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Abstract

In this thesis we investigate a concept in genetic association studies known as extreme
phenotype sampling (EPS), where phenotype refers to physical appearances and in hu-
mans. In EPS studies, only individuals with extreme phenotypes are genotyped. Extreme
phenotypes are typically defined as both ends of the spectrum of a continuously measur-
able trait such as weight or Body Mass Index (BMI). We introduce and develop statistical
methods that apply to this design.

We investigate extreme phenotype sampling in both common and rare variant asso-
ciation analysis. For common variant association studies we will present methods that
use the conditional model and the missing genotype model to test for genetic associations
with disease. Both these methods were proposed in their simplest form by Huang & Lin
(2007), and in this thesis we extend both methods to include any number of genetic and
non-genetic covariates. We develop score test statistics for both these methods to test if
there is an association between genetic variables and a phenotype. In order to evaluate
these methods, we apply them to a dataset from the HUNT study (the Nord-Trøndelag
health study) where we investigate the association between certain SNPs and waist-hip
ratio.

For rare variant association studies we present five relevant methods for the cross-
sectional design; (1) the collapsing method, (2) the CMC method, (3) the SKAT method,
(4) the SKAT-O method, and (5) the β-SO (beta-smooth only) method. We adapt the
CMC method developed by Li & Leal (2008) and the β-SO method by Fan et al. (2013), to
the EPS design using the conditional model and corresponding score test. The collapsing
method developed by Li & Leal (2008) and the kernel based methods developed by Wu
et al. (2011) and Lee et al. (2012) have already been adapted to the extreme phenotype
design based on the conditional model. We compare all five methods in an extensive
simulation study. We use the software COSI to simulate rare variant genotype data.

In both common and rare variant studies we compare the cross-sectional design and
the extreme phenotype sampling design. Extreme samples can theoretically be more pow-
erful for detecting an association between a genetic variant and a phenotype, because the
proportion of causal variants is enriched in extreme samples. This can be especially im-
portant for rare variant association studies. However, in this thesis we show that estimates
made based on the conditional model are sensitive to violations of model assumptions in
a greater degree than estimates based on a multiple linear regression model. Additionally,
we show that if sample sizes are low or the proportion of causal variants included in the
model is low, a random sampling method can be as powerful as an extreme phenotype
sample to detect the associations.
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Sammendrag

I denne oppgaven ser vi p̊a genetiske assosiasjonsstudier der en kun analyserer individer
med ekstreme fenotyper (fysisk utseende eller kjennetegn ved et menneske). Slike studier
kalles ekstrem fenotype utvalgsstudier (extreme phenotype sampling, EPS). Ekstreme
fenotyper er typisk definert som ytterpunktene i et spekter av verdier for en m̊albar
variabel, for eksempel vekt eller BMI. Vi vil i denne oppgaven introdusere og utvikle
statistiske metoder som kan brukes i EPS-studier.

Vi vil se p̊a EPS-studier b̊ade for vanlige og sjeldne genetiske varianter. For analyser av
vanlige genetiske varianter skal vi bruke to modeller; ”conditional” og ”missing genotype”
modellene, begge utviklet av Huang & Lin (2007). Vi utvider disse modellene slik at de
kan modellere fenotype som en funksjon av et vilk̊arlig antall genetiske og ikke-genetiske
variabler. For å teste om det finnes en assosiasjon mellom fenotype og genotype, utvikler
vi score test statistikker som passer til de ovennevnte modellene. Vi evaluerer kvalitetene
til disse metodene ved å anvende dem p̊a et datasett fra HUNT (Helseundersøkelsen i
Nord-Trøndelag) der vi ser p̊a forholdet mellom liv- og hofteomkretser (waist-hip ratio,
WHR) som fenotype.

For analyser av sjeldne genetiske varianter vil vi presentere fem metoder som kan
anvendes p̊a tilfeldige utvalg fra en populasjon; (1) ”the collapsing method”, (2) ”the
CMC method”, (3) ”the SKAT method”, (4) ”the SKAT-O method”, og (5) ”the β-SO
(beta-smooth only) method”. Vi tilpasser CMC og β-SO metodene til bruk p̊a EPS-
studier ved å bruke conditional modellen og tilhørende score test. Collapsing metoden
og SKAT metodene har allerede blitt tilpasset til dette designet av Li et al. (2011) og
Barnett et al. (2013). Vi sammenligner de fem metodene i en simuleringsstudie basert p̊a
simulerte genetiske data fra programmet COSI.

B̊ade for analyser av vanlige og av sjeldne genetiske varianter sammenligner vi resul-
tater fra modeller tilpasset tilfeldige utvalg og EPS-utvalg. I teorien kan det å bruke
personer med ekstreme fenotyper øke studiens styrke til å oppdage årsakssammenhenger
mellom genetiske variabler og fenotyper fordi kausale genetiske varianter opptrer i høyere
grad blant personer med ekstreme fenotyper. Til tross for dette ser vi i v̊are analyser at
conditional modellen er s̊arbar for avvik fra modellantagelser i større grad enn multiple
lineære regresjonsmodeller. Vi ser ogs̊a at metoder anvendt p̊a tilfeldige utvalg kan ha like
stor styrke til å oppdage årsakssammenhenger som metoder anvendt p̊a ekstreme utvalg,
n̊ar utvalgsstørrelsen er lav og det er f̊a genetiske varianter som har en biologisk effekt
under alternativhypotesen.
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Chapter 1

Introduction

Genetic association studies are statistical studies of relationships between individuals’
genotypes and phenotypes (diseases or appearances). The aim of such studies is to discover
regions of the human genome that are related to a particular trait or disease. Genetic as-
sociation studies often target common genetic variants, which are defined as variants that
are common in a population. The well known genome-wide association studies (GWAS)
are examples of such common variant association studies. Other types of studies focus on
rare variants. These studies assume that there exists several rare genetic variants that can
have similar effects on a particular phenotype. Different statistical methods have been
developed for the common and rare variant association studies.

In this thesis we investigate a concept known as extreme phenotype sampling (EPS),
or selective genotyping. In EPS studies, only individuals with extreme phenotypes are
genotyped. Extreme phenotypes are typically both ends of the spectrum of a continuously
measurable phenotype such as weight and Body Mass Index. Extreme phenotype sampling
is based on the theory that individuals with extreme phenotypes provide more information
about causal genetic variants compared to individuals with average phenotypes. Extreme
phenotype sampling is relevant because the power to detect causal variants in an extreme
sample of a certain size is greater that in a randomly sampled group of the same size
Lee et al. (2012). Thus, the EPS design can lower the cost of genetic association studies
without reducing power.

We will investigate extreme phenotype sampling and relevant statistical methods in
both common and rare variant association analysis. We aim to develop score test statistics
for testing association between genotypes and phenotypes in common variant EPS models
that include other causal variables. We aim to investigate the effectiveness of extreme
sampling as well as the application of our proposed models, in real data analysis using a
dataset from HUNT. Concerning rare variants, we aim to review and compare rare variant
association models in a simulation study. Additionally we aim to develop EPS models
based on existing rare variant models and compare these to other rare variant EPS models
in a simulation study. We will also compare the power of extreme sampling to random
sampling in a simulation study.
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1.1 Datasets

HUNT

HUNT (the Nord-Trøndelag health study, http://www.ntnu.edu/hunt) is a study of the
population of Nord-Trøndelag that begun in the 1980s. HUNT3 is the third round of the
HUNT study, and includes approximately 50 000 individuals. The HUNT3 study was
performed between 2006 and 2008. The participants were asked to answer questionnaires,
clinical surveys were performed, and blood tests taken and stored. The participants in
the study are seen to be a good representation of trends in the Norwegian population.
For some areas of research the trends could also be valid for other Caucasian populations.
Langhammer et al. (2012) inform that there were some groups within the population
that participated less than others. These groups consist of the sickest, young adults and
people with low social status. The trends found from HUNT3 data should therefore be
good estimates for the majority of the population, with some reservations.

Through a joint project with nutritionist Ingrid Mostad at the Department of Clinical
Nutrition, Trondheim University Hospital, we have been granted permission to analyse
the HUNT dataset used by Mostad et al. (2014) in the study of waist-hip ratio and dietary
habits. Due to the high cost of genotyping all participants in this dataset, only genetic
information on two SNPs (rs9939609 and rs17782313) among individuals with extreme
phenotypes (waist-hip ratio) is available. This dataset is therefore a relevant dataset for
investigating extreme phenotype sampling methods for common variants in a real-world
setting.

COSI

In order to investigate existing and novel rare variant association methods, we simulate
a dataset using the simulation software COSI, developed by Schaffner et al. (2005). The
software is available at http://www.broadinstitute.org/∼sfs/cosi/. The COSI software
simulates fictitious chromosomes of size 10 MB (megabase) in an out-of-Africa model in
which it is assumed that a native African population emigrated to form separate popu-
lations (African, European, Asian). Mutations are simulated and their positions on the
chromosome are reported. Additionally, the frequencies of the ancestral alleles and mu-
tation alleles at these positions, in the current population, are reported. The benefit of
the COSI simulations is that relationships between mutation sites are simulated relatively
realistically so that methods that take into account relationships between SNPs and mu-
tations along the chromosome can be evaluated. There are several available simulation
softwares that create similar datasets, but as Wu et al. (2011) and Fan et al. (2013) eval-
uated their models using the European population generated by COSI, and since we will
investigate and extend their methods, we have chosen to continue the use of COSI.

1.2 Structure of the thesis

In Chapter 2 we give an introduction to genetics and genetic association studies. We
explain the basics of genetics and the two main theories of how common diseases are
related to genotypes; the common disease common variant hypothesis, and the common
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disease rare variant hypothesis. Furthermore, we introduce mathematical notation of
genetics. We also introduce the three designs that we will investigate further; the case-
control design, the cross-sectional design, and the extreme phenotype sampling design.
Finally, we discuss the epidemiological concept of confounding and how to deal with
confounding in statistical models.

In Chapter 3 we outline the statistical models and methods that we will later adapt
to genetic association studies. We introduce two types of statistical models; generalized
linear models and functional linear models. We discuss the use of maximum likelihood
to estimate parameters in these models. In this thesis we will focus on the score test as
a means to test for association between genotypes and disease. This test is introduced in
this chapter. We also outline other tests that have been used in the literature and that
are used by us in data analysis or theoretical model development.

In Chapter 4 we describe the theory of common variant association studies. In this
chapter we adapt the relevant methods from Chapter 3 to common variant association
studies. We provide the score test statistics for the cross-sectional and the extreme pheno-
type sampling design. For the extreme phenotype sampling design we discuss two different
models; the conditional model that only uses the extreme cases, and the missing genotype
model that uses information on all individuals and considers genotypes as missing data
for non-extreme subjects.

The HUNT dataset that was described above is a common variant dataset with two
variants genotyped in extreme phenotype individuals. This dataset is analysed in Chapter
5, using methods from Chapter 4. Through this analysis we illuminate strengths and
weaknesses of the extreme phenotype design and corresponding statistical models.

Chapter 6 contains an introduction to rare variant association studies. We discuss
current methods of rare variant association methods and their adaptation to the extreme
phenotype design. Some methods, such as SKAT, are established and verified for cross-
sectional and extreme phenotype studies by simulation studies. A new method for rare
variant association modelling that uses function linear models has proven to be more
powerful than previous methods for the cross-sectional design. We adapt this method to
the extreme phenotype design using the conditional model that was introduced in Chapter
3. We also discuss the so-called burden methods that are simpler, yet popular and often
powerful.

In Chapter 7 we use a simulation study based on simulated genotypes from COSI to
compare and verify the rare variant association models that were presented in Chapter 6.
We compare the methods to each other in a cross-sectional design and an extreme pheno-
type sampling design. We also compare the power of the extreme phenotype design to the
cross-sectional design using extreme and random samples from the same population. As
the simulation studies by construction comply with the assumption of extreme phenotype
sampling methods, we cannot assess their validity in real world studies, as was done for
common variants in Chapter 5.

Conclusion, discussion of the results and an outline of further work that will be done
on this topic is presented in Chapter 8.
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Chapter 2

Introduction to genetics and genetic
association studies

2.1 Cell biology and genetic inheritance

This introduction is, unless stated otherwise, based on Chapters 5 (”DNA and chromo-
somes”) and 19 (”Sex and genetics”) in the book by Alberts et al. (2010).

The laws of inheritance were first formulated by Gregor Mendel in the 19th century.
Through experiments with different types of pea plants he learnt that so-called hereditary
factors, today known as genes, govern traits of organisms. Differences in specific traits
between organisms of the same species are caused by differences in genes among these
organisms. Different versions of the same gene are known as alleles.

A cell’s genetic information, and thereby an organism’s genetic information, is stored
in DNA (deoxyribonucleic acid). Roughly speaking, DNA is made up of two strands of
sequences of specialized molecules known as nucleotides. The human DNA is composed of
only four types of nucleotides; A, T, C and G. One DNA strand is built from approximately
3.2 · 109 nucleotides of these kinds. The two strands are paired with one another through
hydrogen bonding between specific areas of the nucleotide molecules, and form the well-
known double helix structure. The strands are connected by the binding of A and T,
and C and G nucleotides, and we say that one strand is the complement of the other
strand. This means that knowing the sequence of one strand automatically implies the
sequence of the other strand. Differences between organisms is caused by differences in
the nucleotide sequences. Between humans, these differences occur in about 0.1% of our
nucleotide sequences.

Genes are generally defined as regions of DNA that code for a specific protein. Humans
have approximately 25 000 genes, but these regions only cover a part of the total DNA.
The remaining parts of the DNA is sometimes referred to as junk-DNA. The function of
junk-DNA is not established as of today, although different hypothesis are being discussed.
The term genome refers to an organism’s complete set of DNA information.

DNA is packed and stored in the cell in structures known as chromosomes. Humans are
sexually reproducing organisms and are therefore mainly diploid. This means that each
cell in the human body consists of two sets of chromosomes; one set inherited from the
mother and another from the father. An exception is the gametes, or germ cells (sperm in
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men and eggs in women). These cells are haploid and carry only one set of chromosomes.
During sexual reproduction, a haploid germ cell and a haploid egg cell fuses together to
form a diploid cell. The majority of cells in the human body are however not gametes,
and generally known as somatic cells. For most of humans, the somatic cells contain 23
pairs of chromosomes, 22 of these are similar for both genders. The 23rd chromosome
pair are the sex chromosomes which constitute the well-known XY pair in men and the
XX pair in women.

In females, all chromosome pairs in the somatic cells are homologs, meaning that
both chromosomes carry the same genes, but possibly different versions of that gene. In
males, all chromosomes pairs except the sex chromosome are homologs. As mentioned,
a gene come in different versions known as alleles. However, the term allele can also be
used about a genetic region that is much smaller than the gene itself. Such regions are
often termed loci. For a specific locus, one chromosome might carry one allele, while
the other chromosome carries another allele. If at some position in the genome, the two
chromosomes carry equal alleles, the person is said to be homozygous for the trait that
this region codes for. If the person carries two different alleles for a gene, the person
is said to be heterozygous for the trait. A person’s collection of alleles is known as the
genotype. Our phenotypes, or appearances and traits, depend on what types of alleles our
genotype consists of.

Mendel discovered through his experiments that although some pea plants carried the
genetic information for both the colours yellow and green, all plants grew up as yellow.
This behaviour is caused by properties known as allelic dominance or recessiveness. For
a given allele pair, one allele can be dominant and the other recessive, meaning that the
phenotype that the dominant allele codes for will always appear. However, the offspring
of the organism might inherit only recessive variants, and therefore express a different
phenotype. Today we know of more complex models for allele properties which will be
introduced later.

Mendel postulated that genes are inherited independently of each other during repro-
duction. This is today thought to be true for genes that lie on different chromosomes, or
even genes on the same chromosome that are positioned far from each other. Genes or
loci that lie closely together are however likely to be inherited as one unit, a phenomenon
known as co-inheritance. We say that these genes or loci have a genetic linkage.

Single nucleotide polymorphisms

When two or more alleles of a certain gene or locus exist in a population, and all alleles
have a population frequency of more than 1%, the collection of alleles for this locus is
known as a polymorphism (Ziegler & König 2010, page 54). In certain polymorphisms,
the alleles differ from each other in only one nucleotide. For example, the sequences A-A-
T-C and A-T-T-C differ only at the A/T-alleles in the position of the second nucleotide.
Such variations are known as single nucleotide polymorphisms (SNPs). Most commonly, a
SNP is biallelic, meaning that only two different alleles exist. The minor allele frequency
(MAF) refers to the population frequency of the allele in a polymorphism that occurs less
often. Because loci are sub-regions of a gene, a gene can consist of several SNPs.

SNPs are generally not all independent and uncorrelated. We have explained that
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neighbouring genes are co-inherited, and so are neighbouring SNPs. We say that SNPs
are linked in blocks and these blocks are called haplotypes. A haplotype is a region in a
chromosome where all loci are inherited together. Due to genetic linkage it is sufficient
to record the allele of one SNP in an individual’s haplotype in order to state with a
high degree of certainty what alleles the other SNPs in the haplotype will carry. For
experimental genetics research it has therefore often been sufficient to genotype only a
few SNPs in order to make claims about an entire gene or genetic region. These SNPs are
often termed tag SNPs (Li & Leal 2008). Due to co-inheritance of genes across generations
dating all the way back to our ancestors, only a few haplotypes are present in the human
population. This enhances the effect and precision of tag SNPs. The use of genetic linkage
information and tag SNPs greatly reduces the cost of experimental genetics research as
only a fraction of SNPs need to be genotyped (Li & Leal 2008). The association between
the variants in a haplotype is known as linkage disequilibrium (LD) (Li & Leal 2008).

Rare variants

While SNPs are classified as common variants due to the lower limit on their MAFs,
there are genetic variants that have MAFs below the 1% frequency threshold. These
are the so-called rare variants. It should be noted that some researchers use a different
classification of variants. Luo et al. (2013) define rare variants as variants with MAF
less than 1%, low frequency variants as variants with MAFs in the range of 1 − 5% and
common variants as SNPs with a MAF above 5%. The definition of common variants
as SNPs with MAF ≥ 0.05 was solidified when the HapMap Project (Gibbs et al. 2003)
chose to focus on SNPs with MAFs above 0.05. We will continue to use the 0.05 threshold
between common and rare variants in this thesis.

2.2 Genetic association studies

Genetic association studies are studies that aim to discover a relationship between ge-
netic variants and a disease or phenotype. The main focus has been common diseases,
which Morgenthaler & Thilly (2006) define as ”diseases that may afflict 1% or more of
the population during a lifetime”. Currently, two major theories concerning association
between genetic variants and common diseases are dominating research. These are the
common disease, common variant (CDCV) hypothesis and the common disease, rare vari-
ant (CDRV) hypothesis. In order to understand these theories and their importance in
genetic association studies, some terms and concepts used in genetic association research
will be explained.

The prevalence of a disease refers to the proportion of individuals in a population
who have the disease at a specific time. The penetrance of a genetic variant is relative
to a disease or trait of interest, and refers to the probability that a person carrying this
variant has the disease or trait (Schork et al. 2009). Allelic heterogeneity refers to the
situation where several genetic variants in the same region can affect a particular disease
or phenotype. Low allelic heterogeneity support the CDCV hypothesis and corresponding
methods for association detection. If a tag SNP is found to have an association with a
phenotype, one of the SNPs in the corresponding haplotype block is assumed to be causal
for the phenotype, if not the tag SNP itself. The CDRV hypothesis, on the other hand,
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assumes extreme allelic heterogeneity in regions of interest (Schork et al. 2009). It is in
CDRV studies assumed that a gene that is associated with a disease is associated through
multiple variants simultaneously. These associations may be of different strength and
work in opposite directions.

Genetic association studies come in many forms and apply different statistical models
and methods for analysis. In this section we will briefly explain the ideas behind common
variant and rare variant association testing. In later chapters, a detailed description of
statistical models and methods that can be applied in these studies will be given. We
should note that although the CDCV and CDRV hypothesis appear as opposing theories,
it is probable that a combination of the two is realistic (Li & Leal 2008).

Common variants

Most genetic association studies performed to date are based on the CDCV hypothesis.
The argumentation behind this hypothesis is summarized by Alberts et al. (2010, page
681) in the following manner: ”Because mutations that destroy the activity of a key gene
are likely to have disastrous effects on the fitness of the mutant individual, they tend to
be eliminated from the population by natural selection and so are rarely seen. Genetic
variants that make for slight differences in a gene’s function, on the other hand, are much
more common”. The idea is therefore that common diseases and phenotypes are likely to
be caused by common variants (SNPs), and not rare variants, as mutations would not be
rare if they did not cause great difficulties (rare diseases) for the carrier.

A well-known type of common variant genetic association study is the genome-wide
association study (GWA study). In a typical GWA study, diseased and not diseased
individuals are genotyped for a selection of tag SNPs along the genome, and statistical
tests for homogeneity between the groups are used to determine whether the frequency
of individuals with certain alleles are significantly different in the two groups. To date,
hundreds of GWA studies have been performed, resulting in a good mapping of SNPs
that are associated with common diseases. However, as stated by Schork et al. (2009),
”more than 90 − 95% of the heritable component of a disease has been left unexplained
after extensive GWAS interrogation”.

The HapMap project (Gibbs et al. 2003) is aimed to map linkage disequilibrium and
thus provide suggestions for useful tag SNPs for different genes in several human popula-
tions, thus enabling further tag SNP and GWA studies.

Rare variants

The CDRV hypothesis has become more relevant due to the limitations of the common
variant association studies. This idea is not concerned with the theory of one variant
predisposing for one disease, but rather that a collection of rare variants, each with a
relatively high penetrance, can be causal for a disease (Schork et al. 2009). This is in line
with the assumption of extreme allelic heterogeneity, which according to Li & Leal (2008)
implies that ”a disease is caused collectively by multiple rare variants with moderate to
high penetrances”.

As with the HapMap project for common variant association testing, the 1000 Genomes
project (www.1000genomes.org) was initiated to ”facilitate the search for rare variants in
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different genes, if not the entire genome” (Schork et al. 2009).
Common experimental designs are often not suitable for rare variant association test-

ing. For example, sampling diseased and healthy individuals who are to be genotyped
and thereafter compared, becomes expensive due to required sample size. Due to the rare
nature of the variants, large sample sizes are required in order to obtain enough informa-
tion to discover an association. In addition, the use of tag SNPs is not advisable as its
use is low-powered for rare variants (Li & Leal 2008).

Association vs. effect

The aim of a genetic association study is either to find whether an effect is present,
try to quantify this effect, or a combination of both. Rare variant association studies
are relatively new in research and have mainly been focusing on statistical methods for
detecting an association. Common variant association studies are much more established
and have focused both on detection and quantification.

2.3 Mathematical definitions for genetic models

There are aspects of a genetic model that are easily generalized by mathematical defini-
tions. In the following we will introduce some of the most widely used concepts in genetics
and statistics.

The odds ratio

A common measure of the severity of a disease between different groups of people is
the odds ratio (OR). The odds ratio refers to the odds of being diseased under some
exposure compared to the odds under another exposure, often referred to as exposed
versus unexposed. A good example is the ratio of the odds for lung cancer among smokers
(exposed) versus non-smokers (unexposed).

We define πe as the probability of being diseased under some exposure. The odds for
exposed individuals is then defined as

oddse =
πe

1− πe
.

If oddse > 1, the probability of being diseased is greater than the probability of not being
diseased, among exposed individuals. Let πu be the probability of being diseased among
unexposed individuals, and define oddsu in the same manner as above. The odds ratio is
defined as

OR =
oddse
oddsu

=
πe/(1− πe)
πu/(1− πu)

. (2.1)

If OR = 1 then the exposure has no effect on development of disease. If OR > 1 we
expect the disease to develop more often among exposed individuals.

One very important property of the odds ratio is that it is symmetric. In the above
definition we discussed πe, the probability of being diseased (D), when exposed (E). Thus
πe = P (D|E) and 1− πe = P (Dc|E). Superscript c denotes the complement of an event.
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Consider now the exposure as the random event. Then the odds of being exposed among
the diseased is given by

oddsd =
P (E|D)

P (Ec|D)
=

P (E ∩D)/P (D)

P (Ec ∩D)/P (D)
=

P (D|E)P (E)

P (D|Ec)P (Ec)
=
πe
πu

P (E)

P (Ec)
,

and for nondiseased oddsdc = P (E|Dc)
P (Ec|Dc)

= 1−πe
1−πu

P (E)
P (Ec)

. The odds ratio becomes

OR =
oddsd
oddsdc

=
πe/πu

(1− πe)/(1− πu)
=
πe/(1− πe)
πu/(1− πu)

,

which confirms the symmetric property of the odds ratio.

Genetic models

We will focus on modelling a phenotype Y as a function of exposures X and G. Here G
represents genetic factors and X represents other possibly causative factors referred to as
non-genetic factors.

We will hereafter consider biallelic loci. The two alleles of the loci will be referred to
as a low-risk allele, denoted by a, and a high-risk allele, denoted by A. Risk refers to
the probability of developing a particular disease or phenotype. An individual’s genotype
for a biallelic SNP is usually referred to as aa, aA or AA according to the alleles in the
individual’s two chromosomes. These genotypes will be indexed as 0, 1 and 2, according
to the number of high-risk alleles, in the following.

We let p denote the population frequency of the a-allele. Consequently, the A-allele
frequency q must be given by q = 1− p. The minimum of these frequencies is the minor
allele frequency (MAF). This frequency should should be above 1% for the alleles to
classify as a SNP (Ziegler & König 2010, page 54). Genome-wide population studies such
as the HapMap Project can be used as references for SNP MAFs in different populations.

Consider a population that is closed for immigration and where mating occurs and is
successful independent of genotypes. Based on allele frequencies p and q, we can write
down the genotype frequencies;

g0 = p2,

g1 = pq + qp = 2pq, and

g2 = q2. (2.2)

For a given locus, the high-risk allele can be recessive, dominant or neither. If A is
recessive, the probability of being diseased is the same for individuals with zero or one
high-risk allele, and higher for individuals with two high-risk alleles. For dominant A,
the probabilities are equal for individuals with genotypes aA and AA, and lower for
individuals with zero high-risk alleles. As a third alternative, the probability of being
diseased increases with the number of high-risk alleles in the genotype. Examples of such
models are additive and multiplicative models.

Consider a population in which a biallelic loci exists, and that satisfies the assump-
tions made above. Let f0, f1 and f2 represent frequencies of diseased individuals among
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individuals with genotypes aa, aA and AA, respectively. For a given genotype, fi is
therefore the conditional probability of being diseased and represents the penetrance of
the genotype;

f0 = P (D|aa), f1 = P (D|aA), f2 = P (D|AA).

Formally, recessive models are defined by;

f0 = f1 < f2,

and dominant models are defined by;

f0 < f1 = f2.

A monotone model is defined by

f0 < f1 < f2,

and examples of such models include the additive model;

f1 = (f0 + f2)/2,

and the multiplicative model;

f1 =
√
f0f2.

When modelling the relationship between genotype and disease it is common to code
the genetic variable g = (aa, aA,AA) as (0, 1, 2) for a monotone model; (0, 0, 1) for a
recessive model; and (0, 1, 1) for a dominant model.

2.4 Experimental designs

This section on study-design is based on Chapter 6 (”Types of Epidemiological Studies”)
in the book by Rothman et al. (2008).

Epidemiologists separate between two major classes of designs; the experimental design
and the non-experimental design. The experimental design is typical for the natural
sciences where the scientist manipulates conditions and aims to estimate the effect these
manipulations have on the observations. In epidemiology, such designs are often infeasible
or unethical. For example, one cannot prescribe genotypes to individuals, and it can be
unethical to give one set of individuals a drug that could cure a disease, and the other
group a placebo. Epidemiologists and other medical researchers must therefore make use
of non-experimental methods. Among such methods are the case-control design and the
cross-sectional study. These studies are not randomized and systematic errors are likely
to occur. Controlling for confounding is therefore particularly important. The theory of
confounders will be explained later in this chapter.

We refer to a prospective design as a study where individuals are followed over time
and disease occurrences during the period of follow-up is recorded. The retrospective
design is a design where the exposure is measured at the present moment or based on
individual records, and the disease status at the present time is recorded as the outcome.
The major disadvantage to a good prospective study is financial and efficiency issues. It
is expensive and time-consuming to follow large groups of people over time, especially
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for less common diseases. However, a prospective design can separate between short-
term disease and long-term disease, and often estimate true frequencies directly. The
retrospective design is often preferred to the prospective design due to lower costs and
higher efficiency. A drawback of this design is that the only disease information available
is the prevalence of the disease.

We will in this thesis focus on three different non-experimental retrospective designs
for association studies; the case-control design, the cross-sectional design, and the extreme
phenotype sampling design. These designs are chosen because the majority of studies in
the literature follow these designs. For retrospective designs such as these, estimation of
disease frequencies under different exposures must be performed carefully in accordance
with the sampling procedure.

The case-control design

A case-control study is a retrospective study that evaluates binary outcomes. It is partic-
ularly useful in studies with a clear separation of diseased and not diseased. A case group
is selected based on records of disease, and independent of the individual cases’ exposure
to causal events. A control group is sampled from the undiseased population. The control
selection in this design is critical. According to Rothman et al. (2008, page 116) this sam-
pling procedure must follow two basic rules; controls must be sampled from the source
population from which the cases arose; and the controls must be sampled independent of
exposure. The sample disease frequencies in such studies are by design much higher than
in the general population. The odds ratio is a useful disease measure in case-control stud-
ies. Mathematically we partition the population into two sub-populations; diseased and
not diseased individuals, so that the union of these sub-groups form the entire population.
Thus, the controls in a case-control study must be sampled form the sub-population of not
diseased individuals, while the cases must be sampled from the diseased sub-population.

The cross-sectional design

Rothman et al. (2008, page 97) define a cross-sectional study as ”a study that includes
as subjects all persons in the population at the time of ascertainment or a representative
sample of all such persons, selected without regard to exposure or disease status”. The
disease or phenotype status in a cross-sectional study is measured at the same time as the
exposure. The disease or phenotype can be analysed as a discrete or continuous variable.

The extreme phenotype sampling design

The extreme phenotype sampling (EPS) design began as a common variant association
design under the name selective genotyping. The idea of this design is to only genotype
individuals in the extreme ends of the phenotype spectrum. Huang & Lin (2007) claim
that this design increases the power of association detection compared to random samples
of the same size, and it can also reduce costs. An appropriate statistical model for this
design was proposed by Huang & Lin (2007). If all assumptions are satisfied by the
dataset, the estimates would be the same as those of other models applied to a cross-
sectional design.
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Although Huang & Lin (2007) show that the effect estimates based on their model are
less biased than when other statistical models are applied to the extreme sample dataset,
the model has been used mainly for testing and not for estimating effects.

The idea of genotyping individuals with extreme phenotypes has later been used in
rare variant association testing, where the low frequencies of variants makes it important
to maximize power. The EPS design and the model proposed by Huang & Lin (2007) has
been explored in rare variant association studies by Li et al. (2011) and Barnett et al.
(2013), among others.

2.5 Confounding in genetic association studies

As mentioned, the non-experimental designs are at risk of causing false conclusions due
to lack of randomization of subjects and exposures. Perhaps there is an underlying cause
for both the outcome and the exposure that causes a spurious association?

There are three epidemiological terms we should be aware of. A confounder is a com-
mon cause for both the exposure and the phenotype. If the confounder is not included in
the statistical model, the effect of the exposure will be over- or underestimated. A col-
lider is a common consequence of the exposure and the phenotype, while a mediator is a
consequence of the exposure and cause of the phenotype. Including colliders or mediators
in the model can introduce a bias in the effect estimate of the exposure. Epidemiolo-
gists investigate the effect of one exposure at the time, and only include confounders as
additional covariates in the model. A fourth important concept in epidemiology is effect
measure modification, also known as heterogeneity of effects. This heterogeneity becomes
apparent if across strata of some exposure, the effects of another exposure vary.

In statistical analysis, the aim is often to create a model that explains as much of the
variance in the data as possible. It is therefore of interest to include several exposures
in the same model. We define a nonconfounder as an exposure that is a probable cause
for the outcome, but not associated with the exposures already included in the model.
Nonconfounders can be included without difficulties in a statistical model. Effect measure
modification between exposures can be model by an interaction term in a statistical model
and are therefore relatively easy to handle. Caution must be made with exposures that
are thought to be colliders, mediators or confounders. Only expert biological or medical
knowledge can determine the nature of such variables.

Population stratification

The term population stratification refers to subgroups of a population between which the
allele frequencies differ. These subgroups are important confounders in genetic models as
they can be a cause for a phenotype and a cause for genetic exposure. Consider two sub-
populations with MAFs q and q′ for some locus of interest. The population penetrances
satisfy

f0 = f1 = f2

f ′0 = f ′1 = f ′2,

such that there is no increased risk of disease depending on genotypes. Assume that due
to cultural differences, one of the sub-populations is more prone to disease than the other.
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If these groups are considered as one population, the increased risk would appear as a
genetic effect although it is in fact the culture that is the risk factor.

Population stratification is an issue in most genetic association studies where subjects
are related and form subgroups of allelic differences and family cultures. As it is often
the case that relations between subjects are not known, population substructure must be
estimated and controlled for by appropriate methods. Price et al. (2006) propose a novel
method for controlling for population stratification in a case-control study by the use of
principal components. One can also use principal component analysis (PCA) to control
for population stratification in other types of studies. We note that the PCA approach
assumes that for each individual in the study, genotypes of a relatively large number of
loci are known, and that many of these loci are located on other chromosomes or far away
from the locus one is testing.
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Chapter 3

Statistical models and methods

We will in this chapter consider statistical modelling of both discrete and continuous
data. We will deal with models with a dependent variable Y and covariates Z which
can be separated into non-genetic (X) and genetic (G) exposures. We will consider the
cases where Y is dichotomous (discrete with two levels), as well as Y continuous. We will
present two modelling methods; generalized linear models and functional linear models,
and explain how to estimate the parameters of these models by maximum likelihood
methods. In addition, we will present tests for association between Y and Z in general,
and Y and G in particular.

The models presented in this chapter are appropriate in ideal cases, where the sample
sizes are large, and the number of parameters is relatively small. The models apply to
randomly sampled data without substructures. These models are not necessarily directly
applicable to the genetic association studies that we aim to investigate, but form the basis
for more advanced methods that we will investigate and develop in this thesis.

3.1 Statistical models

We will in the following give an introduction to generalized linear models. We will explain
how such models can fitted to datasets where Y is dichotomous or continuous. We will
thereafter introduce the concept of functional linear models. Functional models are ap-
plicable when the covariates of the linear model have a temporal quality, such as having
time or spacial qualities in addition to their observed values.

3.1.1 Generalized linear models

In the following, we use the notation of McCullagh & Nelder (1989) and assume that a
random event Y is influenced by p covariates, Z1, . . . , Zp. The different covariates may
have a different number of attainable values. Let K be the number of unique combinations
of the different levels of these exposures, and let Y = (Y1, . . . , YK)T be the corresponding
outcomes. Thus, Yk is the predicted outcome under exposures Z1k, . . . , Zpk, k = 1, . . . , K.
As an example, if we are investigating the effect of one covariate Z (p = 1) with three lev-
els, we have K = 3 unique combinations. This yields the random vector Y = (Y1, Y1, Y3)T ,
which elements are responses to the exposures Z11, Z12 and Z13, respectively.
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According to McCullagh & Nelder (1989, page 27), generalized linear models consist of
three components:

1. We assume that any observation y = (y1, . . . , yK)T is a realization of a random vari-
able Y = (Y1, . . . , YK)T , which constitutes the random component. The components
of Y are independent and follow distributions from some exponential family with
possibly different parameters θ = (θ1, . . . ,θK)T . Let µk denote the expected value
of each Yk, i.e. µk = E(Yk), k = 1, . . . , K.

2. For each observed yk, the corresponding p covariate levels Z1k, . . . , Zpk, of the
p covariates, are known. The systematic component is a linear predictor η =
(η1, . . . , ηK)T given by

η =

p∑
j=1

βjZj, (3.1)

where Zj = (Zj1, . . . , ZjK)T , such that ηk =
∑p

j=1 βjZjk, k = 1, . . . , K. The coeffi-
cients β1, . . . , βp are unknown and must be estimated.

3. Because the properties of the random component may not be directly reflected by
the linear predictor η, the link function g(µ) = η is introduced as a link between
the mean of the random component and the systematic component.

Normal distributed random components

The bell-shaped normal distribution is widely applicable to data where Y is a continuous
measurement of some natural phenomena. The generalized linear model with normally
distributed random components is commonly known as a multiple linear regression model.

If the components of Y are assumed to follow a normal distribution with expected
values µk, k = 1, . . . , K, and constant variance σ2, we have the generalized linear model

ηk = α +

p∑
j=1

βjZjk,

where α is some appropriate intercept. We have that µk = E(Yk) = α+
∑p

j=1 βjZjk such
that the appropriate link function is simply the identity g(µk) = µk.

The multiple linear regression model is expressed as

Y = α + βTZ + ε,

where ε follows a N(0, σ2) distribution. For any individual i with exposures Zi =
(Z1i, . . . , Zpi), the outcome Yi is predicted by

Ŷi = α̂ + β̂
T
Zi,

where the estimated parameters α̂ and β̂ can be found by maximum likelihood estimation.

15



Binomial distributed random components

If we aim to fit a linear model to data where Y has two levels, i.e. is dichotomous, we can
use a generalized linear model with binomial distributed random components.

A Bernoulli trial is an experiment where the response Z takes one of two possible values.
A typical example is a coin toss where the outcome is either heads or tails. We often refer
to one outcome as a success, and define the random variable γ as

γ =

{
1 if the outcome is a success, and

0 otherwise.

We define π, the probability of success, such that P (γ = 1) = π and P (γ = 0) = 1 − π.
The binomial distribution is defined as the distribution of the total number of successes
in a series of independent and identically distributed Bernoulli trials. Letting Y denote
the number of successes in n trials, the binomial distribution is defined by

P (Y = y|n, π) =

(
n

y

)
πy(1− π)n−y. (3.2)

If the random component Y of a generalized linear model is assumed to follow a binomial
distribution with parameters π = (π1, n1, . . . , πK , nK)T , where n1, . . . , nK are known, we
have the generalized linear model

ηk = α +

p∑
j=1

βjZjk. (3.3a)

For the binomial distribution, we aim to model Yk/nk as opposed to Yk. We have that
µk = E(Yk/nk) = πk. Since this linear model has no limits on the real line, and πi should
represent a probability, a link function g(πk) = ηk should map the real line into the
interval [0, 1]. According to McCullagh & Nelder (1989, page 108) any such link function
could be used. We will use the so-called logit link function

g(πk) = log

(
πk

1− πk

)
. (3.3b)

An important property of this link function is that it estimates the odds function that
was introduced in the previous chapter. Using this link function enables us to estimate
the same odds ratio in a case-control design as in a cross-sectional study. Other link
functions that are suitable for the binomial distribution do not have this property. The
type of model defined in Equation (3.3) is known as a logistic regression model (McCullagh
& Nelder 1989, page 108).

3.1.2 Functional data analysis

Functional data analysis is a type of data analysis where no underlying theoretical prob-
ability distribution is assumed to describe the data. For a simple introduction, assume
that data is observed in pairs (ξj, tj), j = 1, . . . , n. As explained by Ramsay & Silverman
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(2005, page 38), we interpret ξj as a snapshot of a continuous and smooth function z(t),
taken at time point tj. We note that t does not have to represent time, but can be any
relevant continuum. By smoothness of z, Ramsay & Silverman (2005, page 38) refer to
the existence of a sufficient number of derivatives.

For measurements in general there is often some noise disturbing the observation such
that it cannot be assumed that ξj = z(tj) for all observed time points tj. This is incor-
porated in the model of ξj by

ξj = z(tj) + εj,

where εj represents noise, and z(tj) is the value of the function z at time point tj.

The goal of functional data analysis is according to Ramsay & Silverman (2005, page 38)
to estimate the function z(t) and some of its derivatives based on the discrete observations
ξ1, . . . , ξn. The noise in the data is handled by requiring the estimated function to be
smooth, rather than trying to filter the noise from the data to make the observations
themselves smooth. An important property of z is periodicity. If z is assumed to have
a periodic behaviour, the estimate of z at the beginning of some interval should coincide
with the estimate of z at the end of the interval, both with respect to the value of z
itself, but also the derivatives. Such periodic functions can be functions that express
changes over the four seasons. For non-periodic functions, this criterion does not have to
be fulfilled.

Basis functions

The use of basis functions to estimate an unknown function is a tool that extends far
beyond the theory of functional data analysis. However, we present basis functions for
functional data analysis as we will use basis functions to estimate the function z from a
discrete set of observations. Ramsay & Silverman (2005, page) define a system of basis
functions as a ”set of known functions φk that are mathematically independent of each
other and have the property that we can approximate arbitrary well any function by
taking a weighted sum or linear combination of a sufficiently large number K of these
functions”. In other words, we can approximate the function z by

ẑ(t) =
K∑
k=1

ckφk(t),

where ck are appropriate constants and φk(t) are known basis functions. The choice of
K determines the smoothness of the approximation. If we set K = n, the observed data
ξ1, . . . , ξn will be represented exactly.

We will describe two basis systems that are of interest. These are suggested in the
article by Fan et al. (2013) and in the book on functional data analysis by Ramsay &
Silverman (2005).
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The Fourier basis system

This system of basis functions is appropriate for periodic data without any strong local
features (Ramsay & Silverman 2005, page 45). The system is defined as follows;

φ0(t) = 1,

φ2r−1(t) = sin(rωt),

φ2r(t) = cos(rωt).

The period that these functions reflect is given by 2π/ω and the periodic behaviour of the
data should be used to determine ω.

The B-spline basis system

Before we introduce the B-spine basis system we will give a short description of splines.
This description is based on Ramsay & Silverman (2005, pages 46-49).

Consider an interval [a, b] in which the data is observed. If the observed data is given
in pairs (ξj, tj) and t represents time, the interval will be a time interval starting at time
a and ending at time b. This interval is separated into L subintervals by the values
τ1, . . . , τL−1, called breakpoints. The endpoints of the interval are τ0 and τL. In each
interval [τl, τl+1] a polynomial of order m is fitted to the data. These polynomials go by
the name splines. We require smooth joining of the splines at the breakpoints such that
function values and derivatives up to order m − 2 must match (matching derivatives is
not required for linear functions). The spline function estimates the entire function of
interest over the interval [a, b], and is the combination of the splines and the breakpoint
continuity requirements. A spline function created by splines of order m and L−1 interior
breakpoints is defined by m+ L− 1 parameters (Ramsay & Silverman 2005, page 49).

Let the B-spline basis system be represented by basis functions φk(t). Let each of these
basis functions be spline functions of order m over the interval [a, b] defined by the same
breakpoints τ1, . . . , τL−1. Let each function be positive over no more than m intervals,
and require these intervals to be adjacent. In addition, require smooth transitions to the
zero regions. This is the so-called compact support property of the B-spline basis system
and results in efficient computations (Ramsay & Silverman 2005, page 50). As a result
of this property of the basis functions, there will be m − 1 knots at each breakpoint,
representing the values of the m−1 basis functions that are defined over each breakpoint.
If breakpoints are equally spaced, the basis functions that are defined over the middle
breakpoints will have the same shapes.

At the boundary points τ0 and τL, m − 1 knots are placed allowing for estimates of
observed boundary behaviour of z, but disregarding smoothness of z outside the interval
[a, b]. This forces the basis functions that are defined over outermost breakpoints to be
defined over less than m breakpoints as well as less smooth transitions to zero at the
boundaries. If L − 1 interior breakpoints are defined, and spline functions of order m
are chosen to define the basis functions, there will be a total of m+ L− 1 B-spline basis
functions - one for each interior breakpoint, and m/2 for each of the two boundary points.
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Figure 3.1: Illustration of B-spline basis functions

To illustrate, consider an interval divided into L = 3 smaller intervals. This yields
L − 1 = 2 breakpoints. Assume we want to fit splines of order m = 2. This yields
m− 1 = 1 knot per breakpoint and one knot at each endpoint. A total of m+ L− 1 = 4
spline functions (φk, k = 1, . . . , 4) are placed in the interval, and at some point t at most
two of these are non-zero. We have illustrated the division of the interval by equally
spaced breakpoints, and the construction of four basis functions in Figure 3.1. Basis
functions φ2 and φ3, which are defined over breakpoints only, have the same shapes. We
see that for point τ1 < t < τ2, only basis functions φ2 and φ3 are non-zero.

Now that we have several basis functions defined over the interval [a, b] we want to use
these to estimate z(t). We define this estimate in such a way that at some point t, a
linear combination of all basis function is taken. We note that at most m of these basis
functions are non-zero at point t. This yields

ẑ(t) =
m+L−1∑
k=1

ckφk(t),

which is dependent on the choice of breakpoints τ1, . . . , τL−1.

Determining the coefficients of basis functions

In Chapter 4 in the book by Ramsay & Silverman (2005), the use of least squares is
discussed for determining the coefficients c = (c1, . . . , cK)T in the basis expansion of z(t).
A simple linear smoother is an estimation of the coefficients that is found by minimizing
the least squares criterion

SSE =
n∑
j=1

(
ξj −

K∑
k=1

ckφk(tj)

)2

.
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Let Φ be a n ×K matrix containing all values φk(tj) and define ξ = (ξ1, . . . , ξn)T . The
result of minimizing the sum of squares criterion in order to obtain an estimate for c is,
as stated by Ramsay & Silverman (2005, page 60), given by the well-known formula

ĉ = (ΦTΦ)−1ΦTξ. (3.4)

Functional linear models

Consider a linear model Y = α + βZT + ε. If either Y , Z or both are functional this is
an example of a functional linear model (Ramsay & Silverman 2005, page 217). For this
thesis we will only consider functional linear models where the response Y is scalar and
one or more the covariates are functional. As described by Ramsay & Silverman (2005,
page 219), such a model with one functional covariate is of the form

Y = α +

∫
t

z(t)β(t)dt+ ε. (3.5)

We note that a scalar response and functional covariate is assumed for all individuals.
The intercept and the error term are similar to those of a generalized linear model, while
the coefficient β is assumed to be a function of t. The function β(t) is by Fan et al. (2013)
referred to as the effect function of the covariate z as it reflects the effect of the covariate
on Y at any point along t.

The covariate zi is not completely observed for any individual due to the continuity
of z. Rather, the observed data can be described by (Yi,j, ξi,j, ti,j) for j = 1, . . . , ni where
ni is the number of observations of individual i at different ”time”-points of t. For a
functional linear model it is of interest to estimate both z(t) and β(t). For z(t), the
method of basis functions can be used based on observations (ξi,j, ti,j) as described above.
For β(t), the estimation can again be performed by basis functions, but one must take
into account that β should reflect the relationship between z and Y .

We have expansions zi(t) =
∑K

k=1 ci,kφk(t) = cTφ(t), and β(t) =
∑K

k=1 bkθk(t) =
bTθ(t) for some appropriate systems of basis functions φk and θk. We estimate ci,k by the
simple linear smoother as defined in Equation (3.4). Using a vector format we can now
write the model as

Y = α +

∫
ĉTφ(t)θ(t)Tbdt+ ε

= α +

(∫
ĉTφ(t)θ(t)Tdt

)
b + ε

= α + Wb + ε.

This model can be treated as a standard linear regression model, for example such as
described in the section on generalized linear models, with unknown coefficients α and b,
and variance parameter σ2.

3.2 Fitting a statistical model

When we fit statistical models to data, our aim is to either estimate effects by estimating
the parameters of the model, or to test for associations by ascertaining whether coefficients
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are non-zero. In this section we will focus on parameter estimation by likelihood theory.
In the next section will deal with hypothesis testing.

3.2.1 Likelihood theory

Let the sample Y consist of independent random variables Y1, . . . , Yn, with possibly differ-
ent probability density functions fY1(y1;θ), . . . , fYn(yn;θ), where θ is a vector consisting
of parameters θ1, . . . , θp, of which some are unknown. If all probability density functions
fY1 , . . . , fYn are equal, Y is called a random sample (Casella & Berger 2002, page 207), but
this is not a necessity for the following results. Let the joint probability density function
of Y be fY(y;θ). By independence of the random variables, fY(y;θ) =

∏n
i=1 fYi(yi;θ).

Let Y = y be an observed sample point.
The likelihood function is a function of θ, for a fixed observation y. In other words, θ

is considered as the variable. The likelihood function is defined by

L(θ; y) = fY(y;θ). (3.6a)

The likelihood function has the property that for a given θ = θ0, the function reflects
how likely it is to observe Y = y under the distribution of Y, fY(y;θ0). The likelihood
function for observation y can be expressed as

L(θ; y) =
n∏
i=1

fYi(yi;θ). (3.6b)

It is common to work with the so-called log likelihood function, which is defined by taking
the natural logarithm of L(θ; y). The log likelihood function for independent random
variables is defined as

l(θ; y) = log(L(θ; y)) =
n∑
i=1

log(fYi(yi;θ)). (3.7)

Maximum likelihood

The likelihood function is used to find the so-called maximum likelihood estimates (MLEs)
of the unknown parameters. The parameters, if any, that are known, are simply treated
as given.

Informally, to find the MLEs, we choose the parameter vector θ̂, in the parameter
space Θ, which makes our observation most likely. Formally, let θ̂(y) be the vector that
satisfies

θ̂(y) = arg max
θ∈Θ

L(θ; y),

for the observed sample point y. The parameters in θ̂(y) are the MLEs corresponding
to this observation, and will be denoted by θ̂1, . . . , θ̂p. By Casella & Berger (2002, page

316), we separate between a maximum likelihood estimator of θ, which is given by θ̂(Y)
for a sample Y, and the maximum likelihood estimate of θ, which is given by θ̂(y) for
the observed sample point Y = y.
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The MLEs of the parameters are found by solving the system of equations ∂L(θ;y)
∂θj

= 0,

for all {θj : j ∈ {1, . . . , p} and θj unknown}. This is equivalent to maximizing the log
likelihood function and solving

∂ logL(θ; y)

∂θj
=
∂l(θ; y)

∂θj
= 0. (3.8)

Likelihood functions for linear models

Consider now the theory of generalized linear models as described previously. Recall
that we assumed K possible combinations of covariate levels and corresponding random
vector Y = (Y1, . . . , YK). In data-analysis we usually have a dataset consisting of n� K
observations y1, . . . , yn. We assume that each of these observations is a realization of one
of the K random variables in the random vector Y. In the dataset there will be K groups
of observations. The observations in a group will be realizations of the same random
variable Yk. Let the number of observations in each such group be denoted nk, where
k ∈ {1, . . . , K}. Further, let yk denote the collections of observations for covariate levels
Zk = (Z1k, . . . , Zpk)

T , corresponding to the random variable Yk.

Consider a linear model Y = α+βZ+ ε, where ε follows a N(0, σ2)-distribution. Based
on the n observations y = (y1, . . . , yn)T , we can estimate the unknown parameters α, β
and σ by maximum likelihood estimation. For the normal distribution, the log likelihood
function corresponding to observation y is given by

l(µ, σ; y) =
n∑
i=1

log

(
1√
2πσ

exp{− 1

2σ2
(yi − µi)2}

)
= −n log(

√
2πσ)− 1

2σ2

n∑
i=1

(yi − µi)2. (3.9)

Here, all nk observations yi ∈ yk have corresponding parameters µi = µk = α + βZk,
i = 1, . . . , nk. For likelihood maximization of the linear model with normal distributed
random components, the separation of variables into K groups is superfluous. MLEs are
found by the differentiation procedure described in Equation (3.8).

For the vector of observations γ from a binomial distribution, the n components are
binary values representing success or not success, under different covariate levels. Let
yk denote the number of successes among observations in γ with exposures Zk, k ∈
{1, . . . , K}. We can thus create a vector y = (y1, . . . , yK)T , that consists of observations
from the random vector Y = (Y1, . . . , YK)T . Each component in Y follows a binomial
distribution with parameters (πk, nk), k = 1, . . . , K. The success probabilities πk are
expressed by Equation (3.3), and estimated by inserting MLEs for α and β. These
MLEs can be found by the Newton-Raphson algorithm (McCullagh & Nelder 1989, page
116), which maximizes the log likelihood function for the logistic regression model. This
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function is given by

l(π; y) =
K∑
k=1

log

((
nk
yk

)
πykk (1− πk)nk−yk

)

=
K∑
k=1

yk

(
πk

1− πk

)
+ nk log(1− πk) + log

(
nk
yk

)
, (3.10)

where πk is a function of α and β, as defined in Equation (3.3).

Likelihood functions for missing data analysis

Missing data analysis is a large area of statistical analysis, some of which is relevant in
EPS studies. In these studies, the phenotype is often known for a full sample, while
the genotypes can be considered missing for a large portion of this sample. Extreme
phenotype studies are nowadays mostly based on a model developed by Huang & Lin
(2007) which we refer to as the conditional model. However, Huang & Lin (2007) also
investigated a different model based on missing data methods. As we will investigate this
model, we will briefly introduce some concepts of missing data analysis.

Ibrahim et al. (2005) present three classifications of missing data; missing completely
at random (MCAR); missing at random (MAR) and nonignorable missing data. For our
intents and purposes, MAR data are relevant. According to Ibrahim et al. (2005), ”data
are said to be MAR if, conditional on the observed data, the failure to observe a value
does not depend on the data that are unobserved”. For example, the response variable Y
is completely observed but there are missing values of the covariate Z. If the missingness
is due to observed Y and not unobserved Z, the data is MAR.

A complete response analysis is according to Ibrahim et al. (2008) an analysis of data
where the response variable is completely observed while some of the covariates are missing
at random. In missing data analysis, data is specified somewhat differently from standard
regression and likelihood analysis. Instead of considering observations Y1, . . . , Yn, where Yi
is a stochastic variable whose distributions depends on values of covariates Zi, we consider
pairs of observations (Yi,Zi) which are both stochastic. Let α be the parameters through
which Y depends on Z, let σ be nuisance parameters in the distribution of Y , and let ζ
be the parameters that describe the distribution of Z.

The likelihood function based on the complete observations (yi, zi) of the random
variables (Y,Z), is defined as

LY,Z(α,σ, ζ; y1, . . . , yn, z1, . . . , zn) =
n∏
i=1

f(yi ∩ zi;α,σ, ζ) =
n∏
i=1

f(yi|zi;α,σ)f(zi; ζ).

However, in complete response analysis the likelihood function is modified to account for
the missing observations. LetM be the set of all individuals with missing covariates. For
simplicity we will assume that all individuals are missing the same covariates. We split
the variable Zi into Zobs

i for observed covariates, and Zmis for missing covariates. Because
we assume that all individuals are missing the same covariates, Zmis is equal for all i. By
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Ibrahim et al. (2008), the likelihood function for complete response analysis is defined as

LY,Z(α,σ, ζ; y1, . . . , yn, zi : i *M) =∏
i:i*M

f(yi|zi;α,σ)f(zi; ζ)
∏
i:i⊆M

∑
zmis

f(yi|zobsi ∩ zmis;α,σ)f(zobsi ∩ zmis; ζ), (3.11)

if Zmis is discrete, and

LY,Z(α,σ, ζ; y1, . . . , yn, zi : i *M) =∏
i:i*M

f(yi|zi;α,σ)f(zi; ζ)
∏
i:i⊆M

∫
f(yi|zobsi ∩ zmis;α,σ)f(zobsi ∩ zmis; ζ)dzmis,

if Zmis is continuous.
The likelihood function can be maximized to find the maximum likelihood estimates

of α, σ and ζ. If the distribution of the covariates is known, the parameter ζ can be
inserted.

3.2.2 Using R2 to evaluate the fit of a multiple linear regression
model

For multiple linear regression models, where the response variable is normally distributed,
the R2 value is a simple tool to evaluate the fit of a model to the data. The coefficient of
determination, R2, measures the quality of the fit of a linear regression model in that it
reflects the ”proportion of variability explained by the fitted model” (Walpole et al. 2007,
page 407). Let yi be observed values and ŷi the estimated values of yi. The coefficient is
defined as

R2 = 1− SSE

SST
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ŷi)2

, (3.12)

where SSE is the error sum of squares, or residual sum of squares, and SST is the total
corrected sum of squares. If SSE = 0 then all observations are perfectly reproduced and
R2 = 1. If SSE = SST then the model does not explain any of the variation in the data
and R2 = 0. We note that a high R2 value can be obtained by overfitting the model to
the data, as the value will increase when more variables are included in the model. To
account for this, an adjusted R2 value is often used;

R2
adj = 1− SSE/(n− p− 1)

SST/(n− 1)
, (3.13)

where n is the number of observations and p is the number of variables included in the
model.

3.3 Tests for association

Whenever a probability distribution can be assumed for the data, the score test is often
a convenient tool for testing whether one or more parameters equal some null value. We
will therefore focus on the score test in this thesis, but also consider testing differences
between two groups with the χ2 test, the Hotelling’s T 2 test and the Cochran-Armitage
trend test, which will be outlined in later sections.
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3.3.1 The score test

Consider a sample Y of independent random variables described by the parameters
θ = (θ1, . . . , θp)

T . The score test is a large-sample test that can be used to test the null
hypothesis H0 : θ = θ0.

The score vector for a parameter vector θ0 is a p-dimensional vector defined by

S(θ0,Y) =
∂l(θ; Y)

∂θ

∣∣∣∣
θ=θ0

. (3.14)

Note that as S is evaluated in Y, S must be a random variable. We can therefore
approximate the distribution of S(θ0,Y) by the multivariate central limit theorem, if
necessary assumptions are met. Under H0 we have that

S(θ0,Y) =

(
∂

∂θ

n∑
i=1

log(fYi(Yi;θ))

)∣∣∣∣∣
θ=θ0

=
n∑
i=1

∂

∂θ
log(fYi(Yi;θ))

∣∣∣∣∣
θ=θ0

.

This expression can be rewritten as a sum of independent random vectors S(θ0,Y) =
s1 + · · ·+ sn, where

si =


∂
∂θ1

log(fYi(Yi;θ))|θ=θ0

...
∂
∂θp

log(fYi(Yi;θ))|θ=θ0

 , (3.15)

for i = 1, . . . , n. Due to the independence assumption on Y, all random vectors si are
independent with expected value µi and covariance matrix Σi. By Casella & Berger (2002,
page 336) we can write

E(sij) = E

(
∂

∂θj
log(fYi(Yi;θ))|θ=θ0

)
= E

(
∂
∂θj
fYi(Yi;θ)|θ=θ0

fYi(Yi;θ0)

)

=

∫
Y

∂
∂θj
fYi(y;θ)|θ=θ0

fYi(y;θ0)
fYi(y;θ0)dy

=

∫
Y

∂

∂θj
fYi(y;θ0)dy

=
∂

∂θj

∫
Y
fYi(y;θ0)dy

= 0. (3.16)

Thus E(si) = µi = 0, for all i ∈ {1, . . . , n}.
The covariance matrix simplifies significantly due to the zero mean, and is given by

Σi =

 Var(si1) · · · Cov(si1, sip)
...

. . .
...

Cov(sip, si1) · · · Var(sip)

 =

 E(s2
i1) · · · E(si1sip)

...
. . .

...
E(sipsi1) · · · E(s2

ip)

 , (3.17a)
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for i ∈ {1, . . . , n}.
In general we know from Casella & Berger (2002, page 338) that if a probability density

function f(y;θ) belongs to an exponential family (normal, exponential, binomial, Poisson
or gamma), we have that

E

((
∂ log f(Y ;θ)

∂θi

∂ log f(Y ;θ)

∂θj

))
= −E

(
∂2 log f(Y ;θ)

∂θi∂θj

)
.

Assuming such a probability density function, we can write

Σi =


−E

(
∂2

∂θ21
log fYi(Yi;θ)|θ=θ0

)
· · · −E

(
∂2

∂θ1∂θp
log fYi(Yi;θ)|θ=θ0

)
...

. . .
...

−E
(

∂2

∂θp∂θ1
log fYi(Yi;θ)|θ=θ0

)
· · · −E

(
∂2

∂θ2p
log fYi(Yi;θ)|θ=θ0

)
 . (3.17b)

Thus, we know that the score vector S(θ0,Y) is a sum of i independent random variables
with mean 0 and variances Σi. As a consequence, we find the expected value and covari-
ance matrix of the score vector to be given by E(S(θ0,Y)) = 0, and Var(S(θ0,Y)) =∑n

i=1 Σi.
If all Σi are equal to some matrix Σ, then the multivariate central limit theorem given

in Johnson & Wichern (2007, page 176) is easily applied. By this theorem, the mean of
the random vectors s1, . . . , sn has a N(0, 1

n
Σ)-distribution. Therefore, the score vector

S(θ0,Y) will be N(0, nΣ)-distributed.
However, we have not assumed that the covariance matrices Σi are equal. According

to Karr (1993, pages 190-196), if the sequence s1 + · · · + sn satisfies certain conditions,
then by the central limit theorem, S(θ0,Y) converges in distribution to a N(0,

∑n
i=1 Σi)-

distribution. The conditions can be the so-called Lyapunov or Lindeberg conditions.
According to Karr (1993, page 193), the Lindeberg condition is for example satisfied for
a uniformly bounded sequence.

The Fisher information matrix corresponding to S(θ0,Y) is given by

I(θ0) = −


E
(∑n

i=1
∂2

∂θ21
log fYi(Yi;θ)|θ=θ0

)
· · · E

(∑n
i=1

∂2

∂θ1∂θp
log fYi(Yi;θ)|θ=θ0

)
...

. . .
...

E
(∑n

i=1
∂2

∂θp∂θ1
log fYi(Yi;θ)|θ=θ0

)
· · · E

(∑n
i=1

∂2

∂θ2p
log fYi(Yi;θ)|θ=θ0

)


which is simply equal to
∑n

i=1 Σi. Therefore, by assuming necessary conditions, S(θ0,Y)
has an approximate N(0, I(θ0))-distribution.

We are often interested in testing whether a subset of θ equals some null value. By the
notation of Smyth (2003), let θ1 and θ2 be a partition of θ, where θ2 are the parameters to
be tested, and θ1 are unknown nuisance parameters. In the score test, nuisance parameters
are replaced by their maximum likelihood estimates θ̂1. We write the null hypothesis as
H0 : θ2 = θ2,0 and define θ0 = (θ̂1,θ2,0). We partition the score vector according
to derivatives of nuisance parameters and parameters that are to be tested under H0.
Thereby, let

S(θ0,Y) =

[
S1(θ0,Y)
S2(θ0,Y)

]
,

26



where S1 = ∂l
∂θ1

and S2 = ∂l
∂θ2

. We partition the mean µ and variance I(θ0) of S(θ0,Y)
according to the partition of S so that[

S1(θ0,Y)
S2(θ0,Y)

]
∼ N

([
µ1

µ2

]
,

[
I(θ0)11 I(θ0)12

I(θ0)21 I(θ0)22

])
.

As we have seen, µ1 = µ2 = 0.

Because we replace nuisance parameters with maximum likelihood estimates, we have
by definition that S1(θ0,Y) = ∂l

∂θ1
|θ=θ0 = 0. We can now consider the distribution of

S2(θ0,Y) conditioned on S1(θ0,Y) = 0. Johnson & Wichern (2007, pages 160-161) give a
general result for the distribution of such conditional normal distributed random variables.
Consequently, we have that the expected value of S2(θ0,Y)|(S1(θ0,Y) = 0) is given by

µ∗ = µ2 + I(θ0)21I(θ0)−1
11 (S1 − µ1),

which yields µ∗ = 0. Further, we have that the variance of S2(θ0,Y)|(S1(θ0,Y) = 0) is
given by

Σ∗ = I(θ0)22 − I(θ0)21I(θ0)−1
11 I(θ0)12. (3.18)

For simplicity of notation in future calculations, we denote S2(θ0,Y)|(S1(θ0,Y) = 0) by
S∗. The score test statistic corresponding to H0 : θ2 = θ2,0 is given by

T ∗ = (S∗)T (Σ∗)−1S∗. (3.19)

For any random variable ξ with a p-dimensional N(µ,Σ)-distribution, Johnson &
Wichern (2007, page 163) show that the product (ξ−µ)TΣ−1(ξ−µ) is χ2-distributed with
p degrees of freedom. We have shown that S∗ follows an approximate multivariate normal
distribution, and the dimension must be equal to the dimension of θ2. As E(S∗) = 0,
we see that T ∗, as given in Equation (3.19), must be approximately χ2-distributed with
degrees of freedom equal to the dimension of θ2.

3.3.2 The χ2 test

The multinomial distribution arises when a series of categorical experiments are repeated
n times. Each trial has one outcome from one of K categories. For each trial, the
probability for a certain outcome k is given by πk for k = 1, . . . , K, subject to

∑K
k=1 pk = 1.

After n trials have been performed, counts of the number of successes in each category
are represented by the discrete random variables Z1, . . . , ZK which follow a multinomial
distribution. Clearly,

∑K
k=1 Zk = n. The multinomial density function is according to

Walpole et al. (2007, page 149) defined by

fZ1,...,ZK
(z1, . . . , zK ; π1, . . . , πK , n) =

(
n

z1, . . . , zK

)
πz11 · · · π

zK
K ,

subject to
∑K

k=1 πk = 1 and
∑K

k=1 zk = n.
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The maximum likelihood estimators for the parameters of the multinomial distribution
can be found using likelihood theory. The log likelihood function is given given by

l(π1, . . . , πK ;Z1, . . . , ZK) = log

(
n

Z1, . . . , ZK

)
+

K∑
k=1

Zk log(πk),

subject to
∑K

k=1 πk = 1. This system can be expressed as one equation using a Lagrange
multiplier such that

l(π1, . . . , πK ;Z1, . . . , ZK) = log

(
n

Z1, . . . , ZK

)
+

K∑
k=1

Zk log(πk) + λ(1−
K∑
k=1

πk),

for some λ > 0. By the procedure described in Equation (3.8), the MLEs based on
observations z1, . . . , zk are given by π̂k = zk

λ
. Applying the constraint

∑K
k=1 π̂k = 1 yields

λ = n and thus π̂k = zk
n

.

The χ2 test can be used to test for homogeneity of two groups such as a case and a
control group. Assume as above a series of experiments where one of K possible discrete
outcomes are possible. Further, assume that these experiments are performed on subjects
in a case and a control group with n1 and n2 subjects, respectively. For each group, the
outcomes Z1,1, . . . , Z1,K and Z2,1, . . . , Z2,K are multinomially distributed with parameters
π1,1, . . . , π1,K and π2,1, . . . , π2,K . We define Nk = Z1,k + Z2,k, k = 1, . . . , K.

The null hypothesis in a homogeneity test states that the proportions of subjects in
the case group with observed value k, are equal to the proportion in the control group.
We can thereby state the null hypothesis as

H0 : π1,k = π2,k = πk, for all k ∈ {1, . . . , K}.

Under the null hypothesis the two series of experiments can be considered as one series
with N = n1 + n2 subjects. The maximum likelihood estimator of πk is given by

π̂k =
Z1,k + Z2,k

N
=
Nk

N
.

As defined by Walpole et al. (2007, page 376), the test statistic for the null hypothesis
is defined as

X2 =
K∑
k=1

(
Z1,k − π̂k · n1

π̂k · n1

)2

+

(
Z2,k − π̂k · n2

π̂k · n2

)2

.

Under the null hypothesis, X2 is approximately χ2-distributed with K − 1 degrees of
freedom.

3.3.3 The Hotelling’s T 2 test

Consider a genetic association study where the genotypes of M loci are to be compared
between a case and control group. As an alternative to performing M separate χ2 tests,
the Hotelling’s T 2 test gathers all information in one test. The following procedure is
based on the theory in the book by Johnson & Wichern (2002, Chapter 5).
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Let the vector µ = (µ1, . . . , µM)T contain the mean values of the M variables Z =
(Z1, . . . , ZM). The covariances of these variables are stored in the covariance matrix Σ.
Let Zi be an M -dimensional vector of observations for a sampled subject. Assume that
n independent individuals are sampled, and let Z̄ = 1

n

∑n
i=1 Zi. By the multivariate

central limit theorem (Johnson & Wichern 2002, page 176),
√
n(Z̄−µ) is approximately

multivariate normal distributed with mean 0 and variance Σ.

We will derive the Hotelling’s T 2 statistic by considering the null hypothesis H0 : µ =
µ0. In the one-dimensional case we can estimate σ2/n, the variance of Z̄, by s2/n, where
s2 = 1

n−1

∑n
i=1(Zi − Z̄)2. Under the null hypothesis, the well-known expression

t2 =
(Z̄ − µ0)2

s2/n
,

follows an approximate t-distribution with n− 1 degrees of freedom (Johnson & Wichern
2002, page 211). This theory can be extended to the multivariate case. We define S =

1
n−1

∑n
i=1(Zi− Z̄)(Zi− Z̄)T and use S/n as an estimate for the covariance matrix Σ. The

Hotelling’s T 2 statistic is defined as the multivariate analogy of the univariate t2 test
statistic. Thus,

T 2 = (Z̄− µ0)T
(

1

n
S

)−1

(Z̄− µ0).

According to Johnson & Wichern (2002, page 212), n−M
(n−1)M

T 2 is, under the null hypothesis,
approximately F -distributed with M and n−M degrees of freedom.

We now consider the use of Hotelling’s T 2 to test whether the distributions of M
variables are equal for a case and control group. Consider samples of sizes n1 and n2.
Let the two groups have equal variances Σ but possibly unequal mean vectors µ1 and
µ2. We want to test the null hypothesis H0 : µ1 = µ2, which is equivalent to testing
H0 : µ1 − µ2 = 0. We recognize that this is a problem of the same nature as above, for
some mean vector µ = µ1 − µ2 and µ0 = 0.

To elaborate, we define a random variable Z̄ = Z̄1− Z̄2. By the central limit theorem,
Z̄1 is approximately NM(µ1,

1
n1

Σ)-distributed, while Z̄2 is approximately NM(µ2,
1
n2

Σ)-

distributed. By independence, the difference Z̄1 − Z̄2 is NM(µ1 − µ2, (
1
n1

+ 1
n2

)Σ)-
distributed.

We estimate Σ separately for the case and control group, yielding S1 and S2. The
pooled estimate for Σ is defined as S = (n1−1)S1+(n2−1)S2

n1+n2−2
(Johnson & Wichern 2002, page

284). The T 2 statistic for the null hypothesis is given by

T 2 = (Z̄1 − Z̄2)T
((

1

n1

+
1

n2

)
S

)−1

(Z̄1 − Z̄2).

Under the null hypothesis, n1+n2−M−1
(n1+n2−2)M

T 2 is approximately F -distributed with M and

n1 + n2 −M − 1 degrees of freedom (Johnson & Wichern 2002, page 285).
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3.3.4 The Cochran-Armitage trend test

The Cochran-Armitage trend test (CATT) is a test that allows us to test for an associ-
ation between a dichotomous variable and an exposure with K levels. For example, the
dichotomous variable can represent diseased and not diseased (case and control), while
the exposure is a genotype with levels 0, 1 and 2 according to the number of high-risk
alleles.

Recalling the definition of penetrance from Chapter 2, we can use the CATT test to test
the hypothesis H0 : f0 = f1 = f2 where f represents the penetrance of the disease under
the three genotypes. Generally, for K categories of any exposure, we define fk = P (D|k)
and consider the null hypothesis

H0 : f0 = f1 = · · · = fK−1.

Let n1 and n2 represent the number of subjects in the case and the control group, respec-
tively. Additionally, let mk denote the number of subjects with exposure level k. Define
mk = xk + yk, where xk is the number of diseased subjects with exposure level k and yk is
the number of controls with exposure level k. The alternative hypothesis can be defined
specifically for any trend thought appropriate, or generally in the sense that the trend
is additive so that the probability of disease increases linearly with increased levels of
exposure. For this general alternative hypothesis, we define scores, or weights, s1, . . . , sK
such that sk = k

K−1
, k = 0, . . . , K − 1. The test statistic is defined as

CATT =

∑K−1
k=0 sk(n2xk − n1yk)√

n1n2

(∑K−1
k=0 s

2
kmk − 1

n1+n2

(∑K−1
k=0 skmk

)2
) , (3.20)

which is asymptotically standard normally distributed under the null hypothesis.

For genetic models we define the scores (s0, s1, s2) = (0, s, 1) with s = 0, 0.5, 1 for
recessive, additive and dominant models under the alternative hypothesis, respectively
(Langaas & Bakke 2013). Langaas & Bakke (2013) showed that if the genetic model
under H1 is unknown, it is good choice to use the scores (0, 0.5, 1) as for an additive
genetic model.

3.3.5 Correcting for multiple tests

The Hotelling’s T 2 is a so-called multivariate test which considers several variables simul-
taneously. Thus, one test is used to test an hypothesis on several variables. The χ2 and
CATT tests are singlevariate tests which consider only one variable at a time. If these
tests are to be used to test hypothesis on several variables, a correction must be made
to account for the repeated tests on the same dataset. This is called multiple testing
because there are multiple hypothesis to be tested using the same sample. Let M be the
number of hypothesis to be tested. The term familywise error rate (FWER) refers to the
probability of making at least one type one error among all M tests.

When performing one single test on the dataset, we say that we make a decision based
on a significance level α. This means that the probability of making a type one error,
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i.e. rejecting the null hypothesis when the null hypothesis is true, should be less than or
equal to α. The corresponding theory in multiple testing is to use the significance level α
for the FWER. To obtain the desired FWER, the significance level for each test can be
set to α/M . This so-called Bonferroni correction will yield a (1 − α) · 100% confidence
level to the overall procedure (Johnson & Wichern 2002, page 232).
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Chapter 4

Statistical models and methods for
common variant association studies

Genome-wide association (GWA) studies are focused on discovering loci along the genome
in which one or more SNPs appear to be associated with a certain disease or phenotype.
To reduce the information load, a locus can be represented by a single tag SNP which
is in linkage disequilibrium with neighbouring SNPs. Thus, if the tag SNP is found to
be associated with the phenotype, it is concluded that one of the SNPs in the locus are
associated with and perhaps causal for, the phenotype. As the name suggests, a GWA
study includes loci from positions along the entire genome. Once a region is found to be of
interest, further studies are performed to ascertain the relationship between the tag SNP
and the phenotype. We would like to highlight two particular GWA studies as examples;
these are BMI (Body Mass Index) studies by Frayling et al. (2007) and Loos et al. (2008).
These studies illustrate the process of a GWA study. Additionally, we will explain how
to test for association between SNPs and phenotypes in a case-control study and a cross-
sectional study. Furthermore, we will introduce the design known as extreme phenotype
sampling (EPS), and explain how association testing can be performed by accounting for
this specific sampling procedure.

An example: GWA studies on Body Mass Index

In the article by Frayling et al. (2007), we read that the relationship between variants
of the FTO (fat mass and obesity associated) gene and BMI was discovered in a type
2 diabetes study. The study consisted of a genome-wide search for diabetes-associated
SNPs in two groups of subjects; diabetes patients and people without diabetes. The SNPs
that were found to have different genotype frequencies in the two groups of subjects were
considered as associated with type 2 diabetes. Several SNPs along the FTO gene region
on chromosome 16 were chosen by this criterion. Through further study, the researches
found that the correlation with type 2 diabetes was caused by an underlying relationship
between the SNPs and BMI. As there is a high correlation between the SNPs in the FTO
region, it was considered sufficient to consider one of them, and Frayling et al. (2007)
chose to do further research on the SNP rs9939609 because it had the highest genotyping
success rate.

rs9939609 is a SNP located on the FTO gene. The two alleles of the SNP differ
in A and T nucleotides, where A constitutes the ancestral version. It is believed that
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individuals with one or more copies of the A-allele are at higher risk of being overweight,
than those with only T-alleles. By The International HapMap Project (2002-2009), the
A-allele has a MAF of 0.46 in the CEU population (”Utah residents with Northern and
Western European ancestry from the CEPH collection”) and a MAF of 0.47 in the TSI
population (”Toscans in Italy”). These MAF estimates are taken from phase 2 of the
HapMap project were 113 individuals from the CEU population and 88 individuals from
the TSI population were sampled.

Loos et al. (2008) explain that after the discovery of the FTO gene’s effect on BMI,
a genome-wide study was performed with the aim of discovering other similar relations.
Several regions were found to be of interest, but as rare mutations in the MC4R gene
on chromosome 18 were known to cause human obesity, this region was considered a
good candidate for further study. The particular SNP rs17782313 was chosen as a tag
SNP based on similar observations as for rs9939609. rs17782313 is a SNP close to the
Melanocortin 4 Receptor (MC4R) gene. The two alleles of the SNP differ in T and C
nucleotides. The T-allele constitutes the ancestral gene. For this SNP, the C-allele is the
high-risk allele. The MAF of the C-allele is 0.26 in the CEU population and 0.28 in the
TSI population (The International HapMap Project 2002-2009).

Frayling et al. (2007) report that ”individuals homozygous for the A allele at rs9939609
are at substantially increased risk of being overweight (OR = 1.38; 95%CI = 1.26 to 1.52;
p = 4 · 10−11) or obese (OR = 1.67; 95%CI = 1.47 to 1.89; p = 1 · 10−14) compared
with those homozygous for the T allele”. Loos et al. (2008) report that ”rs17782313 was
associated with an ∼ 8% per-allele increase in the odds of being overweight (BMI ≥
25kg m−2; ORoverweight = 1.08(1.05 − 1.11); p = 1.6 · 10−9) and ∼ 12% of being obese
(BMI ≥ 30kg m−2; ORobesity = 1.12(1.08 − 1.16); p = 5.2 · 10−9)”. Both these studies
work with a case-control design. However, we must question the results where they use
obese patients as a case group and normal weight patients as a control group, leaving
the overweight patients out of the equation. As BMI is a continuous measurement, the
sampling of normal weight and obese seems to resemble the EPS design rather than the
case-control design. No comments on this practice are reported in the articles.

In Chapter 5, we will present the analysis of a dataset where waist-hip ratio (WHR) is
evaluated for association with the tag SNPs rs9939609 and rs17782313. The dataset that
is available to us consists of individuals from the upper and lower quartiles of the WHR
spectrum in the HUNT3 population. This sampling of individuals for genotyping based on
the 25% most extreme phenotypes in opposite ends of the spectrum is an example of the
EPS design. We will describe the models and methods that can be used to handle such
datasets later in this chapter. First however, we will describe methods of association
analysis in case-control and cross-sectional studies with dichotomized and continuous
outcomes.

4.1 Association analysis, binary outcome

A binary outcome in genetic association studies is usually a separation between diseased
and not diseased. We will consider cross-sectional studies were subjects are randomly
sampled independent of disease status and exposures, as well as case-control studies where
subjects are sampled independent of exposures, but dependent on disease status.
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Estimating effect

Binary data can be modelled by a generalized linear model with binomial distributed
random components. The aim is usually to test whether the odds ratio between cases and
controls is one. We have seen that Frayling et al. (2007) reported odds ratios between
homozygotes for the high-risk allele and homozygotes for the low-risk allele. Loos et al.
(2008), on the other hand, reported odds ratios between individuals with j and j + 1
high-risk alleles, j = 0, 1.

If a random sample of sufficient size is drawn from the population, the true disease
frequency is reflected in the sample. We denote non-genetic exposures by Xi and genetic
exposures by Gi. The relationship between the success parameter πi, representing the
probability of disease for individual i, and exposures Zi = (Xi,Gi) can be modelled by

logit(πi) = α0 + αTXi + βTGi, (4.1)

and maximum likelihood estimators can be found by maximizing the log likelihood func-
tion in Equation (3.10). The odds ratio between individuals with genotypes gi and gj is

estimated by ÔR = exp(β̂
T

(gi − gj)).
Recall that we should always include confounders in a regression model. We defined

non-confounders are covariates that are neither confounders, colliders or mediators, and
have individual effects on the dependent variable. In multiple linear regression mod-
els, we include as many non-confounders as possible in order to estimate effects accu-
rately. Concerning logistic regression, Robinson & Jewell (1991) show that including
non-confounders reduces precision of estimates. Based on these observations, we exclude
any non-confounders from our logistic regression models.

In a case-control study, the disease frequency is much higher in the dataset than in the
population. However, we shall see that a logistic regression model fitted to data from a
case-control study yields the same parameter β and thus the same odds ratio, as in a
cross-sectional study. The two models differ only in the intercept parameter α0.

The logistic regression model applied in a cross-sectional study directly estimates
logit(πi), where πi is the probability of being diseased under exposure Zi. For the case-
control study, the logistic regression model estimates logit(ρi), where ρi is the probability
of being diseased under exposure Zi, given that the individual was sampled for the study.
We can find a simple relationship between πi and ρi. Let S denote the event sampled,
and Sc the event not sampled. Further, let D denote the event diseased and Dc denote
not diseased. We define the sampling frequencies of cases and controls by τ0 = P (S|D)
and τ1 = P (S|Dc), respectively. By definition

ρi = P (D|S; Zi = zi) =
P (D ∩ S; zi)

P (S; zi)
,

where zi = (xi,gi). By applying Bayes’ rule we see that

ρi =
P (S|D; zi)P (D; zi)

P (S; zi)
=

P (S|D; zi)P (D; zi)

P (S|D; zi)P (D; zi) + P (S|Dc; zi)P (Dc; zi)
.
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Note that in a case-control study, the sampling is independent of exposure, as the exposure
is unknown at the time of sampling. It follows that

ρi =
P (S|D)P (D; zi)

P (S|D)P (D; zi) + P (S|Dc)P (Dc; zi)
=

τ0πi
τ0πi + τ1(1− πi)

, (4.2)

by the definitions of πi, τ0 and τ1. We can replace πi by its form in Equation (4.1) to get

ρi =
τ0 exp

(
α0 + αTxi + βTgi

)
/(1 + exp

(
α0 + αTxi + βTgi

)
)(

τ0 exp
(
α0 + αTxi + βTgi

)
+ τ1

)
/(1 + exp

(
α0 + αTxi + βTgi

)
)

=
exp

(
α∗0 + αTxi + βTgi

)
1 + exp

(
α∗0 + αTxi + βTgi

) ,
where α∗0 = α0 + log(τ0/τ1). Thus we see that the population parameter ρi in a retrospec-
tive case-control study equals the population parameter πi of the cross-sectional study,
except for the intercept coefficient α∗0. The odds ratio between individuals with genotypes
gi and gj is given by OR = exp(βT (gi − gj)), for both studies. The estimated odds ratio
for the case-control study should therefore be similar to that of the cross-sectional study.
This illustrates the motivation behind the use of the logit link function in the generalized
linear model in Equation (3.3). Other link functions that are suitable for the binomial
distribution do not have this property.

The null hypothesis for association can be written as H0 : β = 0, corresponding to the
model in Equation (4.1). Setting θ1 = (α0,α) and θ2 = β, the hypothesis H0 : θ2 = 0
can be tested by the score test, using θ0 = ((α̂0, α̂),0). This corresponds to testing
H0 : OR = 1 for all genotypes. Perhaps more common for case-control studies is to
compare genotype frequencies between cases and controls. This can be done for one tag
SNP at a time by a χ2 or CATT test, or for several SNPs simultaneously with a Hotelling’s
T 2 test.

4.2 Association analysis, continuous outcome

Many phenotypes can be measured continuously, such as BMI and WHR. We assume in
the following that Y is a continuous phenotype measurement, or an appropriate transfor-
mation of the phenotype, such that Y can be assumed to follow a normal distribution in
the population. We will consider a model of the form

Y = α0 + αTX + βTG + ε. (4.3)

We assume that the covariate vector X is px-dimensional, while G is pg-dimensional. As
usual, X contains non-genetic covariates while G contains genetic covariates. Further, ε
follows a N(0, σ2)-distribution. We will show how to test the null hypothesis H0 : β = 0,
i.e. that none of the genetic variants have an effect on phenotype, in different types of
studies. Notice that the null hypothesis makes no assumption on α. If only a subset of
the genetic variants are of interest for the null hypothesis, the rest of the genetic variables
could be moved to the X covariate. If non-genetic variables are of interest in the null
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hypothesis, similar changes could be made in the other direction. For simplicity we will
however focus on the null hypothesis H0 : β = 0.

We will let yi and Zi represent observed phenotypes and covariates for individual i,
and Zi = (Xi,Gi).

4.2.1 The cross-sectional design

In the cross-sectional design, the observed data y1, . . . , yn represent a realization of a ran-
dom sample from a population defined by Equation (4.3). The linear regression model we
will consider is a generalized linear model with normally distributed random components.
The log likelihood function is given by Equation (3.9) and

l(α0,α,β, σ; y) = −n log(
√

2πσ)− 1

2σ2

n∑
i=1

(yi − α0 −αTXi − βTGi)
2,

where Xi and Gi are considered known for all individuals.

All parameters, α0, α, β and σ can be estimated using the maximum likelihood proce-
dure based on the likelihood function. The covariate coefficients have simple closed-form
expressions; α̂0

α̂

β̂

 = (ZTZ)−1ZTy.

The maximum likelihood estimate for σ2 is given by

σ̂2 =
1

n

n∑
i=1

(yi − α̂0 − α̂TXi − β̂
T
Gi)

2.

Let α̂0, α̂ and σ̂ be the maximum likelihood estimators of the parameters in the null
model

Y = α0 + αTX + ε.

In line with previous notation we define θ1 = (α0,α, σ) while θ2 = β so that θ0 = (θ̂1,0).
Consequently, the score vector S∗ as defined in Section 3.3.1 is given by

S∗ =
∂l

∂β

∣∣∣∣
θ=θ0

=
1

σ̂2

n∑
i=1

(Yi − α̂0 − α̂TXi)Gi.

The covariance matrix Σ∗ is found by Equation (3.18) which uses the components of the
information matrix evaluated in θ0. In order to express the information matrix we need
the second derivatives of the log likelihood function. These are written out in full in
Appendix B.1.1. The information matrix is found by taking the negative expectation of
these derivatives evaluated in θ0. We use the fact that E(Yi − α0 − αTXi) = 0, while
E((Yi − α0 −αTXi)

2) = σ2 in the null model. The components of the Fisher information
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matrix are given by

I(θ0)11 =
1

σ̂2

 n nX̄T 0
nX̄

∑n
i=1 XiX

T
i 0px×1

0 01×px 2n

 ,
I(θ0)21 =

1

σ̂2

[
nḠ

∑n
i=1 GiX

T
i 0pg×1

]
,

I(θ0)12 =
1

σ̂2

 nḠT∑n
i=1 XiG

T
i

01×pg

 ,
I(θ0)22 =

1

σ̂2

[∑n
i=1 GiG

T
i

]
,

where 0N×M is a N ×M matrix with all entries equal to zero. The vectors X̄ and Ḡ are
averages computed across all subjects in the sample.

The above components are used to find the covariance matrix Σ∗ according to Equation
(3.18). Finally the score test statistic T ∗ is found by the expression in Equation (3.19);
T ∗ = (S∗)T (Σ∗)−1S∗, and is asymptotically χ2-distributed with pg degrees of freedom.

4.2.2 Extreme phenotype sampling

We have seen studies where individuals selected according to a continuous phenotype
measurements were sampled based on high or low measured phenotype values which were
later dichotomized so as to fit the case-control format. In our previous example, Frayling
et al. (2007) and Loos et al. (2008) considered individuals with a BMI classification of
obese as the case group and those with the classification normal weight as the control
group, neglecting the in-between group of overweight individuals. In a case-control study
where obese patients are cases, the control group should ideally be a random sample
from all individuals with BMI level below obese. In Appendix A, we give a theoretical
explanation to why a case-control scenario is not appropriate in EPS studies where the
aim is to estimate the odds ratio. The estimated ratio is not the same as the odds ratio
in a cross-sectional study, and interpreting the result is difficult. Yet, it is always valid to
use a test for homogeneity to test for a potential difference between the two BMI groups.
However, extreme phenotype sampling is by definition dependent on a continuous outcome
and so it seems inefficient to dichotomize the observations.

As discussed in Chapter 2, Huang & Lin (2007) introduced a model for a design which
they referred to as selective genotyping, which in later research has been referred to as
extreme phenotype sampling. The idea is roughly to sample from the extreme ends of the
phenotype spectrum in order to increase the frequency of causal variants in the sample.
Huang & Lin (2007) worked with common variants with MAFs of 0.05 and 0.2. The
novelty of the work by Huang & Lin (2007) was to derive the distribution of the extreme
phenotypes, given lower and upper cut-off values cl and cu. We will refer to the model
proposed by Huang & Lin (2007) as the conditional model as it conditions on the sampling
procedure. We will however, extend this model by allowing for non-genetic effects to be
included as nuisance variables.
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In many EPS studies, the phenotypes and non-genetic covariates are known for the full
sample that contains phenotype values from the whole spectrum, not only the extreme
ends. Huang & Lin (2007) proposed, in addition to the conditional model, a model that
incorporates known phenotypes for a large number of individuals whose genotypes are
treated as missing data. Based on simulation studies, Huang & Lin (2007) concluded
that this missing genotype model has approximately the same power and bias as the
conditional model, when only phenotype and one genotype are considered. However, we
aim to consider a situation where not only the phenotype is measured for the full sample,
but also non-genetic covariates. In a simulation setting where data are perfectly normally
distributed, the missing genotype model might have similar power as the conditional
model, as shown by Huang & Lin (2007). However, we shall see that when real data
is analysed, it is often preferable to use models that include as much of the available
information as possible.

The conditional model

The probability distribution of phenotypes among individuals with phenotypes Y < cl
or Y > cu will be referred to as the conditional distribution. Let the set C contain all
extreme phenotype values. All subjects in a population with phenotypes that lie in the
set C could be sampled for genotyping. In order to find the distribution of phenotypes
in C, we condition on the event ”individual i could be sampled”. Huang & Lin (2007)
discussed the conditional model for only one genetic covariate, but we can easily extend
the theory to a more general model.

The conditional probability distribution is given by

FY |Y ∈C;X,G(y;α0,α,β, σ) = P (Y ≤ y|Y ∈ C; X,G),

for all y ∈ C, while FY |Y ∈C;X,G(y;α0,α,β, σ) = 0 for all y 6∈ C. Consider some y ∈ C. The
probability distribution can be rewritten as

FY |Y ∈C;X,G(y;α0,α,β, σ) =
P (Y ≤ y ∩ Y ∈ C; X,G)

P (Y ∈ C; X,G)

=
P (Y ≤ y; X,G)

P (Y ∈ C; X,G)

=
P (Y ≤ y; X,G)

1− P (cl < Y < cu; X,G)

=
Φ
(
y−α0−αTX−βTG

σ

)
1− Φ

(
cu−α0−αTX−βTG

σ

)
+ Φ

(
cl−α0−αTX−βTG

σ

) ,
where Φ() represents the probability distribution of the standard normal distribution.
Let φ denote the density function of the standard normal distribution. The conditional
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probability density function for any y ∈ C is given by

fY |Y ∈C;X,G(y;α0,α,β, σ) =
d

dy
FY |Y ∈C;X,G(y;σ, α0,α,β)

=

1
σ
φ
(
y−α0−αTX−βTG

σ

)
1− Φ

(
cu−α0−αTX−βTG

σ

)
+ Φ

(
cl−α0−αTX−βTG

σ

) .
Maximum likelihood estimators can be computed based on knowledge of the proba-

bility distribution of the data, and in particular the likelihood. Consider a sample of n
individuals with phenotypes Yi and covariates Xi and Gi, sampled from the set C. The
conditional likelihood is defined as

Lc(σ, α0,α,β;Y1, ..., Yn,X1, ...,Xn,G1, ...,Gn) =

n∏
i=1

1
σ
φ
(
Yi−α0−αTXi−βTGi

σ

)
1− Φ

(
cu−α0−αTXi−βTGi

σ

)
+ Φ

(
cl−α0−αTXi−βTGi

σ

) .
For simplicity, we introduce the following notation to represent the likelihood function;

Lc =
n∏
i=1

1
σ
φi

1− Φu,i + Φl,i

.

The conditional log likelihood can be written as

lc = −n log(
√

2πσ)−
n∑
i=1

1

2σ2
(Yi − α0 −αTXi − βTGi)

2 −
n∑
i=1

log(1− Φu,i + Φl,i).

All parameters, α0, α, β and σ can be estimated by maximizing the conditional log
likelihood function. However, no analytic expressions can be found for these parameters.
We recommend using optimization software to find the parameters that maximize the log
likelihood.

In order to test for association, H0 : β = 0, we use the score test with α0, α and
σ as nuisance parameters. In the simple case where the model Yi = α0 + βGi + ε is
considered, Tang (2010) proved that the score test based on the conditional model is
equivalent to the score test based on normally distributed phenotypes. In other words,
although the data are conditionally distributed, one can assume a normal distribution
and obtain an unbiased test statistic. In Appendix B.2, we provide the proof that this
also holds for a model with several genetic covariates Gi and none non-genetic covariates
Xi, with corresponding null hypothesis H0 : β = 0.

If the null hypothesis does not contain all covariate coefficients of the linear model,
this result does not hold. In such a case, the score test statistic must be obtained by first
assuming a conditional distribution of the data. We will outline the expression for the
score test statistic, as was done for the linear regression model.
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Assume that α̂0, α̂ and σ̂ are the maximum likelihood estimators of the parameters
in the conditional model, under the null hypothesis H0 : β = 0. We write θ0 = (θ̂1,0)
where θ̂1 = (α̂0, α̂, σ̂). Before proceeding with the score vector and information matrix
we define some functions that simplify notation. The following functions are inspired by
Tang (2010);

hji =
−φu,i ·

(
cu−α0−αTXi−βTGi

σ

)j
+ φl,i ·

(
cl−α0−αTXi−βTGi

σ

)j
1− Φu,i + Φl,i

,

for j = 0, 1, 2, 3. Under H0 we insert θ0 and refer to these expressions as h∗0i, h
∗
1i, h

∗
2i and

h∗3i.

The score vector is given by

S∗ =
∂lc
∂β

∣∣∣∣
θ=θ0

=

(
1

σ2

n∑
i=1

(Yi − α0 −αXi − βGi)Gi −
1

σ

n∑
i=1

(−φu,i + φl,i)Gi

1− Φu,i + Φl,i

)∣∣∣∣∣
θ=θ0

=
1

σ̂2

n∑
i=1

(Yi − α̂0 − α̂TXi + σ̂h∗0i)Gi.

The information matrix is found by taking the negative expectation of the second deriva-
tives of the conditional log likelihood, θ0 inserted. The second derivates are written out
in Appendix B.1.2. The elements of the information matrix are given by

I(θ0)11 =
1

σ̂2

 ∑n
i=1 ai

∑n
i=1 aiX

T
i

∑n
i=1 bi∑n

i=1 aiXi

∑n
i=1 aiXiX

T
i

∑n
i=1 biXi∑n

i=1 bi
∑n

i=1 biX
T
i

∑n
i=1 ci

 ,
I(θ0)21 =

1

σ̂2

[∑n
i=1 aiGi

∑n
i=1 aiGiX

T
i

∑n
i=1 biGi

]
,

I(θ0)12 =
1

σ̂2

 ∑n
i=1 aiG

T
i∑n

i=1 aiXiG
T
i∑n

i=1 biG
T
i

 ,
I(θ0)22 =

1

σ̂2

[∑n
i=1 aiGiG

T
i

]
,

where, for simplicity, we have used the notation

ai = 1− h∗1i − h∗20i ,

bi = 2h∗0i − h∗2i − h∗0ih∗1i,
ci = 2 + 3h∗1i − h∗3i − h∗21i .

The information matrix can be used to find the covariance matrix Σ∗, according to Equa-
tion (3.18). Finally the score test statistic T ∗ is found by Equation (3.19). The test
statistic is asymptotically χ2 distributed with degrees of freedom equal to the dimension
of G.
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The missing genotype model

The extreme phenotype design can be considered a missing at random design, where a
subset M of individuals have missing genotype covariates. Moreover, the distribution of
a genotype G for one SNP is known if the MAF q is known, and given by;

P (G = g) =


(1− q)2, if g = 0,
2q(1− q), if g = 1,
q2, if g = 2.

If all SNPs in a model can be assumed to have independent genotypes, i.e. that the
SNPs are not co-inherited, the probability distribution of a set of genotypes is simply the
product of the individual distributions. We can thus define the probability distribution
of a set of genotypes G as

P (G = g) =

pg∏
j=1

P (Gj = gj),

using the individual probability distributions of each SNP as defined above. For a certain
number pg of SNPs, there will be 3pg different combinations g of possible genotypes. Let
G denote the set of all these g for a given number of SNPs.

Let q be the collection of MAFs, and let α and β represent the parameters through
which non-genetic covariates X, and genetic covariates G, are related to the phenotype
Y . Let ζ be the parameters that describe the distribution of X. The nuisance parameter
is simply σ. We order the data such that i = 1, . . . , n represent completely observed
individuals, and i = n+1, . . . , N represent individuals with missing genotypes. We assume
that non-genetic and genetic covariates are independent so that f(x ∩ g) = f(x)f(g).

Based on the likelihood function in Equation (3.11) we can write the likelihood

Lm =
n∏
i=1

f(Yi|xi ∩ gi;α,β, σ)f(xi ∩ gi; ζ,q)
N∏

i=n+1

∑
g∈G

f(Yi|xi ∩ g;αβ, σ)f(xi ∩ g; ζ,q)

=
n∏
i=1

f(Yi|xi ∩ gi;α,β, σ)f(xi; ζ)f(gi; q)
N∏

i=n+1

∑
g∈G

f(Yi|xi ∩ g;α,β, σ)f(xi; ζ)f(g; q)

=
n∏
i=1

f(Yi|xi ∩ gi;α,β, σ)f(gi; q)

(
N∏

i=n+1

∑
g∈G

f(Yi|xi ∩ g;αβ, σ)f(g; q)

)
N∏
i=1

f(xi; ζ)

For maximum likelihood purposes with respect to the linear regression model, the esti-
mation of ζ is irrelevant, and we assume that q is known. The log likelihood function for
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parameters α0, α, β and σ is given by

lm =
n∑
i=1

f(yi|xi ∩ gi;α,β, σ)f(gi; q)
N∑

i=n+1

∑
g∈G

f(yi|xi ∩ g;αβ, σ)f(g; q)

= −n log(
√

2πσ)−
n∑
i=1

1

2σ2
(Yi − α0 −αTXi − βTGi)

2

−
N∑

i=n+1

log

(∑
g∈G

φ

(
Yi − α0 −αTXi − βTg

σ

)
P (G = g)

)
,

where P (G = g) is as defined above.

In order to test for association, H0 : β = 0, we use the score test with α0, α and σ as
nuisance parameters. Assume that α̂0, α̂ and σ̂ are the maximum likelihood estimators
of the parameters in the conditional model under the null hypothesis H0 : β = 0 and let
θ0 = (θ̂1,0). We define the functions

kji =

∑
g(Yi − α0 −αTXi − βTg)jφi(g)P (G = g)∑

g φi(g)P (G = g)
,

kji(g) =

∑
g(Yi − α0 −αTXi − βTg)jφi(g)P (G = g)g∑

g φi(g)P (G = g)
,

for j = 0, 1, 2, 3, 4, where

φi(g) =
1√
2πσ

exp

(
1

2σ2
(Yi − α0 −αTXi − βTg)2

)
.

Under H0, kij = (Yi − α0 −αTXi)
j and kij(g) = (Yi − α0 −αTXi)

j E(G), as
∑

g P (G =
g) = 1 and

∑
g P (G = g)g = E(G).

The score vector is given by

S∗ =
∂lm
∂β

∣∣∣∣
θ=θ0

=
1

σ̂2

n∑
i=1

(Yi − α̂0 − α̂TXi)Gi +
1

σ̂2

N∑
i=n+1

(Yi − α̂0 − α̂TXi) E(G).

The information matrix is found by taking the negative expectation of the second deriva-
tives of the log likelihood, θ0 inserted. The second derivatives are written out in Appendix
B.1.3. We note that under H0, expressions such as k2i − k2

1i disappear. The elements of
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the information matrix are given by

I(θ0)11 =
1

σ̂2

 N NX̄T 0

NX̄
∑N

i=1 XiX
T
i 0px×1

0 01×px 2N

 ,
I(θ0)21 =

1

σ̂2

[∑n
i=1 Gi +

∑N
i=n+1 E(G)

∑n
i=1 GiX

T
i +

∑N
i=n+1E(G)XT

i 0pg×1

]
,

I(θ0)12 =
1

σ̂2

 ∑n
i=1 GT

i +
∑N

i=n+1 E(G)T∑n
i=1 XiG

T
i +

∑N
i=n+1 XiE(G)T

01×pg

 ,
I(θ0)22 =

1

σ̂2

[∑n
i=1 GiG

T
i +

∑N
i=n+1 E(GGT )

]
, (4.4)

where E(GGT ) =
∑

g ggTP (G = g). These expressions are used to find the covariance
matrix Σ∗ according to Equation (3.18), and the score test statistic T ∗ according to
Equation (3.19). The test statistic is asymptotically χ2 distributed with pg degrees of
freedom.

In the above we assumed that the MAFs q were known or externally estimated. It
is possible to include q as a nuisance parameter in the model but this will cause the
derivation of the score test statistic to be much more complicated. For our intents and
purposes it is sufficient to assume that the MAFs are known. We have also assumed that
genotypes and non-genetic covariate levels occur independent of each other which allowed
us to exclude the parameter ζ from the likelihoods. This means that we cannot use the
score test as defined above in models where non-genetic covariates are mediators between
genetic variables and the phenotype.
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Chapter 5

An extreme phenotype sampling
common variant association study

In this chapter we will apply the common variant association methods presented in the
previous chapter to a real dataset. This dataset stems from the HUNT project as intro-
duced in Chapter 1. The dataset has known non-genetic variables for the full sample,
while two genetic variables (genotypes of the SNPs rs9939609 and rs17782313) are only
known for individuals with extreme measurements of waist-hip ratio (WHR). The meth-
ods presented in the previous chapter are all appropriate in ideal situations where data
fulfil assumptions of independence, normality and constant variance. The HUNT dataset
allows us to investigate the performance of these methods in a real sample where as-
sumptions are not necessarily satisfied. Although this analysis is concerned with common
variants, some of the lessons learned from this study could be relevant for further work
with rare variant association studies. The genotyping of extreme individuals in the WHR
study headed by Ingrid Mostad, sparked our interest in the statistical theory of extreme
phenotype sampling. The analysis performed in this chapter is only part of a larger study
in which we aim to quantify the effects of the SNPs rs9939609 and rs17782313 on WHR
in the HUNT population. In this chapter we focus on how extreme phenotype sampling
methods for common variants can be applied in a real dataset, and the challenges that
are revealed in the process.

5.1 Descriptive analysis

The SNP dataset was acquired from the population of Nord-Trøndelag as illustrated in
Figure 5.1. Most individuals in Nord-Trøndelag were invited to participate in HUNT3
and thus the HUNT3 population is practically identically to the population of Nord-
Trøndelag. Those that decided to participate in the study constitute the HUNT3 sample.
In the analysis by Mostad et al. (2014), this sample was somewhat reduced to exclude
individuals with some missing critical values, particularly waist and hip circumference
measurements. The WHR dataset consists of 50336 subjects; 27459 women and 22877
men. The SNP dataset consists of individuals that were selected for genotyping of the
SNPs rs9939609 and rs17782313 by an extreme phenotype sampling criterion. This results
in 24916 genotyped individuals; 13598 women and 11318 men. Extreme phenotypes were
defined to be WHR values in the upper and lower WHR quartiles based on the WHR
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Figure 5.1: Acquiring the datasets for this study

dataset, calculated for men and women separately. Thus, the SNP dataset was sampled
based on the criteria WHR > cfu or WHR < cfl for women, and WHR > cmu or WHR < cml
for men, where

cfl = 0.817, cfu = 0.917,
cml = 0.895, cmu = 0.981.

As sampling of extreme phenotypes is performed separately for the two genders, we
will always perform analysis for these two datasets separately. There are more women
than men who were genotyped for the SNPs. This reflects the degree of participation to
the HUNT3 sample. There is an uneven amount of genotyped individuals for the two
SNPs which we assume is caused by some occasional unsuccessful genotyping in the lab.

The response variable

We consider waist-hip ratio (WHR) as the response or dependent variable in this study.
Waist and hip circumferences may in general be approximately normally distributed in a
population as they are physical measurements. A ratio of the two is on the other hand, not
necessarily normally distribution. For example, it is widely accepted that BMI, which is a
ratio of measurements of height and weight, is generally log-transformed before assuming
a normal distributed. To obtain an approximately normally distributed response variable,
a transformation of WHR is needed. The use of WHR is not as widespread as BMI, but
the log-transform does appear reasonable, see Appendix C.2 for details. It is clear that
even after the transformation of WHR, the data are not perfectly normally distributed.
We must be aware of this when fitting models to the data.

The average WHR in the WHR dataset is 0.8685 among women and 0.9387 for men.
The corresponding standard deviation is 0.0741 for women and 0.0659 for men. Sum-
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mary statistics of WHR in separate WHR quartiles are presented in Table 5.1. We see
that women have on average lower WHR values than men, but higher variation in these
measurements.

Gender WHR1 WHR2 WHR3 WHR4 WHR
Women 6844 6874 6813 6928 27459
Men 5668 5764 5692 5753 22877

(a) Number of individuals in each WHR quartile

Gender WHR1 WHR2 WHR3 WHR4 WHR
Women 0.7751 0.8438 0.8915 0.9626 0.8685
Men 0.8571 0.9163 0.9578 1.0227 0.9387

(b) Average WHR in each WHR quartile

Gender WHR1 WHR2 WHR3 WHR4 WHR
Women 0.0328 0.0146 0.0136 0.0410 0.0741
Men 0.0314 0.0120 0.0126 0.0387 0.0659

(c) Standard deviation of WHR in each WHR quartile

Table 5.1: Waist-hip ratio summary statistics.

Non-genetic covariates

The HUNT study provides information on several non-genetic variables for each individ-
ual. Investigating dietary factors that could influence WHR in the HUNT population is
not the focus of this thesis, but rather the work of Mostad et al. (2014). In this thesis we
focus on the inclusion of genetic variables in a regression model with non-genetic covari-
ates present. The genetic data is only available in the SNP dataset, but other covariates
are available for the WHR dataset. Concerning non-genetic covariates, we focus on age
groups, smoking habits and exercise frequency (see Appendix C.1 for definitions).

Age is by Mostad et al. (2014) treated as a categorical variable with the levels (20 ≤
age < 30, 30 ≤ age < 40, 40 ≤ age < 50, 50 ≤ age < 60, 60 ≤ age < 70, 70 ≤ age < 80,
age ≥ 80). These seven categories will be referred to as a1, a2, a3, a4, a5, a6 and a7. The
number of individuals in the WHR dataset that have valid age group values are presented
in Table 5.2, together with the counts of those individuals with valid age group, rs9939609
and rs17782313 recordings. We see that age groups a3, a4 and a5 are well represented,
while age groups a1, a2 and a6 less so. There are especially few individuals in a7, which
is the group consisting of the oldest individuals. The age covariate will be included in
our models as a non-confounder. The distributions of log(WHR) within each age group
are illustrated in Figure 5.2. This figure also illustrates the uneven number of subjects in
each age group. The vertical lines are the logarithms of the upper and lower cut-off values
for genotyping. We see that the curves for age groups 3, 4 and 5 peak close to the center
of the two vertical lines. Age groups 1 and 2 have their peaks in the lower end while age
groups 6 and 7 peak close to the upper cut-off. These figures clearly illustrate that the
different age groups have different centres of their respective WHR distributions.
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WHR dataset SNP dataset
Category Women Men Women Men

Age

a1 2544 1838 1510 1316
a2 3941 2839 1974 1469
a3 5433 4548 2559 2050
a4 5980 5395 2703 2456
a5 5104 4644 2521 2200
a6 3066 2639 1586 1337
a7 1391 973 745 490

Smoke

s0 12093 9248 6159 4526
s1 2022 1896 995 1001
s2 5372 4578 2522 2170
s3 1396 2459 679 1252
s4 3751 2081 1798 1031
s5 1785 1814 917 937

Exercise

e0 1075 1500 584 816
e1 3585 4553 1845 2261
e2 5595 4930 2727 2379
e3 11146 7712 5367 3816
e4 5260 3606 2645 1766

Table 5.2: Counts of individuals with valid non-genetic variables in the WHR dataset and
the SNP dataset.

The curves in Figure 5.2 suggest that the subgroups created by age categories have
different variances in log(WHR). We have analysed this more carefully in Appendix C.2.
If the variance of log(WHR) is not constant after we have corrected for genetic and
non-genetic covariates, one assumption of the continuous phenotype regression models
described in Chapter 4, is violated.

Ideally, we would analyse the effects of the two SNPs on WHR by correcting for popu-
lation stratification. We know that in the population of Nord-Trøndelag, many people are
related, which introduces confounding in our studies. A family’s genetic heritage can be a
cause for genotype, while a family’s cultural heritage can be a cause for high or low WHR
values. Unfortunately, we cannot correct for population stratification directly due to lack
of information. However, we may assume that smoking habits and exercise frequencies are
variables that to a certain degree reflects different families’ cultural heritage. Thus, we
can include these variables in our models as potential confounders. Additionally, we ex-
pect to see an association between these variables and WHR, separate of the confounding
effects.

We have created a smoking variable (see Appendix C.1) which is a categorical variable
with six levels ranging from 0 to 5. These categories will be referred to as s0, s1, s2, s3,
s4 and s5. The corresponding counts of subjects with valid replies in the HUNT3 study
are presented in Table 5.2. Similarly, an exercise variable with five categories was created
based on frequency of exercise (see Appendix C.1). These levels will be referred to as e0,
e1, e2, e3 and e4. The corresponding counts are presented in Table 5.2.

47



Figure 5.2: Histograms of the seven age groups, six smoke levels, and five exercise fre-
quencies, with cut-off values. Results for women are in the left column, and results for
men are in the right column.
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Figure 5.2 also illustrates distributions of log(WHR) among the different smoke and
exercise groups. The differences between groups are not as clear for these variables as
for age groups. However, it does seem as if some smoke levels and exercise frequencies
are associated with higher WHR values. Again we see a suggestion of different variances
in the different subgroups. We must be cautious of these assumption violations in the
following.

Genetic covariates

Figure 5.3: Histograms of the genotypes of the two SNPs in WHR1 (dark grey) and
WHR4 (light grey). Results for women are in the left column, and results for men are in
the right column.

For known MAFs of the SNPs, frequencies of the three different genotypes can be
calculated as in Equation (2.2), where q is the minor allele frequency. Additionally, we can
estimate genotype frequencies and MAFs from our dataset. Due to the extreme sampling,
we do not expect frequencies in the SNP dataset to equal the reference values. Under the
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assumption of a monotone genetic model, we would expect to see higher frequencies of the
homozygous high-risk genotypes in WHR4 and lower frequencies in WHR1, compared to
reference frequencies. The genotype frequencies for men and women in the SNP dataset
are presented in Table 5.3. Based on the SNP rs9939609 and the assumption of a monotone
genetic model, we would expect the population MAF for Nord-Trøndelag to lie between
0.4 and 0.44. For the SNP rs17782313, we would expect the population MAF to lie
between 0.25 an 0.27. Consequently, the population of Nord-Trøndelag seems to reflect
the rs17782313 CEU population MAF of 0.26 and possibly the TSI population MAF of
0.27, but the sample MAF of rs9939609 is not coherent with neither the CEU nor the
TSI population, with reference MAFs of 0.46 and 0.47, respectively (The International
HapMap Project 2002-2009). Our estimates are based on a much larger sample than the
HapMap estimates. Although we have estimated MAFs based on extreme phenotype
individuals we will, in accordance with a monotone genetic model, assume that the MAFs
lie in between estimated MAFs of the WHR1 and WHR4 groups. We will therefore discard
the HapMap MAFs for the SNP rs9939609, and use qrs9939609 = 0.42 and qrs17782313 = 0.26
as MAF estimates for the population of Nord-Trøndelag.

In Figure 5.3 we illustrate the different distributions of genotypes in WHR quartiles 1
and 4. It is difficult to see any distinct differences between WHR1 and WHR4 although
we notice that among men, the distribution of rs9939609 genotypes is clearly different in
the two WHR groups. It appears that in general, the proportion of WHR4 individuals
increases while the relative proportion of WHR1 individuals decreases, when the number
of high-risk alleles increase.

Gender SNP WHR g0 g1 g2 MAF CATT p-value

Male
rs9939609

1 0.3500 0.4988 0.1512 0.4006
1.913 · 10−8

4 0.3198 0.4876 0.1926 0.4364

rs17782313
1 0.5546 0.3818 0.0636 0.2545

6.261 · 10−3

4 0.5332 0.3959 0.0709 0.2689

Female
rs9939609

1 0.3582 0.4750 0.1667 0.4043
7.027 · 10−7

4 0.3161 0.4938 0.1901 0.4370

rs17782313
1 0.5681 0.3717 0.0601 0.2460

2.988 · 10−8

4 0.5372 0.3816 0.0812 0.2720

Table 5.3: Observed allele frequencies and MAFs in the SNP dataset

5.2 Case-control analysis

Before we proceed with our analysis of WHR as a continuous phenotype, we will (in-
correctly) perform a case-control analysis where we consider WHR4 individuals as cases
and WHR1 individuals as controls. This definition is not consistent with the definition of
a case-control analysis because the controls are not randomly sampled from individuals
outside the case group. We do this analysis in order to compare our data with the results
of the BMI studies by Frayling et al. (2007) and Loos et al. (2008). First, we will (cor-
rectly) use the CATT test defined in Equation (3.20) to test for equality of the genotype
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frequencies between the WHR1 and WHR4 groups. As alternative hypothesis, we use an
additive genetic model. The resulting p-values are presented in Table 5.3. We see that
the null hypothesis is rejected on a 0.05 significance level (0.025 if a Bonferroni correction
is applied) for all gender and SNP groups, corresponding to an increase in WHR group
with an increase in high-risk alleles for the two SNPs.

We use a logistic regression model to estimate the odds ratio. As our focus is on
estimating precise effects, we use the results by Robinson & Jewell (1991) and include
only confounders, and not non-confounders, in our models. The SNPs we are investigating
can be assumed non-confounders as they lie on different chromosomes. The effect of these
must therefore be estimated in two separate models. Age is a nonconfounder and is
excluded from the model. We include smoking and exercise frequency because these can
be considered as possible confounders for WHR and genotype, albeit indirectly. The
coefficient estimates for genetic variables among women are

β̂rs9939609 = 0.1257, β̂rs17782313 = 0.1291,

and

β̂rs9939609 = 0.1565, β̂rs17782313 = 0.0895

among men.
Frayling et al. (2007) reported an odds ratio between homozygotes of the rs9939609

SNP of 1.38 for being overweight, and 1.67 for being obese, compared with normal weight
individuals. Between individuals in WHR1 and WHR4, we estimate corresponding odds
ratios of 1.29 among women, and 1.38 among men. These ratios compare homozygotes
for the low risk and high risk alleles of rs9939609, i.e. the risk of increased WHR between
individuals with no high-risk alleles and individuals with two high-risk alleles.

Loos et al. (2008) reported an per-allele odds ratio of the rs17782313 SNP of 1.05
for being overweight, and 1.08 for being obese compared with normal weight individuals.
Between individuals in WHR1 and WHR4, we estimate corresponding odds ratios of 1.14
among women, and 1.09 among men. These ratios reflect the risk of increased WHR
between individuals with j and j + 1 high risk alleles, j = 0, 1.

Recall that the interpretation of these ratios, as with the odds ratio between obese
and normal weight people, is not interpretable as the standard odds ratio we know from
theory. This is due to the lack of random sampling of the so-called controls in these
studies. However, the results of both the CATT test and the logistic regression analysis
suggest that there are genetic differences between the WHR1 and WHR4 groups.

5.3 Continuous phenotype association analysis

Our aim with the following association analysis is to apply the methods described in the
previous chapter to a real dataset. That is, we will analyse a cross-sectional sample with
a linear regression model, as well as an extreme phenotype sample, using the conditional
and missing genotype models. We perform the analysis of the genetic effects on WHR
with different models in order to investigate differences between them when applied to
real data.

51



Datasets

We define the complete sample as the subset of the WHR dataset for which all individuals
have valid WHR, age, smoke and exercise values. The complete sample consists of 26108
women and 21954 men. Only half of the subjects in the complete sample have valid
genotype values and we have excluded those with only one valid genotype. We can
consider the complete sample including or excluding SNP data. We define the extreme
sample as the subset of the SNP dataset for which all individuals have valid WHR, age,
smoke, exercise and genetic variables. This results in 12893 women and 10960 men in
the extreme sample. We will consider the extreme sample both with genotypes included
and excluded. We also consider a small sample, which is a random sample of half of
the subjects of the complete sample with genotypes excluded. This sample represents a
different sampling design than the extreme sampling but with the same sample size, as
opposed to the complete sample where the sample size is twice as large.

Models

A multiple linear regression (MLR) model can be fitted to the complete sample if geno-
types are excluded. This model provides reference values for the coefficients of age, smoke
and exercise. The MLR model can also be fitted to the small sample. The missing geno-
type model can be fitted to the complete sample including SNP data so as the estimate
genetic effects. The non-genetic parameters of the missing genotype model can be com-
pared to the corresponding parameters of the MLR model fitted to the complete sample.
The conditional model can be fitted to the extreme sample with both genotypes excluded
and included. When SNP data are excluded, the parameters of non-genetic covariates
can be compared to that of the MLR model fitted to the small sample, which is of the
same sample size. This comparison can aid us in evaluating whether a random or extreme
sample is more appropriate for estimating effects accurately. In the event where N indi-
viduals are sampled and non-genetic variables recorded, and N/2 extremes are thereafter
genotyped, we can assess the performance of the conditional and missing genotype models
by fitting these to the extreme and complete samples with SNP data included. If data
were normally distributed, independent, and had constant variance, these models should
in theory yield similar results.

In order to keep track of the different datasets and regression models, we have illustrated
which models that will be fitted to which samples in Table 5.4.

Sample Model
Small sample, excluding SNP data

MLR model
Complete sample, excluding SNP data
Complete sample, including SNP data Missing genotype model
Extreme sample, excluding SNP data

Conditional model
Extreme sample, including SNP data

Table 5.4: An overview over the different samples and which models that apply to them.
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A note on the missing genotype model

For the missing genotype regression model it is possible to estimate the MAFs in the
model, or insert externally estimated parameters. The score test that is defined in Chapter
4.2.2 uses externally estimated MAFs. (For completeness, we implemented a model where
MAFs were estimated internally and compared parameters to those of our chosen model.
The results were similar.) We use externally estimated MAFs of 0.42 for rs9939609 and
0.26 for rs17782313. As discussed, the MAFs are on the extreme sample and therefore
difficult to estimate accurately. However, we believe that these estimated MAFs are more
appropriate than the HapMap reference MAFs, for our dataset.

Tests

We will consider five tests for main effects and seven tests for interaction effects, in each
model. Thus, by the Bonferroni correction, an overall significance level of 0.05, translates
to 0.004 for each test.

Sample Model Gender Covariate p-value

Complete Missing genotype
Women

rs9939609 1.5986 · 10−12

rs17782313 1.2203 · 10−13

Men
rs9939609 1.6258 · 10−7

rs17782313 1.3248 · 10−2

Extreme Conditional

Women

rs9939609 2.0222 · 10−6

rs17782313 6.5116 · 10−8

rs9939609:rs17782313 2.4696 · 10−1

rs9939609:age 1.5008 · 10−1

rs17782313:age 2.2354 · 10−1

rs9939609:smoke 8.9816 · 10−1

rs17782313:smoke 4.4982 · 10−1

rs9939609:exercise 1.5960 · 10−1

rs17782313:exercise 9.5124 · 10−1

Men

rs9939609 1.5494 · 10−8

rs17782313 1.7185 · 10−2

rs9939609:rs17782313 7.7818 · 10−1

rs9939609:age 1.2561 · 10−1

rs17782313:age 2.4027 · 10−1

rs9939609:smoke 9.4043 · 10−1

rs17782313:smoke 9.0247 · 10−2

rs9939609:exercise 5.0038 · 10−1

rs17782313:exercise 5.3558 · 10−1

Table 5.5: Score test p-values for the genetic covariates, main effects and interactions

We first tested the three hypothesis of whether age, smoke or exercise coefficients are
zero in the MLR model and conditional model fitted to the complete, small and extreme
samples with genetic variables excluded. The variables were treated as dummy variables
where the lowest levels (a1, s0 and e0) were included in the intercept α0. For the age
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variables, the null hypothesis is defined as H0 : αa2 = . . . = αa7 = 0. With all other
factors held constant, this translates to H0 : αa1 = αa2 = . . . = αa7, i.e. that the effect of
age is the same for all age groups and therefore not an age specific effect. For smoking,
the null hypothesis is H0 : αs1 = . . . = αs5 = 0, while for exercise frequencies we have
H0 : αe1 = . . . = αe4 = 0. In each test, remaining covariates were treated as nuisance
variables. For the MLR model fitted to the complete and small samples, the score test
statistics are defined in Section 4.2.1, while for the extreme sample, the conditional model
is assumed and the score test statistic is given in Section 4.2.2. All tests for the effect of
non-genetic variables yielded p-values lower than 10−16 and we conclude that age, smoke
and exercise are factors that separately affect the waist-hip ratio of men and women, and
that these should be included in our models.

We used the missing genotype model fitted to the complete sample including SNP data,
and the conditional model fitted to the extreme sample including SNP data, to test for the
significance of genotypes with respect to WHR. For the conditional model, we tested the
two SNPs separately while including the other SNP in the model as a nuisance variable.
This is not possible by our definition of the missing genotype model, and we therefore
tested each SNP separately with the other SNP excluded from the analysis. The results
are presented in Table 5.5. After a Bonferroni correction, none of the models yielded a
significant effect of rs17782313 among men. Both SNPs were found to be significant for
WHR in women, and rs9939609 seems to be associated with WHR in men.

Using the conditional model and corresponding score test, we tested whether there
was evidence in the extreme dataset for interaction effects between genotypes and other
covariates. The results are presented in Table 5.5. We see that none of these effects are
significant. By our definition of the missing genotype model we are not able to test for
specific genetic interaction effects while simultaneously including main genetic effects in
the model. We also note that based on our definition of the missing genotype likelihood,
we must assume that the SNPs rs9939609 and rs17782313 do not influence smoke or
exercise habits.

Effect estimates

In summary, we fitted the MLR model to the complete and small samples without geno-
types, the conditional model to the extreme sample without genotypes, and the MGM
and CM to the complete and extreme samples with genotypes included. The parameters
of the fitted models are presented in Tables 5.6 (women) and 5.7 (men). These parameters
represent coefficients of non-genetic and genetic covariates in the different models, using
log(WHR) as the dependent variable. In order to obtain the effects of different covariates
on WHR, we take the exponential of these estimates. For example, the effect of being in
age group 2 for women, as estimated by the MLR model fitted to the complete dataset,
is given by exp(2.66444 · 10−2) = 1.027. Compared to the WHR value Ŷa1 predicted for
age group 1, an increase in age group corresponds to predicted WHR Ŷa2 = 1.027Ŷa1.

Genetic effects are estimated by the missing genotype model and conditional model
fitted to the complete and extreme datasets with SNP data included. These estimated
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coefficients for these models with log(WHR) as the dependent variable are presented in
columns two and five of Tables 5.6 and 5.7. The missing genotype model estimates genetic
effects of 1.001 (= exp(9.1207 · 10−4)) for the SNP rs9939609, and 1.004 (= exp(3.6082 ·
10−3)) for the SNP rs17782313, among women. Similarly, estimated genetic effects are
1.035 and 1.025 among men. This means that if a person will increase her (his) WHR
by a multiple of 1.001 (1.035) if the rs9939609 genotype is increased with one high-risk
allele, and by a multiple of 1.004 (1.025) if the rs17782313 genotype is increased with
one high-risk allele. The conditional model estimates genetic effects of 1.006 (rs9939609)
and 1.008 (rs17782313) among women. Similarly, estimated genetic effects are 1.006 and
1.002 among men.

We illustrate these effect estimates by the following examples. A woman with waist
circumference 80 cm and hip circumference of 100 cm will have a waist-hip ratio of 0.8. A
1.001 genetic effect corresponds to an increased WHR of 0.8008. If this increase was due
to central fat only, this corresponds to a 0.08 cm increase in waist circumference. This
increase is clearly clinically insignificant. A man with waist circumference 81 cm and hip
circumference 90 cm will have a waist-hip ratio of 0.9. A genetic effect of 1.035 corresponds
to an increased WHR of 0.9315 which is a 2.835 cm increase in waist circumference.

Sample Complete Small Extreme
Model MLR Missing MLR Conditional Conditional
Intercept -1.8219e-01 -1.8333e-01 -1.8744e-01 -2.0350e-01 -2.1200e-01
a2 2.6444e-02 2.6276e-02 2.6087e-02 3.0727e-02 3.0493e-02
a3 4.1659e-02 4.1711e-02 4.2698e-02 5.6481e-02 5.6743e-02
a4 5.6048e-02 5.5952e-02 5.7492e-02 8.2339e-02 8.2175e-02
a5 6.9408e-02 6.9441e-02 6.8023e-02 1.0838e-01 1.0820e-01
a6 8.3784e-02 8.3644e-02 8.3057e-02 1.3333e-01 1.3284e-01
a7 9.0100e-02 8.9744e-02 9.3682e-02 1.4216e-01 1.4176e-01
s1 1.6263e-03 1.8815e-03 2.2706e-03 1.0905e-03 1.1209e-03
s2 7.6442e-03 7.7900e-03 7.7614e-03 1.4731e-02 1.4626e-02
s3 2.8852e-02 2.8665e-02 2.6990e-02 4.8314e-02 4.7907e-02
s4 8.8743e-03 8.9446e-03 9.4017e-03 1.5504e-02 1.5184e-02
s5 2.2483e-02 2.2115e-02 2.2762e-02 3.9681e-02 3.9278e-02
e1 -5.5619e-03 -5.8926e-03 -3.8855e-03 -4.4613e-03 -5.1652e-03
e2 -1.3148e-02 -1.3259e-02 -9.9883e-03 -1.6646e-02 -1.7508e-02
e3 -2.3514e-02 -2.3553e-02 -1.8114e-02 -3.5884e-02 -3.6589e-02
e4 -3.3326e-02 -3.3348e-02 -2.8563e-02 -5.1103e-02 -5.1780e-02
rs9939609 - 9.1207e-04 - - 6.2919e-03
rs17782313 - 3.6082e-03 - - 8.0234e-03
σ 8.0599e-02 8.0360e-02 8.0907e-02 1.0543e-01 1.0522e-01

Table 5.6: Regression coefficients, female population
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Sample Complete Small Extreme
Model MLR Missing MLR Conditional Conditional
Intercept -1.2772e-01 -1.8187e-01 -1.2773e-01 -1.4564e-01 -1.5221e-01
a2 4.4467e-02 3.6146e-02 4.3821e-02 4.7403e-02 4.7125e-02
a3 6.1652e-02 5.5745e-02 6.2471e-02 7.2838e-02 7.2481e-02
a4 7.8680e-02 7.7524e-02 7.7872e-02 1.0462e-01 1.0442e-01
a5 9.1163e-02 9.5699e-02 9.0217e-02 1.2825e-01 1.2790e-01
a6 9.6211e-02 1.0575e-01 9.6931e-02 1.3283e-01 1.3242e-01
a7 9.6389e-02 1.1015e-01 9.8141e-02 1.3417e-01 1.3404e-01
s1 7.9770e-03 8.5792e-03 7.7164e-03 1.2653e-02 1.2816e-02
s2 1.1942e-02 1.5943e-02 1.0549e-02 2.1022e-02 2.1069e-02
s3 2.3655e-02 4.3921e-02 2.5637e-02 3.9394e-02 3.9220e-02
s4 4.6428e-03 7.5284e-03 5.3806e-03 8.0356e-03 7.7803e-03
s5 1.7141e-02 2.9338e-02 1.3580e-02 2.8901e-02 2.9071e-02
e1 -1.3133e-03 -7.2479e-04 -4.4794e-04 1.6743e-03 1.8236e-03
e2 -1.0820e-02 -1.6889e-02 -9.9697e-03 -1.3395e-02 -1.3442e-02
e3 -2.4030e-02 -3.3968e-02 -2.3357e-02 -3.5721e-02 -3.5674e-02
e4 -3.0762e-02 -4.4040e-02 -2.9906e-02 -4.4905e-02 -4.5109e-02
rs9939609 - 3.4808e-02 - - 6.3071e-03
rs17782313 - 2.5228e-02 - - 2.9600e-03
σ 6.2883e-02 8.4008e-02 6.2974e-02 8.0345e-02 8.0206e-02

Table 5.7: Regression coefficients, male population

We now use the results in Tables 5.6 and 5.7 to compare the performance of the
different models. The two first columns of these tables contain estimates based on the
complete sample including and excluding SNP data. Although the MLR model and
missing genotype model are different, it is not surprising that the non-genetic coefficients
of these models are very similar as these models are fitted to the same non-genetic data.

The small and extreme samples without genetic covariates represent different sampling
strategies that can be used if only half of a population can be analysed. The MLR
model and and the conditional model have been fitted to these samples. The estimated
parameters can be compared to the parameters of the ”full” population, namely those
of the complete sample without genotypes. We see that the results based on the small
sample are much more accurate than those of the extreme sample. It could be argued that
extreme sampling design is intended for estimating effects of genotypes and not age, smoke
and exercise variables. However, if all assumptions were met, the third and fourth columns
of Tables 5.6 and 5.7 should be approximately equal. We notice that the coefficients of
old age and heavy smoking are higher in the conditional model, while the coefficients of
frequent exercise are smaller. It therefore seems as if the conditional model based on the
extreme sample has overestimated effects of causal variables, compared to the MLR model
fitted to the small sample, as well as the MLR model fitted to the complete sample.

Genetic effects are estimated by the missing genotype model and conditional model
fitted to the complete and extreme samples with SNP data included. In Table 5.7, effects
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that were not found to be significant in association tests are in italic. In the female
population we see similar results for genetic covariates as for non-genetic covariates; while
rs9939609 and rs17782313 have small effects in the missing genotype model, the estimated
coefficients are higher in the conditional model. In the male population however, we see
the opposite; the genetic effects are estimated to be larger in the missing genotype model
compared to the conditional model. Based on these observations we cannot conclude that
in our datasets, the conditional model consistently overestimates effect sizes.

We illustrate the effects of covariates in general, and genetic covariates in particular in
Figures 5.4 to 5.9. All figures present estimated WHR for different levels of age, smoke
and exercise as estimated by the MLR model fitted to the complete sample excluding
SNP data. These estimates are included as a measure of comparison with estimated non-
genetic effects of the conditional model and the missing genotype model. The figures
present estimated WHR for different genotypes of rs9939609 and rs17782313 for different
levels of age, smoke and exercise, based on estimates from the conditional model or the
missing genotype model.

Consider Figure 5.4 which presents estimated WHR for women for different age groups
and different genotypes. We see that compared to the MLR model fitted to the complete
sample excluding genetic variables, the effects of old and young age are overestimated
by the conditional model fitted to the extreme sample including genetic variables. The
missing genotype model fitted to the complete sample with SNP data included, appears
to estimate age effects more accurately. We see that the genetic effects estimated by the
missing genotype model are perhaps statistically significant, but clinically insignificant.
In Figure 5.5 we see the same results for the male population. Again, we see that the
conditional model overestimates age effects compared to the MLR model fitted to the
complete sample. The missing genotype model estimates larger genetic effects for men.

Figures 5.6 and 5.7 show corresponding results for different smoke levels, while Figures
5.8 and 5.9 illustrate exercise effects.

Evaluating the fit of the models

It is interesting to note the R2 and R2
adj values, as defined in Equations (3.12) and (3.13),

of the fitted models. Models fitted to the complete sample including and excluding SNP
data, and the the small sample excluding SNP data, have R2 and R2

adj values of about
0.11 among women. Among men, the values are approximately 0.19 for the MLR model
fitted to the complete and small samples excluding SNP data, and 0.26 for the missing
genotype model fitted to the complete sample including SNP data. Models fitted to the
extreme sample including genetic variables have R2 and R2

adj values of about 0.18 for
women and 0.29 for men.

The R2 values indicate that the conditional model explains a larger portion of the
variation in the data than the MLR model. This observation could help explain the
over- and underestimation of parameters in the conditional regression models. In the
extreme sample, the variation is focused in the tails of the distributions. The MLR model
”overlooks” tail irregularities in the presence of the bulk of observations in the centre
of the WHR scale for the complete and small samples. The conditional model, on the
other hand, fits a model that reflects a normal distribution based on what it sees; namely
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Figure 5.4: Estimated WHR for women, smoke level 0 and exercise frequency 3 held
constant. FTO 0 represents the genotype 0 (no high-risk alleles) for the SNP rs9939609,
FTO 1 represents the genotype 1 (one high-risk allele) for the SNP rs9939609, FTO 2
represents the genotype 2 (two high-risk alleles) for the SNP rs9939609, MC4R 0 represents
the genotype 0 (no high-risk alleles) for the SNP rs17782313, MC4R 1 represents the
genotype 1 (one high-risk allele) for the SNP rs17782313, MC4R 2 represents the genotype
2 (two high-risk alleles) for the SNP rs17782313.
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Figure 5.5: Estimated WHR for men, smoke level 0 and exercise frequency 3 held constant.
FTO 0 represents the genotype 0 (no high-risk alleles) for the SNP rs9939609, FTO 1
represents the genotype 1 (one high-risk allele) for the SNP rs9939609, FTO 2 represents
the genotype 2 (two high-risk alleles) for the SNP rs9939609, MC4R 0 represents the
genotype 0 (no high-risk alleles) for the SNP rs17782313, MC4R 1 represents the genotype
1 (one high-risk allele) for the SNP rs17782313, MC4R 2 represents the genotype 2 (two
high-risk alleles) for the SNP rs17782313.
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Figure 5.6: Estimated WHR for women, age group 4 and exercise frequency 3 held con-
stant. FTO 0 represents the genotype 0 (no high-risk alleles) for the SNP rs9939609, FTO
1 represents the genotype 1 (one high-risk allele) for the SNP rs9939609, FTO 2 repre-
sents the genotype 2 (two high-risk alleles) for the SNP rs9939609, MC4R 0 represents the
genotype 0 (no high-risk alleles) for the SNP rs17782313, MC4R 1 represents the genotype
1 (one high-risk allele) for the SNP rs17782313, MC4R 2 represents the genotype 2 (two
high-risk alleles) for the SNP rs17782313.
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Figure 5.7: Estimated WHR for men, age group 4 and exercise frequency 3 held constant.
FTO 0 represents the genotype 0 (no high-risk alleles) for the SNP rs9939609, FTO 1
represents the genotype 1 (one high-risk allele) for the SNP rs9939609, FTO 2 represents
the genotype 2 (two high-risk alleles) for the SNP rs9939609, MC4R 0 represents the
genotype 0 (no high-risk alleles) for the SNP rs17782313, MC4R 1 represents the genotype
1 (one high-risk allele) for the SNP rs17782313, MC4R 2 represents the genotype 2 (two
high-risk alleles) for the SNP rs17782313.
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Figure 5.8: Estimated WHR for women, age group 4 and smoke level 0 held constant.
FTO 0 represents the genotype 0 (no high-risk alleles) for the SNP rs9939609, FTO 1
represents the genotype 1 (one high-risk allele) for the SNP rs9939609, FTO 2 represents
the genotype 2 (two high-risk alleles) for the SNP rs9939609, MC4R 0 represents the
genotype 0 (no high-risk alleles) for the SNP rs17782313, MC4R 1 represents the genotype
1 (one high-risk allele) for the SNP rs17782313, MC4R 2 represents the genotype 2 (two
high-risk alleles) for the SNP rs17782313.
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Figure 5.9: Estimated WHR for men, age group 4 and smoke level 0 held constant. FTO
0 represents the genotype 0 (no high-risk alleles) for the SNP rs9939609, FTO 1 represents
the genotype 1 (one high-risk allele) for the SNP rs9939609, FTO 2 represents the genotype
2 (two high-risk alleles) for the SNP rs9939609, MC4R 0 represents the genotype 0 (no
high-risk alleles) for the SNP rs17782313, MC4R 1 represents the genotype 1 (one high-
risk allele) for the SNP rs17782313, MC4R 2 represents the genotype 2 (two high-risk
alleles) for the SNP rs17782313.
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the tails of the distribution. Consequently, when the underlying data are not perfectly
normally distributed in the tails, the different models assume different underlying normal
distributions. This does not occur when the data are perfectly normally distributed -
in which case all the models would give similar estimates. The R2 values cannot be
calculated precisely for the missing genotype model as phenotype cannot be predicted
in the half of the dataset that lacks genotype values. However, we have estimated the
values by predicting phenotype based on non-genetic variables were genetic variables are
missing, and based on non-genetic and genetic variables were both are present.

For women, the missing genotype model does not explain more variation in the com-
plete sample than the MLR model. For men, the missing genotype model explains more
variation than the MLR model. We have seen that in the female samples, the missing
genotype model does not find any clinically significant effect of genotypes, while in the
male samples, the genetic effects estimated by the missing genotype model are relatively
large. This is reflected in the observed R2 values.

Residual plots are presented for completeness in Appendix C.3. With such large
numbers of subjects it is not surprising that the residuals appear as blocks of random
observations. No trends are seen in any of the plots.

Discussion and conclusion

In our final models, we included age, smoke, exercise and both genotypes as covariates for
the modelling of log(WHR). The SNP rs17782313 was not found to be significant among
men, but from an epidemiological point of view, it is important to include this variable
in the models. The parameters of the models are presented in Tables 5.6 and 5.7. We
have also created figures that illustrate effects of age, smoke, exercise and genotypes as
estimated in the missing genotype and conditional models, see Figures 5.4 to 5.9.

As mentioned, we consider the multiple linear regression model based on the complete
dataset excluding SNP data, as the most accurate with respect to the estimates of age,
smoke and exercise coefficients. This is due to the large sample size of the complete sample.
As no interaction effects were found between genetic and non-genetic variables, the effect
of genotypes should be a constant shift in log(WHR), and correspondingly an exponential
shift on the WHR scale. Models that include genetic variables should ideally estimate
parameters for non-genetic variables similarly to the multiple linear regression model. We
see that the missing genotype model achieves this, while the conditional model seems
to over- and underestimate effect sizes. It appears as if the extreme phenotype sampling
design is less robust than random sampling designs against violations of assumptions such
as normality, independent observations and constant variance. We cannot reveal which of
these violations the conditional model is more sensitive to, based on this study. As further
work in this field, we hope to test the different designs and models in a GWAS study where
it is possible to correct for population stratification and where genotypes are known for a
complete sample. Additionally, simulation studies could be used to investigate the effects
of model violations.

It is not surprising that the missing genotype model, which uses a lot more of the
available information than the conditional model, resembles the MLR model fitted to the
complete sample. If some covariates are known in a full sample, while genotypes are only
known for an extreme phenotype sample, the missing genotype model is preferable in
any event where one cannot be certain that all assumptions of the conditional model are
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satisfied. We recognize that for this dataset where only two SNPs were investigated, the
missing genotype model was relatively easy to implement and computationally fast to use.
However, due to the iterations over all possible combinations of genotypes, the method
can become more time-consuming as the number of genetic variables increases. We have
also had the liberty in this study to assume known distributions of the genetic variables,
and that these variables are independent. If this was not the case, the score test for the
missing genotype model would be more complicated due to the unknown parameters of
the genetic distributions, as well as the inclusion of joint distributions in the likelihood
function.

In our collaborative project with Ingrid Mostad we aim to estimate the effects of geno-
types in the HUNT population. Due to the issues discussed here of population stratifi-
cation and differences in variance across subgroups, we must consider other methods to
assess the risk of high WHR as a result of genotype. We will use epidemiological methods
in this analysis and consider subgroups separately in order to identify risk among healthy
and less healthy individuals. We will also investigate the use of z-scores for each sub-
group so as to create variables that are centred and scaled in order to correct for different
subgroup variances. However, this analysis is outside the realms of this thesis. Here, we
have used the HUNT dataset as an example of the extreme phenotype sampling design,
and used it to test different EPS methods. Although the EPS design can theoretically
be more powerful than random sampling to detect associations between genotypes and
phenotypes, the EPS design appears to be sensitive to violations of assumptions for which
the random sampling design is more robust. For studies such as the one we have anal-
ysed here, we would recommend randomly sampling individuals for genotyping if for some
reason one does not have the opportunity to genotype all subjects.
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Chapter 6

Statistical models and methods for
rare variant association studies

Rare variant association studies are based on the common disease rare variant hypothesis,
although recent methods aim to incorporate a combination of both the CDRV and the
CDCV hypothesis. Lee et al. (2012) explain that ”since standard individual variant tests,
typically used for analysis of SNPs, are underpowered to detect rare variant effects due
to the low allele frequencies and the large number of rare variants in the genome, region-
based analysis has become the standard approach for analysing rare variants in sequencing
studies”. Such regions could be a whole chromosome, a gene or subregions of a gene. We
will refer to these regions as loci.

The main goal of current rare variant association methods is to discover loci that are
associated with a disease or phenotype. By the CDRV hypothesis, the goal is to discover
loci that were not already found in GWA studies. The focus is not so much to quantify
the effect of carrying rare variants in the genome. Because of high allelic heterogeneity, it
is the region as a unit that is of interest and not the individual variants. Many variants
in a locus are thought to have an effect on phenotype, and one tag SNP is not assumed
to be sufficient to describe the effect of all potentially causal rare variants.

The methods used for testing for an association between a locus and a phenotype
in this chapter, build in the score test statistics that were developed for the multiple
linear regression model, and conditional model, in Chapter 4. This chapter is therefore a
rare-variant extension of Chapter 4.

We will often refer to genetic variables G in the following models. If G represents
genotypes of particular positions, the coding of G is as mentioned in Chapter 2, dependent
of the genetic models of the different variants. That is, for a monotone genetic model, G
takes values 0, 1, and 2 according to the number of high-risk alleles which in this chapter
corresponds to the number rare variants at a certain position. For recessive models, G
takes the values 0, 0, and 1, while for dominant models, G takes the values 0, 1, and 1.

6.1 Burden methods

Burden methods are quite straight-forward methods that collapse information across a
locus in order to reduce the number of variables and thereby simplify test procedures.
In the following, we will introduce the burden methods proposed by Li & Leal (2008).
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These were developed for the case-control design, but we will adapt them for use in cross-
sectional studies with a continuous outcome. Other well-known burden methods are the
Cohort Allelic Sums Test (CAST) (Morgenthaler & Thilly 2006) and the Weighted Sum
Test (WST) (Madsen & Browning 2009).

Li & Leal (2008) propose two burden methods; the collapsing method and the Com-
bined Multivariate and Collapsing (CMC) method. In the literature, the CMC method is
often confused with the more simple collapsing method. The distinction is important as
the CMC method clearly outperforms the collapsing method in complex studies.

In a case-control study, the aim is to test whether there is a difference in genotype
frequencies between the two groups. For GWA problems, the methods used to go about
testing this would be a single-variate test for each position with a correction for multiple
tests, or one multivariate test that includes all positions in the locus. Li & Leal (2008)
propose the χ2 and the Hotelling’s T 2 tests for these methods, but claim that both will
be low powered in a rare variant association study. For single variant testing, a large
number of tests must be performed and the correction for multiple testing causes a loss of
power. If a multivariate test is used, the number of degrees of freedom of the test statistic
becomes very large and this in turn causes a loss of power. To increase power, Li & Leal
(2008) propose the collapsing method and the CMC method.

The collapsing method

Consider a case and a control group that are genotyped for M variants in a specific locus.
The collapsing method summarizes the genetic information across this locus into one
variable defined by

G =

{
1, if one or more rare variants are present, and
0, otherwise.

(6.1)

Li & Leal (2008) explain that as it is uncommon to carry two rare variants at the same
locus, the collapsing method is valid for loci consisting of only rare variants. The under-
lying assumption must be that all rare variants in the locus have the same effect on the
disease.

The null hypothesis is that the distribution of G is equal in the case and control group.
This hypothesis can be tested by the χ2 test as defined in Equation (3.3.2). If several
separate loci are to be tested, a Bonferroni correction for multiple testing can be used.
The number of multiple tests will be relatively low, and the correction will not cause a
significant loss of power.

The Combined Multivariate and Collapsing method

The collapsing method is a crude method as it collapses all variants in a locus. A lot
of relevant information will be lost in the presence of one or more common variants.
Although the definition of a common variant is MAF ≥ 0.05, we have for example seen
that the MAF of the SNP rs9939609 is close to 0.5, which means that the probability that
subjects carry one or more copies of the high-risk allele, is large. Using the collapsing
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method on a locus with this SNP and other rare variants present would effectively serve
to estimate the effect of rs9939609 only.

The CMC method collapses subregions of the locus, defined for example as all variants
with MAFs lower than some threshold value. Thus, m � M subregions of the loci are
collapsed to form the variables G1, . . . , Gm. A common variant can remain uncollapsed
and the corresponding genetic variable can retain the values corresponding to the chosen
genetic model. The collapsed genetic variables are defined as in Equation (6.1). Li &
Leal (2008) propose to use the Hotelling’s T 2 test to test whether the distributions of
G1, . . . , Gm are equal among cases and controls.

The collapsing and CMC methods adapted to the cross-sectional
design with a continuous phenotype

For a cross-sectional study with a continuous phenotype we assume a linear regression
model with a normally distributed outcome Y that is either the phenotype itself, or some
appropriate transformation of it. We let X denote any non-genetic covariates. For the
collapsing method we assume a linear model

Y = α0 + αTX + βG+ ε,

where G is the collapsed random variable as defined in Equation (6.1) and ε is N(0, σ2)-
distributed. The inclusion of non-genetic variables X in the model means that we are
able to control for population stratification and other confounders. The null hypothesis
H0 : β = 0 can be tested by the score test, as defined for the multivariate linear regression
model in Section 4.2.1. The model described here has previously been used by Li et al.
(2011).

For the CMC method, genetic information from M variants is collapsed into m << M
genetic variables G1, . . . , Gm. We let these be elements of a vector G. The linear model
is given by

Y = α0 + αTX + βTG + ε.

Again, the score test can be used to test the null hypothesis H0 : β = 0, i.e. that there
is no association between the locus and the phenotype.

Criticism of burden methods

Li & Leal (2008) discuss misclassification and its effect on burden tests. Misclassification
is defined as the inclusion of biologically nonfunctional variants in the model, or the
exclusion of biologically functional variants. The CMC method is only able to distinguish
between functional and nonfunctional variants if the collapsing criteria is to collapse these
types separately. However, this information is rarely known beforehand. Li & Leal (2008)
provide evidence that the collapsing method is always more powerful than the χ2 test and
the Hotelling’s T 2 test, but recognize that the multivariate Hotelling’s T 2 test is more
robust under misclassification. This issue provides motivation for the CMC method,
which is shown to be both powerful and robust against misclassification. Yet, Lee et al.
(2012) claim that all burden tests suffer under misclassification as region sizes increase.
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A criticism of the CMC method is that it requires threshold values for collapsing
different variants and that there exist no natural such threshold values.

Wu et al. (2011) emphasize that burden tests assume that rare variants are either all
deleterious or all protective, i.e. that they affect a phenotype in the same direction. For
the CMC method, if the nature of the variants are known, this can be incorporated in the
model by separately collapsing variants with effects in the opposite directions. However,
this information is rarely available beforehand.

6.2 Kernel-based methods

The Sequence Kernel Association Test (SKAT) was proposed by Wu et al. (2011). The test
improves upon the issues with burden tests in that it allows for effects of variants in either
direction, and different magnitudes of effect. It allows for the inclusion of other covariates
and thus the opportunity to control for population stratification. The SKAT method is
developed for dichotomous and continuous phenotypes. The kernel-based methods are
not the focus of this thesis. However, they are important to discuss as they form the link
between the well-known burden tests and the recent functional linear model approach.
We will therefore give a brief overview of the SKAT methods. For in-depth descriptions,
see Wu et al. (2011) and Lee et al. (2012).

The SKAT method for a continuous normally distributed outcome assumes a linear
model

Y = α0 + αTX + βTG + ε,

where G contains genotypes of all genotyped variants in the locus. The coefficients
β1, . . . , βM are assumed to follow arbitrary distributions with mean zero and variance
wjτ , where wj are chosen weights for each variant, j = 1, . . . ,M . The null hypothesis
H0 : β = 0 can thus be rewritten as H0 : τ = 0, which reduces the dimension of the
problem from M to one test. According to Wu et al. (2011), this null hypothesis can be
tested by a so-called variance-component score test. The test statistic

Q = (Y − Ŷ0)TK(Y − Ŷ0),

follows a mixture of χ2 distributions which is approximated in the SKAT R-program by
the so-called Davies method. Here Ŷ0 represents estimated phenotype under the null
hypothesis. The matrix K contains genetic information and its elements are defined by
the kernel function K(Gi,Gi′) =

∑M
j=1 wjGijGi′j, where wj are the chosen weights. If

the weights are all set to one, all variants would be assumed to have similar effect sizes
on phenotype, as in burden methods. Wu et al. (2011) however, define the weights by a
Beta-distribution, such that wj = Beta(MAFj; 1, 25). This definition increases the weight
of rare variants and decreases weight of common variants.

An optimal SKAT method (SKAT-O) was proposed by Lee et al. (2012). This method
incorporates a correlation effect between variants and was shown through a simulation
study to perform equal to or better than the SKAT method in various scenarios.
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The kernel-based methods are recently developed, yet popular in the literature. The
methods are implemented in the R library SKAT and are simple to use. The SKAT
methods were shown to perform better than several burden tests by Wu et al. (2011)
and Lee et al. (2012) in power simulation studies. Based on these observations, Fan
et al. (2013) chose to focus on comparing the functional linear model approach only with
kernel-based approaches. However, we have not seen kernel or functional linear models
compared to the CMC method. Fan et al. (2013) found through the same simulation
studies as performed by Lee et al. (2012) that the functional linear model approaches had
higher power than the kernel-based approaches.

6.3 Functional data methods

The use of functional linear models for association analysis was recently proposed by
Fan et al. (2013). This approach is appropriate for scenarios including both causal rare
and causal common variants. In addition, linkage information is utilized in the analysis,
information which is according to Fan et al. (2013), not sufficiently taken into account by
burden or kernel-based approaches.

Fan et al. (2013) consider approaches for association analysis based on the functional
linear model

Y = α0 + αTX +

∫ 1

0

G(t)β(t)dt+ ε.

As is our chosen notation, Y represents a normally distributed phenotype and Xi rep-
resents non-genetic covariates. The inclusion of these variables allow for correction for
population stratification and other confounders. We assume that the non-genetic covari-
ates are non-functional while the genetic covariates are functional. Here, functionality of
covariates refers to the mathematical principle as described in Section 3.1.2, and not the
biological principle of functional genetic variants. The genetic information is assumed to
be contained in the function G(t), with β(t) as the genetic effect function. Fan et al.
(2013) consider t to be physical positions along the genome such that G(t) is the geno-
type at position t. This is unnatural in the sense that the genome is not continuous, but
t is. However, we will see in the following that we can relax this condition somewhat.
The region of interest is scaled down to unit length such that t ∈ [0, 1]. Note that it is
necessary to require that the position of each variant that is genotyped is known. This is
generally unproblematic in genetic association studies.

Fan et al. (2013) consider three approaches for the modelling of genetic data; a stan-
dard approach as was described in Chapter 3, functional principal component analysis
(FPCA), and a beta-smooth only approach. As the first and latter approaches prove to
be more powerful than the FPCA approach, we will focus on these in the following.

Assume that for positions t1, . . . , tM , the genotype g(tj) is known for each individual
and that g(tj) takes on values 0, 1 or 2 according to the number of high-risk alleles at
position tj. For an additive genetic model we simply set G(tj) = g(tj) to be the discrete
observations of the function G(t). For other genetic models, we define G(tj) as described
previously.
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Following the theory of functional linear models, the function G(t) can be estimated
from the discrete data G(tj) by a basis function and the simple linear smoother as defined
in Equation (3.4). Further, β(t) could be discretized by a basis function so that a linear
regression model as in Equation (3.5) with additional terms for non-genetic covariates,
is assumed. Fan et al. (2013) proposes this model and the use of the B-spline basis or
Fourier basis. However, as there is no assumption of periodicity in the genetic data, it is
unclear why the Fourier basis is considered as a relevant basis.

An alternative method proposed by Fan et al. (2013) is the beta-smooth only (β-SO)
method. This model avoids the assumption of a continuous genotype function G(t) by
letting G be a non-functional variable. The model does however assume a continuous
genetic effect function β(t). This model is of the form

Y = α0 + αTX +
M∑
j=1

G(tj)β(tj) + ε.

Again, the function β(t) is expanded by a B-spline or Fourier basis. According to Fan
et al. (2013), the beta-smooth only model performs similar to the full functional linear
model as described above. This conclusion is based on extensive simulation studies. As
this model is somewhat less technical and has an easier interpretation, we will use the
β-SO method in our simulation studies.

Let θk(t) be the B-spline basis functions used for the expansion of β(t); β(t) =∑K
k=1 bkθk(t). For M variants in a region, the linear model will be given as

Y = α0 + αTX +
M∑
j=1

G(tj)
K∑
k=1

bkθk(tj) + ε

= α0 + αTX +
K∑
k=1

bk

M∑
j=1

G(tj)θk(tj) + ε

= α0 + αTX + bTW + ε,

where b and W are K-dimensional vectors, and the k’th element of W is defined by∑M
j=1 G(tj)θk(tj).

The main goal of the article by Fan et al. (2013) is to test the null hypothesis of
no association between phenotype and genotype with the highest possible power. Fan
et al. (2013) focus on three scenarios. These scenarios are (1) all causal variants have
a positive effect, (2) 20%/80% causal variants have a negative/positive effect, and (3)
50%/50% causal variants have a negative/positive effect. All three scenarios were tested
for a mixture of causal rare and common variants in addition to a case with only causal
rare variants.

The null hypothesis is given as H0 : β(t) = 0 which is approximated by testing
b1 = b2 = . . . = bK = 0, where bk are the coefficients of the basis expansion and K is the
number of basis functions used in the expansion of β(t). We propose that by assuming a
normal distribution of the phenotype, the score test as defined in Section 4.2.1, is a relevant
test for this null hypothesis. Fan et al. (2013) use an F -test for the null hypothesis but

71



refers to an article where the score test was used without any additional covariates. As
described previously, we have defined the score test for use with additional non-genetic
covariates.

6.4 Extreme phenotype sampling

According to Barnett et al. (2013), the presence of rare causal variants is enriched in the
phenotypic extremes of a population. Consequently, extreme sampling can yield higher
power to detect association compared with random sampling, in rare variant association
studies.

If a phenotype is assumed to be normally distributed in a population, and an extreme
sample is drawn, the conditional distribution describes the sampled data. Due to the large
number of genetic variables in the locus, the conditional model as described in Section
4.2.2, is not appropriate. The rare variant methods as described above can be modified
to account for the extreme selection criterion. We have not seen the missing genotype
model that was proposed by Huang & Lin (2007) used in rare variant association studies.
Often, simulation studies are used to compare performance of models, and when data are
simulated as independent and normally distributed, the conditional model yields results as
unbiased and powerful as the missing genotype model (Huang & Lin 2007). The missing
genotype model assumes that the distributions of the genetic variables are known. These
can be difficult to estimate when the genetic variable is a collapsed variable of a functional
variable. Additionally, the expected genotype of a rare variant is close to zero which could
cause numerical issues. We will continue the current work of using rare variant methods
based on the conditional model. In future real data rare variant EPS studies, we hope to
develop and investigate the relative performance of the missing genotype model.

The collapsing method (without covariates) for the EPS design was used by Li et al.
(2011), who worked with the linear model

Y = α0 + βG+ ε,

where G is a collapsed variable as defined in Equation (6.1) and ε follows a N(0, σ2)
distribution. Knowing the sampling cut-off values cl and cu, Li et al. (2011) assumed that
the sampled data followed a conditional distribution with density function

fY |Y ∈C;G(y;α0, β, σ) =
1
σ
φ
(
y−α0−βG

σ

)
1− Φ

(
cu−α0−βG

σ

)
+ Φ

(
cl−α0−βG

σ

) .
The null hypothesis H0 : β = 0 can be tested with the score test for the conditional model,
as defined in Section 4.2.2. Li et al. (2011) showed that the EPS design yielded higher
power to detect association compared to a random sampling design with the same sample
size.

The extension of the CMC method into the EPS format has not been attempted.
This extension is simple as we can assume a conditional model with genotype variables
represented by collapsed variables. Inclusion of other covariates is unproblematic and the
score test can be used to test for association between a locus and phenotype.
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The SKAT and SKAT-O models were adapted for use in EPS studies by Barnett et al.
(2013). The extension to the EPS framework was based on the conditional distribution of
the sampled data. The authors provide an R program for the use of the SKAT methods
in EPS studies. For extreme sampled continuous data, Barnett et al. (2013) compare the
collapsing method, the SKAT method and the SKAT-O method. Through a simulation
study Barnett et al. (2013) show that the collapsing method and the SKAT-O method
have similar power to detect association when all variants have the same direction of
effects. When, on the other hand, the variants have effects in opposite directions, all
methods lose power, but SKAT-O is more robust than the collapsing method.

The functional linear model as proposed by Fan et al. (2013), has not yet been applied
in an EPS study. The β-SO approach can be adjusted by assuming that the phenotype
Y in the linear model

Y = α0 + αTX + bTW + ε,

follows the conditional distribution in the extreme sample, with density function

fY |Y ∈C;G(y;α0,α,b, σ) =

1
σ
φ
(
y−α0−αTX−bTW

σ

)
1− Φ

(
cu−α0−αTX−bTW

σ

)
+ Φ

(
cl−α0−αTX−bTW

σ

) .
The score test for the conditional distribution can be used to test the null hypothesis
H0 : b = 0. We will investigate the power of this method in the next chapter.
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Chapter 7

A rare variant simulation study

In this chapter we will evaluate rare variant association methods both in cross-sectional
and EPS studies. First we will compare the collapsing method, the CMC method, the
SKAT and SKAT-O methods and the β-SO method for a cross-sectional design. Fan et al.
(2013) showed that the β-SO method has a higher power than the kernel-based methods,
while Lee et al. (2012) showed that the kernel-based methods were often more powerful
than the collapsing method. The novelty of our study will be to include the CMC method
and compare all methods in the same study. Following the design of Fan et al. (2013), we
will consider cases where all causal variants are causal in the same directions, as well as
opposite directions. Lee et al. (2012) worked only with causal rare variants, but we will
consider regions with both causal rare and causal common variants.

Secondly, we will evaluate the five rare variant methods under the EPS design. We
will compare the power of the methods to detect associations, as well as their power to
detect associations in an EPS sample as opposed to a random sample of the same size.
The novelty of this study is to test the EPS versions of the CMC and β-SO method in a
simulation study, and compare them to kernel based methods and the collapsing method.

7.1 The simulated datasets

Simulation of genetic datasets for a given population can be performed by coalescent
simulator tools. We have used the COSI simulator, developed by Schaffner et al. (2005).
The novelty of the COSI program is that it comes with an out-of-Africa implementation
that simulates the genetic development in humans from one source population (Africans)
into European, Asian and West African populations. Genotypes are simulated for a 1 MB
region which is referred to as a chromosome by Schaffner et al. (2005). This simulation is
therefore the counterpart of genotyping one of the 23 pairs of chromosomes in a group of
individuals. Motivated by the choice of simulation tool used by Lee et al. (2012) and Fan
et al. (2013), we used the COSI simulator to simulate genotypes in the so-called European
population. We simulated regions of length 1MB (mega base). The simulation program
provides the positions of all mutations, the frequencies of the ancestral and mutations
alleles at these sites. The program can also use these frequencies to simulate genotypes (0
or 1) in the specific regions for a chosen number of subjects. We simulated genotypes of
1MB regions in N European individuals by simulating genotypes (0 or 1) for 2N regions
and simply adding two and two regions together. Thus, we have genotypes coded as 0, 1
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and 2 for N individuals. As the SKAT models assume, we always set the most rare allele
to be causal so that if the mutation allele is more common than the ancestral allele, the
ancestral allele is seen as potentially causal for a phenotype. Thus, the MAF of any SNP
was set to be the minimum of the frequency of the ancestral and mutation alleles. We
created datasets with 500, 1000 and 2000 individuals.

The dataset with 500 individuals consists of genotype information on a 1MB region
in which there are 9622 mutations. Of these mutations, 2535 are common variants, i.e.
MAF ≥ 0.05. In the 1000 individuals dataset, there are 12412 mutations of which 2169
are common variants. In the 2000 individuals dataset, there are 14895 mutations of which
1993 are common variants. These datasets are simulated separately and are not subsets
of each other.

7.1.1 Simulation of phenotypes

We followed the methods of Lee et al. (2012) and Fan et al. (2013) for creating non-genetic
covariates, choosing causal loci and creating phenotypes.

Under the null hypothesis, phenotypes were generated as

Y = 0.5X1 + 0.5X2 + ε,

where X1 takes the values 0 and 1 with probability 0.5, while X2 and ε are drawn from a
N(0, 1) distribution. These simulated phenotypes allow us to test the type I error of the
various models.

Under the alternative hypothesis, a region of length 3kB was randomly chosen and a
certain fraction of the mutations in this region were chosen as causal for the phenotype.
The fraction of causal mutations were set to 10%, 20% and 50%. We simulated three
scenarios; one where all causal variants were causal in the same direction; one where 20%
of causal variants were negatively associated with phenotype; and one scenario where 50%
of causal variants were negatively associated with phenotype.

Let t1, . . . , tm be the positions of the causal mutations and let g(tj) denote the geno-
type at a position. As mentioned, we have simulated genotypes with coding 0, 1 and
2, corresponding to monotone genetic models. Phenotypes were generated under the
alternative hypothesis as

Y = 0.5X1 + 0.5X2 + β1g(t1) + · · ·+ βmg(tm) + ε,

where |βj| was defined as c · | log(MAFj)|/2 with c = log(7), log(5), log(2) when 10%, 20%
and 50% of mutations were causal, respectively. MAFj refers to the MAF of the causal
allele at position tj. As explained, we varied between all β positive and certain mixtures
of positive and negative effects.

For the EPS design, we simulated phenotypes under H0 and H1 as above and thereafter
sampled the 25% lowest and highest phenotypes with corresponding covariates. In order
to compare EPS to random sampling, we also randomly sampled 50% of subjects from
the generated datasets. This yielded datasets of sizes 250, 500 and 1000 for the EPS and
random sampling (RS) designs.
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7.2 Methods

As methods for testing for an association between a phenotype and a loci, we used the
models as presented in the previous chapter and thereafter the score tests for cross-
sectional and conditional models, as presented in Chapter 4. We used our own implemen-
tations of the collapsing method, the CMC method and the β-SO method with correspond-
ing score tests. Our implementation of the β-SO was based on the script by Fan et al.
(2013) that is available at http://www.nichd.nih.gov/about/org/diphr/bbb/software/ un-
der the heading ”Functional Linear Models for Association Analysis of Quantitative Traits,
by R. Fan and Y. Wang”. We also used the kernel-based methods SKAT and SKAT-O
which for a cross-sectional design are downloadable as the CRAN package SKAT. For the
EPS design, the SKAT and SKAT-O methods implemented in R are part of the package
CEPSKAT that we downloaded from http://www.hsph.harvard.edu/xlin/software.html.
These methods return a p-value for the association test between genotypes and pheno-
types. All implementations and use of methods are presented in Appendix D.

Parameters

Some parameters of the models were set before using the methods. For the CMC method,
we used a threshold MAF of 0.05 below which all variants were collapsed and above which
all variants were kept separate. For the β-SO model we used 15 basis functions of order
four, as implemented by Fan et al. (2013).

7.3 Estimation of power and type I error rate

For the assessment of type I error rate, we simulated phenotypes as described above
and repeated the simulations for 10000 different loci. A locus was defined as a randomly
sampled 3 kB region which was chosen to be causal under H1. For each of these iterations,
a 3kB region was chosen as causal under H1. For each model, we tested the null hypothesis
of no association between the locus and the phenotype, and obtained a p-value by the
score test for the burden models and functional linear model. The SKAT and SKAT-O
models come with pre-programmed tests. The p-values are distributed on the interval
(0, 1). We define the outcome as a success if the p-value is below some significance level α
such that after 10000 iterations we have a binomially distributed variable with parameter
α and n = 10000, if tests preserve the type I error at level α. We estimate α by the MLE
such that α̂ = nsuccesses/n. The estimated parameter α̂ is the type I error frequency of
the simulation. As the number of iterations increases, α̂ converges to α. However, for
a limited number of iterations, we consider confidence intervals to asses the precision of
the estimates. By the well-known normal approximation of the binomial, the confidence
interval for α (Walpole et al. 2007, page 300) is given by[

α̂− zα/2
√
α̂(1− α̂)/n, α̂− zα/2

√
α̂(1− α̂)/n

]
, (7.1)

where zα/2 is the z-value from the standard normal distribution that leaves an area of
α/2 to the right. If the confidence interval for a given method, sample size and a chosen
significance level α has a lower bound that exceeds α, the method is considered to not
preserve type I error.

76



The power of a method is estimated by the fraction of p-values less than some sig-
nificance level α over a total of n = 2000 simulated loci, as used by Fan et al. (2013),
given that the there is an association between the phenotype and genotypes. In other
words, the power of a method reflects the fraction of rejections of the null hypothesis,
when the alternative is true. Following the simulation experiments of Fan et al. (2013),
we simulated power for significance levels 0.05, 0.01 and 0.001.

7.4 Results

7.4.1 Type I error

Cross-sectional sample

For each complete dataset (N = 500, 1000, 2000) we simulated phenotypes under the
null hypothesis and applied the following five models to test for an association between
genotype and phenotype; (1) collapsing; (2) CMC; (3) SKAT; (4) SKAT-O; and (5) β-SO.
For the collapsing, CMC and β-SO methods, we used the score test to find p-values. The
SKAT and SKAT-O models come with pre-programmed tests and return corresponding p-
values. We performed these simulations and tests a total of 10000 times. For significance
levels α = 0.05, 0.01, 0.001, we estimated type I error frequencies as defined above.

The resulting type I error rates for the cross-sectional study are presented in Table
7.1a. Confidence intervals for each estimate was calculated by Equation (7.1). Results
in italic are those whose confidence interval’s lower bound exceeded the significance level
α. We see that type I error is preserved in all cases except for the SKAT-O method with
significance level α = 0.05 and sample size N = 500.

Extreme phenotype sample

For each of the datasets (N = 500, 1000, 2000) we simulated phenotypes under the null
hypothesis and thereafter extracted the subjects with phenotypes in the lower or upper
quartiles. The five models adapted for the EPS design were used to test for association
between a 3 kB region and the phenotype. Type I error was estimated as described above.

The resulting type I error rates for the extreme phenotype samples are presented in
Table 7.1b. Results in italic are those whose confidence interval’s lower bound exceeded
the significance level α. We see that the collapsing method does not preserve type I error
for any sample size or significance level. Additionally, the kernel-based methods have
problems with preserving type I error for low sample sizes. We find that the CMC and
β-SO methods consistently preserve type I error in these simulations.

Extreme phenotype sampling versus random sampling

If only half of a group of individuals can be genotyped, one can either choose to sample
the extreme ends of the phenotype spectrum, or to sample randomly. We will compare
these two methods and therefore present type I error rates for random sampling from the
datasets of sizes 500, 1000 and 2000 that were simulated under H1. The tests used are the
same as those used in a cross-sectional study. The type I error rates for the five models are
presented in Table 7.1c. All methods and sample sizes preserve type I error for the given
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Model
α N Collapse CMC SKAT SKAT-O β-SO

0.05
500 0.0416 0.0304 0.0500 0.0558 0.0405

1000 0.0434 0.0324 0.0528 0.0538 0.0524
2000 0.0444 0.0392 0.0503 0.0528 0.0512

0.01
500 0.0072 0.0070 0.0098 0.0118 0.0072

1000 0.0087 0.0062 0.0093 0.0112 0.0092
2000 0.0076 0.0070 0.0096 0.0115 0.0107

0.001
500 0.0006 0.0008 0.0009 0.0009 0.0007

1000 0.0008 0.0004 0.0007 0.0015 0.0006
2000 0.0010 0.0006 0.0010 0.0012 0.0005

(a) Estimated type I error rates for cross-sectional studies.

Model
α N/2 Collapse CMC SKAT SKAT-O β-SO

0.05

250 0.1397 0.0287 0.0547 0.0612 0.0369
500 0.0898 0.0294 0.0561 0.0589 0.0464

1000 0.0993 0.0360 0.0542 0.0591 0.0453

0.01

250 0.1114 0.0045 0.0121 0.0143 0.0074
500 0.0533 0.0047 0.0105 0.0125 0.0075

1000 0.0632 0.0070 0.0105 0.0113 0.0084

0.001

250 0.1040 0.0005 0.0006 0.0008 0.0006
500 0.0462 0.0007 0.0014 0.0014 0.0004

1000 0.0556 0.0005 0.0011 0.0013 0.0004

(b) Estimated type I error rates for EPS studies.

Model
α N/2 Collapse CMC SKAT SKAT-O β-SO

0.05

250 0.0411 0.0263 0.0501 0.0502 0.0352
500 0.0489 0.0305 0.0480 0.0494 0.0450

1000 0.0439 0.0365 0.0500 0.0525 0.0481

0.01

250 0.0081 0.0046 0.0088 0.0102 0.0052
500 0.0095 0.0065 0.0088 0.0101 0.0071

1000 0.0090 0.0075 0.0100 0.0101 0.0099

0.001

250 0.0007 0.0005 0.0009 0.0008 0.0003
500 0.0009 0.0004 0.0009 0.0011 0.0007

1000 0.0006 0.0004 0.0009 0.0010 0.0005

(c) Estimated type I error rates for random sampling studies.

Table 7.1: Estimated type I error rates
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significance levels. Thus it seems as if the random sampling method gives better results
than the extreme phenotype sampling method, when we consider the collapsing method
and the kernel-based methods. The CMC and β-SO methods have similar performance
for both the cross-sectional and the EPS design.

7.4.2 Power estimates under the alternative hypothesis

For power simulations we replicated the design of Lee et al. (2012) and Fan et al. (2013)
and drew 2000 regions of 3 kB length in which some variants were chosen as causal. The
phenotypes were simulated as described above. We let the regions contain 10%, 20% and
50% causal variants of which none, 20% or 50% were negatively causal (protective) for
the phenotype.

Cross-sectional sample

For each of the datasets (N = 500, 1000, 2000) we simulated phenotypes under H1 and
used the five methods to test for an association. Power was estimated as the fraction of
p-values that fell below the threshold α, i.e. the fraction of associations found when an
association was always present. Estimated power for the five methods and for all scenarios,
are presented in Tables 7.2, 7.3 and 7.4. Some selected results are also presented in Figure
7.1.

We see that the collapsing method consistently displays low power to detect the as-
sociation. When few of the variants (10%) are causal, the β-SO method outperforms the
CMC and the kernel-based methods. These differences even out as sample size increases
and the number of causal variants increase. For the burden methods (the collapsing and
CMC method) this is in line with the problem of misclassification as discussed by Lee
et al. (2012). However, as argued by Li & Leal (2008), it is clear that the CMC method
is more robust towards misclassification than the collapsing method.

We expect to see that the burden methods suffer the most when variants can be causal
in both directions, and this is in fact reflected by the simulations. The collapsing method
is clearly not appropriate for use in such instances, but the CMC method can not be
written off. It is also clear that although the kernel-based method were developed partly
to solve this issue, they are not as robust as the β-SO method towards causality on both
directions.

As an example, consider sample size N = 1000 and significance level α = 0.001. For
only positively causal variants and (10%, 20%, 50%) causal variants, the power of the
CMC method is estimated as (0.72, 0.88, 0.91), while for the β-SO method the power is
(0.90, 0.98, 0.97). These observations illustrate the robustness of the β-SO method. The
corresponding power estimations when 20% of causal variants are negatively causal are
exactly the same for both of these methods. When 50% are negatively causal, the power
estimates are (0.62, 0.80, 0.76) for the CMC method and (0.86, 0.97, 0.92) for the β-SO
method. Here we see a general loss of power due to more negative variants. It appears
as if the loss of power due to many negatively causal variants is stronger than the gain in
power due to less misclassification when many variants are in fact causal.
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Extreme phenotype sample

In order to test the EPS design, we simulated phenotypes for the full samples (N =
500, 1000, 2000) and extracted the upper and lower quartiles (N/2 = 250, 500, 1000). Tests
were performed on these extreme datasets and power was estimated as described above.
The results are presented in Tables 7.5, 7.6 and 7.7. Some results are illustrated in Figure
7.2 as well.

We examine the results further by considering a similar example as above. Consider
a sample size of N/2 = 500, and α = 0.001. If none of the variants are negatively
causal, the power of the CMC method is estimated as (0.73, 0.92, 0.96), while for the β-
SO method power is (0.87, 0.97, 0.96), for (10%, 20%, 50%) causal variants in the locus. We
see that the methods are comparable when the degree of misclassification decreases. The
corresponding power estimates are (0.67, 0.88, 0.91) and (0.80, 0.94, 0.89) for the CMC and
β-SO methods when 20% of causal variants are negatively causal, and (0.64, 0.84, 0.82) and
(0.78, 0.92, 0.82), when 50% of causal variants are negatively causal. Again, we see that
when all variants are causal in the same direction, power is highest when many variants
(50%) in the loci are causal. When some variants are causal in the opposite direction, we
see that the methods are most powerful when only 20% of variants are causal.

Extreme phenotype sampling versus random sampling

As well as extracting the upper and lower quartiles of the full samples for the EPS design,
we randomly sampled half of the full samples for a smaller cross-sectional design. For
significance level α = 0.01, the results from the EPS and the random sampling (RS)
designs are presented in Tables 7.8, 7.9 and 7.10. Some of these results are also illustrated
in Figure 7.3.

When all causal variants are causal in the same direction, the extreme phenotype
sampling method has a higher power than the random sampling for all methods. This
is in line with the theory that more information on causal rare variants is found in the
extreme phenotype subjects. When 20% of causal variants are negatively causal, the
differences are not as striking. It seems that when there are few causal variants, i.e. a
high degree of misclassification, and the sample sizes are low, random samples have similar
or higher power to detect the association than the EPS design. We observe similar results
when 50% of causal variants are negatively associated with the phenotype.

7.5 Discussion and conclusion

We observe that the β-SO is robust for all variations of sampling and causality and
consistently more powerful than the four other methods. Lee et al. (2012) claimed that the
kernel-based methods outperformed burden methods, but we see that the CMC method
is often more powerful than both the SKAT and SKAT-O methods and in some cases the
CMC and β-SO methods have very similar power. We included the collapsing method for
reference to more simple burden methods and it is clear that this method is too crude to
be useful in these studies. Surprisingly, we saw that the collapsing method in the EPS
design found false associations when there were none in the type I error rate simulations,
but that this methods failed to discover enough associations when an association was
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present. We have used a simple implementation of the CMC method where we have set
a threshold to 0.05. This method could be improved upon by tuning this threshold based
on known information on variants in specific loci. We note that the CMC method requires
known MAFs, or at least whether variants are common or rare, for all genotyped positions
in the loci. The β-SO method assumes that the positions of the variants are known. The
SKAT methods do not require any other input than the genotypes themselves. The SKAT
methods are therefore widely applicable, but this could also cause these methods to be
less powerful than other methods that use additional information.

Due to the power and simple implementation of the β-SO method, we would recommend
the use of this method in both cross-sectional and extreme phenotype studies. However,
as we learnt in Chapter 5, although the EPS method are powerful in theory, extreme
samples can be inaccurate when all assumptions are not met, assumptions for which
random samples are more robust. We saw that the missing genotype model was preferable
in such instances. As further work on this topic we suggest to look into an adaptation
of the missing genotype method to rare variant EPS studies. For the missing genotype
model to be used with the β-SO approach, the distribution of the variable W, defined
in Chapter 6.3, must be known. The parameters of this distribution do not have to be
known as they can be estimated by maximum likelihood. The score test statistic could
thereafter be found using similar procedures as described previously.
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α Sample size % causal Collapse CMC SKAT SKAT-O β-SO

0.05

500
10 0.31 0.82 0.84 0.83 0.95
20 0.43 0.94 0.95 0.95 0.99
50 0.50 0.97 0.91 0.95 0.98

1000
10 0.51 0.81 0.90 0.90 0.95
20 0.62 0.93 0.98 0.98 0.99
50 0.65 0.97 0.98 0.98 0.99

2000
10 0.48 0.82 0.94 0.94 0.97
20 0.66 0.96 0.99 0.99 1.00
50 0.77 1.00 0.99 1.00 1.00

0.01

500
10 0.22 0.77 0.74 0.74 0.91
20 0.33 0.92 0.88 0.89 0.98
50 0.41 0.95 0.81 0.90 0.95

1000
10 0.43 0.76 0.84 0.84 0.93
20 0.55 0.91 0.95 0.94 0.99
50 0.57 0.95 0.94 0.95 0.98

2000
10 0.41 0.77 0.88 0.88 0.95
20 0.60 0.95 0.97 0.98 0.99
50 0.71 1.00 0.98 0.99 1.00

0.001

500
10 0.15 0.72 0.62 0.61 0.86
20 0.25 0.89 0.79 0.80 0.96
50 0.30 0.87 0.64 0.78 0.87

1000
10 0.36 0.72 0.76 0.76 0.90
20 0.47 0.88 0.90 0.90 0.98
50 0.49 0.91 0.87 0.90 0.97

2000
10 0.35 0.73 0.80 0.80 0.92
20 0.54 0.92 0.94 0.95 0.98
50 0.64 0.99 0.96 0.99 1.00

Table 7.2: Estimated power under the cross-sectional design when all causal variants are
causal in the positive direction, causal variants are both rare and common.
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α Sample size % causal Collapse CMC SKAT SKAT-O β-SO

0.05

500
10 0.30 0.80 0.85 0.83 0.93
20 0.35 0.91 0.94 0.93 0.99
50 0.35 0.93 0.89 0.89 0.97

1000
10 0.51 0.81 0.90 0.90 0.95
20 0.62 0.93 0.98 0.98 0.99
50 0.65 0.97 0.98 0.98 0.99

2000
10 0.43 0.78 0.94 0.93 0.95
20 0.57 0.94 0.99 0.99 0.99
50 0.62 0.98 0.99 0.99 1.00

0.01

500
10 0.22 0.76 0.74 0.74 0.90
20 0.26 0.88 0.87 0.86 0.97
50 0.25 0.86 0.77 0.79 0.93

1000
10 0.43 0.76 0.84 0.84 0.93
20 0.55 0.91 0.95 0.94 0.99
50 0.57 0.95 0.94 0.95 0.98

2000
10 0.37 0.73 0.88 0.88 0.93
20 0.48 0.91 0.97 0.97 0.99
50 0.53 0.97 0.97 0.98 1.00

0.001

500
10 0.15 0.71 0.64 0.63 0.84
20 0.18 0.84 0.77 0.76 0.95
50 0.16 0.74 0.58 0.63 0.81

1000
10 0.36 0.72 0.76 0.76 0.90
20 0.47 0.88 0.90 0.90 0.98
50 0.49 0.91 0.87 0.90 0.97

2000
10 0.31 0.69 0.81 0.81 0.90
20 0.42 0.88 0.93 0.93 0.98
50 0.45 0.95 0.94 0.95 0.99

Table 7.3: Estimated power under the cross-sectional design when 80%/20% of causal
variants are causal in the positive/negative direction, causal variants are both rare and
common.
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α Sample size % causal Collapse CMC SKAT SKAT-O β-SO

0.05

500
10 0.20 0.75 0.82 0.78 0.92
20 0.21 0.84 0.93 0.90 0.98
50 0.15 0.84 0.85 0.82 0.95

1000
10 0.38 0.70 0.89 0.87 0.93
20 0.47 0.86 0.97 0.97 0.99
50 0.38 0.89 0.96 0.95 0.98

2000
10 0.35 0.70 0.93 0.91 0.94
20 0.48 0.86 0.99 0.99 0.99
50 0.42 0.95 0.99 0.99 1.00

0.01

500
10 0.12 0.70 0.71 0.69 0.88
20 0.14 0.81 0.85 0.83 0.96
50 0.08 0.75 0.72 0.67 0.87

1000
10 0.30 0.66 0.81 0.80 0.90
20 0.40 0.83 0.94 0.93 0.98
50 0.28 0.83 0.91 0.90 0.97

2000
10 0.29 0.66 0.87 0.85 0.91
20 0.41 0.84 0.97 0.96 0.98
50 0.31 0.93 0.97 0.96 0.99

0.001

500
10 0.07 0.66 0.60 0.59 0.82
20 0.08 0.76 0.74 0.73 0.93
50 0.04 0.62 0.53 0.49 0.75

1000
10 0.24 0.62 0.72 0.72 0.86
20 0.31 0.80 0.89 0.88 0.97
50 0.18 0.76 0.83 0.81 0.92

2000
10 0.23 0.63 0.78 0.77 0.88
20 0.33 0.81 0.93 0.92 0.97
50 0.22 0.90 0.93 0.92 0.99

Table 7.4: Estimated power under the cross-sectional design when 50%/50% of causal
variants are causal in the positive/negative direction, causal variants are both rare and
common.
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Figure 7.1: Power estimates for a cross-sectional study with α = 0.01.
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α Sample size % causal Collapse CMC SKAT SKAT-O β-SO

0.05

250
10 0.38 0.81 0.81 0.80 0.92
20 0.51 0.94 0.92 0.92 0.98
50 0.56 0.94 0.84 0.91 0.93

500
10 0.58 0.83 0.91 0.91 0.95
20 0.74 0.97 0.98 0.98 0.99
50 0.83 0.99 0.98 0.99 1.00

1000
10 0.52 0.82 0.95 0.94 0.97
20 0.70 0.97 0.99 0.99 1.00
50 0.79 1.00 0.99 1.00 1.00

0.01

250
10 0.30 0.75 0.68 0.66 0.87
20 0.41 0.91 0.82 0.83 0.95
50 0.46 0.88 0.68 0.82 0.86

500
10 0.52 0.78 0.83 0.83 0.92
20 0.68 0.94 0.95 0.95 0.98
50 0.77 0.99 0.94 0.97 0.99

1000
10 0.45 0.78 0.89 0.89 0.94
20 0.64 0.95 0.97 0.98 0.99
50 0.73 1.00 0.97 0.99 1.00

0.001

250
10 0.23 0.68 0.52 0.51 0.79
20 0.32 0.85 0.68 0.69 0.91
50 0.35 0.77 0.46 0.64 0.73

500
10 0.45 0.73 0.73 0.74 0.87
20 0.61 0.92 0.89 0.91 0.97
50 0.70 0.96 0.86 0.94 0.96

1000
10 0.38 0.73 0.80 0.80 0.91
20 0.57 0.93 0.94 0.95 0.98
50 0.65 0.99 0.93 0.98 0.99

Table 7.5: Estimated power under the EPS design when all causal variants are causal in
the positive direction, causal variants are both rare and common.
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α Sample size % causal Collapse CMC SKAT SKAT-O β-SO

0.05

250
10 0.38 0.75 0.67 0.65 0.84
20 0.47 0.91 0.82 0.82 0.94
50 0.52 0.88 0.72 0.85 0.86

500
10 0.60 0.81 0.81 0.81 0.92
20 0.73 0.96 0.94 0.95 0.98
50 0.81 0.98 0.93 0.98 0.98

1000
10 0.53 0.85 0.85 0.86 0.95
20 0.70 0.97 0.97 0.97 0.99
50 0.77 1.00 0.96 0.99 1.00

0.01

250
10 0.29 0.65 0.51 0.51 0.75
20 0.36 0.84 0.68 0.71 0.90
50 0.42 0.78 0.52 0.71 0.74

500
10 0.50 0.74 0.71 0.70 0.87
20 0.66 0.93 0.88 0.89 0.97
50 0.74 0.95 0.86 0.95 0.95

1000
10 0.44 0.80 0.76 0.76 0.91
20 0.62 0.95 0.93 0.94 0.98
50 0.71 0.99 0.92 0.98 0.99

0.001

250
10 0.22 0.53 0.33 0.34 0.61
20 0.28 0.71 0.50 0.54 0.79
50 0.30 0.62 0.34 0.51 0.58

500
10 0.42 0.67 0.59 0.60 0.80
20 0.58 0.88 0.78 0.82 0.94
50 0.65 0.91 0.72 0.87 0.89

1000
10 0.36 0.74 0.65 0.66 0.85
20 0.55 0.92 0.85 0.88 0.97
50 0.61 0.97 0.85 0.94 0.97

Table 7.6: Estimated power under the EPS design when 80%/20% of causal variants are
causal in the positive/negative direction, causal variants are both rare and common.
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α Sample size % causal Collapse CMC SKAT SKAT-O β-SO

0.05

250
10 0.33 0.72 0.65 0.64 0.83
20 0.41 0.87 0.79 0.79 0.92
50 0.42 0.79 0.61 0.73 0.78

500
10 0.51 0.79 0.81 0.79 0.91
20 0.65 0.93 0.92 0.93 0.98
50 0.73 0.95 0.89 0.94 0.96

1000
10 0.47 0.83 0.84 0.83 0.94
20 0.62 0.96 0.96 0.96 0.99
50 0.68 0.98 0.95 0.98 0.99

0.01

250
10 0.23 0.61 0.50 0.48 0.73
20 0.31 0.78 0.66 0.67 0.86
50 0.32 0.65 0.42 0.57 0.63

500
10 0.43 0.72 0.70 0.70 0.85
20 0.58 0.90 0.87 0.88 0.96
50 0.64 0.90 0.79 0.88 0.91

1000
10 0.38 0.78 0.75 0.74 0.89
20 0.53 0.94 0.91 0.92 0.98
50 0.58 0.96 0.88 0.95 0.97

0.001

250
10 0.18 0.49 0.33 0.32 0.59
20 0.23 0.65 0.48 0.51 0.74
50 0.22 0.46 0.26 0.37 0.44

500
10 0.34 0.64 0.57 0.57 0.78
20 0.48 0.84 0.78 0.80 0.92
50 0.52 0.82 0.65 0.76 0.82

1000
10 0.30 0.71 0.63 0.63 0.85
20 0.44 0.90 0.83 0.85 0.96
50 0.47 0.92 0.77 0.88 0.94

Table 7.7: Estimated power under the EPS design when 50%/50% of causal variants are
causal in the positive/negative direction, causal variants are both rare and common.
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Figure 7.2: Power estimates for an extreme phenotype study with α = 0.01.
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α Sample size % causal Method Collapse CMC SKAT SKAT-O β-SO

0.01

250

10
EPS 0.30 0.75 0.68 0.66 0.87
RS 0.12 0.64 0.59 0.58 0.78

20
EPS 0.41 0.91 0.82 0.83 0.95
RS 0.23 0.82 0.74 0.74 0.90

50
EPS 0.46 0.88 0.68 0.82 0.86
RS 0.26 0.74 0.52 0.66 0.71

500

10
EPS 0.52 0.78 0.83 0.83 0.92
RS 0.38 0.71 0.74 0.74 0.87

20
EPS 0.68 0.94 0.95 0.95 0.98
RS 0.57 0.91 0.90 0.90 0.97

50
EPS 0.77 0.99 0.94 0.97 0.99
RS 0.66 0.95 0.83 0.90 0.95

1000

10
EPS 0.45 0.78 0.89 0.89 0.94
RS 0.33 0.71 0.78 0.77 0.89

20
EPS 0.64 0.95 0.97 0.98 0.99
RS 0.51 0.92 0.93 0.94 0.98

50
EPS 0.73 1.00 0.97 0.99 1.00
RS 0.61 0.99 0.93 0.97 0.99

Table 7.8: Estimated power under the EPS design and the cross-sectional based on a
small RS (random sample). All causal variants are causal in the positive direction, causal
variants are both rare and common.

α Sample size % causal Method Collapse CMC SKAT SKAT-O β-SO

0.01

250

10
EPS 0.29 0.65 0.51 0.51 0.75
RS 0.13 0.64 0.58 0.56 0.78

20
EPS 0.36 0.84 0.68 0.71 0.90
RS 0.16 0.76 0.70 0.69 0.90

50
EPS 0.42 0.78 0.52 0.71 0.74
RS 0.15 0.60 0.48 0.52 0.65

500

10
EPS 0.50 0.74 0.71 0.70 0.87
RS 0.35 0.71 0.74 0.74 0.88

20
EPS 0.66 0.93 0.88 0.89 0.97
RS 0.44 0.85 0.88 0.87 0.96

50
EPS 0.74 0.95 0.86 0.95 0.95
RS 0.44 0.84 0.79 0.81 0.89

1000

10
EPS 0.44 0.80 0.76 0.76 0.91
RS 0.29 0.68 0.75 0.74 0.88

20
EPS 0.62 0.95 0.93 0.94 0.98
RS 0.38 0.85 0.92 0.92 0.97

50
EPS 0.71 0.99 0.92 0.98 0.99
RS 0.42 0.94 0.90 0.91 0.97

Table 7.9: Estimated power under the EPS design and the cross-sectional based on a small
RS (random sample). 20%/80% of causal variants are causal in the positive/negative
direction, causal variants are both rare and common.
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α Sample size % causal Method Collapse CMC SKAT SKAT-O β-SO

0.01

250

10
EPS 0.23 0.61 0.50 0.48 0.73
RS 0.06 0.57 0.58 0.54 0.75

20
EPS 0.31 0.78 0.66 0.67 0.86
RS 0.08 0.69 0.69 0.66 0.86

50
EPS 0.32 0.65 0.42 0.57 0.63
RS 0.04 0.44 0.44 0.39 0.56

500

10
EPS 0.43 0.72 0.70 0.70 0.85
RS 0.22 0.61 0.70 0.69 0.84

20
EPS 0.58 0.90 0.87 0.88 0.96
RS 0.28 0.76 0.85 0.83 0.93

50
EPS 0.64 0.90 0.79 0.88 0.91
RS 0.19 0.67 0.73 0.69 0.83

1000

10
EPS 0.38 0.78 0.75 0.74 0.89
RS 0.24 0.63 0.75 0.73 0.88

20
EPS 0.53 0.94 0.91 0.92 0.98
RS 0.29 0.81 0.90 0.89 0.97

50
EPS 0.58 0.96 0.88 0.95 0.97
RS 0.19 0.84 0.90 0.87 0.96

Table 7.10: Estimated power under the EPS design and the cross-sectional based on a
small RS (random sample). 50%/50% of causal variants are causal in the positive/negative
direction, causal variants are both rare and common.
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Figure 7.3: Power estimates for an extreme phenotype and cross-sectional study based on
a small random sample. Sample size 500, α = 0.01.
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Chapter 8

Conclusion and discussion

Conclusion

The extreme phenotype design is theoretically considered to be more powerful than a
cross-sectional design for discovering associations between loci and phenotypes. Extreme
phenotype sampling enriches the presence of causal variants in a dataset of a certain size,
and this increases the probability of discovering associations. This enrichment can be
argued to be particularly important in rare variant association studies. In this thesis we
have investigated the extreme phenotype sampling design and relevant statistical models
for both common and rare variant association studies. We have developed statistical
methods that can be used to test for a genetic effect, and have applied our methods in a
common variant study based on a dataset from HUNT, and a rare variant study based on
a simulated dataset from COSI. We have seen that the conditional model for the extreme
phenotype sampling design has limitations for real data analysis. It is probable that these
limitations occur because the model only incorporates data from the tails of a distribution.
The missing genotype model can be more accurate as it uses available information from
the entire distribution of a phenotype. We have verified that the CMC and β-SO methods
are powerful methods in cross-sectional rare variant association studies, and shown that
these methods can be adapted successfully to the extreme phenotype sampling design.
Through simulation studies we have seen that the EPS design is often more powerful
than the cross-sectional design, but that there are situations in which the cross-sectional
design results in similar or higher power to detect associations. Based on common and
rare association studies we cannot be certain that the EPS design in general, and the
conditional model in particular, are advisable for use in genetic association studies. The
methods are theoretically powerful, but may cause spurious results due to sensitivity to
model misspecification and violations of model assumptions.

Discussion

At first glance, the HUNT dataset that was used for the study of waist-hip ratio seems
to fit the extreme phenotype sampling design perfectly. Waist-hip ratio was calculated
for thousands of individuals and the upper and lower quartiles of men and women were
sampled for genotyping. The SNPs have known distributions and the cut-off values for
sampling are known. However, the distribution of WHR in the population is not perfectly
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normal distributed and neither is the log transform nor other relevant transforms that
we investigated. Additionally it appears as if waist-hip ratio has different variance in
different subgroups of the population such as age, smoke and exercise groups. Due to
lack of information we cannot check whether sampled individuals are statistically inde-
pendent, but based on knowledge of the population of Nord-Trøndelag we suggest that
population stratification may have occurred and that individuals are therefore not in-
dependent. When we fitted the conditional model to the data and saw that, compared
to a multiple linear regression model, it over- and underestimated the effects of causal
variables, we could not be certain as to which of these model violations - if any - caused
the poor fit. The missing genotype model is able to use more information on subjects
because non-genetic variables are known for all individuals in HUNT. It was therefore not
surprising that the missing genotype model estimated the effects of non-genetic covariates
(age, smoke, exercise) more accurately compared to a multiple linear regression model.

In our rare variant simulation studies, the data are by construction independent and
normally distributed with constant variance. We used these studies to compare different
methods to each other, as well as comparing the power of extreme phenotype sampling
with random sampling. We found that the β-SO method is consistently better than other
methods. We also showed that the extreme sampling design can be less powerful than
the cross-sectional design when sample sizes are low, few variants in the loci are causal,
and causal variants are both positively and negatively associated with phenotypes. Based
on these results, and what we saw in the HUNT study, we are interested in further
investigating the suitability of the extreme phenotype sampling design and evaluate if it
is in fact preferable to sample extreme individuals as opposed to individuals from the full
range of a phenotype. Perhaps, as suggested by Li et al. (2011), the extreme phenotype
sampling design can be used as an initial screening in a two-stage design. In this type of
design, the idea is to genotype few extreme individuals in order to detect loci that seem
to be associated with a phenotype. In the second stage, these loci are genotyped in a
larger cross-sectional sample. Effect estimates of the different loci are found using the
cross-sectional sample.

We should also mention that in our simulation studies, we worked with the defini-
tion of extreme phenotypes as the upper and lower quartiles of a phenotype based on a
dataset of sizes N = 500, 1000, 2000. For larger datasets, but similar financial or logistical
restrictions, it would be necessary to consider a stricter bound for extreme phenotypes.

What is new in this thesis?

In this thesis we have developed a score test statistic for the conditional model that is
flexible with respect to the number of covariates and nuisance parameters. This test can
be used in GWA studies where genetic covariates are genotypes of various SNPs. The test
can also be used in rare variant association studies where genetic covariates are collapsed
discrete variables of functional variables. We have developed a score test statistic for the
missing genotype model that was customized to a GWAS study with known distributions
and minor allele frequencies of genetic variables.
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Huang & Lin (2007) showed that the conditional model and missing genotype model
have similarly low bias and high power to estimate and discover genetic association with
phenotype in the special case where one only genetic covariate and no non-genetic covari-
ates were present. We have had the opportunity in this thesis to test extended versions
of these methods in a large dataset from HUNT and have discovered that the power and
bias of the conditional model might be sensitive to violations of assumptions in real data
analysis. The missing genotype model, which uses more of the available information,
appears to be estimate effects more accurately in the sense that the estimates resemble
those of a multiple linear regression model.

For rare variant association studies, we have adapted two important rare variant meth-
ods to the extreme phenotype sampling design, namely the CMC (Li & Leal 2008) and
β-SO (Fan et al. 2013) method. In an extensive simulation study, we have evaluated
five rare variant association methods; (1) the collapsing method, (2) the CMC method,
(3) the SKAT method, (4) the SKAT-O method, and (5) the β-SO method, both for
cross-sectional and extreme phenotype sampling studies. Through our studies, we found
that the β-SO method is consistently more powerful than the other methods, both in
cross-sectional and EPS studies. We also compared the extreme sampling design to a
random sampling design using all the aforementioned methods. We discovered that the
EPS design is not always more powerful than the cross-sectional design.

Future work

We hope to build on this thesis and write two separate articles on extreme phenotype
sampling; one concerning common variant association studies and the other concerning
rare variant association studies.

For common variants we hope to acquire a full GWAS dataset in which we can control for
population stratification and where genotypes are known for a complete sample. In that
way, we can fit the data to a linear regression model and in addition synthetically sample
extreme phenotype subjects. We can fit the conditional model and the missing genotype
model to this extreme sample and compare results to the model fitted to the complete
sample. In that way, we can compare the accuracy of the two extreme sampling models.
This resembles what we aimed to do with the HUNT dataset, but as we could not estimate
genetic effects for a complete sample, it was not clear which model gave the most reliable
estimates. It would also be preferable to look further into the effect of model violations,
especially in regard to the conditional model as this is used for rare variant studies as
well. In a dataset where we have more control over the distribution, independence and
variance of the subjects, we could analyse this issue further. It could also be possible to
perform a simulation study where one assumption at a time is intentionally violated.

Extreme sampling seems to be used in many studies in disguise of a case-control study,
as we saw for the rs9939609 and rs17782313 studies by Frayling et al. (2007) and Loos
et al. (2008) respectively. We have shown that the ratio estimated in such studies cannot
be interpreted as the standard odds ratio. It would be meaningful to gain insight into
the severity of assuming that one has estimated the true odds ratio. We would need a
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completely genotyped dataset to achieve this.

We also aim to write an article concerning extreme phenotype sampling and rare variant
association studies. We have developed two new EPS methods in this thesis (CMC and
β-SO) based on methods for rare variant association studies. We have seen evidence that
these are both powerful. It is claimed that extreme sampling is more powerful to detect
associations between causal variants and phenotypes. However, we have also seen that
random sampling in some situations can be as powerful as extreme phenotype sampling. If
we combine this observation with observations from the HUNT dataset we have analysed
in this thesis, it might seem as if the power gain of extreme phenotype sampling is too
small to justify the extreme sampling compared to the more standard statistical method
of random sampling. We would like to use a real dataset of rare variants to test all the
rare variant methods in both a cross-sectional and extreme phenotype sampling design.
We would also like to look further into the definition of extreme samples and investigate
whether larger datasets which uses perhaps only 10% of the most extreme phenotypes in
each end of the spectrum perhaps gain more power from the extreme sampling.
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Appendix A

Extreme phenotype sampling and
case-control studies

In Chapter 4 we discussed how to use a logistic regression model in a case-control study,
and how this model estimates the true odds ratio of the population. Here, we show that
when the sampling of controls is made from below some threshold, leaving middle-valued
phenotypes out of the study, the odds ratio from a logistic regression model does not
estimate the true odds ratio of the population.

When sampling is based on extreme phenotypes, the population, denoted Ω, is split
into three disjoint groups. We define the subset D ∈ Ω as those individuals with extreme
phenotypes that can be considered ”cases”. We define the subset N ∈ Ω as the individuals
with extreme phenotypes in the other end of the spectrum, often considered the healthier
of the two extremes. Finally, Ñ ∈ Ω contains all remaining individuals. We therefore
have the partition D ∩ Ñ ∩N = Ω.

The sampling probabilities for the study are given by τN = P (S|N), τÑ = P (S|Ñ)
and τD = P (S|D), where by design τÑ = 0. Further, the continuous disease measure
must be dichotomized such that all y ∈ D are are given the value 1, while all y ∈ N are
set to zero.

When fitting a logistic regression model to such data we find an estimate of ρ∗i =
P (D|S ∩ Ñ c; xi). By the same steps as were taken to obtain Equation (4.2), it can be
shown that

ρ∗i =
P (S|D)P (D|Ñ c; zi)

P (S|D)P (D|Ñ c; zi) + P (S|Ñ)P (Ñ |Ñ c; zi) + P (S|N)P (N |Ñ c; zi)
,

which, because P (S|Ñ) = 0, simplifies to

ρ∗i =
P (S|D)P (D|Ñ c; zi)

P (S|D)P (D|Ñ c; zi) + P (S|N)P (N |Ñ c; zi)
.

As P (D|Ñ c; zi) = P (D ∩ Ñ c ∩ zi)P (Ñ c; zi), and P (D ∩ Ñ c; zi) = P (D; zi) we find that
this expression further simplifies into

ρ∗i =
τDP (D; zi)

τDP (D; zi) + τNP (N ; zi)
=

τDπi
τDπi + τNP (N ; zi)

.
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This expression is quite similar to what we found for the case-control study in Equation
(4.2), but the difference in this case is that P (N ; zi) 6= 1 − πi. However, when using the
logistic regression model it is assumed that there are only two possible outcomes, and
that the sum of their probabilities is one. The interpretation of the odds ratio

ρ∗i /(1− ρ∗i )
ρ∗j/(1− ρ∗j)

,

is therefore the odds of being diseased under covariate levels zi relative to zj, assuming that
there is no probability, with these covariate levels, that the corresponding phenotype belongs
in Ñ . The interpretation of such an odds ratio is unnatural and not easily understood.
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Appendix B

Score test calculations

B.1 Derivatives of log likelihood functions

For simplicity of notation, define the function

fi = Yi − α0 −αTXi − βTGi.

B.1.1 The cross-sectional design

In a cross-sectional study with normally distributed phenotypes, the log likelihood func-
tion is given by

l(α0,α,β, σ; Y) = −n log(
√

2πσ)− 1

2σ2

n∑
i=1

(Yi − α0 −αTXi − βTGi)
2.

The first derivatives of the log likelihood are

∂l

∂α0

=
1

σ2

n∑
i=1

fi,
∂l

∂α
=

1

σ2

n∑
i=1

fiXi,

∂l

∂β
=

1

σ2

n∑
i=1

fiGi,
∂l

∂σ
= −n

σ
+

1

σ3

n∑
i=1

f 2
i .

The second derivatives are

∂2l

∂α2
0

= − n

σ2
,

∂2l

∂α0∂α
= − 1

σ2

n∑
i=1

Xi,

∂2l

∂α0∂β
= − 1

σ2

n∑
i=1

Gi,
∂2l

∂α0∂σ
= − 2

σ3

n∑
i=1

fi,

∂2l

∂α2
= − 1

σ2

n∑
i=1

XiX
T
i ,

∂2l

∂α∂β
= − 1

σ2

n∑
i=1

XiG
T
i ,

∂2l

∂α∂σ
= − 2

σ3

n∑
i=1

fiXi,
∂2l

∂β2 = − 1

σ2

n∑
i=1

GiG
T
i ,

∂2l

∂β∂σ
= − 2

σ3

n∑
i=1

fiGi,
∂2l

∂σ2
=

n

σ2
− 3

σ4

n∑
i=1

f 2
i .
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B.1.2 The EPS design and the conditional model

For the conditional model applied to EPS data, the conditional log likelihood function is
given by

lc = −n log(
√

2πσ)−
n∑
i=1

1

2σ2
f 2
i −

n∑
i=1

log(1− Φu,i + Φl,i),

where

Φl,i = Φ

(
cl − α0 −αTXi − βTGi

σ

)
, Φu,i = Φ

(
cu − α0 −αTXi − βTGi

σ

)
.

We use the following notation;

hji =
−φu,i ·

(
cu−α0−αTXi−βTGi

σ

)j
+ φl,i ·

(
cl−α0−αTXi−βTGi

σ

)j
1− Φu,i + Φl,i

, j = 0, 1, 2, 3.

The first derivatives of the log likelihood are

∂lc
∂α0

=
1

σ2

n∑
i=1

fi +
1

σ

n∑
i=1

h0i,
∂lc
∂α

=
1

σ2

n∑
i=1

fiXi +
1

σ

n∑
i=1

h0iXi,

∂lc
∂β

=
1

σ2

n∑
i=1

fiGi +
1

σ

n∑
i=1

h0iGi,
∂lc
∂σ

= −n
σ

+
1

σ3

n∑
i=1

f 2
i +

1

σ

n∑
i=1

h1i.

The second derivatives are

∂2lc
∂α2

0

= − n

σ2
+

1

σ2

n∑
i=1

(h1i − h2
0i),

∂2lc
∂α0∂α

=
1

σ2

n∑
i=1

(−1 + h1i − h2
0i)Xi,

∂2lc
∂α0∂β

=
1

σ2

n∑
i=1

(−1 + h1i − h2
0i)Gi,

∂2lc
∂α2

=
1

σ2

n∑
i=1

(−1 + h1i − h2
0i)XiX

T
i ,

∂2lc
∂α∂β

=
1

σ2

n∑
i=1

(−1 + h1i − h2
0i)XiG

T
i ,

∂2lc

∂β2 =
1

σ2

n∑
i=1

(−1 + h1i − h2
0i)GiG

T
i ,

∂2lc
∂α0∂σ

= − 2

σ3

n∑
i=1

fi +
1

σ2

n∑
i=1

(−2h0i + h2i + h0ih1i),

∂2lc
∂α∂σ

= − 2

σ3

n∑
i=1

fiXi +
1

σ2

n∑
i=1

(−2h0i + h2i + h0ih1i)Xi,

∂2lc
∂β∂σ

= − 2

σ3

n∑
i=1

fiGi +
1

σ2

n∑
i=1

(−2h0i + h2i + h0ih1i)Gi,

∂2lc
∂σ2

=
n

σ2
− 3

σ4

n∑
i=1

f 2
i +

1

σ2

n∑
i=1

(−3h1i + h3i + h2
1i).
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B.1.3 The EPS design and the missing genotype model

For simplicity of notation, we define

fi = Yi − α0 −αTXi − βTGi,

as well as

fi(g) = Yi − α0 −αTXi − βTg.

The log likelihood function for the missing genotype model is given by

lm = −n log(
√

2πσ)−
n∑
i=1

1

2σ2
f 2
i −

N∑
i=n+1

log

(∑
g

φi(g)P (G = g)

)
,

where

φi(g) =
1√
2πσ

exp

(
1

2σ2
fi(g)2

)
.

Define the functions

kji =

∑
g fi(g)jφi(g)P (G = g)∑

g φi(g)P (G = g)
, kji(g) =

∑
g fi(g)jφi(g)P (G = g)g∑

g φi(g)P (G = g)
,

for j = 0, 1, 2, 3, 4. Additionally, define

k2i(ggT ) =

∑
g fi(g)2φi(g)P (G = g)ggT∑

g φi(g)P (G = g)
.

The first derivatives of the missing genotype log likelihood are

∂lm
∂α0

=
1

σ2

n∑
i=1

fi +
1

σ2

N∑
i=n+1

k1i,
∂lm
∂α

=
1

σ2

n∑
i=1

fiXi +
1

σ2

N∑
i=n+1

k1iXi,

∂lm
∂β

=
1

σ2

n∑
i=1

fiGi +
1

σ2

N∑
i=n+1

k1i(g),
∂lm
∂σ

= −N
σ

+
1

σ3

n∑
i=1

f 2
i +

1

σ3

N∑
i=n+1

k2i.
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The second derivatives are

∂2lm
∂α2

0

= −N
σ2

+
1

σ4

N∑
i=n+1

k2i − k2
1i,

∂2lm
∂α0∂α

= − 1

σ2

N∑
i=1

Xi +
1

σ4

N∑
i=n+1

(k2i − k2
1i)Xi,

∂2lm
∂α0∂β

= − 1

σ2

n∑
i=1

Gi −
1

σ2

N∑
i=n+1

k0i(g) +
1

σ4

N∑
i=n+1

k2i(g)− k1ik1i(g),

∂2lm
∂α0∂σ

= − 2

σ3

n∑
i=1

fi −
2

σ3

N∑
i=n+1

k1i +
1

σ5

N∑
i=n+1

k3i − k2ik1i,

∂2lm
∂α2

= − 1

σ2

N∑
i=1

XiX
T
i +

1

σ4

N∑
i=n+1

(k2i − k2
1i)XiX

T
i ,

∂2lm
∂α∂β

= − 1

σ2

n∑
i=1

XiG
T
i −

1

σ2

N∑
i=n+1

Xik0i(g)T +
1

σ4

N∑
i=n+1

Xi(k2i(g)− k1ik1i(g))T ,

∂2lm
∂α∂σ

= − 2

σ3

n∑
i=1

fiXi −
2

σ3

N∑
i=n+1

k1iXi +
1

σ5

N∑
i=n+1

(k3i − k2ik1i)Xi,

∂2lm

∂β2 = − 1

σ2

n∑
i=1

GiG
T
i +

1

σ4

N∑
i=n+1

k2i(ggT )− k1i(g)k1i(g)T ,

∂2lm
∂β∂σ

= − 2

σ3

n∑
i=1

fiGi −
2

σ3

N∑
i=n+1

k1i(g) +
1

σ5

N∑
i=n+1

k3i(g)− k2ik1i(g),

∂2lm
∂σ2

=
N

σ2
− 3

σ4

n∑
i=1

f 2
i −

3

σ4

N∑
i=n+1

k2i +
1

σ6

N∑
i=1+n

k4i − k2
2i.

B.2 Proof

Tang (2010) proved that for the simple model y = α0 + βG+ ε, the score test for testing
H0 : β = 0 is equivalent for a conditional distribution of y (as under the EPS design)
and a normal distribution of y. In the following we present the proof that this result
also holds for the case where y = α0 + β1G1 + · · · + βpGp + ε under the null hypothesis
H0 : β1 = · · · = βp = 0. Note that if the null hypothesis does not include all covariate
coefficients, then the result is no longer valid. In this setting we define

fi = Yi − α− βTGi.

The score test statistic for the normal distributed sample

We will now find the expression for the score test statistic T ∗ (defined in Equation (3.19)),
for the regression model that assumes random sampling from a normal distribution. The
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log likelihood function is

l(α, σ,β; Y) = −n log(
√

2πσ)− 1

2σ2

n∑
i=1

f 2
i . (B.1)

The test is performed under the null hypothesis H0 : β = 0, with α and σ as nuisance
parameters. We thus have θ1 = (α, σ) and θ2 = β and H0 : θ = (θ̂1,0).

Under H0, the maximum likelihood estimates for α and σ will be the same for any
dimension of β, and given by

α̂ = Ȳ , σ̂2 =
1

n

n∑
i=1

(Yi − Ȳ )2 = SY Y .

The scores s1, . . . , sn, as presented in Equation (3.15), are under H0 given by

si =

 ∂
∂α

log fYi |(α̂,σ̂,0)
∂
∂σ

log fYi |(α̂,σ̂,0)
∂
∂β

log fYi |(α̂,σ̂,0)

 =


1

SY Y
(Yi − Ȳ )

− 1√
SY Y

+ 1
(SY Y )3/2

(Yi − Ȳ )2

1
SY Y

(Yi − Ȳ )Gi

 ,
for all i ∈ {1, . . . , n}. It is reasonable to assume that the scores constitute a bounded
sequence when Yi represents a ratio such as waist-hip ratio, and Gi are physical measures
or genotypes coded as 0, 1 and 2. By this assumption, the Lindeberg condition is satisfied,
and the central limit theorem can be applied.

We will need the Fisher information matrix, I. This is found by taking the negative
expectation of the second derivatives of the log likelihood function in (B.1). The second
derivatives are

∂2l

∂α2
= − n

σ2

∂2l

∂σ2
=

n

σ2
− 3

σ4

n∑
i=1

f 2
i ,

∂2l

∂2β
= − 1

σ2

n∑
i=1

GiG
T
i

∂2l

∂α∂σ
= − 2

σ3

n∑
i=1

fi,

∂2l

∂α∂β
= − 1

σ2

n∑
i=1

Gi = − n

σ2
Ḡ,

∂2l

∂σ∂β
= − 2

σ3

n∑
i=1

fiGi,

where Ḡ is a vector of the mean values Ḡ1, . . . , Ḡ. When taking the expected value of
the second derivatives, we use the fact that E(fi) = 0, while E(f 2

i ) = σ2. Consequently,
the Fisher information matrix is given by

I =
1

σ2

 n 0 nḠT

0 2n 01×pg
nḠ 0pg×1

∑n
i=1 GiG

T
i

 , (B.2)

where 0N×M is a N ×M matrix with all entries equal to zero. Gi is a pg-dimensional
vector. The information matrix is estimated by inserting σ̂2 = SY Y . The estimated matrix
is denoted Î. Note that

(Î)11 =
n

SY Y

[
1 0
0 2

]
,
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is a 2× 2 matrix for all pg as long as there are two nuisance parameters, while (Î)12 is a
2× pg matrix given by

(Î)12 =
n

SY Y

[
ḠT

01×pg

]
,

and (Î)21 is the transpose of this. Finally, (Î)22 is a pg × pg matrix given by
1

SY Y

∑n
i=1 GiG

T
i .

The score statistic conditioned on ∂l/∂α = 0 and ∂l/∂σ = 0, and evaluated in (α̂, σ̂,0),
is given by

S∗ =
∂l

∂β

∣∣∣∣
(α̂,σ̂,0)

=
1

SY Y

n∑
i=1

(Yi − Ȳ )(Gi − Ḡ),

which follows from

∂l

∂β

∣∣∣∣
(α̂,σ̂,0)

=
1

SY Y

n∑
i=1

(Yi − Ȳ )Gi

=
1

SY Y

(
n∑
i=1

YiGi − nȲ Ḡ

)

=
1

SY Y

n∑
i=1

(Yi − Ȳ )(Gi − Ḡ).

The expected value of S∗ is zero, as shown in Equation (3.16), and the variance Σ∗ is
easily determined by Equation (3.18). Using the information matrix in Equation (B.2),
Σ∗ is found to be

Σ∗ =
1

SY Y

n∑
i=1

GiG
T
i −

n

SY Y

[
Ḡ 0pg×1

] [1 0
0 2

]−1 [
ḠT

01×pg

]
=

1

SY Y

n∑
i=1

GiG
T
i −

n

SY Y

[
Ḡ 0pg×1

] [ ḠT

01×pg

]
=

1

SY Y

n∑
i=1

GiG
T
i −

n

SY Y
ḠḠT

=
1

SY Y

n∑
i=1

(Gi − Ḡ)(Gi − Ḡ)T .

We thus have that the score statistic is given by

S∗ =
n

SY Y
SYG,

while the covariance matrix is given by

Σ∗ =
n

SY Y
SGG.

By the definition of T ∗ in Equation (3.19), we obtain the score test statistic

T ∗ =
n

SY Y
STYGS

−1
GGSYG.

This score test statistic is approximately χ2-distributed with pg degrees of freedom.
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The score test statistic for the conditional model

As described, the log likelihood function for the conditional model is given by

lc =
n∑
i=1

log(
1

σ
φi)−

n∑
i=1

log(1− Φu,i + Φl,i)

= −n log(
√

2πσ)−
n∑
i=1

1

2σ2
f 2
i −

n∑
i=1

log(1− Φu,i + Φl,i).

Following the same procedure as in the previous section, we find the score test statistic
by finding the score statistic and its variance conditioned on the MLEs of the nuisance
parameters and β = 0. The derivatives of the conditional log-likelihood are not so easily
written out as for the prospective model. The following functions, inspired by Tang
(2010), are therefore introduced for ease of notation;

hji =
−φu,i ·

(
cu−α−βTGi

σ

)j
+ φl,i ·

(
cl−α−βTGi

σ

)j
1− Φu,i + Φl,i

, j = 0, 1, 2, 3.

We note that under H0 : β = 0, the vectors Gi do not appear in the above expressions,
and the functions hji are equal for all i ∈ {1, . . . , n}. We can therefore denote them by
h0, h1, h2 and h3 under the null hypothesis.

Let α̂c and σ̂c be the maximum likelihood estimators under H0 in the conditional
model. By the maximum likelihood procedure, and by inserting β = 0, we have that

α̂c = Ȳ + σ̂ch0.

For the variance estimate we see that

σ̂2
c (1− h1) =

1

n

n∑
i=1

(Yi − α̂c)2,

where 1
n

∑n
i=1(Yi − α̂c)2 can be rewritten as SY Y + σ̂2

ch
2
0 by the definition of SY Y . Thus

σ̂2
c =

SY Y
1− h1 − h2

0

.

The score statistic, conditioned on ∂lc/∂α = 0 and ∂lc/∂σ = 0, and evaluated in (α̂c, σ̂c,0),
is given by

S∗c =
∂lc
∂β
|(α̂c,σ̂c,0) =

a

SY Y

(
n∑
i=1

(Yi − α̂c)Gi + nσ̂ch0Ḡ

)

=
a

SY Y

(
n∑
i=1

(Yi − Ȳ − σ̂ch0)Gi + σ̂ch0Gi

)

=
a

SY Y

n∑
i=1

(Yi − Ȳ )Gi

=
an

SY Y
SYG.
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The second derivatives of the conditional log likelihood function are

∂2lc
∂α2

= − n

σ2
+

1

σ2

n∑
i=1

h2
0i +

1

σ2

n∑
i=1

h1i,

∂2lc
∂σ2

=
n

σ2
− 3

σ4

n∑
i=1

f 2
i +

1

σ2

n∑
i=1

h2
0i −

2

σ2

n∑
i=1

h1i +
1

σ2

n∑
i=1

h3i,

∂2lc

∂β2 = − 1

σ2

n∑
i=1

GiG
T
i +

1

σ2

n∑
i=1

h2
0iGiG

T
i +

1

σ2

n∑
i=1

h1iGiG
T
i ,

∂2lc
∂α∂σ

= − 2

σ3

n∑
i=1

fi −
2

σ2

n∑
i=1

h0i +
1

σ2

n∑
i=1

h0ih1i +
1

σ2

n∑
i=1

h2i,

∂2lc
∂α∂β

= − 1

σ2

n∑
i=1

Gi +
1

σ2

n∑
i=1

h2
0iGi +

1

σ2

n∑
i=1

h1iGi,

∂2lc
∂σ∂β

= − 2

σ3

n∑
i=1

fiGi −
2

σ2

n∑
i=1

h0iGi +
1

σ2

n∑
i=1

h0ih1iGi +
1

σ2

n∑
i=1

h2iGi.

By taking the negative expectation of the second derivatives, and inserting the null
hypothesis and the corresponding maximum likelihood estimators, we find the Fisher
information matrix. For further ease of notation, again inspired by Tang (2010), we
introduce the functions

a = 1− h1 − h2
0,

b = 2h0 − h2 − h0h1,

c = 2 + 3h1 − h3 − h2
0.

Note that we can now write σ̂2
c = SY Y /a. The estimated Fisher information matrix is

given by

Îc =
a

SY Y

 an bn anḠT

bn cn bnḠT

anḠ bnḠ a
∑n

i=1 GiG
T
i

 .
Note that

(Îc)11 =
an

SY Y

[
a b
b c

]
,

while (Îc)12 is a 2× p matrix given by

(Îc)12 =
an

SY Y

[
aḠT

bḠT

]
,

and (Îc)21 is the transpose of this. (Îc)22 is a pg × pg matrix given by a2

SY Y

∑n
i=1 GiG

T
i .
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The variance is found using Equation (3.18), and is given by

Σ∗c =
a2

SY Y

n∑
i=1

GiG
T
i −

an

SY Y

[
aḠ bḠ

] [a b
b c

]−1 [
aḠT

bḠT

]
=

a2

SY Y

n∑
i=1

GiG
T
i −

an

SY Y

[
aḠ bḠ

] 1

ac− b2

[
ḠT (ac− b2)

01×pg

]
=

a2

SY Y

n∑
i=1

GiG
T
i −

a2n

SY Y
ḠḠT

=
a2

SY Y

n∑
i=1

(Gi − Ḡ)(Gi − Ḡ)T

=
a2n

SY Y
SGG.

We see that S∗c = aS∗, and Σ∗c = a2Σ∗. Consequently, the score test statistic T ∗c must
be equivalent to T ∗ for the normally distributed cross-sectional sample. We have proved
that the score tests for the cross-sectional and conditional models are equivalent when all
covariate coefficients are zero under the null hypothesis.
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Appendix C

Details of the HUNT study

C.1 Definition of covariates

Smoke level

The smoke variable is summarized based on questions 20 and 21 in questionnaire number
1, of the HUNT3 study;

• Q20: Do you smoke?

• Q21: How many cigarettes do/did you smoke daily?

The variable is defined by the following answers to Q20 and Q21;

• 0: Q20: No, I have never smoked

• 1: Q20: Yes, cigarettes once in a while, or Yes, cigars/cigarillos/pipe once in a while

• 2: Q20: No, I have stopped smoking, and Q2:1 More than 10 each day

• 3: Q20: Yes, cigarettes daily, or Yes, cigars/cigarillos/pipe daily

• 4: Q20: Yes, cigarettes daily, and Q21: More than 10 each day

• 5: Q20: Yes, cigars/cigarillos/pipe daily and Q21: More than 10 each day

Exercise frequency

The exercise frequency was categorized based question 32 in questionnaire number 1, of
the HUNT3 study;

• 0: Never

• 1: Less than one time a week

• 2: One time a week

• 3: 2-3 times a week

• 4: Approximately every day
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C.2 Analysis of waist-hip ratio

Waist-hip ratio is a of measure central obesity that is not as widely used as BMI. Statisti-
cal transformations of WHR are therefore not agreed upon in the scientific community as
opposed to BMI for which it is widely acknowledge that a log transform of BMI is approx-
imately normally distributed in a population. We will use our male and female datasets
to assess appropriate transformations of WHR in order to create a normally distributed
response variable.

We use the function boxcox in R. This function returns a plot of a parameter λ which
is 1 if the data are already normally distributed, and 0 if a log transform is appropriate.
If 0 < λ < 1, the appropriate transformation is found by

y =
WHRλ − 1

λ
.

The input to the function is a linear model, for which we use

WHR = α0 + αTX,

where X contains age, smoke and exercise covariates.

Figure C.1: Boxcox results, women and men

The resulting plots for women and men are shown in Figure C.1. We see that neither of
the λs, nor their respective confidence intervals, are zero. For women, the maximal value
of λ is 0.3, while for men, the maximal value is −0.3. For medicinal and biological research
we deem it inappropriate to propose different transformations for men and women. We
use an Anderson-Darling test (function ad.test()in R) to test whether the residuals of
the transformed linear model, divided by the estimated standard deviations, are N(0, 1)
distributed. We perform the same test for log transformed WHR, as well as for a model
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where no transformation of WHR is applied. The p-values are presented in Table C.1. For
women, the boxcox transformed WHR values yield the highest p-value, while for men,
the boxcox and log transformations yield similar p-values. Because the log transform
is accepted as an appropriate transform for other ratios, and as it seems an acceptable
transformation for our data, we decide to work with the log transformed WHR values. For
reference, we performed similar analysis to BMI values and did not find stronger evidence
for a log transform than with WHR values.

Gender Transformation p-value

Women
Boxcox 3.4030e− 2
Log 6.9770e− 4
None 7.1590e− 4

Men
Boxcox 2.3300e− 3
Log 3.2250e− 3
None 2.7330e− 8

Table C.1: Anderson-Darling p-values

Variance analysis

We can test whether variances are homogeneous across subgroups of the population using
the Bartlett and Levene tests. Both of these tests are easily applied in R. For example, if
we wish to test age subgroups we can write

bartlett.test(log(WHR) ~ as.factor(agegroup))

leveneTest(log(WHR) ~ as.factor(agegroup))

These tests return p-values corresponding to the null hypothesis that the data are homo-
geneous. The Bartlett test is sensitive to data that are not normally distributed while
the Levelene test is more robust in this case. We therefore perform both tests. As it is
widely agreed upon that log(BMI) is homogeneous with respect to variance of subgroups
in adult populations, we perform the same tests for log(BMI) in order to compare results
for log(WHR). Resulting p-values are presented in Table C.2. We see that the null hy-
pothesis should be rejected for all tests, both for log(WHR) and log(BMI). This implies
that variance is not constant in the dataset. In our separate work where aim to estimate
genetic effects as realistically as possible, we must be cautious of this fact.

Gender Response variable Bartlett p-value Levene p-value

Women
log(WHR) < 2.2 · 10−16 < 2.2 · 10−16

log(BMI) < 2.2 · 10−16 3.154 · 10−11

Men
log(WHR) 3.411 · 10−5 1.026 · 10−5

log(BMI) < 2.2 · 10−16 < 2.2 · 10−16

Table C.2: Tests for homogeneity of variance of age subgroups
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C.3 Residuals

The plotted residuals for the linear models

WHR = α0 + αT
1 Xage + αT

2 Xsmoke + αT
3 Xexercise + ε,

log(WHR) = α0 + αT
1 Xage + αT

2 Xsmoke + αT
3 Xexercise + ε,

are presented in Figure C.2. Due to the large number of observations, we are not able to
use the residual plots to discover trends in the distribution of residuals.

(a) Women, no transform (b) Women, log-transform

(c) Men, no transform (d) Men, log-transform

Figure C.2: Residuals
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Appendix D

R code

D.1 Score tests

Cross-sectional

scorenormal=function(phenotypes,covariates,genotypes){

y=phenotypes; x=covariates; g=genotypes

n=length(y); px=dim(x)[2]; pg=dim(g)[2]

fit=mlesnormal(y,x)

alpha0=fit[1]; alpha=fit[2:(length(fit)-1)];

sigma=fit[length(fit)]; sigma2=sigma*sigma

I11_11=n; I11_22=matrix(0,nrow=px,ncol=px)

for (i in 1:n){I11_22=I11_22 + x[i,]%*%t(x[i,])}; I11_33=2*n

I11_21=n*matrix(colMeans(x)); I11_12=t(I11_21)

I11_31=0; I11_13=0

I11_32=matrix(0,nrow=1,ncol=px); I11_23=t(I11_32)

I11=cbind(rbind(I11_11,I11_21,I11_31),

rbind(I11_12,I11_22,I11_32),

rbind(I11_13,I11_23,I11_33))

I22=matrix(0,nrow=pg,ncol=pg);

for (i in 1:n){I22=I22 + g[i,]%*%t(g[i,])}

I21_1=matrix(n*colMeans(g)); I21_3=matrix(0,nrow=pg,ncol=1)

I21_2=matrix(0,nrow=pg,ncol=px)

for (i in 1:n){I21_2=I21_2 + g[i,]%*%t(x[i,])}

I21=cbind(I21_1,I21_2,I21_3)

sigmastar=(1/sigma2)*(I22 - I21%*%ginv(I11)%*%t(I21))

s=matrix(0,nrow=pg,ncol=1)

for (i in 1:n){s=s + (y[i]-alpha0-alpha%*%x[i,])*g[i,]}

s=s/sigma2

t=t(s)%*%ginv(sigmastar)%*%s

pval=pchisq(t,pg,lower.tail=F)
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return(pval)

}

Conditional

scoreconditional=function(phenotypes,covariates,genotypes,l,u){

y=phenotypes; x=covariates; g=genotypes

n=length(y); px=dim(x)[2]; pg=dim(g)[2]

fit=mlesconditional(y,x,l,u)

alpha0=fit[1]; alpha=fit[2:(length(fit)-1)]

sigma=fit[length(fit)]; sigma2=sigma*sigma

ax=x%*%alpha

zl=(l-alpha0-ax)/sigma; zu=(u-alpha0-ax)/sigma

h0=(-dnorm(zu)+dnorm(zl))/(1-pnorm(zu)+pnorm(zl))

h1=(-dnorm(zu)*zu+dnorm(zl)*zl)/(1-pnorm(zu)+pnorm(zl))

h2=(-dnorm(zu)*zu*zu+dnorm(zl)*zl*zl)/(1-pnorm(zu)+pnorm(zl))

h3=(-dnorm(zu)*zu*zu*zu+dnorm(zl)*zl*zl*zl)/(1-pnorm(zu)+pnorm(zl))

a=1-h1-h0*h0

b=2*h0 - h2 - h0*h1

c=2 + 3*h1 - h3 - h1*h1

I11_11=sum(a); I11_22=matrix(0,nrow=px,ncol=px)

for (i in 1:n){I11_22=I11_22 + a[i]*x[i,]%*%t(x[i,])}

I11_21=matrix(0,nrow=px,ncol=1)

for (i in 1:n){I11_21=I11_21 + a[i]*x[i,]}; I11_12=t(I11_21)

I11_33=sum(c); I11_31=sum(b); I11_13=sum(b)

I11_23=matrix(0,nrow=px,ncol=1)

for (i in 1:n){I11_23=I11_23 + b[i]*x[i,]}; I11_32=t(I11_23)

I11=cbind(rbind(I11_11,I11_21,I11_31),

rbind(I11_12,I11_22,I11_32),

rbind(I11_13,I11_23,I11_33))

I22=matrix(0,nrow=pg,ncol=pg)

for (i in 1:n){I22=I22 + a[i]*g[i,]%*%t(g[i,])}

I21_1=matrix(0,nrow=pg,ncol=1)

for (i in 1:n){I21_1=I21_1 + a[i]*g[i,]}

I21_2=matrix(0,nrow=pg,ncol=px)

for (i in 1:n){I21_2=I21_2 + a[i]*g[i,]%*%t(x[i,])}

I21_3=matrix(0,nrow=pg,ncol=1)

for (i in 1:n){I21_3=I21_3 + b[i]*g[i,]}

I21=cbind(I21_1,I21_2,I21_3); I12=t(I21)
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sigmastar=(1/sigma2)*(I22 - I21%*%ginv(I11)%*%t(I21))

s=matrix(0,nrow=pg,ncol=1)

for (i in 1:n){s=s + (y[i]-alpha0-ax[i] + sigma*h0[i])*g[i,]}

s=s/sigma2

t=t(s)%*%ginv(sigmastar)%*%s

pval=pchisq(t,pg,lower.tail=F)

return(pval)

}

D.2 Rare variant methods

The collapsing method

collapsing=function(phenotypes,covariates,genotypes){

collapsedgens=rowSums(genotypes)

collapsedgens[collapsedgens>0]=1

pval=scorenormal(phenotypes,covariates,as.matrix(collapsedgens))

return(pval)

}

collapsingconditional=function(phenotypes,covariates,genotypes,l,u){

collapsedgens=rowSums(genotypes)

collapsedgens[collapsedgens>0]=1

pval=scoreconditional(phenotypes,covariates,

as.matrix(collapsedgens),l,u)

return(pval)

}

The CMC method

collapse=function(genotypes,mafs){

uncollapsed=genotypes[,mafs>=0.05]

collapsedgens=rowSums(genotypes[,mafs<0.05])

collapsedgens[collapsedgens>0]=1

return(cbind(uncollapsed,collapsedgens))

}

cmc=function(phenotypes,covariates,genotypes,mafs){

newgen=collapse(genotypes,mafs)

pval=scorenormal(phenotypes,covariates,as.matrix(newgen))

return(pval)

}

cmcconditional=function(phenotypes,covariates,genotypes,mafs,l,u){

newgen=collapse(genotypes,mafs)

pval=scoreconditional(phenotypes,covariates,as.matrix(newgen),l,u)

return(pval)

}
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The β-SO method

betasmooth=function(phenotypes,covariates,genotypes,positions){

bbasis=15; order=4

betabasis =create.bspline.basis(norder=order,nbasis=bbasis)

B=eval.basis(positions,betabasis)

UJ=genotypes %*% B

pval=scorenormal(phenotypes,covariates,UJ)

return(pval)

}

betasmoothconditional= function(phenotypes,covariates,

genotypes,positions,l,u){

bbasis= 15; order = 4

betabasis =create.bspline.basis(norder=order,nbasis=bbasis)

B=eval.basis(positions,betabasis)

UJ=genotypes %*% B

pval=scoreconditional(phenotypes,covariates,UJ,l,u)

return(pval)

}

Using the SKAT methods in a cross-sectional sample

obj=SKAT_Null_Model(pheno ~ cov,out_type="C")

pval_skat=SKAT(geno,obj)$p.value

pval4_skato=SKAT(geno,obj,method="optimal.adj")$p.value

Using the SKAT methods in an EPS sample

obj=SKAT_Null_Model_CEP(pheno ~ cov,l,u)

pval_skat=SKAT(geno,obj)$p.value

pval_skato=SKAT(geno,obj,method="optimal.adj")$p.value
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