Dear Author,
Here are the proofs of your article.

- You can submit your corrections online, via e-mail or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and email the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/ corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within $\mathbf{4 8}$ hours, we will send you a reminder.
- Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
- The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

Please note: Images will appear in color online but will be printed in black and white.

ArticleTitle	Equilibrium of $[\mathrm{Si}] /\left(\mathrm{SiO}_{2}\right)$ in Carbothermic Selective Reduction of Titanium Concentrate Ore for the Preparation of Titanium Oxycarbide
Article Sub-Title	
Article CopyRight	The Minerals, Metals \& Materials Society and ASM International (This will be the copyright line in the final PDF)
Journal Name	Metallurgical and Materials Transactions B
Corresponding Author	Family Name Zhu
	Particle
	Given Name Hongmin
	Suffix
	Division State Key Laboratory of Advanced Metallurgy
	Organization University of Science and Technology Beijing
	Address Beijing, 100083, China
	Division
	Organization Tohoku University
	Address 6-6-02, Aramaki-Aza-Aoba, Aobo-ku, Sendai, 980-8579, Japan
	Phone +81-22-795-7309
	Fax
	Email hzhu@material.tohoku.ac.jp
	URL
	ORCID
Author	Family Name Xiao
	Particle
	Given Name Jiusan
	Suffix
	Division State Key Laboratory of Advanced Metallurgy
	Organization University of Science and Technology Beijing
	Address Beijing, 100083, China
	Phone
	Fax
	Email
	URL
	ORCID
Author	Family Name Wang
	Particle
	Given Name Qi
	Suffix
	Division State Key Laboratory of Advanced Metallurgy
	Organization University of Science and Technology Beijing

	Address	Beijing, 100083, China
	Phone	
	Fax	
	Email	
	URL	
	ORCID	
Author	Family Name	Jiang
	Particle	
	Given Name	Bo
	Suffix	
	Division	Department of Materials Science and Engineering
	Organization	Norwegian University of Science and Technology
	Address	7491, Trondheim, Norway
	Phone	
	Fax	
	Email	
	URL	
	ORCID	
Schedule	Received	3 April 2017
	Revised	
	Accepted	
Abstract	Carbothermic selective reduction of titanium concentrate ore for the preparation of titanium oxycarbide was presented and SiO_{2} was found to be partly reduced during the process. The equilibrium relationship between Si dissolved in metallic Fe and SiO_{2} existed in corresponding slag was analyzed thermodynamically, and then revealed by a series of designed equilibration experiments. The results are in accordance with the calculated values obtained from thermodynamic analysis and have well explained the phenomenon that part of SiO_{2} is reduced during selective reduction processing of titanium concentrate ore.	
Footnote Information	Manuscript sub	2018.

2 3

Equilibrium of $[\mathrm{Si}] /\left(\mathrm{SiO}_{2}\right)$ in Carbothermic Selective Reduction of Titanium Concentrate Ore for the Preparation of Titanium Oxycarbide

JIUSAN XIAO, QI WANG, BO JIANG, and HONGMIN ZHU

Abstract

Carbothermic selective reduction of titanium concentrate ore for the preparation of titanium oxycarbide was presented and SiO_{2} was found to be partly reduced during the process. The equilibrium relationship between Si dissolved in metallic Fe and SiO_{2} existed in corresponding slag was analyzed thermodynamically, and then revealed by a series of designed equilibration experiments. The results are in accordance with the calculated values obtained from thermodynamic analysis and have well explained the phenomenon that part of SiO_{2} is reduced during selective reduction processing of titanium concentrate ore.

https://doi.org/10.1007/s11663-018-1455-9
© The Minerals, Metals \& Materials Society and ASM International 2018

I. INTRODUCTION

Titanium and its alloys have received great attention from researchers worldwide due to its excellent properties such as high melting point and extraordinary corrosion resistance. However, its application has been limited by high cost arising from the Kroll Process. ${ }^{[1]}$ In the past two decades, several new methods for producing titanium have been proposed, such as FFC Cambridge process, ${ }^{[2]}$ Ono Suzuki (OS) process, ${ }^{[3,4]}$ molten oxide electrolysis (MOE) process, ${ }^{[3]}$ and the USTB electrolysis process. ${ }^{[6,7]}$ In the USTB process, high-purity titanium can be collected at the cathode through the electrolysis of titanium oxycarbide $\left(\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}\right)$ as consuming anode in molten salt, while the carbon and oxygen component in the oxycarbide anode evolve into the carbon oxide $\left(\mathrm{CO}, \mathrm{CO}_{2}\right)$ gases.

The anode material for the USTB process, namely titanium oxycarbide $\left(\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}\right)$, can be synthesized through not only carbothermic reduction of TiO_{2}, but also selective carbothermic reduction of titanium raw materials such as high-grade titanium slag and tita-nium-iron ores ${ }^{[8]}$ which mainly contains $\mathrm{FeO} / \mathrm{Fe}_{2} \mathrm{O}_{3}$, $\mathrm{TiO}_{2}, \mathrm{CaO}, \mathrm{MgO}, \mathrm{SiO}_{2}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$. A lot of related

[^0]researches focusing on the reduction of titanium raw materials have already been proposed since the 1950s. ${ }^{[9-15]}$ Coley has studied the reduction mechanism of ilmenite, into iron and titanium oxycarbide at temperatures ranging from 1587 K to $1790 \mathrm{~K}\left(1314{ }^{\circ} \mathrm{C}\right.$ to $1517{ }^{\circ} \mathrm{C}$). ${ }^{[16]}$ Dewan has studied the carbothermic reduction of ilmenite concentrates in different gas atmospheres including hydrogen, argon, and helium, demonstrating the transformation from TiO_{2} to $\mathrm{Ti}_{3} \mathrm{O}_{5}$ and then $\mathrm{Ti}_{2} \mathrm{O}_{3}$, which is converted to titanium oxycarbide. ${ }^{[17,18]}$
The equilibrium constants for relevant reactions during selective carbothermic reduction of titanium raw materials are plotted as a function of temperature in Figure 1. Since titanium sesquioxide $\left(\mathrm{Ti}_{2} \mathrm{O}_{3}\right)$ will be reduced to titanium oxycarbide $\left(\mathrm{TiC}_{\mathrm{x}} \mathrm{O}_{1-\mathrm{x}}\right)$ instead of titanium monoxide (TiO), the reaction sequence of carbothermic reduction of titanium raw materials is
\[

$$
\begin{aligned}
\mathrm{FeO} & \rightarrow \mathrm{Fe}, \mathrm{TiO}_{2} \rightarrow \mathrm{TiC}_{x} \mathrm{O}_{1-x}, \mathrm{SiO}_{2} \rightarrow \mathrm{SiC} / \mathrm{Si}, \mathrm{Al}_{2} \mathrm{O}_{3} \\
& \rightarrow \mathrm{Al}, \mathrm{MgO} \rightarrow \mathrm{Mg}, \mathrm{CaO} \rightarrow \mathrm{Ca} .
\end{aligned}
$$
\]

Therefore, in the presence of certain chemical potentials of carbon and oxygen at high temperature (i.e., $\left.1873 \mathrm{~K}\left[1600^{\circ} \mathrm{C}\right]\right)$, the reactive elements, such as Si, Mg, Ca , and Al , are expected to form oxides, while titanium oxide is reduced to titanium oxycarbide $\left(\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}\right)$ and iron oxides are converted to liquid metallic Fe which is easily separated from the oxycarbide and slag phases, since Fe is supposed to dissolute in the molten salt before titanium oxycarbide during electrolysis, resulting in contamination. Similarly, oxides of $\mathrm{Si}, \mathrm{Mg}, \mathrm{Ca}$, and Al should be removed due to their properties of insulation, which will bring a bad effect on the conductivity of anode. Thus, high-purity titanium oxycarbide can be synthesized from titanium raw materials and then

Journal :

Fig. 1-Equilibrium constants for relevant reactions during selective carbothermic reduction of titanium raw materials.
utilized as the anode of USTB process for the preparation of metallic titanium. This process is found to be theoretically and experimentally feasible, which exhibits great potential for the utilization of low-grade titanium raw materials, a unique, cost-reducing feature to the USTB process.

The relationship between the reduction of TiO_{2} and SiO_{2} is further evaluated through thermodynamic calculation under temperature of $1873 \mathrm{~K}\left(1600^{\circ} \mathrm{C}\right)$, as shown in Figure 2. The equilibrium constant of reaction from $\mathrm{Ti}_{2} \mathrm{O}_{3}$ to $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ changes with the concentration of solid solution, since the mixing Gibbs free energy of $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ exhibits quadratic relationship with the corresponding composition. ${ }^{[19]} \mathrm{SiO}_{2}$ is supposed to maintain in oxide form during the selective reduction process when the stoichiometric amount of carbon is provided only for the sufficient reduction of $\mathrm{FeO} / \mathrm{Fe}_{2} \mathrm{O}_{3}$ to Fe and TiO_{2} to $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$. However, based on our previous work, a slight amount of SiO_{2} will be reduced into $\mathrm{Fe}-\mathrm{Si}$ alloy in the selective reduction process due to the decrease of Si activity in liquid $\mathrm{Fe},{ }^{[20]}$ leading to the fact that part of the carbon which is designed to reduce TiO_{2} to $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$ will react with SiO_{2}, causing the insufficient reduction of TiO_{2}. Thus in this paper, we presented carbothermic selective reduction of titanium concentrate ore, and then performed a series of equilibration experiments to investigate the equilibrium relationship between Si in metallic Fe and SiO_{2} in slag with the presence of titanium oxycarbide. The results were interpreted with the aid of thermodynamic analysis.

Fig. 2-Equilibrium constants for the carbothermic reduction of $\mathrm{FeO}, \mathrm{Ti}_{2} \mathrm{O}_{3}$, and SiO_{2} related to x of $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ at $1873 \mathrm{~K}\left(1600{ }^{\circ} \mathrm{C}\right)$.

II. EXPERIMENTAL DETAILS

A. Carbothermic Selective Reduction

High-purity graphite (99.9 pct, Aladdin Chemistry 111 Co., Ltd) and titanium concentrate ore (Chongqing Iron and Steel Co., Ltd) were used as raw materials in selective reduction experiment. The chemical composition of titanium concentrate ore was tested by X-ray fluorescence (XRF, XRF-1800, Shimadzu Corporation), as listed in Table I. The stoichiometric amount of carbon is provided only for the sufficient reduction 118

Table I. Chemical Composition of Titanium Concentrate Ore

	TiO_{2}	FeO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	CaO	MgO	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$
Weight Percent	44.9	41.4	2.4	0.3	4.2	4.3	2.5

of $\mathrm{FeO} / \mathrm{Fe}_{2} \mathrm{O}_{3}$ to Fe and TiO_{2} to $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$ due to the aim of selective reduction process. Ingredients were mixed uniformly according to appropriate ratio by ball milling over 4 hours and then pressed into pellets of 50 mm in diameter and 15 mm in height. The pellets were placed in a graphite crucible lined with molybdenum plate, sintering at $1873 \mathrm{~K}\left(1600{ }^{\circ} \mathrm{C}\right)$ over 4 hours under flowing argon atmosphere. The reductive product was analyzed by X-ray diffraction (XRD, M21XVHF22, MAC in Japan), scanning electron microscopy (SEM, ZEISS-EVO 18, Carl Zeiss AG), and energy dispersive X-ray spectroscopy (EDX) after cooling to room temperature. The concentration of Si dissolved in metallic Fe collected from obtained product was analyzed by Inductive Coupled Plasma Emission Spectrometer (ICP, OPTIMA 7000DV, PerkinElmer Co., Ltd).

B. Equilibrium Experiment

The product obtained from selective carbothermic reduction of titanium raw material is composed of titanium oxycarbide, slag phase, and metallic Fe with a slight amount of dissolved $\mathrm{Si}^{[20]}$ The equilibrium system consists of three parts: titanium compound for the fixation of chemical potential, $\mathrm{Fe}-\mathrm{Si}$ alloy, and slag phase including $\mathrm{CaO}, \mathrm{SiO}_{2}, \mathrm{MgO}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$.

For the preparation of $\mathrm{Fe}-\mathrm{Si}$ alloy, Fe powder (99.9 pct, Aladdin Chemistry Co., Ltd) and Si powder (99.9 pct, Sinopharm Chemical Reagent Co., Ltd) were mixed uniformly by ball milling over 4 hours. The ingredients were placed into a corundum $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ crucible and melted at $1873 \mathrm{~K}\left(1600{ }^{\circ} \mathrm{C}\right)$ in a MoSi_{2} resistance furnace under flowing argon atmosphere for 10 minutes. Samples were cooled to room temperature after melting and crushed into powders for the following equilibration experiments. Particularly, we have introduced metallic Fe powder $\left(x_{[\mathrm{Si}]}=0 \mathrm{pct}\right)$ and $\mathrm{Fe}-\mathrm{Si}$ alloy with a certain concentrations of $\mathrm{Si}\left(x_{[\mathrm{Si}]}=10 \mathrm{pct}\right)$ for comparison.

The constitution of slag phase (slag 1) naturally comes from the chemical composition of titanium concentrate ore, as listed in Table I. Besides, we have introduced a different kind of slag phase (slag 2) with a lower melting point ($1507 \mathrm{~K}\left[1234^{\circ} \mathrm{C}\right]^{[21]}$) in equilibration experiments for comparison. The chemical compositions of these two kinds of slags are listed in Table II. Powders of CaO , $\mathrm{MgO}, \mathrm{SiO}_{2}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$ (99.9 pct, Sinopharm Chemical Reagent Co., Ltd) were mixed uniformly by ball milling over 4 hours, and then fused under flowing argon atmosphere at $1573 \mathrm{~K}\left(1300{ }^{\circ} \mathrm{C}\right)$ for 10 minutes. The melted and solidified sample was crushed into powders after cooling to room temperature.

Table II. Chemical Composition of Simulative Slags Utilized in Equilibration Experiments

	CaO	MgO	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$
Slag 1				
\quad Weight Percent	2.7	37.2	38.0	22.1
Mol Pct	2.7	50.7	34.7	11.9
Slag 2		7.3	43.7	18.5
Weight Percent	30.5	11.1	44.5	11.1
Mol Pct	33.3			

Ingredients including titanium compound, $\mathrm{Fe}-\mathrm{Si}$ alloy, and pre-fused simulative slag were mixed uniformly according to appropriate ratios by ball milling over 4 hours. Mixed powders were placed in a graphite crucible lined with molybdenum plate, and then sintered under flowing argon atmosphere at $1873 \mathrm{~K}\left(1600{ }^{\circ} \mathrm{C}\right)$ over 4 hours for the achievement of equilibrium. The concentration of Si in obtained $\mathrm{Fe}-\mathrm{Si}$ alloy was analyzed by Inductive Coupled Plasma Emission Spectrometer (ICP).

III. RESULTS AND DISCUSSION

A. Carbothermic Selective Reduction

Firstly, we have performed carbothermic selective reduction of titanium concentrate ore for the preparation of titanium oxycarbide. The amount of graphite utilized as the reductant was carefully controlled according to the chemical composition of titanium concentrate ore, as listed in Table I, which indicates that titanium concentrate ore primarily consists of TiO_{2} and FeO , together with a slight amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{MgO}, \mathrm{SiO}_{2}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$. The XRD patterns of raw material and reductive product are shown in Figure 3, declaring that titanium concentrate ore with a main phase of FeTiO_{3} is substantially transformed into metallic Fe and titanium oxycarbide after selective reduction process, together with a slight amount of unreduced $\mathrm{Mg}_{2} \mathrm{TiO}_{4}$ and $\mathrm{Ti}_{2} \mathrm{O}_{3}$. This phenomenon is consistent with Dewan's research, which demonstrates that the completion of carbothermic reduction to titanium oxycarbide under argon atmosphere is achieved with a reaction time longer than 5 hours. ${ }^{[17]}$ The carbothermic reduction process similarly proceeds in two stages: (1) the transformation of FeTiO_{3} into metallic iron and titanium dioxide; (2) the reduction of titanium dioxide to titanium oxycarbide. ${ }^{[15]}$

170

Fig. 3-XRD patterns of (a) titanium concentrate ore and (b) corresponding product of carbothermic reduction.

The product is characterized through SEM/EDX techniques, as described in Figure 4, indicating three phases of metallic Fe , titanium oxycarbide, and slag phase. According to a typical SEM/EDX image of the slag phase, as shown in Figure 5, it appears clumpy and the size is about $10 \mu \mathrm{~m}$; particles of titanium oxycarbide distribute in the product, with a size of $2 \mu \mathrm{~m}$, as shown in Figure 6, while Fe is found to be spherical in shape, with a diameter of $5 \mu \mathrm{~m}$. Particularly, the EDX image of reductive product displayed in Figure 4 exhibits an overlap of the distribution of Si and Fe element, suggesting that there is a slight dissolution of Si in the metallic Fe , with a concentration of about 2.5 pct , according to the EDX result described in Figure 6.

For the preparation of titanium oxycarbide from titanium concentrate ore, the designed reactions are

$$
\begin{equation*}
\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{~g}), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{TiO}_{2}+2 \mathrm{C}=\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}+1.5 \mathrm{CO}(\mathrm{~g}) . \tag{2}
\end{equation*}
$$

$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced

$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced

$$
\begin{equation*}
\mathrm{SiO}_{2}+2 \mathrm{C}=[\mathrm{Si}]+2 \mathrm{CO}(\mathrm{~g}) . \tag{3}
\end{equation*}
$$

$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced

$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced
$\mathrm{FeO}+\mathrm{C}=\mathrm{Fe}+\mathrm{CO}(\mathrm{g})$,
224
28
29
Based on the composition mentioned in Table I, there
30
is a certain amount of mass change (33.9 pct) during the
31
selective reduction process. The expected mass change is
supposed to be lower than 33.9 pct due to unreduced

composite oxide such as $\mathrm{MgO} \cdot \mathrm{SiO}_{2}$, as displayed in 249 Figure 5, while the remaining SiO_{2} is partly reduced to 250 Si , as in $\mathrm{Fe}-\mathrm{Si}$ alloy.

B. Thermodynamic Analysis

The reduction of pure SiO_{2} thermodynamically occurs 253 only after the transformation of $\mathrm{Ti}_{2} \mathrm{O}_{3}$ into $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$ and even TiC, according to Figure 1, and thus SiO_{2} is supposed to stay in the slag phase after selective reduction process, in condition of providing carbon only for the sufficient reduction of $\mathrm{FeO} / \mathrm{Fe}_{2} \mathrm{O}_{3}$ to Fe and TiO_{2} to $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$. However, SiO_{2} is found to be partly reduced into Si , as mentioned above, forming a sepa- 260 rated phase of $\mathrm{Fe}-\mathrm{Si}$ alloy at the chemical potential 261 provided by titanium oxycarbide, due to the decreasing 262 activity of $\mathrm{Si}^{[20]}$ indicating that there is equilibrium 263 relationship between Si in Fe - Si alloy phase and $\mathrm{SiO}_{2} 264$ remaining in the slag phase, and the concentration of Si in metallic Fe is determined by the chemical potential of titanium oxycarbide and the activity of SiO_{2} in slag phase.

255
256
257
258
259

265
266
phase. 268
It is well known that titanium oxycarbide $\left(\mathrm{TiC}_{x} \mathrm{O}_{1-x}, 269\right.$ $0 \leq x \leq 1$) is a solid solution of TiC and $\beta-\mathrm{TiO}$, and also 270 a type of intermediate product between $\mathrm{Ti}_{2} \mathrm{O}_{3}$ and TiC 271 during the carbothermic reduction of $\mathrm{TiO}_{2} .{ }^{[2]]}$ There- 272 fore, we intend to control the chemical potential of the system with two kinds of redox couples: $\mathrm{Ti}_{2} \mathrm{O}_{3} /$ $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ and $\mathrm{TiC}_{x} \mathrm{O}_{1-x} / \mathrm{TiC}$. The corresponding chemical potential relationship for $\mathrm{Ti}_{2} \mathrm{O}_{3} / \mathrm{TiC}_{x} \mathrm{O}_{1-x}$ and $\mathrm{TiC}_{x} \mathrm{O}_{1-x} / \mathrm{TiC}$ at $1873 \mathrm{~K}\left(1600^{\circ} \mathrm{C}\right)$ is calculated in two different ways based on previous study on thermodynamic properties of $\mathrm{TiC}_{x} \mathrm{O}_{1-x}{ }^{[23]}$
$\mathrm{Ti}_{2} \mathrm{O}_{3}$ can be easily reduced by carbon to $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ in almost the whole composition range at 1873 K $\left(1600{ }^{\circ} \mathrm{C}\right)$ and $\mathrm{TiC}_{0.51} \mathrm{O}_{0.49}$ exhibits the lowest chemical potential, as shown in Figure 2. However, $\mathrm{TiC}_{0.51} \mathrm{O}_{0.49}$ does not coexist with $\mathrm{Ti}_{2} \mathrm{O}_{3}$ at $1873 \mathrm{~K}\left(1600{ }^{\circ} \mathrm{C}\right)$ since they will react, forming titanium oxycarbide with lower concentration of TiC , according to Figure 7, which demonstrates the reacting capacity of $\mathrm{Ti}_{2} \mathrm{O}_{3}$ and 287

Journal :

Fig. $4-$ SEM and EDX images of the product of carbothermic reduction from titanium concentrate ore.
titanium oxycarbide. The antioxidant capacity of titanium oxycarbide is gradually enhanced with the decrease of the concentration of TiC , reaching an equilibrium composition of $\mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$, according to Figure 7, which suggests that $\mathrm{TiC}_{\mathrm{x}} \mathrm{O}_{1-\mathrm{x}}$ with a concentration of TiC ranging from 0 to 0.417 could coexist with $\mathrm{Ti}_{2} \mathrm{O}_{3}$, while $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ with a concentration of TiC above 0.417 will be oxidized by $\mathrm{Ti}_{2} \mathrm{O}_{3}$. Thus, the appropriate composition for redox couple $\mathrm{Ti}_{2} \mathrm{O}_{3} /$ $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ is $\mathrm{Ti}_{2} \mathrm{O}_{3} / \mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$.

For redox couple $\mathrm{TiC}_{x} \mathrm{O}_{1-x} / \mathrm{TiC}$, since the mixing Gibbs energy of $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ at $1873 \mathrm{~K}\left(1600{ }^{\circ} \mathrm{C}\right)$ is299 negative in the whole concentration range, ${ }^{[24]} \mathrm{TiC}$ will 300 spontaneously dissolve in $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$, forming a different 301 type of $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ with a higher concentration of TiC. 302 Besides, titanium oxycarbide $\left(\mathrm{TiC}_{x} \mathrm{O}_{1-x}\right)$ itself is a 303 special kind of redox couple: $\mathrm{TiO}\left(\right.$ in $\left.\mathrm{TiC}_{x} \mathrm{O}_{1-x}\right) / \mathrm{TiC}$ (in 304 $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$), while the chemical potential changes with 305 the composition. Therefore, the appropriate 306

Fig. 5-SEM and EDX images of typical slag phase in product of carbothermic reduction from titanium concentrate ore.
composition for redox couple $\mathrm{TiC}_{x} \mathrm{O}_{1-x} / \mathrm{TiC}$ is $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$, namely TiO (in $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$)/TiC(in $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$), considering the aim of the selective reduction process.

C. Thermodynamic Equilibrium

1. Equilibrium experiment

Based on the thermodynamic analysis above, we have designed a series of equilibrium experiments focused on the reaction between a redox couple consisting of a titanium compound and that of silicon $\left(\mathrm{SiO}_{2} / \mathrm{Si}\right)$, as listed in Table IV. To fix the chemical potential of the equilibrium system, we designed two equilibrium compositions of titanium compounds, including $\mathrm{Ti}_{2} \mathrm{O}_{3} /$ $\mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$ (experiments 1 to 4) and $\mathrm{TiO}($ in $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$) $\mathrm{TiC}\left(\right.$ in $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$) (experiments 5 to 6). Metallic Fe powder ($x_{[\mathrm{Si}]}=0 \mathrm{pct}$) and $\mathrm{Fe}-\mathrm{Si}$ alloy ($x_{[\mathrm{Si}]}=10 \mathrm{pct}$) were used, which is below and above the equilibrium concentration $\left(x_{[S \mathrm{Si}}=2.7 \mathrm{pct}\right)$ obtained in selective reduction process, for the distinct presentation of equilibrium process from two different sides. Besides, the total amount of $\mathrm{Fe}-\mathrm{Si}$ alloy was carefully
controlled to be smaller enough in all the equilibrium 328
experiments than that of not only titanium compound 329
but also SiO_{2} existed in slag; thus, there is rarely any 330
composition change of titanium compound and $\mathrm{SiO}_{2} 331$ during the equilibration.

332
Samples including titanium compounds $\left(\mathrm{Ti}_{2} \mathrm{O}_{3} / 333\right.$
$\mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$ and $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$), crushed powders of $\mathrm{Fe}-\mathrm{Si} 334$
alloy, and pre-fused slag were treated at 1873 K 335
$\left(1600{ }^{\circ} \mathrm{C}\right)$ for 4 hours to equilibrate, and the obtained 336
Fe-Si alloys were carefully gathered and processed after 337
cooling to room temperature for the determination of 338
concentration of Si . The results together with corre- 339
sponding experimental details are described in Table IV. 340
For experiments 1 and 2, the chemical potential of 341
reacting system is controlled by $\mathrm{Ti}_{2} \mathrm{O}_{3} / \mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$. 342
The concentration of Si in Fe -Si alloy decreases from 10343
to 4.0 pct and 6.8 pct , after equilibrating with slag 1 and 344
slag 2, respectively, indicating that during the equilibra- 345
tion a certain amount of Si in Fe -Si alloy has been 346
oxidized into SiO_{2}, dissolving in slag phase, while a part 347
of $\mathrm{Ti}_{2} \mathrm{O}_{3}$ has been transformed into TiO, dissolving into 348
$\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ solid solution.

Pages: 9

Fig. 6-SEM image of (a) product of carbothermic reduction from titanium concentrate ore and corresponding EDX images of element (b) Fe and $(c) \mathrm{Ti}$, together with compositional analysis of Fe concentrate.

Table III. Theoretical and Experimental Mass Change of Carbothermic Selective Reduction, Together with Concentration of Si ($x_{[\mathrm{Sij}}$) in Reduced Fe-Si Alloy Obtained from Calculation, EDX, and ICP Results

Mass Change (Theo.)	Mass Change (Exp.)	Reaction Ratio	$x_{[\mathrm{Si}]}(\mathrm{Cal})$.	$x_{[\mathrm{Si}]}(\mathrm{EDX})$	$x_{[\mathrm{Si}]}(\mathrm{ICP})$
33.9 pct	34.3 pct	101.2 pct	2.5 pct	2.46 pct	2.7 pct

Fig. 7-Equilibrium constants of the reaction between $\mathrm{TiC}_{y} \mathrm{O}_{1-y}(y=0.51,0.50,0.45,0.417$, and 0.40$)$ and $\mathrm{Ti}_{2} \mathrm{O}_{3}$ turning into $\mathrm{TiC}_{x} \mathrm{O}_{1-x}$ with a lower concentration of TiC at $1873 \mathrm{~K}\left(1600^{\circ} \mathrm{C}\right)$.

Journal : MMTB 11663 \square MS Code :

For experiments 3 and 4, the reaction system is similar to experiments 1 and 2 except that the resource of Fe is pure iron instead of $\mathrm{Fe}-\mathrm{Si}$ alloy. After equilibrating with $\mathrm{Ti}_{2} \mathrm{O}_{3} / \mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$ and slag phase, Fe is transformed into $\mathrm{Fe}-\mathrm{Si}$ alloy since the concentration of Si in obtained Fe-Si alloy is found to be 3.4 and 5.6 pct, declaring that some of SiO_{2} in the slag phase has been reduced into Si , forming the $\mathrm{Fe}-\mathrm{Si}$ alloy during the equilibration.
For experiments 5 and 6, the chemical potential of reacting system is controlled by $\mathrm{TiO}\left(\right.$ in $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$)/ $\mathrm{TiC}\left(\right.$ in $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$). During the equilibration, the concentration of Si in Fe increases to 2.3 and 4.5 pct , indicating that some of SiO_{2} in the slag phase has been reduced into Si , dissolving in metallic Fe , while TiC in $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$ was transformed into TiO .

2. Discussions

For experiments 1 to 4, the equilibrium equation of " $\mathrm{Ti}_{2} \mathrm{O}_{3} / \mathrm{TiC}_{0.417} \mathrm{O}_{0.583}-\mathrm{Fe}-\mathrm{Si}$ alloy-slag-graphite crucible" system is

$$
\begin{align*}
& 2.4 \mathrm{TiC}_{0.417} \mathrm{O}_{0.583}+1.6\left(\mathrm{SiO}_{2}\right) \\
& \quad=1.2\left(\mathrm{Ti}_{2} \mathrm{O}_{3}\right)+1.6[\mathrm{Si}]+\mathrm{CO}(\mathrm{~g}) \tag{4}
\end{align*}
$$

Substance existed in slag phase is surrounded with brackets, while substance in metallic Fe is decorated by square brackets. Since the activity of $\mathrm{TiC}_{0.41} \mathrm{O}_{0.583}$ (solid state) is reasonable to consider as 1 in the equilibrium system, the corresponding equilibrium constant is as described below:

$$
\begin{equation*}
K=\left(\frac{a_{[\mathrm{Si}]}}{a_{\left(\mathrm{SiO}_{2}\right)}}\right)^{1.6} \times a_{\left(\mathrm{Ti}_{2} \mathrm{O}_{3}\right)}^{1.2} \times P_{\mathrm{CO}} \tag{5}
\end{equation*}
$$

where $a_{\left[\mathrm{Si}^{1}\right]}, a_{\left(\mathrm{SiO}_{2}\right)}, a_{\left(\mathrm{Ti}_{2} \mathrm{O}_{3}\right)}$, and P_{CO} stand for the activity of Si in Fe -Si alloy, the activity of SiO_{2} in slag phase, the activity of $\mathrm{Ti}_{2} \mathrm{O}_{3}$ in slag phase, and the partial pressure of CO, respectively. The equilibrium constant can be evaluated based on previous research of Jiang et al. ${ }^{[23]}$ The relationship between the activity coefficient and the concentration of Si in $\mathrm{Fe}-\mathrm{Si}$ alloy at $1873 \mathrm{~K}\left(1600{ }^{\circ} \mathrm{C}\right)$ is described below ${ }^{[25]}$:

$$
\begin{equation*}
\log \gamma_{\mathrm{Si}}=-2.12 \times\left(1-N_{[\mathrm{Si}]}\right)^{2}-0.22 \tag{6}
\end{equation*}
$$

Since the activity of $\mathrm{Ti}_{2} \mathrm{O}_{3}$ can be calculated through Factsage 6.0 based on the composition of slag phase, ${ }^{[26]}$ the theoretical concentration of Si in $\mathrm{Fe}-\mathrm{Si}$ alloy equilibrated with $\mathrm{Ti}_{2} \mathrm{O}_{3} / \mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$ is plotted as a function of the activity of SiO_{2} in Figure 8. It is clear that the concentration of Si in equilibrium $\mathrm{Fe}-\mathrm{Si}$ alloy rises with the increase of the activity of SiO_{2}. The activity of SiO_{2} can also be calculated through Factsage 6.0 based on the composition of slag phase (0.063 for slag 1 and 0.135 for slag 2), and thus the experimental equilibrium concentration of Si in $\mathrm{Fe}-\mathrm{Si}$ alloy equilibrated with $\mathrm{Ti}_{2} \mathrm{O}_{3} / \mathrm{TiC}_{0.417} \mathrm{O}_{0.583}$ is plotted against the activity of SiO_{2} in Figure 8. During the equilibration, the concentration of Si in Fe -Si alloy changes from two different sides (0 and 10 pct), approaching the values of equilibrium shown as the solid line in Figure 8.

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
The equilibrium equation of " $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}-\mathrm{Fe}-\mathrm{Si} 407$
alloy-slag-graphite crucible" system is 408

$$
\begin{equation*}
\mathrm{TiC}\left(\text { in } \mathrm{TiC}_{0.5} \mathrm{O}_{0.5}\right)+\left(\mathrm{SiO}_{2}\right)=\mathrm{TiO}\left(\text { in } \mathrm{TiC}_{0.5} \mathrm{O}_{0.5}\right)+[\mathrm{Si}] \tag{409}
\end{equation*}
$$

$$
+\mathrm{CO}(\mathrm{~g})
$$

Fig. 9-Theoretical equilibrium concentration (line) and concentration of Si in Fe -Si alloy before (hollow squares) and after (solid squares) equilibrated with $\mathrm{TiC}_{0.5} \mathrm{O}_{0.5}$ and SiO_{2} in slag related to the activity of SiO_{2}, together with experimental concentration (solid diamond) of Si in reduced $\mathrm{Fe}-\mathrm{Si}$ alloy obtained from selective reduction.
in corresponding slag in the presence of titanium oxycarbide was analyzed thermodynamically, and then confirmed by a series of designed equilibration experiments. By controlling the chemical potential of the titanium compound, the concentration of Si in the $\mathrm{Fe}-\mathrm{Si}$ alloy changes toward the value of equilibrium during the equilibration with slag phase containing SiO_{2}. The results of equilibration experiments agree with the thermodynamic analysis and have well explained the phenomenon of partial reduction of SiO_{2} during the selective carbothermic reduction of titanium concentrate ore.

ACKNOWLEDGMENTS

This work was supported by the National High 458 Technology Research and Development Program of 459 China (863 Program, No. 2012AA062302).

REFERENCES

1. W.J. Kroll: Trans. Electrochem. Soc., 1940, vol. 78, pp. 35-47.
2. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361-64.
3. K. Ono and R.O. Suzuki: JOM, 2002, vol. 54, pp. 59-61.
4. R.O. Suzuki: J. Phys. Chem. Sol., 2005, vol. 66, pp. 461-65.
5. D.R. Sadoway: JOM, 1991, vol. 43, pp. 15-19.
6. S. Jiao and H. Zhu: J. Mater. Res., 2006, vol. 21, pp. 2172-75.
7. S. Jiao and H. Zhu: J. Alloys Compd., 2007, vol. 438, pp. 243-46.
8. C. Gao, B. Jiang, Z. Cao, K. Huang, and H. Zhu: Rare Metals, 2010, vol. 29, pp. 547-51.
9. D.G. Jones: Trans. Inst. Min. Metall., 1973, vol. 82, pp. C186-92.
10. M. Kamal-Hussein and S.Z. El-Tawil: Indian J. Technol., 1967, vol. 5, pp. 97-100.
11. I.E. Grey and A.F. Reid: Trans. Inst. Min. Metall., 1974, vol. 83, pp. 39-46.
12. S.K. Gupta, V. Rajakumar, and P. Grieveson: Metall. Mater. Trans. B, 1987, vol. 18B, pp. 713-18.
13. Y. Chen, T. Hwang, M. Marsh, and J.S. Williams: Metall. Mater. Trans. A, 1997, vol. 28B, pp. 1115-21.
14. M.A.R. Dewan, G. Zhang, and O. Ostrovski: ISIJ Int., 2010, vol. 50, pp. 647-53.
15. K.S. Coley, B.S. Terry, and P. Grieveson: Metall. Mater. Trans. B, 485 1995, vol. 26B, pp. 485-94.
16. M.A.R. Dewan, G. Zhang, and O. Ostrovski: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 182-92.
17. M.A.R. Dewan, G. Zhang, and O. Ostrovski: Miner. Process. Extr. Metall IMM Trans., 2010, vol. 120, pp. 111-17.
18. B. Jiang, J. Xiao, K. Huang, J. Hou, S. Jiao, and H. Zhu: J. Am. Ceram. Soc., 2017, vol. 100, pp. 2253-65.
19. J. Xiao, B. Jiang, K. Huang, S. Jiao, H. Zhu: 7th Int. Symp. High Temp. Metall. Process. 2016.
20. E.C. DeWys and W.R. Foster: J. Am. Ceram. Soc., 1956, vol. 39, pp. 372-76.
21. S.A. Rezan, G. Zhang, and O. Ostrovski: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 73-81.
22. B. Jiang, K. Huang, Z. Cao, and H. Zhu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3510-14.
23. B. Jiang, N. Hou, S. Huang, G. Zhou, J. Hou, Z. Cao, and H. Zhu: J. Solid State Chem., 2013, vol. 204, pp. 1-8.
24. R.J. Fruehan: Metall. Trans., 1970, vol. 4, pp. 865-70.
25. C.W. Bale, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189-228.

[^0]: JIUSAN XIAO and QI WANG are with the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China. BO JIANG is with the Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway. HONGMIN ZHU is with the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing and also with the Tohoku University, 6-6-02, Aramaki-Aza-Aoba, Aobo-ku, Sendai, 980-8579, Japan. Contact e-mail: hzhu@material.tohoku.ac.jp

 Manuscript submitted April 3, 2018.

