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Abstract—Modular multilevel converter (MMC) has 
complex internal dynamics, such as capacitor voltage 
fluctuations and harmonic circulating currents, which may 
have a big impact on the terminal behaviors of the MMC. 
Therefore, it is significant to include these internal dynamics in 
the MMC modeling. To do this, the harmonic state space (HSS) 
based modeling method is applied in this work. The proposed 
MMC models are validated by time-domain simulations. 
Furthermore, the dynamic harmonic response and stability 
analysis of the MMC are also carried out using the harmonic 
transfer function (HTF). 

Keywords—modular multilevel converter (MMC), internal 
dynamics, harmonic response, stability, harmonic state space 
(HSS), harmonic transfer function (HTF) 

I. INTRODUCTION (HEADING 1) 
Modular multilevel converter (MMC) has been a 

promising topology in medium- and high-voltage 
applications [1]. However, the modeling and control of the 
MMC becomes much more complicated than that of two-
level converters [2], [3]. The MMC has complex internal 
dynamics, such as capacitor voltage ripples and internal 
circulating currents, which may have negative effects on the 
stability of the MMC-based power systems [4]-[6]. 
Therefore, different with the analysis method of the 
conventional converters, it is significant to include the 
internal dynamics when concerning the harmonic interaction 
and small-signal stability issues of the MMC. 

In the beginning, most of the work on the MMC 
modeling merely focused on the external characteristics [7]-
[9], e.g. ac- and dc-side V-I characteristics, while completely 
neglecting the internal dynamics, resulting in exactly similar 
models to two-level voltage source converters (VSCs). These 
models are feasible under the assumption that the MMC 
itself has enough internal damping. However, the MMC 
internal damping is usually weak in high-voltage applications 
because of the small arm resistance. Therefore, the 
oscillatory instability caused by the MMC internal dynamics 
is not able to be identified by the previous models. Recently, 
a few researchers have made efforts on the MMC modeling 
by considering internal dynamics [10]-[12]. D. Jovcic et al. 
[10] developed a small-signal dq model for the MMC based 
on multiple dq rotating frames, where the dc, fundamental 
and second harmonic were considered. Based on the same 
idea, the third harmonic is also considered in [11] and [12]. 
However, the major problems of this modeling method are 

the lengthy algebra as well as the difficulty to be extended to 
higher harmonics. 

To accurately model the MMC and to readily extend to 
high number of harmonics for harmonic interaction studies, 
the harmonic state space (HSS) modeling method is first 
applied in this paper to model a three-phase MMC. The HSS 
method has already been used in many fields of power 
systems [13]-[15], for instance, buck-boost converters, 
thyristor-controlled reactors (TCRs), and two-level VSCs. 
However, the HSS modeling for the MMC has hardly been 
reported in the literature by far. This paper will present the 
HSS modeling of the MMC. The steady-state HSS model of 
the MMC is first developed, and on this basis, the small-
signal dynamic HSS model is also derived. A nonlinear time-
domain simulation model of a three-phase MMC is built to 
validate the proposed HSS models. Furthermore, the 
dynamic harmonic response and stability analysis of the 
MMC is also carried out using the harmonic transfer function 
(HTF). 

II. STEADY-STATE HSS MODEL OF MMC 
Fig. 1 shows the averaged model of the MMC (taking 

one phase for instance), where Carm=CSM/N, CSM is the 
submodule (SM) capacitance, N is SM number per arm, L 
and R are the arm inductance and resistance, respectively, 

cuv�  and clv�  are the sum capacitor voltages of the upper and 
lower arms, respectively, iu and il are the upper and lower 
arm currents, respectively, vg and ig are the ac-side phase 
voltage and current, respectively, ic is the circulating current, 
nu and nl are the insertion indices of the upper and lower 
arms, respectively, and Vdc is the dc-side voltage. 
Additionally, ZL(=RL+j�1LL) is the ac-side R-L load 
determining the steady-state operating point. 

 
Fig. 1.  Averaged model of one phase leg of MMC. 
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According to Fig. 1, the mathematical model of the three-
phase MMC can be expressed as an LTP model like (1). 

( ) ( ) ( ) ( ) ( )x t A t x t B t u t= +�                     (1) 

where the state variables and input variables are indicated as 
(2) and (3), respectively, and the coefficient matrices A(t) 
and B(t) are shown in the Appendix. 

( ) , , , , , , , , , , ,
T

ca cb cc cua cuc ga gb gccub cla clb clcx t i i i v v v v v v i i i� � � � � �� �= � �      (2) 

( ) [ ]T
dcu t v=                                   (3) 

Hence, according to the HSS modeling procedure, the 
time-domain state space model in (1) can be converted into 
the frequency-domain HSS model, which is like 

s = +X AX BU                                 (4) 

where X and U are shown in (5) and (6), respectively, in 
which the capital letters are the Fourier coefficients from [-
h…-1,0,1…h] of each state variable, e.g. 

[ ]1 0 1, , , , , ,ca ca h ca ca ca ca hI I I I I I− − + += � � . Hence, the total number 
of state variables in (5) is 12×(2h+1). Additionally, A and B, 
which are doubly infinite block Toeplitz matrices of the 
Fourier matrix coefficients, are given in the Appendix. 

, , , , , , , , , , ,
T

ca cb cc cua cuc ga gb gccub cla clb clcI I I V V V V V V I I I� � � � � �� �= � �X     (5) 

[ ]T
dcV=U                                   (6) 

By ignoring the transient item, the steady-state HSS 
model of the three-phase MMC can thus be obtained as 

( )1
ss

−= −X A BU                             (7) 

where Xss is the steady-state of the state variables. In addition, 
the dynamic response of the state variables will be discussed 
in the next section. 

A nonlinear time-domain simulation model of a three-
phase MMC has been built in MATLAB/Simulink to 
validate the proposed steady-state HSS model. The HSS 
model of the MMC is implemented using the m-file in 
MATLAB. An open-loop control is used and a three-phase 
resistor load is connected on the ac-side of the MMC. The 
first three harmonics are considered in the HSS model. The 
simulation parameters of the MMC are as follows: rated 
power PN = 50 MW, nominal ac line RMS voltage VN = 166 
kV, nominal dc-bus voltage Vdc = 320 kV, fundamental 
angular frequency �1 = 314 rad/s, SM number per arm N = 
20, SM capacitance CSM = 140 �F, arm inductance L = 360 
mH, and arm resistance R = 1 �. 

As shown in Fig. 2, a good match can be observed 
between the steady-state HSS model and the time-domain 
simulation model, which shows the high accuracy of the 
proposed HSS model. In general case, the dc and second 
harmonic components are dominant in the circulating 
currents, and the dc, fundamental, second and third harmonic 
components are dominant in the capacitor voltages. 

III. SMALL-SIGNAL DYNAMIC HSS MODEL OF MMC 
The ac voltage control for MMC is taken for example in 

this paper to derive the small-signal dynamic HSS model. 
The used ac voltage control is shown in Fig. 3, in which Hv(s)  
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Fig. 2.  Steady-state HSS model validation. (a) Three-phase upper arm 
capacitor voltages. (b) Three-phase circulating currents. 

 
Fig. 3.  AC voltage closed-loop control. 

is proportional-resonant (PR) controller in order to achieve 
zero steady-state errors for sinusoidal quantities, and kf is the 
feed-forward gain to improve dynamic response. 

The ac voltage regulator is 

( ) 2 2
1

r
v p

K sH s K
s ω

= +
+

                          (8) 

In consideration of control dynamics, the small-signal 
state space model of the three-phase MMC is expressed as 

( ) ( ) ( ) ( ) ( )x t A t x t B t u tΔ ΔΔ = Δ + Δ�                (9) 

where the small-signal state variables ( )x tΔ  and input 
variables ( )u tΔ  are shown in (10) and (11), respectively, in 
which 1PRxΔ  and 2PRxΔ  are the state variables used in the 
PR controller. Due to the very large scale of the coefficient 
matrices ( )A tΔ  and ( )B tΔ , they are no longer given here. 

( )

1 2 1 2 1 2

, , , , , , , , ,
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( ) * * *, , ,
T

dc ga gb gcu t v v v v� �Δ = Δ Δ Δ Δ� �                   (11) 
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Fig. 4.  Small-signal dynamic HSS model validation. (a) Phase-a circulating 
current. (b) Phase-a ac phase current. 

By applying the HSS modeling procedure, the small-
signal dynamic HSS model of the three-phase MMC can thus 
be obtained as 

s Δ ΔΔ = Δ + ΔX A X B U                              (12) 

where ΔX , ΔU , ΔA  and ΔB  are the Fourier matrix 
coefficients of ( )x tΔ , ( )u tΔ , ( )A tΔ , and ( )B tΔ  in (9), 
respectively. 

To validate the developed small-signal dynamic HSS 
model in (12), a time-domain simulation with a step change 
in the input variable is also carried out, from which the 
results are compared with those from the small-signal 
dynamic HSS model, as shown in Fig. 4. A step change with 
10 kV fundamental voltage in the phase-a reference voltage 
is made at 1.5 s. It is seen that both the phase-a circulating 
current and ac phase current become larger after a step 
change in phase-a reference voltage. There is a good match 
between the small-signal dynamic HSS model and the time-
domain simulation model. 

IV. DYNAMIC HARMONIC RESPONSE AND STABILITY 
ANALYSIS OF MMC USING HTF 

The HSS model is useful for individual harmonic steady-
state and dynamic analysis, which means that it is convenient 
to see how each individual harmonic contributes to the total 
response by using the HSS model. 

The relationship between the dynamic harmonic 
coefficients of the input and output variables can be 
represented by the HTF, which is defined as: 

( ) ( ) 1=s s −
Δ Δ Δ ΔH C I - A B + D                  (13) 

where I is the Toeplitz form of identity matrix, and ΔC  and 

ΔD  are the coefficient matrices of the output equation of the 
HSS model. Noted that H(s) is a double infinite matrix, as 
shown in (14), where it defines the coupling among different 
frequencies. 
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Fig. 5.  Dynamic harmonic responses of the MMC from the HSS model. (a) 
Circulating current. (b) Upper arm capacitor voltage. 
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Hence, the dynamic response of the individual harmonic 
of the output variables can be calculated by 

( )
,

s
Δ Δ= =

Δ Δ = Δ
C I D O

Y = X H U                  (15) 

It is pointed out that the harmonic response obtained 
from (15) is the output harmonic vector in s-domain, which 
needs to be converted to the time-domain response by using  
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Fig. 6.  Pole-zero mapping of the HTF of the MMC. (a) Kp=1. (b) Kp=2. 
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Fig. 7.  Time-domain simulation results. (a) Kp=1. (b) Kp=2. 

the inverse Laplace transform. Furthermore, the final 
response is obtained by adding the steady-state and dynamic 
responses. 

The time responses of each harmonic of the circulating 
current and capacitor voltage are depicted in Fig. 5, where a 
10 kV step change in the dc-bus voltage happens at 0.5 s. For 
simplification of analysis, -3rd-3rd harmonics of the HSS 
model are considered. It is observed that the circulating 
current contains dc and second harmonic components, as 
seen in Fig. 5(a), where the amplitudes at the fundamental-
frequency and third harmonic are near zero (10-13). 

Furthermore, the capacitor voltage contains dc and all 
harmonic components, as shown in Fig. 5(b). In addition, it 
is also seen that there exist large overshoots and slow 
dynamic responses in each harmonic during the dynamic 
process, which is mainly due to the weak internal damping 
within the MMC. 

The stability of the MMC system can also be assessed by 
the HTF, where the contribution of each harmonic to the 
system instability can be explicitly identified. Fig. 6 depicts 
the pole-zero mapping of the HTF of the MMC, where the 
HTF describes the relationship between each harmonic of 

gaIΔ  and *
gaVΔ . Fig. 6(a) shows the stable case where the 

proportional gain of the ac voltage controller is Kp = 1, while 
Fig. 6(b) shows the unstable case where the proportional gain 
is Kp = 2. It can be seen that the instability of the MMC in 
this case is mainly attributed to the third harmonic capacitor 
voltage dynamic. The time-domain simulation results are 
also demonstrated to validate the theoretical analysis, as 
shown in Fig. 7, where the three-phase upper arm sum 
voltages of the MMC are presented. In the time-domain 
simulation, the MMC system becomes unstable when the 
proportional gain of the ac voltage controller changes from 1 
to 2, which confirms the theoretical analysis. 

V. CONCLUSION 
This paper investigated the harmonic state space (HSS) 

modeling of the MMC. The steady-state and small-signal 
dynamic HSS models of the MMC have been developed in 
this paper, respectively. The results show that the proposed 
HSS models are able to represent all harmonics in capacitor 
voltages and circulating currents. Moreover, the proposed 
HSS models are easily extended to any high harmonics. In 
addition, the dynamic response of each harmonic of the 
MMC as well as its contribution to the system stability can 
be readily identified by the harmonic transfer function (HTF).  
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APPENDIX 
The coefficient matrices in (1) and (4) are shown in (A1)-(A4), in which 

[ ]Γ  means the Toeplitz matrix of the Fourier coefficients of the time 
varying variables, I is identity matrix, O is zero matrix. Additionally, the 
lowercase letters in (A1) denote the time-domain signals, and the uppercase 
letters in (A3) represent the Fourier coefficients from [-h… -1,0,1… h]. And 
Q is a diagonal matrix that represents the frequency information, which is 
like (A5).  
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