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Sammendrag

I denne masteroppgaven er en tilnærmet forover-bakover algoritme

for binære Markov felt kvantifisert for en konvolusjonerende Bayesiansk

modell. Den Bayesianske modellen transformeres til sin unikt korrespon-

derende energi funksjon best̊aende av binære variabler, hvor interaksjons

parametrer definerer funksjonen.

Vi kvantifisere tilnærmingens kvalitet ved hjelp av en Metropolis-

Hastings algoritme, hvor vi anvender den tilnærmede forover-bakover algo-

ritmen og Metropolis-Hastings p̊a en rekke syntetiske tilfeller. Resultatene

viser at akseptratene øker n̊ar antallet maksimale naboer øker, noe som

var å forvente. Høyeste akseptprosent ble funnet for tilfellene hvor støyen

er økt i sannsynlighetstettheten, med en resulterende akseptprosent p̊a

94, 95% for 10 naboer. De laveste akseptratene forekom for tilfellene med

lite støy, og for førfordelingen modellert som en binære Markov-kjede re-

sulterte dette i en akseptprosent p̊a 8, 03%. For dette sistnevnte tilfellet

ble det ogs̊a simulert tilnærminger uten bruk av Hastings-Metropolis algo-

ritmen, og sammenlignet med den Bayesianske sluttfordelingen har disse

to tilfellene omtrent samme marginale sannsynlighetsfordeling. Dette var

ogs̊a tilfelle n̊ar førfordelingen ble modellert som en Markov kjede med fire

mulige tilstander. Dermed konkluderer vi med at den tilnærmede forover-

bakover algoritmen gir gode resultater selv n̊ar Metropolis-Hastings gener-

erer lave akseptrater.





Abstract

In this master thesis an approximated forward-backward algorithm for

binary Markov random fields is applied to and evaluated for a convolu-

tional Bayesian model. The Bayesian model is transformed into its unique

corresponding energy function of binary variables, where interaction pa-

rameters defines the function.

We quantify the quality of the approximation by using an independent

proposal Metropolis-Hastings algorithm, where we apply the approxima-

tion to a variety of synthetic test cases. The acceptance rates increases as

the maximum number of neighbors increase, which was to be expected.

Highest percentage was generated for a case with increased noise in the

likelihood, with a resulting acceptance rate of 94.95% for 10 neighbors.

The lowest acceptance rates were gained from low noise cases, and for the

binary Markov chain prior an acceptance rate of 8.03% was registered.

For this last mentioned case the approximation was also simulated with-

out the use of the Metropolis-Hastings algorithm, and compared with the

aposteriori, where these two cases have approximately the same marginal

probabilities. The same was seen for the four state Markov chain prior.

Thus we conclude that the approximated forward-backward algorithm is

viable even when the Metropolis-Hastings algorithm generate low accep-

tance rates.
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1 Introduction

In Rimstad and Omre (2013) a convolutional two-level hidden Markov chain,
formed as a Bayesian model, is considered. The model has application to seismic
inversion, where solving the inversion generates one dimensional lithology-fluid
(LF) profiles. The convolution generates a dependency throughout the model
that makes drawing from the distribution impossible, and thus approximations
are made. Rimstad and Omre (2013) suggests three approximations for the
likelihood of the model, and uses the forward-backward algorithm to solve the
inversion. Testing involves synthetic test cases and a real data study. A similar
convolutional Bayesian model is given in Ulvmoen and Hammer (2010), where
the inversion is solved in a similar fashion. The likelihood is given an approxi-
mation and the inversion is also here solved by the forward-backward algorithm.

In the doctoral dissertation of Austad (2011) and corresponding article by
Tjelmeland and Austad (2012) an approximated forward-backward algorithm
for an energy functions of binary variables is developed. This approximation
considers discrete variables in the form of distributions for binary Markov ran-
dom fields, where the approximation is based upon minimizing the error sum
of square for the interaction parameters of the energy function. Through their
work, a transformations from Bayesian models to binary Markov random fields
is discussed, but it is not more than mentioned as a possibility. Further, a trans-
formation from a convolutional Bayesian model has never been done before.

We aim to quantify the quality of the above mentioned approximation for a
convolutional Bayesian model. This thesis adopts the model presented in Rim-
stad and Omre (2013), and we transform it into the formulation of a binary
Markov random field. This is done by expressing the posterior with interaction
parameters for binary variables of the energy function. In our studies we con-
sider both a two state Markov chain prior and a four state Markov chain prior.
We adopt covariance matrices from synthetic test cases in Rimstad and Omre
(2013), and adapt parameters to use in our evaluations. All cases are generated
realizations for using the approximated forward-backward algorithm provided
by Tjelmeland and Austad (2012), and we evaluate the approximation based on
acceptance rates from an independent proposal Metropolis-Hastings algorithm.

The succeeding sections in this thesis are organized in the following way.
Section 2 contains some of the statistical tools used throughout this thesis. The
theory is in short form, but when needed references to complete work have been
given. The problem description is found in Section 3, where the Bayesian model
is first presented and is then followed by the transformation into the energy
function. Section 4 contains the test cases used and the results for two Markov
chain priors, one with two states and the other with four. Remarks, conclusions
and further work areas is elaborated on in Section 5. The appendix contains
complete calculations and equations for certain parts of the transformations, it
also contains result plots of realizations for completeness of this thesis.
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2 Statistics Theory

The content of this section is a brief description of some of the statistical tools
used in this master thesis. For a thorough and complete elaboration the reader
is referred to cited articles and books.

2.1 Bayesian Hidden Markov Model

In this section the concept of Bayesian modeling is introduced. This is presented
for the reader to have an understanding of which parts a Bayesian model is built
upon. A more thorough interpretation of the subject is given by Gamerman and
Lopes (2006) and for a complete elaboration see Lee (2012). We conclude this
section by introducing hidden Markov models (HMM). For an elaborated dis-
cussion on this subject see Blake et al. (2011).

The main interest of the Bayesian model is to establish a distribution for n

unknown real-valued quantities, which is here denoted by the vector

θ = [θ1, . . . , θn]T , n ≥ 1. (1)

The approach is to find an expression for the distribution of θ given some obser-
vations. Before any observations are made, we assume θ to have a probability
distribution denoted by π(θ). This is known as a prior distribution, as it is an
assumption from before observations are made. Note that the generic term π(·),
is from here on out used as denotation for probability distributions.

Let x = [x1, x2, . . . , xn]T for n ≥ 1 denote observations from an arbitrary
stochastic process. The observations are assumed to be conditionally distributed
given θ, i.e. x ∼ π(x|θ). This is known as a likelihood. After observations are
made, the posterior distribution is established. This is the distribution of θ
conditioned on the observations, x. To obtain the posterior distribution, Bayes’
theorem is used yielding

π(θ|x) =
π(x|θ)π(θ)

π(x)
, (2)

where
π(x) =

�
π(x|θ)π(θ)dθ. (3)

Equation (3) is a hard to assess normalizing constant, which involves exhaustive
calculation of all possible values of θ. The posterior model is however fully
defined by the likelihood and the prior distribution, and thus the normalizing
constant is often omitted when considering other aspects of the distribution.
The posterior distribution is therefore often written as

π(θ|x) ∝ π(x|θ)π(θ). (4)
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θ1 θ2 θn−1 θn

x1 x2 xn−1 xn

Figure 1: First order hidden Markov model, illustrated as a directed graph

to show dependencies. Here θ is a Markov chain of assessment interest and

x1, x2, . . . , xn are observed quantities.

Now, let us assume that θ is a Markov chain, where a Markov chain is
a stochastic process of transitions between states in a given state space. A
Markov chain is entirely defined by a transition probability matrix. Let the
chain posses a memoryless first-order Markov property, which means that the
transition probability from time i− 1 to i is independent of all previous states
of the Markov chain. The transition probability is thus given by

π(θi|θi−1, . . . , θ2, θ1) = π(θi|θi−1). (5)

Let us further assume that the relationship between the observations in x and
the Markov chain θ is as illustrated in Figure 1. This is known as a first-order
one level hidden Markov model, where the Markov chain is seen as something
masked or as an underlying property of the observations, x. The observations
are in this HMM independent of one another when conditioned on the variables
of the hidden Markov chain, i.e. if you consider elements i and j in x and θ,
then xi and xj are independent of one another given θi and θj , ∀i �= j. This
condition is seen in the directed graph structure of the illustrated HMM.

Hidden Markov models are often of a more complex form and can consist
of many layers and orders, e.g. the convolutional Bayesian model considered in
Rimstad and Omre (2013) is for a two-level hidden Markov model.

2.2 Markov Random Fields

This section addresses the topic of Markov random fields (MRF). A great book
on this subject is Blake et al. (2011), which also discusses Markov models on
graphs in direct correspondence to HMMs, a topic we introduced in the pre-
vious section. We here follow the work of Austad (2011), which is based on
the Hammersley-Clifford theorem and follows the work of Besag (1974). In the
following section we adapt the notation of Austad (2011), and use it to define
an energy function of binary variables with interaction parameters.
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A Markov random field or MRF is an undirected graph representing stochas-
tic variables with a Markov property. The main difference between a Bayesian
model and an MRF is that the graph is undirected and may be cyclic in the
MRF case, which the Bayesian model never is. To discuss graphical representa-
tion, we first need to establish some notation. An undirected graph is usually
denoted as G = (V, E), where V is a nonempty set of vertices or nodes, and E is
a set containing the edges between the vertices. The edge set thus comprises of
2-elemented subsets of the vertex set V, which each represents the connection
of two vertices in V. The order of a graph is given by |G| = |V| and is thus the
number of vertices, and the size of the graph refers to the number of edges in
the graph.

To give a proper definition of MRFs, we first need to establish a general nota-
tion for a neighborhood system. We start with letting V = {1, 2, 3, . . . , n} be an
arbitrary vertex set for an undirected graph that has n nodes. A neighborhood
system for V is defined as a set N = {N1,N2, . . . ,Nn}, where Ni ⊆ V\{i},∀i ∈
V. There is also a one-to-one correspondence between these neighbor sets and
the edge set of a graph, and for element i, j ∈ V the neighbor set is thus defined
by Ni = {j|{i, j} ∈ E}. Now, if the elements i, j ∈ V is such that i ∈ Nj , then
i is said to be a neighbor of j. A natural consequence of i ∈ Nj is that j ∈ Ni,
i.e. i and j are neighbors of each other.

Let us now consider stochastic variables θ ∈ Rn×1, where the undirected
graph of these variables have V as a corresponding vertex set. Note that the
vertex set V is in direct correspondence to the indices of θ. Let π(θ) denote
the probability distribution of the variables, and let N denote the neighborhood
system of the graph. For i ∈ V let θ−i denote all of θ with the exception of
element i, and let θNi denote the corresponding variables of the neighbor set
Ni for element i in θ. If we assume that π(θ) > 0 and that the variables of θ
possesses a Markov property with respect to the neighborhood system N , i.e.

π(θi|θ−i) = π(θi|θNi), ∀i ∈ V, (6)

then θ is said to be an MRF.

Another set we need to establish notation for, is the clique set. To define
cliques we look to the power set of V, denoted by P(V). This is the set con-
taining all subsets of V, such that for an arbitrary subset Λ ⊆ V we always
have Λ ∈ P(V). Now consider any Λ ∈ P(V), if every pair i, j ∈ Λ is such that
i ∈ Nj , then Λ is said to be a clique. The set containing all possible cliques we
denote by C.

We round up the elaboration on MRFs, their neighborhood systems and
clique sets by presenting a small example by the use of a graph. Consider
the posterior distribution in (4), and assume that it is the distribution of the
HMM illustrated in Figure 1. This distribution can be represented as a Markov
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θ1 θ2 θn−1 θn

Figure 2: The posterior distribution, π(θ|x), illustrated as a Markov random

field.

1 2 n − 1 n

∅

12 23 n−1, n

Figure 3: Directed acyclic graph of the clique set C in (8).

random field consisting of the variables of interest, i.e. θ. The MRF of π(θ|x)
is therefore as illustrated by the undirected graph in Figure 2. We denote this
graph by G = (V, E), where the vertex set is given by V = {1, 2, . . . , n} and the
edge set E = {{i, i + 1} |i = 1, . . . , n− 1}. The order of this graph is |V| = n

and it has size n− 1. This graph is a first-order nearest neighbor scheme. The
neighborhood system of the graph in Figure 2 is given by

N = {N1,N2, . . . ,Nn−1,Nn}
= {{2}, {1, 3}, . . . , {n− 2, n}, {n− 1}} ,

(7)

and the clique set for this MRF is given by

C = {∅, {1}, {2}, . . . , {n}, {1, 2}, . . . , {n− 1, n}} . (8)

This clique set can be represented as a directed acyclic graph (DAG), and is
illustrated in Figure 3. Each element of C is here represented as a node, where
the directed edges from each node points at the subsets of that vertex. Thus the
graph is built in a decreasing order of subsets in a downwards direction. The
purpose of the graph becomes clear in the following section.

2.2.1 Energy Function for Binary MRFs

In this section we address binary Markov random fields and their distributions.
The form of these distribution are defined by an energy function of binary vari-
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ables and their interaction parameters.

Consider a vector θ containing n binary variables, i.e. θi ∈ {0, 1} for i =
1, . . . , n. Assume that θ is an MRF possessing a Markov property with respect
to a neighborhood N , this is then a binary MRF. We denote Ω = {0, 1}n as
our sample space, and thus θ ∈ Ω. The fact that we are dealing with an MRF
ensures that its distribution is greater than zero, i.e. if we let π(θ) denote
this distribution then π(θ) > 0. Based on the strictly positive criteria and the
Markov property, the distribution of this binary MRF can be expressed as

π(θ) ∝ exp {U(θ)} , (9)

where U(θ) is known as the energy function. The energy function only depends
on binary variables and their interaction parameters, and the goal of this section
is to establish an expression for this function.

Recall that each binary variable θi in θ has a corresponding vertex i ∈ V,
where V is the vertex set of the MRF. Now, the power set of V has a one-to-one
correspondence with the sample space Ω. To see this we present a small example
where n = 3 such that θ = [θ1, θ2, θ3]. Assume that θ is still a binary MRF as
described above, and corresponding to this MRF is the vertex set V = {1, 2, 3}.
The power-set of V then has 23 = 8 subsets;

P(V) = {{∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} . (10)

The sample space {0, 1}3, which corresponds to the binary MRF of θ = [θ1, θ2, θ3],
has the form

{0, 1}3 =
�
{0, 0, 0} , {1, 0, 0} , {0, 1, 0} , {0, 0, 1} ,

{1, 1, 0} , {1, 0, 1} , {0, 1, 1} , {1, 1, 1}
�
.

(11)

The one-to-one correspondence between P(V) and {0, 1}3 is seen for any θ ∈
{0, 1}3. If for example θ = [θ1, θ2, θ3] = [0, 1, 1], then the corresponding subset
Λ ∈ P(V) is the subset containing the indices of θ which has an associating
variable equal to 1, i.e. Λ = {i ∈ V|θi = 1} = {2, 3}. Due to this one-to-one
relationship we know that the power set of V, where |V| = n, contains 2n sub-
sets. Also this one-to-one correspondence yields that for an arbitrary θ ∈ Ω,
∃Λ ∈ P(V) where Λ = {i ∈ V|θi = 1}.

Using the above notation, U(θ) can be written in terms of interaction param-
eters denoted by {β(Λ),Λ ∈ P(V)}. The energy function is by these parameters
uniquely defined by

U(θ) =
�

Λ∈P(V)

β(Λ)
�

i∈Λ

θi, (12)

which is a sum with 2n terms. However, in many cases some of the interaction
parameters are zero, and can therefore be omitted from the sum. It can be
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θ1 θ2

θ3 θ4

Figure 4: MRF for the small example θ = [θ1, θ2, θ3, θ4].

shown that a binary function, such as U(θ) in (12), which possesses a Markov
property with respect to a neighborhood system N and a clique set C, have inter-
action parameters that are zero for all Λ �∈ C, i.e. β(Λ) = 0 when Λ ∈ P(V)\C.
A proof of this is provided by Austad (2011).

Some of the cliques in the clique set can also produce interaction parameters
that are zero. We remove these, and a final set of cliques is established. Note
however that for a clique Λ ∈ C which has β(Λ) �= 0, we also need to include
P(Λ) to the final set. This is due to the structure of the DAG for the final set,
which is very much used in the computational algorithm provided by Tjelmeland
and Austad (2012). The set is denoted by

B =
�

Λ∈C:β(Λ) �=0

P(Λ) (13)

where B ⊆ C. Using this set, the energy function is restated as

U(θ) =
�

Λ∈B
β(Λ)

�

i∈Λ

θi. (14)

Tjelmeland and Austad (2012) builds a DAG of the set B and constructs an
interaction parameter weighted graph for the forward-backward algorithm to
use. If we assume that the MRF of θ in Figure 2 takes binary variables, and
assume that every clique for this MRF has an interaction parameter that is not
zero, then the graph of B for this particular case is as illustrated in Figure 3.

As a final example we look at θ with n = 4, i.e. θ = [θ1, θ2, θ3, θ4]. Let
the MRF of θ be as illustrated in Figure 4, and assume that θ ∈ {0, 1}4. The
neighborhood system for V = {1, 2, 3, 4} corresponding to θ is given by

N = {N1,N2,N3,N4} = {{3}, {3, 4}, {1, 2, 4}, {2, 3}} , (15)

which gives the clique set the following form

C ={∅, {1}, {2}, {3}, {4}, {1, 3},
{2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}.

(16)
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Figure 5: DAG of the clique set for θ = [θ1, θ2, θ3, θ4].

A DAG of this clique set is illustrated in Figure 5. If, say the node Λ = {2, 3}
here produces a zero interaction parameter and β({2, 3, 4}) �= 0, then this subset
still needs to be contained in the graph for programming purposes. However, if
β({1, 3}) = 0 this subset may be omitted from the set B and its DAG.

2.3 Algorithm and Approximation

In this section we introduce the forward-backward algorithm and an approxi-
mation for binary MRFs as in Austad (2011). The approximation is not ex-
haustively elaborated on, so for a complete description see Austad (2011) or
Tjelmeland and Austad (2012).

Consider the n stochastic variables in the vector θ with distribution π(θ) =
π(θ1, . . . , θn). This distribution can be written in the form of independent con-
ditional distributions by letting

π(θ1, . . . , θn) = π(θ1|θ2, . . . , θn)π(θ2|θ3, . . . , θn) · · ·π(θn−1|θn)π(θn). (17)

To obtain realizations from π(θ1, . . . , θn) the forward-backward algorithm can
be used. The aim of this algorithm is to gain the conditional distributions in
(17), and then draw samples from each of the them. Among papers that gains
their results from using the forward-backward algorithm are Austad (2011),
Rimstad and Omre (2013) and Ulvmoen and Hammer (2010).

We now present the structure of how the forward-backward algorithm oper-
ates. We start by considering the forward part of the algorithm where we wish
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π(θ1, θ2, θ3, θ4) π(θ1|θ2, θ3, θ4)

π(θ2, θ3, θ4) π(θ2|θ3, θ4)

π(θ3, θ4) π(θ3|θ4)

π(θ4)

Figure 6: The arrows in the figure indicate the forward part of the forward-

backward algorithm, which sums out one variable at the time. The process is

repeated until reaching the end, then conditional distributions have been obtained

to draw from one after the other in a backward fashion. The figure shows a small

example of this structure for θ = [θ1, θ2, θ3, θ4].

to obtain the conditional distributions in (17). First we want to find the condi-
tional distribution π(θ1|θ2 . . . , θn), i.e. the distribution θ1 is to be sampled from
at a later point in the algorithm. However, this distribution is proportional to
the marginal distribution, so we are done. In mathematic terms this is denoted
by

π(θ1|θ2 . . . , θn) =
1
c

· π(θ1, . . . , θn) ∝ π(θ1, . . . , θn), (18)

where the proportional constant c is a summation over all possible values of θ1,

c = π(θ2, . . . , θn) =
�

θ1

π(θ1, . . . , θn). (19)

The next step is to establish the distribution generated from the proportional
constant, i.e. we find π(θ2, . . . , θn) in (19). This is done to obtain the conditional
distribution of π(θ2|θ3, . . . , θn), which we find in the same way as we did for θ1.
This process is then repeated until the very last marginal distribution in (17)
is gained, i.e. the distribution π(θn). A small example of the forward structure
when considering the distribution of θ for n = 4, is illustrated in Figure 6.
Here the arrows indicate how the algorithm moves forward, hence the name.
After this part of the algorithm is completed, we can start drawing samples in
a backwards direction, again hence the name. For the backward part of the
algorithm, we start by drawing a sample θ

∗
n ∼ π(θn), where ∗ is used to indicate

that it is a drawn sample. Given the newly drawn sample the algorithm moves
on to draw θ

∗
n−1 from the next distribution π(θn−1|θ∗n). Then both sampled

values, θ
∗
n−1 and θ

∗
n, are used to draw θ

∗
n−2 ∼ π(θn−2|θ∗n−1, θ

∗
n), and so on. The
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π(θ1, θ2, θ3, θ4) π(θ1|θ2, θ3, θ4)

π̃(θ2, θ3, θ4) π̃(θ2|θ3, θ4)

˜̃π(θ3, θ4) ˜̃π(θ3|θ4)

˜̃̃π(θ4)

Figure 7: Asmall example for the structure of where approximations take place,

this for the distribution of θ = [θ1, θ2, θ3, θ4].

algorithm continuous with the same procedure until all conditional distributions
have been drawn from. So, for the small example which is illustrated in Figure
6, the backward part of the algorithm starts by drawing θ

∗
4 ∼ π(θ4) and then

uses this to draw θ
∗
3 ∼ π(θ3|θ∗4). Further both samples, i.e. θ

∗
3 and θ

∗
4 , are

used to draw θ
∗
2 ∼ π(θ2|θ∗3 , θ

∗
4), and then finally given all three newly gained

sampled variables, we draw the last one θ
∗
1 ∼ π(θ1|θ∗2 , θ

∗
3 , θ

∗
4). Hence a sample

θ∗ = [θ∗1 , θ
∗
2 , θ

∗
3 , θ

∗
4 ] is at hand, which is a sample drawn from the distribution

π(θ1, θ2, θ3, θ4) = π(θ1|θ2, θ3, θ4)π(θ2|θ3, θ4)π(θ3|θ4)π(θ4). (20)

When n is large, the implementation of the forward-backward algorithm is in
general hard to attain, and in many cases completely impossible to achieve. For
this reason approximations are made.

Austad (2011) present an approximation for binary Markov random fields,
which is based on minimizing the error sum of squares (SSE). Consider the
variables θ ∈ Ω = {0, 1}n, and let π̃(·) denote an approximation of a probability
distribution π(θ). The SSE is then given by

SSE(π, π̃) =
�

θ∈Ω

(π(θ)− π̃(θ))2 . (21)

Each time the forward part of the algorithm is to sum out a variable, an
approximation is made such that this becomes possible. Figure 7 illustrates
where the approximations is applied in the forward part of the algorithm for
θ = [θ1, θ2, θ3, θ4], where the symbol ∼ is added to the distribution each time an
approximation is made, and a variable has been summed out. Based on a max-
imum number of neighbors a DAG is generated for the interaction parameters

10



that minimizes the SSE, which then becomes the approximated distribution.
Basically interaction parameters that are close to zero are put to zero, and this
is done with respect to the maximum number of neighbors. We do not go into
further details concerning the approximation, so for a complete explanation and
understanding of the subject we encourage the reader to read Austad (2011) or
Tjelmeland and Austad (2012).

2.4 Metropolis-Hastings

This section contains a presentation of the Metropolis-Hastings (MH) algorithm.
We here explain how we use it as a tool to evaluate the approximation discussed
in the previous section. A thorough discussion of the MH algorithm can be found
in the article written by Chib and Greenberg (1995) or books such as Gamer-
man and Lopes (2006), Hamada et al. (2008) or Lee (2012). The MH algorithm
is in this section used in the same way as in the paper by Rimstad and Omre
(2013).

The MH algorithm is a Markov chain Monte Carlo (MCMC) method used
in stochastic simulation. It is most commonly used to obtain samples from
probability distributions that are difficult to draw from directly, but we use
it to quantify the quality of the approximated forward-backward algorithm of
Austad (2011). In the following we present a general form of the MH algorithm,
and thereafter we discuss how we use the algorithm in our evaluation. The MH
algorithm generates a Markov chain through its simulations, where the chain
has a target distribution as its limiting distribution. Let θ ∈ Rn×1 denote the
variables of interest, x ∈ Rn×1 denote observations and let π(θ|x) be the target
distribution. Further, let θ(i−1) denote the state of the Markov chain after i−1
steps. Iteration i then consists of first drawing a new sample θ∗ from a proposal
distribution we denote as q(θ∗|θ(i−1)), and then accepting the transition from
state θ(i−1) to θ∗ with probability

αi(θ∗|θ(i−1)) = min

�
1,

π(θ∗|x)
π(θ(i−1)|x)

· q(θ(i−1)|θ∗)
q(θ∗|θi−1)

�
. (22)

If the suggested sample θ∗ is not accepted, the Markov chain does not move, and
the ith state is given by θ(i) = θ(i−1). The Markov chain is initialized with an
arbitrary sample θ0, and the sampling procedure is repeated until convergence
is reached.

Assume that we have run M iterations, and that the algorithm has con-
verged. It is usual to cast aside the first L samples of these iteration samples,
i.e. θ(0)

, . . . ,θ(L). This is known as a burn-in period, where the Markov chain is
assumed to have reached convergency after the burn in. The rest of the M −L

simulations are taken as the resulting realizations.

11



In theory, any density function can be used as a proposal distribution, and
for the purpose of our area of study we use the approximated distribution gen-
erated by the forward-backward algorithm provided by Tjelmeland and Austad
(2012). We denote this approximation by π̃(θ|x), and thus let the proposal
distribution take the form q(θ∗|θ(i−1)) = π̃(θ∗|x) in (22). Note that the ap-
proximated distribution does not depend on previous states of the Markov chain,
and the proposed samples are therefore independent of one another. To evaluate
the approximation we look to the acceptance rate of the MH algorithm, where a
higher acceptance rate is desirable. The acceptance, or test ratio, is a measure
of two ratios. The first fraction is a ratio which evaluates the posterior density.
It considers the drawn sample in comparison to the last accepted sample, where
a higher density is favored. The second ratio is used as a correction term, if
in case the approximated distribution favors some sampled quantities, this is
supposed to dampen the effect. We use the acceptance rate to evaluate the per-
formance of the proposal distribution, and it basically tells us if the distribution
is a sound choice or not. By this the approximated forward-backward algorithm
is evaluated for the transformation of a convolutional Bayesian model into a
binary MRF.

3 Problem Description

The purpose of this master thesis is to evaluate the approximation of Austad
(2011) for a convolutional Bayesian model. We adapt the Bayesian model for a
convolutional two-level hidden Markov chain from Rimstad and Omre (2013),
and present it in the following section. The Bayesian model is then reformulated
into a binary Markov random field, and interaction parameters for an energy
function of binary variables is established for a two state Markov chain prior
and a four state Markov chain prior.

3.1 Bayesian Model

Rimstad and Omre (2013) consider a convolutional two-level hidden Markov
model, which is constructed in a Bayesian setting. The model has application
to seismic inversion, and the paper revolves around assessment of one dimen-
sional lithology-fluid profiles. In Ulvmoen and Hammer (2010) a similar model
is considered, with many of the same aspects as Rimstad and Omre (2013). In
this section a Bayesian model, similar to the models of the mentioned papers,
is presented for our purpose and usage. Note however that the purpose of this
master thesis is not the application to seismic inversion, but it is included for a
better understanding of the model.

The variable of interest is a categorical-valued vector θ of size n× 1, n ≥ 1.
In the interest of application to a seismic inversion, this vector takes categorical
values from rock-types or lithology, which can be both permeable and imperme-

12



θ1 θ2 θn−1 θn

z1 z2 zn−1 zn

d1 d2 dn−1 dn

Figure 8: Convolutional two-level hidden Markov model, illustrated as a directed

graph to show dependencies. The vector of interest, θ, is a hidden Markov chain,

z = [z1, . . . , zn]T is a hidden layer and the seismic data, d = [d1, d2, . . . , dn]T
are known quantities.

able. Examples of lithology-fluids are sandstone, shale, gas, sandstone saturated
with oil and sandstone saturated with water. The prior of θ is assumed to be a
first order Markov chain, such that the distribution is given by

π(θ) = π(θ1)
n�

i=2

π(θi|θi−1), (23)

where π(θi|θi−1) denotes the transition probability from θi−1 to θi, and π(θ1)
denotes the limiting probability distribution of the Markov chain.

The Bayesian model we are considering is a two-level hidden Markov model.
The vector of interest, θ, is in this case located beneath two continuous valued
processes denoted as z and d, both of which are discretized into real-valued vec-
tors of size n×1. Their dependency and connection to θ is as shown in Figure 8,
where the bottom part is the same as the HMM we saw in Figure 1. The HMM
is now extended by an extra level, with a more complex dependency through-
out the model. This is due to the vector d depending on multiple variables of
the level containing z. In correspondence to the seismic inversion application, d
is a vector of discretized seismic data and z consists of lithology-fluid properties.

The likelihood of the Bayesian model is split into two parts, one considering
the dependencies between z and θ and the other considering z and d. We
include the z level of the two-level likelihood in the following manner

π(d|θ) =
�

π(d, z|θ)dz =
�

π(d|z,θ)π(z|θ)dz =
�

π(d|z)π(z|θ)dz, (24)
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and we now address the two distributions, π(z|θ) and π(d|z), in the respective
order. The elements contained in the vector z are as mentioned lithology-fluid
properties, which are in direct correspondence with the same located element of
θ. The properties are assumed to be conditionally independent of one another,
i.e. we may write π(z|θ) =

�n
i=1 π(zi|θi), where the conditional distributions are

assumed to be Gaussian. Now, let the ith element of the level containing z have a
conditional expectation denoted by E[zi|θi] = µzi|θi

and variance by Var(zi|θi) =
σ

2
zi|θi

. We denote the expectation vector by µz|θ = [µz1|θ1 , . . . , µzn|θn
]T and the

covariance matrix by Σz|θ = diag[σ2
z1|θ1

, . . . , σ
2
zn|θn

]. All other entries of the
covariance matrix are zero due to the conditional independence between the
elements. Using the given notation the distribution of z|θ is then given by

π(z|θ) =
n�

i=1

�
2πσ

2
zi|θi

�−1/2 exp

�
− 1

2σ
2
zi|θi

(zi − µzi|θi
)2

�

=
1

(2π)n/2

��Σz|θ
��−1/2 exp

�
−1

2
(z− µz|θ)T Σ−1

z|θ(z− µz|θ)
�

,

(25)

which is a multivariate Gaussian distribution. As a side note we mention that
the elements of the expectation vector and the covariance matrix does not nec-
essarily have to be scalars, they may as well be of a higher dimension. For
example in Ulvmoen and Hammer (2010) and Rimstad and Omre (2013), three
elastic material properties are considered for a real-data analysis, which makes
µzi|θi

a vector containing three expected values and σ
2
zi|θi

a 3 × 3 matrix, for
i = 1, . . . , n. This would necessarily mean that the system becomes three times
as big, e.g. z ∈ R3n×1. We are however considering the variables to be scalar in
the test cases of this thesis.

In the two top levels of the HMM (see Figure 8), z and d are located. Here
a convolution in the model creates a more complex dependency throughout the
model, i.e. each di depends on multiple variables of z. If n is large, a worst case
scenario is that each di depends on all of z. This dependency is what makes θ
hard to assess in many cases. The assumed dependencies are modeled such that
the seismic data, d, is seen as a convolution of the material properties, z, with
a wavelet. It also includes a Gaussian error. The wavelet is a very much used
tool in seismic inversion. We are considering two types of wavelet, a Gaussian
and a Ricker wavelet, both of which are illustrated in Figure 9. These wavelets
are defined by the following functions, for the Gaussian case we have

f(t) =
1√

2πσw

exp
�
− t

2

2σ2
w

�
, (26)

and for the Ricker case the function is given by

g(t) =
2√

3σwπ1/4

�
1− t

2

σ2
w

�
exp

�
− t

2

2σ2
w

�
, (27)

where σ
2
w denotes the variance. Note that the Gaussian function is strictly

speaking not a wavelet as it does not oscillate, but it is very much used either
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Figure 9: Left: Gaussian wavelet and Right: Ricker wavelet. Both with variance

σ
2
w = 62

.

way. The wavelet which is under consideration is discretized into a symmetric
matrix W, where each row of the matrix has the center of the wavelet located at
the main diagonal. We use the Gaussian curve to illustrate how the discretiza-
tion works, but the same procedure applies for the Ricker wavelet. The function
f(t) is discretized by letting w0 = f(0), w1 = w−1 = f(1), w2 = w−2 = f(2) and
so on. This is put into the matrix, W, with w0 on the main diagonal and the
increasing indices following on the outer diagonals. This results in the matrix
having the symmetric form,

W =





w0 w1 w2 · · · wn−1 wn

w1 w0 w1 wn−1

w2 w1 w0
. . .

...
...

. . . . . . w1 w2

wn−1 w1 w0 w1

wn wn−1 · · · w2 w1 w0





. (28)

In Figure 10, the discretization of the Gaussian curve is illustrated and the
resulting wavelet is shown as an image. Using the wavelet matrix, the seismic
data is given by d = Wz + e, where e ∼ N(0,Σd|z), Σd|z = σ

2
d|z · I and I is

the identity matrix of size n× n. Since the error terms of the seismic data are
all Gaussian, the distribution of d|z is multivariate Gaussian. Recall that the
distribution of z|θ is also multivariate Gaussian. The conditional expectation
of the seismic data, i.e. E[d|z], is found from

µd|z = E[d|z] = E[Wz + e|z] = E[Wz|z] + E[e|z] = Wz, (29)
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cretization points, with some of the points highlighted. The right image shows

the resulting wavelet W plotted as an image.

and the covariance matrix is given by

Cov(d|z) = Cov(Wz + e|z,Wz + e|z)
= Cov(eT e|z)
= Σd|z,

(30)

and thus

d|z ∼ N(Wz,Σd|z). (31)

The two parts presented above together defines the likelihood, π(d|θ), see
(24). We are dealing with multivariate Gaussian distributions for both z|θ and
d|z, and since the data in d are linearly depending on z we know that the
likelihood will also be multivariate Gaussian. We denote the expectation vector
of d|θ in the same manner as before, and elaborate

µd|θ = E[d|θ] = E[Wz + e|θ] = WE[z|θ] = Wµz|θ, (32)

where µd|θ = [µd1|θ1 , . . . , µdn|θn
]T ∈ Rn×1. The covariance matrix of the distri-

bution can be found in the same way as was done for d|z. We have that

Σd|θ = Cov(d|θ,d|θ) = Cov(Wz + e|θ,Wz + e|θ)

= WCov(zT z|θ)WT + Cov(eT e|θ)

= WΣz|θWT + Σd|z,

(33)

such that

d|θ ∼ N(Wµz|θ,WΣz|θWT + Σd|z). (34)
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The posterior distribution is entirely defined by the prior in (23) and the likeli-
hood in (34). We let π(θ1|θ0) = π(θ1), and thus the Bayesian models resulting
posterior distribution yields

π(θ|d) ∝ exp
�
− 1

2
(d−Wµd|θ)T Σ−1

d|θ(d−Wµd|θ)
�

·
n�

i=1

π(θi|θi−1). (35)

3.2 Interaction Parameters in Posterior Model

This section contains the reformulation of the Bayesian model in (35) into a
form depending on the energy function of binary variables defined in (14). The
goal is to formulate the posterior in terms of interaction parameters for the ap-
proximated algorithm of Tjelmeland and Austad (2012) to handle. Interaction
parameters are here established for two cases, a binary Markov chain prior case
and a four state Markov chain prior case. Some of the calculations generate
large equations, which have been exhaustively presented in an appendix.

We start by simplifying the posterior distribution given in (35). Explana-
tory calculations for the following expansion and defined products are included
in Appendix A. We redefine some of the vector-matrix multiplications in the
posterior by creating two new vectors and a matrix, µ(θ) = µd|θ ∈ Rn×1,
yT = dT Σ−1

d|θW ∈ Rn×1 and Q = − 1
2W

T Σ−1
d|θW ∈ Rn×n. In general the vec-

tor y and matrix Q may also be functions of θ because of their dependency of
Σ−1

d|θ, e.g. the real data analysis in Ulvmoen and Hammer (2010) and Rimstad
and Omre (2013) consider parameters for this covariance matrix which depends
on the categorical values of θ. However, in our test cases the covariance matrix
is taken to be constant. Using the new denotational expressions, the posterior
can be written as

π(θ|d) ∝ exp
�
yT µ(θ) + µ(θ)T Qµ(θ)

�
·

n�

i=1

π(θi|θi−1), (36)

where the data input, d, is now contained in the vector y. We continue by
pulling the transition probabilities from the prior distribution into the exponen-
tial function and expand the expressions using summations. Let µi(θi) and yi

denote the ith element of their respective vectors, and Qij represent the element
in the ith row and jth column of the matrix Q. This results in the posterior
being written as

π(θ|d) ∝ exp






n�

i=1

yiµi(θi) +
n�

i=1

n�

j=1

Qijµi(θi)µj(θj) +
n�

i=1

ln (π(θi|θi−1))




 ,

(37)

where the energy function is given by

U(θ) =
n�

i=1

yiµi(θi) +
n�

i=1

n�

j=1

Qijµi(θi)µj(θj) +
n�

i=1

ln(π(θi|θi−1)). (38)
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The expression for the posterior in (37) will be the same regardless of how
many states the Markov chain prior has. However, the energy function in (38)
still needs to be expanded some more such that it depends on the values of
θ directly. The goal is to express (38) as a binary function with interaction
parameters as in (14). To do this, an expression is needed for µi(θi) and for
ln(π(θi|θi−1)), and these expressions depends on how many states the Markov
chain has. In the following section we discuss the case where the Markov chain
in θ has two states, and we assemble the interaction parameters for the corre-
sponding energy function. Afterwards we expand and let the Markov chain in
θ have four possible states, and then determine the interaction parameters for
this particular case.

3.2.1 Binary Markov chain

In this section we consider a binary Markov chain θ ∈ Ω = {0, 1}n, and find
interaction parameters for the energy function in this case.

To begin with, we define two constants a = µ(1)−µ(0) and b = µ(0), where
µ(0) is the expectation of state 0 and µ(1) of state 1. Using these constants the
expectation variable, µi(θi), in (38) may be written as

µi(θi) = µ(1)θi + µ(0)(1− θi)
= aθi + b.

(39)

Further, for the Markov chain states θi−1, θi ∈ {0, 1}, let the constant denoted
tθi−1,θi = ln(π(θi|θi−1)) be defined as the logarithm of the transition probability
from state θi−1 to state θi. Using this we may write

ln(π(θi|θi−1)) = ln(π(0|0))(1− θi)(1− θi−1) + ln(π(0|1))(1− θi)θi−1

+ ln(π(1|0))(1− θi−1)θi + ln(π(1|1))θi−1θi

=t00(1− θi)(1− θi−1) + t10(1− θi)θi−1

+ t01(1− θi−1)θi + t11θi−1θi

=t00 + (t10 − t00)θi−1 + (t01 − t00)θi

+ (t00 + t11 − t10 − t01)θi−1θi.

(40)

We once more introduce new constants to simplify this expression. Let c0 = t00,
c1 = (t10 − t00), c2 = (t01 − t00) and c3 = (t00 + t11 − t10 − t01) such that

ln(π(θi|θi−1)) =c0 + c1θi−1 + c2θi + c3θi−1θi, (41)

which holds for i = 2, . . . , n. For i = 1 we have a special case, and we introduce
another constant to express the equation. Let ti = ln(π(θi)) denote the loga-
rithm of the limiting probability distribution of the Markov chain. Using this
we find that

ln(π(θ1)) = ln(π(1))θ1 + ln(π(0))(1− θ1)
=(t1 − t0)θ1 + t0.

(42)
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Equations (39), (41) and (42) are then put into the expression we found for
the energy function in (38). This leads to the following energy function for the
binary Markov chain prior case

U(θ) =
n�

i=1

yi(aθi + b) +
n�

i=1

n�

j=1

Qij(aθi + b)(aθj + b)

+ (p1 − p0)θ1 + p0 +
n�

i=2

(c0 + c1θi−1 + c2θi + c3θi−1θi)

=bnȳ + (n− 1)c0 + p0 + b
2

n�

i=1

n�

j=1

Qij

+ (p1 − p0)θ1 + a

n�

i=1

yiθi + 2ab

n�

i=1

n�

j=1

Qijθi

+ c1

n−1�

i=1

θi + c2

n�

i=2

θi + c3

n�

i=2

θi−1θi + a
2

n�

i=1

n�

j=1

Qijθiθj ,

(43)

where ȳ = 1
n

�n
i=1 yi.

The equation in (43) is now in such a form that it can be connected to the
interaction parameters of the energy function. The neighborhood system of the
two level-hidden Markov model in Figure 8 is quite complex due to the convo-
lution of the model, but based on (43) we see that the interaction parameters in
(12) are all zero when the clique is larger than two, i.e. |Λ| > 2 ⇒ β(Λ) = 0. If
shown as a graph, the clique set for this model would be an extension of Figure
3, where all possible two-pairings of the vertex set V = {1, 2, . . . , n} would be
in the top level of the graph.

We now present the interaction parameters for the energy function in (43).
For the empty set, Λ = {∅}, the interaction parameter becomes

β ({∅}) = bnȳ + (n− 1)c0 + p0 + b
2

n�

i=1

n�

j=1

Qij . (44)

When we consider the singular sets interaction parameters, i.e. β(Λ) for |Λ| = 1,
we have two boundary cases that needs to be taken into account. Let I(·) denote
the indicator function, giving one if the argument in the function is true and
zero otherwise. Then the two boundary-cases we need to consider, Λ = {1}
and Λ = {n}, is handled using the indicator function. Thus the interaction
parameters for i = 1, 2, . . . , n are given by

β ({i}) = ((p1 − p0) + c1) · I(i = 1) + c2 · I(i = n)

+ (c1 + c2) · I(i �∈ {1, n}) + ay1 + a
2
Qii + 2ab

n�

j=1

Qij .
(45)
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Last we consider the interaction parameters for cliques of order |Λ| = 2, which
gains terms from the quadratic terms in the energy-function in (43). Here we
have special cases for Λ = {i, j}, i, j ∈ V, if |i− j| = 1. In other words, there are
special cases for the elements in θ that are right next to one another. We use
the indicator function again and the interaction parameters are then given by

β ({i, j}) = c3 · I(|i− j| = 1) + 2a
2
Qij . (46)

This concludes the interaction parameters for the binary Markov chain prior
case. As mentioned above, the interaction parameters for cliques of higher
order than 2 are zero.

3.2.2 Four State Markov chain

The Markov chain of interest often has more than two classes, and in this section
we let θ ∈ {0, 1, 2, 3}n such that the Markov chain has four possible states. The
energy function in (14) is based on binary variables, and therefore the variables
in θ needs to be expressed in a binary fashion. In this section we present one
strategy of doing this, where the Markov states are assigned a pair of binary
variables, where the aim is to find interaction parameters for the energy function.

For each θi ∈ θ we assign a pair of corresponding binary variables [φi, φn+i] ∈
{[0, 0], [1, 0], [0, 1], [1, 1]}, where

θi =






0, if φi = 0 and φn+i = 0,

1, if φi = 1 and φn+i = 0,

2, if φi = 0 and φn+i = 1,

3, if φi = 1 and φn+i = 1.

(47)

We now have a new vector of interest φ ∈ {0, 1}2n×1, where these variables are
used to expand the expression in (38) into the form of the energy function in
(14). We start in the same manner as we did for the binary Markov chain case,
by looking at the expectation of θi expressed using [φi, φn+i]. The following
calculation, expansions and constants are fully described in Appendix B. Let
K1 = µ(0), K2 = (µ(1) − µ(0)), K3 = (µ(2) − µ(0)) and K4 = (µ(0) − µ(1) −
µ(2) + µ(3)) be constants defined by the expectations of the four states in the
Markov chain, i.e. µ(0), µ(1), µ(2) and µ(3). By using these constants, the
expectation of θi can be expressed as

µi(θi) =K1 + K2φi + K3φn+i + K4φiφn+i. (48)

The quadratic term of the expectation µi(θi)µj(θj), which is a part of the energy
function in (38), yields the following expression when using the constants defined
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above

µi(θi)µj(θj) =K
2
1 + K1K2 (φi + φj) + K1K3 (φn+i + φn+j) + K1K4 (φiφn+i + φjφn+j)

+ K
2
2φiφj + K2K3 (φiφn+j + φn+iφj) + K2K4 (φiφjφn+j + φiφn+iφj)

+ K
2
3φn+iφn+j + K3K4 (φn+iφjφn+j + φiφn+iφn+j)

+ K
2
4φiφn+iφjφn+j .

(49)

We now find an expression for the logarithmic transition probabilities be-
tween the state variables. Let us once again denote the logarithm of the tran-
sition probability from state θi−1 to state θi by tθi−1,θi = ln (π(θi|θi−1)), and
the logarithm of the limiting probability distribution of the Markov chain by
tθi = ln(π(θi)), for θi ∈ {0, 1, 2, 3}. We first address the boundary case of i = 1,
which for θ1 expressed by the binary form [φ1, φn+1] yields the expression

ln(π(θ1)) =t0 + (t1 − t0) φ1 + (t2 − t0) φn+1

+ (t0 − t1 − t2 + t3) φ1φn+1.
(50)

This has the same build up as the expectation, however this is not the case when
considering the general expression for the logarithm of the transition probability.
This general expression is of a more complex form and consist of many constant
built ups defined by combinations of the logarithmic transitions between the
different states. These constants are defined as

G1 = (t00 − t01 − t10 + t11) ,

G2 = (t00 − t10 − t20 + t30) ,

G3 = (t00 − t02 − t10 + t12) ,

G4 = (t00 − t01 − t20 + t21) ,

G5 = (t00 − t01 − t02 + t03) ,

G6 = (t00 − t02 − t20 + t22) ,

H1 = (t01 + t10 − t11 + t20 − t21 − t30 + t31 − t00) ,

H2 = (t01 + t02 − t03 + t10 − t11 − t12 + t13 − t00) ,

H3 = (t02 + t10 − t12 + t20 − t22 − t30 + t32 − t00) ,

H4 = (t01 + t02 − t03 + t20 − t21 − t22 + t23 − t00) ,

J1 =(t00 − t01 − t02 + t03 − t10 + t11 + t12 − t13

− t20 + t21 + t22 − t23 + t30 − t31 − t32 + t33),

(51)

where all constants are explained in Appendix B. These constants are collected
for the combinations of the quadratic, cubic and quartic terms of φi−1, φi,
φn+i−1 and φn+i, and it has been done to simplify the resulting energy function.
The logarithm of the transition probability from state θi−1 to state θi can, when
using the constants in (51) and by using the respective binary representation of
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the states [φi−1, φn+i−1] and [φi, φn+i], be written as

ln(π(θi|θi−1)) =p00 + (p10 − p00) φi−1 + (p20 − p00) φn+i−1

+ (p01 − p00) φi + (p02 − p00) φn+i

+ G1φi−1φi + G2φi−1φn+i−1 + G3φi−1φn+i

+ G4φiφn+i−1 + G5φiφn+i + G6φn+i−1φn+i

+ H1φi−1φiφn+i−1 + H2φi−1φiφn+i

+ H3φi−1φn+i−1φn+i + H4φiφn+i−1φn+i

+ J1φiφi−1φn+i−1φn+i,

(52)

which applies for i = 2, 3, . . . , n. The full calculation of this expression can be
found in Appendix B.

Finally, we take the expressions given in (48), (49), (50) and (52) and put
them into the energy function in (38). The final form of the energy function for
the Markov chain when θ ∈ {0, 1, 2, 3}n ⇒ φ ∈ {0, 1}2n×1 is thus given by

U(φ) =
n�

i=1

yi

�
K1 + K2φi + K3φn+i + K4φiφn+i

�

+
n�

i=1

n�

j=1

Qij

�
K

2
1 + K1K2 (φi + φj) + K1K3 (φn+i + φn+j) + K1K4 (φiφn+i + φjφn+j)

+ K
2
2φiφj + K2K3 (φiφn+j + φn+iφj) + K2K4 (φiφjφn+j + φiφn+iφj)

+ K
2
3φn+iφn+j + K3K4 (φn+iφjφn+j + φiφn+iφn+j)

+ K
2
4φiφn+iφjφn+j

�
(53)

+ p0 + (p1 − p0) φ1 + (p2 − p0) φn+1 + (p0 − p1 − p2 + p3) φ1φn+1

+
n�

i=2

�
p00 + (p10 − p00) φi−1 + (p20 − p00) φn+i−1

+ (p01 − p00) φi + (p02 − p00) φn+i

+ G1φi−1φi + G2φi−1φn+i−1 + G3φi−1φn+i + G4φiφn+i−1

+ G5φiφn+i + G6φn+i−1φn+i + H1φi−1φiφn+i−1 + H2φi−1φiφn+i

+ H3φi−1φn+i−1φn+i + H4φiφn+i−1φn+i + J1φiφi−1φn+i−1φn+i

�
.

Corresponding to the MRF graph of the n elements in θ, we have the vertex
set V = {1, . . . , n}. However, we are using the binary representation φ in
the approximated forward-backward algorithm by Austad (2011), which has
twice the elements of θ. Let φ have corresponding vertex set given by Vφ =
{1, . . . , n, n + 1, . . . , 2n}. The energy function in (53) shows that for all cliques
Λ ⊆ Vφ where |Λ| > 4, we have that the interaction parameters are zero, i.e.
|Λ| > 4 ⇒ β(Λ) = 0. Let B ⊆ C ⊆ P(Vφ) be as defined in (13), where it is the
set of cliques producing nonzero interaction parameters. The DAG of B is in
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this case an extension of the graph for the binary Markov chain prior. Here the
level containing the singular elements such as {i} and {j}, where i, j ∈ Vφ, has
twice the number of nodes. We still have all possible two pairings of {i} and
{j} in the level above, in the same way as for the binary Markov chain prior.
Further we have two more extended levels in the graph for three element subsets
and four element subsets. The cliques of order three and four does however need
to be of a certain form, and these will be given in the following sections. We
now present the interaction parameters for the cliques of order |Λ| ≤ 4, which
generates nonzero cases for Λ ∈ B.

Empty Set

We start by finding the interaction parameter for the empty set,

β({∅}) = K1

n�

i=1

yi + K
2
1

n�

i=1

n�

j=1

Qij + t0 + (n− 1)t00. (54)

This however is a constant that can be embedded in the proportional constant of
the posterior distribution, and we may therefore put it to zero in the algorithm.

Linear Terms

In this section we address the interaction parameters for cliques of order |Λ| = 1,
where Λ ∈ Vφ. The linear terms of the energy function gives special cases for
the boundary points, i.e. for Λ = {1}, Λ = {n}, Λ = {n+1} and Λ = {2n}. We
use the indicator function to include these cases, and we define the two following
equations for the linear terms. First let i ∈ V, then for Λ = {i} the interaction
parameter is given by

β({i}) =yiK2 + 2K1K2

n�

j=1

Qij + K
2
2Qii + (t1 − t0) · I(i = 1)

+ (t10 − t00) · I(i �= n) + (t01 − t00) · I(i �= 1),

(55)

and for Λ = {n + i} we have

β({n + i}) =yiK3 + 2K1K3

n�

j=1

Qij + K
2
3Qii + (t2 − t0)I(i = 1)

+ (t20 − t00) · I(i �= n) + (t02 − t00)I(i �= 1).

(56)

Quadratic Terms

In this section the interaction parameters for the cliques of order |Λ| = 2 for
Λ ∈ B is addressed. These interaction parameters mostly consists of coefficients
from the quadratic terms of the energy function in (53), but they also get some
contribution from the cubic and quartic terms.
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Figure 11: Light blue shaded lattice points for Λ = {i, j, n + i, n + j}, where φ
has been cut in half and the resulting vectors are placed next to each other.

We start the study with cliques of the form Λ = {i, n + i}. For this type
of quadratic term there are special cases for Λ = {1, n + 1} and Λ = {n, 2n}.
We again use the indicator function and look at the general case of interaction
parameters for cliques of the form Λ = {i, n + i}, where i ∈ V. These are given
by

β ({i, n + i}) =yiK4 + 2K1K4

n�

j=1

Qij + K
2
4Qii

+ 2Qii(K2K3 + K2K4 + K3K4)
+ (t0 − t1 − t2 + t3) · I(i = 1)
+ G2 · I(i �= n) + G5 · I(i �= 1).

(57)

For other pairs i, j ∈ V, we still need expressions for Λ = {i, j}, Λ = {i, n+j}
and Λ = {n + i, n + j}. These are the possible two pairings of the shaded grid
locations in Figure 11. There are also special cases for neighboring elements in
θ for these cliques, i.e. when j − i = 1 and j − i = −1, which are all handled
by the indicator function. The interaction parameters for these types of cliques
are thus given by

β ({i, j}) =2QijK
2
2 + G1 · I(j − i = −1), (58)
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β ({i, n + j}) =2QijK2K3

+ G3 · I (j − i = 1)
+ G4 · I (j − i = −1) ,

(59)

and

β ({n + i, n + j}) =2QijK
2
3 + G6 · I(j − i = −1). (60)

Cubic Terms

In this section we study the interaction parameters for cliques of order |Λ| = 3,
i.e. for the cubic terms of the energy function in (14). We study triples for
i, j ∈ V of the form Λ = {i, j, n + i} and Λ = {i, n + i, n + j}, where both the
case j > i and j < i has to be taken into account. There will be special cases
when |i − j| = 1, i.e. triples in φ corresponding to neighboring elements in θ.
For a triple of the form Λ = {i, j, n + i}, the interaction parameter becomes

β ({i, j, n + i}) =2QijK2K4

+ H1 · I(j − i = 1)
+ H2 · I(j − i = −1),

(61)

and for Λ = {i, n + i, n + j} we have

β ({i, n + i, n + j}) =2QijK3K4

+ H3 · I(j − i = 1)
+ H4 · I(j − i = −1).

(62)

Triples which are not in the specified forms of this section, have interaction
parameter that are zero.

Quartic Terms

We now address cliques of order |Λ| = 4, where Λ = {i, j, n+i, n+j}, see Figure
11. There are special cases for i, j ∈ V when |i− j| = 1, which again is handled
by the indicator function. For the quartic terms of the energy function, we have
interaction parameters for Λ of the specified form given by

β ({i, j, n + i, n + j}) = 2QijK
2
4 + J1 · I(|i− j| = 1). (63)

A clique of order 4 that does not have this specific form, has an interaction pa-
rameter equal to zero. Also, all cliques with higher order than 4, have interaction
parameters that are zero.

4 Simulation and Results

We now present test cases for the covariance matrices in the Bayesian model
followed by approximation results for a two state- and a four state Markov chain
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1. Base Case

Σz|θ = 0.5× I

Σd|z = 0.5× 10−4 × I

2. Low Noise

Σz|θ = 0.25× 0.5× I

Σd|z = 0.1×0.5×10−4×I

3. High Noise - for z|θ

Σz|θ = 4× 0.5× I

Σd|z = 0.5× 10−4 × I

4. High Noise - for d|z

Σz|θ = 0.5× I

Σd|z = 10×0.5×10−4×I

Table 1: Noise cases 1-4.

prior.

We borrow synthetic test cases for the covariance matrices Σz|θ and Σd|z
from Rimstad and Omre (2013), which both are a part of the likelihood in
the Bayesian model. As was mentioned in Section 3.1, the covariances ma-
trices are chosen to be constant and does not depend on the variables of θ.
Thus, in each case we consider the constants V ar(zi|θi) = σ

2
zi|θi

= σ
2
z|θ and

V ar(di|zi) = σ
2
di|zi

= σ
2
d|z for all i ∈ V, such that we may write Σz|θ = σ

2
z|θ · I

and Σd|z = σ
2
d|z · I, where I is the n×n identity matrix. We vary the two noise

parts of the likelihood and define four cases; a base case, a low noise case and
two high noise cases. All these have been presented in Tabel 1.

As for the expected values, these will differ for the two state- and the four
state prior case, and are therefore presented later in the text.

For the wavelets defined by the functions in (26) and (27), and illustrated
in Figure 9, we use two values for the variance σ

2
w, one basic variance denoted

by A, and a wide kernel case, B, where

σ
2
w =

�
62 in case A,

122 in case B.
(64)

4.1 Binary Markov Chain

We now present the two state Markov chain for the prior. The transformation
of the Bayesian model into the form of the binary energy function can be found
in Section 3.2.1. To evaluate the quality of the approximation we use the MH
algorithm, where each case is simulated for 20000 iterations. We remove a burn-
in period from the sampled Markov chain, and base the statistics of this section
on the last 10000 realizations.
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Figure 12: Simulated Markov chain of size n = 100 with two states. This is

referred to as the reference profile, θR.

The vector of interest is here found in the state space θ ∈ {0, 1}n = Ω. The
Markov chain is define by a 2× 2 transition matrix given by

P2 =
�
0.83 0.17
0.46 0.54

�
, (65)

which has limiting probabilities given by pl2 = [0.7302, 0.2698]. Inspired by a
three state synthetic test case in Rimstad and Omre (2013), we define expected
values for zi|θi given by

µzi|θi
=

�
−1 if θi = 0,

1 if θi = 1.
(66)

To evaluate the approximation of Austad (2011), the Markov chain illustrated
in Figure 12 is used throughout the study. This chain was obtained using the
transition matrix given in (65) and is referred to as the reference profile θR.
This is the profile the approximation aims to reproduce given simulated data.
We establish data for all the cases 1−4 presented in Table 1. We code a case by
first referring to the wavelet used, see Figure 9, followed by a variance from (64)
and a case number 1− 4. As an example, for the base case using the Gaussian
wavelet with variance A we denote the case by ”Gaussian A1”. The data is
initiated by simulating z|θ, and then calculating d = Wz+e, as we established
in Section 3.1, and all cases considered are presented in Figure 13.

For the Gaussian case A1, multiple neighbor cases are studied, and for Gaus-
sian cases A 2−4 the approximation is evaluated for 5 and 10 neighbors. This is
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Figure 13: To the left in this figure, the binary Markov chain reference profile,

θR, is found. It has been included both in the top row as well as the lower

row for comparison to the data d, which is here plotted with the corresponding

hidden layer z. All test cases are here represented, i.e Gaussian cases A 1− 4,
B1 and Ricker case A1. Expected values are plotted as striped lines in the plots

of z and d, where each states expectance line has its respective color.
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Gaussian A1
0 neighbors 13.46%
1 neighbor 37.11%
2 neighbors 55.76%
3 neighbors 52.69%
4 neighbors 58.22%
5 neighbors 54.10%
10 neighbors 78.19%
15 neighbors 87.81%

Table 2: Acceptance rates for Gaussian case A1.

also done for a wide kernel case, Gaussian B1, and for the Ricker base case, A1.
We now present each case one after the other, and in the last section they are
reviewed together. There we present marginal probabilities, the marginal maxi-
mum aposteriori and simulations for some chosen cases where the MH algorithm
is not applied.

4.1.1 Gaussian A1

We now present the results for the approximation of the Gaussian case A1. This
is the base case in Table 1, using the Gaussian wavelet in Figure 9 with variance
A in (64). For this case we simulate realizations for 0, 1, 2, 3, 4, 5, 10 and 15
neighbors.

We base the approximation evaluation on the acceptance rates of the MH
algorithm for all the neighbor cases. The acceptance rates are presented in Ta-
ble 2, and we now address each individual case. If and when the MH algorithm
reaches convergency, we gain the limiting marginal distribution from the real-
izations. We have plotted the distributions and the acceptance rates for some
of the neighbor cases in Figure 14.

For 0 neighbors we have an acceptance rate of 13.46%, see Table 2, which
is the lowest acceptance rate of all the neighbor cases. In Figure 14a the zero
neighbor case is plotted in red, and shows a slightly noisier marginal distribution.
This is because the MH algorithm has not reached a satisfactory convergence,
and when the acceptance rate is this low the MH algorithm usually uses a long
time to reach convergency. This is seen in the acceptance plot for the zero case
in Figure 14b, which shows a curve that has not quite settled yet. The MH
algorithm here favors some simulated profiles causing this low acceptance, and
thus the Markov chain get stuck on certain profiles for some time. This can be
seen for the zero neighbors case in Figure 15, where the 20000 iteration profiles
have been plotted.

For one neighbor the average acceptance rate has increased significantly and
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(a) Realizations marginal distribution,
based on the last 10000 samples.
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(b) Acceptance rates for all the neighbor
cases.

Figure 14: Gaussian case A1 for 0, 1, 2, 5, 10 and 15 neighbors.
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Figure 15: Simulations for Gaussian case A1 using 0 neighbors plotted next to

the reference profile. Because of the low acceptance rate, the algorithm get stuck

on favoring profiles.
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is here 37.11%. Compared to the zero case, the acceptance rate is now nearly
three times higher, and the MH algorithm has for one neighbor converged. There
are now no profiles getting stuck in the simulations, and the marginal distribu-
tion is smoother. However, for the approximation, this is still not the best result
since a high acceptance rate is desirable. For two to five neighbors the average
acceptance rate bounces between 52.69% and 58.22%, see Table 2. Here it might
seem like the approximation is better for neighbors of an even nature, but this
is only speculation. For ten and fifteen neighbors, the average acceptance rate
is 78.19% and 87.81%, respectively. As expected the approximation gets better
for an increasing number of neighbors.

For further study of the other cases, we have chosen to concentrate on using
5 and 10 neighbors. The 15 neighbors case has a very high cost in CPU time,
so we do not consider it. As for the 5 neighbor case, we chosen this since it
had a good percentage and we wanted an odd number neighbor case as well.
Plots of the simulations for 5 and 10 neighbors of the Gaussian case A1, similar
to Figure 15, is supplied in Appendix C.1, see Figure 30. This is for visual
comparison to the other noise cases, which we present next.

4.1.2 Gaussian A2

The Gaussian case A2 is a low noise case for the model. This is case 2 in Table
1, where we again use the Gaussian wavelet in Figure 9 with variance A in (64).
The model is here more dependent of the likelihood, since much of the random
noise has been removed. For this case we simulate realizations using 5 and 10
neighbors.

The resulting acceptance rate for 5 neighbors is only 8.03%, which is not
a very good result for the approximation. The rate is lower than for the zero
neighbors Gaussian case A1, and we here see a more rapid fluctuation in the
marginal distribution. Also, the acceptance rate is presumed to be even lower,
since the MH algorithm has not reached a satisfying convergency yet. Compared
to the acceptance rate for the 5 neighbors Gaussian case A1, this rate is almost
seven times lower.

The acceptance rate for 10 neighbors is 33.49%. This is lower than the 1
neighbor case for the Gaussian case A1, which was 37.11%, and compared to the
10 neighbors case it is over half the percentage lower. The reason for these lower
acceptance rates is that the likelihood demands that the approximation needs
to be more accurate when the noise decreases. The white noise to the data does
not have much to say, but the noise in the hidden layer properties is the main
reason of this occurrence. The marginal distribution and the acceptance rates
are shown in Figure 16, and the simulation plots for both the 5 neighbors case
and the 10 neighbors case are included in Appendix C.1, Figure 31.

As a side note we consider the inversion problem. The simulation plot in
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(a) Realizations marginal distribution.
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(b) Acceptance rates.

Figure 16: Gaussian case A2 for 5 and 10 neighbors.

the appendix shows a visually cleaner appearance compared to the results for
the base case, A1. The approximation does not recognize thin layers of states
very well, but one can see tendencies of other states in the larger areas. The
transition from larger areas of a state to the other state, the approximation
manages to find with a pleasing result.

4.1.3 Gaussian A3

We here present the results for case 3 in Table 1, where we have used the Gaus-
sian wavelet in Figure 9 and variance A in (64). For the Gaussian case A3, we
increase the noise in the lower part of the two-level hidden Markov chain, i.e.
for the properties of the hidden layer, z|θ. We simulate approximations for 5
and 10 neighbors for this case also.

The acceptance rates here is for 5 neighbors 89.93% and for 10 neighbors,
94.95%, which are very good results regarding the approximation. The Gaus-
sian case A3 did in fact give the best acceptance rates of the entire study. The
marginal distribution and acceptance rates are illustrated in Figure 17, and the
simulations for these two neighbor cases are embedded in Appendix C.1, see
Figure 32.

We again make a short side note regarding the seismic inversion. The
marginal distribution in Figure 17a and the simulation results found in the
appendix, shows that the area from lattice point 10 − 20 does not seem to no-
tice state 0 in between the broad band of dominant state 1. For the references
to states, see Figure 12. In Gaussian case A1 and Gaussian case A2 one can see
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(b) Acceptance rates.

Figure 17: Gaussian case A3 for 5 and 10 neighbors.

tendencies of state 0, but here there is a clear dominance of state 1, which the
simulations in the appendix also illustrate.

4.1.4 Gaussian A4

In this section we consider case 4 in Table 1, with the Gaussian wavelet us-
ing variance A, i.e. Gaussian case A4. For the Gaussian case A4, the noise
is increased in the upper part of the two-level hidden Markov chain, d|z. In
other words we are increasing the white noise to the data. Again we generate
realizations using 5 and 10 neighbors.

When using a maximum of 5 neighbors the result became a 56.89% accep-
tance rate, and for 10 neighbors this gave 78.61%. This is more in correspon-
dence with the acceptance rates that we saw for the base case, see Table 2, only
slightly higher. Adding more noise to the data does not seem to make that
much of a difference to the approximation. Further, the marginal distribution
of the realizations and the acceptance rates for the neighbor cases are shown in
Figure18.

We now make some remarks regarding the application to the seismic inver-
sion. The simulations, see Appendix C.1 Figure 33, also looks more similar to
the Gaussian base case A1. As an example of this, we see that around lattice
points 5 − 25 state 0 can be seen as random noise in between the broad band
of dominant state 1. If we compare it to the Gaussian case A3, the tendency of
state 0 in between the broad band of state 1 for this particular area, is for the
Gaussian case A4 significantly higher.
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Figure 18: Gaussian case A4 for 5 and 10 neighbors.

4.1.5 Gaussian B1

The Gaussian case B1 is a wide kernel case, which is a higher variance in the
wavelet used. We double the standard deviation, i.e. we are considering variance
B in (64), and simulate for case 1 in Table 1. In Figure 13 the data, d, for the
Gaussian case B1 shows a less fluctuant curve when compared to all other cases.

The acceptance rates from using the MH algorithm and marginal distribu-
tion of the realizations are presented in Figure 19. These are supplemented with
the image plot of the simulations in Appendix C.1, Figure 34. Empirical results
for the acceptance rates when using 5 and 10 neighbors are 29.20% and 55.91%,
respectively. The results for using 5 neighbors has not converged to a satisfying
degree, which can be seen both in the acceptance plot and in the marginal dis-
tribution. However, it is not as bad as it was for the low noise Gaussian case
A2 when using 5 neighbors. The acceptance rates for the Gaussian case B1 are
the second worst we have come across, where only the Gaussian case A2 gave
lower results. Compared to the Gaussian base case A1 the acceptance is over
20% lower in both neighbor cases.

Regarding the seismic inversion, the approximation now has great trouble
finding thinner areas. The samples accepted by the MH algorithm shows that
the thinner slices are only registered slightly in the approximations. This is
seen in the simulation plots in Figure 34 in Appendix C.1, where the result is
noisier than for any of the other cases. Figure 19a also shows a more flattening
tendency in the marginal distribution curve.
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Figure 19: Gaussian case B1 for 5 and 10 neighbors.

4.1.6 Ricker A1

We are in this section considering case 1 in Table 1, i.e. the base case. We have
change the type of wavelet and now consider the Ricker wavelet, see Figure
9, with variance A in (64). We here discuss the approximation results for the
Ricker case A1 using 5 and 10 neighbors.

The acceptance rates from using the MH algorithm are shown in Figure
20, together with the marginal distributions. The acceptance rates for 5 and
10 neighbors are 65.58% and 77.35%, respectively. Compared to the Gaussian
base case, this is a higher rate for the 5 neighbors case, but a slightly lower rate
for the 10 neighbors case.

We also for this case make a note regarding the application to the inversion
problem. The simulations have been supplemented to the Appendix C.1, see
Figure 35. The Ricker case shows a cleaner result in the simulations, much
like what we saw for the low noise case, Gaussian A2. However for the Ricker
case we have a higher acceptance rate than for the low noise case. The thin
area layers, consisting usually of singular points, is shown tendencies for and
are clearer here than for most of the other cases. In the larger band of state
1 between lattice point 5 − 25, there is a strong tendency of state 0. This
is also noticeable in the band of state 1 around lattice point 85 − 95. When
compared to the Gaussian case A1, the approximation algorithm combined with
the MH algorithm generates a better result for the Ricker case A1. Both when
considering the acceptance rates and the application to seismic inversion.
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Figure 20: Ricker case A1 for 5 and 10 neighbors.

4.1.7 Review of the Cases

In this section we present the cases together using statistical tools such as the
marginal maximum aposteriori (MMAP) and marginal probabilities. We have
also taken some of the cases and simulated approximations without the use of
the MH algorithm, which are presented in this section.

The MMAP is a useful tool to gain a view of the dominant states, and the
marginal probabilities are great for viewing the distribution of each state. Using
the last 10000 realizations of all the cases presented for 10 neighbors, these two
statistics have been plotted and are presented in Figure 21. Here the seismic
inversion is at center, and shows the quality and the accuracy of the approxi-
mation in each case. Even though the MMAP does not register thinner layers,
tendencies can be seen in the marginal probabilities that something might be
present in certain areas. However, for the wide kernel case, Gaussian case B1,
many of these areas are not registered. The marginal probabilities that seems
to register the thinner areas best to some degree are the Gaussian case A2 and
the Ricker case A1.

The acceptance rates for all presented cases using 5 and 10 neighbors are
given in Table 3. We choose some of these cases to apply the approximated
forward-backward algorithm to without using the MH algorithm, and we sim-
ulate 10000 iterations for each of these cases. This was done for the Gaussian
base case A1 for 5 neighbors, to see how a relatively good approximation looks
like without filtering. We simulated the low noise Gaussian case A2 using 5
neighbors, since only 8.03% of the suggested profiles were accepted for this
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Figure 21: Marginal probabilities for all cases plotted left of the respective

marginal maximum aposteriori, MMAP. Reference profile, θR, are presented

in each row for comparison.

5 neighbors 10 neighbors
Gaussian A1 54.10% 78.19%
Gaussian A2 8.03% 33.49%
Gaussian A3 89.93% 94.95%
Gaussian A4 56.89% 78.61%
Gaussian B1 29.20% 55.91%
Ricker A1 65.58% 77.35%

Table 3: Acceptance rates when using 5 and 10 neighbors as maximum number

of neighbors. The acceptance rates are for the Gaussian A cases 1−4, Gaussian

case B1 and Ricker case A1.
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Figure 22: Marginal probabilities of the approximation plotted next to the maxi-

mum marginal approximation for cases without using the MH algorithm. Dashed

black lines shows converged marginal probabilities for each corresponding case

using the MH algorithm. Reference profile θR is found to the left.

case, and we also chose to simulate the 10 neighbors Gaussian case A3, which
has the highest acceptance rate of all considered cases. For these three cases
the simulations are presented in Appendix C.2. The maximum marginal ap-
proximation and marginal probabilities are found in Figure 22, where they are
plotted with the corresponding converged marginal probabilities from using the
MH algorithm, which are shown as black dashed lines. The figure shows that
the approximation results, when not applying the MH algorithm, gives very
similar results compared to applying the MH algorithm. The Gaussian case A3,
which had an acceptance of 94.95%, has overlapping curves that are hard to tell
apart. Even the Gaussian case A2 shows approximately the same curve for the
marginal probabilities. We therefore conclude that the approximated forward-
backward algorithm by Austad (2011) is viable even when the acceptance rate
is as low as 8.03%.

4.2 Multiple State Markov Chain

We here present approximation results for the convolutional Bayesian model
with a four state Markov chain prior. The transformation of the Bayesian model
into the form of a binary MRF can for this case be found in Section 3.2.2. For
our four state Markov chain prior we have that θ ∈ {0, 1, 2, 3}n, and the chain is
defined by a transition matrix of size 4× 4. We adapt a transition matrix from
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a study of a real-data case presented in Rimstad and Omre (2013), and use this
to define a transition matrix for our four state case. We define the transition
matrix as

P4 =





0.60 0.01 0.09 0.30
0.01 0.63 0.069 0.30
0.01 0.01 0.699 0.299
0.15 0.03 0.12 0.70



 , (67)

which has limiting probabilities pl4 = [0.145, 0.049, 0.262, 0.544]. As for the
expectations of zi|θi, we find inspiration in the three state synthetic test case in
Rimstad and Omre (2013), and take the expected values to be

µzi|θi
=






−1 if θi = 0,

0 if θi = 1,

1 if θi = 2,

2 if θi = 3.

(68)

We also consider a case with the expected values

µ
�
zi|θi

=






−1 if θi = 0,

0 if θi = 1,

0.7 if θi = 2,

1 if θi = 3,

(69)

which is done for the Gaussian case A1�. Here some of the expected values are
moved closer together such that they have the same range as the expectance
values for the binary Markov chain prior.

For the evaluation of the approximation we simulate a single four state
Markov chain to use in our studies. This chain is based on the transition matrix
in (67) and is presented in Figure 23, together with the corresponding binary
representation. Recall that we for the four state case have corresponding binary
variables φ ∈ {0, 1}2n×1, which is the form the approximated forward-backward
algorithm is handling. We denote this reference chain by θR and the binary
correspondence by φR, which contains twice the elements of θR.

For the four state case we generate data using the covariance cases 1− 4 in
Table 1. We code the cases is the same way as we did for the two state Markov
chain prior, and all cases up for evaluation are found in Figure 24. We now
present approximation results for the Gaussian cases A 1−4 and the Ricker base
case A1, where we are using variance A in (64) and the expected values in (68).
For the second set of expected values in (69), we simulate realizations for the
Gaussian case A1�. Each case is simulated for 10 neighbors, which is comparable
to the two state Markov chain prior when using 5 neighbors. The approximation
is now handling twice the elements, than for the binary Markov chain prior, and
this costs in CPU time. There is also a cost for considering many neighbors. We
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Figure 23: Figure (a) shows a four state Markov chain, θR, generated from (67)

with size n = 100, and (b) shows the corresponding binary variables, φR, for

the profile in (a). The color chart in the middle applies for both profiles.

generate 10000 profiles trying to match φR from the approximation algorithm,
and we use the MH algorithm to obtain the realizations. The last 6000 simulated
profiles are taken as the final realizations, and these are used to calculate the
statistics in the following sections.

4.2.1 Gaussian A1

In this section we consider case 1 in Table 1 using the Gaussian wavelet with
variance A. We are here presenting results for the expected values in (68).

The acceptance rate for this case is 29.06%, which is a lower rate compared
to the 5 neighbors case of the two state Markov chain which gave 54.10%. The
acceptance rate of the MH algorithm is plotted in Figure 25a, where we see that
the algorithm has converged. The simulated profiles have been supplemented
to Appendix C.3, see Figure 39. For the four state Markov chain cases the
number of binary variables in the approximating algorithm has doubled. Also,
there are now four state expectations to be concerned with, and they are in a
wider range than for the binary Markov chain prior. These elements that have
changed causes other aspects of the model to change as well, and all we can say
is that the acceptance rate tells us that the approximation here is not as good
as the corresponding binary Markov chain Gaussian case A1.
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Figure 24: Generated data d for Gaussian cases A 1 − 4, A1�
and Ricker case

A1 plotted with hidden layers z and the reference profile θR. The expectance

of each state are shown as solid, dashed, dotted and dash-dotted lines in their

respective colors, which are defined in Figure 23.

41



0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Acceptance Gaussian case A1.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Acceptance Gaussian case A1
�.

Figure 25: Acceptance rates for Gaussian case A1 and A1�
using 10 neighbors,

where rates ended at 29.06% and 55.05%, respectively.

4.2.2 Gaussian A1�

We now consider the Gaussian case A1 with the expected values given in (69).
The expectations are here in the same range as for the binary Markov chain
prior.

The acceptance rate for this case is plotted in Figure 25b, where the accep-
tance rate ends at 55.05%. This is now very close to the 5 neighbors case in the
binary Markov chain Gaussian A1 simulation. As mentioned in the previous
section, this gave a percentage of 54.10%. Compared to the Gaussian case A1
for the four state Markov chain prior, the acceptance has now gone up 25.99%.
In Appendix C.3 the simulations for this case can be found together with the
Gaussian case A1 of the previous section, see Figure 39.

4.2.3 Ricker A1

We here consider case 1 in Table 1 with the Ricker wavelet using variance A,
and we are again considering the expectations in (68). The data, d, in Figure
24 for the Ricker case A1, shows a more fluctuant curve compared to any of the
other cases.

In Figure 26a the acceptance rate for this case can be found, which resulted
in an acceptance rate of 29.97%. This is close to the acceptance for the Gaussian
case A1, which was 29.06%. These two cases are closer together in acceptance
rate than the corresponding binary Markov chain cases using 5 neighbors, which
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Figure 26: Acceptance rates for Ricker case A1 and Gaussian case A2 using 10
neighbors, where the rates ended at 29.97% and 0.53%, respectively.

were approximately 11% apart, see Table 3. The binary Markov chain for the
Ricker case A1 using 5 neighbors gave an acceptance rate of 65.58%, and this
case thus results in about half the acceptance rate in comparison. The simula-
tion results for this case can be found in Appendix C.3, Figure 40.

4.2.4 Gaussian A2

We now consider case 2 in Table 1 with the Gaussian wavelet using variance A.
We are here using the expectations in (68). This is a low noise case, where the
model is depending more on the accuracy of the likelihood.

For the binary Markov chain prior the low noise case generated a really low
acceptance of only 8.03% for the 5 neighbors case. Here we have an even lower
acceptance rate, which is basically zero. In Figure 26b the acceptance has been
plotted, and at the end the acceptance rate is 0.53%. The MH algorithm is
stuck on a profile, and the Markov chain of simulated profiles does thus not
move. To see this, the simulation results has been plotted and is supplemented
to Appendix C.3 and can be found in Figure 40. The MH algorithm has because
of this not converged to a satisfying degree, and the acceptance rate is assumed
to be even lower.
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Figure 27: Acceptance rates for Gaussian cases A3 and A4 using 10 neighbors,

where rates ended at 78.72% and 27.27%, respectively.

4.2.5 Gaussian A3

In this section we are considering case 3 in Table 1. The Gaussian wavelet still
has variance A, and we use expected values in (68). Compared to the Gaussian
case A1, the noise is here increased for the covariance matrix of π(z|θ).

For the binary Markov chain prior this was the case providing the highest
acceptance rates, and this is the result here as well. For the Gaussian case
A3 using 10 neighbors the acceptance rate ended at 78.72%. The acceptance
rate has been plotted in Figure 27a. The corresponding binary Markov chain
case using 5 neighbors generated an acceptance rate of 89.93%, so we have here
a slightly lower result. However, this has so far been a trend for almost all
the cases considered. The simulated approximated profiles has been added to
Appendix C.3, see Figure 41.

4.2.6 Gaussian A4

We here consider case 4 in Table 1 for the Gaussian wavelet with variance A.
The expected values used is found in (68). For this case the noise is increased
in the covariance matrix of the distribution of d|z, so basically we increase the
white noise in the data.

The acceptance rate that was generated by the MH algorithm here ended at
27.27%, and the acceptance is plotted in Figure 27b. We see that this case is
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5 neighbors binary MC 10 neighbors four state MC
Gaussian A1 54.10% 29.06%
Gaussian A1� 54.10% 55.05%
Ricker A1 65.58% 29.97%
Gaussian A2 8.03% 0.53%
Gaussian A3 89.93% 78.72%
Gaussian A4 56.89% 27.27%

Table 4: Acceptance rates for the four state Markov chain (MC) prior when

using 10 neighbors as maximum number of neighbors. The acceptance rates are

for the Gaussian A cases 1 − 4, A1�
and the Ricker case A1. For comparison,

the binary Markov chain cases when using 5 neighbors have been added to the

table.

close in acceptance rate with the base case, which we also saw for the binary
Markov chain prior cases. The curve in Figure 27b is unsteady in nature, which
is caused by stuck approximated profiles, which can be seen in Figure 41 in
Appendix C.3. Compared to the corresponding binary Markov chain case with
5 neighbors, which had an acceptance rate of 56.89%, we again have a lower
acceptance.

4.2.7 Review of the Cases

In this section we present the marginal probabilities and MMAP of all the four
state Markov chain cases considered. We also discuss the seismic inversion prob-
lem, and the quality of the solution of the approximation. Some of the cases
we have chosen to approximate without the use of the MH algorithm, and these
are included in this section.

In Table 4 the acceptance rates have been presented for the four state Markov
chain prior. For comparison, acceptance rates from the corresponding cases of
the binary Markov chain prior using 5 neighbors have been added to the table.
The four state Markov chain gave lower acceptance rates for almost every case,
where the exception is for the Gaussian case A1� which gave a slightly higher
acceptance rate. For this particular case the range of the expected values are
the same for both priors.

Each case has been simulated for 10000 iterations, which can all be seen in
Appendix C.3, and the last 6000 are taken as the resulting realizations. These
are used to calculate the MMAP and marginal probabilities found in Figure 28.
The Gaussian case A2 had an approximately zero acceptance rate, but has been
added to the figure even so. The simulation results found in the appendix are
hard to interpret as they seem very noisy. The only clearly dominant states seen
are bands of state 0 (blue) and a general noisy dominance of state 2 (yellow) and
state 3 (green). Here state 0 and state 3 have the lowest and highest expected
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Figure 28: Marginal probabilities and MMAP for all considered cases for the

four state Markov chain prior. The states color coding are found in Figure 23.
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Figure 29: Marginal probabilities of the approximation plotted next to the maxi-

mum marginal approximation for cases without using the MH algorithm. Dashed

black lines shows converged marginal probabilities for each corresponding case

using the MH algorithm. Reference profile θR is found to the left.

values, respectively. State 1 (red) is also present, but at a low percentage in
the plots. This is confirmed by the MMAP and marginal probabilities in Figure
28, where only three states are registered as dominant for the converged cases.
For the Gaussian case A1�, which has the same range for the expected values
as the binary Markov chain prior, only state 0 and state 3 are registered in the
MMAP. The Gaussian case A1 in comparison has three registered states.

For the Gaussian case A1 and A3 we apply the approximation using 10
neighbors as maximum number of neighbors, and simulate without using the
MH algorithm. This is also done for the Ricker case A1. The marginal prob-
abilities and maximum marginal approximations for these cases can be found
in Figure 29, where the marginal probabilities for the corresponding case where
the MH algorithm has been used have been plotted using dashed lines in black.
We here get the same results as for the binary Markov chain prior, where the
marginal probabilities are approximately the same for the approximation and
the aposteriori, and this regardless of the acceptance rates. The lowest accep-
tance rate in these cases was found for the Gaussian case A1, which had an
acceptance of 29.06%. The marginal probabilities shows that the differences
from using the MH algorithm and not using it, are small. The same is seen
for the Ricker case A1. For the Gaussian case A3, which generated the highest
acceptance rate, the marginal probabilities are here hard to tell apart. As was
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the case for the corresponding Gaussian A3 for the binary Markov chain prior.
The approximation and the aposterior are very close in nature for every case we
have tested, and we therefore conclude that the approximated forward-backward
algorithm is quite viable both for the binary Markov chain prior and the four
state Markov chain prior of this convolutional Bayesian model.

5 Closing Remarks

In this thesis an approximate forward-backward algorithm for binary MRFs has
been evaluated. We have considered a convolutional Bayesian model for a two-
level hidden Markov chain, and transformed the model into a binary MRF. The
connection between the field of Bayesian modeling and MRFs has been men-
tioned in earlier papers, e.g. (Austad, 2011), but case studies for a convolutional
model has not been provided before.

The transformation from the Bayesian model into a binary MRF was done
by establishing interaction parameters for an energy function of binary vari-
ables. The transformation of the posterior distribution depends on the prior
of the model, which in this case was a Markov chain. The number of possible
states in this Markov chain determined the form of the energy function, and
the size and shape of the corresponding DAG of the clique set of the MRF. The
approximation provided by Austad (2011) is based on minimizing the SSE for
the interaction parameters in the energy function. Given a maximum number of
neighbors an approximation is made each time a variable is summed out, and a
DAG is built using the approximated nodes for the forward-backward algorithm
to use in further calculations. For the evaluation, an independent proposal MH
algorithm was implemented to quantify the quality of the approximation. We
have applied the approximation both for cases using a binary Markov chain
prior and a four state Markov chain prior.

The MH algorithm gave better acceptance rates for the approximation as
the number of neighbors are increased, which was to be expected. However,
for each added neighbor there is a cost in CPU time, and for many neighbors
this cost becomes high. The approximation also operates best when the noise
is highest in the categorical values properties, i.e. z|θ, such that the model is
less dependent of the likelihood. Increasing the white noise to the data, i.e.
for d|z, gave approximately the same results in the acceptance rates as the
base case using the MH algorithm. Considering the application to the seismic
inversion however, shows that smaller areas in between larger areas of states
is not registered very well when the noise is increased for z|θ. This is seen
both for the two state case as well as the four state case. One restriction for
the four state case was the expected values of the hidden layer. The approxi-
mated forward-backward algorithm seemed to have trouble noticing that there
were in between states, and majorly found only three of the states both for
the approximation and the aposteriori. One state did not even get registered
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in the MMAP or the maximum marginal approximation. However, comparing
the marginal probabilities of the approximation to the aposteriori gave results
close in nature. Even the Gaussian case A2 using 5 neighbors, which had an
acceptance of 8.03% for the binary Markov chain prior, gave approximately the
same marginal probabilities from using the MH algorithm and for not using it.
Thus, the approximated forward-backward algorithm of Austad (2011) seems
viable for this convolutional Bayesian model.

As for further research, different methods for transforming the model would
be interesting to consider. Also more simulations would be preferable, perhaps
for a lower number of neighbors. Recall that the 2 and 4 neighbors cases gave
higher acceptance rates than the 5 neighbors case did, i.e. for the two state
Markov chain Gaussian case A1. Fewer neighbors would also reduce the CPU
time for the four state Markov chain case, making it more efficient to simu-
late more cases. Further, a study concerning even (symmetric) and odd (non-
symmetric) neighbors is compelling, since even numbered neighbors seemed to
be giving better acceptance rates than the odd once did. On a different note,
in this thesis we only considered constant covariance matrices for the likelihood
of the Bayesian model. In the real data tests in Rimstad and Omre (2013) and
Ulvmoen and Hammer (2010), the variances depends on the underlying Markov
chain and also considers multiple properties in the hidden layer. The real data
case presented in Ulvmoen and Hammer (2010) is of even more complex form,
where the elements of the hidden layer are not independent of one another.
These more complex cases would be a great research areas to explore further
for the approximate forward-backward algorithm of Austad (2011).

We conclude this thesis by repeating that the approximated forward-backward
algorithm of Austad (2011) seems to be viable for this convolutional Bayesian
model, but a more thorough study with more complex test cases and variation
in the parameters is recommendable.
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A Reformulating the Posterior

For the Bayesian posterior distribution given in (35) we will in this appendix
section give the thorough calculations on reformulating the distribution to the
form of the energy function.

Before we start note that, π(θ1|θ0) = π(θ1) is the limiting probability dis-
tribution of θ1 and will create a special boundary case. We start by expanding
the posterior,

π(θ|d) ∝ π(d|θ)π(θ)

=
|Σd|θ|−n/2

(2π)n/2
exp

�
− 1

2
(d−Wµz|θ)T Σ−1

d|θ(d−Wµz|θ)
�

·
n�

i=1

π(θi|θi−1)

∝ exp
�
− 1

2
(d−Wµz|θ)T Σ−1

d|θ(d−Wµz|θ)
�

·
n�

i=1

π(θi|θi−1)

= exp
�
− 1

2
(dT Σ−1

d|θd− 2µT
z|θW

T Σ−1
d|θd + µT

z|θW
T Σ−1

d|θWµz|θ
�

·
n�

i=1

π(θi|θi−1)

∝ exp
�
dT Σ−1

d|θWµz|θ + µT
z|θQµz|θ

�
·

n�

i=1

π(θi|θi−1),

(70)

where we have let Q = − 1
2W

T Σ−1
d|θW. Further, we let yT = dT Σ−1

d|θW such
that we may write

π(θ|y) ∝ exp
�
yT µz|θ + µT

z|θQµz|θ
�

·
n�

i=1

π(θi|θi−1). (71)

The next step is to pull the transition probabilities inside the exponential func-
tion, and for an easier read of the distribution we also let µ = µz|θ. These
changes gives us the following form to work with

π(θ|y) ∝ exp
�
yT µ + µT Qµ +

n�

i=1

ln
�
π(θi|θi−1)

��

= exp
� n�

i=1

yiµi + µT Qµ +
n�

i=1

ln
�
π(θi|θi−1)

��
.

(72)

To break up the second term of the exponential function in (72) and turn them
into sums, we look at the structure of the vector-matrix multiplication. This
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results in the double sum given by

µT Qµ =
�
µ1 µ2 . . . µn

�





Q11 · · · Q1j · · · Q1n
...

...
...

Qi1 · · · Qij · · · Qin
...

...
...

Qn1 · · · Qnj · · · Qnn









µ1

µ2
...

µn





=
�
µ1 µ2 . . . µn

� �





Q11
...

Qi1
...

Qn1




· µ1 +





Q12
...

Qi2
...

Qn2




· µ2 + · · · +





Q1j
...

Qij
...

Qnj




· µj + · · · +





Q1n
...

Qin
...

Qnn




· µn

�

=
n�

j=1

n�

i=1

Qijµiµj .

(73)

We put this into the distribution resulting in the expression

π(θ|y) ∝ exp
� n�

i=1

yiµi +
n�

i=1

n�

j=1

Qijµiµj +
n�

i=1

ln
�
π(θi|θi−1)

��
, (74)

such that the energy function is given by

U(θ) =
n�

i=1

yiµi +
n�

i=1

n�

j=1

Qijµiµj +
n�

i=1

ln
�
π(θi|θi−1)

�
. (75)

B Energy Function for Multiple States

The Markov chain of interest often has more than two classes. We let θ ∈
{0, 1, 2, 3}n, such that we have four possible states in the Markov chain. The
energy function in (14) is based on binary variables, so we need to express the
variables in θ with binary variables. To do this we give each θi a corresponding
binary pair to represent one of the Markov chain states. We let

θi =






0, if φi = 0 and φn+i = 0,

1, if φi = 1 and φn+i = 0,

2, if φi = 0 and φn+i = 1,

3, if φi = 1 and φn+i = 1,

(76)

such that θi has corresponding variables [φi, φn+i] ∈ {[0, 0], [1, 0], [0, 1], [1, 1]},∀i.
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We start in the same manner as we did for the binary case by looking at the
expectation of θi, now expressed using [φi, φn+i]. We have that

µi(θi) =µ(0)(1− φi)(1− φn+i) + µ(1)φi(1− φn+i)
+ µ(2)(1− φi)xn+i + µ(3)φiφn+i

=µ(0)(1− φi − φn+i + φiφn+i) + µ(1)(φi − φiφn+i)
+ µ(2)(φn+i − φiφn+i) + µ(3)φiφn+i

=µ(0) + (µ(1)− µ(0))φi + (µ(2)− µ(0))φn+i

+ (µ(0)− µ(1)− µ(2) + µ(3))φiφn+i

=K1 + K2φi + K3φn+i + K4φiφn+i,

(77)

where K1 = µ(0), K2 = (µ(1) − µ(0)), K3 = (µ(2) − µ(0)) and K4 = (µ(0) −
µ(1)− µ(2) + µ(3)) are constants. For the quadratic term of the expectation in
the energy function in (38), we get the following expression,

µi(θi)µj(θj) = (K1 + K2φi + K3φn+i + K4φiφn+i) (K1 + K2φj + K3φn+j + K4φjφn+j)
=K1 (K1 + K2φj + K3φn+j + K4φjφn+j)

+ K2φi (K1 + K2φj + K3φn+j + K4φjφn+j)
+ K3φn+i (K1 + K2φj + K3φn+j + K4φjφn+j)
+ K4φiφn+i (K1 + K2φj + K3φn+j + K4φjφn+j)

=K
2
1 + K1K2 (φi + φj) + K1K3 (φn+i + φn+j) + K1K4 (φiφn+i + φjφn+j)

+ K
2
2φiφj + K2K3 (φiφn+j + φn+iφj) + K2K4 (φiφjφn+j + φiφn+iφj)

+ K
2
3φn+iφn+j + K3K4 (φn+iφjφn+j + φiφn+iφn+j)

+ K
2
4φiφn+iφjφn+j .

(78)

We now find an expression for the logarithmic transition probabilities be-
tween states. Let us again denote the logarithm of the transition probability
from state θi−1 to state θi by tθi−1,θi = ln (π(θi|θi−1)). We first have to address
the boundary case of i = 1. The logarithm of the limiting probability of state
θi is denoted as ti = ln(π(θi)), which yields the expression

ln(π(θ1)) = ln (π(0)) (1− φ1) (1− φn+1) + ln (π(1)) φ1 (1− φn+1)
+ ln (π(2)) (1− φ1)φn+1 + ln (π(3))φ1φn+1

=t0 (1− φ1 − φn+1 + φ1φn+1) + t1 (φ1 − φ1φn+1)
+ t2 (φn+1 − φ1φn+1) + t3φ1φn+1

=t0 + (t1 − t0)φ1 + (t2 − t0) φn+1

+ (t0 − t1 − t2 + t3)φ1φn+1.

(79)

This has the same build up as the expectation, however, this is not the case for
the general expression of the logarithm of the transition probability from state
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θi−1 to θi, for i = 2, 3, . . . , n. For the transition between these states we have
that

ln(π(θi|θi−1)) = ln (π(0|0)) (1− φi−1) (1− φn+i−1) (1− φi) (1− φn+i)
+ ln (π(1|0)) (1− φi−1) (1− φn+i−1)φi (1− φn+i)
+ ln (π(2|0)) (1− φi−1) (1− φn+i−1) (1− φi)φn+i

+ ln (π(3|0)) (1− φi−1) (1− φn+i−1)φiφn+i

+ ln (π(0|1)) φi−1 (1− φn+i−1) (1− φi) (1− φn+i)
+ ln (π(1|1)) φi−1 (1− φn+i−1) φi (1− φn+i)
+ ln (π(2|1)) φi−1 (1− φn+i−1) (1− φi) φn+i

+ ln (π(3|1)) φi−1 (1− φn+i−1) φiφn+i

+ ln (π(0|2)) (1− φi−1) φn+i−1 (1− φi) (1− φn+i)
+ ln (π(1|2)) (1− φi−1) φn+i−1φi (1− φn+i)
+ ln (π(2|2)) (1− φi−1) φn+i−1 (1− φi) φn+i

+ ln (π(3|2)) (1− φi−1) φn+i−1φiφn+i

+ ln (π(0|3)) φi−1φn+i−1 (1− φi) (1− φn+i)
+ ln (π(1|3)) φi−1φn+i−1φi (1− φn+i)
+ ln (π(2|3)) φi−1φn+i−1 (1− φi) φn+i

+ ln (π(3|3)) φi−1φn+i−1φiφn+i.

(80)

We replace the constants with tθi−1,θi = ln (π(θi|θi−1)), and multiply out all the
parenthesis products. This becomes

ln(π(θi|θi−1)) =t00 (1− φi−1 − φn+i−1 + φi−1φn+i−1) (1− φi − φn+i + φiφn+i)
+ t01 (1− φi−1 − φn+i−1 + φi−1φn+i−1) φi (1− φn+i)
+ t02 (1− φi−1 − φn+i−1 + φi−1φn+i−1) (1− φi) φn+i

+ t03 (1− φi−1 − φn+i−1 + φi−1φn+i−1) φiφn+i

+ t10φi−1 (1− φn+i−1) (1− φi − φn+i + φiφn+i)
+ t11φi−1 (1− φn+i−1)φi (1− φn+i)
+ t12φi−1 (1− φn+i−1) (1− φi)φn+i

+ t13φi−1 (1− φn+i−1)φiφn+i

+ t20 (1− φi−1) φn+i−1 (1− φi − φn+i + φiφn+i)
+ t21 (1− φi−1) φn+i−1φi (1− φn+i)
+ t22 (1− φi−1) φn+i−1 (1− φi) φn+i

+ t23 (1− φi−1) φn+i−1φiφn+i

+ t30φi−1φn+i−1 (1− φi − φn+i + φiφn+i)
+ t31φi−1φn+i−1φi (1− φn+i)
+ t32φi−1φn+i−1 (1− φi) φn+i

+ t33φi−1φn+i−1φiφn+i.

(81)
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Finally all constants are collected for combinations of linear, quadratic, cubic
and quartic terms of φi−1, φn+i−1, φi and φn+i. These constants are then
renamed for the quadratic, cubic and quartic constants to simplify the equation.
The logarithm to the transition probability from state θi−1 to state θi becomes

ln(π(θi|θi−1)) =t00 + (t10 − t00) φi−1 + (t20 − t00) φn+i−1

+ (t01 − t00)φi + (t02 − t00) φn+i

+ (t00 − t01 − t10 + t11) φi−1φi

+ (t00 − t10 − t20 + t30) φi−1φn+i−1

+ (t00 − t02 − t10 + t12) φi−1φn+i

+ (t00 − t01 − t20 + t21) φiφn+i−1

+ (t00 − t01 − t02 + t03) φiφn+i

+ (t00 − t02 − t20 + t22) φn+i−1φn+i

+ (t01 + t10 − t11 + t20 − t21 − t30 + t31 − t00) φi−1φiφn+i−1

+ (t01 + t02 − t03 + t10 − t11 − t12 + t13 − t00) φi−1φiφn+i

+ (t02 + t10 − t12 + t20 − t22 − t30 + t32 − t00) φi−1φn+i−1φn+i

+ (t01 + t02 − t03 + t20 − t21 − t22 + t23 − t00)φiφn+i−1φn+i

+ (t00 − t01 − t02 + t03 − t10 + t11 + t12 − t13 − t20 + t21

+ t22 − t23 + t30 − t31 − t32 + t33)φiφi−1φn+i−1φn+i

=t00 + (t10 − t00)φi−1 + (t20 − t00) φn+i−1

+ (p01 − p00) φi + (p02 − p00) φn+i

+ G1φi−1φi + G2φi−1φn+i−1 + G3φi−1φn+i

+ G4φiφn+i−1 + G5φiφn+i + G6φn+i−1φn+i

+ H1φi−1φiφn+i−1 + H2φi−1φiφn+i

+ H3φi−1φn+i−1φn+i + H4φiφn+i−1φn+i

+ J1φiφi−1φn+i−1φn+i,

(82)

which is where the constants G1−G6, H1−H4 and J1 in (51) comes from. The
expressions in (77), (78), (79) and (82) are finally put into the energy function
in (38), resulting in the final form of the energy equation in (53).

C Simulation Plots

C.1 Two State Markov Chain - using MH

In this section the simulation plots for the two state Markov chain cases are
found. The plots show the simulations for 5 and for 10 neighbors in each case.
Cases are simulated with the use of the MH algorithm.
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Gaussian A1 using 5 neighbors
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Figure 30: Simulation results for Gaussian case A1 using 5 and 10 neighbors,

where the acceptance rates are 54.10% and 78.19%, respectively.

Gaussian A2 with 5 neighbors
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Gaussian A2 with 10 neighbors
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Figure 31: Simulation results for Gaussian case A2 using 5 and 10 neighbors,

where the acceptance rates are 8.03% and 33.49%, respectively.
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Gaussian A3 with 5 neighbors
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Figure 32: Simulation results for Gaussian case A3 using 5 and 10 neighbors,

where the acceptance rates are 89.93% and 94.95%, respectively.

Gaussian A4 with 5 neighbors
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Figure 33: Simulation results for Gaussian case A4 using 5 and 10 neighbors,

where the acceptance rates are 56.89% and 78.61%, respectively.
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Gaussian B1 with 5 neighbors
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Figure 34: Simulation results for Gaussian case B1 using 5 and 10 neighbors,

where the acceptance rates are 29.20% and 55.91%, respectively.

Ricker A1 with 5 neighbors
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Ricker A1 with 10 neighbors
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Figure 35: Simulation results for Ricker case A1 using 5 and 10 neighbors, where

the acceptance rates are 65.58% and 77.35%, respectively.
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C.2 Two States - without MH

Here the simulations without the use of the MH algorithm are supplemented.
The plots in this section are for Gaussian case A1 and A2 using 5 neighbors,
and for Gaussian case A3 using 10 neighbors.
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Figure 36: Gaussian case A1 using 5 neighbors, with and without the use of the

MH algorithm. Acceptance when using the MH algorithm is 54.10%.
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Figure 37: Gaussian case A2 using 5 neighbors, with and without the use of the

MH algorithm. Acceptance rate when using the MH algorithm is 8.03%.

59



without MH
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Figure 38: Gaussian case A3 using 10 neighbors, with and without the use of

the MH algorithm. Acceptance rate when using the MH algorithm is 94.95%.

C.3 Four State Markov Chain - using MH

We here present the simulations for the four state Markov chain prior, which is
done in the form of plots. The simulations are generated with use of the MH
algorithm.
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Figure 39: Simulation results for Gaussian case A1 and case A1�
, with accep-

tance rates 29.06% and 55.05%, respectively.
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Ricker A1 with 10 neighbors
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Figure 40: Simulation results for Ricker case A1 and Gaussian case A2, with

acceptance rates 29.97% and 0.53%, respectively.
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Figure 41: Simulation results for Gaussian cases A3 and A4, with acceptance

rates 78.72% and 27.27%, respectively.
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C.4 Four State Markov Chain - without MH

In this section simulations without the use of the MH algorithm are supple-
mented for the four state Markov chain prior. The plots in this section are for
Gaussian case A1 and A3 using 10 neighbors, and for Ricker case A1 using 10
neighbors. For each case the simulations where the MH algorithm has been used
are also presented for comparison.
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Figure 42: Gaussian case A1 using 10 neighbors, without and with the use of

the MH algorithm. Acceptance when using the MH algorithm is 29.06%.

62



without MH

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10

20

30

40

50

60

70

80

90

100

θR

0.5 1 1.5

10

20

30

40

50

60

70

80

90

100

with MH

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10

20

30

40

50

60

70

80

90

100

Figure 43: Ricker case A1 using 10 neighbors, without and with the use of the

MH algorithm. Acceptance when using the MH algorithm is 29.97%.
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Figure 44: Gaussian case A3 using 10 neighbors, without and with the use of

the MH algorithm. Acceptance when using the MH algorithm is 78.72%.
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