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A B S T R A C T

This systematic review, initiated by the European Cooperation
in Science and Technology Action Magnetic Resonance Imaging
Biomarkers for Chronic Kidney Disease (PARENCHIMA), fo-
cuses on potential clinical applications of magnetic resonance
imaging in renal non-tumour disease using magnetic resonance
relaxometry (MRR), specifically, the measurement of the inde-
pendent quantitative magnetic resonance relaxation times T1

and T2 at 1.5 and 3Tesla (T), respectively. Healthy subjects show
a distinguishable cortico-medullary differentiation (CMD) in T1

and a slight CMD in T2. Increased cortical T1 values, that is, re-
duced T1 CMD, were reported in acute allograft rejection (AAR)
and diminished T1 CMD in chronic allograft rejection.
However, ambiguous findings were reported and AAR could not
be sufficiently differentiated from acute tubular necrosis and cy-
closporine nephrotoxicity. Despite this, one recent quantitative
study showed in renal transplants a direct correlation between fi-
brosis and T1 CMD. Additionally, various renal diseases, includ-
ing renal transplants, showed a moderate to strong correlation
between T1 CMD and renal function. Recent T2 studies observed
increased values in renal transplants compared with healthy sub-
jects and in early-stage autosomal dominant polycystic kidney
disease (ADPKD), which could improve diagnosis and progres-
sion assessment compared with total kidney volume alone in
early-stage ADPKD. Renal MRR is suggested to be sensitive to

renal perfusion, ischaemia/oxygenation, oedema, fibrosis, hydra-
tion and comorbidities, which reduce specificity. Due to the lack
of standardization in patient preparation, acquisition protocols
and adequate patient selection, no widely accepted reference val-
ues are currently available. Therefore this review encourages
efforts to optimize and standardize (multi-parametric) protocols
to increase specificity and to tap the full potential of renal MRR
in future research.

Keywords: magnetic resonance imaging, kidney, mapping,
relaxometry, chronic kidney disease

I N T R O D U C T I O N

Kidneys are morphologically complex organs. Renal patholo-
gies induce (micro-) structural and functional changes that may
be captured with magnetic resonance imaging (MRI) owing to
its exceptional soft tissue contrast. Despite the frequent and suc-
cessful use of magnetic resonance relaxometry (MRR) in other
organs (e.g. cardiac MRI) to assess oedema, amyloid deposition
and fibrosis, the application of renal MRR is still scarce.

Renal MRR holds the promise to non-invasively quantify tis-
sue inflammation and alterations, such as interstitial or cellular
oedema and/or fibrosis, as well as renal function. This review
article evaluates and summarizes data on renal T1 and T2 map-
ping using clinical 1.5 and 3Tesla (T) systems and provides
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recommendations for upcoming research efforts to promote
MRR in clinical practice.

M A T E R I A L S A N D M E T H O D S

The European Cooperation in Science and Technology (COST)
Action Magnetic Resonance Imaging Biomarkers for Chronic
Kidney Disease (PARENCHIMA) (www.renalmri.org) initiated
this systematic review by an extended PubMed search regarding
renal mapping (see Supplementary data) on 25 October 2017 to
identify human in vivo T1 and T2 measurements at 1.5 and 3T.
Titles and abstracts of 357 publications were processed to iden-
tify matches aligning with the aim of this article. Furthermore,
relevant references within the acquired papers and selected
studies by the authors were added. Our analysis reaches back to
the year 1983 and includes studies with field strengths below
1.5T. Some handpicked qualitative studies and preclinical stud-
ies were also included to present readers with relevant trends in
the measurement of renal T1 and T2 values. Studies regarding
renal neoplasms and/or dynamic contrast-enhanced MRI were
excluded. For details on data collection, see Supplementary
data.

B A S I C P R I N C I P L E S O F M A G N E T I C
R E L A X A T I O N M E C H A N I S M S

MRI is a non-invasive technique to map the human body using
the interaction of three magnetic fields: (i) a strong static field
(B0 or main magnet) to magnetize the whole sample and to allow
the signal to be measured; (ii) gradient coils producing three (Gx,

y, z) linear, orthogonal gradients to allow the signal to be regis-
tered in space; and (iii) a dynamic radio frequency (RF) field (B1

or excitation field) to change steady-state magnetization pro-
duced by B0 and to enable the readout of the measured signal
(using an appropriately frequency-tuned coil or antenna) [1].

When subjects are placed inside the MRI scanner, nuclear
spins align with B0 (Figure 1a and b). The application of an RF
pulse (B1; usually in the range of milliseconds and millitesla)
changes this macroscopic magnetization and proton spins are
perturbed (i.e. tipped away from B0). RF pulses are named after
their effect on the net magnetization vector, i.e. an RF pulse tilt-
ing the net magnetization vector by 90� from the z direction
(B0) into the x/y plane is called a 90� pulse and a 180� pulse
inverts the magnetization vector (i.e. z to �z; Figure 1a and b).
The return of the tipped net magnetic vector to the steady-state
equilibrium along the B0 axis and the decay of net transverse
magnetization, respectively, are two independent processes that
can be measured [2]; namely spin–lattice (T1) and spin–spin
(T2) relaxation time. T1 and T2 relaxation times are characteris-
tic for the tissue composition (i.e. local microstructural magne-
tochemical environment) and provide the main sources of
tissue contrast in morphological MRI.

In order to actually quantify T1 or T2 relaxation times (i.e. T1

and T2 mapping) different clinical MRI protocols are available
with specific advantages and disadvantages; the chosen method
is often determined by the available MRI hardware, sequence
and acquisition time. However, over the years, a plethora of
measurement sequences and acronyms have been published,

and the interested reader should refer to an in-depth textbook
written particularly for medical doctors [3].

T1 relaxation time

The gold standard for T1 measurement, the inversion recov-
ery (IR) technique, first inverts the magnetization in the z direc-
tion using a 180� pulse, which is followed by a waiting time, TI
(inversion time), and a successive 90� pulse to initiate data read-
out with further 180� pulses. This IR preparation module has to
be repeated several times by incrementing TI to acquire three to
eight data points using a long TR (repetition time; i.e. five to
seven times T1), to ensure full relaxation before each inversion
pulse, which leads to long overall IR-T1 measurement times
(Figure 1a and c).

The desire for faster T1 measurement compatible with indi-
vidual breath-holds has given rise to several efficient methods,
the most common being variable flip-angle (VFA) and modi-
fied Look-Locker imaging (MOLLI).

In VFA, two or more spoiled gradient recalled-echo acquisi-
tions with differing excitation pulse flip-angles give rise to signals
modulated by T1 [4]; while substantially faster than IR-T1, care
must be taken before considering VFA to provide quantitative,
rather than relative, T1 measures [5]. VFA measurements are sus-
ceptible to B1 inhomogeneity and thus require additional B1 map-
ping. Also, the accuracy of the resulting T1 depends on the relation
of the chosen flip-angles with respect to the observed T1 range.

The MOLLI sequence and its variants, based on the tech-
nique developed in 1970 by Look and Locker [6], sacrifice the
requirement of pre-excitation equilibrium to save time and
report a modified, shorter, apparent T1 (often denoted T1*) de-
rived from repeated efficient sampling of a single excitation
pulse. This type of sequence is sufficiently fast, so it is well suited
for cardiac imaging, but the comparability between T1 and T1*
is limited [7, 8].

T2 relaxation time

The most common method to measure T2 relaxation time is
a multi-echo (fast) spin-echo sequence, which first applies a 90�

pulse to tilt the magnetization into the x/y plane and then
applies several 180� pulses in the x/y plane to recover (echo)
magnetization and hence enables T2 estimates from the signal
envelope (Figure 1b and d). This approach is achieved within
one TR, which is much faster than T1 (IR) measurements, and
allows full kidney coverage within a few breath-holds.

However, T2 measurements are sensitive to imperfect slice
selection pulse profiles, diffusion, flow and field inhomogenei-
ties [9]. A T2 preparation module decreases the influence of
imperfect slice selection profiles, diffusion and flow. Carr–
Purcell–Meiboom–Gill (CPMG) and similar preparations can
help to compensate for field inhomogeneities. Therefore T2

preparations yield more accurate (but slightly higher) T2 values
as compared with a multi-echo spin-echo approach. T2 prepa-
rations are widely used in cardiac imaging to visualize oedema
after myocardial infarction [10], and can be performed during
free breathing, although image registration prior to T2 calcula-
tion is required. Commonly at least three source images with
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different echo times are recommended for accurate T2 estima-
tion using two- or three-parameter exponential fittings [10–13].

R E N A L T 1 M A P P I N G

Reference values and physiological modulations

In the early 1980s, renal MRI detected relatively increased T1

values in the medulla compared with the cortex in healthy sub-
jects. This corticomedullary differentiation (CMD) is presum-
ably caused by the higher free water content, i.e. higher mobility
of water molecules, in the medullary tubules and collecting
ducts [14, 15]. Additionally Hricak et al. [14] reported that hy-
dration and the water balance management of the kidneys are
important influencing factors, because T1 CMD decreases dur-
ing dehydration (relative cortical T1 increase) and increases

after rehydration, i.e. forced diuresis [14], but the impact in
healthy subjects or patients was never reassessed at 1.5 T and
3T. Another inevitable variation is caused by the increase of B0

from 1.5 and 3T, as T1 generally increases. Further variation of
renal T1 values was reported due to different MRI acquisition
schemes and breathing strategies [16, 17], even though high
interexamination repeatability for single acquisition schemes
was proven [18–20]. Therefore no widely accepted reference
values are published and the given limitations have to be con-
sidered when comparing different studies (Table 1).

T1 modulation by the inhalation of oxygen and
carbogen. T1 and T2* relaxation times are modulated by ox-
ygen level changes in the blood and/or tissue, although caused
by different mechanisms [21]. T2*, i.e. blood oxygen level

FIGURE 1: Simplified illustration of the quantification of T1 (a, c), and T2 (b, d) relaxation time measurements in the cortex (red) and medulla
(blue). The illustration on the left (a, b) shows the patient lying inside the MRI scanner (view from above). The main magnetic field (B0) is in the
foot–head direction. The static magnetic field causes some nuclear spins to align parallel with B0, which is illustrated with the first big black arrow
in the graphic next to it. (a) Simplified sequence diagram for T1 mapping. The gold standard for T1 relaxation time measurements is initiated by a
180� pulse (IR). As a consequence, the net magnetization is tilted in the z direction (from left to right; first grey arrow). Thereafter a waiting time
is applied, TI 1 (time of inversion), which ends after the application of a 90� pulse, so that the net magnetization is tilted in the x/y plane and the
readout with constant time of echo (TE c) begins. After a long time of repetition (TR) the next measurement begins; however, the waiting time is
longer (TI 2). The graphic below shows the acquired signal, which shows a stronger signal for the first measurement and a weaker signal for the
second measurement (see dashes boxes). (b) Simplified sequence diagram for T2 mapping. The most commonly used protocol is initiated by a 90�

pulse and a 180� pulse, which tilts the net magnetization first into the x/y plane and thereafter into the opposite direction. This process is differ-
ently timed (TE 1 and TE 2). After successive 180� pulses the readout begins with TE c. Below, the acquired signal is shown. Notice the exempli-
fied and reduced signal magnitude of the second signal (dashed boxes). (c) Multiple inversion time acquisitions for T1 mapping. On the bottom
left, the graph shows the measured signal magnitude for each inversion time of the IR sequence. Due to the IR the T1 signal decays first towards
null and recovers afterwards, which can also be depicted in the corresponding images of the native kidney on the top left. The T1 signal decay
curve is used to calculate a color-coded T1 map (examples of normal and transplanted kidney; colour bar in ms). (d) The graph on the bottom left
shows the T2 signal decay during the multiple echo time acquisition for the T2 mapping data. Corresponding images of the native kidney is shown
on the top left. The T2 signal decay curve is used to calculate a colour-coded T2 map (examples of normal and transplanted kidney; colour bar in
ms). Figure layout, design, and editing: Karin van Rijnbach, A.d.B., N.P.J. and M.W.; image data acquisition and reconstruction: A.d.B.

MRI T1- and T2-mapping ii43Downloaded from https://academic.oup.com/ndt/article-abstract/33/suppl_2/ii41/5078406
by Norges Teknisk-Naturvitenskapelige Universitet user
on 24 August 2018



T
ab

le
1.

Q
ua

n
ti

ta
ti

ve
T

1
st

ud
ie

s
at

1.
5

an
d

3T

A
ut

ho
r

Y
ea

r
Su

bj
ec

t
Sa

m
pl

e
si

ze
G

ro
up

In
vi

vo
re

pe
at

ab
ili

ty
G

FR
H

yd
ra

ti
on

R
es

pi
ra

to
ry

co
m

pe
ns

at
io

n
Se

qu
en

ce
C

or
te

x
M

ed
ul

la
O

th
er

m
od

al
it

ie
s

1.
5T

B
lü
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dependent (BOLD) MRI, associated changes are reviewed by
Pruijm et al. [30].

To our knowledge, modulations of renal T1 values during
the inhalation of pure oxygen (O2) and carbogen (5% carbon
dioxide mixed with 95% O2) were only observed in healthy vol-
unteers. In 2002, Jones et al. [21] reported a significant decrease
in cortical T1 values during O2 inhalation at 1.5T. These find-
ings were confirmed in 2007 and 2009 with an even more pro-
nounced reduction in cortical T1 values following the
inhalation of O2 and carbogen [23, 24]. In these studies, the lack
of a renal hydration protocol [except in O’Connor et al. [24]],
the free breathing acquisition, the VFA method and dyspnoea
during the carbogen inhalation (leading to increased breathing
motion), as well as the temporal and spatial acquisition con-
straints, can be considered as important limitations [23, 24].

The first 3T study was carried out by Ding et al. [27] when
healthy subjects were evaluated during exposure to normoxia
and O2. Thereafter a multiparametric renal MRI study evalu-
ated five healthy volunteers who underwent a hyperoxia chal-
lenge (�80% O2); again cortical T1 values decreased, but unlike
previous publications, no statistical significance was observed
[18].

These studies show that cortical T1 is sensitive to oxygena-
tion level changes. However, the contribution of vasoconstric-
tion and vasodilatation as well as perfusion changes during O2

and carbogen inhalation, as well as the evaluation of renal oxy-
gen delivery (ischaemia), were never directly assessed, which
could have caused the reported ambiguous findings [18, 27].
Final conclusions regarding medullary T1 modulations are cur-
rently not possible. Last but not least, it has not been clarified
yet as to what extent alterations in T1 reflect tissue and/or blood
oxygenation. These questions remain a target for future
evaluations.

Clinical studies

Renal transplants—early qualitative and semi-quantitative
MRI studies. Imaging of renal transplants in the iliac fossae
is less confounded by breathing motion, which enabled renal
MRI evaluations in the 1980s [31]. Early qualitative and/or
semi-quantitative renal MRI studies revealed a reduced T1

CMD in acute allograft rejection (AAR), and even diminished
T1 CMD in chronic allograft rejection (CAR) [15, 31–34].
However, acute tubular necrosis (ATN) could not be suffi-
ciently differentiated from AAR [32, 34–36], and even dimin-
ished T1 CMD was reversible in some cases of ATN and AAR
[36]. Thus scrutiny of the reduced T1 CMD linked both oedema
and fibrosis to prolonged T1 values, which partially explains the
low specificity of these renal transplant evaluations [37].

Another interesting finding on renal transplant observation
was the clearly preserved T1 CMD during an acute decline in re-
nal function under cyclosporine therapy, which was linked to
cyclosporine nephrotoxicity (CN) [32, 34]. However, three suc-
cessive studies presented ambiguous outcomes [33, 37, 38].
Thereafter, no further research efforts were made, so no final
conclusion can be made.

All these envisioned early MRI studies on renal transplants
applied field strengths<1.5T, which today are not frequently in

clinical use. However, in contrast to recent MRI evaluations, all
of these studies applied histological validation. A low specificity
was observed due to different acquisition settings (e.g. vendors
and protocols), low reproducibility of the two-point method to
calculate T1 [31] and lack of a standardized patient preparation
(e.g. hydration protocol) [14, 15]. In addition, loss of T1 CMD
was reversible after clinical improvement in some cases of ATN
and ARR, which could have decreased the specificity further
[36]. Therefore recommendations could not advocate qualita-
tive and/or semi-quantitative MRI evaluations over ultrasound
and scintigraphy [34].

Renal transplants—quantitative MRI studies. T1 meas-
urements on renal transplants at 1.5T were presented by Huang
et al. [19] in 2011, when renal transplants and native kidneys
with unknown underlying renal disease confirmed the trend of
higher cortical and medullary T1 values in renal transplants.
They also achieved a high short-term in vivo repeatability
(�610%). In addition, strong correlations were observed be-
tween estimated glomerualr filtration rate (eGFR) and cortical
T1 in both groups (native cortex: r¼�0.83, P¼ 0.0001;
transplant cortex: r¼�0.80, P¼ 0.0017), but medullary T1 val-
ues only significantly correlated with eGFR in the transplant
group (r¼�0.94, P< 0.0001) [19].

The second quantitative T1 assessment of renal transplant
was presented by Friedli et al. [29]. A total of 29 patients under-
went a multiparametric MRI approach at 3T, including a vali-
dation against histological samples. With regard to T1, only T1

CMD showed a moderate correlation with renal interstitial fi-
brosis (R2¼ 0.29, P< 0.001) and eGFR (R2¼ 0.22, P< 0.05).
No correlation was established between T1 values and cellular
inflammation [29]).

In 2018, renal T1 was evaluated in 49 renal transplant
patients, 52 patients after lung transplantation (LuTx; native
kidneys) and 14 healthy volunteers [26]. Their aim was to assess
acute kidney injury (AKI) after LuTx (reported incidence
�60%), and after a 3- and 6-month follow-up. T1 CMD was sig-
nificantly decreased and mean cortical and medullary T1 were
significantly higher in renal transplants compared with healthy
volunteers and the LuTx group (P< 0.001). However, T1 CMD
was also reduced in the LuTx group compared with volunteers
(P< 0.05), which was linked to the incidence of AKI after
LuTx. All patients and healthy volunteers were further grouped
according to Kidney Disease Outcomes Quality Initiative
(KDOQI) stages. Remarkable were the significantly lower corti-
cal T1 values in subjects with eGFR �60 mL/min/1.73 m2 as
compared with<60 mL/min/1.73 m2 and that cortical T1 nega-
tively correlated (r¼�0.642, P< 0.001) and T1 CMD posi-
tively correlated (r¼ 0.542, P< 0.001) with eGFR for all
participants. In contrast, medullary T1 showed only a weak cor-
relation with eGFR (r¼�0.341, P< 0.001). During the 3- and
6-month follow-up, cortical T1 and T1 CMD exhibited a signifi-
cant correlation with eGFR (P< 0.001 and < 0.01, respectively)
in the LuTx and renal transplantation groups [26].

In summary, we identified only three quantitative T1 studies
on renal allografts at 1.5 and 3T. In contrast to early qualitative
and semi-quantitative MRI studies, only one quantitative study
applied a histological validation, in which it was shown that
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state-of-the-art T1 measurements, i.e. T1 CMD, could be used
to assess renal interstitial fibrosis in allografts [29]. Another im-
portant finding was that T1 values were sensitive to presumable
AKI alterations in the context of post-LuTx [26]. However, the
specificity of renal MRR regarding AAR, CAR, ATN or drug-
induced toxicity was not further assessed or improved.
Furthermore, these studies show that T1 mapping has the po-
tential to estimate renal function.

Non-invasive assessment of renal function. The first
quantitative T1 measurements on patients at 1.5T were pub-
lished in 2007 [22]. A small and unbalanced group was primar-
ily enrolled for the evaluation of a renal artery stenosis: one
patient with CKD and hypertension and nine patients with hy-
pertension alone. A loose hydration protocol was applied before
the MRI acquisition, and afterwards all patients underwent
a 99mTc-diethylene triamine pentaacetic acid renography to
measure the single-kidney GFR (SKGFR). A significant correla-
tion was depicted only between cortical T1 values and the
SKGFR (r¼�0.5, P¼ 0.03) [22].

In 2015 the association between cortical T1, renal perfusion
(from arterial spin labeling (ASL); see also Odudu et al. [39])
and eGFR in patients with chronic heart failure (HF) and con-
trol subjects with different levels of renal impairment was evalu-
ated [25]. Renal perfusion was similar in chronic HF patients
with and without renal impairment, but cortical T1 showed a
significant correlation with eGFR (r¼�0.41, P¼ 0.015), which
reflects the potential to assess CKD. Chronic HF patients had
significantly higher cortical T1 compared with all control sub-
jects, and chronic HF patients with renal impairment had sig-
nificantly higher cortical T1 compared with chronic HF patients
without renal impairment [25].

After the ASL reproducibility study of Gillis et al. in 2014
[20], a follow-up study evaluated renal perfusion and cortical
T1 in healthy volunteers and CKD patients with different a eti-
ologies at 3T. Significantly higher cortical T1 values were found
in CKD patients and a correlation between cortical T1 and
eGFR was observed (r¼�0.58, P< 0.001) [28].

One year later a multiparametric renal MRI study assessed
T1 in healthy subjects and CKD patients with various renal dis-
eases after a short fasting period (>2 h) at 3T [18]. Compared
with volunteers, CKD showed significantly higher cortical T1,
and T1 CMD was reduced (P< 0.01). They achieved an
interscan coefficient of variation of <2.9% and high intraclass
correlation for the cortex and medulla (0.848 and 0.997, respec-
tively, using spin-echo echo-planar imaging) [18].

As previously envisioned also, three renal transplant studies
assessed the correlation of T1 values and the renal function at
1.5 and 3T (see above) [19, 26, 29].

In summary, the envisioned studies show that the degree of
renal impairment correlates moderately to strongly with corti-
cal T1 and T1 CMD in CKD with various renal diseases [18, 22,
28], renal transplants [19, 26, 29], and chronic HF patients [25].
These findings are also in line with some qualitative assess-
ments in the 1990s [40, 41], but not with all [42], due to the fact
that renal T1 values are modulated by many confounders, such
as the degree of fibrosis [29], comorbidities (e.g. liver cirrhosis)
[43, 44], the acquisition protocol (e.g. breathing motion) and

fastening and hydration level [14], which all together seem to be
responsible for the accomplished correlations in the envisioned
quantitative studies at 1.5 and 3T. To our knowledge, only one
study correlated renal T1 values with measured GFR [22]. It
should be noted that adequate patient preparation (e.g. hydra-
tion protocol, medication intake), patient selection in the con-
text of comorbidities and acquisition protocols (e.g. triggered
breath-hold) together with reference measurement of the renal
function can improve T1 renal function correlations, which
advocates for further research in this field.

R E N A L T 2 M A P P I N G

Reference values and physiological modulations

In healthy subjects, medullary T2 is consistently longer than
cortical T2. As previously envisioned, Hricak et al. [14] evalu-
ated the effect of fasting and hydration and showed that T2

CMD decreased during hydration (i.e. forced diuresis), but
these findings were never re-evaluated. Additional variation can
also be found due to the increase in B0 from 1.5 and 3T, which
is accompanied by a general decrease in T2, and by the fact that
different MRI acquisitions and breathing strategies report un-
equal values. But for healthy subjects a high day-to-day repeat-
ability was shown by a multi-echo spin-echo method
with a mean variability of <4% for both cortex and medulla at
1.5T [45].

Closely linked to T2 is T2
0, which is thought to reflect tissue

oxygenation [45, 46]. For measurement of T2
0, both T2 and T2*

are required. T2*, i.e. renal BOLD MRI, is discussed by Pruijm
et al. in this issue [30].

These variations have to be considered when comparing dif-
ferent studies (Table 2).

Clinical studies

In the 1980s renal transplants were evaluated regarding
T2, and MRI was shown to be useful to identify fluid
collections in necrotic transplant, perinephric lymphoceles and
haematoma [31].

To our knowledge, the first quantitative clinical, i.e. renal
transplant, study on T2 values at 1.5Tesla (T) was reported in
2011. One of two T2 acquisition protocols identified a signifi-
cant increase in cortical T2 in 15 renal transplants compared
with 6 healthy subjects. However, no significant difference was
observed with regards to the allograft function [46].

In 2017, whole kidney T2 values in animals with juvenile cys-
tic kidneys and nine autosomal dominant polycystic kidney dis-
ease (ADPKD) patients were reported. A strong significant
increase in T2 values was seen in early-stage ADPKD patients
compared with healthy volunteers. Based solely on T2 values,
early-stage ADPKD patients with a kidney volume <300 mL
could be distinguished from healthy volunteers, which was not
possible based on total kidney volume (TKV) [47].

In summary, human in vivo measurements of renal T2 are
relatively scarce. Therefore no final conclusion can be made re-
garding renal function estimation or renal transplant assess-
ments. Nevertheless, interesting findings were obtained,
which clearly advocate for future research. Early-stage ADPKD
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patients could benefit from the T2 evaluations and the poten-
tially improved assessment of early-disease progression com-
pared with TKV [47]. This might be of special interest in the
evaluation of novel therapeutic agents such as tolvaptan. The
assessment of AKI in the context of ischaemia reperfusion in-
jury, e.g. induced kidney damage during renal allograft surgery,
also seems to be a potential application for T2, as in vivo meas-
urements were shown to be feasible [46]. Animal studies have
shown that T2 is sensitive to ischaemia–reperfusion injury [48,
49]. During initial ischaemia, T2 decreases, probably due to de-
oxygenation, followed by an increase during reperfusion [50].
In the longer term, an elevation of T2 that is more pronounced
in the medulla compared with the cortex has been found [51,
52], which was attributed to consecutive inflammation and
oedema (T2 increase) [50–52]. Human studies are necessary to
determine whether the T2 changes following AKI can predict
the recovery of renal function.

D I S C U S S I O N

In recent decades, quantitative renal T1 and T2 mapping have
been shown not only to be feasible, but also to provide non-
invasive valuable information regarding renal structure and
function in healthy, AKI, CKD, renal transplant and ADPKD
patients at 1.5 and 3T (Tables 1 and 2).

Renal T1 has been shown to be modulated by hydration and,
in particular, cortical T1 was sensitive to oxygenation. T1 CMD
is a potential candidate biomarker to assess AAR, CAR, ATN,
CN, fibrosis and renal function. Renal T2 was measured in only
a few studies but showed the potential to evaluate renal trans-
plants and to improve the diagnosis and progression of early-
stage ADPKD.

However, the variation in T1 and T2 values is large, mainly
due to the great diversity of the MRR methods applied, but also
due to physiological (e.g. water balance management during
fasting and forced diuresis) and pathological alterations (e.g. fi-
brosis) of the renal parenchyma. In virtually all renal diseases,
renal function and microstructure are altered together, and this
review on T1 and T2 unveiled the high sensitivity towards each
of these processes as well as the complicated interpretation of
the acquired data due to the low specificity.

In conclusion, currently available data suggest that the full
potential of renal T1 and T2 mapping has not yet been tapped
and adequate patient selection, with regard to comorbidities,
alongside technical and physiological standardization, will sig-
nificantly increase the specificity of renal MRR. On route to-
wards renal T1 or T2 mapping as a biomarker it will be necessary
to validate renal MRR against widely accepted reference meas-
urements (e.g. nuclear medicine evaluations) as well as against
histological findings, when possible. Last but not least, the inte-
gration of different quantitative renal MRI data into a multi-
parametric approach will likely enable us to gain the best insight
into renal pathophysiology. The COST Action PARENCHIMA
(www.renalmri.org) is working on standardization of multipara-
metric renal MRI techniques to tackle these challenges.
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Supplementary data are available at ndt online.
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