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Abstract 
For an ICME (Integrated Computational Material Engineering) modeling framework used 

for the age-hardening aluminum alloy design and heat treatment parameters optimization, it is 

critical to take into account the geometric shape of precipitates, as it is tightly related to the 

precipitation kinetics and particles' hardening effect. The aim of this paper is to present such 

an ICME modeling approach to describe the precipitation of disk-shaped hardening particles 

during aging treatment and predict the final yield strength. The classical Kampmann-Wagner 

Numerical (KWN) model, which assumes the particles are spherical, is extended to consider 

the influence of particle morphology on growth kinetics. The extension consists of two 

correction factors, to the growth rate equation and to the Gibbs-Thomson effect. The extended 

model, coupled with a metastable thermodynamic database, is applied to simulate precipitation 

kinetics of binary Al-Cu alloys during aging. The predicted microstructural features are in 

reasonable agreement with the reported experimental observations. Furthermore, a 

strengthening model for disk-shaped particles is developed based on size distributions of the 

precipitates. The predicted yield strengths are compared with reported tensile test results and 

with predictions from other strength models. Unlike other models, the proposed strength model 

can reveal the strength contribution from disk-shaped precipitates without an additional 

parameter to tune the impact of the mean particle spacing in the slip plane. The proposed 

integrated framework is verified for binary alloys, but the framework is of more general 

interest, being applicable to multi-component aluminum alloys. 
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1. Introduction 
The shape of hardening particles in heat-treatable aluminum alloys is often non-spherical. 

Typical examples are needle-shaped β′′  precipitates in Al-Mg-Si [1] and disk-shaped θ′ 

precipitates in Al-Cu [2] alloys. Previously, many microstructure and mechanical properties 

models employed an assumption of spherical precipitates [3-5]. However, the development of 

models for microstructure evolution and strength for non-spherical particles (including needle, 

disk, and other complex shapes) is crucial for the Integrated Computational Materials 

Engineering (ICME) framework to optimize industrial alloy compositions and heat treatment 

processes for metallic materials [6].  

Research efforts towards microstructure modeling have been reported [6-10], which can 

be divided into two categories: The Kampmann-Wagner Numerical (KWN) approach and the 

phase field method. The KWN approach has also been successfully applied to predict as-cast 

grain size of inoculated multi-component aluminum alloys [11], model the homogenization 

process in AA3XXX [12] and AA6XXX [13, 14], as well as to simulate concurrent nucleation, 

growth, and coarsening of multi precipitates during aging treatment in Al-Mg-Si alloys [15]. 

When it comes to the applications within industrial alloy design/processing parameter 

optimization problems, this type of approach is superior to the accurate, but computationally-

expensive, phase field approach [15]. The KWN method excels at addressing the multi-scale 

and multi-component industrial problems due to its mathematical simplicity and convenient 

coupling with the CALPHAD database. Both of the two approaches have been applied to non-

spherical particles growth [6, 8, 10]. The phase field method can even be employed to pin down 

the most important physical properties in determining the final shape of precipitates for Al-Cu 

alloys, i.e. the growth anisotropy [10].  

Disk-shaped or plate-shaped hardening particles are encountered during aging treatment 

of many alloys. Examples include disk θ′ precipitates in Al-Cu [2], lath S precipitates in Al-

Cu-Mg [16], platelet η' precipitates in Al-Zn-Mg [17], plate β2′  precipitates in Mg-Zn [18], 

plate γ′ precipitates in Mg-Y-Zn [19], disk γ′′ precipitates in Inconel 718 [20], and disk δ −

Ni2Si precipitates in Cu-Ni-Si alloys [21]. It is important to treat this kind of shape to enable 

the application of KWN model to these industrial alloys. Such an extension is straightforward 

following the methodology, earlier applied successfully to case studies in Refs. [6, 8]. This 

approach is based on a full analytical solution to the volume diffusion-controlled growth of the 

particles.  



The diffusion solution for oblate spheroids with constant aspect ratio was provided by Ham 

[22] and by Horvay and Cahn [23] (HHC). Chen and Doherty [24] applied the HHC theory to 

Al-Cu alloys and compared predicted growth rates with measured values. Liu et al. [25] also 

utilized the HHC theory but somehow used different equations to model the aging process of 

heat-treatable aluminum alloys containing plate/disc- or rod/needle- shaped precipitates. 

Recently, this method has been adopted by Hu et al. [26] to predict the growth process of disk-

shaped θ′ precipitates in Al-Cu-Cd alloys. The mathematical problem related to non-spherical 

particle growth is also of interests to the researchers in other disciplines. In a work considering 

the inorganic carbon uptake by phytoplankton, Wolf-Gladrow and Riebesell [27] found that 

the increase in the surface to volume ratio of spheroids enhances the potential supply of solutes 

per unit cell. Thus, they proposed a surface area equivalent concept to treat non-spherical 

particle’s growth. However, their hypothesis needs to be verified by direct mathematical 

solutions. 

Recently two simple correction factors were introduced to describe the effects of the 

particle shape on growth kinetics [6, 8]. The general idea was to obtain one correction factor 

by solving the steady-state diffusion problem for the particle shape of interest. The other factor 

modifies the Gibbs–Thomson effect and can be derived from the Gibbs energy minimization 

principle for the considered particle shape. Holmedal et al. [6, 8] worked out correction factors 

for needle-shaped particles, based on the analytical solution of the diffusion problem by Ham 

[22, 28], and by numerical solution of the diffusion problem for cuboid shapes. The correction 

factors were implemented into a KWN model framework and tested by predicting the 

precipitation kinetics of needle-shaped β′′ precipitates in Al-Mg-Si alloys [6, 8], where these 

extensions led to a better agreement with the experimental measurements on particle size 

distributions.  

The concept of applying two correction factors was later adopted in the Thermo-calc 

software [29, 30], following the methodology suggested in [6, 8]. They considered spheroid 

shapes and applied the same analytical solution of the diffusion solution by Ham [22, 28], but 

also included oblate spheroid shapes as an approximation of disk-shaped precipitates. They 

took a step further to account for shape evolution by minimizing the sum of coherent elastic 

strain energy and interfacial energy. However, their correction factor for the Gibbs Thomson 

effect differs significantly from the one suggested by Holmedal et al. [6, 8]. Their treatment of 

the Gibbs Thomson effect follows the classical outline of Ref. [31]. It is simply assumed that 

the particle surface will have the equilibrium shape, allowing both curvature and facets with 

corners, and that this shape is dictated by the anisotropy of the surface energy according to the 

Wulff’s solution. The surface energy has to be specified only at one reference point at the 



particle surface, its further directional variation is dictated by the prescribed particle shape. In 

general, this solution is interesting, and could be extended to include other origins of 

anisotropies. For the current treatment, it corresponds to, that the particle grows fastest in 

directions normal to particle surface parts with lowest surface energy. This is not the case when 

the particle has coherent or partly coherent surfaces that are constrained from bowing out, i.e. 

surface growth in the surface normal direction is constrained and surface curvature is restricted. 

For example, the 𝛽𝛽′′ precipitates considered in [6, 8] are needle shaped with a higher surface 

energy for their end surfaces than for their coherent side surfaces, but they still increase their 

aspect ratio by elongating faster in their needle direction. The reason is that the surface 

formation is constrained. When a particle is forced to remain cuboid in shape and only grows 

in the needle direction, the areas of the top and bottom surfaces of the needle remain the same, 

and only new side surfaces are created. This has a low cost in terms of surface energy. When 

the needle thickens, the energy cost is mainly due to the increased areas of the needle end 

surfaces corresponding high surface energy. The treatment of Gibbs Thomson effect from 

Thermo-calc software [29, 30] has the potential to be extended to account for the growth 

constraints,  which act opposite effect on the growth rate as the one applied in [6, 8]. 

In this paper, the same methodology as the one we employed for prolate-shaped particles 

[6, 8] is applied to describe the growth kinetics of disk-shaped particles. The four types of 

treatments mentioned above will be evaluated in Section 2.1 to reveal their advantages and 

disadvantages. We believe such an evaluation, which is lacking in the literature, is useful for 

any further development along this research front. Finally, a reasonable treatment is chosen 

and combined with the correction factor for the Gibbs-Thomson effect to extend the KWN 

model. 

Another novelty of this work is to propose a strength model for disk-shaped particles. 

Thus, the importance of introducing particle morphology and particle size distributions in the 

whole ICME framework is further revealed. Earlier works [3, 4, 9, 25, 26, 32-35] deal with 

strength contributions from precipitates according to the theories by Friedel [36] and Kocks 

[37]. In these theories two parameters are required, i.e. the mean distance between dislocation 

obstacles in the slip plane and the mean obstacle strength. In terms of estimating the mean 

distance between dislocation obstacles in the slip plane, it is quite common to use a simplified 

model based on the mean particle spacing in the slip plane, assuming that the particles are 

uniformly distributed and have the mean size [3, 4, 9, 25, 26, 32-35]. Note that previous 

strength models for non-spherical precipitates [3, 4, 9, 26, 33, 34] provide different models for 

strong and weak particles [9, 33, 34] or introduce an additional calibration parameter to treat 

the strength contribution from non-spherical precipitates [3, 4, 26]. For the second parameter, 



the mean obstacle strength, a common way is to make an average of the strengths of all 

precipitates [3, 4]. However, it is well known that thin, long, needle-shaped precipitates pierce 

many slip planes and therefore contribute with a higher number of dislocation obstacles than 

spherical particles [38]. It can be further improved by using an average of the strengths of all 

particle based dislocation obstacles in the slip plane considering the size and shape distributions 

of the precipitates. This strength model has been applied to the AA6082 alloy [38]. This current 

paper provides an extension of this strength model to cases of disk-shaped precipitates. 

Furthermore, an integration of the extended KWN and the strength model is made, using the 

predicted size distribution of the precipitates as input. The integrated framework is verified by 

simulating precipitation kinetics and strengthening responses of binary Al-Cu alloys during 

aging. Please note that this methodology is also applicable to multi-component aluminum 

alloys and can be further deployed to other metallic materials. 

The goal of the paper is to reveal the effect of particle shape on precipitation kinetics and 

mechanical properties. The paper is organized as follows. Section 2 describes the extended 

KWN model for disk-shaped precipitates. Section 3 concentrates on the novel strength model 

for disk-shaped precipitates. Section 4 compares the reported experimental data with the 

predicted results. A discussion is given in Section 5. 

 

2. The extension of the KWN model toward disk-shaped particles 
Previously, the KWN model for needle-shaped precipitates has been reported in [6, 8]. 

The KWN modeling framework of the current model is quite similar and not described here. 

The new extension consists of two correction factors: one is for growth rate equation and the 

other is for Gibbs-Thomson effect. They are described in the following two subsections. 

 

2.1. The correction factor for growth rate equation 

For diffusion-controlled growth, the key in deriving the growth rate is to calculate the 

diffusional transportation rate of solute to the migrating interface. Following Ham's treatment 

[22], a disk-shaped precipitate is approximated as an oblate spheroid, as shown in Figure 1, 

with a thickness of L and radius of 𝑟𝑟0: 

 𝑥𝑥2 + 𝑦𝑦2

𝑟𝑟02
+

4𝑧𝑧2

𝐿𝐿2
= 1 (1) 

Here  𝐿𝐿/2 < 𝑟𝑟0. The aspect ratio is defined as 𝛼𝛼 = 𝐿𝐿/(2𝑟𝑟0). The volume, V, of the oblate 

spheroid is  

 𝑉𝑉 =
2𝜋𝜋
3
𝑟𝑟02𝐿𝐿 (2) 

The eccentricity e and surface area, S are given by 



 𝑒𝑒 = �1 −
𝐿𝐿2

4𝑟𝑟02
= �1 − 𝛼𝛼2 (3a) 

 𝑆𝑆 = 2𝜋𝜋𝑟𝑟02 �1 +
1 − 𝑒𝑒2

𝑒𝑒
tanh−1𝑒𝑒� (3b) 

It is useful to define a radius, R, of an equivalent sphere (see Figure 1), whose volume is 

identical to the spheroid: 

 𝑅𝑅 = �𝐿𝐿𝑟𝑟0
2

2

3

 (4) 

As to be shown later, the precipitation kinetics of the spheroid particle and its spherical 

equivalent are closely related.  

The oblate spheroidal coordinate is employed in the following analysis. The relationship 

between oblate spheroidal coordinates and Cartesian coordinates is as follows: 

 𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎cos𝜙𝜙 (5a) 

 𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑎𝑎sin𝜙𝜙 (5b) 

 𝑧𝑧2 = 𝑎𝑎2(𝑎𝑎2 − 1)(1 − 𝑎𝑎2) (5c) 

Here, 

 𝑎𝑎 =
1
2
�4𝑟𝑟02 − 𝐿𝐿2 (5d) 

Here ξ ∈ [1,∞), η ∈ [−1,1], and 𝜙𝜙 ∈ [0,2π). 

 

 
Figure 1 Schematic diagram of the oblate spheroid and its volume-equivalent sphere. 

 

It is assumed that the compositional profile of solute i in the front of the migrating 

precipitate-matrix interface satisfies the steady-state diffusion equation, and that the boundary 

conditions at the migrating interface and at the far-field boundary are angle-independent. 

Therefore we have 



 ∇2𝑐𝑐𝑖𝑖 = 0 (6) 

with the boundary conditions of 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑚𝑚 for ξ→ ∞, i.e. on a sphere of infinite radius, and 

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑚𝑚 + ∆𝑐𝑐𝑖𝑖 on the oblate surface, i.e. 𝑎𝑎 = 𝑎𝑎0 = 2𝑟𝑟0/�4𝑟𝑟02 − 𝐿𝐿2. 

According to the analytical solutions of Eq. (6) found in reference [22] for oblate 

spheroids, the compositional profile surrounding a growing spheroid with the dimension of 𝑎𝑎0 

is described by: 

 𝑐𝑐𝑖𝑖(𝑎𝑎) = 𝑐𝑐𝑖𝑖𝑚𝑚 + ∆𝑐𝑐𝑖𝑖 �1 −
arccos(𝑎𝑎−1) − arccos(𝑎𝑎0−1)

arcsin (𝑎𝑎0−1) � (7) 

Eq. (7) should be contrasted with the compositional profile surrounding the equivalent 

volume spherical precipitate: 

 𝑐𝑐𝑖𝑖spherical(𝑟𝑟) = 𝑐𝑐𝑖𝑖𝑚𝑚 +
∆𝑐𝑐𝑖𝑖
𝑟𝑟
�𝐿𝐿𝑟𝑟0

2

2

3

 (8) 

Here 𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2. From the compositional profiles expressed by Eq. 7 and Eq. 8, the 

following equation can be derived to calculate the flux 𝐽𝐽𝑖𝑖oblate of solute i through the precipitate 

interface for the oblate spheroid, and the flux for the equivalent volume sphere, 𝐽𝐽𝑖𝑖
spherical , 

respectively: 

 𝐽𝐽𝑖𝑖oblate = �(𝑰𝑰.𝒏𝒏)𝑑𝑑𝑑𝑑
𝑠𝑠

 (9) 

Here 𝒏𝒏 is the unit vector normal to the precipitate interface. A vector 𝑰𝑰, with opposite direction 

from 𝒏𝒏, gives the flux of solute i per unit area. 

 𝑰𝑰 = −𝐷𝐷𝑖𝑖
1
𝑎𝑎
�
𝑎𝑎2 − 1
𝑎𝑎2 − 𝑎𝑎2

𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝑎𝑎

 (10a) 

 
𝑑𝑑𝑑𝑑 = 𝑎𝑎2�

𝑎𝑎2 − 𝑎𝑎2

1 − 𝑎𝑎2
𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝜙𝜙 (10b) 

Thus, 

 𝐽𝐽𝑖𝑖oblate =
4𝜋𝜋𝐷𝐷𝑖𝑖∆𝑐𝑐𝑖𝑖𝑟𝑟0𝑒𝑒

arcsin 𝑒𝑒
=

4𝜋𝜋𝐷𝐷𝑖𝑖∆𝑐𝑐𝑖𝑖𝑟𝑟0𝑒𝑒

arctan � 𝑒𝑒
√1 − 𝑒𝑒2

�
 (11a) 

 
𝐽𝐽𝑖𝑖
spherical = 4𝜋𝜋𝐷𝐷𝑖𝑖∆𝑐𝑐𝑖𝑖�

1
2
𝐿𝐿𝑟𝑟02

3
 (11b) 

The following solute conservation law should be satisfied at the migrating interface: 

 𝐽𝐽𝑖𝑖𝑑𝑑𝑑𝑑 = �𝑐𝑐𝑖𝑖𝑚𝑚 + ∆𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖
𝑝𝑝�  𝑑𝑑𝑉𝑉 (12) 

where 𝑐𝑐𝑖𝑖
𝑝𝑝 is the solute concentration (per volume) of solute i in the particle.  



The rates of the volume change of the oblate spheroid (�̇�𝑉oblate) and the equivalent volume 

sphere (�̇�𝑉spherical) are derived from Eqs.11a and 11b, respectively: 

 �̇�𝑉oblate =
4𝜋𝜋𝐷𝐷𝑖𝑖∆𝑐𝑐𝑖𝑖𝑟𝑟0𝑒𝑒

�𝑐𝑐𝑖𝑖𝑚𝑚 + ∆𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖
𝑝𝑝� arctan � 𝑒𝑒

√1 − 𝑒𝑒2
�
 (13a) 

 �̇�𝑉spherical =
4𝜋𝜋𝐷𝐷𝑖𝑖∆𝑐𝑐𝑖𝑖

�𝑐𝑐𝑖𝑖𝑚𝑚 + ∆𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖
𝑝𝑝�
�𝑟𝑟0

2𝐿𝐿
2

3

 (13b) 

Thus,  

 𝑓𝑓(𝛼𝛼) =
�̇�𝑉oblate

�̇�𝑉spherical
=

√1 − 𝛼𝛼2

√𝛼𝛼3 arccos𝛼𝛼
 (14) 

where 𝑓𝑓(𝛼𝛼) is the correction factor for growth rate equation. In the asymptotic limit of small 

aspect ratios 𝑓𝑓(𝛼𝛼) = 2/(π√𝛼𝛼3 ). Thus, the growth rate of the radius of the spherical particle 

with equivalent volume and the same amount of diffusion flux can be expressed as: 

 
d𝑅𝑅
d𝑑𝑑

=
𝑓𝑓(𝛼𝛼)∆𝑐𝑐𝑖𝑖𝐷𝐷𝑖𝑖

�𝑐𝑐𝑖𝑖𝑚𝑚 + ∆𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖
𝑝𝑝�𝑅𝑅

 (15) 

𝑑𝑑 is the time. 

The dependence of the proposed correction factor for growth rate equation on the aspect 

ratios is shown in Figure 2. With the aspect ratio decreasing from 1 to 0.01, the correction 

factor increases from 1 to 3. Compared with the spherical shape, the oblate shape enhances the 

solute atom transportation rate to the migrating interface, and thus increases the growth rate of 

the precipitate. The introduction of the growth rate correction factor can be regarded as a 

modification of the diffusivity 𝐷𝐷𝑖𝑖, if the precipitate shape remains unchanged.  

In addition, the correction factors reported in Ref. [24, 25, 27] are also derived (see 

Appendix A) and compared with the proposed correction factor in Figure 2. Note that Chen 

and Doherty’s correction factor is supersaturation-dependent, and a Matlab script was made to 

solve the nonlinear equation A3 iteratively, and then to derive the correction factor for each 

supersaturation. As can be seen from Figure 2, the correction factor from Chen and Doherty 

[24] increases more sharply with decreasing aspect ratio when the supersaturation increases. 

When the supersaturation is very low, results from Chen and Doherty’s [24], Wolf-Gladrow 

and Riebesell’s [27], and our proposed method are quite close. In comparison, Liu et al.’s result 

[25] is smaller than the others. Moreover, when the aspect ratio is equal to one, the correction 

factor from Ref. [25] is significantly smaller than unity, and the one from Ref. [24] decreases 

from about 1.6 at the supersaturation of 0.1 to close to 1.0 at the supersaturation of 0.0005. 

Only Wolf-Gladrow and Riebesell’s [27] and our models degenerate to the spherical case.  



Among these four correction factors, it is found that Liu et al.’s [25] method 

underestimates the growth rate of oblate-shaped particles and also does not degenerate to the 

spherical one when the aspect ratio is equal to one. Wolf-Gladrow and Riebesell’s [27] method 

is based on the hypothesis that the correction factor can be estimated from the surface area of 

the non-spherical particle, so their results need to be verified by much more detailed 

mathematical solutions such as the phase field method. The correction factor from Chen and 

Doherty [24] depends on both the supersaturation and aspect ratio and may be a better choice 

in handling solute-rich alloys such as Ni-based superalloys. However, it is not straightforward 

to employ this correction factor to extend the KWN model. For the age-hardening aluminum 

alloy with low supersaturation, the model proposed here, is capable to predict its 

microstructural evolution with good numerical efficiency and robustness. 

The particles sometimes are better approximated by a cuboid plate shape as shown in 

Figure 4. For this geometry, a numerical solution of the diffusion solution was carried out. The 

numerical solution is equal as reported in [8] for cases of cuboid needle-shaped particles, except 

for the choice of aspect ratio smaller than one. Hence, details about the simulations are not 

described here. For small aspect ratios, the diffusion is controlled by the plate area of the 

particle, and an asymptotic solution can be found (numerical) as 𝑓𝑓(𝛼𝛼) = 0.59/√𝛼𝛼3 . This 

solution is similar as for the oblate spheroid shape with the same 𝛼𝛼−1/3 dependency, and for 

aspect ratios 𝛼𝛼 < 0.1 this is a good approximation. The correction factor for cuboid plates from 

the numerical simulations is included in Figure 2 and is very close to the proposed method. 

Note that the volume of a cuboid plate particle is larger than of an oblate-shaped particle with 

the same aspect ratio.  

 



 
Figure 2 Dependences of correction factors of the growth rate on aspect ratios. For Chen and 

Doherty’s report [24], the correction factors depending on supersaturation (from 0.0005 to 

0.1) are shown. 

 

2.2. The correction factor for the Gibbs-Thomson effect 

Due to the Gibbs-Thomson effect, ∆𝑐𝑐𝑖𝑖  is modified differently along the precipitate 

interface due to the interfacial energy anistotropy leading to a variation of local mean curvature, 

𝛾𝛾, which is given by: 

 𝛾𝛾 =
𝐿𝐿 �2𝑟𝑟02 + �𝐿𝐿

2

4 − 𝑟𝑟02� 𝑐𝑐𝑐𝑐𝑐𝑐2𝛽𝛽�

4𝑟𝑟0 �𝑟𝑟02 + �𝐿𝐿
2

4 − 𝑟𝑟02� 𝑐𝑐𝑐𝑐𝑐𝑐2𝛽𝛽�
3/2 , −

𝜋𝜋
2

< 𝛽𝛽 <
𝜋𝜋
2

 (16) 

Here 𝛽𝛽 is the parametric latitude. As mentioned in the previous work [8], the treatment of the 

variation of solute concentration along a non-spherical particle interface is a difficult task. In 

[8], two simplified approximate methods were considered, both assuming that the shape of the 

particle is known a priori and changing slowly. Note that this type of model accounts for the 

shape change in terms of the diffusion solution but cannot be applied to predict the shape 

change. One such way to simplify the mathematical treatment is to apply averages of the 

interfacial energy and of the local curvature variation, i.e. to assume that the Gibbs-Thomson 

effect to the interfacial matrix composition on the whole non-spherical surface is represented 

by the average local mean curvature of the spheroid surface, 𝛾𝛾mean. 



 𝛾𝛾mean =
1
𝜋𝜋
�

𝐿𝐿
2 �2𝑟𝑟02 + �𝐿𝐿

2

4 − 𝑟𝑟02� 𝑐𝑐𝑐𝑐𝑐𝑐2𝛽𝛽�

2𝑟𝑟0 �𝑟𝑟02 + �𝐿𝐿
2

4 − 𝑟𝑟02� 𝑐𝑐𝑐𝑐𝑐𝑐2𝛽𝛽�
3
2
𝑑𝑑𝛽𝛽

𝜋𝜋
2

−𝜋𝜋2

 (17) 

Thus, the correction factor due to Gibbs-Thomson effect is given: 

 𝑔𝑔(𝛼𝛼)mean = 𝑅𝑅𝛾𝛾mean (18a) 

For the case of a cuboid shape with sharp corners, the local curvature cannot be applied. 

Instead, another approach was applied in [8], taking into account the increase in free energy 

due to the presence of the particle interface. This methodology for the Gibbs-Thomson effect 

of prolate-shaped and cuboid needle-shaped particles was reported in [8]. For the oblate 

spheroid this methodology gives a correction factor: 

 𝑔𝑔(𝛼𝛼)oblate =
1

2𝛼𝛼
2
3
�1 +

𝛼𝛼2

√𝛼𝛼2 − 1
tanh−1�1 − 𝛼𝛼2� (18b) 

For the case of the cuboid plate particle with aspect ratio 𝛽𝛽 (the ratio of thickness and 

width), the correction factor is the same as given in [8] for the case of needle shaped 

particles: 

 𝑔𝑔(𝛽𝛽)cuboid =
(2𝛽𝛽 + 1)

2𝜋𝜋 �
4𝜋𝜋
3𝛽𝛽�

2
3
 (18c) 

The interfacial phase composition, both for cases of oblate-shaped or cuboid particles, can 

be calculated by applying one of the suggested correction factors: 

 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑚𝑚 + ∆𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑚𝑚 exp�
2𝑔𝑔𝑔𝑔𝑉𝑉𝑚𝑚

𝛾𝛾

𝑋𝑋𝑖𝑖
𝛾𝛾𝑅𝑅𝑅𝑅𝑅𝑅

� (19) 

Here 𝑔𝑔 is the interfacial energy. 𝑉𝑉𝑚𝑚
𝛾𝛾 is the average molar volume of 𝛾𝛾 phase. 𝑅𝑅 and 𝑅𝑅 are the 

Boltzmann constant and temperature, respectively. 𝑋𝑋𝑖𝑖
𝛾𝛾 is the molar fraction of element 𝑖𝑖 in the 

𝛾𝛾 phase. 

Figure 3 plots the dependencies of the second correction factor, 𝑔𝑔, on the aspect ratio for 

the three cases considered above. In all three cases, the correction factor increases with 

decreased aspect ratio, except for a slight decrease close to unity for the approximation 

applying the mean curvature. This means that the Gibbs-Thomson effect will increase the 

interfacial solute content, which decreases the solute supplement to precipitates and thus lower 

the growth rate of precipitates. This is opposite to the effect of the first correction factor. The 

second correction factor can be regarded as a modification of the interfacial energy 𝑔𝑔 if the 

precipitate shape remains unchanged.  

 



 
Figure 3 Dependences of the Gibbs-Thomson correction factors on the aspect ratio for three 

cases. 

 

3. Strength model 
When building a strength model for Al-Cu alloys, the particles are the precipitates with a 

shape corresponding approximately to cuboid plates aligned with {001}  aluminum matrix 

planes, see e.g. in Ref. [39]. Let the half-diagonal of the particles be denoted 𝑟𝑟. Such particles, 

aligned with on {001} planes, will interact with dislocations gliding on the {111} planes, 

provided the center of the particle is closer than √3𝑟𝑟/3 from the {111} slip plane, as illustrated 

in Figure 4. The cross-sectional area that is intersected by the glide plane, varies with how close 

the particle is located. A statistical distribution of the particle half-diagonal is considered. A 

density 𝜙𝜙(𝑟𝑟) denotes the number of particles of size 𝑟𝑟 per volume and per half-diagonal length. 

Hence ∫ 𝜙𝜙𝑑𝑑𝑟𝑟∞
0 = 𝑁𝑁𝑉𝑉, where 𝑁𝑁𝑉𝑉 is the number of particles per volume. 

 



 
Figure 4 Schematic diagram of cuboid-plates particles aligned with {001} planes and 

interacting with dislocations gliding on the (111) plane. 

A small area 𝛿𝛿𝑑𝑑 of the (111) slip plane is considered in Figure 4. Particles with size 𝑟𝑟 

aligned not only with (001), but also  (100) or (010), will pierce this glide plane if they are 

located closer than ±√3𝑟𝑟/3 away from it. Note that this is an estimate for thin particles; this 

length will change with increased thickness, towards ±𝑟𝑟  for spherical particles. A control 

volume 𝛿𝛿𝑉𝑉 = 𝛿𝛿𝑑𝑑 2√3𝑟𝑟/3 contains all such particles, as sketched in Figure 4. The expected 

number of such intersecting particles in this control volume, i.e. particles of size between 𝑟𝑟 −

𝑑𝑑𝑟𝑟/2 and 𝑟𝑟 + 𝑑𝑑𝑟𝑟/2 that intersects the slip plane area 𝛿𝛿𝑑𝑑, can be expressed from the statistical 

distribution. 

 𝑑𝑑𝑁𝑁𝑟𝑟 = 𝛿𝛿𝑑𝑑
2√3

3
𝑟𝑟𝜙𝜙 𝑑𝑑𝑟𝑟 (20a) 

The density of particle-based pinning points per area slip plane is denoted 𝑛𝑛. The density 

of pinning points per area slip plane of size between 𝑟𝑟 − 𝑑𝑑𝑟𝑟/2 and 𝑟𝑟 + 𝑑𝑑𝑟𝑟/2 is denoted 𝑑𝑑𝑛𝑛. 

Then the number of particles of size between 𝑟𝑟 − 𝑑𝑑𝑟𝑟/2 and 𝑟𝑟 + 𝑑𝑑𝑟𝑟/2 that intersects the slip 

plane area 𝛿𝛿𝑑𝑑, can alternatively be expressed 

 𝛿𝛿𝑑𝑑 𝑑𝑑𝑛𝑛 = 𝜁𝜁𝑑𝑑𝑁𝑁𝑟𝑟 = 𝛿𝛿𝑑𝑑
2𝜁𝜁√3

3
𝑟𝑟𝜙𝜙 𝑑𝑑𝑟𝑟 (20b) 

When the distance between the particles is significantly larger than 𝑟𝑟 , each particle 

intersection of the slip plane counts as one pinning point, corresponding to 𝜁𝜁 = 1. However, 

when the particles are close to each other, which is the case close to peak hardness, the width 

of the particle matters. When the distance between the plates is of the same order of magnitude 

as 𝑟𝑟, a simple estimate would be to model the plate as four needles along its edges. This 



corresponds to 𝜁𝜁 = 4. It follows that the density of pinning points per area slip plane, 𝑛𝑛, i.e. the 

number of intersecting particles per area slip plane, equals 

 𝑛𝑛 = � 𝑑𝑑𝑛𝑛
𝑛𝑛

0
= �

2𝜁𝜁√3
3

𝑟𝑟𝜙𝜙𝑑𝑑𝑟𝑟
∞

0
=

2𝜁𝜁√3
3

𝑟𝑟𝑁𝑁𝑉𝑉 (21) 

Here, 𝑟𝑟  is the average particle radius. The particles act as obstacles for the dislocation 

movement. Their non-dimensional obstacle strength is 𝑓𝑓 = cos(𝜙𝜙𝑐𝑐/2), where 𝜙𝜙𝑐𝑐 is the critical 

breaking angle of the dislocation. The largest particles are non-shearable with 𝑓𝑓 = 1, whereas 

the dislocations can glide through sufficiently weak, shearable particles. The energy required 

for cutting increases with increasing area of the section of the particle that the dislocation cuts 

through. Furthermore, the dislocation cuts the particle obliquely. Depending on the line 

direction of the dislocation as compared to the particle orientation, a certain length of the 

dislocation has to cut (glide) through the particle. This will be a length between the thickness 

and the width of the intersected plane of the plate type of particle. When doing so, a one Burgers 

vector step of new particle interface area is created on entering and leaving, and the internal 

structure of the particle is modified. The details are complicated and not fully explored. We 

will here make the pragmatic and simple assumption that the non-dimensional obstacle strength 

increases proportionally to the cross-sectional area of the particle that the dislocation has to 

cut. However, at a certain critical area, 𝑎𝑎𝑐𝑐, the particle will act as a strong particle. 

The average strength of all particles or pinning points experienced by a slip plane area 𝛿𝛿𝑑𝑑, 

can be expressed 

 𝑓𝑓 =
∫ 𝛿𝛿𝑑𝑑𝑓𝑓𝑟𝑟𝑑𝑑𝑛𝑛
∞
0

∫ 𝛿𝛿𝑑𝑑𝑑𝑑𝑛𝑛∞
0

=
∫ 𝑓𝑓𝑟𝑟

2𝜁𝜁√3
3 𝜙𝜙𝑟𝑟𝑑𝑑𝑟𝑟∞

0

∫ 2𝜁𝜁√3
3 𝜙𝜙𝑟𝑟𝑑𝑑𝑟𝑟∞

0

=
1
𝑟𝑟𝑁𝑁𝑉𝑉

� 𝑓𝑓𝑟𝑟𝜙𝜙𝑟𝑟𝑑𝑑𝑟𝑟
∞

0
 (22) 

Here 𝑓𝑓𝑟𝑟 is the average cutting strength of a particle of half-diagonal 𝑟𝑟. Note that the average 

strength values for all particles and for pinning points are the same. 

A correlation between particle thickness 𝑑𝑑 and half-diagonal 𝑟𝑟 is assumed 

 Ω =
𝑟𝑟
𝑑𝑑
 (23) 

It is assumed that the cutting strength depends on the cut area as 

 𝑓𝑓 = min �
𝑎𝑎
𝑎𝑎𝑐𝑐

, 1� (24) 

The cross-sectional area 𝑎𝑎 of a cuboid plate varies with where the dislocation cuts it, with a 

maximum when it glides through the particle center. One particle contributes with many 

pinning potential points, one for each slip-plane intersection. Each intersection corresponds to 

a specific cutting strength. Hence, the same particle can act as both a strong or weak pinning 



point for different slip planes cutting through. The average cutting strength of a particle of 

radius 𝑟𝑟 is 

 𝑓𝑓𝑟𝑟 =
1
𝑟𝑟
� 𝑓𝑓𝑑𝑑𝑧𝑧
𝑟𝑟

0
=

1
𝑟𝑟
� min �

𝑎𝑎
𝑎𝑎𝑐𝑐

, 1� 𝑑𝑑𝑧𝑧
𝑟𝑟

0
 (25) 

For the cuboid plate with max thickness 𝑑𝑑 and diagonal 2𝑟𝑟, the cut area through the particle 

varies linearly with the distance 𝑧𝑧  between the particle center and where the glide plane 

intersects the major axis, i.e. 𝑎𝑎 = √6𝑑𝑑(𝑟𝑟 − |𝑧𝑧|)/2. The max area is 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  = √6𝑟𝑟𝑑𝑑/2. When 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑎𝑎𝑐𝑐, the critical area size will occur at 𝑧𝑧𝑐𝑐 = 𝑟𝑟 − √6𝑎𝑎𝑐𝑐/(3𝑑𝑑). The average pinning point 

strength for all glide planes being cut, is  

 𝑓𝑓𝑟𝑟 =

⎩
⎪
⎨

⎪
⎧√6𝑟𝑟𝑑𝑑

4𝑎𝑎𝑐𝑐
 ,        

√6𝑟𝑟𝑑𝑑
2

< 𝑎𝑎𝑐𝑐

1 −
√6𝑎𝑎𝑐𝑐
6𝑟𝑟𝑑𝑑

,         
√6𝑟𝑟𝑑𝑑

2
≥ 𝑎𝑎𝑐𝑐

 (26) 

Finally, based on discrete dislocation simulations, the strength contribution 𝑔𝑔𝑝𝑝 from the 

particles can be expressed [38] 

 𝑔𝑔𝑝𝑝 = 0.9𝑀𝑀𝑀𝑀𝑀𝑀√𝑛𝑛 𝑓𝑓
3
2 �1 −

1
6
𝑓𝑓
5
� (27) 

where 𝑀𝑀 is the Taylor factor. 𝑀𝑀 is the aluminum shear modulus, and 𝑀𝑀 is the Burgers vector. 

𝑀𝑀 = 3 , 𝑀𝑀 = 22.8 𝐺𝐺𝐺𝐺𝑎𝑎 , 𝑀𝑀 = 0.286 𝑛𝑛𝑛𝑛  will be used. Thus, the overall yield strength 𝑔𝑔𝑦𝑦  is 

calculated by summing three contributions: 

 𝑔𝑔𝑦𝑦 = 𝑔𝑔0+𝑔𝑔𝑠𝑠𝑠𝑠 + 𝑔𝑔𝑝𝑝 (28) 

where 𝑔𝑔0 is the intrinsic strength of Al, equal to 45 MPa [40]; 𝑔𝑔𝑠𝑠𝑠𝑠 is the contribution from solid 

solution strengthening, described by 

 𝑔𝑔𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑐𝑐𝑖𝑖𝑚𝑚
2/3 (29) 

where 𝑅𝑅 is a constant related to the size, modulus and electronic mismatch of the solute Cu. 

The value of 60 MPa/(wt. %)2/3 will be used for the Cu element, which is derived from the 

measured initial yield strength [40, 41]. A slightly smaller value of 46.4 MPa/(wt. %)2/3 has 

been used in [3, 4] for the solid solution effect from Cu elements. 

 

4. Models application 
4.1. Experimental data 

The Al-4.62 wt.% Cu-0.65 wt.% Mg (Al-2.01 at.% Cu-0.74 at.%) alloys studied earlier in 

Ref. [25] were selected to verify the extended KWN model. As reported in Ref. [25], the 

dominant precipitates are disk-shaped 𝜃𝜃′  phases in the alloy, while the Mg containing S′ -

Al2CuMg phase is insignificant. Hence the alloy is here in the modelling approximated as a 



binary Al-4.62 wt.% Cu (Al-2.015 at.% Cu) alloy. The reported experimental microstructure 

results for the aging at 513.15K for about 4h [25] are listed in Table 1. 

 

Table 1 Measured average precipitate radius, half of the thickness, aspect ratio, volume 

fraction, and yield strength [25]. 

Aging 

time (h) 

Average 

radius (nm) 

Average half of 

thickness (nm) 

Aspect 

ratio 

Volume 

fraction (%) 

Yield strength 

(MPa) 

0.25 32.5 3.2 0.1 0.81 205 

0.76 59.7 4.3 0.07 1.22 260 

0.96 78 3.9 0.05 2.09 290 

1.57 90 3.0 0.03 3.22 302 

2.55 100 3.7 0.037 3.53 290 

4.14 119.48 5.2 0.04 3.56 270 

 

4.2. Study of the extended KWN model behavior 

The extended KWN model was applied to simulate the precipitation kinetics of the disk-

shaped θ′ phases from the binary Al–4.62 wt.% Cu alloy during aging heat treatment. Two 

modeling assumptions were tested. Both correction factors are reasonable similar for cases of 

oblate spheroids versus cuboid plates and for the two different ways of correcting the Gibbs 

Thomson effect, hence the case of oblate spheroids with a Gibbs Thomson correction factor 

based on the mean curvature was simulated and compared to simulations using the simplest 

assumption of spherical particles without corrections factors. The classical heterogeneous 

nucleation law was adopted. The nucleation law has been described in detail in Ref. [15]. One 

of the important input parameters to the nucleation model is the number of heterogeneous 

nucleation sites. The parameter was assumed to correspond to the measured maximum particle 

number density, 570 µm−3, which is the number density close to 0.25 hours aging treatment. 

In addition to the number of heterogeneous nucleation sites, the other key input parameter to 

the KWN model is the interfacial energy, 𝑔𝑔, which affects both incubation time and coarsening 

rates. Based on a literature survey [42], the interfacial energy for the  θ′ phase ranges from 0.03 

to 0.67 J/m2. The value of 0.06 J/m2 was chosen in the simulation. All input parameters used in 

the model are listed in Table 2.  

 

Table 2 Input parameters used in the simulation. 

Interfacial 

energy (J/m2) 

Molar volume 

(m3/mol) 

Thermodynamic 

database 

Aging 

temperature (K) 

Cu diffusivity 

(m2/s) 

Bjørn Holmedal
Is this the case?



0.06 0.9×10-5 
TCAL4 (Thermo-

Calc) 
513.15 3.45×10-20 

 

Note that the measured aspect ratios vary from 0.03 to 0.1 [15], so a typical value of 0.05 

was chosen as the one used in our simulation. The predicted volume fraction and mean volume-

equivalent spherical radius of the 𝜃𝜃′ phase are compared with experimental measurements in 

Figures 5 and 6, respectively. The KWN model with the oblate shape assumption predicts 

higher volume fraction and larger mean radius of the 𝜃𝜃′ phase than with the spherical-shape 

assumption at the same aging time and agrees much better with the measured volume fraction 

and mean radius of precipitates.  

 

 

 
Figure 5 Experimental and predicted evolutions of the volume fraction of 𝜃𝜃′ phases 

during the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 



 
Figure 6 Experimental and predicted evolutions of the mean radius (equivalent volume) 

of 𝜃𝜃′ phases during the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 

 

Predicted distributions of the precipitate size are shown in Figure 7. The distributions for 

spheroid and oblate precipitates can both be well fitted by log-normal distributions. It should 

be pointed out that no measured data on the size distribution of precipitates was reported in 

Ref. [25]. To further test the strength model, a measured size distribution of oblate precipitates 

of an Al-3 wt.% Cu-0.05 wt.% Sn alloys aged at 473K for 1 hour [34], as shown in Figure 7 

(c), will also be input into the strength model. Note that the main hardening particles in this 

alloy are also 𝜃𝜃′ phases. 

 

 



(a) 

 
(b) 

 
(c) 

Figure 7 Predicted precipitates size distributions during the aging process of Al–4.62 wt.% 

Cu alloys at 513.15K for 1.5 hours (peak aging) using two kinds of assumptions: (a) the 

oblate shape with a constant aspect ratio of 0.05 and (b) the spherical shape; (c) measured 

size distribution of oblate precipitates of Al-3Cu-0.05Sn alloys aging at 473K for 1 hour [34]. 

These distributions are fitted by log-normal distributions. Note that the lines for the transition 

from shearable to non-shearable precipitates are also given. 

 



4.3 Application of the strength model 

It is commonly assumed that the critical size for the transition from shearable to non-

shearable precipitates is close to the average size of the precipitates in the peak aged stage [9, 

38, 43]. This is also assumed here, as input for the strength model, i.e. the value corresponding 

to the critical transition line plotted in Figure 7 is used as an input to the strength model below.  

The strength model was applied to predict the evolution of yield strength during the aging 

process of the considered Al–4.62 wt.% Cu alloys at 513.15K. By comparison, the distributions 

using the spherical assumption were used as input and applying the strength model for spherical 

particles reported in [38]. Predicted results for both these strength models are compared with 

the experiments and shown in Figure 8. Note that the overaged stage is not included, because 

coarsening is not considered in this study. 

 
(a) 



  
(b) 

Figure 8 Predicted strength contributions from (a) solid solution and precipitation using two 

kinds of assumptions, and (b) comparison of measured [25] and predicted yield strength 

evolutions during the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 

As can be seen from Figure 8 (a), the contribution from solid solution strengthening is 

larger and the contribution from precipitation is smaller using the spherical assumption, as 

compared to the model assuming an oblate shape. In total, the yield strength is underestimated 

using the spherical assumption, while the results using the oblate assumption matches well with 

the measured values, as seen in Figure 8 (b). Note that the contribution from solid solution 

strengthening is relatively large in Al–4.62 wt.% Cu alloys as compared to AA6082 [38], which 

is attributed to much higher solute content in the matrix of Al–4.62 wt.% Cu alloys during the 

aging treatment. In fact, the Ref. [25] also exhibited a good prediction of the alloy’s yield 

strength evolution, but it was based on a constant, overestimated value of the solid solution 

strengthening. Thus, it is reasonable to assume that their estimate of the strength contribution 

from hardening particles was too small.  

To further verify the applicability of the proposed strength model, it was also applied to 

predict the yield strength of an Al-3Cu-0.05Sn alloy aged at 473K for 1 hour, using the 

measured size distribution of precipitates (Figure 7 (c)) reported in [34]. The critical transition 

size was chosen as the average size of the precipitates in the peak aged stage (4 hours). The 

predicted yield strength, 200MPa, matches very well the measured value. It should be pointed 

out, that the contribution from solid solution strengthening as predicted in Ref. [34], was 

significantly underestimated to be only about 4 MPa at 1 hour, hence their estimate of the 

strength contribution from precipitates must have been overestimated. Recently, Colombo et 



al. [35] reused the same strength model and parameters as in Ref. [34] and the same 

overestimation of the particle contribution should be expected. 

 

5. Discussion 
An integrated microstructural and strength modeling framework for oblate-shaped 

precipitates has been proposed in this study. The entire framework is summarized in the 

flowchart in Figure 9. Based on the input parameters the extended KWN model will predict the 

size distribution of oblate-shaped precipitates, which is required as input for the subsequent 

strength prediction. The classical CALPHAD-coupled KWN model is extended to account for 

the geometrical shape of the precipitates by the use of two correction factors (Figures 2 and 3), 

and thus it can provide reliable microstructural information (Figures 5, 6 and 7) for the strength 

prediction. Note that the CALPHAD databases could be built on the base of first principle 

calculations and thus the coupling of the KWN model with the databases developed in the 

CALPHAD research community is a scale-bridging feature [15]. The importance of the 

precipitates shape on the precipitation kinetics is emphasized by comparing the predicted 

results using two different assumptions, as shown in Figures 5, 6 and 7. The spherical 

assumption will underestimate the growth process of the oblate-shaped precipitates.  

As mentioned in Section 2, the two correction factors in the extended KWN model have 

opposite effects on the growth rate of disk-shaped particles. The first one, based on the solution 

of the diffusion problem, increases the growth, because of the enhancement of the solute atom 

transportation rate to the growth interface. The second one, related to the Gibbs Thomson 

correction, decreases the growth compared to spherical particles, by enhanced suppression of 

the super-saturation by the Gibbs-Thomson effect. As can be seen from Figures 5 and 6, the 

positive effect on the growth of the first correction factor overwhelms the negative effect of the 

second correction factor. In total, this leads to more rapid growth using the oblate shape 

assumption.  

Recently, another correction factor for the Gibbs-Thomson effect was given in [29, 30]. If 

applied to the coherent precipitates as the case here, their correction factor ignores the effect 

from crystallographic growth constraints as explained in the introduction. However, the 

methodology in [29, 30] is interesting, by taking the coherent elastic strain energy and 

interfacial energy anisotropy into account.  

Some unconformities between experimental data and predicted results can be observed 

from Figures 5 and 6, especially after 2 hours. One uncertainty is attributed to the measurement 

error, which was not assessed in Ref. [25]. This error is often considerable, estimated to be up 

to 40% in [15]. It should be pointed out that it is challenging to accurately measure the size of 



non-spherical particles. Another error source is the thermodynamic database accuracy. The 

measured volume fraction of precipitates after 4 hours aging should be very close to the 

equilibrium fraction. However, the equilibrium fraction given by the database is 0.047, which 

is 30% greater than the experimental value. Moreover, the extended KWN model does not 

consider the elastic strain energy and interfacial energy anisotropy effects, which also affect 

the accuracy of prediction. 

Knowing the alloy composition, the amount of Cu in solid solution can be calculated from 

the size distributions of precipitates and the contribution to the solid solution strengthening is 

given by Eq. 29. Also, the strength contribution from precipitates, obtained by Eq. 27, is based 

on the size distributions of precipitates. The proposed strength model for the oblate-shaped 

particles accurately predicts the contributions from hardening particles and solid solution 

strengthening which were underestimated or overestimated in previous works [25, 34, 35]. The 

advantage of the proposed strength model comes from considering that a disk-shaped particle 

with the same volume as a spherical one pierces more slip planes, i.e. from Eq. 21. Last but not 

least, the size distributions of precipitates bridge the microstructural and strength prediction 

models. This bridging factor makes the predictions become more real and accurate.    

The importance of including the precipitate’s morphology in the modeling has been 

emphasized in this study. The proposed model is rather simple with a minimum of parameters, 

making it efficient and applicable. The surface energy anisotropy of the particles is not 

considered, as it would have to be matched by a more complex diffusion solution to predict 

anisotropic particle growth. The treatment of the particle shape is applicable to more complex 

models, e.g. for the multi-component and multi-phase case [15]. Improved high-resolution 

characterization techniques and lower scale modeling will in the future provide input that 

enables more complex models. Still, the current modeling framework for oblate-shaped 

particles provides reasonable approximations and can be applied to other aluminum alloys 

systems like 7xxx, and also to other metals.    



 
Figure 9 Flowchart of coupled microstructural and strength predictions for the oblate-shaped 

precipitates. Please refer to Ref. [44] for the concept “Gibbs–Thomson phase diagram”. Note 

that the particle size distribution plays a crucial role in integrating different models. 

 

6. Conclusions 
A new integrated microstructural and strength prediction framework has been developed 

for oblate-shaped precipitates. It has been applied to simulate the aging process of a binary Al-

Cu alloy, although the basic treatment of the geometrical shape of the precipitates is applicable 

to other systems and to more complex modeling approaches. The main conclusions are listed 

below: 

• Two correction factors for the oblate-spheroid or cuboid plate-shaped particles are 

calculated for the extended KWN microstructural model. They have opposite influence on the 

growth kinetics of oblate-shaped as compared to spheroid-shaped particles. The correction 

factor for growth rate has a positive effect on the growth kinetics, while the correction factor 

for the Gibbs-Thomson effect has a negative effect. 

• Oblate-shaped precipitates grow faster than spherical precipitates with equivalent 

volume and contribute more to the precipitation strengthening. The improved agreement is 

obtained as compared to experimental results. 

• The previous reports [25, 34, 35] underestimated or overestimated the contributions 

from oblate-shaped hardening particles and solid solution strengthening. The proposed strength 

model considers the size distributions and shape of precipitates and can rightly predict the 

strength contribution from precipitates without a tuning parameter for the mean particle spacing 

in the slip plane. The particle size distribution plays an important role in bridging the 

microstructural and strength models.  
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Appendix A 

In Chen and Doherty’s study [24], the functions of the radius, 𝑟𝑟0, and the half of thickness, 

𝐿𝐿/2, with time 𝑑𝑑 for the oblate spheroid are given: 
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where Ω is the supersaturation. 𝛽𝛽 is a dimensionless growth parameter. Thus, the function of 

volume with time for the oblate spheroid is given: 
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The rates of the volume change of the oblate spheroid (�̇�𝑉Chenoblate) and the equivalent volume 

sphere (�̇�𝑉Chen
spherical) are derived: 
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Thus, 
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In Liu et al.’s study [25], the functions of the radius, 𝑟𝑟0, and the half of thickness, 𝐿𝐿/2, 

with time 𝑑𝑑 for the oblate spheroid are given: 
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Thus, the function of volume with time for the oblate spheroid is given: 
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The rates of the volume change of the oblate spheroid (�̇�𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜𝐿𝐿𝑖𝑖𝐿𝐿) and the equivalent 

volume sphere (�̇�𝑉Liu
spherical) are derived: 
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Thus,  
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In Wolf-Gladrow and Riebesell’s study [27], the flux of solute i through the precipitate 

interface for the oblate spheroid, 𝐽𝐽𝑖𝑖oblate, and the flux for the equivalent volume sphere, 

𝐽𝐽𝑖𝑖
spherical, respectively: 
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And, 
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where 𝑟𝑟area is the radius of a hypothetical sphere with the same surface area as the spheroid. 

The rates of the volume change of the oblate spheroid (�̇�𝑉Woblate) and the equivalent volume 

sphere (�̇�𝑉W
spherical) are derived, respectively: 
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Thus,  
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Figure captions 
Figure 1 Schematic diagram of the oblate spheroid and its volume-equivalent sphere. 

Figure 2 Dependences of correction factors of the growth rate on aspect ratios. For Chen and 

Doherty’s report [24], the correction factors depending on supersaturation (from 0.0005 to 

0.1) are shown. 

Figure 3 Dependences of the Gibbs-Thomson correction factors on the aspect ratios for three 

cases. 

Figure 4 Schematic diagram of cuboid-plates particles aligned with {001} planes and 

interacting with dislocations gliding on the (111) plane. 

Figure 5 Experimental and predicted evolutions of the volume fraction of 𝜃𝜃′ phases during 

the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 

Figure 6 Experimental and predicted evolutions of the mean radius (equivalent volume) of 𝜃𝜃′ 

phases during the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 

Figure 7 Predicted precipitates size distributions during the aging process of Al–4.62 wt.% 

Cu alloys at 513.15K for 1.5 hours (peak aging) using two kinds of assumptions: (a) the 

oblate shape with a constant aspect ratio of 0.05 and (b) the spherical shape; (c) measured 

size distribution of oblate precipitates of Al-3Cu-0.05Sn alloys aging at 473K for 1 hour [34]. 

These distributions are fitted by log-normal distributions. Note that the lines for the transition 

from shearable to non-shearable precipitates are also given. 

Figure 8 Predicted strength contributions from (a) solid solution and precipitation using two 

kinds of assumptions, and (b) comparison of measured [25] and predicted yield strength 

evolutions during the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 

Figure 9 Flowchart of coupled microstructural and strength predictions for the oblate-shaped 

precipitates. Please refer to Ref. [44] for the concept “Gibbs–Thomson phase diagram”. Note 

that the particle size distribution plays a crucial role in integrating different models. 

  



Table captions 
Table 1 Measured average precipitate radius, half of the thickness, aspect ratio, volume 

fraction, and yield strength [25]. 

Table 2 Input parameters used in the simulation. 
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