of the above issues in a favourable way,
making it a frequently used tool in EM geophysics discipline. In problems
concerned in this thesis, where the model is quite small, a numerical eval-
uation of Equation 4.83 is performed once for each forward call in the in-
version, and one inversion typically consist of 10000 to 50000 forward calls.
Other, larger modeling applications may require to evaluate integrals of
the type in Equation 4.85 millions of times(Key, 2012). Evidently, this sets
high requirements on the precision and speed of the evaluation method.

Now, let

λ= e−u and r = ev, u,v ∈ (−∞,∞)

and define the new functions K and G on (−∞,∞) as

G(v) := evF(ev) and K(u) := f (e−u).

By this substitution, Equation 4.85 can be reformulated as

G(v)=
∫ ∞

−∞
K(u)ev−u Jν(ev−u)du.

This is recognised as the convolution

G(v)=
∫ ∞

−∞
K(u)Hν(v−u)du =

∫ ∞

−∞
K(v−u)Hν(u)du = K ∗H

where

Hν(v) := evJνev)

is the kernel of the transformation. The idea is now to approximate G nu-
merically with some function G̃ that is computable such that |G(v)−G̃(v)| <
ε, ∀v ∈ S ⊂R, for some small, positive ε larger than the computational nu-
merical precision. Before G̃ is defined, discretize u into equidistant points
n∆ for integer values n and some spacing δ, and define the interpolation

K̃(u)=
∞∑

n=−∞
K(nδ)ψ

(u
δ
−n

)
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where ψ is some interpolating function (e.g. the normalized sinc function)
such that ψ(0)= 1 and ψ(n)= 0 for all integer values n 6= 0. Then introduce
G̃ as

G̃(v) : =
∫ ∞

−∞
K̃(u)Hν(v−u)du (4.86a)

=
∞∑

n=−∞
K(n∆)H̃ν(v−n∆) (4.86b)

where

H̃ν(v) :=
∫ ∞

−∞
ψ

( u
∆

)
Hν(v−u)du (4.87)

is the ψ-response of the Hν-transform. Now, H̃ν is still difficult to evaluate,
and in order to evaluate G̃(v) for arbitrary values of v would require that
H̃(v) is known at the corresponding set of values (Johansen and Sørensen,
1979). Instead, discretize v into a set of equidistant points m∆ for integer
m, such that, from Equation 4.86, G̃(v) can be expressed in these points as

G̃(m∆)=
∞∑
−∞

K(n∆)H̃[(m−n)∆]. (4.88)

Now, one could interpolate between them once more with an approximation˜̃G of G̃ as

˜̃G(v)=
∞∑

m=−∞
G̃(m∆)φ

( v
∆
−m

)
,

where φ may or may not be the same interpolation function as ψ. The prob-
lem of computing values of H̃ remains, and is in general a difficult task
(Johansen and Sørensen, 1979).

It is recognised in (Ghosh, 1971) that H̃ evaluated at a certain distinct
points is essentially a vector of linear filter coefficients that could be pre-
determined and applied together with arbitrary functions K (or f ). Opti-
mal filter coefficients for finite length filters can be found by solving Equa-
tion 4.88 for a given length filter using known integral transform pairs for
G and f where the known f share similar characteristics as the functions
the resulting method is applied on. With this, the resulting T-point digital
filter approximation is

G(v)≈
l∑

k=−l
K(v−k∆)H̃k

or

rF(r)≈
l∑

k=−l
f (bi/r)H̃k
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with the logarithmic spaced filter abscissas bk = λkr = ek∆ for k = −l,−l +
1, . . . , l and T = 2l +1 (Key, 2012). When applied in modeling tools, the dif-
ferent values of Hk is usually already calculated, so only f needs to be eval-
uated, which still can be costly. But since it only needs to be evaluated at T
points, and this filter length usually lies in a range of tens or hundreds, the
digital filter method is usually much faster than simple, direct quadrature
methods (Key, 2012).
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At each iteration of the inversion, a new candidate model is proposed by
changing the parameter values in the parameterization discussed in Chap-
ter 3. The problem of finding the best configuration of parameter values is
stated as an optimization problem

ρ(x, y, z;x)= argmin
x∈D

ε(ρ(x))

where ρ represents the model, e.i. the resistivity at locations (x, y, z) in the
physical space. x represents the parameterization of the model space, and
is a collection of variables which is to be optimized, these are contained in
some space D ⊂RN .

In this project the stochastic optimization routine named simulated an-
nealing is chosen. The reason for this choice is mainly the easy implementa-
tion and robust convergence properties, that is, the ability to locate global
minima with minimal knowledge of the solution space topology, in addition
to the possibility of escaping local minima. Also, stochastic inversion meth-
ods are the main application of the parameterization introduced in this the-
sis, since the computational cost explodes in higher dimensions with many
parameters.

It is assumed that the number of parameters N, is fixed. The trans-
dimensional case requires some extra attention and is discussed at the end
of this chapter.

5.1 M I S F I T F U N C T I O N A L

The misfit functional ε, which is to be minimized is the complex squared,
weighted L2-norm of the difference between the the observed and synthetic
(modeled) electromagnetic data

ε(ρ)= ∑
s,r, f ,F

W2(xs,xr, f )∆F∗(xs,xr, f |ρ)∆F(xs,xr, f |ρ) (5.1)

where (·)∗ denotes the complex conjugate and the difference field is

∆F(xs,xr, f |ρ)= FObs(xs,xr, f )−FSynth(xs,xr, f |ρ). (5.2)

This is a sum over every source position xs, receiver position xr, transmitter
frequency f , and field component F, which, in general can be the electric
and magnetic field in both x and y directions, relative to a coordinate sys-
tem where the z is the vertical axis. As is common, these field components

39
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are denoted by Ex,E y,Hx and Hy, respectively. These are thus the data
sample variables, and they represent the amount of information about the
problem. The total number of data parameters is denoted M. The notation
is chosen to emphasize that the synthetic data is dependent on the cur-
rent proposed resistivity model ρ, whilst the observed (and therefore, the
weights, see Equation 5.3) are not.

As weights, the following is used

W(xs, xr, f )= 1
δEObs(xs, xr, f )

, (5.3)

in order to include measurement inaccuracy. This expression follows from
the assumption of Gaussian noise, that we are minimizing the L2 norm, and
that we seek the maximum likelihood estimator. The predicted data uncer-
tainty can be estimated using error propagation analysis (Morten et al.,
2009), and is given by

(δEObs(xs,xr, f ))2 =∑
k
|∂EObs(xs,xr, f )

∂pk
δpk|2. (5.4a)

≈α2|EObs
x (xs,xr, f )|2 +η2, (5.4b)

under the assumption of independent and random contributions. pk de-
notes an experimental parameter with the associated measurement uncer-
tainty δpk (Mittet and Morten, 2013). The approximation in Equation 5.4b
is analysed and justified in (Morten and Mittet, 2012), and is the expres-
sion used in this project. α is a constant, relative error in the field am-
plitude measurement, mainly caused by instrument calibration inaccuracy,
whereas η represent the background noise (Morten et al., 2009). α is of or-
der around 10−2 and η around 1×10−16 V m−1. These weights reflects that
terms with field observations dominated by noise should contribute less to
the misfit sum.

5.2 S I M U L A T E D A N N E A L I N G

The simulated annealing method is a stochastic optimization method pro-
posed by Kirkpatric, Gelett and Vecci (Kirkpatrick et al., 1983). It is inspired
by a physical annealing process where a solid is heated above its critical
temperature, before it is slowly cooled, with the intention that the solid
will end up in a lower energy state.

Although, first applied to discrete combinatorial problems (see e.g. (Kirk-
patrick et al., 1983), (Hajec, 1988)) it is also applied to optimization on
continuous variable spaces (see e.g. (Vanderbilt and Louiem, 1984), see
also (Locatelli, 2000) and the references therein for a great summary on
the field). There are several different approaches, but the main idea of the
method can be summarized as
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1. ε(x) is the objective function that is to be minimized.

2. Start with a initial point x0 in the feasible set D.

3. Sample a new point yk+1 from some proposal distribution.

4. Set the new point xk+1 = yk+1 with probability α(ε(xk),ε(yk+1),Tk),
otherwise, set xk+1 = xk.

5. Update the temperature Tk+1 according to some cooling schedule.

6. Check termination criteria, and continue from step 3 if it is not met.

The rest of this section will focus on simulated annealing on a constrained
continuous global optimization problem. Let the parameter space be de-
noted D and assume for generality that it is compact in RN . Consider a
probability space (Ω,F ,P) where ω ∈ Ω is elements in the sample space,
F is a σ-algebra containing subsets of Ω and P is some probability mea-
sure on F . Let g be a strictly positive continuous probability density on D
and let π be the absolutely continuous probability measure called the target
distribution with density g

π(A)=
∫

A
g(x)dx, ∀A ∈B (5.5)

where B is the Borel σ-algebra on D (Romeijn and Smith, 1994).
Define the function α : D ×D → (ε,1] for some ε > 0 to be jointly measur-

able on D ×D and that it satisfies α(x,y)g(x) = α(y,x)g(y), for all x,y ∈ D,
call this function the acceptance probability function.

The idea now is to sample the proposed next solution from some proposal
distribution. This can be sampled from the whole of D independent of the
current state xk or, maybe more common, sampled from some neighbour-
hood of xk.

Continuing this iterative process generates a sequence of random vari-
ables {Xk}k≥0 which constitutes a Markov chain on D with stationary tran-
sition probabilities. Moreover, it can be shown that the target distribution
π is a stationary distribution for this Markov chain and that for every start-
ing point x0 ∈ D, the Markov chain converges in distribution to π (Romeijn
and Smith, 1994).

The standard density used in the literature is

gT(x)= 1
ZT

exp
{
−ε(x)

T

}
, (5.6)

where ZT = ∫
D exp

{
−ε(z)

T

}
dz is a normalizing constant. The acceptance

probability is set to the Metropolis criterion

αT(x,y)=min
{

1,
gT(y)
gT(x)

}
=min

{
1,exp

{
−ε(y)−ε(x)

T

}}
.
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A common procedure and a key point in simulated annealing is to intro-
duce a non-increasing sequence of temperatures {T0,T1, . . .}, in order to con-
centrate the target distribution around small function values, as can be
seen from Equation 5.6. More formally, the temperatures are determined
through a sequence of functions {t0, t1, . . .} called cooling schedule where
Tk = tk(·). There are several different schedules in the literature (see e.g.
(Kirkpatrick et al., 1983), (Vanderbilt and Louiem, 1984), (Aarts and van
Laarhoven, 1985), (Lundy and Mees, 1986), (Hajec, 1988), (Cohn and Field-
ing, 1999)). A common class of schedules are the ones that are determin-
istic, that is, they are fully determined before the algorithm starts. A sec-
ond class are the ones of adaptive schedules, which are dependent on the
search trajectory of the specific run of the algorithm. Formally one say that
a process h(t,ω) : [0,∞)×Ω→ RN is Nt adapted if, for an increasing fam-
ily of σ-algebras {Nt}t≥0, and for each t ≥ 0, the mapping ω 7→ h(t,ω) is
Nt-measurable (Øksendal, 2010). In this case the process is the cooling
schedule and the σ-algebras are the one generated by the sequence {Xk}k≥0,
meaning that at iteration k, the schedule is dependent on the history of the
iterates up to k, or Tk = tk(X0,X1, . . . ,Xk).

5.2.1 Convergence

We will now show that for a decreasing temperature, the simulated anneal-
ing will eventually converge to the minimum function value ε∗.

Define the δ-level set

Dδ = {x ∈ D;ε(x)≤ ε∗+δ}

where ε∗ denotes the optimal function value. Then, for all δ> 0

lim
T→0

πT(Dδ)= 1. (5.7)

To show why this is so, fix δ> 0, then

πT(Dδ)= 1−πT(D \ Dδ)

= 1−
∫

D\Dδ
e−ε(x)/T dx∫

D e−ε(z)/T dz

≥ 1−
∫

D\Dδ
e−ε(x)/T dx∫

Dδ/2
e−ε(z)/T dz

≥ 1− e−(ε∗+δ)/Tϕ(D \ Dδ)
e−(ε∗+δ/2)/Tϕ(Dδ/2)

= 1− e−
δ/2
T
ϕ(D \ Dδ)
ϕ(Dδ/2)

,

where ϕ denotes the Lebesgue-measure on RN . Note that the assumptions
made on D and ε guarantees ϕ(Dδ/2) > 0. The first inequality follows from
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the fact that Dδ/2 ⊂ D and the integration is over a non-negative function.
The second inequality is valid since ε∗+δ≤ ε(x) on D\Dδ and ε∗+δ/2≥ ε(x)
on Dδ/2. Thus it follows that limT→0πT(Dδ)= 1.

It can be shown (Romeijn and Smith, 1994), that for every starting point
x0 in D, the Markov chain {Xk;k ≥ 0} generated by algorithm 1 converges
in total variation to the target distribution π, i.e.

lim
k→∞

P(Xk ∈ B|X0 = x0)=π(B), ∀x0 ∈ D,∀B ∈B. (5.9)

Now, fix T > 0 and hence the distribution πT , by Equation 5.9 one can now
by algorithm 1 generate a sequence {Xk;k ≥ 0} with the property

lim
k→∞

P(Xk(T) ∈ Dδ|X0 = x0)=πT(Dδ)

which together with the result from Equation 5.7 yields

lim
T→0

lim
k→∞

P(Xk(T) ∈ Dδ|X0 = x0)= 1, ∀δ> 0.

This result is promising, but as several authors mentions, it is not always
guaranteed that a convergent algorithm outperforms a non-convergent one,
(Cohn and Fielding, 1999) even show that an increasing temperature sched-
ule (so-called boiling) is to be preferred in some cases. Often is a faster
convergence to a near optimum state preferred.

5.3 I M P L E M E N T A T I O N

Although simple in theory, many different choices can be made within the
simulated annealing framework which will affect the performance of the
algorithm. The aspects discussed are aimed for the case where the number
of parameters is fixed, but many of the principles also apply for the trans-
dimensional case.

The algorithm can be stated as follows (minimization problem)

5.3.1 Sampling of a new state

The proposed new solution yk+1 is sampled from some proposal distribu-
tion p(x|xk). There are several choices available in the literature (see e.g.
Romeijn and Smith (1994)), (Vanderbilt and Louiem, 1984)), and which to
choose is problem dependent. In addition to choosing how to sample a new
solution, there is also the question of which parameters to update. The dif-
ferent options on which parameters to update at each iteration is presented
below.

(a) Full sampling. Every parameter xi, i = 1, . . . , N.

(b) Block sampling. Some parameters xi, i ∈I ⊂ {1, . . . , N}.
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Algorithm 1 Simulated annealing
1: Initialize x0 ∈ D and temperature T0.
2: while termination criteria not met do
3: Set yk+1 ← perturb(xk).
4: Evaluate ε(yk+1).
5: if ε(yk+1)≤ ε(xk) then
6: xk+1 ← yk+1.
7: else
8: Sample u ∼U ([0,1]).
9: α← exp

{
−ε(yk+1)−ε(xk)

Tk

}
.

10: if u ≤α then
11: xk+1 ← yk+1.
12: else
13: xk+1 ← xk.
14: end if
15: end if
16: Check termination criteria.
17: Update T.
18: Increment k.
19: end while

(c) Single sampling. Just a single parameter xi.

Suppose that the feasible set D is bounded by linear constraints, D = {x ∈
RN ; l i ≤ xi ≤ ui, i = 1, . . . , N}. This is the case in this project as can be
seen from the parameter constraints in Equation 3.6. The most naive way
to sample a new solution is simply to sample from a uniform distribution
on the feasible set yi ∼ U (l i,ui), i = 1, . . . , N (where the obvious iteration
index k+1 is omitted for brevity). A more adaptive approach is to sample
a direction θi and a step length λi and set yi = xi +λiθi where xi is the cur-
rent state of parameter i, i = 1, . . . , N. In addition to the lower and upper
bounds on each parameter, the immediate exploration of the solution space
is controlled by introducing a minimum threshold λmin

i , and a maximum
threshold λmax

i , on the step lengths for each parameter. With this, a sim-
ple approach is to sample a positive or negative unity direction and then
sample the step length uniformly on the interval restricted by the feasible
boundaries or the step length thresholds. Sampling of the step length is
easy in this particular project because of the simple topography of D. For
a more exotic topology, one could try to create a simpler space D̃ ⊃ D and
sample from D with a rejection method on D̃.
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Algorithm 2 Sample new proposed solution
1: Given current state Xk = xk.
2: for parameter i ∈I ⊆ {1, . . . , N} do
3: Sample direction θi ∼U ({−1,1}).
4: if θi ==−1 and xi − l i <λmin

i then
5: θi = 1.
6: else if θi == 1 and ui − xi <λmin

i then
7: θi =−1.
8: end if
9: if θi ==−1 then

10: Sample λi ∼U ([λmin
i ,max{xi − l i,λmax

i }]).
11: else
12: Sample λi ∼U ([λmin

i ,max{ui − xi,λmax
i }]).

13: end if
14: end for

5.3.2 Cumulative step probabilities

Consider an arbitrary, feasible parameter value xi, obtained after the k’th
iteration. Since it is feasible, l i ≤ xi ≤ ui for some lower bound l i and up-
per bound ui. For some value y, the probability Pr(xi +λiθi ≤ y) can be
calculated in the following way.

Using total probability

Pr(xi +λθi ≤ y)=Pr(xi −λi ≤ y|θi =−1)Pr(θi =−1)

+Pr(xi +λi ≤ y|θi = 1)Pr(θi = 1).

Since θi is uniformly either 1 or −1, Pr(θi =−1) = Pr(θi = 1) = 1/2. Now, let
ml

i =max{xi−l i,λmax
i } and mu

i =max{ui−xi,λmax
i } such that λi ∼U ([λmin

i ,ml
i}])

if θi =−1 and λi ∼U ([λmin
i ,mu

i }]) if θi = 1. Then

Pr(xi+λiθi ≤ y|θi =−1)=Pr(xi −λ≤ y)

= 1−Pr(λi ≤ xi − y)

= 1−


0 , xi − y≤λmin

i
xk

i −y−λmin
i

ml
i−λmin

i
,λmin

i ≤ xi − y≤ ml
i

1 , xi − y≥ ml
i

=


1 , xi − y≤λmin

i
ml

i−(xk
i −y)

ml
i−λmin

i
,λmin

i ≤ xi − y≤ ml
i

0 , xi − y≥ ml
i
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Likewise

Pr(xi+λiθi ≤ y|θi = 1)=Pr(xi +λ≤ y)

=Pr(λi ≤ y− xi)

=


0 , y− xi ≤λmin

i
y−xi−λmin

i
mu

i −λmin
i

,λmin
i ≤ y− xi ≤ mu

i

1 , y− xi ≥ mu
i

This yields the total step selection cumulative probability

Pr(xk
i +λiθi ≤ y)=



0 , y≤ xi −ml
i

1
2

ml
i−(xi−y)

ml
i−λmin

i
, xi −ml

i ≤ y≤ xi −λmin
i

1
2 , xi −λmin

i ≤ y≤ xi +λmin
i

1
2

mu
i +y−xi−2λmin

i
mu

i −λmin
i

, xi +λmin
i ≤ y≤ xi +mu

i

1 , y≥ xi +mu
i .

(5.12)

5.3.3 Temperature schedule

The pace at which the temperature T is decreasing is determined by the
temperature schedule. One of the most common is the geometric schedule

Tk+1 = νgTk = νk+1
g T0 (5.13)

for some νg ∈ (0,1), (Kirkpatrick et al., 1983). Another schedule that decay
more rapidly in the beginning is

Tk+1 =
T0

1+kνlT0
, (5.14)

as proposed in (Lundy and Mees, 1986). Here νl > 0 and in both cases, k is
the iteration number when the temperature is updated and T0 is the initial
temperature. These are both deterministic schedules, and both the initial
temperature and the tuning constant need to be set before the algorithm
is run. This constants is problem dependent, and often some fine tuning
and experience is needed in order to set them appropriate. Another way to
calculate them is presented in the end of this subsection.
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An adaptive schedule is also implemented, this is developed in (Romeijn
and Smith, 1994) with the intention to inherit some favourable properties
of a so-called Pure Adaptive Search introduced in (Patel et al., 1988).

tk(x0, . . . ,xk)= τ( min
0≤ j≤k

ε(x j)), (5.15a)

τ(g)= 2
g−ε∗

χ2
1−p(N)

. (5.15b)

Here, χ2
1−p is the 100(1− p) percentile point of the chi-squared distribution

with N degrees of freedom, (Romeijn and Smith, 1994) suggests p = 0.01.
ε∗ is the function value at the global minimum, which is assumed known. If
this is not the case, it is suggested to replace this value with some estimate
ε̃(x0, . . . ,xk), of the minimum value. With this schedule, the temperature is
scaled with the function values obtained throughout the run.

Another important aspect is when to update temperature. For every fixed
temperature T, the chain of states generated by the algorithm converges to
the limiting distribution πT . In order not to violate the sufficient conditions
of a (weak) ergodic search, the temperature need to decrease slow enough
(Ingber, 1995). Every time the temperature is updated, the equilibrium
is interrupted, and therefore it is advised to wait until this equilibrium
is reached (or at least almost reached). However, in order to increase effi-
ciency, (Romeijn and Smith, 1994) suggests to update the temperature each
time a new state is accepted. (Singh et al., 2008) introduce an epoch con-
stant E and updates the temperature every E ·N iterations. It is proposed
that E = 15, something that is also suggested in (Vanderbilt and Louiem,
1984).

A final aspect to consider is how to decide the initial temperature. From
the adapted schedule in Equation 5.15 the initial temperature is obtained
as

T0 = 2
ε(x0)−ε∗
χ2

1−p(N)

and this temperature can of course be used in the other schedules as well.
Another approach is to select the initial temperature based on the initial
function value and acceptance probability. Define ∆ε as a positive jump,
and let p0 be the probability of accepting this jump. With this

T0 =− ∆ε0

log p0
(5.16)

and is in that way adjusted to the probability of accepting a jump with
increasing function value ∆ε0. Typically this probability is set quite high
in order to be able to explore greater parts of the solution space at initial
iterations, but this is of course dependent on the initial jump. In (Singh
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et al., 2008) it is proposed that ∆ε = max{ε̃1, . . . , ε̃d}−min{ε̃1, . . . , ε̃d} where
{ε̃1, . . . , ε̃d} is a set of d function values from randomly sampled solutions.

Using the same principle as presented above, it is possible to calculate
the tuning constants in the deterministic schedules. Let ∆εK be a jump
with increasing function value at iteration K , which can be the terminal
iteration. Let pK be the probability of accepting this step at iteration K ,
then

TK =− ∆εK

log pK
. (5.17)

Contrary to a large value for p0, pK is set quite low and ∆ε quite small
to avoid acception of steps with increasing function value at the end of the
algorithm. With both T0 and TK set, one can calculate the constants in the
deterministic schedules as

νg =
(

TK

T0

) 1
K

, νl =
1

KT0

(
T0

TK
−1

)
. (5.18)

5.3.4 Termination

When to terminate the algorithm is also an important subject that need to
be covered. In this project there is implemented three different ones.

Terminating the search after a maximum number of iterations K is reached
is perhaps the most obvious criterion, and this should be implemented in
every algorithm of this kind. Also by imposing a maximum number of iter-
ations, one can fit the cooling schedules and calculate the constants based
on starting temperature and end temperature as was discussed in the pre-
vious subsection.

Another obvious criterion is to terminate the search when the global min-
imum is reached, or at least when the current solution is within some per-
centage of the alleged global minimum value. This percentage depends on
the problem and how close to the optimal solution one need to get. A ten-
dency in solving this problem with simulated annealing is that the decrease
in the accepted function values is rapid in the beginning of the search and
significantly slower at the end, as can be seen in Figure 5.1. Often one is
satisfied with a solution that is close enough to the optimal, and therefore
one need to consider if it is necessary to keep the search alive.
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Figure 5.1: Misfit RMS trace plot example.

Often there is no information about the global minimum value, and differ-
ent methods needs to be used. One could of course estimate the minimum
value based on experience, but one could also exploit other qualities about
the global minimum. The idea is that close to the global minima, the rel-
ative difference in accepted solutions will differ very little, as can be seen
from Figure 5.1. It is suggested in (Vanderbilt and Louiem, 1984) to store
every accepted function value in a segment of E ·N iterations, where E is
the same epoch constant introduced above. At the end of each segment, the
mean value ε̄ and minimum value εmin of the function values obtained in
that segment is computed, and the algorithm is terminated if

ε̄−εmin

ε̄
< ξ. (5.19)

It is further suggested that ξ= 10−3, but this is highly problem dependent.
Also, because of the ill-posed nature of the problem, there is no unique so-
lution to the problem. The solution space topography close to the minimum
values is very flat because of this, so the termination criteria posed in Equa-
tion 5.19 hinder the algorithm from searching further when a satisfactory
solution is found.

For this particular project, it was discovered that using the stopping cri-
terion in Equation 5.19 resulted in a too early termination. This has to do
with the topology of the solution space and that few solutions is accepted
close to the global minimum. This tendency is utilized by concentrating the
search every time the stopping criterion in Equation 5.19 is true. That is,
every time the stopping criterion is imposed, the maximum allowed step-
length is decreased with some factor, say 1/2. This limits the exploration
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of the solution space, but close to the optimal solution this is a desired
property as it reduces the number of deprecated proposed solutions. The al-
gorithm is terminated when the above criterion is imposed a given number
of times.

5.4 T R A N S - D I M E N S I O N A L S I M U L A T E D A N N E A L I N G

As discussed in Section 3.1.5, the parameterization of the sub seabed resis-
tivity

ρ(z;x)= ρp(z;xp)+ρr(z;xr)+ρg(z;xg)

=
Np∑

np=0
cnp (z− zwd)np +

Nr∑
nr=1

ρr
nr

[H(zr
nr

)−H(zr
nr

+ t)]

+
Ng∑

ng=1
βng

1√
2πw2

ng

exp

{
− 1

2wng

(z− zg
ng )2

}
.

is implemented with the option of dynamic dimensions Np, Nr and Ng. This
with the intention that the algorithm would adjust itself to the most appro-
priate number of parameters.

Define a set of models µ= {µ0, . . . ,µNm−1} where a model refers to a config-
uration of polynomial, resistor and Gaussian terms respectively, (Np, Nr, Ng).
In this project the model index mapping (Np, Nr, Ng) → j is as follows. µ0

corresponds to a model with just the constant, zeroth order polynomial
term, that is (0,0,0). µ1 corresponds to a model with one additional Gaus-
sian term (0,0,1). This continues, and the mapping from the triplet (Np, Nr, Ng)
to the model index is j = Np(Nmax

r +1)(Nmax
g +1)+Nr(Nmax

g +1)+Ng. Here
0 ≤ Np ≤ Nmax

p ,0 ≤ Nr ≤ Nmax
r and 0 ≤ Ng ≤ Nmax

g so that the number of
different models is Nm = (Nmax

p +1)(Nmax
r +1)(Nmax

g +1). Now, let D j be the
solution space of model µ j, then the objective is to find the model µ∗ and
corresponding variable values x ∈ D∗ that minimizes the misfit function
ε(x).

Two different approaches to solving this trans-dimensional problem is
implemented; one simple and naive approach, and one approach based on
a method suggested in (Singh et al., 2008). For practical reasons, the con-
stant, zeroth order polynomial term cannot be removed.

5.4.1 Equal treatment

In this approach the idea is to treat the parameter dimensions almost as
ordinary parameters meaning that in each iteration, there is a probability
that the dimensions is altered, that is, to change model. More specifically,
before the next solution is proposed, there is a certain probability of increas-
ing one of the parameter dimensions Np, Nr or Ng and a certain probability
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of decreasing one of them. There is also a certain probability to keep the cur-
rent dimensionality, that is, not change any of them. If change is imposed,
the number of terms can only be increased or decreased by one. When re-
ducing the number of dimensions, two different methods is implemented.
Either remove the last term (the newest added term) or remove a random
term. The first one makes the different solution vectors into so-called last-
in-first-out (lifo) lists and has the advantage that the latest included terms
have greater probability of being removed than terms added earlier. The
consequence is that earlier terms have more time to be fitted properly. A
downside is that if a less favourable term has been added before a desired
one, the latest added term will not be removed due to its good fit, and hence
will not the less favourable term be removed. The last issue is resolved by
removing every term with equal probability.

Algorithm 3 trans-dimensional simulated annealing with equal treatment
parameter dimension and parameter values.

1: Initialize x0 ∈ D ⊆RN and temperature T0

2: Determine p0, . . . , p6 such that
∑6

j=0 = 1
3: while termination criteria not met do
4: Do one of the following marked with ?.
5: ? Do not change the dimension with probability p0.
6: ? Nk+1

p = Nk
p +1 with probability p1.

7: ? Nk+1
p = Nk

p −1 with probability p2.
8: ? Nk+1

r = Nk
r +1 with probability p3.

9: ? Nk+1
r = Nk

r −1 with probability p4.
10: ? Nk+1

g = Nk
g +1 with probability p5.

11: ? Nk+1
g = Nk

g −1 with probability p6.
12: Sample yk+1 from some proposal distribution.
13: Evaluate ε(yk+1).
14: if ε(yk+1)≤ ε(xk) then
15: xk+1 ← yk+1.
16: else
17: Sample u ∼U ([0,1]).
18: α← exp

{
−ε(yk+1)−ε(xk)

Tk

}
.

19: if u ≤α then
20: xk+1 ← yk+1.
21: else
22: xk+1 ← xk.
23: end if
24: end if
25: Check termination criteria.
26: Update T.
27: Increment k
28: end while
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As can be seen from algorithm 3, the method is as in algorithm 1 except
from the part where the dimensions is proposed. The dimensions of the
proposed next state yk+1 changes accordingly.

If no change is imposed, the next state is chosen as discussed in Sec-
tion 5.3.1. If, however the dimensionality is increased or decreased will be
explained in terms of an example.

Suppose that one additional Gaussian term is added, that is Nk+1
g =

Nk
g+1. Then 3 new parameters are created: βNk

g+1, zNk
g+1 and wNk

g+1. Every
one of them need to be assigned a value from some proposal distribution
and inserted into the proposed next state yk+1 which now has dimension
dim(yk+1)= Nk +3. The respective parameters can be sampled from differ-
ent distributions, e.g. uniformly on the feasible domain of the particular pa-
rameter or normally around a predetermined mean with a predetermined
standard deviation. The remaining parameter values is inherited from the
previous accepted solution. In that way only the added term contribute to
the alteration of the proposed solution. This new term could of course be
added into the parameterization where the remaining parameters was per-
turbed as discussed in Section 5.3.1.

Now, suppose that a Gaussian term is removed, that is Nk+1
g = Nk

g −1.
Then 3 parameters from the previous accepted solution is removed: β j, z j
and w j. The two choices implemented is to remove elements indexed with
j = Nk

g or at random j ∈ {1, . . . Nk
g }. As in the addition case, the remaining

N−3 parameters could either be perturbed as discussed in Section 5.3.1, or
remain unchanged in the new proposed solution yk+1.

This method is presented with no references to external literature. This
is because it was created specifically for the purpose of dealing with dy-
namic parameter dimensionality in this particular application. As it seems
like an intuitive extension to the ordinary simulated annealing with fixed
parameter values, I am sure that similar approaches has been used on sim-
ilar problems before, but I did not succeed in finding any literature on the
subject using this approach. Therefore, another method using a different
approach to solving trans-dimensional optimization problems with simu-
lated annealing is implemented and presented in the next subsection.

5.4.2 Fitness based model exploration

The method presented here is based on a method proposed in (Singh et al.,
2008) for solving single objective, trans-dimensional optimization problems.
It is included here for reference purposes as it is a well documented tech-
nique applied on similar problems, whilst the approach discussed in Sec-
tion 5.4.1 is not, as far as the author of this thesis knows. In this method,
all models µ are considered and explored in a more systematic way than in
the previous method.
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Let, as before, Nm be the number of models and define an archive A =
{A0, . . . , ANm−1} which is a collection of lists A j containing all accepted func-
tion values from the corresponding model, µ j. Then, let F̃ = {F̃0, . . . , F̃Nm−1}
where F̃ j is the average of the smallest 20% function values contained in
A j (this is the percentage recommended in (Singh et al., 2008)). Define the
fitness of a model µ j as

F j =
max{F̃}− F̃ j

max{F̃}−min{F̃}

and collect them in F = {F0, . . . ,FNm−1}. With this, the models with the low-
est 20% function values are given the highest fitness value. Initially, a func-
tion value from a random solution from each of the models are stored in the
archive A.

Now, choose one of the models µ j. The model µ j is chosen using one of
the two following options.

1) With probability p f , choose a model from a fitness proportionate selec-
tion based on the fitness values F such that the probability that model
µ j is chosen is

p j =
F j∑Nm−1

i=0 Fi
, j = 0, . . . , Nm −1.

2) Completely at random with probability (1−p f ), such that the probability
that model µ j is chosen is

p j = 1
Nm −1

, j = 0, . . . , Nm −1.

In total, the probability of selecting model µ j is

p j =
F j∑Nm−1

i=0 Fi
p f +

1
Nm −1

(1− p f )

for each model µ j, j = 0, . . . , Nm−1. It is recommended that p f is quite high,
so that models with greater fitness is explored more frequently (Singh et al.,
2008).

Then, when a model µ j is chosen, run an ordinary simulated annealing
routine for E ·N j iterations, where E is the epoch constant defined earlier
and N j is the number of parameters in model µ j. Store every accepted func-
tion value in its respective bin A j in the archive and at the end of each
epoch, update the fitness F, the temperature T, and check the termination
criteria. The method is summarized in algorithm 4.

As mentioned above, this method is included for comparison with the
method proposed in Section 5.4.1, but in all fairness, it is not very well
suited for this particular problem. In (Singh et al., 2008), it is applied
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Algorithm 4 Simulated annealing
1: Initialize T, A and pick x0 ∈ A randomly.
2: while termination criteria not met do
3: Calculate F
4: Select model based on fitness with probability p f or at random with

probability (1− p f )
5: Calculate epoch length E ·N
6: for j = 1→ E ·N do
7: Set yk+1 ← perturb(xk)
8: Evaluate ε(yk+1)
9: if ε(yk+1)≤ ε(xk) then

10: xk+1 ← yk+1
11: else
12: Sample u ∼U ([0,1])
13: α← exp

{
−ε(yk+1)−ε(xk)

Tk

}
14: if u ≤α then
15: xk+1 ← yk+1
16: else
17: xk+1 ← xk
18: end if
19: end if
20: Increment k
21: end for
22: Check termination criteria.
23: Update T and A
24: end while
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on combinatorial problems with 5 and 15 different models and still needs
30000 function evaluations. As the models is defined above, the number of
models in this problem is (Nmax

p +1)× (Nmax
r +1)× (Nmax

r +1), which quickly
becomes quite large if one want some flexibility with the model dimensions.
As a comparison, the algorithm presented in Section 5.4.1 is implemented
with Nmax

p = Nmax
r = Nmax

g = 10, and a comparable dimensionality is there-
fore not practically feasible, as the whole purpose of this thesis is to reduce
number of function evaluations in an inversion problem.





Part II
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6
M E T H O D O L O G Y

This chapter aims to elucidate details about the actual realization of the
problem task, and how the theory is incorporated in order to obtain the
results presented in Chapter 7.

6.1 M O D E L I N G

The parameter solution vector x determine the resistivity profile function
ρ(z;xk) completely. Details concerning the modelling of this resistivity pro-
file function such that it is in accordance with the plane layer model dis-
cussed in Chapter 4 is presented Section 6.1.1.

The methods presented in this thesis was tested on different data sets,
both synthetic and real. Elements of the models behind the resulting data
is discussed in Section 6.1.2 for the synthetic data and Section 6.1.3 for the
real data.

6.1.1 Discretization of the model space

The model space, that is, the physical 1D space below the sea surface is
discretized in a set of layers separated by interfaces.

Figure 6.1: Illustration of one
dimensional model
plane layered
model.

This layering of the model space is equal
to the one discussed in Chapter 4. The num-
ber of layers at which the resistivity is to
be determined is termed Nl , excluding the
water layer where the resistivity is assumed
known. The number of interfaces is thus Nl ,
including the interface at the sea bed. This
system of layers and interfaces is illustrated
in Figure 6.1. Because of the parameteriza-
tion there is N number of unknowns to be
determined by the optimization routine, but
in practice, the resistivity is to be determined
at Nl layers. The parameterization simplifies
the optimization in the way that it optimizes
for fewer variables, but the number of evalu-
ation points Nl is still the same, and the com-
putational cost at each forward call is not re-
duced (the parametrization reduces hopefully
the number of forward calls though). In mod-

59
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eling the model space, one is free to chose how
many layers the model should consist of, and
a denser grid of layers means a more accurate
representation of the resistivity profile and is
preferable. However, one want to balance this with the increasing computa-
tional cost of adding more layers. In this thesis, both the water resistivity
ρ0 and the water depth z1 is measurable and assumed known. The other in-
terfaces is placed down in the formation as can be seen in Figure 6.1. In this
thesis, they are placed with an increasing spacing between the interfaces
as

zk = z1 + (k−1)∆+ (k−1)(k−2)
(Nl −1)(Nl −2)

[zNl − z1 − (Nl −1)∆] (6.1)

for 1≤ k ≤ Nl , where ∆ is the spacing between the first and second interface.
z1, zNl and Nl are fixed, predetermined modeling constants. Let

ζ= zNl − z1

∆(Nl −1)
, (6.2)

then ζ in Equation 6.2 determines if the spacing is increasing (ζ > 1), de-
creasing (ζ < 1) or equal (ζ = 1). In order to decrease computational cost
some increase in the spacing is used in this thesis. The initial spacing is set
to ∆= 5 m, the last interface is placed at a depth of zNl = 2500 m, and the
number of interfaces is set to Nl = 150. The water depth vary from model
to model, and will be specified when the different models are presented in
??. The increased spacing can be justified by the fact that the resolution of
the EM field is decreasing with increasing depth. The EM field’s attenua-
tion with propagation distance in conductive media can be described by the
skin depth

δ≈
√

ρ

πµ0 f

which is a measure of the depth from the surface of the conductor where
the EM field will be reduced by a factor e−1 in amplitude (Amundsen et al.,
2006). Here, the magnetic permeability µ is set to that of free space µ=µ0 =
4π×10−7 H/m, and with a water resistivity of ρ = 0.271 Ωm and emittance
frequency of f = 0.25 Hz, the skin depth is δ≈ 524 m.

6.1.2 Synthetic model

With the same modeling tools used in the inversion, a synthetic model is
made. That is, a sub seabed resistivity profile is created, and resulting field
components is computed for a specified set of source points and emitting
frequencies.
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Figure 6.2: Resistivity profile of synthetic model.

The model consists of a 500 m deep water column with resistivity of
0.3125 Ωm and a resistive target resistor at 1500 m. This is summarized in
Table 6.1 with the additional resistivity function parameters used to create
the model.
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PARAMETERS VALUES

ρw 0.3125 Ω m

zwd 500 m

ζ0 0.0

ζ1 4.0

ρr
1 150.0 Ω m

zr
1 1500.0 m

β1 1500.0 Ω m2

β2 200.0 Ω m2

β3 500.0 Ω m2

zg
1 500.0 m

zg
2 900.0 m

zg
3 1550.0 m

w1 170.0 m

w2 100.0 m

w3 50.0 m

Table 6.1: Parameter values for the synthetic model.

6.1.3 Troll West Oil Province

The method is also tested on real data which is collected from a survey
EMGS made on the Troll West Oil Province in 2009 (Gabrielsen et al., 2009).
This field is located to the west of Bergen, Norway as can be seen in Fig-
ure 6.3.

Figure 6.3: Location of the Troll West Field.

The oil province has a top reservoir at about 1500 m and consists of a
thin gas column of approximately 20 m followed by a oil column of approx-
imately 20 m. A well log showing the measured horizontal resistivity is
provided in Figure 6.4.
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Figure 6.4: Processed resistivity data from well log from well 31/2 - 5, which loca-
tion can be seen in Figure 6.6. Measurements starts at about 340 m
below the sea surface and continues to about 2500 m below sea surface.
The sea depth is about 407 m. In lithostratigraphic terms, the Nord-
land group starts at about 365 m down to the Hordaland group from
788 m down to the Rogaland group at 1346 m which continues down to
the Shetland and Viking group at 1533 m and 1536 m respectively. The
Sognefjord formation starts at 1536 m and this is where the hydrocar-
bon saturated layer, or resistor is (Norwegian Petroleum Directorate,
2014). Note that in order to use the measured data from the well, it is
usually processed by experienced analysts before it appears as in this
figure.

The 1D inversions made in this thesis finds the vertical resistivity, whilst
the well log in Figure 6.4 shows measured horizontal resistivity on a small
length scale. To get an indication of the vertical resistivity in a given depth
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interval of length |Z |, one could obtain an approximation < ρv >Z of the
vertical resistivity in this interval through

< ρv >Z = ∆h
|Z |

∑
zi∈Z

ρh(zi),

where Z is the collection of measured horizontal resistivity values in this
interval, and ∆h is a typical spacing between the layers in the plane lay-
ered model. The well bore log with this vertical resistivity approximation
is showed in Figure 6.5.

Figure 6.5: Well bore log from the Troll survey showing measured horizontal resis-
tivity (yellow) together with approximated vertical resistivity (cyan).

The transverse resistivity in the hydrocarbon saturated reservoir can be
calculated by integrating the well log over the reservoir interval, with this
well log, it is then calculated to be about 35640 Ωm.

The observed real data used in this thesis is from a 3D survey on the
Troll West Oil Province conducted by EMGS. The data is acquired with a
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dense grid with nominal line and receiver spacing of 1.25 km and additional
towlines in the east-west direction as illustrated in Figure 6.6.

Figure 6.6: Troll West Oil Province surveys with towlines and receiver positions.

Data from two different receivers are inverted, and they are termed 02Rx020a

and 02Rx018a in accordance with the EMGS survey nomenclature. Each
have a corresponding receiver towline from which the signal is emitted, and
data gathered from when the source is towed towards the receiver (termed
intow) is inverted separately from data obtained from when the source is
towed away from the receiver (termed outtow).

The location of receiver 02Rx020a is pictured with the magenta colored
dot and its corresponding towline directed south, is pictured as the bur-
gundy colored line in Figure 6.6. The resulting field response is plotted in
Figure 6.7. The location of receiver 02Rx018a is pictured with the red dot
and its corresponding towline directed north, is pictured as the blue line in
Figure 6.6. The field response is plotted in Figure 6.8
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This, and other modeling data are summarized in Table 6.2. The names
attached to each model is kept throughout this thesis to refer to the differ-
ent models from which the data is acquired.

TROLL 1 TROLL 2 TROLL 3 TROLL 4

Receiver 02Rx020a 02Rx020a 02Rx018a 02Rx018a

Towline 02Tx003a 02Tx003a 02Tx010a 02Tx010a

Towing direction South South North North

Source direction Intow Outtow Intow Outtow

ρw 0.271 Ω m 0.271 Ω m 0.271 Ω m 0.271 Ω m

zwd 325.6 m 325.6 m 333.6 m 333.6 m

Table 6.2: Parameter values Troll models.

6.2 D A T A S E T S

The models discussed in Section 6.1.2 and Section 6.1.3 can give rise to
several different sets of data since one can choose to invert for different
configurations of field components, frequencies and source points. In what
follows, the configurations used in this thesis is presented and explained.

The number of gathered data M, is determined by four factors: M =(number
of source points)×(number of receivers)×(number of frequencies)×(number
of field components). This is the number of known data in the system, and
a smaller data sample means less information about the problem and a
more difficult problem to solve and a less accurate solution. This must how-
ever, be balanced with the increasing computational cost of increasing the
number of sampled data. As an example, the Jacobian matrix in a gradient
based optimization routine is of size M×N.

Three emitting frequencies is used, {0.25 Hz, 1.00 Hz, 2.00 Hz} in the
synthetic model, and {0.25 Hz, 0.75 Hz, 1.25 Hz} for the troll models. These
are included because they are likely to pick up the target (Gabrielsen et al.,
2009). The source points included lies in the range of 1000 m to 10000 m,
with a shot spacing of 100 m, this is so for both the synthetic and real
models. This offset interval is chosen since this is the interval in where the
most desired field contributions is, as discussed in Section 2.1. Only one of
the field components, namely Ex is included, since this is the component
with the most significant field response in this case. This results in a total
number of data M = 91×1×3×1= 273.

273 is the number of data included in the synthetic data case, with real
data however, there is fewer. This is because one can chose to skip data
where the field magnitude is less than some threshold. Also there is the
possibility to skip data where the signal to noise ratio (snr) is less than
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some threshold. In this thesis, thresholds is set to 1×10−15 V m−1 and 20
respectively. As can be seen from Figure 6.7(a) and Figure 6.8(a), some data
is below the previously mentioned thresholds, resulting in the following
number of included data points for the previous discussed data sets. Troll
1: M = 144, Troll 2: M = 190, Troll 3: M = 190, Troll 4: M = 190.

The resulting field response observed by the two receivers displayed in
Figure 6.7 and Figure 6.8 respectively. The data inverted in Troll 1 is the
field response with negative offset in Figure 6.7 whilst the data inverted
in Troll 2 is the field response with positive offset in the same figure. In
a similar manner, the data inverted in Troll 3 is the field response with
negative offset in Figure 6.8 and for Troll 4 it is the data with positive
offset.



68 M E T H O D O L O G Y

(a) Field magnitude with noise

(b) Field phase

Figure 6.7: Towline: 02Tx003a, receiver: 02Rx020a.
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(a) Field magnitude with noise

(b) Field phase

Figure 6.8: Towline: 02Tx010a, receiver: 02Rx018a

6.3 C O N T A M I N A T E D D A T A

Assume that a noisy observed signal for one field component F, could be
modeled as

FObs
j = FSim

j

[
1+ (wα

j + ıw̃α
j )

]
+ 1p

2
[wη

j + ıwη

j ] (6.3a)

:= FSim
j +ζ j, (6.3b)
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and the where the index j represent a configuration of the triplet (xs,xr, f ),
and in this way j = 1, . . . , M, where M is the number of observed data.
The noise is standard white Gaussian noise, wα

j
i.i.d.∼ N (0,α2) and wη

j
i.i.d.∼

N (0,η2) for each j = 1, . . . , M. Furthermore, w̃α
j is defined such that

ℜ{FSim
j }wα

j + ıℑ{FSim
j }wα

j = FSim
j [wα

j + ıw̃α
j ].

Consider the misfit functional ε, and introduce the perturbed signal such
that Equation 5.1 takes the form

ε=
M∑
j=1

(
FSim

j +ζ j −FSim
j

)(
FSim

j +ζ j −FSim
j

)∗
(δF)2 . (6.4)

where (·)∗ is the complex conjugate and δF j is as defined in Equation 5.4b.
In a simple model without the data uncertainty term, ε→ 0 when FObs

j →
FSim

j , j = 1, . . . , M. However, with this term present, it can be shown that
E[ε] → M when FObs

j → FSim
j , j = 1, . . . , M. This can be seen by first realiz-

ing that when FObs
j = FSim

j , j = 1, . . . , M, Equation 6.4 becomes

ε=
M∑
j=1

ζ jζ
∗
j

(δF)2 . (6.5)

Let, for simplicity,ψ j :=ℜ{FSim
j }wα

j and φ j :=ℑ{FSim
j }wα

j such that V ar{ψ j+
ıφ j}=α2|FSim

j |2. Then, the expectation

E[ε]=
M∑
j=1

E

[
ζ jζ

∗
j

(δF)2

]

=
M∑
j=1

E
[
ψ2

j +φ2
j + (wη

j )
2
]

(δF)2

=
M∑
j=1

E
[
(ψ j + ıφ j)(ψ j + ıφ j)∗

]+E
[
(wη

j )
2
]

(δF)2

=
M∑
j=1

α2|FSim
j |2 +η2

(δF)2

= M.

This follows since wα
j and wη

j is assumed independent with zero mean for
every j. This means that E [RMS(ε)] → 1 when FObs

j → FSim
j , j = 1, . . . , M.

With noise present, the solution is no longer unique as there is many syn-
thetic models which produce a RMS(ε(σ)) close to unity.

In this project, the values α= 0.02 and η= 10−16 is used, and is the same
constants used when creating the weights in Equation 5.4. Figure 6.9 illus-
trate the effects of η noise contributor. The α contribution is easier to spot
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in Figure 6.9(b), where the noisy signal is normalized on a signal without
noise. Notice that higher frequencies is more effected by the contamination
of the data. The reason is that the noise is more significant for weaker sig-
nals, that is, signal with a lower magnitude.

(a) Magnitude of observed field versus offset before (dotted blue) and after (dotted red) the
signal has been contaminated with noise (red). Here α= 0.02 and η= 10−16, the frequency
used is f =2.00 Hz

(b) Magnitude of noisy signal normalized on a signal without noise for different frequencies

Figure 6.9: Illustration of a modeled signal contaminated with noise.
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6.4 I M P L E M E N T A T I O N O F T H E R E S I S T I V I T Y F U N C T I O N

This subsection will deal with the practical implementation of the resistiv-
ity profile function, restated here for convenience

ρ(z)= ρp(z)+ρr(z)+ρg(z)

=
Np∑

np=0
cnp (z− zwd)np +

Nr∑
nr=1

ρnr [H(z− znr )−H(z− znr − t)]

+
Ng∑

ng=1
βng

1√
2πw2

ng

exp

{
− 1

2wng

(z− zng )2

}
, z > zwd

where the parameters is restricted as

0≤Np ≤ Nmax
p

0< cmin
0 ≤c0 ≤ cmax

0

cmin
p ≤cnp ≤ cmax

p , 1≤ np ≤ Np

0≤Nr ≤ Nmax
r

0< ρmin
r ≤ρnr ≤ ρmax

r , 1≤ nr ≤ Nr

z1 ≤ zmin
r ≤znr ≤ zmax

r < zNl , 1≤ nr ≤ Nr

0≤Ng ≤ Nmax
g

βmin
g ≤βng ≤βmax

g , 1≤ ng ≤ Ng

zmin
g ≤zng ≤ zmax

g , 1≤ ng ≤ Ng

0< wmin
g ≤wng ≤ wmax

g , 1≤ ng ≤ Ng

ρmin ≤ρ(z;x), ∀z ∈ z1, . . . , zNl

6.4.1 Constraint treatment

The linear parameter constraints are dealt with by the optimization rou-
tine and therefore discussed in Section 5.3.1, the positive resistivity func-
tion constraint is not and therefore discussed here. Since the higher order
polynomial coefficients and the Gaussian amplifying coefficients can attain
negative values, some extra restrictions must be made in order to keep the
overall resistivity function ρ(z;x) positive for all feasible z. This is solved by
a simple rejection method by sampling a new proposed solution yk+1 from
the feasible set D. Then, if this proposed function results in a negative over-
all resistivity at some z, then this proposed solution is rejected and a new
one is sampled. This continues until a valid solution is proposed.
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6.4.2 Sensitivity analysis of the resistivity function

This sensitivity analysis aims to cast light on the different parameters con-
tribution to the resistivity profile function ρ(z;x). It is included here be-
cause it reveals some issues with the parameterization which will be han-
dled in the next section. More precisely, it reveals how much a perturbation
in the different parameters ∆xi, i = 1, . . . , N, effects the resulting resistivity
function ρ(z;x).

The perturbation in the resistivity function due to a perturbation ∆xi is
labeled ∆iρ(z) and the following relationship is proposed

∆iρ(z;x)= ∂ρ(z;x)
∂xi

∆xi. (6.9)

The depth parameters znr and zng are not considered as they only shifts
their respective terms in the z-direction which is irrelevant in this discus-
sion.

PARTIAL DERIVATIVES

∂ρ

∂cnp
= (z− z1)np

∂ρ

∂ρnr
= H(z− znr )−H(z− znr + t)

∂ρ

∂βng
= 1p

2πwng
exp

{
− 1

2w2
ng

(z− zng )2
}

∂ρ

∂wng
= βngp

2π

(z−zng )2−w2
ng

w4
ng

exp
{
− 1

2w2
ng

(z− zng )2
}

Table 6.3: Some partial derivatives for the resistivity profile function (Equa-
tion 3.5), and their respective maximum values w.r.t. z.

This illustrates the impact a small change in the polynomial coefficients
will have on the overall resistivity function. One unit perturbation of cng

results in a maximum perturbation

∆npρ(z;x)max = (zNl − z1)ng , at z = zNl

of the overall resistivity function. For the resistor term, the resistivity value
is only inflicted at the interval z ∈ (znp , znp + t), and there a unit change in
ρng results in a unit change in the resistivity function. For the Gaussian
term, one unit change in βNg results in a maximum change in the resistivity
function of

∆npρ(z;x)max = 1p
2πwng

, at z = zng .

Likewise, an unit change in wng results in a maximum change of the resis-
tivity function of

∆npρ(z;x)max = 2βngp
2πw2

ng

e−3/2, at z = zng +
p

3wng
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From this, it is quite obvious that the perturbation of the polynomial coef-
ficients affects the overall resistivity function the most. Issues concerning
this will be discussed in Section 6.4.3.

6.4.3 Polynomial term

From the sensitivity analysis in Section 6.4.2, there is no doubt that the
resistivity profile function is most sensitive to changes in the polynomial co-
efficients. The problem is that, because of the scaling and sampling choices,
it is difficult to optimize these coefficients as they appear in Equation 3.5.
Because of the scaling of the parameters and the way that both the direc-
tion and the step length is chosen, it is very difficult for the parameter to
climb from a state with a low value. This will be shown with an example.
Say the value of this parameter at iteration k is c1 = 10−5, then there is
a fifty-fifty chance for the algorithm to propose a smaller value. So say it
choose a positive direction. The probability that the step taken is to large
is quite dominating. Say l i = 0 and ui = 1 (although it seems like a narrow
interval, remember that c1 = 1 would contribute with 1000 Ωm at a depth
of 1000 m below the sea bed). From the reasons above it is quite unlikely
that a value of ck+1

1 ≥ 0.01 would result in an accepted step. So let us calcu-
late the probability for this happening, given that the direction is towards
a greater value. Let also the true value be 10−3, which is larger than 10−5.
Then, from the expressions in Section 5.3.2

Pr(10−5 +λ1θ1 ≥ 10−2|θi = 1)= 1− 10−2 −10−5

1
≈ 0.99

given that mu
1 = 1 and λmin

1 = 0. The consequence is that if the coefficient
value is small, very few steps in the correct direction is accepted whilst
steps in the wrong direction would likely be accepted (as a change from say,
10−5 to 10−6 would not contribute significantly to the overall resistivity
function). This would then result in a slow convergence.

This issue discussed here is perhaps quite obvious and could be solved
in many different ways. A logarithmic step length sampler is implemented,
which means that instead of sampling λi uniformly from some interval, one
let λi = 10ξi and then samples ξi from some interval. This solved the issue,
but a more intuitive approach is to normalize the polynomial coefficients
and then keep the original sampling method. Instead of optimizing the co-
efficients cnp directly, let

cnp =
ζnp

(zNl − z1)np
, 0≤ np ≤ Np

and optimize for the unit free ζnp . In practice, this alters the polynomial
term from Equation 3.2 to

ρp(z;xp)=
Np∑

np=0
ζnp

(z− zwd)np

(zNl − z1)np
, Np ≥ 0, (6.10)



6.5 O P T I M I Z A T I O N D E C I S I O N S 75

but no change in the optimization routine is required.

6.5 O P T I M I Z A T I O N D E C I S I O N S

Every aspect discussed in Chapter 5 is implemented in the programming
code created to carry out the tasks in this project. There are a huge number
of different possibilities, and much time has gone into finding the right
values for the different hyperparameters, and to figure out which choices
yields the best results. The performance of the algorithm depends on these
decisions, and the values presented below are used to generate the results
in Chapter 7. It is possible that there are better choices, and therefore every
made decision is explained thoroughly.

6.5.1 Simulated Annealing

Here, parameters specific to the Simulated Annealing method is discussed,
and the reader is referred to the theory presented in Section 5.3.

Every result is generated using a single parameter updating scheme
when a new state is proposed. When compared to inversions which used
a full parameter sampling approach, the latter tended to converge slower.
This is because fever proposed solutions was accepted than when just one
parameter was updated at a time. Since step lengths are treated inde-
pendently for each parameter, a single parameter updating approach also
provides an explicit connection with the overall search direction and step
length. It could be argued that this approach would require more iterations
than a full sampling approach. As it would require at least N iterations to
make the same step as is done in one iteration by the full sampling method,
this intuitively makes sense. However, as both approaches was extensively
tested, the single sample approach tended to propose new states which was
more likely accepted than the proposed new full sample states. This would
guide the search slowly but surely nearer the optimal values.

As with the other choices explained in this section, the reason for this is
explained by the solution space topology in this optimization problem. The
problem is ill-posed, and the minimal misfit values are non-unique. Using
physical space analogous terms, the topography near these minima is vast
and flat surrounded by large walls with high misfit values. The optimiza-
tion search tends to quickly settle in this flat valley, and therefore searches
that explore this bottom of the valley most efficiently is preferable.

When it comes to the temperature schedule, there are a huge freedom
of choice. The initial and terminal temperature, which schedule to choose,
and which values should be set for the different tuning parameters are all
factors that will affect the performance of the algorithm. The temperature
schedule in Equation 5.14 is chosen, and this, together with the geomet-
ric temperature schedule in Equation 5.13 is shown in Figure 6.10. The
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initial temperature is set to T0 = 10000 and this is chosen such that an
initial misfit RMS increase of 1 is accepted with a probability of about 0.1.
Based on experience, the initial misfit RMS is about 40 which then from
Equation 5.16 yields an initial temperature of about 10000. The terminal
temperature is chosen from Equation 5.17 such that the probability of se-
lecting a state which result in an increase in the RMS value of 0.01 is about
0.005 after 20000 iterations. From Equation 5.18, νl = 5 ·10−5, and this is
the temperature schedule shown in Figure 6.10 together with the geomet-
ric temperature schedule which tuning constant is calculated accordingly.
The epoch constant introduced Section 5.3.3 is set to 15 which means that
the temperature is updated for every 15Nth iteration.

Figure 6.10: The different temperature schedules from Equation 5.14 (lundy) and
Equation 5.13 (geometric) with initial temperature T0 = 10000 and
tuning constants νl = e ·10−5 and νg = 0.9995 respectively.

Other schedules and constant values has been tried out in an extensive
degree before settling this choice. It seems like the rapid initial decrease
in temperature is beneficial in this problem as it quickly guides the search
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to the flat bottom of the solution space. As can be seen in Figure 5.1 and
in the other trace plots presented in Chapter 7, the search quickly reaches
an RMS value of about 5, and then, further descent of the misfit is slow,
but steady. The slow decrease in temperature, combined with its low value
at this stage is the reason for this slow, steady decrease in the misfit func-
tion value. As can be seen from Figure 6.10, the geometric temperature
has much higher temperature values than the Lundy schedule in a large
iteration interval. This makes the algorithm accept greater leaps with in-
creasing misfit value than the Lundy function. Also, after the temperatures
intersect each other, the temperature is decreasing much faster to zero than
the Lundy schedule. The consequence of this is that after said number of
iterations, only a few more temperature updates is needed before the ac-
ception of even a very small increase in the misfit function is practically
impossible. In effect, it is not long before the search stops completely. The
Lundy schedule however, will accept small jumps with increasing value for
a great number of iterations, such that even if the step length is small,
a greater number of steps is accepted which keeps the search alive. The
great number of iterations at these small, but almost constant tempera-
ture values, makes the decrease slow, but steady towards a minimum. This
discussion has to be seen in light of the solution space topology in this prob-
lem. What makes the Lundy temperature favourable is that it guides the
search quickly down in this flat valley from the analogy above, and allows
the search to traverse this valley with small steps. With this, the flat val-
ley is explored extensively while the rest of the solution space consisting
of uninteresting solutions is poorly explored, but in this problem this is a
favourable. Other problems may require a greater exploration of the whole
solution space, making a schedule with a less rapid initial decrease more
attractive.

Maximal and minimal step length reduction is imposed such that the
step length is reduced bey a factor of 1/2 every time the inequality in Equa-
tion 5.19 is true for a value of ξ = 10−3. This inequality is checked every
15Nth iterations, where the value 15 stems from the epoch constant.

When the step length is reduced more than 5 times, the search termi-
nates. This combination of hyperparameter values creates a good balance
of whether to terminate or not, and fulfills its purpose adequately. It ter-
minates searches which are trapped in local minima quite early, and also
terminates searches which has found sufficient minimas. Searches that con-
tinues to sample descending misfit function values are allowed to continue.

A maximal number of iterations is set to 20000 iterations as this seems
to be enough iterations to find satisfactory solutions. Also, searches that
need more iterations is not that interesting as it defeats the purpose of this
thesis which is to maintain a low number of forward calls. That being said,
some runs have been allowed to continue for 50000 iterations, and some of
these are also presented in Chapter 7.
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The search is terminated when a misfit RMS value below 1 found. This
is chosen in light of what minimum misfit values one could expect to find.
This discussion is only relevant for the data generated from the real mod-
els discussed in defined in Table 6.2. Although the real data obtained from
the Troll survey is 3D-data, it is suited for 1D inversion. It is not ideal
of course, but the lithostratigraphy is quite similar in the field area. That
is, the 1D assumption of transverse isotropy in the vertical direction (see
Section 4.1.1) is not that erroneous as one could expect, which makes the
Troll data sufficiently suited for 1D inversion. However, one could expect to
see some 3D-effects that 1D inversion cannot describe in a satisfactory way.
This will in general add some to the expected minimum RMS value, how
much added is not known and will probably vary between each of the differ-
ent data sets. Also, one could suspect that the when 3D data is inverted in a
1D model, the algorithm will try to fit data which explains 3D phenomena
which does not exist in a 1D model, making it futile. Also, since the data
is noisy, it is explained in Section 6.3 that one could expect a misfit RMS
value of 1 when the observed field matches the simulated field.

For the algorithm with dynamic parameter dimensions, the probability
of keeping the dimensionality in an iteration is set to p0 = 0.7, while p1 =
p2 = p3 = p4 = p5 = p6 = 0.05 where notation follows that of algorithm 3.
Furthermore, when adding terms, the new parameter values is sampled
uniformly from their respective feasible intervals.

6.6 I N I T I A L PA R A M E T E R VA L U E S A N D PA R A M E T E R C O N S T R A I N T S

It is important that the parameterization and the method is general. By
general it is meant that it could be applied on a wide range or problems,
and that it would generate useful solutions with little or no prior informa-
tion about the problem. Therefore, unless otherwise stated, every result
presented in Chapter 7 is obtained from a flat resistivity profile with a
constant resistivity (e.g. the the measured sea-water resistivity if this is
available). With this, no simplifying assumptions is made, and although
the well bore log give an indication of favourable initial solution values,
this is not exploited for the sake generality. In order to obtain these initial
conditions, ζ0 = ρw, ζnp = 0.0,np ∈ {1, . . . , Np}, ρr

nr
= 0.0,nr ∈ {1, . . . , Nr} and

βng = 0.0,ng ∈ {1, . . . , Ng}. With this set up, the values of znr , zng and wng

does not contribute to the resistivity profile and is yet to be determined.
Even though their initial values could not obstruct the flat initial resistiv-
ity profile, some initial values could still be more beneficial than others.
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Therefore, to maintain generality, their initial values is uniformly sampled
from their respective feasible domains. This is summarized as

ζ0 = ρw (6.11a)

ζnp = 0, np = 1, . . . , Np (6.11b)

ρr
nr

= 0, nr = 1, . . . , Nr (6.11c)

zr
nr

∼U (zmin
r , zmax

r ) nr = 1, . . . , Nr (6.11d)

βng = 0, ng = 1, . . . , Ng (6.11e)

zg
ng ∼U (zmin

g , zmax
g ) ng = 1, . . . , Ng (6.11f)

wng ∼U (wmin
g ,wmax

g ) ng = 1, . . . , Ng. (6.11g)

For the solutions with a fixed number of
The set of constraints defined in Equation 3.6 are set as shown in Equa-

tion 6.12. Constraints that are freely chosen, are chosen so large or small
that they are rarely touched by the search trajectory. With this, the only
real influence these constraints have on the algorithm is that they defines
the intervals at which new parameter values are sampled from. The con-
straint intervals should therefore not be to narrow, as this could guide the
search, which is deprecated. But not unrealistically wide either, as this
would increase the probability of sampling parameter values which are not
physically consequential.

Nmin
p = 0, Nmax

p = 10 (6.12a)

ζmin
0 = 0, ζmax

0 = 20 (6.12b)

ζmin
p =−20, ζmax

p = 20 (6.12c)

Nmin
r = 0, ζmax

p = 20 (6.12d)

ρmin
r = 0, Nmax

r = 10 (6.12e)

zmin
r = zwd, ρmax

r = 500Ωm (6.12f)

Nmin
g = 0, zmax

r = zNl − zwd (6.12g)

βmin
g =−10000Ω m2, βmax

g = 10000Ω m2 (6.12h)

zmin
g = zwd, zmax

g = zNl − zwd (6.12i)

wmin
g = 1 m, wmax

g = 1000 m (6.12j)

ρmin = ρw, (6.12k)

The sampling of step lengths which is shown in algorithm 2 are depen-
dent on minimal and maximal step length values which are given in Equa-
tion 6.13. These are the values which are reduced if the step length reduc-
tion criteria given in Equation 5.19 is imposed. The maximal step length
boundary imposes naturally a restriction on the immediate exploration of
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the solution space. The values in Equation 6.13 is set such that the search
adequately explore the solution space in the beginning of the search. As
the initial parameter values are randomly chosen, it is important that
these maximal step length boundaries are large enough as the tempera-
ture schedule is quickly decreasing in the beginning of the search. When
the search has approached this flat valley which is mentioned above, one
would like to concentrate the search. These constraint values are a bit too
large for this purpose and cause slower convergence since too large steps
are proposed just to be rejected. It is exactly for this purpose the step length
reduction is implemented.

λ(ζ0)min = 10−3, λ(ζ0)max = 10, (6.13a)

λ(ζnp )min = 10−3, λ(ζnp )max = 10, np = 1, . . . , Np
(6.13b)

λ(ρr
nr

)min = 10−2Ωm, λ(ρr
nr

)max = 100Ωm, nr = 1, . . . , Nr
(6.13c)

λ(zr
nr

)min = 10−2 m, λ(zr
nr

)max = 100m, nr = 1, . . . , Nr
(6.13d)

λ(βng )min = 10−2Ω m2, λ(βng )max = 1000Ω m2, ng = 1, . . . , Ng
(6.13e)

λ(zg
ng )min = 10−2 m, λ(zg

ng )max = 100m, ng = 1, . . . , Ng

(6.13f)

λ(wng )min = 10−2 m, λ(wng )max = 100m, ng = 1, . . . , Ng.
(6.13g)

The computing code is written in C++, and executed on Linux with a 2.90
GHz Intel® Xeon® E5-2690 CPU.
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Each of the different optimization routines was tested thoroughly on the
different data sets presented in Section 6.2. In order to get an impression
of the new parameterization presented in this thesis, several evaluation
criteria was imposed.

Since Simulated Annealing is a stochastic optimization routine, multiple
inversions should be performed with the same initial values and different
seeds for the pseudo-random number generator implemented in the algo-
rithms. With this, eventual bias towards different seeds will be reduced.
Also, there should be performed multiple inversions with different, random
initial values, in order to reduce the bias towards certain initial values.

The above discussions is as much about optimization as it is about the
particular parameterization presented in this thesis. Since this is a new
parameterization, the results should also exhibit how well the parameter-
ization can represent the model responsible for the observed data. The pa-
rameterization should be independent of the optimization routine, and it is
not impossible to imagine that a better optimization routine could be cho-
sen. Because of this, also the best inversions, that is, the inversions with
the lowest misfit values, are also presented. These are often obtained with
more ideal initial parameter values, and is not that interesting as a mea-
sure of the performance of the method per se. But as a measure of the
parameterization, this is interesting, and it could also be used as a refer-
ence for the performance in the general case. In the synthetic case, this is
not interesting, as the synthetic model is simulated with this parameteri-
zation, but with the real data, the location and the minimum misfit value
is not known.

By ideal initial parameter values, it is meant that they are somewhat
close to the alleged optimal solution. This optimal solution is not known,
but from the well bore log, one could expect one resistor at about 1500 m
depth at the reservoir. One could also expect a certain compression effect,
and some more resistive layers at shallow deep. From these expectations,
one could adjust the parameters so that they resembles this, and run the
inversion with e.g. smaller step lengths to concentrate the search around
this alleged global minimum. Note that, even with these assumptions, at-
tempts to rig the parameters to ideal values has not been able to produced
lower misfit values than the inversion provides.

For each data set, multiple inversions was carried out and the results of
these inversions is presented in this chapter. The methods concerned is the
regular Simulated Annealing algorithm with a fixed number of parameters

81
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Np = 1, Nr = 1 and Ng = 2, and the trans-dimensional Simulated Anneal-
ing algoritm presented in Section 5.4.1. Results from inversions done by
the other trans-dimensional algorithm, presented in Section 5.4.2 is only
included for the Troll 1 model. The reason for this is that it is only a refer-
ence method in this thesis, and that it is not ideal for solving this kind of
problem. Therefore, more emphasis is made on the two other methods.

The set up in every inversion is as explained in Chapter 6 unless other-
wise stated. Statistics for inversions with a terminal misfit RMS less than
5.0 is collected in tables for the respective data sets. The ratio of inversions
that managed this, and thus is used to create the statistics is showed in the
header of the respective tables. In addition, excerpts of the inversions are
illustrated explicitly with a traceplot of the misfit RMS versus iterations,
and the terminal resistivity profile which is plotted against well bore log
data (Figure 6.5) as a reference, where the indicated vertical resistivity is
included. This, together with the transverse resistance, which was calcu-
lated to be 35640 Ωm, will be used as quality indications for the results.

7.1 I N V E R T E D C S E M D A T A F R O M A S Y N T H E T I C M O D E L

This is the results of the inversion of the CSEM data gathered from the
synthetic model presented in Section 6.1.2. As the data is not contaminated
with noise, one unique global minima with misfit 0 exists. The different
methods did not manage to attain perfect fit, and also the inversions was
terminated when reaching a misfit RMS of less than 1.0, a termination
criterion that should have been disabled in this case.

As can be seen in Table 7.1, the inversions with a fixed number of param-
eters perform better than the ones from the dynamic dimension algorithm.
As the fixed parameters is tailored to be able to fit such a resistivity profile,
this is perhaps not that surprising.
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FIXED DIMENSIONS DYNAMIC DIMENSIONS

Accepted 9/10 9/10

Mean Std. dev. Mean Std. dev.

Iterations 16866.89 3547.09 18870.66 1756.60

Elapsed time[s] 101414.57 14576.86 131657.78 10335.56

ε 1162.56 1680.33 1092.54 301.02

RMS(ε) 1.78 1.10 1.98 0.28

Accept ratio 0.25 0.09 0.25 0.06

Np 1.00 0.00 5.22 3.15

Nr 1.00 0.00 1.22 0.44

Ng 2.00 0.00 6.00 2.50

Table 7.1: Statistics from inversions of CSEM-data from a synthetic model.

7.1.1 Fixed number of parameters

As can be seen from Figure 7.1 and Figure 7.1, there algorithm manage to
recover the modeled resistivity to a great extent, even though they where
terminated when reaching a misfit RMS of 1.0.
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Figure 7.1: Inversion of synthetic data with fixed number of parameters. Final mis-
fit RMS = 1.00.
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Figure 7.2: Inversion of synthetic data with fixed number of parameters. Final mis-
fit RMS = 1.00.

The inversion which produced the profile in Figure 7.3 was obtained with
the misfit termination criterion turned off, and the maximum iteration ter-
mination criterion was risen to a maximum of 50000 iterations.
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Figure 7.3: Inversion of synthetic data with fixed number of parameters. Final mis-
fit RMS = 0.302.

7.1.2 Dynamic number of parameters

The inversion which result is pictured in Figure 7.4 did manage to recover
the location and resistivity of the hydrocarbon resistor to a great extent.
The background is not perfectly recovered, but it seems to capture the es-
sentials, also note the logarithmic axis which exaggerate the difference at
small resistivity scales compared to the larger scale.
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Figure 7.4: Misfit RMS traceplot after inversion of synthetic data with fixed num-
ber of parameters. Final misfit RMS = 1.610.

7.2 I N V E R T E D C S E M D A T A F R O M T H E T R O L L 1 M O D E L

This section presents inversions from the Troll 1 data set defined in Ta-
ble 6.2 and Section 6.2. Inversions done by the reference trans-dimensional
Simulated Annealing method from (Singh et al., 2008), presented in Sec-
tion 5.4.2 is also included, in addition to inversions from the fixed parame-
ter dimension algorithm and the dynamic parameter dimension algorithm.
Statistics from the inversions by this method is gathered in the columns
under the heading with marked with an asterisks at the right in Table 7.2.
As is explained in Section 5.4.2, this method is not ideal for this problem, so
in order to obtain the presentable results, the maximum parameter dimen-
sions was limited compared to the trans-dimensional algorithm presented
in Section 5.4.1. These are set to Nmax

p = 2, Nmax
r = 3 and Nmax

g = 3. As a
comparison, the maximum parameter dimensions used in the method from
Section 5.4.1 is Nmax

p = 10, Nmax
r = 10 and Nmax

g = 10.
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The maximum number of iteration is increased to 50000 iterations for
2 of the inversions with fixed parameter dimensions, and for 25 of the in-
versions carried out by the trans-dimensional algorithm from (Singh et al.,
2008). The rest is limited to 20000 iterations.

As expected, the trans-dimensional algorithm performs better on average
than both the one with fixed dimensions and the one from (Singh et al.,
2008).
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FIXED DYNAMIC DYNAMIC∗

Accepted 22/22 20/20 33/39

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Iterations 21206.91 9753.00 19254.85 1951.70 26529.17 14195.88

El. time [s] 99285.76 41739.87 91741.44 8774.91 110041.21 40507.49

ε 1423.64 547.01 863.21 447.00 1911.98 704.30

RMS(ε) 3.09 0.58 2.39 0.52 3.59 0.66

Accept ratio 0.17 0.11 0.31 0.13 0.19 0.16

Np 1.00 0.00 5.80 3.32 1.03 0.77

Nr 1.00 0.00 2.45 1.67 2.24 1.17

Ng 2.00 0.00 5.53 2.29 2.32 1.46

Table 7.2: Statistics from inversions of CSEM-data from the Troll 1 model.

7.2.1 Fixed number of parameters

The results in Figure 7.5 and Figure 7.6 show that there seems to be an
agreement about the recovered profile. A resistive formation that is a cou-
ple of hundred meters wide with resistivity of about 5 Ω m centered around
a depth of about 600 m. This is followed by a decrease in resistivity to about
0.5 Ω m at a depth of about 800 m. The resistor is found at about 1500 m
depth with a transverse resistance of about 40000 Ω m2. This is in agree-
ment with the well log and the measured transverse resistance of the resis-
tor. Also, the inversion resulting in Figure 7.7, which was carried out with
rigged initial values shows agreement.
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Figure 7.5: Resistivity profile after inversion of troll 1 data with fixed number of
parameters. Final misfit RMS = 2.157.
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Figure 7.6: Resistivity profile after inversion of troll 1 data with fixed number of
parameters. Final misfit RMS = 2.467.
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Figure 7.7: Resistivity profile after inversion of troll 1 data with fixed number of
parameters. Final misfit RMS = 1.313.

7.2.2 Dynamic dimensions I

The results shown in Figure 7.8 and Figure 7.9 is in agreement with the
results in Section 7.2.1 from inversion with a fixed number of parameters.
They place the resistor a little deeper, and also manages to recover a con-
ductive layer at about 2200 m which is in agreement with the well log data.
This was not captured with the fixed dimension method.
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Figure 7.8: Resistivity profile after inversion of troll 1 data with dynamic number
of parameters. Final misfit RMS = 1.908.
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Figure 7.9: Resistivity profile after inversion of troll 1 data with dynamic number
of parameters. Final misfit RMS = 2.258.

7.2.3 Dynamic dimensions II

These results are the ones with the smallest misfit value from the respec-
tive inversions. There also seems to be general agreement with the discus-
sion in the previous subsections. As can be seen in Figure 7.10, this has
tried to fit the reservoir with a Gaussian function in stead of a Heaviside
step function.



7.2 I N V E R T E D C S E M D A T A F R O M T H E T R O L L 1 M O D E L 95

Figure 7.10: Resistivity profile after inversion of troll 1 data with trans-
dimensional Simulated Annealing from (Singh et al., 2008). Best mis-
fit RMS = 2.981.
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Figure 7.11: Resistivity profile after inversion of Troll 1 data with trans-
dimensional Simulated Annealing from (Singh et al., 2008). Best mis-
fit RMS = 2.503.

7.3 I N V E R T E D C S E M D A T A F R O M T H E T R O L L 2 M O D E L

Again, the self-parameterizing algorithm outperforms the one with fixed
parameter dimensions. From Figure 6.6 it it can be seen that the data from
this model is stems from sources which is not above the reservoir. It was
therefore not certain what to expect in terms of if the methods would re-
cover the target reservoir or not. The fact that the towline is partially not
covering the target could be a reason why the different recovered profiles
seems to differ more from each other than was the case for the towing to-
wards the receiver which is the case in Section 7.2.
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FIXED DIMENSIONS DYNAMIC DIMENSIONS

Accepted 12/20 15/20

Mean Std. dev. Mean Std. dev.

Iterations 10298.92 3679.12 17179.47 4466.24

Elapsed time [s] 97403.16 14731.89 148405.28 29432.60

ε 3356.51 1082.68 1586.24 1225.03

RMS(ε) 4.12 0.85 2.71 1.05

Accept ratio 0.33 0.07 0.31 0.11

Np 1.00 0.00 3.80 3.32

Nr 1.00 0.00 1.87 1.46

Ng 2.00 0.00 5.53 2.29

Table 7.3: Statistics for inversion of troll 2 data.

7.3.1 Fixed number of parameters

The resistive top layer is recovered in both Figure 7.12 and Figure 7.13,
and there is also agreement of the placement and resistivity of the resis-
tor. The recovered resistivity is about half of what is found in Section 7.2,
which seems appropriate in light of the placement of the towline. The inver-
sion with rigged initial values presented in Figure 7.14 also seems to agree
in terms of the resistive top layer and the target. The formation beneath
the target differs quite much between the two models, and the one in Fig-
ure 7.13 seems to be more in agreement with the well log and Figure 7.14
although it is obvious from the terminal misfit and number of iterations,
that it has settled in a less fortunate local minimum.
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Figure 7.12: Inversion of troll 2 data with fixed number of parameters. Final misfit
RMS = 1.751.
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Figure 7.13: Inversion of troll 2 data with fixed number of parameters. Final misfit
RMS = 4.730.



100 R E S U LT S

Figure 7.14: Misfit RMS traceplot after inversion of troll 2 data with fixed number
of parameters. Final misfit RMS = 1.000.

7.3.2 Dynamic dimensions

The resistive top layer and the resistor is in accordance with what was
found in Section 7.2.1. Also an increasing resistivity in the region below
the resistor can be spotted in both Figure 7.15 and Figure 7.16, although
recovered with different functions.
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Figure 7.15: Misfit RMS traceplot after inversion of troll 2 data with fixed number
of parameters. Final misfit RMS = 1.499.
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Figure 7.16: Misfit RMS traceplot after inversion of troll 2 data with fixed number
of parameters. Final misfit RMS = 2.410.

7.4 I N V E R T E D C S E M D A T A F R O M T H E T R O L L 3 M O D E L

As can be in Table 7.4, fewer inversions was carried out in this data set
than in the previous, but there should still be enough information to anal-
yse. The trans-dimensional method deliver better results on average than
the method with fixed number of parameters in terms of misfit value. The
CSEM data from this model is sampled with the source towline on top of the
reservoir. The effects of this can be seen from a greater consensus between
the recovered profiles than when the source is towed outside the field. Also,
the transverse resistance is about doubled, and close to the one measured
from the well bore log.
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FIXED DIMENSIONS DYNAMIC DIMENSIONS

Accepted 5/6 6/6

Mean Std. dev. Mean Std. dev.

Iterations 14962.8 5340.97 16509.33 2690.46

Elapsed time [s] 94612.14 31046.57 109663.65 17991.63

ε 2414.51 1531.50 1391.45 309.61

RMS(ε) 3.42 1.14 2.69 0.31

Accept ratio 0.36 0.10 0.29 0.05

Np 1.00 0.00 3.50 2.51

Nr 1.00 0.00 1.67 0.82

Ng 2.00 0.00 7.00 3.22

Table 7.4: Statistics for inversion of troll 3 data.

7.4.1 Fixed number of parameters

The recovered profiles in Figure 7.17 and Figure 7.18 is similar in terms
of the resistive top layer, the following thin conductive layer and the loca-
tion and shape of the target. The reference which was inverted from rigged
initial values places the reservoir about 250 m higher and has a more mod-
est thin conductive layer in addition to a more conductive background in
general.
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Figure 7.17: Inversion of troll 3 data with fixed number of parameters. Final misfit
RMS = 3.176.
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Figure 7.18: Inversion of troll 3 data with fixed number of parameters. Final misfit
RMS = 2.376.
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Figure 7.19: Inversion of troll 3 data with fixed number of parameters. Final misfit
RMS = 1.572.

7.4.2 Dynamic dimensions

Aside from the top resistive layer, the two recovered profiles illustrated in
Figure 7.20 and Figure 7.21 differ quite a lot relative to the other inversions
discussed above.



7.4 I N V E R T E D C S E M D A T A F R O M T H E T R O L L 3 M O D E L 107

Figure 7.20: Inversion of troll 3 data with dynamic number of parameters. Final
misfit RMS = 2.963.
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Figure 7.21: Inversion of troll 3 data with dynamic number of parameters. Final
misfit RMS = 2.264.

7.5 O B S E R V E D D A T A F R O M T R O L L 4

The source in this model is also towed partially outside the reservoir, which
can be seen in Figure 6.6. It could therefore be expected to see some of
the same tendencies as was discussed in Section 7.3. As was the case in
the other models, the trans-dimensional self-parameterizing Simulated An-
nealing algorithm performs better than the regular Simulated Annealing
algorithm with fixed dimensions.
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FIXED DIMENSIONS DYNAMIC DIMENSIONS

Accepted 5/6 6/6

Mean Std. dev. Mean Std. dev.

Iterations 11023.00 5092.75 17250.67 5613.99

Elapsed time [s] 82179.7 35084.50 113011.03 30223.60

ε 2931.08 1119.06 1714.16 799.09

RMS(ε) 3.87 0.74 2.95 0.63

Accept ratio 0.29 0.05 0.36 0.07

Np 1.00 0.00 2.83 1.94

Nr 1.00 0.00 2.33 1.37

Ng 2.00 0.00 6.67 2.16

Table 7.5: Statistics for inversion of troll 4 data.

7.5.1 Fixed number of parameters

Both Figure 7.22 and Figure 7.23 recover the top resistive layer, and seems
to agree on an increasing resistivity in the lower layers. They also seems to
recover a resistive layer at a depth of about 1000 m, and this seems to be
in accordance with the results in Figure 7.24. However, as can be seen in
Figure 7.24, the reference inversion places a very resistive layer at about
1700 m below the seabed, and obtains an overall better misfit.
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Figure 7.22: Inversion of troll 4 data with fixed number of parameters. Final misfit
RMS = 3.533.



7.5 O B S E R V E D D A T A F R O M T R O L L 4 111

Figure 7.23: Inversion of troll 4 data with fixed number of parameters. Final misfit
RMS = 3.279.
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Figure 7.24: Inversion of troll 4 data with fixed number of parameters. Final misfit
RMS = 1.774.

7.5.2 Dynamic dimensions

As can be seen in Figure 7.25 and Figure 7.26, there is an overall consensus
between the two resulting resistivity profiles considered. With an exception
of the top resistive layer, the resulting resistivity profile is quite different
from the ones recovered with a fixed number of parameters in Section 7.5.1.
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Figure 7.25: Inversion of troll 4 data with dynamic number of parameters. Final
misfit RMS = 2.892.
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Figure 7.26: Inversion of troll 4 data with dynamic number of parameters. Final
misfit RMS = 2.569.

7.6 A D D I T I O N A L R E M A R K S

The different data sets results in different resistivity profiles, and the lo-
cation of the source towline seems to be of importance. When the source
is towed directly above the reservoir (models Troll 1 and Troll 3), there is
more consensus between the different inversions. The inversions also re-
covers profiles that is more in accordance with the measurements from the
well bore log. This is not surprising, as it can be seen from Figure 6.6 that
the well is located closer to these towlines than the towlines in the mod-
els Troll 2 and Troll 4. In these models, the source is towed away from the
reservoir, and this results in a less resistive recovered target in addition to
more dissension between the different inversions. The inverted data from
the Troll 1 model presented in Section 7.2 gives the best results in terms of
average misfit. There is also a greater consensus about the resistivity pro-
file between the different inversions in this model than in the other models.
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Also, the inversions done with the trans-dimensional algorithm gives in
general a lower misfit than the one where the parameter dimensions are
fixed. This is so, even though the terms included in the fixed dimensional
case was included after the resistivity profile was known and thus adapted
to be able to fit this profile. The trans-dimensional method is less dependent
on such model assumptions, hence the advantage of the trans-dimensional
algorithm is expected to increase when less or no information about the
sub-seabed resistivity is known. This is as expected as it can include more
terms in the resistivity profile function. The results reveals that the trans-
dimensional algorithm includes more terms on average than what is set in
the fixed dimensions case, but settles with less parameters than the maxi-
mum allowed.

In the different models, the number of terms used varies much, perhaps
with the exception of Nr, which is apparent from the standard deviations
provided. However, there seems to be consensus between the different mod-
els in terms of both mean values and their standard deviations. This is
illustrated in Table 7.6, which gives mean and standard deviation values
for the mean and standard deviation values of the different Troll models.

MEAN VALUES STANDARD DEVIATIONS

Mean Std. dev. Mean Std. dev.

Np 3.983 1.278 2.773 0.674

Nr 2.080 0.370 1.330 0.362

Ng 6.183 0.765 2.49 0.491

Table 7.6: Statistics for average parameter dimension values and standard devia-
tions from the different Troll models.

It is interesting that the averaged parameter dimensions differs so lit-
tle from the different models. The parameter dimension statistics from the
synthetic model also seems to agree with the mean values in Table 7.6,
which can be explained by that the synthetic model and the Troll models
are quite similar. This means that the trans-dimensional simulated anneal-
ing, on average, settles on the same number of terms in the resistivity pro-
file function. This further indicates that the algorithm is able to extract the
required number of parameters needed to fit the observed data, which was
a desired property when designing this method.

When compared to other methods applied on this type of problems (see
e.g. (Ray and Key, 2012), (Key, 2009) (Hermanrud, 2009) and (Roth and
Zach, 2007)), the parameterization introduced in this thesis is able to re-
produce complex resistivity profiles with significantly less parameters than
the comparable methods would have been able to do.
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C O N C L U S I O N

This thesis introduces a new parameterization of the model space in a
one dimensional global inversion scheme, with the intention of reducing
the number of parameters, and by that, reducing the number of iterations
needed in stochastic, global inversion methods. The parameterization pro-
vides an explicit representation of the model space with a basis constrained
on the problem at hand.

The parameterization is applied on inversion of marine CSEM data and
is stated in Equation 3.5. The necessary theory to completely explain the
whole inversion process is derived in Chapter 2, Chapter 3 and Chapter 4.

The standard stochastic optimization routine Simulated Annealing is
used in the inversion. In order to handle parameter sets with a varying
number of parameters, a new self-parameterizing trans-dimensional ver-
sion of the Simulated Annealing is introduced in Section 5.4.1. The whole
inversion process is implemented from scratch in C++, with the exception of
the routines handling the forward modeling based on the theory presented
in Chapter 4. The whole program consist of several thousand lines of code,
and therefore it is not appended on paper. The source code files is therefore
instead attached to this thesis in a separate container. As a considerable
amount of time was spent on writing this code and getting it to work ap-
propriately, it is the most important part of this thesis. Files containing the
complete set of input variable values used to create the results displayed
in Chapter 7 is also attached. With this, every result presented is can be
reproduced exactly.

The results from inversion of five different data sets using methods with
both fixed and dynamic number of parameters is presented in Chapter 7
and concludes this master thesis.

8.1 C O N C L U S I O N

The parameterization introduced in this thesis is able to represent com-
plex resistivity profiles with significantly less parameters than comparable
methods. When implemented into a global inversion routine and tested on
both synthetic and real data sets, it is able to recover resistivity profiles
that demonstrate good resemblance with provided well bore log data of the
real data sets.

There is a general tendency that the trans-dimensional, self-parameterizing
Simulated Annealing algorithm introduced in Section 5.4.1 performs better
than the regular Simulated Annealing algorithm with fixed parameter di-
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mensions. It achieves in general lower absolute misfit both on average and
in single inversions.

8.2 O U T L O O K

Since the method parameterize a one dimensional resistivity profile, it is
of mostly academic interest. The essence is however possible to extend to
higher dimensions, and a future goal would be to present an analogue pa-
rameterization of a 2D or 3D model which can be implemented into stochas-
tic inversion schemes, and hopefully make these computationally feasible.
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