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Problem Description

The candidate should formulate the problem of making inference for binary Markov
random fields in a Bayesian setting. In particular she should consider how to make
inference on the neighbourhood system and dependence structure of the Markov
random field. She should develop and implement necessary simulation algorithms
to explore the defined model empirically.
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Abstract

In this thesis a reversible jump Markov chain Monte Carlo (MCMC) method for
simulation of the graph structure of a binary Markov random field (MRF) is pre-
sented. The reversible jump MCMC method allows for simulation of both the
graph structure and the parameter values of the MRF. First a Bayesian model for
the problem is described. The prior model used is a slightly altered version of the
spike and slab prior used by Chen and Welling (2012). Next the algorithm for
simulation is presented and the method is then tested for simulated datasets of
different sized based on two example graphs. The algorithm is able to find models
that give good fits to most of the datasets, but we see signs of the algorithm not
converging properly.

Sammendrag

I denne masteroppgaven presenteres en metode for Markovkjedesimulering (MCMC)
for grafstrukturen til et binært Markovfelt. Metoden som presenteres er en metode
som kan simulere modeller med varierende dimensjoner som lar oss simulere både
grafstrukturen og parameterverdiene i Markovfeltet. Vi beskriver først en Bayesiansk
modell for problemet. Apriorimodellen som brukes er en litt endret versjon av "the
spike and slab prior" som presenteres av Chen og Welling (2012). Deretter presen-
teres simuleringsalgoritmen for modellen og til slutt testes algoritmen for simulerte
datasett basert på to forskjellige eksempelgrafer. Algoritmen er i stand til å finne
modeller som passer godt til de fleste datasettene, men vi ser tegn på at algoritmen
ikke konvergerer som den skal.
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1 Introduction

Markov random fields (Kindermann and Snell, 1980), also known as undirected
probabilistic graphical models or Markov networks, consist of a set of variables
with a distribution having a Markov property. The Markov property of the dis-
tribution is given by an undirected graph. Undirected graphical models are useful
in modelling phenomena where the direction of the interaction between variables
cannot be naturally ascribed, but direct computation of these models can be time
consuming or impossible. Exact computation for Markov random fields is often
limited by the normalizing constant that in many cases will become more and
more time consuming to compute as the number of variables increase. Different
Bayesian models and simulation methods for Markov random fields are presented
by Murray and Ghahramani (2004), Parise and Welling (2006), Jones et al. (2005),
Chen and Welling (2012) and several others.

We look at the Markov random field in a Bayesian setting using and the spike and
slab prior distribution used by Chen and Welling (2012), and develop a Markov
chain Monte Carlo method for structure learning and parameter estimation in a
binary Markov random field. The method developed is a reversible jump Markov
chain Monte Carlo method (Green, 1995). Reversible jump Markov chain Monte
Carlo methods can be seen as a generalization of Metropolis-Hastings algorithms
(Gamerman and Lopes, 2006) and a tutorial derivation of a reversible jump Markov
chain Monte Carlo method is given by Waagepetersen and Sorensen (2012). The
algorithm is tested on simulated datasets from two different underlying distribu-
tions. Testing the algorithm for simulated datasets where the underlying distri-
bution makes it possible to see if the results of simulations give a good fit to the
underlying model and the different datasets.

In Section 2 theory about graphs and MRFs is briefly presented. Section 3 contains
a description of the spike and slab prior used by Chen and Welling (2012). Section
4 gives a brief introduction to Markov chain Monte Carlo methods. In Section 5
the Bayesian model for our particular problem is presented while Section 6 presents
a Markov chain Monte Carlo method for simulation of the posterior distribution
presented in Section 5. In Section 7 results from simulations are presented, and
the last section gives closing remarks.
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2 Markov Random Fields

This section contains a brief introduction to the most important concepts concern-
ing graphs and Markov random fields. A Markov random field can be viewed as
a generalization of a Markov chain process and is generally used to represent de-
pendencies between a set of stochastic variables. More information about Markov
random fields can be found in Kindermann and Snell (1980) and Koller and Fried-
man (2009).

2.1 Graphs, Neighbourhoods and Cliques

An undirected graph is a data structure consisting of a set of vertices and a set
of edges. We now define such an undirected graph G = {V,E} consisting of the
vertex set V = {1, ..., n} and edge set E = {e1, ...em}. Here n and m are the
number of vertices and edges, respectively. In the graph G we can have vertices
with edges connecting it to one or more other vertices, or vertices with no edges
connected to it. Each edge ei ∈ E connects two distinct vertices, which means
that ei ∈ {(p, q)|p, q ∈ V, p 6= q}. The undirected graph can be visualized as in
Figure 1. For this particular example graph we see that n = 14 and m = 10.
If two different vertices p, q ∈ V , are connected by an edge (p, q) ∈ E, we say
that p and q are neighbours and the set of all vertices that are neighbours of a
particular vertex p is called the neighbourhood of p. The neighbourhood of p is
denoted by ∂p and for a vertex with no edges connected to it, this is the empty
set ∅. Because each element of the edge set must consist of two distinct vertices
we see that p /∈ ∂p ∀p ∈ V . This also means that no vertex can be a member of
its own neighbourhood. It follows that p ∈ ∂q ⇔ q ∈ ∂p, which means that if p is
in the neighbourhood of q, then q is also in the neighbourhood of p. The maximal
possible number of edges in an undirected graph is M = n(n−1)/2 and we let the
set of all possible edges in a graph be denoted by Efull = {(p, q)|p 6= q,∀p, q ∈ V }.
Some examples of neighbourhoods in the example graph in Figure 1 are ∂1 = ∅,
∂2 = {3, 6} and ∂5 = {9}. In the example graph no vertices have more than three
neighbours and the maximal number of edges that could be members of the edge
set is 91.

A clique, C, is a subset of the vertex set, V , where every two vertices in C are
connected by an edge. This means that every vertex in the clique is in the neigh-
bourhoods of all other vertices in the clique, or in other words that any two vertices
p, q ∈ C, p 6= q, are neighbours. We see that a clique is a subset containing either
no vertices, a single vertex, or a bigger group of vertices. The number of elements
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Figure 1: An undirected graph G = {V,E} with V = {1, ..., 14} and
E = {(2, 3), (2, 6), (3, 6), (5, 9), (7, 11), (10, 11), (10, 12), (10, 14), (11, 14), (12, 14)}

in the clique is called the level of the clique. This means that a clique with i
members is called a level i clique. The example graph in Figure 1 have 28 cliques
by this definition; the empty set, all the level one cliques containing each of the
14 vertices, 10 level two cliques determined by the edges and the three level three
cliques {2, 3, 6}, {10, 12, 14} and {10, 11, 14}. We denote the set of all cliques in a
graph G by C.

2.2 Markov Random Fields Defined on Graphs

A random field is a collection of random variables where each variable takes a
value in a given set. If we now let xp be a discrete random variable assigned to the
vertex p ∈ V and Ω = {1, ..., L− 1} be the sample space for all xp, p ∈ V , we get a
discrete random field. In order for this field to be a Markov random field we need
the variables to have a Markov property defined on a graph G. That the variables
have a Markov property defined on a graph means that the full conditional of the
random variable xp is only dependent of the variables in its neighbourhood, x∂p.
Thus we have

P (xp|x−p) = P (xp|x∂p) ∀p ∈ V, (1)
where x−p = (x1, ..., xp−1, xp+1, ..., xn). We see that the edges in the graph G now
represent dependencies between the variables xp, p ∈ V . If L = 2 we get a binary
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Markov random field and the sample space is now Ω = {0, 1}.

The Hammersley-Clifford theorem (Hurn et al, 2003) gives a general form of the
distribution of a Markov random field. It states that a distribution satisfying
π(x) > 0, where x = (xp, p ∈ V ), for all possible assignments of values to all of a
network’s random variables is a Markov random field if and only if it has a joint
density of the form

π(x) = Z exp
∑

C∈C
fC(xC)

 (2)

for some feature functions {fC, C ∈ C}, where xC = (xp, p ∈ C). Here Z is a
normalizing constant and C is the set of all cliques in the graph of the Markov
random field. The normalizing constant Z is generally given as

Z =
 ∑

x∈Ωn
exp

∑
C∈C

fC(xC)
−1

. (3)

If we let the feature function fC(xC) be

fC(xC) = θCI(xp = 1∀p ∈ C), (4)

where θC is an associated parameter to the clique C,∈ C, we get the density

π(x) = Z(θ) exp
∑

C∈C
θCI(xp = 1∀p ∈ C)

 , (5)

which satisfies the Hemmersley-Clifford theorem. The normalizing constant is
now a function of the associated parameters θ = (θC , C ∈ C). As the number of
vertices increase the normalizing constant, Z(θ), will often get more and more time
consuming to compute. In some cases, however, the Markov structure simplifies
the computation of the normalizing constant, see for example the discussion in
Friel and Rue (2007).

3 The Spike and Slab Prior

In the Bayesian approach to statistics the parameters are considered to be quanti-
ties whose variation can be described by a probability distribution called the prior
distribution. After a data sample is obtained the prior distribution is updated with
the sample information. This updated prior is called the posterior distribution.
This means that the Bayesian approach considers uncertainties associated with all
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unknown quantities; observed or unobserved. To construct the posterior distribu-
tion Bayes’ law, π(θ|x) ∝ π(x|θ)π(θ), is used. The choice of a good prior model is
essential because different prior models will give different posterior distributions.
If the prior model is too strong or too weak relative to the likelihood, the posterior
will be too similar to the prior, or the effect of the prior will be negligible. By
using the Bayesian approach on Markov random fields we can infer the posterior
distribution of the parameters and the graph structure of the fields.

The spike and slab prior is a mixture distribution where the spike is a point
mass at zero and the slab is a widely spread distribution. The spike part of the
distribution controls the sparsity of the structure in the posterior distribution and
the slab part have a mild shrinkage effect on the parameters of the existing edges
even in a highly sparse model. The spike and slab prior model used by Chen and
Welling (2012) is a hierarchical model and is defined as follows

θC = YCAC , (6)

where
YC ∼ Bern(p0) (7)

and
AC ∼ N(0, σ2

0). (8)
YC ∈ {0, 1} is a binary random variable representing the existence of the edges
in the clique C and AC is the actual value of the parameter associated with each
clique. This means that

p(aC |σ2
0) = 1√

σ2
0

exp
(
− a2

C

2σ2
0

)
, (9)

P (YC = 1) = p0 and P (YC = 0) = 1− p0. When YC = 1 we have

p(θC |YC = 1, σ2
0) = p(ac|σ2

0) = 1√
σ2

0

exp
(
− θ2

C

2σ2
0

)
. (10)

Because the model is hierarchical, prior distributions for p0 and σ2
0 are defined.

The distributions used are p0 ∼ Beta(a, b) and σ−2
0 ∼ Γ(c, d). The distribution

functions for p0 and σ2
0 are therefore given by

p(p0) = 1
B(a, b)p

a−1
0 (1− p0)b−1 (11)

and
p(σ2

0) = 1
dcΓ(c)(σ2

0)−(c+1) exp
(
− 1
σ2

0d

)
. (12)
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In their experiments Chen and Welling consider only pairwise features, which
means that only cliques of level two or lower is included and that the values of θC
for cliques with more than two members is zero.

4 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo methods can be used when direct sampling from the
posterior is time consuming or impossible. The technique is to use a Markov chain
having limiting distribution equal to the desired distribution π(θ). In a Bayesian
setting the desired distribution is the posterior distribution, or in other words the
prior distribution updated with information from a dataset. The simulation of this
chain is carried out until equilibrium is essentially reached. Different schemes are
used to ensure that the limiting distribution is the desired one, examples of such
schemes are Gibbs sampling, Metropolis-Hastings algorithms and reversible jump
Markov chain Monte Carlo methods (RJMCMC). We will now describe Metropolis-
Hastings algorithms, reversible jump Markov chain Monte Carlo methods and
different proposal distributions for these schemes. For more information about
Markov Chain Monte Carlo methods the reader is referred to Gamerman and Lopes
(2006) and for a tutorial derivation of the reversible jump MCMC the reader is
referred to Waagepetersen and Sorensen (2001).

4.1 Metropolis-Hastings Algorithms

A Metropolis-Hastings algorithm produce a sequence of random samples from the
target distribution π(θ) and this sequence can be used to approximate the dis-
tribution. The algorithm can produce samples from any distribution provided it
is possible to compute the value of some function that is proportional to that
distribution. Because the mechanism is to use a Markov chain, the next sample
value of the sequence is only dependent on the current sample value. If we let θold
denote the current state of a Markov chain, one iteration of a Metropolis-Hastings
algorithm is started by generating a potential new state θnew from a proposal
distribution q(θnew|θold). The new state, θnew, is then accepted with a probability

α(θnew|θold) = min
{

1, π(θnew)q(θold|θnew)
π(θold)q(θnew|θold)

}
, (13)

and is otherwise rejected. This acceptance probability is defined such that we
will accept moves to more probable states more often than moves to less probable
states. Because of this we will tend to stay in hight-density regions of the desired
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distribution, while low-density regions will be visited less often. The acceptance
probability stated above results in a transition kernel given by

p(A|θold) =
∫
A
q(θold|θnew)α(θnew|θold)dθnew

+ I(θold ∈ A)
[
1−

∫
q(θnew|θold)α(θnew|θold)dθnew

]
, (14)

for any subset A of the parameter space. The transition kernel of a Markov chain
is a mixed distribution for the new state of the chain and it defines a distribution
for every possible state of the chain given the current state. For more information
about Markov chains and transition probabilities, the reader is referred to Ross
(2007). We will now look at reversible jump Markov chain Monte Carlo Methods,
which is a generalization of the Metropolis-Hastings algorithm, and then present
some examples of proposal distributions for both reversible jump MCMC and
Metropolis-Hastings.

4.2 Reversible Jump Markov Chain Monte Carlo Methods

The reversible jump Markov chain Monte Carlo method (Green,1996) makes sim-
ulations of the the target distribution possible even if the number of parameters
is stochastic. Metropolis-Hastings algorithms can be seen as special cases of re-
versible jump MCMC methods. The model proposed in a reversible jump Markov
chain Monte Carlo algorithm is a model with a different number of parameters than
the current model. Generally we first propose a new model with a different number
of parameters than the current one, then parameter values are proposed and the
acceptance probability of the move is evaluated. As in the Metropolis-Hastings
method we stay in the current state if the proposed state is not accepted.

In the acceptance probability of the method we now need to consider both the
probability of choosing a specific model, and the distribution of the proposed
parameter values. When proposing a move from the model with parameters θold to
a model with parameters θnew we need to generate a vector uold of random variables
from a proposal distribution q(uold|θold). We denote the probability of choosing this
move by pnew. We then let the new parameters θnew be a function of the current
parameters and the random variables uold; θnew = gθ(θold, uold). If we now propose a
move in the opposite direction; a move from the model with parameters θnew to the
model with parameters θold, we would generate a vector unew of random variables
and let θold be a function of θnew and unew; θold = hθ(θnew, unew). We denote
the probability of the move from the model with parameters θnew to θold by pold.
The numbers of random variables in unew and uold needs to satisfy the following
condition; knew + nC,new = kold + nC,old, where knew is the length of unew, kold is
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the length of uold, nC,old is the number of parameters in the old model, and nC,new
is the number of parameters in the new model. This condition is referred to by
Waagepetersen and Sorensen (2001) as the crucial dimension matching condition.
The condition ensures that the vectors of Markov chain states and proposal random
variables are of equal dimensions. For the moves between models to be reversible,
the mapping from (θold, uold) to (θnew, unew) needs to be one to one. This means
that we need functions unew = gu(θold, uold) and uold = hu(θnew, unew) such that

θnew = gθ(θold, uold)
unew = gu(θold, uold)

}
⇔
{
θold = hθ(θnew, unew)
uold = hu(θnew, unew). (15)

The acceptance probability of a move from the model with parameters θold to a
proposed model with parameters θnew where the lengths of θold and θnew is not
necessarily the same is

α(θnew|θold) = min
{

1, π(θnew)
π(θold)

pnewq(uold|θold)
poldq(unew|θnew) |J |

}
, (16)

where

J = ∂(θnew, unew)
∂(θold, uold)

=
 ∂gθ(θold,uold)

∂θold

∂gu(θold,uold)
∂θold

∂gθ(θold,uold)
∂uold

∂gu(θold,uold)
∂uold

 . (17)

We will later see that the Jacobian in some cases will be one which simplifies the
computation of the acceptance probability.

4.3 Proposal Distributions

When proposing a new state for our chain we need to propose a value for one
or more of the parameters in our model. The proposal distribution from which
these values are drawn, q(θold|θnew), should be a known distribution that it is
simple to generate realizations from. If the generation of a proposed next step is
too complicated the point of using a Markov chain Monte Carlo method is gone.
If the model contains several parameters we can propose to update one single
parameter in each step or propose new values for several or all parameters before
computing the acceptance probability.

To make the computation of the acceptance probability, α(θnew|θold), easier we can
choose a distribution which is symmetric around the current parameter values,
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this results in q(θold|θnew) = q(θnew|θold). When this is the case the proposal
distributions will cancel out in the acceptance probability given in (13) and we get

α(θnew|θold) = min
{

1, π(θnew)
π(θold)

}
. (18)

One example of a proposal distribution that is symmetric around the current
parameter values is the normal distribution with expected value equal to the value
in the current state of the chain; θnew ∼ N(θold, Iσ2

tune), where I is the identity
matrix of the appropriate size.

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm where
only some of the parameters of our model are updated in each step. New val-
ues for these parameters are proposed from the distribution of these parameters
conditioned on the remaining parameters in our model. This means that when
updating the parameter θC we propose a new value θC,new from its full conditional
given all other parameters; θC,new ∼ π(θC |θ−C). When updating the parameter θC
in a Gibbs step, the target distribution is the full conditional of this parameter;
π(θC |θ−C) and we get α(θnew|θold) = 1 in every step. This means that all proposed
states are accepted. The Gibbs step is an effective method for sampling the vari-
able when the full conditional is known. We will later see that this is the case for
some of the variables in the Markov random field model when using the spike and
slab prior.

For the reversible jump Markov chain Monte Carlo method we first need to propose
a new model. There are several ways to do this. One way is to select one of all
possible models that are not the current one and propose a move to this model.
Another possibility is to select a parameter that could be a member of the model
and then propose to add it if it is not a member of the current model or remove
it if it is already a part of the current model. A third option is to first decide if
we want to propose a model with more or less parameters than the current one,
and then choose which of the parameters to add or remove. When a new model is
chosen we need to propose values for each of the new or removed parameters, this
is what is done when generating the random vectors uold and unew in Section 4.2.
The random variables are generated from proposal distributions uold ∼ q(uold|θold)
and unew ∼ q(unew|θnew).

When considering a Markov random field it is natural to propose a model with
one more or one less edge than the current one. When proposing a new model
where the graph structure differs by one edge only we can start by deciding if
we want to add or remove an edge. The simplest way to do this is to let the
probability of adding an edge be padd and the probability of removing an edge be
premove = 1−padd. If the outcome is to add an edge we can choose one of the edges
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Figure 2: A move from the example graph in Section 2 to a graph with one more
edge.

that is not present in the current model at random. The probability of adding a
particular edge is then 1/(M −mold) , where M is the number of possible edges
in the graph in general and mold is the number of edges in the current graph.
An example move from one model to a model with more parameters is shown
in Figure 2. The proposed move is a move from the graph presented in Section
2 to a graph with one more edge; the edge (7, 10). This will result in two new
cliques and thereby a model with two more parameters than the original one. The
new cliques are {7, 10} and {7, 10, 11}. The probability of choosing this move is
padd/82. When moving in the opposite direction, from the model with parameters
θnew to the model with parameters θold, the proposed graph is a graph with one
less edge. This time we can simply select one of the edges in the current graph at
random and remove it, or in other words; the probability of selecting the move is
now premover/mnew . After proposing a new model we need to propose values of the
vectors of random variables unew and uold. A simple way to do this is to propose
values from a normal distribution with expected value zero; N(0, Iσ2

tune). When
considering dimension matching for the move to a graph which contains one more
or one less edge than the current graph, we see that the lengths of unew, uold, θnew
and θold satisfies the crucial matching condition. The function gθ(θold, uold) is now
simply a function including the new parameters, and the function hθ(θnew, unew)
simply excludes the parameters that are removed. The dimensions of the vectors
of Markov chain states and proposal random variables are in this case of equal
dimension and the Jacobian of the move is one.
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4.4 Acceptance Rate

The proportion of the steps in the algorithm that are accepted is called the ac-
ceptance rate. This rate should not be too low or too high. The acceptance rate
is determined by how much the parameters are changed in each iteration. If the
proposal distribution suggests small changes in each parameter the acceptance
probability α(θnew|θold) will be close to one and many steps will be accepted. The
result of this will be that the convergence of the chain is very slow as it will take
many steps for the chain to traverse the whole parameter space. On the other hand,
if we propose larger moves the acceptance probability will be small. A low accep-
tance probability increase the probability of staying in the same state for several
steps. This means that if the acceptance rate is too low we will rarely move from
one state to another. It is therefore important to keep the acceptance rate in an
acceptable range. An acceptance rate between 0.2 and 0.5 for Metropolis-Hastings
algorithms is suggested by Gamerman and Lopes (2006).

5 Bayesian Model

This section contains a presentation of the Bayesian model for our Markov random
field. The prior model used is slightly different from the one presented in Section
3 and cliques of all levels are included in the model. We will first present the full
prior model, then the likelihood function used to update the prior and then the
posterior model is derived from the prior model and the likelihood.

5.1 Prior Model

We will now present a slightly different version of the spike and slab prior presented
in Section 3. The main difference will be in the definition of the binary random
variable YC . The prior model presented in Section 3 assigns a binary random
variable YC and a normal random variable AC to each of the cliques in the clique
set C. We will change this part slightly by only assigning the random variable YC
to the cliques of level two. The cliques of level one will always be members of
C and because of this no YC is assigned to these parameters. This gives us the
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following definition of the parameter θC ;

θC =


AC when C = {p} for a p ∈ V
ACYC when C = {p, q} for p, q ∈ V, p 6= q

AC when C ∈ C, |C| ≥ 3
0 otherwise.

(19)

The joint prior distribution for the parameters θ, σ2
0 and p0 is

π(θ, σ2
0, p0) = p(p0)p(σ2

0)p(θ|σ2
0, p0)

= p(p0)p(σ2
0)
(∏
C∈C

p(θC |p0, σ
2
0)
)
, (20)

where p(p0), p(σ2
0) is as given in (11) and (12). The form of p(θC |p0, σ

2
0) is given

by the cases in (19) and the prior distributions of AC and YC is as given in Section
3.

5.2 Likelihood

As mentioned in Section 3 the prior model needs to be updated with informa-
tion from a dataset. We assume that the value of each of the random variables
associated to the vertices in the graph G is observed multiple times to form a
dataset consisting of N data points; x = (x(1), ..., x(N)). Each data point consists
of observed values for each vertex such that x(i) = {x(i)

p ∀p ∈ V }. Two different
realizations of a binary Markov random field defined on the example graph pre-
sented in Section 2 is shown in Figure 3, the black vertices represent the value one
and the white vertices represent the value zero. The graph to the left in Figure 3
results in the data point x = (0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0) and the one to the
right results in the data point x = (0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0). By using the
example feature function in (4) and the resulting distribution function in (5), and
assuming each of the N datapoints in x are independent, we get the following
likelihood function for our model;

f(x|σ2
0, p0, θ) =

N∏
i=1

f(x(i)|σ2
0, p0, θ)

= Z(θ)N
N∏
i=1

exp
{∑
C∈C

θCI(x(i)
p = 1,∀p ∈ C)

}
. (21)

The more data points we have in our dataset, the more information about the
underlying distribution we get.
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Figure 3: Two different realizations of a binary MRF defined on the graph in
Figure 1

5.3 Posterior Model

When using Bayes’ law for updating the prior model in (20) with information from
the dataset we get the posterior model

π(σ2
0, p0, θ|x) = f(x|σ2

0, p0, θ)π(σ2
0, p0, θ)

=
(
N∏
i=1

f(x(i)|σ2
0, p0, θ)

)
p(p0)p(σ2

0)
(∏
C∈C

p(θC |p0, σ
2
0)
)
, (22)

where the first factor is as given in (21), and the remaining factors are as given
in Section 5.1. Depending on which of the parameters we want to update in our
Markov chain Monte Carlo method different factors of the posterior model will
remain unchanged and allow for simpler computation of the acceptance probability.
If we for example keep the value of p0 and σ2

0 while updating the values of θ both
p(σ2

0) and p(p0) will cancel out and we get

π(σ2
0, p0, θ|x) ∝

(
N∏
i=1

f(x(i)|σ2
0, p0, θ)

)(∏
C∈C

p(θC |p0, σ
2
0)
)

(23)

as a function of θ.
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6 Algorithm and Proposal Mechanisms

In this section a Markov chain Monte Carlo method for the model in Section
5 is described. In each iteration we want to update p0, σ2

0, θ and the graph
structure. First the values of p0 and σ2

0 are updated, then a change in all θC values
are proposed. After this we propose to add an edge with probability padd, or to
remove an edge with probability premove = 1− padd. Finally we propose to change
a single θC value before starting a new iteration. Which θC to update is selected at
random. In the following the proposal mechanisms we use are described in more
detail.

6.1 Updating p0 and σ2
0

In each iteration of the method we want the parameters p0 and σ2
0 to be updated

while keeping the other parameters unchanged as proposed in Section 5.3. By
removing every factor in (22) that is not a function of p0 we get the full conditional
of p0;

π(p0|θ, σ2
0, yc, ac,x) ∝ p(p0) (Πc∈Cp(yc|p0)) . (24)

Then by inserting the distribution functions for the prior models for the different
parameters given in Section 3 we get

π(p0|θ, σ2
0, yC , aC ,x) ∝ pa−1

0 (1− p0)b−1ΠC∈Cp
yc
0 (1− p0)1−yc

∝ p
(a+
∑

c∈C yc)−1
0 (1− p0)(b+

∑
c∈C(1−yc))−1. (25)

This means that the full conditional of p0 follows a Beta-distribution with param-
eters ã = a+ nC and b̃ = b+∑

C∈C(1− yC). As mentioned in Section 5; when it is
possible to produce samples from the full conditional we can use a Gibbs step for
updating p0. The Beta-distribution is simple to draw values from, and because of
this, a Gibbs step is a good option for updating the value of p0.

We also want to update the value of σ2
0 in each iteration. Because σ−2

0 ∼ Γ(c, d)
the parameter σ2

0 follows an inverse gamma distribution. By using (22) in the same
way as we did for p0 we get that the full conditional of σ2

0 is

π(σ2
0|θ, p0, yc, ac,x) ∝ p(σ2

0)
(
Πc∈Cp(ac|σ2

0)
)

∝ (σ2
0)−(c+1) exp

{
− 1

/
σ2

0d
} (

Πc∈Cp(θC |σ2
0, yC)

)
∝ (σ2

0)−(c+(nc2 )+1) exp
{
− 1
σ2

0

(
1
d

+
∑
C∈C

θ2
C

2

)}
(26)
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and we see that the posterior distribution of σ2
0 is an inverse gamma distribution

with parameters c̃ = c + nC
2 and d̃ = (d−1 + ∑

C∈C θC/2)−1. Because of this we
choose to use a Gibbs step for updating σ2

0. This means that both p0 and σ2
0 can

be updated separately from the rest of the parameters in the model and can be
kept fixed when updating the other parameters or changing the graph structure.
Keeping the values of p0 and σ2

0 fixed when updating the other parameters will
simplify the acceptance probabilities of those steps.

6.2 Updating θ Values

When updating the values of the parameters in the model we can choose to up-
date the value of a single parameter, θC , or the values of all the parameters, θ, at
once. In our method both updating all parameters and a single parameter will be
proposed in each iteration. In both cases a normal proposal distribution is used
for the parameter values, this will gives us the benefits of a symmetric proposal
distribution mentioned in Section 4 and we get the form of the acceptance proba-
bility given in (18). The values of p0 and σ0 is fixed both when updating a single
parameter and when updating all of them.

If we want to update the values of all θold = (θ1,old, ..., θnC ,old) we first propose new
values for all nC parameters by drawing random samples from the normal distri-
bution N(θC,old, σ2

all), independently. We denote the proposed parameter values
as θnew = (θ1,new, ..., θnC ,new) and get the following expression for the acceptance
probability;

αθ(θnew|θold) = min
{

1, f(x|θnew, σ2
0, p0)

f(x|θold, σ2
0, p0)

p(θnew|σ2
0, p0)

p(θold|σ2
0, p0)

}
. (27)

By using the posterior model given in (23) we get

αθ(θnew|θold) = min

1,

(∏N
i=1 f(x(i)|σ2

0, p0, θnew)
)

(∏C∈C p(θC |p0, σ
2
0))(∏N

i=1 f(x(i)|σ2
0, p0, θold)

)
(∏C∈C p(θC |p0, σ2

0))

 , (28)

where f(x(i)|σ2
0, p0, θold/new) is as given in (21). This expression is evaluated in

each iteration. The normalizing constant in the likelihood of the proposed state
needs to be evaluated in each iteration, and as we mentioned in Section 2 this can
become increasingly time consuming when the graph or the sample space is large.

When updating a single parameter we propose a new value for one parameter
θC,new by drawing a value from the normal distribution N(θC,old, σ2

one), in the same
way as we did when updating all parameters at once. Now the rest of the param-
eters remain unchanged and the expression in (27) can be further simplified. By
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removing every part of the posterior that is not a function of the changed variable,
θC , we get

f(x|θnew, σ2
0, p0)

f(x|θold, σ2
0, p0) =

Z(θnew)NΠN exp{θC,newI(x(i)
p = 1, ∀p ∈ C)}

Z(θold)NΠN exp{θC,oldI(x(i)
p = 1,∀p ∈ C)}

(29)

and
p(θnew|σ2

0, p0)
p(θold|σ2

0, p0) =
exp{ θ

2
C,new

2σ2
0
}

exp{ θ
2
C,old

2σ2
0
}

(30)

for the factors of the acceptance probability. Updating one variable while keeping
all the others fixed makes it easier to get acceptance of a proposed larger move
than would be possible when updating all the parameters at once. This will give
faster convergence of the chain. Proposing larger moves when updating a single
parameter than when updating all at once means that σ2

one > σ2
all.

6.3 Updating the Graph Structure

When updating the graph structure we propose to add or remove an edge with
probabilities padd and premove = 1−padd by the method presented in Section 4. The
move will be as described in Section 4.3; first determine if we are to propose adding
an edge or removing an edge, then select an edge to add or remove. When moving
from one model to another where the two models do not have the same number of
edges in this way, the acceptance probability given in Section 4.2 becomes

αadd/remove(θnew|θold) = min

{
1, f(x|θnew)
f(x|θold)

π(θnew, p0, σ
2
0)

π(θold, p0, σ2
0)
q(θold|θnew)
q(θnew|θold)

}
, (31)

where the proposal distributions will be as presented in Section 4.3. Based on the
value of αadd/remove(θnew|θold) the move from the current graph to the proposed
graph is accepted or rejected. If the step is not accepted the current graph is kept.
We will now first present the acceptance probability when adding an edge, and
then when removing an edge.

6.3.1 Adding a New Edge

When proposing to add an edge we select an edge that is not already in the model
at random and propose to add this edge. The move proposed is a move from the
current graph to a graph with one more edge. This will as mentioned in Section 4
result in at least one new clique. We let nnew denote the number of new cliques in
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the proposed graph and nold the number of parameters in the current graph. The
proposed graph will then have the associated parameters θnew = (θ1, ..., θnold+nnew)
and the parameters in he current graph will be θold = (θ1, ..., θnold). If we now
let θadded be the parameters that are new in the proposed graph, we can write
θnew = (θold, θadded). We will now look at the acceptance probability in (31) each
factor at a time. We start by looking at the first factor in the expression and get

f(x|θnew)
f(x|θold)

= f(x|θold, θadded)
f(x|θold)

=
(
Z(θnew)
Z(θold)

)N ΠN
i=1 exp{Σθold,θaddedθCI(x(i)

p = 1,∀p ∈ C)}
ΠN
i=1 exp{ΣθoldθCI(x(i)

p = 1, ∀p ∈ C)}

=
(
Z(θnew)
Z(θold)

)N N∏
i=1

exp{ΣθaddedθCI(x(i)
p = 1,∀p ∈ C)} (32)

by using that θnew = (θold, θadded) and the likelihood function given in (21). For
the second factor in αadd(θnew|θold) we get

π(θnew, p0, σ
2
0)

π(θold, p0, σ2
0) = p(p0)p(σ2

0)p(θnew|p0, σ
2
0)

p(p0)p(σ2
0)p(θold|p0, σ2

0)

= p(ynew|p0)
p(yold|p0)

p(anew|σ2
0)

p(aold|σ2
0)

= pmnew0 (1− p0)M−mnew
pmold0 (1− p0)M−mold

∏
θadded

exp
{
− θ2

C

2σ2
0

}
, (33)

were we have used the distribution functions from Section 3, the posterior given in
(22) and the fact that all factors that are the same for both models cancel out. The
last part of the acceptance probability is given by the proposal distributions. By
using the proposal mechanism for adding or removing edges presented in Section
4.3 we get the following expression for the third and last factor of the acceptance
probability;

q(θold|θnew)
q(θnew|θold)

= (1/mnew )premove
(1/(M −mold))padd(2π)−nnew/2(σ−1

AR) exp{Σnnew
C=1 θ

2
C/2σ2

AR)}

= premove(M −mold)(2π)nnew/2σAR
paddmnew exp{Σnnew

C=1 θ
2
C/2σ2

AR}
, (34)

when the proposed values of the new parameters in the proposed state is drawn
from a normal distribution N(0, Iσ2

AR). We see that the dimension of the nor-
mal proposal match the dimension of the normal prior model which makes the
acceptance probability dimensionless as desired.
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6.3.2 Removing an Existing Edge

If we are not proposing to add an edge, the alternative is to remove an edge. The
proposed graph will be a graph with one less edge than the current one and this
will result in one or more cliques being removed from the model. If we let θnew be
the parameters in the proposed graph and θold be the parameters in the current
graph we now get θold = (θnew, θremoved). We will now look at each factor of the
acceptance probability in (31) for the case when an edge is removed. For the first
factor we now get

f(x|θnew)
f(x|θold)

= f(x|θnew)
f(x|θnew, θremoved)

=
(
Z(θnew)
Z(θold)

)N (
ΠN
i=1 exp{ΣθremovedθCI(x(i)

p = 1,∀p ∈ C)}
)−1

(35)

in the same way as we did when adding an edge. For the second factor we now get
π(θnew, p0, σ

2
0)

π(θold, p0, σ2
0) = p(p0)p(σ2

0)p(θnew|p0, σ
2
0)

p(p0)p(σ2
0)p(θold|p0, σ2

0)

= pmnew0 (1− p0)M−mnew
pmold0 (1− p0)M−mold

 ∏
θremoved

exp{− θ2
C

2σ2
0
}

−1

. (36)

The ratio of the proposal distributions for the move from the new to the old model
and from the old to the new model is now

q(θold|θnew)
q(θnew|θold)

= paddmold exp{Σnremoved
C=1 θ2

C/2σ2
AR}

premove(M −mnew)(2π)nnew/2σAR
, (37)

again by using the proposal mechanism for adding or removing edges presented
in Section 4.3. When adding or removing an edge the normalizing constant needs
to be computed for the proposed model, this can be time consuming when the
number of vertices is large. In this case we also see that the dimension of the
normal proposal match the dimension of the normal prior model which makes the
acceptance probability dimensionless.

7 Simulations and Results

In this section results from simulations of binary Markov random fields defined on
different graphs are presented. A natural first step before testing the method on
a real dataset where the underlying distribution is unknown is to test the method
on a model where we know the underlying distribution. The goal is to test the
algorithm on different graphs and datasets to see if it is working properly.
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7.1 Simulated Data

When testing the algorithm we need a dataset to base the simulations on. If
this dataset is sampled from a known distribution it will be possible to compare
the results of the simulations with the underlying distribution. To make example
graphs for testing our algorithm we first specify a graph structure and parameter
values for all associated parameters. Datasets of different sizes are then sampled
from the resulting Markov random field. Instead of listing each data point as a list
of zeroes and ones we can assign a number to each of the possible outcomes. One
way to do this is to read the data points as binary numbers and assign indexes
based on this. This means that the data point with index two would for example
represents x(i) = {0, 0, 0, 1, 0} for a graph with five vertices and the data point
with index three for a graph with six vertices represents x(i) = {0, 0, 0, 0, 1, 1}.

In both of the two following examples the corresponding parameters to each of the
ten cliques of level one or higher in this graph are drawn from a normal distribution
with expected value zero and variance

(
1
2

)l
σ2
θ , where l is the number of elements

in the clique. This means that θC ∼ N (0,
(

1
2

)l
σ2
θ) and that most of the parameter

values associated with cliques of a high level will be small compared to the ones
associated to cliques with fewer members.

7.2 Results

We will now present results of simulations on two different example graphs; G1
and G2. The first graph is a small graph with six vertices and four edges. This
graph is small enough so that simulations can be carried out for many iterations in
a reasonable amount of time. The second graph is the example graph from Section
2. This graph is a bit larger and it is more time consuming to run simulations for
the second graph for large numbers of iterations.

Example Graph G1 = {V1, E1}

The first example graph that we want to test the algorithm for is the graph
shown in Figure 4. We see that n1 = 6 and m1 = 4 for this example graph.
The vertex set of this graph is V1 = {1, 2, 3, 4, 5, 6} and the edge set is E1 =
{(1, 2), (1, 4), (2, 4), (3, 6)}. The clique set, C1, of this graph contains 12 cliques;
the empty set, one for each vertex, one for each edge and the level three clique
{1, 2, 4}. Associated parameter values for each clique generated by the method de-
scribed in Section 7.1 where σ2

θ = 1 are listed in Table 1. The associated parameter
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Figure 4: The undirected graph G1 = {V1, E1}.

to the empty clique is assumed to be zero and not included in the simulations. The
number of possible outcomes for a binary MRF defined on this graph is 2n1 = 64
and the number of possible edges is M1 = 15. The datasets used for simulations
on this example graph is sampled from the true distribution function given the
parameter values in Table 1. Three different datasets are generated; x1, x2 and
x3 all based on the same underlying distribution. The number of data points in
each dataset is N1 = 5000, N2 = 100 and N3 = 25. Barplots for x1, x2 and x3
can be seen in Figure 5. We see that more data points result in more information
about the underlying distribution, which is as expected. The hyper parameters of
the prior distributions of σ2

0 and p0 are set to a = 1, b = 1, c = 3 and d = 3 for all
runs of the algorithm.

We now want to simulate the Markov random field defined on example graph G1
by using the algorithm in Section 6. The chain is initialized with a graph with no
edges and all parameter values set to zero. At the beginning of each iteration the
values of p0 and σ2

0 are updated as described in Section 6.1. Then updating all θ
values at once as presented in Section 6.2 is the proposed move, then adding or
removing an edge as described in Section 6.4, and after that updating a random
parameter value as described in Section 6.2. The steps are repeated in this order
for the desired amount of iterations. The values of the tuning parameters for the
two Metropolis-Hastings steps are found by trial and error and adjusted until the
acceptance rates for the two moves are in the desired interval given in Section 4.4.
The tuning parameter for the parameters added or removed in the reversible jump
MCMC step is also set by trial and error. The task of finding an appropriate value
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Figure 5: Barplots showing the frequencies of each outcome in the three simulated
datasets x1, x2 and x3, sorted by index.
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Clique Parameter Value
{1} θ1 0.593298
{2} θ2 -1.37835
{3} θ3 0.548659
{4} θ4 0.469639
{5} θ5 -1.10666
{6} θ6 -0.45754
{1, 2} θ1,2 -0.482739
{1, 4} θ1,4 1.37293
{2, 4} θ2,4 -0.0170734
{3, 6} θ3,6 0.0660981
{1, 2, 4} θ1,2,4 -0.166371

Table 1: Values of θC , C ∈ C1 for the example graph G1

for this tuning parameter have been particularly hard. The main problem have
been that both large and very small values have resulted in no edges being added
or removed from the graph. The probability of adding an edge is padd = 0.5 for all
runs.

We start our testing by running simulations based on the dataset x1. The tuning
parameters are adjusted to reach good acceptance rates and the resulting values
are σ2

one = 0.105, σ2
all = 0.0165 and σ2

AR = 0.00025. We run the algorithm with
1000000 iterations four times with the same values of hyper parameters and tuning
parameters. We can compare the average probabilities of each realization obtained
from the RJMCMC method to the frequencies of each outcome in the different
datasets. In Figure 6 the vertical lines represent the empirical probabilities of
each outcome in the dataset x1 and the stars represent the average probability
of each outcome based on parameter values from the RJMCMC method. We see
that the average probabilities of each outcome from the RJMCMC match the data
frequencies quite good and that the resulting average probabilities are similar for
all four runs of the algorithm. In Figure 7 we see QQ-plots of the frequencies of the
average probabilities from the different runs compared to data frequencies. We see
that all points are close to the straight line, which is yet another indicator that the
models found by the algorithm fits the dataset quite well. If we now look at which
edge are present for how many iterations in the four runs we get the graphs in
Figure 8, a thicker edge represents an edge that is present in more of the iterations
after some burn-in period than a thinner edge. We see that the resulting graph
structures are similar but not exactly the same. Some of the most probable edges
are present in all four graphs, while some edges are strong in only a few of them.
One example is the edge (2, 4) which is only present in the bottom left graph. The
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edges that are strong in all four graphs are (1, 2), (1, 4), (1, 5) and (2, 3), of these
edges only two are present in the true graph; (1, 2) and (1, 4). The other edges in
the true graph structure; (2, 4) and (3, 6), are not present in all four runs. The
edge (3, 6) is not strong in either of the runs and the edge (2, 4) is only strong
in one of the runs. That the resulting edge probabilities are not the same means
that the method does not converge properly. The four runs are based on the same
underlying distribution, they are performed for the same amount of iterations, the
values of the tuning parameters are the same and the dataset used is the same.
After convergence the four different chains should have the same quantitative and
qualitative behaviour. When the resulting graph structure is not the same it means
that the behaviour of the four chains is not the same. Even though the different
runs give different models, all runs give good fits to the dataset. This means that
we find different high probability regions of the posterior distribution, but that
the chain is not able to move between these regions and find the best one.

If we now do a similar test for the dataset x2 we can look at the same kinds of
figures. The tuning parameters for updating one or all parameters are now set to
σ2
one = 0.3 and σ2

all = 0.1. The tuning parameter for the proposed values of the
new or removed parameters is set to σ2

AR = 0.025. The average probabilities of
each outcome is shown together with the data frequencies in Figure 9 in the same
way as for the previous dataset. We see that the fit is not as good as for the larger
dataset, but that the fit is still quite good. QQ-plots for the average probabilities
of each of the four RJMCMC runs compared to dataset x2 are presented in Figure
10. We see that all points are relatively close to the straight line which indicates
that the fit is quite good for all four runs. The edge probabilities are now shown
in Figure 11 for the four different runs. We see that there are only two edges that
are strong inn all four runs; (1, 2) and (1, 5), and that only one of these; (1, 2), is
present in the true graph in Figure 4. Also this time we see that the resulting edge
structures are not the same and that the algorithm is not reaching convergence.
Again each model is a good fit for the dataset, but which is the best one can not
be identified.

We now want to test the algorithm for an even smaller dataset; x3. This dataset
contains only 25 samples. This time the tuning parameters for updating one or
all parameters are set to σ2

one = 0.8 and σ2
all = 0.025. The tuning parameter when

adding or removing edges is now σ2
AR = 0.025. In the same way as for the previous

dataset the average probability of each outcome is shown together with the data
frequencies in Figure 12. We see that the fit is not as good as for the two previous
datasets. We also see that the resulting average probabilities of each run differ
more than for the two previous datasets. The QQ-plots for the four different runs
of average RJMCMC probabilities versus data frequencies can be seen in Figure
13. We see that these are not as close to the straight line as the ones in the two
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Figure 6: Vertical lines represent frequencies of each outcome in the datasets and
the stars give the average probabilities based on simulated parameter values for
four different RJMCMC runs for dataset x1.
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Figure 7: QQ-plot of average probabilities from four different RJMCMC runs
compared with the frequencies of values in dataset x1
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Figure 8: Probabilities of the different edges in each of the four RJMCMC runs
for dataset x1, a thick edge represent an edge that is present for most of the steps
during the run while a thin edge represents an edge that is rarely present in during
the run.
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Figure 9: Vertical lines represent frequencies of each outcome in the datasets and
the stars give the average probabilities based on simulated parameter values for
four different RJMCMC runs for dataset x2.
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Figure 10: QQ-plot of average probabilities from four different RJMCMC runs
compared with the frequencies of values in dataset x2
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Figure 11: Probabilities of the different edges in each of the four RJMCMC runs
for dataset x2, a thick edge represent an edge that is present for most of the steps
during the run while a thin edge represents an edge that is rarely present in during
the run.



30 7 SIMULATIONS AND RESULTS

previous experiments. This is as expected because the prior model will me more
dominant compared to the likelihood of the data when the number of data points
is low. The edge probabilities are now shown in Figure 14 for the four different
runs. We see that these four runs result in different edge probabilities as well and
that we also for this dataset get more strong edges than we did for the dataset
with 5000 samples. This time there are four edges that are strong in all four runs;
(1, 2), (1, 4), (1, 6), and (2, 3).

For all three datasets simulated from this underlying distribution we see that the
resulting edge probabilities are not the same. This means that our chain is not
converging properly. For all runs we find reasonably good fits, which means that
the sample space might have several high probability regions and that our chains
get stuck in such regions and do not move around the whole sample space. The
chain seems to move into a high probability region and stay there. When the
dataset is smaller the problem is larger than when the dataset is a bit larger. Also
the algorithm seems to discover more strong edges when the dataset is small, this
might mean that the prior probability of some edges being present in the model
is too high. Generally very large real world datasets might be hard to find and a
method that gives good results also for small datasets is desirable. This algorithm
being able to identify high probability regions is a good start, but we also need to
be able to move between these regions for the algorithm to reach convergence.

Example Graph G2 = {V2, E2}

The second example graph is the example graph presented in Section 2. We now
call this graph G2 = {V2, E2} and the graph structure can be seen in Figure 1. The
parameter values generated as described in Section 7.1 where σ2

θ = 1 can be seen
in Table 2. Based on an MRF with these parameter values datasets x4, x5 and
x6, containing N4 = 5000, N5 = 100 and N6 = 25 data points are generated in the
same way as for the first example graph. This time the barplots and the plots with
the vertical lines and stars from the previous example will not be informative, as
the number of possible outcomes is now 16384. Because of this we will now only
look at the QQ-plots to see if the average probabilities from each RJMCMC chain
fit the data, and look at the edge probabilities. The number of possible edges in
this graph is 91. As for the previous example the hyper parameters of the prior
distributions of σ2

0 and p0 are set to a = 1, b = 1, c = 3 and d = 3 for all runs of
the algorithm.

As for the last example graph we now run four different chains based on each
of the four datasets. All simulations are initialized with a graph with no edges
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Figure 12: Vertical lines represent frequencies of each outcome in the datasets and
the stars give the average probabilities based on simulated parameter values for
four different RJMCMC runs for dataset x3.
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Figure 13: QQ-plot of average probabilities from four different RJMCMC runs
compared with the frequencies of values in dataset x3
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Figure 14: Probabilities of the different edges in each of the four RJMCMC runs
for dataset x3, a thick edge represent an edge that is present for most of the steps
during the run while a thin edge represents an edge that is rarely present in during
the run.
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Clique Parameter Value
{1} θ1 -0.573857
{2} θ2 -1.0375
{3} θ3 0.92405
{4} θ4 1.16424
{5} θ5 0.59804
{6} θ6 -0.315004
{7} θ7 1.16657
{8} θ8 0.076322
{9} θ9 2.094
{10} θ10 0.706495
{11} θ11 -1.53659
{12} θ12 0.583443
{13} θ13 -0.432034
{14} θ14 -0.467165
{2, 3} θ2,3 -0.248712
{2, 6} θ2,6 0.0952619
{3, 6} θ3,6 -0.0263643
{5, 9} θ5,9 0.430178
{7, 11} θ7,11 0.847827
{10, 11} θ10,11 0.530592
{10, 12} θ10,12 0.138162
{10, 14} θ10,14 -0.847798
{11, 14} θ11,14 -0.038785
{12, 14} θ12,14 -0.431356
{2, 3, 6} θ1,2,4 -0.227529
{10, 11, 14} θ10,11,14 0.352491
{10, 12, 14} θ10,12,14 -0.179331

Table 2: Values of θC , C ∈ C2 for the example graph G2
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and all parameter values set to zero. The values of the tuning parameters for the
two Metropolis-Hastings steps and the tuning parameter for the reversible jump
MCMC step are found by trial and error as for the previous example. The task of
finding an appropriate value for the tuning parameter of the RJMCMC step have
been hard also for this graph, and the problems described for the previous graph is
also the case for this example graph. Every chain is run for 250000 iterations. As
before we run four chains based on each dataset with the same settings of hyper
parameters and tuning parameters. The probability of adding an edge is padd = 0.5
for all runs.

The first of the three datasets for this example graph that is used for testing is
the dataset x4. The tuning parameters are set by trial and error and the resulting
values are σ2

one = 0.1, σ2
all = 0.015 and σ2

AR = 0.00015. The QQ-plot of data
frequencies versus average probabilities in Figure 15 show that all four runs find a
model that fit the dataset quite well. A visualization of the edge probabilities for
the four different runs based on the dataset x4 is shown in Figure 16. We again
see that the resulting graphs are not the same, but that they have strong edges in
the same areas. If we now look at some of the edges in the true graph in Figure
1 we see that the only edge in the true graph that is strong in all four runs is the
edge (10, 11), but several of the edges from the true graph is strong in three of the
graphs; (2, 3), (10, 12) and (12, 14). The only edges of the true graph that is not
identified in any of the four runs are the edges (11, 14) and (2, 6). If we look at
the parameter values associated with the cliques {2, 6} and {11, 14} in Table 2 we
see that the values of these parameters is small compared to the associated values
to other cliques of level two. The level two clique {3, 6} does also have a small
associated value, but this edge is discovered by two of the chains.

We now move on to simulations based on the dataset x5 and the tuning parameters
are now set to σ2

one = 0.45, σ2
all = 0.065 and σ2

AR = 0.0185. In Figure 17 we see the
QQ-plots for four different runs of the algorithm based on the dataset x5. We see
that this time the fit of the models found by our algorithm is not as good as for
the previous tests. When the dataset contains only 100 samples and the number
of possible outcomes is as large as 16384 the dataset gives very little information
compared to the prior model. If we look at the edge probabilities in Figure 18 we
see that the algorithm now discovers a lot more edges than before. The thickness
of the edges is now scaled down to 0.5 of what is used for earlier graphs. This
because of the large number of strong edges in these graphs. Despite the high
number of strong edges we can see that some edges are strong in only one or two
of the graphs and not in the others. Examples are the edges (7, 11) and (5, 9) that
are present in one and two graphs, respectively. For these four runs we see that
proposing to add an edge is accepted a lot more often than proposing to remove
an edge. The result is as we can see that several edges are present in the graph



36 7 SIMULATIONS AND RESULTS

Figure 15: QQ-plot of average probabilities from four different RJMCMC runs
compared with the frequencies of values in dataset x4
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Figure 16: Probabilities of the different edges in each of the four RJMCMC runs
for dataset x4, a thick edge represent an edge that is present for most of the steps
during the run while a thin edge represents an edge that is rarely present in during
the run.
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for most of the iterations.

The even smaller dataset x6 is also used in four runs of the algorithm. The tuning
parameters are now σ2

one = 1.35, σ2
all = 0.13 and σ2

AR = 0.014. The QQ-plots of
average probabilities and data frequencies can be seen in Figure 19 and we see
that the fit this time is worse than for the previous tests. The edge probabilities
in Figure 20 show the same problem as we saw for dataset x5; a great number
of edges are strong in the resulting model. Again we can also find edges that are
strong in some of the runs but not in others. Examples are the edges (7, 11), (4, 14)
and (5, 9).

For this second example graph we see the same problems as we did for the first
graph, but this time we also see that the method is not capable of finding as good
fits to the datasets when the number of data points is small compared to the num-
ber of possible outcomes of the MRF. As the number of vertices increases we need
more and more data points to get an accurate representation of the underlying
distribution. The convergence problems of the algorithm may be due to the ac-
ceptance rate for adding or removing edges being too low. We were not able to
get an acceptance rate for adding or removing edges above 0.1 for any of the runs
for any of the six datasets. Still we were able to get models that fit the largest
dataset quite well.

8 Closing Remarks

In this thesis simulations of parameter values and graph structures for Markov
random fields were considered in a Bayesian setting and a slightly altered version
of the spike and slab prior used by Chen and Welling (2012) was used as the prior
model. The method presented was a reversible jump Markov chain Monte Carlo
method. Proposal distributions for the different types of moves were presented and
the algorithm was tested for two different example graphs. One with few vertices
and few edges, the other with more vertices but still fairly few edges. Simulations
were done based on three different simulated datasets from the Markov random
field defined on each of the example graphs. For the smallest example graph
the algorithm could find good fits for all three datasets, but the resulting graph
structures were not the same in each run. It seems that the chain is not able to
move between different modes of the posterior, which results in the algorithm not
reaching convergence. Still some of the edges from the true graph were found by
the algorithm in all of the runs. For the larger example graph the algorithm found
models that fit the largest dataset well, but the performance was not as good for
the two smallest datasets. We see the symptoms of the algorithm not reaching
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Figure 17: QQ-plot of average probabilities from four different RJMCMC runs
compared with the frequencies of values in dataset x5
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Figure 18: Probabilities of the different edges in each of the four RJMCMC runs
for dataset x5, a thick edge represent an edge that is present for most of the
steps during the run while a thin edge represents an edge that is rarely present in
during the run. The edge thickness is scaled down by 0.5 compared to previous
plots because of the large number of strong edges.
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Figure 19: QQ-plot of average probabilities from four different RJMCMC runs
compared with the frequencies of values in dataset x6
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Figure 20: Probabilities of the different edges in each of the four RJMCMC runs
for dataset x6, a thick edge represent an edge that is present for most of the steps
during the run while a thin edge represents an edge that is rarely present in during
the run. The edge thickness is also here scaled down by 0.5 compared to previous
plots because of the large number of strong edges.
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convergence for this example graph as well.

Setting a tuning parameter for the proposal distribution for the parameters that
were added or removed when moving between models of different sizes was hard,
and even after lots or trial and error the acceptance rate for adding or removing
edges was still very low. For the smallest datasets from the second example graph
we also saw that the number of times adding an edge is accepted is almost twice
as high as the number of times removing an edge is accepted. This might bee the
reason why the edges resulting from simulations were not the same as the true
ones, and that the simulations ended up in different modes of the posterior.

A natural continuation of the work in this thesis is to find better proposal distri-
butions. A different proposal distribution could make the acceptance rate when
adding or removing edges higher and possibly solve the problem of the Markov
chain not exploring the whole sample space. If the proposal distribution were to
take into consideration the values of all parameters associated with the vertices
included in cliques added when proposing a new edge and set the values of the
new parameters according to this it could make the acceptance rate when adding
or removing edges a bit larger.

Another possibility is to explore different prior models. The choice of a good
prior model is an essential part of Bayesian analysis. The strength of the prior
relative to the likelihood will have a major effect on results and a different prior
might affect the performance of the algorithm. A prior model that is constructed
to encourage sparse graphs as dimension increases is presented by Jones et al.
(2005). It also might be possible to restrict the space of possible models to not
include the most complicated models, this will make it hard to correctly learn all
of the edges correctly but it might allow us to learn the most important edges
more reliably. This approach is mentioned by Koller and Friedman (2009).

If the convergence problems of the method is resolved it would be natural to
use an approximation for the normalizing constant, or look into the possibility of
the Markov structure simplifying the computation of the normalizing constant as
described by Friel and Rue (2007). Solutions to the problem of the intractable
normalizing constant where the calculation of this constant is avoided is discussed
in Murray and Ghahramani (2004). The next step thereafter would be to apply
the method to a real dataset.
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