
Phase-type inference on competing risks
models with covariates, using MCMC
methods

Christoffer Haug Laache

Master of Science in Physics and Mathematics

Supervisor: Bo Henry Lindqvist, MATH

Department of Mathematical Sciences

Submission date: June 2014

Norwegian University of Science and Technology

Preface
The work with this text has been the product of my Master’s thesis at the Nor-
wegian University of Science and Technology (NTNU). It concludes my Master
of Science in Applied Physics and Mathematics, with specialization in Industrial
mathematics. The work has been carried out at the Department of Mathematical
Sciences.

During this work i have received excellent supervision from Bo Lindqvist. His
contributions have been invaluable.

This thesis is essentially an extension of my Master’s project produced in the
fall of 2013, and for completeness, much of the theory in that project has been
included here.

Christoffer Haug Laache Trondheim, June 2014

1

Sammendrag
Målet med denne mastergradsoppgaven har vært å modellere konkurrerende risikoer
innen levetidsanalyse og å utføre kovariatanalyser p̊a datasett av denne typen.
Dette har blitt gjort ved å tilpasse en Phase-type fordeling med flere absorberende
tilstander for å modellere døds̊arsakene, og å deretter innføre kovariater i denne
modellen gjennom de absorberende Markov-intensitetene, slik at modellp̊avirkningen
fra kovariatene kan estimeres.

Det har blitt tatt utgangspunkt i en metode utviklet av Bladt, Gonzalez og Lau-
ritzen for å tilpasse Phase-type fordelinger til vanlige levetidsdata. Denne metoden
er en MCMC-algoritme, og fremstiller levetidsdataene som Markov-realiseringer for
å kunne estimere parameterene i Phase-type modellen.
Ved å utvide antall absorberende tilstander i denne Phase-type modellen kan man
p̊a en naturlig måte modellere en situasjon med konkurrerende risikoer.

Den utviklede metoden fungerer godt p̊a mange forskjellige typer datasett, og
produserer gode estimater av blant annet sub-distribusjoner, sub-hasardrater og
regresjonskoeffisientene til kovariatene. Det ser ut til at koeffisientestimatene ligner
mye p̊a estimater fra Cox-regresjon.

2

Abstract
The aim with this Master’s thesis has been to develop a method of fitting a

Phase-type model to a competing risks data set with covariates, and to approxi-
mate an underlying model such that important functionals and quantities can be
estimated. To do this, the method proposed by Bladt et al. of fitting a Phase-type
model to survival data, has been generalized to the competing risks setting, and
this generalized method has been further extended to include covariates.

The part of the theory which involves extending the method by Bladt et al. to
competing risks was mainly produced in the Master’s project in the fall of 2014,
and is presented in the theory part. The method is a MCMC algorithm which
updates the Phase-type parameters in a Gibbs-sampler.

The results for the model without covariates show that the model is able to pro-
duce estimates for the sub-distribution functions, sub-density functions and cause-
specific hazard rates in a satisfying way.

Before developing the new method in the theory part, three existing competing
risks regression models have been presented. This is the Fine & Gray model, Cox
regression and the model developed by Scheike and Zhang. These three models
have also been used for comparison with the Phase-type model in the presentation
of the results.

New theory has been developed in the sense that covariates have been introduced
in the existing model. This has been done by using covariate regression in the
absorbing intensities of the Phase-type model.

The results show that the model is suitable for a variety of different data sets and
underlying distributions. The method manages to produce good estimates for the
sub-distribution functions, sub-density functions, the covariate regression coeffi-
cients, and in many cases also for the cause-specific hazard rates. The estimates of
the covariate regression coefficients are similar to the Cox regression coefficients.

3

Contents
1 Introduction 6

2 Theory 8
2.1 Markov processes . 8
2.2 Competing risks . 12
2.3 Phase type distributions . 14
2.4 Markov Chain Monte Carlo Methods 18

2.4.1 Bayesian framework . 18
2.4.2 Monte Carlo integrals . 19
2.4.3 Gibbs sampling . 20
2.4.4 Metropolis-Hastings sampling 21

3 Constructing the basic algorithm for the case without covariates 22
3.1 Estimating Markov chain realizations 23

3.1.1 The acceptance probability 25
3.1.2 Complete Metropolis-Hastings method 30

3.2 Gibbs step . 31
3.3 Randomized hyper-parameters . 36
3.4 Censoring . 37

4 Introducing covariates 38
4.0.1 Factors . 38
4.0.2 Variates . 39
4.0.3 Cox regression . 39
4.0.4 The Fine & Gray method 41
4.0.5 Other methods . 43
4.0.6 Phase-type models with covariates 43
4.0.7 Introducing covariates in the existing model 45

4.1 Hyper-parameters . 55

5 Results 59
5.1 Convergence issues . 59
5.2 Results without covariates . 60

5.2.1 Phase-type data . 61
5.2.2 Breast Cancer Data (Boag [7], 1949) 64
5.2.3 Data from Hoel . 67

5.3 Results with covariates . 73
5.3.1 Phase-type data . 74
5.3.2 Weibull data . 80

4

5.3.3 Follicular cancer data . 85

6 General discussion and conclusion 91

7 Appendix 93
7.1 Estimation . 93

7.1.1 Function calculations . 93
7.1.2 Posterior mean . 94
7.1.3 Posterior standard deviation 94
7.1.4 Credibility intervals . 94

7.2 Simulation of data . 95
7.2.1 Coxian model without covariates 95
7.2.2 Phase-type model with covariates 96
7.2.3 Weibull model with covariates 97

7.3 Code . 97
7.3.1 Application of other methods 99

8 References 135

5

1 Introduction
Survival analysis is an important branch of statistics which revolves around mod-
eling failure times and the risks and probabilities connected to these. A failure
can be defined as any suitable event, so survival analysis can be applied in a large
number of industries and research fields. Two examples on important fields of
applications are medicine and reliability analysis. In medicine one is mainly in-
terested in effects of medical treatments or mortality of patients, and in reliability
analysis one is often interested in duration and reliability of different systems or
system components, in addition to measuring how factors might influence these
quantities.

A very important aspect of survival analysis is estimating covariate influence on
survival models. Covariates are non-stochastic variables which might or might not
influence a survival model. There are an infinite number of possible covariates for
any given model, so this is an important and general area to study in almost any
application field of survival analysis.

Another important subject is the situation when there can be many different types
of failures, and where the event of any failure type excludes the events of any of
the others. This situation is suitably called a competing risks case, because the
different failure types can be seen as events that compete in occurring first. Com-
peting risks is a more complex situation than ordinary survival analysis, and thus
it is here often more difficult to make inferences on theoretical functions and pa-
rameters.

It is well known that so called Phase-type distributions can be used to model or-
dinary survival distributions. A Phase-type distribution is essentially known as
a survival distribution based on a Markov chain, where there exists an absorb-
ing state corresponding to a case of failure. When this state is reached a failure
has occurred, and the time until absorption represents the time until failure, so
this time can be viewed as an ordinary failure time. What is less known is that
general Phase-type distributions can have several absorbing states, and so these
distributions are suitable for modeling competing risks cases. In fact, the theory
on Phase-type distributions seems to simplify many difficult subjects surrounding
competing risks.

A setting which can be used to make inferences on competing risks models, is
the Bayesian framework. In this framework, estimates are not just based on in-
formation from the data, but also prior information. This framework allows many

6

flexible estimation methods, and perhaps the most famous ones are the Markov
Chain Monte Carlo methods, also called MCMC methods. These methods can be
viewed as Markov chains, where the limiting distributions are distributions for the
parameters to be estimated, and samples of the parameters are drawn from these
to be used in producing parameter estimates. The greatest strength of MCMC
methods is that they are flexible, and can be made to produce a wide range of
parameter and functional estimates.

In this Master’s thesis, MCMC methods are used to make inferences on Phase-
type distributions which correspond to competing risks data sets. The main goal
is to be able to estimate covariate influences on the theoretical competing risks
models for these data sets. This is an area where there is a lot of potential for
improvement. Methods of modeling covariate influences in the competing risks
case do exist, but they all have their shortcomings, and can estimate only specific
parameters and functions. The aim of this Master’s thesis is therefore to create
a MCMC method which can produce estimates of many general and important
competing risks parameters and functions. It is of particular interest to be able
to estimate cause-specific hazard rates when covariates influence the models, since
there exists no efficient methods of doing this.

The work in this Master’s thesis has been both theoretical and numerical, but
the most time has been spent implementing the MCMC method in the statistical
programming language R.

The theory developed in this text is largely an extension of the theory presented in
the paper by Bladt, Gonzalez and Lauritzen [6], on developing a MCMC method to
fit Phase-type models to survival data. The extension is generalizing the method
in this paper to the competing risks case, by allowing more than one absorbing
state in the Phase-type model. In addition, covariates are introduced into the
existing model, through the absorbing intensities.

The results in this Master’s thesis have been generated by a custom made MCMC
method. The implementation has been done entirely in the programming language
R, and the most important code is presented in section 7.3 in the appendix.

For completeness, the theory part of the Master’s project [12], produced in the
fall of 2014, has been included. This constitutes all the sub-chapters from 2.1 to
3.3 in this text. Sub-chapter 4.2.1, in the results part has also been taken partially
from this project. The rest of the text has been produced in the period set for this
Master’s thesis, which is spring 2014.

7

2 Theory
2.1 Markov processes
A stochastic process can be represented as a collection of state variables, X(t),
dependent on a time variable, t > 0. Essentially, X(t) is a stochastic variable that
has a development in time, and we generally refer to the different values of X(t)
as the state of the system, at time t. The state space, Ω, can be finite or infinite.
X(t) could for example be the amount of CO2 in the atmosphere, the different
stages of a disease, or the amount of failures in a system.

A finite stochastic process that fulfills what we call the Markov property is a
Markov process, also called a Markov chain. For a continuous-time process, the
Markov property is defined by

P (X(s+ t) = j|X(t) = i,X(tn) = in, ..., X(t0) = i0)

= P (X (t+ s) = j|X(t) = i) , (1)

when s > 0, t > tn > ... > t0 and j,i,i0,...in ∈ Ω.

This means that the history of the process, beyond the present state, is irrele-
vant for the probability distribution of the next state.

A time-homogeneous Markov process is a process where the probability of going
from one state to another only depends on the length of the given time interval,
and not the values of time themselves. The probability is therefore not dependent
on time, but on time differences. This gives that

P (X(s+ t) = j|X(s) = i) = P (X(t) = j|X(0) = i) , (2)

for any s,t, i and j.

Consider a time homogeneous Markov process. At time s, the state of the process
is i. The probability of reaching state j at time t+ s is denoted as

Pij(t) = P (X(t+ s) = j|X(s) = i) = P (X(t) = j|X(0) = i) . (3)

8

Since the state space is finite, the probabilities of going from one state to any
of the states in the state space, when the time difference is t, can be represented
in a transition probability matrix,

P (t) =

P11(t) P12(t) · · · P1N(t)
P21(t) P22(t) · · · P2N(t)

· · ·
· · ·
· · ·

PN1(t) PN2(t) · · · PNN(t)

. (4)

Of course, the process must be in some state at any given time, so

N�

j=1
Pij(t) = 1, (5)

for all possible initial states, i.

An absorbing state is defined as a state in which there cannot be any transi-
tions to other states, so the process is stuck in the absorbing state. This means
that

Pij(t) = 0 (6)

and

Pii(t) = 1, (7)

when i is absorbing, j �= i, and t can take any positive value.

In this text, all absorbing states will be the states with the highest indexes, such
that for a process with a total of K +m states and m absorbing states, the states
{K + 1, ..., K +m} are the absorbing states.

Denote the time in state i before transition to any other state as Ti.
Assume that the process has been in state i for s time units, such that

Ti > s.

9

The probability of staying in state i for another t time units will not be affected by
this, because of the Markov property. This is because the history of the process,
beyond the fact that

X(s) = i,

will not be relevant for the state distribution at any time after s.

A result of this is that

P (Ti > s+ t|Ti > s) = P (Ti > t) (8)

This shows that the probability distribution of Ti has no memory, and therefore it
must be the exponential distribution [17] (page 294).

Important quantities in Markov theory are the transition intensities. Assume that
the system is in state i. Then the transition intensity to a state j (j �= i) is defined
by

aij = lim
Δt→0

P (X(t+ Δt) = j|X(t) = i)
Δt = lim

Δt→0

Pij (Δt)
Δt = P �

ij(0) (9)

The transition intensity from i to itself is

aii = P �
ii(0) =

1 −

�

j �=i
Pij(0)

�

= −
�

j �=i
aij (10)

The intensities are usually represented in the transition intensity matrix.

A =

a11 a12 · · · a1N
a21 a22 · · · a2N
· · ·
· · ·
· · ·
aN1 aN2 · · · aNN

(11)

10

Because of property (10), the sum of each row in this must be 0. It is also easy to
see that for an absorbing state, the whole row is zero.

For a Markov chain there might exist a distribution which the chain converges
to when t → ∞, and it is called the limiting distribution. For a certain type of
Markov chains, which are called ergodic (Gamerman and Lopes [10] page 124),
this distribution always exists. Formally, each component of this distribution is
given by:

Pj = lim
t→∞

Pij(t) (12)

It is well known that this distribution can be found by simultaneously solving the
equations

[P1, P2, ..., PN] · A = P · A = 0

and
N�

j=1
Pj = 1. (13)

At last, it can be proven [17] (Page 410) that the transition probability matrix,
P (t), can be represented as

P (t) = eAt =
∞�

i=0

ti

i!A
i (14)

A way to sample a complete Markov chain realization is to sample the time used
in each state visit, and for each state visit sample the transition to the next state
with a discrete distribution. It is well known that the time used when visiting i is
exponential with rate equal to �

j �=i aij = −aii. In addition, we can view the state
transition from state i to state j as a draw from a discrete distribution which has
probability

� (transition from i to j) = aij�
j �=i aij

= aij
−aii

(15)

Thus we can first draw the visiting time for a state visit in state i from the expo-
nential distribution with rate −aii, and then draw the next visiting state from the
discrete distribution with probabilities for each j (j �= i) determined by (15).

11

2.2 Competing risks
Consider a unit which has a specified failure time, T, and where the failure time
has a certain type, C. Here, C ∈ {1, 2, ...,m}.
An observation of (T,C) gives rise to a statistical case called competing risks.

There are a number of ways to approach this situation. The most used is by
considering latent failure times, (T1, T2, ..., Tk), where each Tj represents the fail-
ure time of case C = j.
The observed failure is the smallest of these failure times, such that T = minj (Tj)
and C = argminj (Tj).

This approach is useful but has its limitations. It turns out that the joint dis-
tribution of the Tj is not linked in a one-to-one relationship with the observation
(T,C).
In fact, there can be several different joint distributions of Tj which correspond to
the distribution of (T,C).
This is known as the identifiability problem. An assumption that goes around this
problem is independence of the latent risks, Tj. In this case, there is only one joint
distribution that corresponds to the distribution of (T,C).

Here follows a set of useful definitions and relations in the field of competing risks.
These results have mainly been taken from Braarud ([8], 2012) and Lindqvist ([14],
2006).

The sub-distribution function is given by

Fj(t) = P (T ≤ t, C = j), (16)

where t ≥ 0 and j ∈ {1, 2, ..., k}.

This gives the definition of the sub-density function,

fj(t) = F �
j(t). (17)

The sub-survival function is given by

Rj(t) = P (T > t, C = j) = πj − Fj(t), (18)

12

where πj is called the marginal distribution of C, and is defined by

πj = P (C = j) =
� ∞

0
fj(t)dt = Fj(∞). (19)

Note that then we have

Fj(t) +Rj(t) = πj. (20)

The marginal distribution function of T is

F (t) =
k�

j=1
Fj(t). (21)

The sub-hazard functions, also called the cause-specific hazard rates, are given
by

λj(t) = lim
Δt→0

P (T ≤ t+ Δt, C = j|T > t)
Δt = fj(t)

R(t) . (22)

Taking the derivative of (21), we see that the marginal density of T is also a
sum of sub-densities, and thus the hazard function of T must be given by a sum
of sub-hazard functions, according to (22);

λ(t) =
k�

j=1
λj(t). (23)

Integrating the sub-hazard functions gives the cumulative sub-hazard functions,

Λj(t) =
� t

0
λj(u)du. (24)

13

2.3 Phase type distributions
In a continuous-time Markov chain with one absorbing state, the time until ab-
sorption has a distribution which is called a Phase-type distribution. In this model
the absorbing state corresponds to a failure, and all the transient states can be
viewed as different states on the way to failure. In medicine, an example of a
model that can be set up this way is the different stages of the development of
cancer in a patient. The transient states might here be interpreted as different
stages of cancer, while the absorbing state is death.

Even so, the distributions are actually quite general, so there isn’t really a need
for a physical interpretation of a situation which is to be modeled. In fact, any
general failure time can be approximated by a phase type distribution.

An extension to a competing risks setting can easily be made. Now there are
several absorbing states, where each state corresponds to a type-specific failure.
The time until failure is just the time until one of the absorbing states has been
reached, and the type of failure simply corresponds to the type of absorbing state
which has been reached.

To model the Markov chain of a Phase-type distribution with K transient states
and m absorbing states, consider a (K +m) × (K +m) intensity matrix of the
chain,

A =
�
Q L
01 02

�
. (25)

Here, Q is the K×K matrix of intensities for the transient states, L is the K×m
matrix of intensities from the transient and into the absorbing states, while 01 and
02 are respectively m×K and m×m matrices of zeros.

(14) gives that the transition probability matrix can be represented by

P (t) = eAt =
∞�

i=0

ti

i!A
i, (26)

It is quite straightforward to see that

Ai =
�
Qi Qi−1L
0 0

�
,

14

and by definition of the matrix exponential,

A0 = I(K+m)×(K+m).

This can be used in (26) to get the following

P (t) =
∞�

i=0
Ai
ti

i! = I +
∞�

i=1
Ai
ti

i! . (27)

A sum of matrices is an operation working componentwise, so the sums above
can also be represented blockwise. The different blocks in Ai can therefore be
evaluated separately in (26) and (27). P (t) is denoted as

P (t) =
�
P1(t) P2(t)

0 I

�
. (28)

By using (27), the upper right block of P (t) can be represented as

P2(t) = 0 +
∞�

i=1

ti

i!Q
i−1L =

∞�

i=1

ti

i!Q
i−1L,

because the part of I in this block is only zeros.

This further gives that

P2(t) =
∞�

i=1

ti

i!Q
i−1L = Q−1

� ∞�

i=0

ti

i!Q
i − I

�
L = Q−1

�
eQt − I

�
L. (29)

Using (26) and the block representation of Ai, P1(t) can be represented as

P1(t) =
∞�

i=0
Qi
ti

i! = eQt. (30)

Using both (29) and (30), the final transition probability matrix becomes

P (t) =
�
eQt Q−1

�
eQt − I

�
L

0 I

�
. (31)

15

Define p as the initial distribution in a Phase type model with K +m states in
total, K transient and m absorbing. The matrix product of p and P (t),

pP (t),

will then be a vector of probabilities for being in the different states at time t.
Notice that the probability of being in an absorbing state j at time t is the same
as Pr(T ≤ t, C = j), where T is the time to reach an absorbing state. Thus, the
sub-distribution function of type j failure is just the (K + j)-th coordinate of this
vector, such that

Fj(t) = (pP (t))K+j

A way to extract this component is to use the ((K +m) × 1)-vector

vTK+j =

0
0
.
.
1
.
0
0

,

where the unity value is placed in the (K + j)-th row.

The sub-distribution function then becomes

Fj(t) = pP (t)vTK+j. (32)

A simplification can be made concerning the dimensions of this expression. Be-
cause we are only interested in the absorbing states, the probabilities of going from
the transient states to the absorbing states are the only ones we need to define the
sub-distribution functions. Thus the absorbing part of the matrix P (t) is the only
part of P (t) needed. This was defined in (29). Using only this part of P (t) in (32),

16

redefining p to contain only transient states, and also redefining v to contain only
absorbing states, will be sufficient to represent the sub-distribution function.

The adjusted expression now becomes

Fj(t) = pQ−1
�
eQt − I

�
LvTj . (33)

Here, p is a (1 ×K)-vector, and vj is a (1 ×m)-vector.

To find the sub-hazard function, given in (22), the sub-density function must
be determined. It is found in a straightforward way:

fj(t) = F
�
j (t) = p

�
Q−1

�
eQt − I

�
L

��
vTj = pQ−1QeQtLvTj = peQtLvTj . (34)

Using that R(t) = 1 − F (t), it now follows from (21) and (22) that

λj(t) = fj(t)
R(t) = fj(t)

1 − �m
j=1 Fj(t)

=
peQtLvTj

1 − pQ−1 (eQt − I)L1 .

Since the sums of the rows of A are 0, A1 = Q1+ L1 = 0, such that,

Q1 = −L1.

We then have that

λj(t) =
peQtLvTj

1 − pQ−1 (eQt − I) (−Q1) =
peQtLvTj

1 − 1 + peQt1 =
peQtLvTj
peQt1 . (35)

By first finding Fj(t), Rj(t) can also be found using (18):

Rj(t) = πj − Fj(t). (36)

Using (19), πj is given as

πj = Fj(∞),

17

which, by using (33) can be expressed as

πj = lim
t→∞

pQ−1
�
eQt − I

�
LvTj . (37)

Because eQt is the probability matrix for the transient part, according to (31), and
we must be in an absorbing state when t → ∞,

lim
t→∞

eQt = 0,

which is just the zero matrix.

This gives that

πj = −pQ−1LvTj , (38)

according to (37).

2.4 Markov Chain Monte Carlo Methods
2.4.1 Bayesian framework

MCMC methods are based on a Bayesian framework. In this framework, even the
parameter values are random variables, so they have a joint probability distribu-
tion.

By using Bayes theorem, any probability can be decomposed into

P (B) = P (B|A)P (A)
P (A|B) ,

where A and B are two random events. This further gives that

P (B|A) = P (A|B)P (B)
P (A) ∝ P (A|B)P (B)

If event A is the event of obtaining a sample x, and event B is the event of

18

obtaining the parameter values θ, we are essentially talking about densities, and
the situation becomes

f(θ|x) = f(x|θ)f(θ)
f(x) ∝ f(x|θ)f(θ), (39)

where f(θ) is the joint probability density to the components of the vector θ,
and f(x| θ) is simply the likelihood function of the sample. f(θ|x) is called the
posterior density, and f(θ) is called the prior density. The prior density contains
our information of the parameters before any data is collected, and the posterior
density contains our information after data is collected. So essentially, the sample
x gives us information about θ.

MCMC methods exploit this relationship between the data and the parameter
values, to be able to simulate the parameter values from the posterior distribution
corresponding to the posterior density above.

2.4.2 Monte Carlo integrals

It is well known that a consistent and unbiased estimator for the integral

I =
� ∞

−∞
t(θ)π(θ)dθ, (40)

is the estimator

Î = 1
n

n�

i=1
t(θi), (41)

when the data sample, (θ1, ..., θn), is sampled from π(θ), and the samples are in-
dependent of each other.

Because π(θ) can be very difficult to sample from, or because we might just have
determined an expression proportional to this distribution, without having the nor-
malizing constant, it is very common to use approximations or algorithms which
simulate π(θ), in order to generate (41). This is especially true when consider-
ing posterior distributions, which often can be quite complex, and are often not
completely determined. A very common way to generate samples from posterior
distributions is by generating Markov chains that have the posterior distribution
as a limiting distribution, given in (12). Although samples gathered from the
states of a Markov chain will be dependent of each other, it can be shown that
ergodic Markov chains produce limiting samples where this dependency plays an

19

insignificant role, such that (41) can still be used. This result is called the Ergodic
theorem (Gamerman and Lopes [10] page 125).
There are two methods that are mostly used to generate such Markov chains. They
are called the Metropolis-Hastings method and the Gibbs method.

2.4.3 Gibbs sampling

As given in Gamerman and Lopes [10] (page 142 and 143), a way to generate
an ergodic Markov chain with a limiting distribution equal to the posterior, is
by sampling iteratively from the full conditional distributions of the parameters.
We represent the parameter values in vector form, θ = [θ1, θ2, . . . , θn]. The full
conditionals are given as:

p (θj| θ−j, x) ,

where θ−j are all the components of θ except component j, and x is the data.

For each step in the iterative procedure, the parameter values are sampled from
the full conditional distributions. The distributions use estimates of the parameter
values, instead of true values. The sampled values are used in the succeeding steps,
so that the parameter values evolve.
For a given step, b, the iterative updating of the parameter values, within this
step, might evolve as the following

�
θ̂b2, ..., θ̂

b
n

�
→

�
θ̂b+1

1

�

�
θ̂b+1

1 , θ̂b3, ..., θ̂
b
n

�
→

�
θ̂b+1

2

�

... ...
�
θ̂b+1

1 , θ̂b+1
2 , ..., θ̂b+1

n−1

�
→

�
θ̂b+1
n

�

Here, the arrows symbolize using the approximate full conditionals to produce the
parameter estimates pointed to, by using the parameter estimates pointed from.

This means that for each step, every parameter value is estimated by using the
estimates from the previous step or, if possible, the estimates already made at the
current step. The first estimates are produced using the prior distribution of the
parameter values.
The order of the parameters being updated within a step is theoretically not im-
portant, but can have effects concerning the efficiency of the algorithm.

20

A key point to see here, is that the parameter values evolve in a Markovian manner.
At each step, the estimates are only based on the information from the previous
step or the current. This means that this type of stepwise estimation constitutes a
Markov chain, and it is proven that the chain has properties which gives it a limit-
ing distribution equal to the posterior distribution of the parameters (Gamerman
and Lopes [10] page 147 and 148).

2.4.4 Metropolis-Hastings sampling

As given in Gamerman and Lopes [10] (chapter 6.2), another way to generate an
ergodic Markov chain with a limiting distribution equal to the posterior, is by
producing a reversible Markov chain of iterative estimates, which is specifically
tailored with respect to this limiting distribution.

A way to do this is by proposing new updates, and accepting these updates with a
certain acceptance probability. If θ = [θ1, θ2, . . . , θn] are the present values of the
parameters, and Φ = [Φ1, Φ2, . . . ,Φn] are the proposed values, then the probability
of accepting the proposed parameter values is set to

α(θ,Φ) = min

1,

π(Φ)
q(θ,Φ)
π(θ)
q(Φ,θ)

 = min

�
1, π(Φ)q(Φ, θ)
π(θ)q(θ,Φ)

�
, (42)

where π(θ) is the posterior distribution, and q(θ,Φ) is the proposal distribution.
If the proposed values are accepted, they replace the existing ones.

For an iteration, b, and an existing parameter estimate, θ̂b, we thus have the
following situation

θ̂b+1 =

Φ with probability α
θ̂b with probability (1 − α)

.

The initial parameter vector, θ0, is drawn from the prior distribution.

Again, we see that the iterative estimates are updated in a Markovian manner,
and because of the choice of α, it can be shown that this Markov chain has a
limiting distribution equal to the posterior distribution (Gamerman an Lopes [10]
page 195).

21

3 Constructing the basic algorithm for the case
without covariates

The basic algorithm (without covariates) presented in this text is essentially a
Gibbs sampler, but uses a Metropolis-Hastings method (also called MH-method)
within each Gibbs step. It is designed to estimate the initial distribution, p, and
the intensity matrix, A, in a Phase type representation for the distribution of a
certain set of competing risks data, � = [(x1, c1), ..., (x�, c�)], where xi is the fail-
ure time of data point i, and ci is the type of failure. For each Gibbs step, the
MH-method is run a finite number of times for each data point, (xi, ci), to simulate
corresponding Markov chain realizations, yi. These realizations are then used as
the data in the approximate posterior distribution of A and p, which is used to
estimate A and p. A number of samples of A and p are taken, after convergence,
and these can be used to estimate a large variety of competing risks functions and
quantities.

As mentioned in the competing risks section, xi can be viewed as the absorp-
tion time in a Phase-type representation, and ci can be viewed as the absorption
state.

The Phase-type representation corresponding to p and A can have any chosen
number of transient states, and this is specified at the beginning of the algorithm.
The choice of dimensions will often affect the quality of the estimates for the the-
oretical quantities, meaning that a large number of transient states will result in
estimates that are closer to the underlying model corresponding to the data.

The basic algorithm developed in this chapter is a generalization of the algorithm
developed by Bladt, Gonzalez and Lauritzen [6]. This algorithm was constructed
for ordinary lifetime distributions, with one type of failure. The basic algorithm
has been constructed for a competing risks setting, where there can be several
types of failures. The generalization has been made by increasing the number of
absorbing states in the Phase-type representation of the underlying lifetime dis-
tribution.

The complete algorithm can roughly be described as the following:

1 Sample prior estimates of p and A.

2 Run a Gibbs sampler to iteratively estimate p and A

– For each Gibbs-step we first simulate likelihood information on the form

22

of Markov chain realizations corresponding to each data point (xi, ci),
by using a finite number of iterations from a MH-method.

3 After a finite number of Gibbs-steps, a representative sample of both pos-
terior p’s and A’s has been produced. This can either be used to produce
Monte Carlo estimates for p and A, which then are used to estimate preferred
functions, or the functions can be calculated for every sample entry, such that
Monte Carlo estimates of the functions themselves can be produced.

3.1 Estimating Markov chain realizations
A fact that complicates the whole situation of estimating the Phase-type param-
eters for the underlying distribution of the data, is that the data, �, does not
give full information on how the data points could have been developed as Markov
chains. Information on the Markov chain needed to represent the distribution of
the data as a Phase-type distribution is only given implicitly through the absorp-
tion times and the absorption states. So the data are not complete Markov chain
realizations, and thus we have to simulate these realizations before estimating the
Markov chain parameters, A and p by using Gibbs sampling.

A fact worth mentioning is that when a Phase-type distribution is used to model a
lifetime, the lifetime only corresponds to a Markov chain realization up to absorp-
tion. This means that we are only interested in the time until absorption, which is
completely defined by how the transient states are traversed in the Markov chain
model, and which state becomes the final absorbing state.

The complete data sample of Markov chain realizations is denoted as Y = [y1, ..., y�],
where each yi is defined as

yi = (J (i), s(i)).

Here, J (i) is the vector of visited states, including the final absorbing state, j(i)
c ,

J (i) =
�
j

(i)
0 , j

(i)
1 , j

(i)
2 , ..., j

(i)
n , j

(i)
c

�
,

and s(i) is the vector of sojourn times,

s(i) =
�
s

(i)
0 , s

(i)
1 , s

(i)
2 , ..., s

(i)
n

�
.

j(i)
n is the final state before absorption, and s(i)

n is the sojourn time in this final

23

transient state.

When trying to simulate realizations from a Phase-type Markov chain, we only
need to sample realizations up to absorption, given the absorption times, X = xi,
and absorption states, C = ci. Because the absorbing state is given in the data
by ci, this means that we only need to sample transient parts of the Markov chain
realizations from a given Markov chain model. The probability of obtaining a par-
ticular transient part of a Markov chain realization, given a distinct data point, is
expressed as

� ({Jt, t < xi} = {jt, t < xi}|X = xi, C = ci)

≡ �(xi,ci) ({Jt, t < xi} = {jt, t < xi}) . (43)

Here, a complete Markov chain realization is expressed as {Jt}, where Jt is the
state at time t, and {Jt, t < xi} is the corresponding transient part.

If sampling from �(xi,ci) ({Jt, t < xi} = {jt, t < xi}) would be easy, then we could
sample directly from this distribution and simulate the Markov chain realizations
we need to estimate the Phase-Type parameters. Unfortunately, sampling di-
rectly from this distribution is difficult. A way to go around this problem is
to sample from a less difficult proposal distribution, and accept the proposal
if it is close enough to a sample from �(xi,ci) ({Jt, t < xi} = {jt, t < xi}). This
can be implemented by making a MH-method with a suitable proposal distri-
bution and acceptance probability. We can obtain approximated samples from
�(xi,ci) ({Jt, t < xi} = {jt, t < xi}) if the MH-method is a Markov chain with this
distribution as limiting distribution. In theory, convergence of the complete algo-
rithm will be reached by using only one MH-iteration for each Gibbs-step. This is
because the complete algorithm can be viewed as two separate MCMC algorithms,
and when both are converging the whole algorithm does so too. To improve mix-
ing, sometimes it is necessary to use a small finite number of MH-steps for each
Gibbs-step, instead of one.

A much simpler distribution to sample from is

� ({Jt, t < xi} = {jt, t < xi}|X ≥ xi, C = ci)

≡ �
∗
(xi,ci) ({Jt, t < xi} = {jt, t < xi}) . (44)

24

This is because X ≥ xi, so absorption here doesn’t have to happen exactly at
time xi, but can also happen later.

This is the proposal distribution which will be used in the MH-method. An easy
way to sample from this distribution is to start with sampling a Markov chain
realization with any given time to absorption, X, by using the method described
at the end of the Markov process chapter, reject this sample if X < xi or C �= ci,
and accept otherwise. This rejection procedure is repeated until we get an ac-
cepted sample. Keep in mind that we are just interested in the part up to time
xi, {Jt, t < xi}, and not the complete Markov chain realization up to absorp-
tion, {Jt, t < X}. Even so, this can easily be extracted from {Jt, t < X} after
sampling. The procedure can be summed up as

(45)

1 For data point (xi, ci), simulate a Markov chain realization, {jt}, with the
parameters A and p, by simulating the change of states with the discrete
distribution

�
ak1

−akk
, ak2

−akk
, ..., akK

−akk

�
and the time in each state visit with the

exponential distribution, exponential(−akk), where a visited state is state k.
At absorption, the simulation is complete.

2 If the failure time, X, of the realization is such that X ≥ xi and the last ab-
sorbing state of the realization, C, is such that C = ci, accept the realization.
If this is not the case, move back to 1.

3.1.1 The acceptance probability

By now, having defined a proposal distribution, the main goal is to derive the
acceptance probability of this MH-method. This is by no means an easy task,
and some quite rigorous calculations and observations must be made. They are
all based on exactly the same principles as in the paper by Bladt, Gonzalez and
Lauritzen [6], but with an extension to having several absorbing states.

First, lets define some very useful results.

According to (26) the distribution of the state at time t, Jt, is given by

pP (t) = peAt,

where A is the ((K +m) × (K +m)) intensity matrix, and p is the (1 × (K +m))
initial distribution.

25

The probability of being in state j at time t is thus

qj(t) = peAtvjT ,

where vj is the (1 × (K +m)) unity vector with unity value in coordinate j.

When j is transient this expression can be transformed to

qj(t) = peQtvTj , (46)

according to (31).
Here p is the (1 ×K) initial distribution, and vj is the (1 ×K) unity vector.

We can now define the sub-density of a data point, (xi, ci). qj(xi) can be viewed
as the probability of being in state j exactly prior to xi, and the transition rate
ajci

can be viewed as the probability of instantaneously moving from state j to
the absorbing state ci. This makes the joint probability of being in j exactly prior
to absorption, and also being absorbed into state ci at time xi, equal to qj(xi)ajci

.
Since the chain must be in some transient state exactly prior to absorption, the
sub-density of ci is

fci
(xi) =

�

j

qj(xi)ajci
,

where the sum runs over all the transient states.

By using simple theory on conditional distributions,

P (A|B) = P (A ∩B)
P (B) , (47)

it is now easy to see that the conditional probability of being in j precisely before
absorbtion is given by,

π̃ij = �

�
Jx−

i
= j|X = xi, C = ci

�
= �(xi,ci)(Jx−

i
= j) = qj(xi)ajci

fci
(xi)

, (48)

where x−
i is the moment exactly prior to absorption.

26

The distribution, �
�
Jx−

i
= j|X ≥ xi, C = ci

�
, is also derived by using (47).

Because

�(X ≥ xi, C = ci) =
� ∞

xi

fci
(u)du,

the conditional probability of being in state j exactly prior to xi, given X ≥ xi
and C = ci,
is

π∗i
j = �

�
Jx−

i
= j|X ≥ xi, C = ci

�
= �

∗
(xi,ci)(Jx−

i
= j)

=
�

�
(Jx−

i
= j) ∩ (C = ci) ∩ (X ≥ xi)

�

� ∞
xi
fci

(u)du . (49)

Using (47) again, we get

�

�
(Jx−

i
= j) ∩ (C = ci) ∩ (X ≥ xi)

�

= �

�
C = ci | (Jx−

i
= j) ∩ (X ≥ xi)

�
· �

�
(Jx−

i
= j) ∩ (X ≥ xi)

�
. (50)

Because j is a transient state the absorption obviously happens after or exactly at
xi, such that

�
(Jx−

i
= j) ∩ (X ≥ xi)

�
= (Jx−

i
= j).

This simplifies (50), giving that

�

�
C = ci | (Jx−

i
= j) ∩ (X ≥ xi)

�

= �

�
C = ci | Jx−

i
= j

�
=

� ∞

0
f jci

(u)du = F jci
(∞). (51)

Here, f jci
(u) is the sub-density when the initial state is j, such that the initial

distribution is the (1 ×K) unity-vector, vj.

27

Also,

�

�
(Jx−

i
= j) ∩ (X ≥ xi)

�
= �

�
Jx−

i
= j

�
= qj(xi). (52)

Using (51) and (52) we finally get that

π∗i
j =

F jci
(∞)qj(xi)� ∞

xi
fci

(u)du . (53)

One last observation can now be made before calculating the importance weights,

�(xi,ci) ({Jt, t < xi} = {jt, t < xi})
�∗

(xi,ci) ({Jt, t < xi} = {jt, t < xi})
,

needed to derive the acceptance probabilities in the MH-method. These weights
constitute the fractions in the numerator and denominator of the second expres-
sion in (42).

The observation is the following:

Because {Jt} is a Markov chain, the Markov property ensures that whatever hap-
pens before the time x−

i is independent of the absorption, (X,C), given that we
know Jx−

i
. This can be interpreted as; if we know the state at time x−

i , whatever
happens before x−

i does not provide more information on the outcome of the ab-
sorption, (X,C), which might happen after time x−

i . The independence goes both
ways, so (X,C) will also not provide any additional information on the history
beyond x−

i , given Jx−
i
.

This is a direct consequence of the Markov property, given in (1).

A consequence of this observation is that

�(xi,ci)
�
{Jt, t < xi} = {jt, t < xi}| Jx−

i
= jx−

i

�

= �
∗
(xi,ci)

�
{Jt, t < xi} = {jt, t < xi}| Jx−

i
= jx−

i

�
(54)

28

This can be directly used in the expression for the importance weights, which
now can be seen to be

�(xi,ci) ({Jt, t < xi} = {jt, t < xi})
�∗

(xi,ci) ({Jt, t < xi} = {jt, t < xi})

=
�(xi,ci)

�
{Jt, t < xi} = {jt, t < xi}| Jx−

i
= jx−

i

�
�(xi,ci)(Jx−

i
= jx−

i
)

�∗
(xi,ci)

�
{Jt, t < xi} = {jt, t < xi}| Jx−

i
= jx−

i

�
�∗

(xi,ci)(Jx−
i

= jx−
i
)

=
�(xi,ci)(Jx−

i
= jx−

i
)

�∗
(xi,ci)(Jx−

i
= jx−

i
) =

π̃ij
x−

i

π∗i
j

x−
i

. (55)

If {jt, t < xi} is an existing Markov chain realization, and {j�
t, t < xi} is a

proposal realization, sampled from �
∗
(xi,ci) ({Jt, t < xi} = {j�

t, t < xi}), then ac-
cording to (42) and (55), α can now be expressed as

α =

π̃i
j�
xi−

π∗i
j�
xi−

π̃i
jxi−
π∗i

jxi−

=
π̃ij�

xi−
π∗i
jxi−

π∗i
j�

xi−
π̃ijxi−

.

By using (48) and (53), and the notation ajc = a(j, c), this expression becomes

α =

qj�
xi−

�
xi

�
a(j�

xi−,ci)

fci (xi)
F

jxi−
ci

(∞)qjxi−

�
xi

�
� ∞

xi
fci (u)du

F
j�
xi−

ci
(∞)qj�

xi−

�
xi

�

� ∞
xi
fci (u)du

qjxi−

�
xi

�
a(jxi−,ci)

fci (xi)

=
a(j�

xi−, ci)F
jxi−
ci (∞)

a(jxi−, ci)F
j�

xi−
ci (∞)

.

Using (38), this can be expressed as

α =
a(j�

xi−, ci)
�
vjxi−Q

−1LvTci

�

a(jxi−, ci)
�
vj�

xi−
Q−1LvTci

� , (56)

29

which is the final expression, used directly in the algorithm. Here, vk is a unity
vector in the transient state space, with unity value in component k, and vk is a
similar unity vector but for the absorbing state space.

It is interesting to compare this expression with the acceptance probability in
the paper by Bladt et al. [6] (page 288). The acceptance probability is there on
the form

α∗ =
a(j�

xi−, ci)
a(jxi−, ci)

,

where ci can only take one value, since in this paper only one absorbing state is
allowed.

We see that, apart from being multiplied by a fraction of marginal distribution
expressions,

�
−vjxi−Q

−1LvTci

�

�
−vj�

xi−
Q−1LvTci

� ,

the expression in (56) looks completely similar to α∗.

This shows that by extending the method by Bladt et al. [6] to the compet-
ing risks case, we introduce another aspect to the method.
We now also have to take into consideration the probabilities of being absorbed
into a particular absorbing state, ci, from given last transient states, jx− or j�

x−,
in corresponding Markov chain realizations.
We might consider the method in the paper by Bladt et al. [6] to be a special case
of this method, because there only one absorbing state is possible, so the marginal
distribution expressions,

−vjxi−Q
−1LvTci

and − vj�
xi−
Q−1LvTci

both become equal to 1. Thus the fraction in (56) also becomes equal to 1.

3.1.2 Complete Metropolis-Hastings method

The Metropolis-Hastings algorithm can now be summed up as the following:

For each data point, (xi, ci),

30

1 If this is the first Gibbs step in the complete algorithm, draw an initial
sample, {jt, t < xi}, from �

∗
(xi,ci) ({Jt, t < xi} = {jt, t < xi}), by using the

rejection procedure explained in (45). If this is not the first Gibbs step, define
the initial sample, {jt, t < xi}, as the Markov realization corresponding to
(xi, ci) from the previous Gibbs step.

2 Draw a sample, {j�
t, t < xi}, from �

∗
(xi,ci) ({Jt, t < xi} = {j�

t, t < xi}), by
using the rejection procedure.

3 Draw U ∼ Uniform[0, 1].

4 If U ≤ min

1,

−a(j�
xi−,ci)

�
vjxi−Q

−1LvT
ci

�

−a(jxi−,ci)
�
vj�

xi−
Q−1LvT

ci

�

 then replace {jt, t < xi} with

{j�
t, t < xi}.

5 Return to step 2

3.2 Gibbs step
The MH-method is supposed to be run a finite number of times for each Gibbs-
step in the complete algorithm. In each Gibbs step, approximate draws from the
posterior distribution of A and p are made.

The Metropolis-Hastings algorithm provides simulated information on the underly-
ing Markov chain realizations corresponding to the data points (xi, ci). Information
from these realizations are used in the likelihood-part of the posterior distribution.

With K transient states, m absorbing states, and the ((K + m) × (K + m))-
matrix A consisting of the components aij, for arbitrary states i and j, the prior
is chosen to be on the following form

Φ(p, A) ∝
�
K�

i=1
pβi−1
i

�

K�

i=1

K+m�

j=1,j �=i
a
νij−1
ij e−aijζi

 , (57)

where βi, νij and ζi are hyper-parameters corresponding to the states i and j.

Because A is the intensity matrix of a Markov chain, all the components on the
rows of absorbing states are equal to 0, so only components on the transient rows
are sampled. Also, the diagonal components, aii, are just negative sums of the
other row components, so they are not sampled.

31

A convenient fact with this prior distribution is that we immediately observe that
p can be viewed as an independent Dirichlet distributed vector variable, if all the
other parameters are held constant, and each aij can be viewed as independent
gamma distributed variables, again if all other parameters are held constant. This
is because we recognize the kernels of these distributions in the prior expression.
The distributions are given as:

aij ∼ Gamma(1/ζi, νij)

p ∼ Dirichlet(β)

Here, β is a vector with components βi.

These distributions are in general easy to sample from.

The posterior expression is more complicated, but on the same form. Now the
likelihood-information comes into play. This information is information gathered
from all the Markov chain realizations corresponding to the data points, and is on
the following form:

Bi is the number of times any of the Markov chain realizations are initiated in
state i.

Zi is the total time all the Markov chain realizations have spent in state i.

Nij is the number of times a transition from state i to state j has been made
in any of the Markov chain realizations.

This can be derived by looking at one single realization. A realization is defined
completely by the states that have been visited, the order they have been visited
in, and the sojourn times, meaning the time spent in the different states visited.
In any Markov chain, the sojourn times are exponentially distributed, with rates
equal to the absolute values of the diagonal intensities of the states visited.

In addition, a well known result is:
given that there is a transition from state i, the change to state j has a probability
equal to

ρij = aij
−aii

. (58)

32

At last, there is always an initial state, and the probability of a particular ini-
tial state, j0, is given by pj0 , component j0 of the initial distribution.

By now considering a realization, y, which has n transient state visits, and is
defined by the vector of visited states,

J = [j0, j1, j2, ..., jn, jc],

and the vector of sojourn times,

S = [s0, s1, s2, ..., sn],

the likelihood can be defined as

g(y|A,p) = pj0(−aj0j0)ρj0j1eaj0j0s0 · · · (−ajnjn)ρjnjceajnjnsn

= pj0(−aj0j0)
aj0j1

−aj0j0
eaj0j0s0 · · · (−ajnjn)

ajnjc
−ajnjn

eajnjnsn

= pj0aj0j1eaj0j0s0 · · · ajnjceajnjnsn

= pj0aj0j1exp

−s0

�

j �=j0
aj0j

 · · · ajnjcexp

−sn

�

j �=jn
ajnj

= pj0
K�

i=1

K+m�

j=1,j �=i
a
nij

ij e
−aijzi , (59)

where zi is the sum of the sojourn times in state i, and nij is the number of tran-
sitions from i to j.

It is important to see that jn is defined as the final state before absorption, and
thus, transition from jn will always go to the absorbing state, c.

Because there are many sampled realizations, Y = [y1, ..., y�], the complete likeli-
hood will be products of these types of expressions, on the following form

f(Y |A,p) =
�
K�

i=1
pBi
i

�

K�

i=1

K+m�

j=1,j �=i
a
Nij

ij e
−aijZi

 , (60)

33

where Bi is the total number of initiations in state i, Zi = z
(1)
i + z(2)

i + . . . is the
sum of zi for all the realizations, and Nij = n

(1)
ij + n(2)

ij . . . is the sum of nij.

It is easy to see that Bi, Nij and Zi are the same as given in the definitions
earlier.

Thus (60) gives the likelihood distribution, and the posterior distribution is just
the product of the likelihood and the prior distribution, which is represented as

π(A,p|Y) ∝

�
K�

i=1
pβi−1
i

�

K�

i=1

K+m�

j=1,j �=i
a
νij−1
ij e−aijζi

·

�
K�

i=1
pBi
i

�

K�

i=1

K+m�

j=1,j �=i
a
Nij

ij e
−aijZi

=
�
K�

i=1
pβi+Bi−1
i

�

K�

i=1

K+m�

j=1,j �=i
a
νij+Nij−1
ij e−aij(Zi+ζi)

 . (61)

In just the same way as for the prior, we see that this distribution consists of
independent gamma distributions and a Dirichlet distribution.

We now get that:

aij ∼ Gamma(1/ (ζi + Zi) , νij +Nij)

p ∼ Dirichlet(β +B)

Here, B is the vector with components Bi.

These distributions are as easy to sample from as the prior distributions.

Once the likelihood information is gathered, in the MH-step, and the parame-
ters are sampled from the posterior distribution, the new parameter values are
used in the next iteration to produce better estimates.

The complete algorithm can now be described as:

34

1 Specify hyper-parameters, βi, νij and ζi, where i = 1, ..., K and j = 1, ..., K+
m, and draw prior samples from the prior distribution.

2 Generate a Markov chain realization, yk, corresponding to each of the � data
points, (xk, ck), with finite steps of the MH-method.

3 Extract information;
B = (B1, B2, ..., BK), N = {Nij for i �= j, i = 1, ..., K, j = 1, ..., K + m}
and Z = (Z1, Z2, ..., ZK) from the Markov chain realizations.

4 Draw new values for the intensity parameters, aij,
where i �= j, i = 1, ..., K, and j = 1, ..., K +m,
using Gamma (1/ (ζi + Zi) , νij +Nij).
Draw new values for the initial distribution, p = (p1, ..., pK),
using Dirichlet(β +B).

5 Return to step 2

This algorithm is used to sample estimates of A and p, which can then be used
to estimate functions of the underlying competing risks distribution, like the sub-
densities, sub-distributions, probabilities, quantiles, etc. There are mainly two
possibilities here. One can for example first sample A and p, and then use these
samples to find the posterior mean of A and p, which can later be used to esti-
mate the chosen functions. Another option is to sample functional values directly
at each iteration, and calculate the posterior mean of the function for each time-
point, t.

It is important to note that a distribution can be represented in Phase-type form
in many different ways, so the estimates of A and p can look very different from
a distinct Phase-type approximation of the underlying distribution. Even so, the
samples from the algorithm converges towards samples of Phase-type parameters
which correspond to a true approximation of the underlying distribution.

How many samples needed to achieve convergence is highly individual for each
data set and each underlying distribution, not to mention the choice of hyper-
parameters, which defines the prior information. In many situations the conver-
gence might in practice never be reached, so the choice of hyper-parameters can
be very important. For many data sets it might be hard to find hyper-parameters
which give reasonably quick mixing, if they exist at all. This problem leads to a
variant of the algorithm above, where the hyper-parameters are randomized so the
mixing is improved.

35

3.3 Randomized hyper-parameters
To make the algorithm more flexible with respect to the choice of prior distribu-
tion, the following conditional prior distributions are proposed:

p ∼ Dirichlet(β)

θi ∼ Gamma (1/d, c)

ζi ∼ Gamma (1/θi, τi)

aij ∼ Gamma (1/ζi, νij)

Here, c, d and τi are new hyper-parameters, and we see that ζi is now a ran-
dom variable. Its distribution depends on the new variable, θi, which is a random
variable with a distribution completely dependent on the hyper-parameters, c and
d. By making ζi a random variable, we will see below that it has to be estimated
for each iteration, which makes the algorithm more flexible.

The posterior expression now becomes

π(A,p|Y) ∝ (62)

�
K�

i=1
pβi−1
i

�

K�

i=1

K+m�

j=1,j �=i
ζ
νij

i a
νij−1
ij e−aijζi

�
K�

i=1
θτi
i ζ

τi−1
i e−θiζi

� �
K�

i=1
θc−1
i e−dθi

�

·

�
K�

i=1
pBi
i

�

K�

i=1

K+m�

j=1,j �=i
a
Nij

ij e
−aijZi

=
�
K�

i=1
pβi+Bi−1
i

�

K�

i=1

K+m�

j=1,j �=i
ζ
νij

i a
νij+Nij−1
ij e−aij(Zi+ζi)

�
K�

i=1
θτi+c−1
i ζτi−1

i e−θiζi−dθi

�
.

If each random variable in this expression is considered separately, while at the
same time, all the other variables in the expression are considered constant, it is
possible to extract the kernels of the full conditional distributions. By using these
kernels we can decide the full conditional distributions of all the random variables.

36

These can be seen to be:

p ∼ Dirichlet(β +B)

θi ∼ Gamma (1/ (ζi + d) , τi + c)

ζi ∼ Gamma
�
1/ (θi − aii) ,

�K+m
j=0,j �=i νij + τi

�

aij ∼ Gamma (1/ (ζi + Zi) , Nij + νij)

These are now the distributions we draw samples from at each iteration.

3.4 Censoring

So far, the method has been developed to handle complete data sets. An extension
of the algorithm to also handle right censored data sets is easily accomplished. This
is because the distribution needed to sample a Markov realization corresponding
to a right censored data point is easy to sample from. It is given by

� ({Jt} = {jt}|X > xi) ≡ �
∗
(xi) ({Jt} = {jt}) (63)

Similar to (44), this can be sampled from by sampling Markov chain realizations
from the complete distribution, � ({Jt} = {jt}), repeatedly until a sampled real-
ization has an absorption time beyond xi, completely analogous to the rejection
procedure explained in (45). This realization will then be accepted as a sample
from (63). Sampling Markov chain realizations from � ({Jt} = {jt}) is done by
the procedure mentioned at the end of the Markov process chapter.

It is important to note that a draw from this distribution is done directly, not
by using an iterative method like a MH-method. This is because the MH-step in
the non-censored case is used to make the Markov realizations eventually become
draws from (43), by using (44) as a proposal distribution. For the censored case,
the target distribution to sample from is (63), which is easily sampled from using
the rejection procedure. The complete algorithm is adjusted such that it uses this
sampling procedure for every right censored data point, and the MH-method for
every complete data point.

37

4 Introducing covariates
In statistics one is very often interested in modeling the way certain non-stochastic
variables, or covariates, affect the outcome of a response model. This can in gen-
eral be done by including values of these covariates in the data, implementing the
covariates in the response model, and then use some statistical method to estimate
the effect of the covariates on the model. In lifetime analysis a lot of attention
has been devoted to finding good methods for modeling how covariates affect the
failure time distributions, and important quantities connected to these.

As is explained by Ansell & Phillips [4] (page 58), two important types of co-
variate variables are factors and variates.

4.0.1 Factors

A factor is a variable which can take one of a finite number of integer values, called
levels. The values of the levels do not need to have a numeric interpretation, but
often correspond to a certain condition or state in which a subject under study is
in at the time of the data sampling. The main effect of a factor level is a value
which is included in the response model, and determines how a factor level influ-
ence the model. For level j, the effect can be denoted as αj. Different levels have
different main effects, and the factor influence the model through the size of these
values. The different main effects of the levels are often introduced in the model
using dummy binary covariates, which take either value 0 or value 1. If the factor
has a levels, a − 1 binary covariates are used, and with X2, ..., Xa as the binary
covariates, the following coding of levels is favorable

Factor level X2 X3 . . . Xa

1 0 0 . . . 0
2 1 0 . . . 0
3 0 1 . . . 0
.
a 0 0 . . . 1

Table 1

This is mainly because it is now easy to incorporate the main effects in the model
by using the binary covariates. If the main effect of level 1 is defined as α1 = 0, all
the other main effects can be introduced as the coefficients of the corresponding

38

binary covariates in a linear expression on the form

α2X2 + α3X3 + ...+ αaXa (64)

Now, all that is needed to introduce the factor in the model is to implement
this expression into some part of the model. The situation when all the binary
covariates are 0 is now defined as factor level 1, and the other factor levels are
defined as the situations when the corresponding binary covariates are 1 and all
the other covariates are 0.

4.0.2 Variates

A variate is a continous variable which influence the model through a coefficient,
β. A variate is represented in the model multiplied with this coefficient, which
determines how much influence the variate value has on the model. The expression

βw (65)

is introduced in some part of the model, where w is the variate value and β is the
effect of the variate.

4.0.3 Cox regression

Cox suggested introducing covariates in a lifetime analysis setting by implementing
what is called a proportional hazards model [4] (pages 68-80). The main principle
in this model is that the hazard rates for different covariate values are set to be
proportional to each other, making the ratio of hazard rates for different sets of
covariates equal to a constant. In this model the covariates are either binary
dummy variables, used to determine factor levels, or variates. The hazard rate for
a set of covariates, w = w1, w2, ...wW , can be written as

hw(t) = Ψh0(t), (66)

where Ψ is a constant and h0(t) is a function depending only on t, not the covari-
ates. Because h0(t) only depends on t, it is the same for every set of covariates,
and the ratio of the hazard rates for two different sets of covariates, w(i) and w(j),
becomes

hw(i)(t)
hw(j)(t)

= Ψih0(t)
Ψjh0(t)

= Ψi

Ψj

,

39

which is constant with respect to t.

The function, h0(t) is called the baseline hazard rate, and is the hazard rate for
the specific set of covariate values in which every covariate is set to 0.

The constant part of the hazard rate for a set of covariates, Ψ, can be expressed
in many ways, but the most common form is

Ψ = eβ1w1+β2w2+β3w3+...+βWwW = exp
�
βwT

�
.

This form is realistic, because hazard rates can not be negative, and the exponen-
tial function can have values from 0 to ∞.

One of the main reasons why this model is easy to work with is that a likeli-
hood function not depending on any other underlying assumptions can be derived.
It also turns out to be independent of the baseline hazard rates, such that β can
be estimated directly from the data set, without any baseline assumptions. This
likelihood function is called the partial likelihood and it is defined by

L(β) =
n0�

i=1

exp
�
βST[i]

�

��
j∈Ri

exp
�
βwTj

��mi
(Ansell & Phillips [4], page 70). (67)

Here, 1,, n0 is the set of data indices for the ordered set of failure times, mi is
the number of failure times equal to the i’th smallest failure time, t[i], S[i] is the
sum of covariate vectors for all the failure times equal to t[i], and Ri is the set of
subjects at risk at time t[i].

It is evident from this expression that the right censored data points will con-
tribute as subjects at risk, before the censoring times are passed, and is therefore
indirectly influencing the partial likelihood. When censoring times are passed, the
censored data points are no longer contributing to the risk sets, Ri. Censorings
are thus accounted for in this expression.

By solving the first derivatives of this function equated to zero, one is able to
estimate β. The negative information matrix can be found by evaluating the sec-
ond derivatives, and using this, the standard errors for the estimates can be found
[4] (page 70).

If a factor with a levels is present in the model, then it is represented by using

40

binary covariates which are used directly in the proportional hazards expression.
For any covariate number, r, the covariates (wr, wr+1, ..., wr+a−1) are the a − 1
binary covariates, they are coded as in Table 1, where

(X2, X3, ..., Xa) = (wr, wr+1, ..., wr+a−1).

The β-estimates for the binary covariates can thus be regarded as estimates for
the main effects of the factor levels (2, ..., a). Factor level 1 is defined to have main
effect equal to 0.

With variates, the situation is straightforward. If a covariate, wr, represents a
variate, it is the variate value, and the β-estimates are the variate coefficients.

For this model, the baseline case is defined as the case when all covariates are
equal to zero at the same time, which includes both variates and binary covariates.

So far, Cox regression is only defined for lifetime models with one failure type.
Generalizing it to competing risks, by using it on the cause-specific hazard rates in
(22), is not possible without making some assumptions on the way to handle the
different types of failures. For a particular type of failure, j, the cause-specific haz-
ard rate can be modeled with the proportional hazards model, but the other types
of failures must be accounted for. A way to do this is to treat them as censored
observations, and use ordinary Cox regression on the cause-specific hazard rate for
failure j. If this model is chosen, separate Cox regression analyses are performed
for each failure type, j. The estimated β-values are now called the cause specific
β-values, and are denoted as βj.

4.0.4 The Fine & Gray method

Cox regression is a very common way to introduce covariates in lifetime distri-
butions, and works fine in many situations. An alternative is to use the method
developed by Fine & Gray [9]. This method has been developed because it is a
known fact that covariates sometimes tend to influence the cause-specific hazard
rates very differently than the sub-distributions, given by (16) (Fine & Gray [9],
page 496). As Fine & Gray notes, sometimes there might be a large covariate
effect on the cause-specific hazard rate, but no effect on the corresponding sub-
distribution, and vice versa. This makes it sometimes impossible to measure covari-
ate effects on the sub-distributions, using ordinary proportional hazards methods
on the cause-specific hazard rates, and one is in this situation forced to measure
the covariate effects on the sub-distributions differently. Fine & Gray proposes

41

defining a function called the sub-distribution hazard, given by

λ̆j = lim
Δt→0

1
ΔtPr{t ≤ T ≤ t+ Δt, C = j|T ≥ t ∪ (T ≤ t ∩ C �= j) ,w}

=
dFj(t;w)

dt

1 − Fj(t;w) = −d log{1 − Fj(t;w)}
dt

. (68)

Here, j is the specified failure type, and w is the set of covariates.

They view this expression as the hazard rate of the random variable

T � =

T if C = j

∞ if C �= j
(69)

which defines the failure time of a type j failure as the original failure time given
in the data set, T , and the failure time of any other type of failure as ∞.

Put simply, the Fine & Gray method wants to model the covariate effects through
the sub-distribution functions, rather than the cause-specific hazard rates, and
therefore covariate regression on a transformation of the sub-distribution func-
tions is performed. This transformation is interpreted as the hazard rate of the
artificial random variable, T �, and a proportional hazards method is used on this
to perform the regression.

Fine & Gray admits in their paper that the method theoretically has its prob-
lems, because the risk set in the partial likelihood used to perform the regression
becomes unnaturally large (Fine and Gray [9], page 497). This is because, in this
model, when the partial likelihood is estimated for a particular failure time, t,
and failure type, j, failures that have already occurred from other failure types
must represent subjects that are still at risk. This is seen from (69), which defines
failure times of these failures as ∞. That already failed subjects contribute to the
number of subjects at risk is clearly an unnatural assumption.

An important aspect with this method appears when censorings are introduced.
The definition of T � greatly complicates many types of censorings, and Fine &
Gray works around these complications partly by using what they call a weighted
score function (Fine & Gray [9], pages 500-501). This function is mathematically
difficult to derive, and will not be discussed further in this text, but it’s complexity
indicates that censorings in this method generally is a problematic subject.

In R this method can be applied using the function crr in the package cmprsk.

42

4.0.5 Other methods

Scheike and Zhang have developed methods which are similar to the FG (Fine &
Gray) method, and in addition allow time-varying effects for the covariates [18].
Just as for the FG method, the sub-distribution functions are used for modeling
covariate effects. There are generally two transformations of the sub-distribution
functions which are considered (Scheike and Zhang [18], pages 2-3):

Proportional models on the form

h{Fj(t;w, z)} = c log log{1 − Fj(t;w, z)} = α(t)wT + γzT , (70)

where j is the failure type, w and z are different parts of the covariate vector, and
α(t) and γ are time-varying and constant regression coefficient vectors respectively.

Additive models on the form

h{Fj(t;w, z)} = − log{1 − Fj(t;w, z)} = α(t)wT + (γzT)t. (71)

Binomial regression is used to estimate the timevarying and constant effects, α(t)
and γ, in both of the model types.

In R these models can be applied using the function comp.risk in the the package
timereg.

Probably because these models are also based on using transformations of the
sub-distribution functions, experience shows that they often give quite similar re-
sults as the FG method.

4.0.6 Phase-type models with covariates

So far, we have considered covariates which have been implemented in models by
using either the cause-specific hazard rates (Cox regression) or through the sub-
distributions (FG and other methods). It is also possible to introduce covariates in
the Phase-type model used in this text. There are many ways to do this, because
there are a lot of parameters and functionals related to this Phase-type model
which can be modeled as covariate dependent expressions.

Cox regression goes through the cause-specific hazard rates, and the FG method

43

goes through a transformation of the sub-distribution functions, both using non-
parametric partial likelihood expressions. Different from these regression models,
the Phase-type model is parametric, so one can use model parameters for covariate
regression instead of indirectly and non-parametrically going through any of the
functionals like the hazard rates or the sub-distribution functions. So which pa-
rameters should be used? This question has no good answer, because it depends on
how one wants to model the covariate effects. In this text a proportional model has
been used on the transition intensities for various parts of the transition matrix, A.

One possibility is using the transient part of the transition matrix, Q, and model
each non-diagonal transition like

aij = qijexp(ηijwT), when i and j are transient, and i �= j. (72)

Here, w is a covariate vector, qij is the baseline intensity, ηij is the covariate coef-
ficient vector, and the transition is between the states i and j.

Another possibility is using the absorbing part of the intensity matrix, L, and
instead model the absorbing intensities on this form, such that,

aij = lijexp(ηijwT), when i is transient and j is absorbing. (73)

Here, lij is the baseline intensity.

In both of these models, the parameters not expressed in (72) and (73) are defined
just as before.

Model (72) represents a situation where the transient transition intensities are
affected directly by the covariates. In a coxian model, where there can be no feed-
back (moving from a higher to a lower state), modeling the covariates this way
makes the covariates directly affect the total time spent in the different transient
states, and therefore the speed of the transient transitions, which greatly affects
the time to failure. This might be representative to a situation where there are
different stages before failure, with different risk levels, like a mortal cancer patient
going through the different stages of the disease before death. Here, the covariates
will directly influence the speed in which the patient goes through the stages. A
new drug which slows down the rate of the disease symptoms, and thus the move-
ment speed through the stages, might be naturally modeled as a covariate in this
coxian model.

44

In model (73) the risk of absorption at each transient state is directly affected
by the covariates, but what happens in the transient part before failure is not
directly affected. This model might be viewed as a type of parametric Phase-type
analog to the Cox regression model. Because the hazards of failure (absorption in-
tensities) at each transient state are directly influenced by the covariates, and the
specific transition intensities are proportional to themselves at different covariate
levels, just like the hazard rate in Cox regression. It is still worth mentioning that
in this model regression is performed on the absorbing intensities, not the cause-
specific hazard rates, represented by the expression in (22). If regression would
be performed on these functionals, model (73) would just be a parametric version
of the Cox regression model for competing risks, discussed at the end of the Cox
regression sub-chapter. Thus (73) is theoretically different than the model used in
Cox regression.

It is of course possible to use a combination of both the models above, such that
the model becomes more flexible and can handle covariate influence more generally.
A model like this would be able to handle countless ways of covariate influence
on the underlying Phase-type model, and it should be able to adapt to a lot of
different data sets. Still, such a general model has its cost, and that is efficiency.
The amount of η-values in the vectors, ηij, to be estimated would increase almost
quadratically with the number of states used in the Phase-type fit. This can be
computationally demanding, and in practice prevent an estimation from producing
good estimates within reasonable time.

Two possible models have been presented here, and they are just a few exam-
ples on how covariate regression can be implemented in the Phase-type model.
They all rely on the idea of regression with proportional parameter values, similar
to proportional hazards methods. Other principles of regression could be applied
on the parameters involved, and the initial distribution, p, could also be expressed
with the use of covariates, so there are other regression models available for Phase-
type representations of competing risks processes.

4.0.7 Introducing covariates in the existing model

The model which has been used to produce the results in this text is model (73)
with a constant vector, ηj, for each absorbing state, j, such that

ηij = ηj for all transient states i.

This has fewer η-values to be estimated compared to the more general models pre-
sented, and it therefore manage to produce good estimates within reasonable time

45

for most data sets evaluated in this text. Because of its similarity with Cox regres-
sion, it has been expected to produce similar η-estimates. When implementing this
model, the main extension of the Phase-type model without covariates, developed
in the previous chapters, is to introduce the covariate-dependent expressions on
the form of (73) as the new transition rates for the absorbing part of the intensity
matrix. This transformation of the absorbing transition intensities will affect both
the prior distribution and the likelihood expression.

In the rest of this text, ηj will represent the cause-specific covariate coefficient
vector, with length W , for any absorbing state, j. η will represent the matrix with
all of these vectors used as row vectors. Also, A will represent the matrix with
the transient transition intensities, aij, and L will represent the matrix of baseline
absorption intensities, lij.

(73) is just as before a Phase-type model, with an intensity matrix, and an initial
distribution. The only difference now is that the Phase-type parameters are af-
fected by the covariate values, and will therefore vary with these. Because (73) is a
Phase-type model, the Metropolis-Hastings algorithm developed to sample Markov
chain realizations corresponding to the data points, (xk, ck, wk), works just as fine
for this model as it did for the model without covariates. The only difference is
that when applying this algorithm to sample the Markov chain realizations one
has to use Phase-type parameters which are depending on the data points due to
varying covariate values in the data.

The algorithm developed to estimate the parameters in the chosen covariate model
is just an extended version of the algorithm without covariates. The new algo-
rithm will consist of an initial part where prior parameter values are sampled, a
Metropolis-Hastings part where Markov chain realizations are produced from the
parameter estimates and the data, and a Gibbs-step where new parameter esti-
mates are produced. The difference between the old and the new algorithm is that
the covariate values make the estimation of parameters more difficult. Especially,
the estimation of ηj complicates the situation a lot.

The outline for the development of the new covariate dependent algorithm is to
first derive the likelihood expression and the prior distributions for the covariate
model based on (73), and based on these derive the conditional posterior distri-
butions. These are, as before, used to sample new parameter estimates in the
Gibbs-step.

Using (59), and modeling the absorbing intensities in this expression according

46

to (73), the likelihood expression for a Markov chain realization, y, corresponding
to a data point, (x, c, w), is on the following form

g(y|A,L, η,p) =

pj0

K�

i=1

K�

j=1,j �=i
a
nij

ij e
−aijzi

K�

i=1

K+m�

j=K+1,j �=i

�
lijexp

�
ηjw

T
��nij

e−lijexp(ηjw
T)zi

= pj0

K�

i=1

K�

j=1,j �=i
a
nij

ij e
−aijzi

K�

i=1

K+m�

j=K+1,j �=i
l
nij

ij exp
�
nijηjw

T
�
e−lijexp(ηjw

T)zi

= pj0

K�

i=1

K�

j=1,j �=i
a
nij

ij e
−aijzi

K�

i=1

K+m�

j=K+1,j �=i
l
nij

ij e
−lijexp(ηjw

T)zi

·exp

K�

i=1

K+m�

j=K+1,j �=i
nijηjw

T

 . (74)

Here, all quantities which are also found in (59) have the same interpretation as
before, w is the covariate vector, and ηj and lij are the cause-specific regression
coefficients and the baseline absorption intensities, respectively. y now also include
the information on the covariates, w.

Just as before, Nij is defined as the total number of transitions from i to j, Bi is
defined as the total number of initiations in state i, and Zi is defined as the total
amount of time spent in state i, for all the data points.
For data point (xk, ck, wk), zki is defined as the total time in state i and nkij is
defined as total number of transitions from i to j.

With the new definitions and the new likelihood expression for a single Markov
chain realization, it is now possible to define the new total likelihood expression,
in a similar way as for (60). It is the following:

f(Y |A,L, η,p) =
�
K�

i=1
pBi
i

�

K�

i=1

K�

j=1,j �=i
a
Nij

ij e
−aijZi

 (75)

·

K�

i=1

K+m�

j=K+1,j �=i
l
Nij

ij exp
�

−lij
��

k=1
exp

�
ηjw

T
k

�
zki

�
 exp

��

k=1

K�

i=1

K+m�

j=K+1,j �=i
nkijηjw

T
k

 ,

47

which is derived by multiplying expressions like (74) for every data point, by using
w = wk, nij = nkij and zi = zki , and at the same time applying the definitions of
Bi, Nij and Zi for the total sums. Here, Y is again the vector of � Markov chain
realizations, (y1, ..., y�), corresponding to the data points. Each Markov chain re-
alization, yk, includes information on the covariates.

The prior distribution is also affected by the covariates because it must account
for the new parameters ηj and lij. Using randomized hyper-parameters, the kernel
of the joint prior, p(A0,p, ζ, θ), for the case without covariates is given by the first
expression in (62), such that

p(A0,p, ζ, θ) ∝
�
K�

i=1
pβi−1
i

�

K�

i=1

K+m�

j=1,j �=i
ζ
νij

i a
νij−1
ij e−aijζi

·
�
K�

i=1
θτi+c−1
i ζτi−1

i e−θiζi−dθi

�
, (76)

where A0 is the complete intensity matrix for this case.

For simplicity, we want to keep the prior distributions for all the parameters which
are not influenced directly by the covariates just the same as before. This means
that introducing the covariates will not directly affect the prior distributions of
aij, pi, ζi and θi, for transient states i and j. Introducing the priors for ηj and lij,
where i is transient and j is absorbing, gives that (76) can be extended to

p(A,L, η,p, ζ, θ) ∝

�
K�

i=1
pβi−1
i

�

K�

i=1

K�

j=1,j �=i
ζ
νij

i a
νij−1
ij e−aijζi

�
K�

i=1
θτi+c−1
i ζτi−1

i e−θiζi−dθi

�

·

K+m�

j=K+1
prior(ηj)

K�

i=1
prior(lij)

 . (77)

The priors for ηj and lij must be determined before going any further.

For lij, the baseline absorption intensities, the prior can be chosen on the same form

48

as for the ordinary transition intensities, which is simply a Gamma-distribution,
and the situation will be almost as simple as for these. This is because from (75)
we see that the expressions containing lij constitute expressions equal to kernels
of

Gamma
�
1/

�
��

k=1
exp

�
ηjw

T
k

�
zki

�
, Nij + 1

�
,

and with Gamma(1/ζi, νij) as prior distributions for lij it is easy to see that the
conditional posterior distributions for lij, conditioned on all the other parameters,
then become Gamma-distributions, such that

lij| Y, ζ, θ, A, L(−ij), η,p ∼

Gamma
�
1/

�
ζi +

��

k=1
exp

�
ηjw

T
k

�
zki

�
, νij +Nij

�
. (78)

The covariates complicate the situation a little bit, but these expressions are also
quite simple to work with, and the sampling of lij is almost as easy as before. At
every Gibbs-step, each lij is simply sampled from the Gamma-distribution given
in (78).

The priors for lij can thus be expressed as

prior(lij) = Gamma (1/ζi, νij) (79)

Sampling ηj
The sampling of ηj is more difficult to perform. Here, it is important to note the
fact that each ηj is a vector on the form of

ηj = (ηj1, ηj2, ..., ηjW),

where W is the number of covariates in the model.
For covariate indice r and failure j, the conditional posterior distribution for ηjr
can be found by evaluating the full posterior expression. This means that a prior
of each ηjr must be chosen first. The prior distributions for ηjr have been chosen
as Normal distributions with mean equal to 0 and a chosen variance, σ. This
is because η-values can have both negative and positive values, so a distribution

49

symmetric around 0 is natural to choose. Also, the Normal distribution has a
simple density-expression to implement into a sampling algorithm for ηjr.

The priors for ηjr can thus be defined as

prior(ηjr) = Normal (0, σ) (80)

Multiplying (75) and (77), with the new priors defined, one gets the kernel of
the new posterior expression,

π(A,L, η,p, θ, ζ|Y) ∝
�
K�

i=1
pBi
i

�

K�

i=1

K�

j=1,j �=i
a
Nij

ij e
−aijZi

·

K�

i=1

K+m�

j=K+1,j �=i
l
Nij

ij exp
�

−lij
��

k=1
exp

�
ηjw

T
k

�
zki

�
 exp

��

k=1

K�

i=1

K+m�

j=K+1,j �=i
nkijηjw

T
k

·

�
K�

i=1
pβi−1
i

�

K�

i=1

K�

j=1,j �=i
ζ
νij

i a
νij−1
ij e−aijζi

�
K�

i=1
θτi
i ζ

τi−1
i e−θiζi

� �
K�

i=1
θc−1
i e−dθi

�

·

K+m�

j=K+1

W�

r=1
prior(ηjr)

K�

i=1,i�=j
prior(lij)

=
�
K�

i=1
pBi+βi−1
i

�

K�

i=1

K�

j=1,j �=i
a
Nij+νij−1
ij e−aij(Zi+ζi)

·

K�

i=1

K+m�

j=K+1,j �=i
l
Nij+νij−1
ij exp

�
−lij

�
ζi +

��

k=1
exp

�
ηjw

T
k

�
zki

��

·exp

��

k=1

K�

i=1

K+m�

j=K+1,j �=i
nkijηjw

T
k

K�

i=1
ζτi−1
i θτi+c−1

i e−dθi−θiζi

K�

j=1,j �=i
ζ
νij

i

·
K+m�

j=K+1

W�

r=1

1
σ

√
2π

exp
�

− η2
jr

2σ2

�
. (81)

50

To sample η-values, many options are available, but a simple glance at the poste-
rior expression in (81) reveals that the conditional posterior distribution for any
ηjr is complicated. It is not possible to recognize the kernel of any known distri-
bution which is easy to sample from. This is why separate Metropolis-Hastings
samplers have been chosen to sample the values of ηjr. These samplers will after
some number of iterations start to sample good estimates of ηjr, which are then
further used in the sampling of other parameters.

Any Metropolis-Hastings sampler must have a proposal distribution and an accep-
tance probability. By choosing Normal distributions which are symmetric around
the existing η-estimates as proposal distributions, one gets acceptance probabili-
ties that become independent of the proposal distribution. One can see this from
(42). The symmetry makes

q(θ,Φ) = q(Φ, θ),

in this expression.

Normal distributions, symmetric around the existing estimates of ηjr, with any
chosen standard deviation, Ωjr, has been chosen as proposal distributions, such
that

q(ηjr, φ) = Normal
�
ηjr,Ω2

jr

�
, (82)

where φ is the proposed parameter value, and r is the covariate number.

Since the target distributions for these MH-methods are the conditional poste-
rior distributions of the η-values, these have to be defined before the acceptance
probabilities can be derived completely. By looking at the posterior expression in
(81) it is possible to recognize the kernels of the joint densities of the ηj-vectors,
such that

π
�
ηj| Y, ζ, θ, A, η(−j),p

�
∝

�
K�

i=1
exp

�
−lij

��

k=1
exp

�
ηjw

T
k

�
zki

��

·exp
�
��

k=1

K�

i=1
nkijηjw

T
k

� �
W�

r=1
exp

�
− η2

jr

2σ2

��
. (83)

51

Since
ηjw

T
k = ηj1wk1 + ηj1wk1 + ...+ ηjWwkW ,

we have that

exp
�
��

k=1

K�

i=1
nkijηjw

T
k

�
∝ exp

�
��

k=1

K�

i=1
nkijηjrwkr

�
,

when the expression for ηjr is evaluated.

Using this and (83), we get that

π
�
ηjr| Y, ζ, θ, A, η(−jr),p

�
∝

�
K�

i=1
exp

�
−lij

��

k=1
exp

�
ηjw

T
k

�
zki

��

·exp
�
��

k=1

K�

i=1
nkijηjrwkr

� �
exp

�
− η2

jr

2σ2

��
, (84)

which defines the kernel of a conditional posterior distribution for ηjr. These dis-
tributions are the target distributions for the MH- method.

Now, finding the acceptance probabilities is easy. The acceptance probabilities
are defined by using (42), and the only expressions involved in these will be the
expressions for the conditional posterior kernels in (84), because of the symmet-
rical proposal distributions. These kernels constitute π(φ) in (42), where φ is the
new proposal value of ηjr.

Using the expression in (42), and setting φ = η
(n)
jr and θ = η

(o)
jr , we now have

that

α = min

1,

��K
i=1 exp

�
−lij

�
�

k=1 exp
�
η

(n)
j wTk

�
zki

��

��K
i=1 exp

�
−lij

�
�

k=1 exp
�
η

(o)
j w

T
k

�
zki

��

·
exp

��
�

k=1
�K
i=1 n

k
ijη

(n)
jr wkr

� �
exp

�
−η

(n)
jr

2

2σ2

��

exp
��

�

k=1
�K
i=1 n

k
ijη

(o)
jr wkr

� �
exp

�
−η

(o)
jr

2

2σ2

��

(85)

This is the complete acceptance probability expression, used directly in the algo-
rithm.

52

Other parameters

Because of the covariates, the sampling process becomes a lot more complicated,
as seen above. Although the baseline absorbtion intensities can be sampled in
almost the same way as the absorbtion intensities in the model without covariates,
the η-values need separate Metropolis-Hastings samplers which are iterated once
for every Gibbs-step in the complete algorithm, and in practice need to converge
before good estimates for many of the other parameters can be sampled. This is
because other parameters are also depending on the η-values, directly or indirectly.
The baseline absorption intensities, lij, are depending on the covariates and the
η-estimates directly. This is easily seen from (78), which shows the sampling dis-
tribution of lij.

A dependency which is a little more obscure is the dependency of ζ on the values
of lij. This dependency is seen through the posterior expression, (81). For a given
transient state, i, one can see that

π
�
ζi| Y,A, L, η, ζ(−i), θ,p

�
∝

K�

j=1,j �=i
e−aijζi

K+m�

j=K+1
e−lijζi

ζτi−1

i e−θiζi

K�

j=1,j �=i
ζ
νij

i

= ζ
τi+

��K

j=1,j �=i
νij

�
−1

i exp

−ζi

θi +

K�

j=1,j �=i
aij +

K+m�

j=K+1
lij

 , (86)

which is recognized as a Gamma-distribution.

Based on (86), the conditional posterior distribution of ζi must be

π
�
ζi| Y,A, L, η, ζ(−i), θ,p

�
=

Gamma

1/

θi +

K�

j=1,j �=i
aij +

K+m�

j=K+1
lij

 , τi +

K�

j=1,j �=i
νij

 . (87)

This expression shows that ζi for any transient state, i, is dependent on lij, for all
absorbing states, j. Because the estimates of lij are directly dependent on esti-
mates of ηj and the covariates, one clearly sees that ζ is depending indirectly on

53

the η-values and the covariates.

Because ζ is used in estimates of other parameters, this indirect dependency on the
η-estimates and the covariates goes further. We see from the posterior expression
in (81) that the parameters aij and θi are also influenced by ζ, and are therefore
indirectly dependent on η-estimates and the covariates. But this dependency goes
entirely through ζ, so the sampling distributions are just the same as before, given
ζ.

It is evident that introducing covariates into the algorithm affects almost all the
parameters in the model. The η-estimates are involved in most of the other pa-
rameter estimates, and because every ηjr is sampled through a MH-sampler, which
needs to converge before the estimates are sampled from the correct distribution,
most of the other parameter estimates will thus converge after this has occurred.
One can view the estimates of ηjr as bottlenecks which increase the convergence
time for the whole algorithm. Another reason that this new algorithm will have
larger convergence time than the one without covariates is simply that this algo-
rithm has more parameters. The increase in convergence time has been expected
and has also been observed in the results which are presented later in this text.

Complete algorithm

The complete algorithm for the situation with covariates can be summed up as
the following:

1 Specify hyper-parameters, βi, νij, c, d and τi, where i = 1, ..., K and j =
1, ..., K +m, and draw prior samples from the following distributions:

p ∼ Dirichlet(β)

θi ∼ Gamma (1/d, c)

ζi ∼ Gamma (1/θi, τi)

aij ∼ Gamma (1/ζi, νij)

lij ∼ Gamma (1/ζi, νij)

ηjr ∼ Normal (0, σ) , where r = 1, ...,W

54

2 Generate a Markov chain realization, yk, corresponding to each of the �
data points, (xk, ck, wk), with finite steps of the MH-method, using model
(73) with parameters aij, lij, ηjr, and p, and the data points, (xk, ck, wk).

3 Extract information;
B = (B1, B2, ..., BK), N = {Nij for i �= j, i = 1, ..., K, j = 1, ..., K + m}
and Z = (Z1, Z2, ..., ZK) from all the realizations together.

Extract information;
nk = {nkij for i �= j, i = 1, ..., K, j = 1, ..., K +m} and zk = (zk1 , zk2 , ..., zkK),
from each realization.

4 Draw new parameter values from the conditional posterior distributions:

p ∼ Dirichlet(β +B)

θi ∼ Gamma (1/ (ζi + d) , τi + c)

ζi ∼ Gamma
�
1/

�
θi +

�K
j=1,j �=i aij +

�K+m
j=K+1 lij

�
, τi +

��K
j=1,j �=i νij

��

aij ∼ Gamma (1/ (Zi + ζi) , νij +Nij)

lij ∼ Gamma
�
1/

�
ζi +

�
�

k=1 exp
�
ηjw

T
k

�
zki

�
, νij +Nij

�

ηjr ∼ Distribution with kernel like (84). Sampled by one iteration of MH-
method defined by proposal distribution (82) and the acceptance probability
(85), after convergence has been reached.

5 Return to step 2

4.1 Hyper-parameters
An important aspect of this algorithm is the choice of hyper-parameters, c, d, τi,
σ, βi and νij, for i = 1, ..., K, j = 1, ..., K + m and i �= j. These constants
affect the posterior estimates, as seen from (81), and in addition greatly affects
the convergence. As in any Bayesian method the prior distributions will influence
the estimates made, so a certain prior distribution for any of the variables to be
estimated might impose estimation bias and will in addition affect the estimation
variance. Thus it is of great importance to choose priors with as little influence
as possible, if there exists little or no prior information. For any of the data sets
analyzed in this text, it has proven difficult to gain any useful information on the
underlying parameters in model (73) before running the algorithm. This is largely

55

because there can be many different Phase-type approximations giving similar re-
sults, and they do not need to have an intuitive interpretation in any way. For
some data sets, there might be an intuitive way to model the process behind the
data in a Phase-type setting, but in most cases this is not easy or possible. Some
general rules when choosing the hyper-parameters are very useful, such that the
prior distributions will impose as little estimation influence as possible and the
estimates become almost completely defined by the data.

First of all, the estimate of ηjr, for absorbing state j and covariate r, is based
on draws from the distribution in (84). This distribution is affected by the prior
of ηjr through the kernel of a normal distribution, which is the expression

exp
�

− η2
jr

2σ2

�
.

From this it is clear that increasing σ will make the value of the whole expression
move closer to 1, and decreasing σ will make the value of the whole expression
move further away from 1. This expression is the prior part of the conditional
posterior distribution for ηjr, and it is thus favourable to make this part as close
to one as possible, since it is multiplied with the rest of the conditional posterior
distribution. This generally means that σ should be chosen as large as possible.
Doing this might impose problems though, since the algorithm will most definitely
experience difficulties in the first iterations if σ is unnaturally large. This is because
the risk of absorption increases exponentially with the η-values, so with very large
η-values the rejection procedure in (45) will have difficulties producing Markov
chain realizations with absorption times larger than the failure times in the data
points (xk, ck, wk). σ2 is the variance of the prior distributions for the η-values, so
large σ corresponds to large prior estimates of the η-values. The rejection proce-
dure will simply stall, not being able to accept any Markov chain realizations, and
the complete algorithm will stop.
It is thus a trade-off between large values of σ, making the posterior estimates less
biased, and efficiently starting the algorithm.

With the choice of c, d, τi and νij, the situation is more complicated. From the
complete algorithm in last section, it is seen that the conditional posterior distri-
butions for aij and lij, for any given states i and j, are depending on the random
variables ζi. These random variables represent much of the prior dependence in
the conditional posterior distributions for aij and lij. Minimizing ζi will thus min-
imize a great part the prior dependency of aij and lij. As mentioned, making
estimates less dependent on the priors is in this algorithm preferable. One way
of minimizing ζi is by making the prior distributions for ζi produce small prior

56

estimates, and also minimizing the prior variances. Not only does one in this case
start the algorithm with small estimates of ζi, but one also create a correlation
structure in the rest of the algorithm where ζi are kept relatively small at all times.
Choosing the hyper-parameters c, d and τi is thus reduced to creating small values
of ζi throughout the algorithm, by producing small prior estimates of ζi with small
prior variances. In a Gamma-distribution, the variance is given by

Var (Gamma(scale, shape)) = shape × scale2,

and the expectation is given by

E (Gamma(scale, shape)) = shape × scale.

We have that

scale = 1
θi

and

shape = τi,

in the priors of ζi. Minimizing prior variances and expectations of ζi is then re-
duced to maximizing θi and minimizing τi.

Because

scale = 1
d

and

shape = c,

in the priors of θi, it is possible to maximize the prior expectations of θi by maxi-
mizing the ratio between c and d. If the values of θi are maximized this way, and
the hyper-parameters τi are minimized, the priors will induce as little bias on the
results as possible through the values of ζi.

57

But this is only one part of the story. νij are also influencing the estimates of
aij and lij, and should also be minimized such that the data influences the es-
timates as much as possible relative to the priors. This is easily seen from the
conditional posterior distributions for aij and lij.

In the complete algorithm it is possible to see that the initial distribution, p,
is drawn from the Dirichlet distribution, Dirichlet(β + B). This indicates that in
order to make the data influence the estimation as much as possible, the compo-
nents of the vector β should be as small as possible. Choosing small values of each
component, βi, is thus the strategy which usually is recommended for obtaining
good estimates. It should still be mentioned that doing so might make the algo-
rithm become unstable, producing estimates that takes a long time to converge.
By instead fixing the initial distribution, choosing one state as the possible initial
state in the Phase-type fit, will sometimes stabilize the behavior of the algorithm,
making it easier to obtain good estimates within reasonable time. This is per-
formed by choosing high values of βi for the chosen initial state, i, and excluding
the other transient states by choosing β-components equal to zero.

Choosing the hyper-parameters c, d, τi and νij in the ways described here will
create estimates with as little bias as possible, looking away from the estimation
of η-values. But as with the η-values, it is also in this situation more difficult to get
the algorithm to start when doing this. The problem now is numerical instabili-
ties in working with the resulting intensity matrices, when the matrix components
become too small as a result of minimizing ζi and νij.

58

5 Results

5.1 Convergence issues
The results presented in this text have all been sampled with different burn-in
periods, step-lengths, sample sizes and hyper-parameters. This is because every
data set is unique and makes the MCMC method perform differently.

For some data sets, convergence is reached quickly and small burn-in periods are
needed. Other data sets are more difficult to handle, and might in practice never
converge for a large number of different hyper-parameters. For these data sets,
it is often high auto-correlation between the iterations, which induce bad mixing
and slow convergence.

To speed up convergence, with respect to the number of iterations used, one might
increase the number of iterations the MH-part of the algorithm performs for each
Gibbs-step. Doing this will make the Markov chain realizations converge more
quickly towards being realizations from the estimated Phase-type model, which
is the aim with the MH-part. This will speed up the convergence of the Markov
chain realizations, with respect to the number of Gibbs-steps used, but not nec-
essarily with respect to the time spent running the algorithm. The reason is that
increasing the number of iterations of Markov chain realizations will also increase
the time spent performing each Gibbs-step.
In fact, experience shows that the total run time of the algorithm becomes smaller
with a very low number of Metropolis-Hastings iterations for each Gibbs-step. This
has been the strategy while sampling the results in this text.

As mentioned, high auto-correlation induce bad mixing, which essentially means
that the MCMC iterations for the parameter values traverse the sampling space
of the conditional posterior distributions slowly. It is obvious that this will slow
down the convergence of the algorithm, but what is also true is that high auto-
correlation decreases the quality of the parameter samples. In this case, when
convergence is reached the mixing is still slow, and so the different sample values
of the parameters are very dependent on the previous values. A way to go around
this problem is to sample parameter values which are far away from each other in
the sampling chain, for example by only using every 10th iteration in the sample.
This strategy, which is called thinning, will decrease the dependencies between the
sample parameters and increase the quality of the samples, as opposed to using
every iteration after the burn-in period in the sample.

A general way to decrease auto-correlation, is to optimize the step-lengths used

59

in the MH-methods for the η-values. Choosing too large or too small step-lengths
will surely increase the auto-correlation between the η-iterations, so an optimal
step-length is preferable. Trial and error must be used here, as there is no general
and easy way to find optimal step-lengths.

At last it is worth mentioning what often has the largest effect on reducing the
auto-correlation in the η-iterations, and generally making the estimates as good
as possible. For a data set the magnitude order of the covariate values in the data
seems to dictate how the estimation of the η-values is performed in a substan-
tial way. Especially, if the values of the covariates in the data are too large, the
algorithm will perform poorly. The auto-correlation seems to become very high,
and thus convergence behavior and sample quality is poor. Experience shows that
simply down-scaling the covariate values will improve the situation a lot, and the
algorithm might run a lot smoother and produce higher quality samples.

5.2 Results without covariates
Before moving on to results from the full covariate model, some results for the
model without covariates can be useful to present. Three data sets have been
analyzed, and the functions chosen to be estimated are the sub-density functions
in (17), the sub-distribution functions in (16), and the cause-specific hazard rates
in (22).
Posterior mean estimates of all the functions have been calculated and presented.
The estimates of the sub-density functions and the cause-specific hazard rates have
been presented together with estimated 95%-credibility intervals, and all the pos-
terior estimates used in calculating the posterior mean, to show the uncertainties
of the estimates.

The methods and code for estimating the posterior mean and credibility inter-
vals can be found in the appendix, in chapter 7.1.

The Phase-type estimates of the sub-distribution functions have been presented
together with non-parametric estimates based on the function cuminc in the R-
package cmprsk. Details on this function and this package can be found in section
7.3 in the appendix.

To ensure convergence, parallel runs of the given model has been performed with
the hyper-parameters constant and with different initial values for the parameters
in the model.

60

Before moving on to the specific results, it is worth mentioning that for almost
all the data sets analyzed in the work on this model, the sub-density values at
t = 0 seem to be unstable, so good estimates of these functional values have been
difficult to obtain.

5.2.1 Phase-type data

A Phase-type distribution with an intensity matrix not allowing any transitions
backwards in the state space, is called a coxian model. These models are based
on Markov chains with intensity values of zero for all transitions to the left of the
diagonal. Such a model, with intensity matrix

A =

−0.3 0.2 0.1 0
0 −0.6 0.5 0.1
0 0 0 0
0 0 0 0

 ,

has been analyzed here.

The theoretical initial distribution has been set to

p =
�
1, 0, 0, 0

�
.

The simulating model is on the same form as the model which the Phase-type
algorithm for the case without covariates is based on.

The generated data set used here is complete and consists of 150 failures, where
each data point is generated by simulating a Markov chain realization. This is
performed by using the same method as in the rejection procedure in (45).
All the code and functions used to simulate this data set is found in chapter 7.2
and 7.3 in the appendix.

A Phase-type fit has been made with 5 states, where 3 are transient, and 2 are
absorbing. States 4 and 5 correspond to causes 1 and 2, respectively.

The hyper-parameters chosen to get these results are as follows for any transient

61

state, i, and absorbing state j:

c = 5000
d = 10
τi = 10
νij = 0.1
βi = 0.01.

The burn-in period is on 1500 iterations, and a sample of 500 posterior estimates
has been obtained.

In figure 1, sub-distribution functions for causes 1 and 2 can be found. The sub-
distribution function for cause 2 is seen to be very small, and this could have
caused estimation problems, since it indicates that there are very few observations
of this type of failure in the data. Even so, all the obtained function estimates for
this data set are reasonable, as we will see.

Cause 1 Cause 2

Figure 1: Sub-distribution estimates for the Phase-type data without covariates

62

The sub-density estimates are seen in figure 2, and they both are close to the
theoretical curves.

Cause 1 Cause 2

Figure 2: Sub-density estimates for the Phase-type data without covariates

The cause-specific hazard rates are plotted in figure 3. These estimates are also
close to the theoretical functions.

Cause 1 Cause 2

Figure 3: Sub-hazard estimates for the Phase-type data without covariates

63

The Phase-type data are in general estimated well, indicating that the complete
algorithm for the case without covariates manages to work as intended.

5.2.2 Breast Cancer Data (Boag [7], 1949)

Boag presented a data set with 121 breast cancer patients, taken from clinical
records of a hospital over the years 1929 to 1938. It contains the survival times of
the patients in months. The two competing risks in this data set are:

Cause 1: Breast cancer

Cause 2: Other

There are 25 right censored observations in this data set.

8 states have been used in the Phase-type fit, where states 1, ..., 6 are transient
and states 7 and 8 are absorbing. States 8 and 9 correspond to causes 1 and 2,
respectively.

The hyper-parameters chosen to get these results are as follows for any transient
state, i, and absorbing state j:

c = 80
d = 50
τi = 10

νij = 0.125
βi = 0.1.

The burn-in period is on 5000 iterations, and a sample of 1000 posterior estimates
has been obtained.

Estimates of sub-distribution functions for both of the causes are plotted in figure
4. We see that the non-parametric estimates are very close to the Phase-type es-
timates, indicating that the Phase-type model gives good approximations for this
data set.

64

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

Cause 1

Cause 2

Posterior mean
Empirical estimate

Figure 4: Sub-distribution estimates for the Breast cancer data

Estimates of sub-density functions are given i figure 5.

For cause 2 the sub-density estimate at time 0 has a large uncertainty, which
is expected behavior for some cases.

Cause 1 Cause 2

Figure 5: Sub-density estimates for the Breast cancer data

65

At last, the cause-specific hazard estimates are plotted in figure 6. It is clear that
the estimates of the cause-specific hazard rates have larger uncertainties than the
estimates for the sub-densities, which is is especially true in the tails. This behav-
ior will be discussed more later, as it seems to be a general behavior for all the
cause-specific hazard rate estimates.

Cause 1 Cause 2

Figure 6: Sub-hazard estimates for the Breast cancer data

66

5.2.3 Data from Hoel

Hoel presented data from an experiment made on mice with two populations (Hoel
1972 [11], page 483). In this experiment both populations of mice received a radi-
ation dose of 300r. Population 1 lived in a conventional laboratory environment,
while population 2 lived in a germ free environment. The data for population 1 is
analyzed in this text.

The data set is complete and consists of 99 observations with three possible causes
of death:

Cause 1: Thymic Lymphoma

Cause 2: Reticulum Cell Sarcoma

Cause 2: Other Causes.

A Phase-type fit has been made with 10 states, where states 1, ..., 7 are transient
and states 8, 9 and 10 are absorbing. States 8, 9 and 10 correspond to causes 1, 2
and 3, respectively.

The hyper-parameters chosen to get these results are as follows for any transient
state, i, and absorbing state j:

c = 100
d = 10
τi = 10
νij = 0.1
βi = 0.01.

A burn-in period of 6000 iterations have been used, and a sample of 1000 posterior
estimates have been sampled.

The plots of sub-distribution functions are given in figure 7.

67

These plots indicate that the Phase-type model has difficulties approximating the
sub-distribution functions of this data set, especially for causes 2 and 3. For cause
2 we see that the non-parametric curve has a steep rise around t = 500, and that
the curve is almost zero for all time points before this.
This steep and sudden rise in the sub-distribution function is difficult to model
with a Phase-type model, which has tail behavior like the exponential distribu-
tion, and normally has smooth sub-distribution behavior, with slow and gradual
changes in the function values.
If the number of states used in the Phase-type fit increases, the fit will move closer
to the empirical estimates, so a large model will for this data set probably give
better functional estimates. Even so, a large increase in the number of model
states seems to make the estimates only slightly better, and because of numerical
and statistical instability in large systems it has proven more effective to obtain
good estimates with a reasonably sized model.

68

Cause 1 Cause 2

Cause 3

Figure 7: Sub-distribution estimates for the Hoel data

69

The plots of sub-density functions are given in figure 8.

Here, the functional behaviors at t = 0 are clearly seen to be volatile, as f1(0)
and f2(0) sometimes reaches very large values. It has been difficult to obtain
estimates with more stable behavior at t = 0.

Cause 1 Cause 2

Cause 3

Figure 8: Sub-density estimates for the Hoel data

70

The plots of cause-specific hazard rates are given in figure 9.

As for the data set presented by Boag, the tails of these estimates have large
uncertainties.

Cause 1 Cause 2

Cause 3

Figure 9: Sub-hazard estimates for the Hoel data

71

Remarks

It is interesting to see how the cause specific hazard rates behave. The estimates
for these are generally more unstable than the estimates for the sub-densities. A
reason for this might be seen from the definition of the cause-specific hazard rate
for cause j

hj(t) = fj(t)
R(t) .

This is a fraction of two functionals, and to estimate hj(t) we need to estimate
these first. The estimation uncertainty for fj(t) will be amplified through the
fractional expression, meaning that the estimation uncertainty for this expression
becomes larger than for fj(t). The reason is that

R(t) ≤ 1.

72

5.3 Results with covariates

In this section, three data sets have been analyzed with the Phase-type model.
Two of the data sets are simulated and one is real data.

One of the simulated data sets consists of simulations from a Weibull-model with
covariates introduced in an exponential expression which is multiplied with the
cause-specific hazard rates, like in the Cox regression model.

The other simulated data set consists of simulations from a Phase-type model,
which is a model on the form of (73), with cause-specific η-values. This is also the
model the Phase-type algorithm uses to fit the data.

The real data set is from a study on the effect of chemotherapy on cancer pa-
tients.

For the data sets, non-parametric estimates of the sub-distribution functions have
been produced with both the Fine & Gray method and the method based on the
R-package timereg, for comparison with the Phase-type estimates.
For the real data, plots of the cause-specific hazard rates have been made as in
the last section, by adding 95%-credibility intervals and the plots of the posterior
estimates used to calculate the posterior mean.
Estimates of the regression coefficients, and corresponding standard errors, have
been presented in tables, together with estimates made by Cox regression, the Fine
& Gray method, and the method based on the timereg package.

The methods and code for estimating the posterior mean, credibility intervals
and standard errors can be found in chapter 7.1, which is in the appendix.

Both the Fine & Gray method and the method in the timereg package have been
explained briefly in the theory section, and detailed explanations on specific func-
tions and code used in relation to these methods can be found in section 7.3.1 in
the appendix.

As for the results without covariates, convergence has been ensured for all the
following results using parallel runs of the Phase-type method, with different ini-
tial values for the parameters.

73

5.3.1 Phase-type data

This data set consists of 200 failures, with 10 right censored data points.

The simulating model, which the data is sampled from, is a model on the form
of (73), where each covariate coefficient vector is constant for a given absorbing
state, j, and does not depend on any transient states. This is the same model as
the model which the Phase-type algorithm is based on.

Simulating the data points is done by simulating Markov chain realizations, and
this is done by using the same method as in the rejection procedure in (45). The
covariate values are also sampled from a distribution. Each entry in the covariate
vector, wk, for data point k, is sampled from the distribution

Normal
�
0, 32

�
.

All the code and functions used to simulate this data set is found in sections 7.2.2
and 7.3, together with the baseline intensity matrix (7.2.2).

The intensity matrix used to generate the data consists of 3 absorbing states and
7 transient states.

The following cause-specific regression coefficient vectors are used in the simu-
lating model:

η1 =
�
−1, −0.2

�

η2 =
�
−0.3, −0.7

�

η3 =
�
0, 1.2

�

These define the coefficients in a model on the form of (73).

The censoring distribution is Weibull(10,10).

A Phase-type fit has been made with the same dimensions as the simulating model;
10 states where 7 are transient, and 3 are absorbing. States 8, 9 and 10 correspond
to causes 1, 2 and 3, respectively.

74

The hyper-parameters chosen to get these results are as follows for any transient
state, i, and absorbing state j:

c = 500
d = 10
τi = 10
νij = 0.1
βi = 0.1
σ = 0.5.

In the MH-methods for the regression coefficients, ηjr, step lengths are 0.01 for all
the individual coefficients.

The burn-in period is on 5000 iterations, and a sample of 1001 posterior esti-
mates has been obtained, by thinning out a sample of 5000 posterior estimates,
choosing every 5th sample.

A trace-plot of all the η-estimates is shown in figure 10. The convergence of
the η-estimates is observed from this trace-plot.

75

Figure 10: Trace-plot of η-estimates for Phase-type data

The baseline sub-distribution functions for causes 1, 2 and 3 are plotted in figure
11.

It is evident that the Phase-type fit approximates the underlying sub-distribution
functions better than the non-parametric methods. This is thus to be expected,
since the Phase-type fit is based on a model on the same form as the underlying
model.
The non-parametric methods tend to under-estimate these sub-distribution func-
tions, most probably because they are both based on regression through the sub-
distributions, which differs a lot from the theoretical covariate model used to gen-
erate the data. The fact that the non-parametric methods are both based on
regression through the sub-distribution functions, is probably also the reason why
the estimates from these methods are very similar.

76

Cause 1 Cause 2

Cause 3

Figure 11: Baseline sub-distribution estimates for the Phase-type data with co-
variates

77

The baseline cause-specific hazard rates are plotted in figure 12. The estimates
are close to the theoretical functions.

Cause 1 Cause 2

Cause 3

Figure 12: Baseline sub-hazard estimates for the Phase-type data with covariates

78

Estimates of the vectors η1, η2 and η3 are presented in table 2. We see that the
estimates produced with the Phase-type model and Cox regression are similar, and
close to the theoretical values. The Cox estimates seem to have smaller standard
errors, indicating that despite the similarities between the two methods, they are
essentially based on different models.
It is worth mentioning that the Phase-type estimates should be closest to the
theoretical values, since the Phase-type model is also the model used to generate
the data. Still, it is difficult to decide if Cox regression or the Phase-type method
give the closest estimates.
The estimates from the non-parametric methods are also similar, and they deviate
from the other estimates and the theoretical values. As for the estimates of the sub-
distribution functions, a reason for this is probably that they are based on very
different models than the two other methods, and performs regression through
transformations of the sub-distribution functions.

True val. Cox regr. Phase-type Fine & Gray timereg

ηT1

�
1

−0.2

� �
0.9069

−0.0538

� �
1.060437902
0.009915118

� �
0.7846
0.2275

� �
0.819
0.135

�

s.e -
�
0.117
0.104

� �
0.1742115
0.1388436

� �
0.1048
0.0995

� �
0.130
0.115

�

ηT2

�
0.3

−0.7

� �
0.323

−0.755

� �
0.3630679

−0.6950387

� �
0.0303

−0.3576

� �
0.137

−0.302

�

s.e -
�
0.182
0.199

� �
0.1935263
0.2006831

� �
0.1317
0.1238

� �
0.189
0.184

�

ηT3

�
0

−0.5

� �
0.107

−0.536

� �
0.1062896

−0.5987580

� �
−0.2446
−0.2557

� �
−0.184
−0.387

�

s.e -
�
0.0726
0.0814

� �
0.1047259
0.1095020

� �
0.06333
0.07566

� �
0.0728
0.0794

�

Table 2: Table of η-estimates for the Phase-type data with covariates

79

5.3.2 Weibull data

This data set consists of 150 observations, with 58 censorings and 92 failures.

Each data point can have 2 causes of failure and has been generated by sam-
pling a latent failure time for each cause, selecting the minimum of these latent
failure times as the failure time, and selecting the cause corresponding to this la-
tent failure time as the cause in the data point.
The code for simulating this data set can be found in the back of section 7.3 in
the appendix.

The latent failure time distribution for cause j is Weibull(2, βj), where 2 is the
shape parameter and βj is the scale parameter. βj is depending on the covariates,
and is also cause-specific. For data point k, it is on the following form:

βj =
√

2 · exp
�

−1
2wkη

T
j

�
, (88)

where wk is the covariate vector for data point k, and ηj is a cause-specific coeffi-
cient vector.

Choosing a scale parameter on the form above will give hazard rates for the latent
failure time distributions like

hj(t) = t · exp
�
wkη

T
j

�
.

Thus, the simulated data is from a Cox regression model with linear baseline
sub-hazard rates. These hazard rates can be difficult to estimate with a Phase-
type model, since all Phase-type models have asymptotically constant hazard rates.

The following cause-specific coefficient vectors are used in this simulating model:

η1 =
�
0.9, −0.8

�

η2 =
�
0.4, −1.3

�
.

80

The censoring distribution is Weibull
�
shape = 3

2 , scale = 2
�
, and the distribution

used to obtain the covariate values in the data is Normal
�
0, 3

2

�
.

An important remark must be made about the cause-specific hazard rates for this
simulating model. The way the data is simulated is by sampling latent failure
times, Tj, for each failure type, j, and interpreting the hazard rates of these as the
cause-specific hazard rates of the underlying competing risks model. As Lindqvist
writes in his paper on competing risks, this way of interpreting the hazard rates of
Tj is only possible if the Tj are independent of each other (Lindqvist [14], page 5).
This is due to the identifiability problem in competing risks. If Tj would not be
independently sampled, like they have been for this data set, the marginal hazard
rates of each Tj would generally not be equal to the cause-specific hazard rates.

A Phase-type fit has been made with 10 states, where states 1, ..., 8 are transient
and states 9 and 10 are absorbing. States 9 and 10 correspond to causes 1 and 2,
respectively.

The hyper-parameters chosen to get these results are as follows for any transient
state, i, and absorbing state j:

c = 2000
d = 10
τi = 10
νij = 0.1
βi = 1

σ = 0.4.

In the MH-methods for the regression coefficients, ηjr, step lengths are 0.01 for all
the individual coefficients.

The burn-in period is on 1000 iterations, and a sample of 1000 posterior esti-
mates has been obtained.

A trace-plot of all the η-estimates is shown in figure 13. The η-values seem stable,
which indicates convergence.

81

Figure 13: Trace-plot of η-estimates for Weibull data

The baseline sub-distribution functions for causes 1 and 2 are plotted in figure 14.

The Phase-type model gives good approximations for the baseline sub-distributions.
As for the Phase-type data, the non-parametric methods give very similar esti-
mates, and they seem to underestimate the baseline sub-distributions. The reason
for this behavior is probably roughly the same as for the Phase-type data; the
non-parametric methods are based on similar models which are different from the
underlying model and the Phase-type model.

82

Cause 1 Cause 2

Figure 14: Baseline sub-distribution estimates for Weibull data

Estimates of the cause-specific hazard rates have also been produced. The baseline
hazard rates are given in figure 15. The plots show that the weibull-model is quite
different from the Phase-type model. The weibull-model has hazard rates which
are linear in time, seen from expression (88), not constant as the Phase-type hazard
rates are asymptotically. It is thus impossible to achieve good asymptotic estimates
of the hazard rates for the Weibull data, using the Phase-type model.

Cause 1 Cause 2

Figure 15: Baseline sub-hazard estimates for Weibull data

83

At last, estimates of the vectors η1 and η2 are presented in table 3. The pairwise
similarities between the Cox regression- and Phase-type estimates, and the Fine
& Gray- and timereg estimates, are quite striking.
As before, differences in the covariate influence on the sub-distribution func-
tions and the cause-specific hazard rates are probably the reasons why the non-
parametric methods give different results than the other methods and the under-
lying model.

It is difficult to decide whether the Cox regression- or Phase-type estimates are
overall closer to the real parameter values used to simulate the data.
Because the simulated data are from a proportional hazards model, the Cox re-
gression estimates would be expected to be closest to the real parameter values.

True val. Cox regr. Phase-type Fine & Gray timereg

ηT1

�
0.9

−0.8

� �
1.014

−0.916

� �
0.9486004

−0.7398985

� �
0.7287

−0.1881

� �
0.699

−0.165

�

s.e -
�
0.141
0.155

� �
0.1432722
0.1528616

� �
0.1230
0.0975

� �
0.134
0.107

�

ηT2

�
0.4

−1.3

� �
0.482

−1.334

� �
0.4774822

−1.2491768

� �
−0.1219
−0.6400

� �
−0.0943
−0.6090

�

s.e -
�
0.133
0.162

� �
0.1431508
0.1566439

� �
0.09394
0.11770

� �
0.118
0.139

�

Table 3: Table of η-estimates for the Weibull data

84

5.3.3 Follicular cancer data

This data set is from a study on follicular cell lymphoma, and was also analysed
by Scheike and Zhang in their paper on the timereg package in R (Scheike and
Zhang [18], page 4).

It can be downloaded from
http://www.uhnres.utoronto.ca/labs/hill/datasets/Pintilie/datasets/follic.txt.

Originally, this data set was presented in a paper by Pintilie in 2007 [15].

The data set consists of 541 patients having early disease stage follicular cell
lymphoma, which are treated with radiation therapy alone, or with a combination
treatment of radiation- and chemotherapy. This is modeled by the binary covari-
ate, Chemo, which is 0 for radiation treatment alone, and 1 for the combination
treatment.

The competing risks are

I: Disease relapse or no response to therapy

II: Death in remission

There are 272 events of type I and 76 events of type II, in addition to 193 censored
events.

The covariates in this data set are

Age : Covariate 1, continuous variable

Hgb : Covariate 2, continuous variable

Stage : Covariate 3, discrete variable, 0 or 1

Chemo : Covariate 4, discrete variable, 0 or 1.

Age is the subject age when treatment is started, Hgb represents the level of

85

Hemoglobin in the blood of a subject, Stage represents the stage of cancer devel-
opment in a subject, and Chemo represents which treatment the subject undergoes.

In the data, Hgb takes a value between 100 and 200 for all the subjects, but
in the Phase-type analysis the values of Hgb are scaled down with a factor of 100,
such that the values for Hgb in practice becomes values between 1 and 2. The rea-
son for this is that the model converges poorly for the unscaled case. Scaling down
Hgb improves the mixing of its corresponding coefficients in the MCMC method.
The same is true for the covariate Age, though now only a factor of 10 is needed
to downscale the covariate values. The unscaled values of Age ranges from 17 to
86, while the scaled values ranges from 1.7 to 8.6.

Since the covariates in the data are scaled down, the η-estimates will be corre-
spondingly larger than before scaling.

A Phase-type fit has been made with 10 states, where states 1, ..., 8 are tran-
sient and states 9 and 10 are absorbing. States 9 and 10 correspond to type I and
II events, respectively.

The hyper-parameters chosen to get these results are as follows for any transient
state, i, and absorbing state j:

c = 100
d = 10
τi = 10
νij = 0.1
βi = 1

σ = 0.3.

In the MH-methods for the regression coefficients, ηjr, step lengths are 0.01 for
all the individual coefficients, except the coefficients for covariate Age, which have
step-lengths 0.001.

The burn-in period is on 90000 iterations, and a sample of 1001 posterior esti-
mates for the parameter values have been obtained. The sample is obtained by
thinning out a sample of 10000 posterior estimates, choosing every 10th posterior
estimate as a sample value.

Trace-plots of all the η-estimates are shown in figure 16. Stability of the η-values

86

is evident.
The η-values for the covariate Age seem to locally fluctuate slightly, indicating that
auto-correlation is high. This is the reason why a large sample with thinning and
a large burn-in period of 90000 iterations has been used. It should be mentioned
that the burn-in period is very large, and this is probably not necessary to reach
convergence. From the trace-plots it seems sufficient with a burn-in on only a few
thousand iterations.

Age Hgb

Stage Chemo

Figure 16: Trace-plots of the η-values for follicular cancer data

87

Plots of the sub-distribution estimates made by the Phase-type method, together
with Fine & Gray- and timereg estimates, have been obtained for the covariate
vector

w =
�
4, 1.38, 0, 0

�
.

This is the scaled down version of the covariate vector used in the paper by Scheike
and Zhang [18]. The plots are in figure 17.

It is interesting to see that all the estimation methods give similar estimates,
and because the existing estimation methods are known to work reasonably well,
this indicates that the Phase-type model gives a good fit for the sub-distribution
functions.

Type I Type II

Figure 17: Sub-distribution estimates for follicular cancer data, with covariate
[4, 1.38, 0, 0]

Estimates of the cause-specific hazard rates are given in figure 18.

All the sampled posterior estimates are also plotted, together with 95%-credibility
intervals, to give a view of the uncertainty in the estimation. The uncertainty is
high in the type II estimate, probably by the same reasons as explained for the
cause-specific hazard rates in the results without covariates.
The hazard rates act strangely around t = 0, as the rates seem to be discontin-
uous in this region. This behavior is probably due to some specific failure times

88

in the data. In the data set, there exists 24 failure times with the same size,
0.002737851. These failure times force the hazard rates to become unnaturally
high around t = 0. Taking them out of the data set would give estimates of
cause-specific hazard rates very similar to the ones in figure 18, but without the
discontinuous behavior around t = 0.

Type I Type II

Figure 18: Sub-hazard estimates for follicular cancer data, with covariate
[4, 1.38, 0, 0]

Finally, estimates of the η-values are presented in table 4. Here, we see that the
Phase-type estimates have slightly larger standard errors than the Cox regression
estimates, but that the same tendencies are present in the estimates for both these
methods.

For this data set, the Phase-type estimates and the Cox regression estimates de-
viate more than for the simulated data. It seems like the data set has underlying
properties that manage to capture the theoretical differences between the Cox re-
gression model and the Phase-type model.

For the estimates of both the Fine & Gray and timereg models, all results show the
same tendencies, and they also have roughly the same tendencies as the Cox regres-
sion an Phase-type estimates. Thus, for this data set it seems like the covariates
influence all the models similarly.

89

Cox regr. Phase-type Fine & Gray timereg

ηT1

0.230
0.228
0.566

−0.302

0.4344674
0.3960603
0.5777734

−0.2457615

0.173
0.232
0.557

−0.332

0.1940
0.0321
0.6690

−0.3070

s.e

0.0473
0.4086
0.1323
0.1664

0.08379612
0.28312458
0.19135806
0.20112267

0.0479
0.3982
0.1350
0.1729

0.0507
0.4120
0.1380
0.1750

ηT2

0.868
0.417
0.488

−0.116

0.5843109
−0.1546399
0.1595203

−0.1230117

0.4726
−0.6202
−0.0416
−0.3026

0.444
−0.558
−0.167
0.181

s.e

0.114
0.835
0.282
0.355

0.09589716
0.24868610
0.21065539
0.22730924

0.0872
0.8636
0.2420
0.3446

0.118
0.988
0.318
0.437

Table 4: Table of η-estimates for the follicular cancer data

90

6 General discussion and conclusion
The Phase-type model seems to work very well for many different data sets and un-
derlying distributions, and manage to produce good estimates of the sub-distribution
functions, sub-density functions and the covariate regression coefficients.
For the cause-specific hazard rates it is possible to obtain good estimates with
reasonably sized data sets, as in the results presented here, but if the data sets
become too small or the number of censored data points become too large, expe-
rience shows that cause-specific hazard rates might be poorly estimated.
The estimates of the cause-specific hazard rates also seem to have larger estimation
uncertainties, especially in the tails. This is due to the fact that these functions
are fractional expressions with the survival function, R(t) in the denominator, and
this function is never larger than 1 and decreases with time.
The Phase-type model is flexible, but it has its limitations, which is why this
method has difficulties approximating more general underlying models, like the
Weibull model or the theoretical model for the Hoel data set.

Sometimes estimates of the sub-distribution functions and the η-values for the
non-parametric methods are different from the Phase-type estimates and the Cox
regression estimates. It seems like this is especially true when the data is from an
underlying model where the covariates are heavily influencing the risks of absorp-
tion, like in both of the simulated data sets. In these situations the sub-distribution
functions are probably influenced very differently by the covariates than the ab-
sorbing intensities and the cause-specific hazard rates, which are used for covariate
regression in the Phase-type model and Cox regression respectively. Both the non-
parametric methods are based on models where covariate regression is performed
through transformations of the sub-distribution functions, and this might thus be
the reason for the different estimates in these situations.

The estimates of the η-values are similar to the estimates produced by Cox re-
gression. A reason for this is probably that both the methods perform covariate
regression through parameters and functions that influence the failure rates of the
different failure types, and that the covariates are introduced using equal regres-
sion expressions.

The method used to fit the model works well, but it is an inevitable fact that
a lot of the parameters in the method must be chosen with care, such that the
method converges within reasonable time and produces parameter samples of good
quality.
For some data sets convergence is reached after a very large number of iterations,
or after a very long time. A way to deal with this problem is simply optimizing the

91

hyper-parameters, choosing appropriate step-lengths in the MH-samplers for the
η-values, and choosing an appropriate number of iterations for the Markov chain
realization samplers to be run at each Gibbs-step.
When the problem seems to be that auto-correlation for the η-values is too high,
one might also improve the run-time considerably by appropriately scaling the co-
variates in the data.

The size of the Phase-type fit can be chosen, and a larger sized model will have
larger potential of approximating more general competing risks distributions. Still,
it should be mentioned that the size of the Phase-type fit has a substantial impact
on the run-time of the algorithm, meaning that a larger model increases the run-
time. Also, numerical instabilities in the algorithm might prevent extremely large
Phase-type models to be fitted. This rarely pose any problems though, since large
enough Phase-type models are usually numerically attainable.

The results in this text show that the Phase-type model, although having its
limitations, can be used as a powerful tool to approximate the underlying models
of competing risks data, with or without covariates. It is especially interesting to
see that it often manage to estimate the cause-specific hazard functions. To this
day, it exists no other efficient methods capable of doing this.

Further work on this area could be centered around optimizing the MCMC method,
making it more efficient both numerically and statistically. This can partly be
done by finding optimal strategies to define hyper-parameters and other parame-
ters needed to run the method. In addition, there is a lot of potential in optimizing
the code, such that the algorithm runs faster and more smoothly.

It is also possible to theoretically improve the method, by introducing new con-
cepts that simplify parts of the algorithm. The rejection procedure in (45) is a part
of the algorithm which can be viewed as a bottleneck, because it can spend too
much time sampling the Markov chain realizations. Aslett & Wilson proposed a
different way to sample these Markov chain realizations in their doctoral disser-
tation (Aslett & Wilson [3], pages 78-86), and introducing these concepts in this
method might result in substantial efficiency improvements.

The method proposed in this text is just one example on how Phase-type models
can be used to make inference on competing risks data. The model in (73) was
chosen to be implemented, but a more general covariate model, like a combination
of (73) and (72) is theoretically more flexible. An efficient method based on such a
model might thus have a larger potential for producing good estimates. Even so,

92

it should be mentioned that a model like this would contain a very large number
of parameters to be estimated, so the quality of the estimates might suffer from
this.

7 Appendix
7.1 Estimation
7.1.1 Function calculations

When we talk about estimating functions, we essentially talk about estimating
each functional value at a specified set of time points, t.
This is done by calculating functional expressions for every parameter sample, k,
at every t, and then calculating the posterior mean at these time points. For each
k, calculating the functional expression at time t is done by first obtaining every
sample observation of parameters, denoted as L(k), Q(k), p(k) for the situation
without covariates, and l(k), Q(k), p(k) and η(k)

j for the situation with covariates.
Then we calculate the functional value using the Phase-type expressions in chapter
2.3, and model (73) if covariates are present.

Three different functions have been estimated in this text, and their expressions
are based on (34), (33) and (35), in addition to (73) if covariates are in the model.
They are calculated in the following way for each posterior sample, k:

Case without covariates:

fj(t): p(k)etQ
(k)
L(k)vTj (89)

Fj(t): p(k)Inv
�
Q(k)

� �
etQ

(k) − I
�
L(k)vTj

λj(t):
p(k)etQ

(k)
L(k)vTj

peQt1

If covariates are present, it follows from model (73) that the matrix entries of L(k)

are on the form

L
(k)
ij = l

(k)
ij exp

�
η

(k)
j w

T
�
,

for every transient state i and absorbing state j. Here w is as usual the covariate

93

vector, and lij is the baseline transition intensity.

L(k) and Q(k) (because of the diagonal intensities) are then calculated first us-
ing this expression, and then they are used in the expressions in (89).

The expressions above have been used directly in the code when calculating the
function estimates.

7.1.2 Posterior mean

This is the method used for estimating the functional values. The method consists
of first obtaining samples for the target function, f(t), for each chosen time point,
t, using the expressions in (89) for each parameter sample. At each t the mean
of the corresponding functional value sample is calculated and this represents the
posterior mean estimate for f(t). When this is done for all the time points chosen,
the complete function estimate has been obtained.

7.1.3 Posterior standard deviation

The standard deviance of the posterior distribution for a parameter value, x, can
be estimated by simply using the ordinary standard deviance estimator given by

s = 1
N − 1

N�

k=1
(xk − x̄) ,

where N is the number of posterior estimates, xk is the value of posterior estimate
i and x̄ is the posterior mean of x.

This is the method used to estimate the standard deviations of the η-values in
the results.

7.1.4 Credibility intervals

Estimating the credibility intervals for a function, f(t), is done for each evaluated
time point, t. At each t we first create a sample of functional values for f(t) by
calculating the posterior functional estimates using the expressions in (89). The
posterior functional estimate for sample observation k is denoted as fk(t). Then
we exclude 2.5% of the most extreme values of fk(t) in each end of the sample.
The new extreme estimates in each end of the remaining sample can be viewed as
the estimated 95%-credibility limits.

94

7.2 Simulation of data

7.2.1 Coxian model without covariates

This data set has been simulated from a Markov chain with the intensity matrix

A =

−0.3 0.2 0.1 0
0 −0.6 0.5 0.1
0 0 0 0
0 0 0 0

 ,

and initial distribution

p =
�
1, 0, 0, 0

�
.

Each entry, k, in this data set has been calculated by performing the following
algorithm described:

Basic Phase-type simulating algorithm, without censoring:

1 Sample initial state from given discrete initial distribution

2 With the sampled initial state, simulate a Markov chain realization up to
absorption, based on the intensity matrix above. The simulation method
consists of sampling visiting times for visits in states i from the distributions
Exp(−aii), and sampling state transitions with the discrete distributions�
ai1

−aii
, ...,

ai(i−1)
−aii

,
ai(i+1)
−aii

, ...,
ai(K+m)

−aii

�
.

3 Set the time to absorption in this Markov chain realization as the failure
time, xk, and the final absorbing state as the competing risks failure type,
ck. (xk, ck) constitutes data point k.

95

7.2.2 Phase-type model with covariates

This data set has been simulated from a Markov chain with the baseline intensity
matrix

A =

−1.13 0.40 0.05 0.20 0.10 0.010 0.040 0.120 0.01 0.20
0.10 −0.94 0.20 0.05 0.05 0.010 0.080 0.050 0.10 0.30
0.03 0.01 −0.81 0.10 0.07 0.220 0.300 0.000 0.02 0.06
0.20 0.03 0.01 −0.91 0.30 0.020 0.010 0.090 0.05 0.20
0.02 0.30 0.06 0.01 −0.93 0.100 0.030 0.200 0.01 0.20
0.20 0.10 0.01 0.03 0.04 −0.945 0.100 0.045 0.02 0.40
0.20 0.10 0.01 0.03 0.04 0.100 −0.945 0.045 0.02 0.40
0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.00 0.00

,

and initial distribution

p =
�
1, 0, 0, 0, 0, 0, 0

�
.

In addition, the cause-specific regression coefficient vectors are given in the re-
sults section. These vectors are used to express the absorbing intensities as in (73).

Each entry, k, in this data set has been calculated by performing the algorithm
below.

The covariate Phase-type simulating algorithm :

1 Sample initial state from given discrete initial distribution

2 Sample a covariate realization, wk, from the covariate distribution given in
the results section.

3 Using the sampled initial state and realization, simulate a Markov chain real-
ization up to absorption, based on the covariate Phase-type model described
above. The simulation method consists of sampling visiting times for visits
in states i from the distributions Exp(−aii), and sampling state transitions
with the discrete distributions

�
ai1

−aii
, ...,

ai(i−1)
−aii

,
ai(i+1)
−aii

, ...,
ai(K+m)

−aii

�
.

96

4 Sample a realization, t0, from the given censoring distribution in the results
chapter.

5 Set the event time in the data point, xk, equal to xk = min(t, t0). Set the
event code in the data point, ck, equal to the absorbing state in the Markov
chain realization if t < t0, and set it equal to the preferred censoring code if
t0 < t. The final data point is (xk, ck, wk).

7.2.3 Weibull model with covariates

This data set has been simulated based on a proportional hazards Weibull model.
The method used is to sample latent failures, Tj, for causes j = 1, 2.
Tj is from a Weibull(2, βj)-distribution, where βj is the scale parameter given as
in the results section.

For each data point, k, two latent failure times, T1 and T2, are sampled from
their corresponding distributions, in addition to the censoring time, T0, which is
sampled from the censoring distribution given in the results section.
The event time, xk is defined as

xk = min (T0, T1, T2) ,

and the event, ck, is defined as

ck = argmin (T0, T1, T2) ,

where 0 is the censoring code.

The covariate value, wk is sampled from the covariate distribution given in the
results section.

7.3 Code
Here, the most important code is presented, such that it is possible to reproduce
the results in this text, and to apply the methods on other data sets.
The code used to apply the functions cuminc, crr, comp.risk and coxph in the
R-packages cmprsk, timereg and survival is presented first.
After this, the implemented estimation methods used to produce the results are
presented briefly.
In the end, the complete MCMC methods for both the cases with and without

97

covariates are presented, along with the needed support-functions.

It is worth mentioning that the packages needed to run this code are the following:

• MCMCpack - for using the function rdirichlet, which samples from the dirich-
let distribution

• msm - for using the function MatrixExp, which calculates the matrix expo-
nential

• survival - for using the function coxph, which runs Cox regression on lifetime
data

• timereg - for using the function comp.risk, used for competing risks regression

• cmprsk - for using the functions cuminc and crr, used to estimate sub-
distribution functions and implementing the Fine & Gray method, respec-
tively

Many parts of the code are depending on the data set used in the Phase-type
method, so the way to represent the data sets in the code must be shown before
moving on to the other code.

A specific data set is represented by the matrix x, where each row represents
a data point. The failure times are in the first column, the causes of failure are
in the second column, the censoring codes are in the third column (1 for censored
observation, 0 for failure) and the different covariate values are in corresponding
columns after this if the data is not without covariates, in which there are only
three columns in the data matrix.
For the case without covariates, the first part of a data matrix has been presented
as an example

[,1] [,2] [,3]
[1,] 2.69306283 4 0

x = [2,] 1.90742789 5 0
[3,] 5.82563631 3 1
[4,] 7.93480666 4 0

In this model there are 5 states in total, and 2 causes of failure. States 4 and 5
are absorbing. Data point 3 is censored, which is not just seen from the censoring
code 1, but also that no absorbing state is in column 2. The censored observations
are always represented in this column by the last transient state before failure.

For the case with covariates, the first part of a data matrix is presented below

98

[,1] [,2] [,3] [,4] [,5]
[1,] 1.34162770 9 0 1.91963244 3.49198239

x = [2,] 0.34483496 8 1 0.39540589 0.57374830
[3,] 1.22977702 10 0 0.69644240 2.08822711
[4,] 0.70131724 8 1 -0.48788337 1.09445013

Here, there are 10 states in total, two causes of failure, represented by states 9 and
10, and two covariates. The covariate values are given in columns 4 and 5 of this
data matrix.

For the rest of this text, x will represent the data matrix, on one of the forms
above.

In all the code below, Nstates is the number of states in the Phase-type model,
Nabs is the number of absorbing states, and Neta is the number of covariates.

7.3.1 Application of other methods

cuminc

This function is in the cmprsk package.

This is the non-parametric method used to estimate the sub-distribution func-
tions for the case without covariates. To plot the sub-distribution functions the
following code can be applied:

z = cuminc(ftime=x[,1],fstatus=x[,2], cencode = Nstates-Nabs)
plot(z)

In the code used to compare the Phase-type results with the non-parametric
method in the cuminc function, a modified version of this function has been ap-
plied, such that the x- and y-axis can be adjusted, and legends and titles can be
added. This function is presented in the source code, not in this text, and has
been called Cumincidence.

crr

This function is in the cmprsk package.

This is the function which implements the Fine & Gray method, calculating the
η-estimates and plotting the sub-distribution functions.

99

The following code calculates and prints the η-estimates and plots the sub-distribution
functions, for the case with the chosen covariate vector, xcov. Here, type is the
type of failure analyzed, corresponding to one of the absorbing states in the model,
and has one of the values 1, 2, .., K +m.
x[,2] is here re-coded by the formula: x[, 2] − (Nstates − Nabs). The censored
observations will then have code 0, which is the chosen censoring code. cov1 is the
variable in the crr function representing a matrix of covariate vectors where each
row is one such vector, corresponding to a data point.

etaestimates=crr(ftime=x[,1],fstatus=x[,2]-(Nstates-Nabs),
cov1=x[,4:(4+Neta-1)],failcode=type,cencode=0)

pred=predict(etaestimates,cov1=xcov)
print(summary(etaestimates))
plot(pred)

comp.risk

This function is in the timereg package, and is developed by Scheike and Zhang [18].

It is used to perform non-parametric regression on competing risks data.

The code below calculates and prints the η-estimates, and plots the sub-distribution
functions for the case with covariate vector xcov.
In the code below, type is the analyzed failure type corresponding to an absorbing
state, and takes one of the values 1, 2, .., K +m.
x[, 2] is in this code re-coded to having values 1, 2, .., K + m, by the formula:
x[, 2]− (Nstates−Nabs). The censored observations will then have code 0, which
is chosen as the censoring code.
The data matrix is here transformed to a data.frame first, which is the format this
function uses. The variables V 1, V 2, V 3 and V 4 are the names of the columns
of covariate values in the data for this data.frame object. Here, 4 covariates are
present.

xdata=as.data.frame(x)
add1=comp.risk(Hist(x[,1],x[,2]-(Nstates-Nabs),cens.code=0)˜

const(V4)+const(V5)+const(V6)+const(V7),
data=xdata,cause=type,model=’prop’,cens.model=’cox’)

newdata=data.frame(V4=xcov[1],V5=xcov[2],V6=xcov[3],V7=xcov[4])
out=predict(add1,newdata=newdata)
print(summary(add1))

100

plot(out, multiple = 1, se = 0, uniform = 0)

coxph

This function is in the survival package.

It is used for performing Cox regression on survival data with covariates, and
can also be applied on competing risks data.

In the code below, this function is applied on a data set with 3 causes of fail-
ure. The model has 10 states so the corresponding absorbing states are 8, 9 and
10, and the censoring code is 7. 2 covariates are in the analyzed model.
First, the causes of failure not under analysis is re-coded to 0, so they represent
censored data. The cause under analysis is coded to 1. x1 is the re-coded data,
and x1[, 2] is the new status vector, which has value 1 for failures of the chosen
type, and 0 for all other failures or censored data points. coxph is then called,
using the data.frame version of x1. In this data.frame the covariate columns are
called V 4 and V 5. The chosen cause of failure to be analyzed is 1 in this code.

x1=x
for(i in 1:length(x1[,2])){

if((x1[i,2]==9)||(x1[i,2]==10)||(x1[i,2]==7)){
x1[i,2]=0

}
else{

x1[i,2]=1
}

}

coxph(Surv(V1, V2) ˜ V4 + V5, as.data.frame(x1))

Estimation
Calculating posterior mean of functions

The code below can be applied to produce functional estimates for many different
functions expressed in Phase-type form, when a sample of model parameters has
been obtained. In this text, the expressions in (89) have been used for this purpose.
In this particular code, the sub-density function is calculated.

#Nsamples = number of parameter observations in the complete

101

sample

#Nabs = number of absorbing states

#t= vector of time points

#a=thinning factor

#Avalues = list of sampled intensity matrices, A
for the case without covariates

#Qvalues = list of sampled transient intensity matrices if
covariates are used, but without diagonal values since
they are covariate dependent and must be calculated for
every covariate

#Lvalues = list of sampled baseline absorbing intensity matrices

#etavalues = list of sampled matrices with estimate cause-specific
coefficient vectors as rows

#pvalues = list of sampled initial distributions, p

#cov = specific covariate vector in analysis

meanvalues=c(0)
counter=0
for(k in 1:Nsamples){

if(((k%%a)==0) || (k==1)){
Atemp=matrix(0,nrow=Nstates,ncol=Nstates)
L = t(t(Lvalues[[k]])*exp(as.double(cov%*%

(t(t(etavalues[[k]]))))))
Atemp[1:(Nstates-Nabs),1:(Nstates-Nabs)]=Qvalues[[k]]
Atemp[1:(Nstates-Nabs),(Nstates-Nabs+1):Nstates] = L

Q = (Qvalues[[k]]-diag(diag(Qvalues[[k]])))-
diag(rowSums(Atemp[1:(Nstates-Nabs),1:Nstates]))

Qinv = solve(Q)
for(i in 1:length(t)){

102

#sub-density
flist[i] = pvalues[[k]]%*%(MatrixExp(t[i]*Q))%*%L%*%v_type

meanvalues[i] = meanvalues[i]+flist[i]
}
counter=counter+1

}
}
meanvalues=meanvalues/counter

Calculating posterior mean of η-values

To estimate the η-values the code below has been used. Here, many of the variables
can be interpreted as in the code above.

#Neta = number of covariates

counter=0
etamean = matrix(0,nrow=Neta,ncol=Nabs)
for(k in 1:Nsamples){

if(((k%%a)==0) || (k==1)){
Q = Qvalues[[k]]
L = Lvalues[[k]]*exp(as.double(cov%*%etavalues[[k]]))
Q = Q - diag(rowSums(Q))-diag(rowSums(L))
etamean=etamean+etavalues[[k]]
counter=counter+1

}
}
etamean=etamean/counter

Calculating posterior standard deviation of η-values

To estimate the standard deviation of the η-values the code below has been used,
where many of the variables can be interpreted as in the code above.

#etamean = posterior mean of eta

counter=0
etasd=matrix(0,nrow=Neta,ncol=Nabs)
for(k in 1:Nsamples){

103

if(((k%%a)==0) || (k==1)){
etasd=etasd+(etavalues[[k]]-etamean)ˆ2
counter=counter+1

}
}
etasd=sqrt(etasd/(counter-1))

Calculating credibility intervals of functions

Following the method described for calculating credibility intervals, the code below
calculates the credibility limits for the case with covariates. All the variables in this
code have new interpretations. hvalues is the sample of Q’s without the diagonals,
betavalues is the sample of η-values, tvalues is the sample of L’s, pivalues is the
sample of the initial distributions, and Nbeta is the number of covariates.

MCFj_conf2= function(xcov,s,w,tvalues,pivalues,
betavalues,hvalues,Nstates,Nbeta,Nabs,x,type,lim){

#This calculates credibility intervals for a sample obtained
t=seq(0,s,w)
Alist = c(0)
Plist = c(0)

v_type=rep(0,Nabs)
v_type[type]=1
if(full==TRUE){

v_type=rep(1,Nabs)
}

a=100
conflist_low=c(0)
conflist_high=c(0)
fvalues=matrix(0,nrow=(length(tvalues)/a),ncol=length(t))
for(i in 1:length(t)){

n=1
for(k in 1:length(tvalues)){

if(((k%%a)==0)){
Atemp=matrix(0,nrow=Nstates,ncol=Nstates)
L = t(t(tvalues[[k]])*

exp(as.double(xcov%*%(t(t(betavalues[[k]]))))))

104

Atemp[1:(Nstates-Nabs),
1:(Nstates-Nabs)]=hvalues[[k]]

Atemp[1:(Nstates-Nabs),
(Nstates-Nabs+1):Nstates] = L

Q = hvalues[[k]]-diag(rowSums
(Atemp[1:(Nstates-Nabs),1:Nstates]))

Qinv=solve(Q)
flist = pivalues[[k]]%*%

(MatrixExp(t[i]*Q))%*%L%*%v_type

fvalues[n,i] = flist
n=n+1

}

}
print(i)
confint_low=sort(fvalues[,i])[ceiling((length(tvalues)/a)*0.025)]
confint_high=sort(fvalues[,i])[floor((length(tvalues)/a)*0.975)]
conflist_low[i]=confint_low
conflist_high[i]=confint_high

}
n=1
for(k in 1:length(tvalues)){

if(((k%%a)==0)){
if(k!=a){

par(new = TRUE)
}
plot(t,fvalues[n,],col = ’red’,type =

’l’,lty = 1,xlab =’’,ylab=’’, ylim=c(0,lim))
n=n+1

}
}

meanlist=rep(0,length(t))
counter=0
for(k in 1:length(tvalues)){

if(((k%%(a))==0)){

105

Atemp=matrix(0,nrow=Nstates,ncol=Nstates)
L = t(t(tvalues[[k]])*exp(as.double

(xcov%*%(t(t(betavalues[[k]]))))))
Atemp[1:(Nstates-Nabs),1:(Nstates-Nabs)]=hvalues[[k]]
Atemp[1:(Nstates-Nabs),(Nstates-Nabs+1):Nstates] = L
Q = (hvalues[[k]]-diag(diag(hvalues[[k]])))

-diag(rowSums(Atemp[1:(Nstates-Nabs),1:Nstates]))
Qinv=solve(Q)
for(i in 1:length(t)){

#subdens
meanlist[i] = meanlist[i]+pivalues[[k]]

%*%(MatrixExp(t[i]*Q))%*%L%*%v_type
#subhaz
meanlist[i] = meanlist[i] +

pivalues[[k]]%*%(MatrixExp(t[i]*Q))%*%L%*%v_type/(1-
pivalues[[k]]%*%Qinv%*%(MatrixExp(t[i]*Q)

-diag(Nstates-Nabs))%*%L%*%rep(1,Nabs))
#subdistr

meanlist[i] = meanlist[i]+pivalues[[k]]%*%
Qinv%*%(MatrixExp(t[i]*Q)-diag(Nstates-Nabs))%*%L%*%v_type

}
print(k)
counter=counter+1

}
}
meanlist=meanlist/counter
lines(t,meanlist,col=’blue’,lty = 1,lwd=3)
lines(t,conflist_low,col=’black’,lty = 1,lwd=3)
lines(t,conflist_high,col=’black’,lty = 1,lwd=3,

xlab=’t’,ylab=’Sub-hazard’)
legend(’top’,legend = c(’Posterior mean’,’Confidence limits’,

’Posterior estimates’),col = c(’blue’,’black’,’red’),
lty = c(1,1,1),lwd=c(3,3,1),bty = ’n’)

legend(’topright’,legend = c(’Cause’,type),horiz=TRUE,bty = ’n’)

}

106

Complete algorithm
The complete algorithm for the case with covariates and the case without covari-
ates are presented here.

It is an unintuitive code which can be difficult to understand on paper. All the
code above, or very similar code has been used to find estimates of functions and
parameters after the complete algorithm has produced a sample of Phase-type pa-
rameters. The notation is different than for the scripts above. The η-values are
referred to as beta-values, and ζ, β and ν are referred to as Zhyp, Bhyp and Nhyp.
In addition, L is referred to as t, Q is referred to as h, and p is referred to as pi.

Some of the expressions are very long, and they have been shortened down, such
that they start at the next line with an indentation.

The help functions are also given below, and are important to look at if one wants
to understand the algorithm.

The help functions called SimulateMarkov and SimulateMarkov cens are used in
both the algorithms, without any modifications.

Complete algorithm without covariates

#Initialization of dimensions and iterations

Nstates = 5
Nabs = 2
Nfailures =300
Nburnin = 0
Nsamples = 1000

#Number of MH-steps for each Gibbs-step
Ntune = 1

#Initializing parameters which is to be sampled
t = matrix(0, nrow = Nstates, ncol = Nstates)
pi = rep(0,Nstates-Nabs)

#Creating theoretical parameters

Astates = 4

107

A = matrix(0,nrow = Astates,ncol = Astates)
A[1,1] = -0.3
A[1,2] = 0.2
A[1,3] = 0.1
A[2,1] = 0
A[2,2] = -0.6
A[2,3] = 0.5
A[2,4] = 0.1
Api = c(1,0)

#Specifying hyper-parameters Nhyp and Bhyp
Nhyp = matrix(0.1,nrow = Nstates,ncol = Nstates)

for(i in 1:(Nstates-Nabs)){
Nhyp[i,i] = 0

}
for(i in (Nstates-Nabs+1):Nstates){

Nhyp[,i] = Lscale
}

Nhyp[(Nstates-Nabs+1):Nstates,] = 0

Bhyp = rep(0.01,(Nstates-Nabs))

#Drawing from priors
pi = rdirichlet(1,Bhyp)

c = 500
d = 50
tau = c(0)
theta = c(0)
Zhyp = c(0)
for(i in 1:(Nstates-Nabs)){

tau[i] = 10
theta[i] = rgamma(1,shape = c,scale = 1/d)
Zhyp[i] = rgamma(1,shape = tau[i],scale = 1/theta[i])

}
print(theta)
print(sum(Zhyp))

108

for(i in 1:(Nstates-Nabs)){
s = 0
for(j in 1:Nstates){

if(i!=j){
t[i,j] = rgamma(1,shape = Nhyp[i,j],scale = 1/Zhyp[i])
s = s + t[i,j]

}
}
t[i,i] = -s

}

#Saving prior parameters
priort = t
priorpi = pi

#Creating theoretical and prior parameters to be used in plots
P1 = genQLp(A,Astates,Nabs)
Q1 = P1[[1]]
L1 = P1[[2]]

#Simulating the data to be used

x = SimulateFailures_cens(Nfailures,A,Astates,Nabs,Api)
x[,2] = x[,2]+Nstates-Astates

#Sampling posterior values

initial = list(0)
for(i in 1:Nfailures){

if(x[i,3]==1){
initial[[i]] = SimulateMarkov_cens(x[i,1],

x[i,2],t,Nstates,Nabs,pi)
}
else{

initial[[i]] = SimulateMarkov(x[i,1],
x[i,2],t,Nstates,Nabs,pi)

}
print(i)

109

}

fjvalues = list(0)
pitrace1=c(0)
pitrace2=c(0)
pitrace3=c(0)
tvalues = list(0)
pivalues = list(0)

for(k in 1:(Nburnin+Nsamples)){
print(k)

#Running Metropolis-Hastings
Y = MH_cens(x,t,Ntune,Nstates,Nabs,Nfailures,pi,initial)
B = Y[[1]]
Z = Y[[2]]
N = Y[[3]]
initial = Y[[5]]

#Running Gibbs-step
pi = rdirichlet(1,(Bhyp+B))
for(i in 1:(Nstates-Nabs)){

theta[i] = rgamma(1,shape = c+tau[i], scale = 1/(d+Zhyp[i]))
Zhyp[i] = rgamma(1,shape = (tau[i]+sum(Nhyp[i,])),

scale = 1/(theta[i]-t[i,i]))
}
for(i in 1:(Nstates-Nabs)){

s = 0
for(j in 1:Nstates){

if(i!=j){
t[i,j] = rgamma(1,shape = (Nhyp[i,j] + N[i,j]),

scale = 1/(Zhyp[i]+Z[i]))
s = s + t[i,j]

}
}
t[i,i] = -s

}

#Saving sample
if(k>Nburnin){

110

tvalues[[k-Nburnin]] = t
pivalues[[k-Nburnin]] = pi

}
}

#Creating functional plots

#Functional plots
f = posteriormean(10,0.10,tvalues[900:1000],

pivalues[900:1000],Api,Nstates,Astates,Nabs,Q1,L1,x,2,1)

MH cens

This is the Metropolis-Hastings sampler used to sample Markov chain realizations.

MH_cens = function(X,A,m,Nstates,Nabs,Nfailures,pi,initial){

#This is the MH-method for estimating Markov chain realizations

B = rep(0,(Nstates-Nabs))
Z = rep(0,(Nstates-Nabs))
N = matrix(0,nrow = Nstates,ncol = Nstates)
ttemp = rep(0,Nfailures)
laststates = rep(0,Nfailures)
Q = genQLp(A,Nstates,Nabs)[[1]]
L = genQLp(A,Nstates,Nabs)[[2]]
Qinv = solve(Q)
for(i in 1:length(X[,1])){

if(X[i,3] == 0){
v_c = rep(0,Nabs)
v_c[X[i,2]-Nstates+Nabs] = 1
temp = initial[[i]]
B_temp = temp[[1]]
Z_temp = temp[[3]]
N_temp = temp[[2]]
ttemp[i] = temp[[4]]
laststates[i] = temp[[5]]
for(j in 1:m){

temp = SimulateMarkov(X[i,1],X[i,2],A,Nstates,Nabs,pi)

111

v_temp = rep(0,(Nstates-Nabs))
v_temp[temp[[5]]] = 1
v_ttemp = rep(0,(Nstates-Nabs))
v_ttemp[laststates[i]] = 1
f_temp = function(t){as.double(v_temp%*%

Qinv%*%(-diag(Nstates-Nabs))%*%L%*%t(t(v_c)))}

marginal_temp = f_temp(0)

f_ttemp = function(t){as.double(v_ttemp%*%
Qinv%*%(-diag(Nstates-Nabs))%*%L%*%t(t(v_c)))}

marginal_ttemp = f_ttemp(0)
u = runif(1,0)
if(((ttemp[i]*marginal_temp)==0) || (u<=(min(1,

((temp[[4]]*marginal_ttemp)/(ttemp[i]*marginal_temp)))))){

B_temp = temp[[1]]
Z_temp = temp[[3]]
N_temp = temp[[2]]
ttemp[i] = temp[[4]]
laststates[i] = temp[[5]]
initial[[i]] = temp

}
}

}
if(X[i,3]==1){

temp = SimulateMarkov_cens(X[i,1],X[i,2],A,Nstates,Nabs,pi)
B_temp = temp[[1]]
Z_temp = temp[[3]]
N_temp = temp[[2]]
initial[[i]] = temp

}
B = B + B_temp
Z = Z + Z_temp
N = N + N_temp

}
output = list(B,Z,N,ttemp,initial)

}

112

genQLp

This function simply divides an intensity matrix into Q and L matrices

genQLp= function(Z,Nstates,Nabs){
Q = Z[1:(Nstates-Nabs),1:(Nstates-Nabs)]
L = t(t(Z[1:(Nstates-Nabs),(Nstates-Nabs+1):Nstates]))
T = list(Q,L)

}

Simulatemarkov

This function is used to simulate Markov chain realizations at each Gibbs-step.

SimulateMarkov = function(x,c,A,Nstates,Nabs,pi){

#This function simulates Markov chain
realizations from the Phase-type #model

j = 0
t = 0
iterations = 0
while(!((j == c) && (t>=x))){
t_xj = NA
laststate = NA
B_temp = rep(0,(Nstates-Nabs))
Z_temp = rep(0,(Nstates-Nabs))
N_temp = matrix(0,nrow = Nstates,ncol=Nstates)

initial = sample(1:(Nstates-Nabs),1,replace=T,prob = pi)
j = initial

t = 0
B_temp[j] = B_temp[j] + 1
while(j < (Nstates-Nabs + 1)){

told = t
t = t + rexp(1,rate = -A[j,j])

if(t<x){
Z_temp[j] = Z_temp[j] + (t-told)

113

}
if((told<x) && (t>=x)){

t_xj=A[j,c]
laststate = j
Z_temp[j] = Z_temp[j] + (x-told)

}

p = A[j,]
p[j] = 0
p = p/(-A[j,j])

jold = j
j = sample(1:Nstates,1, replace=T, prob=p)

if(t<x){
N_temp[jold,j] = N_temp[jold,j] + 1

}
if((t>=x)&&(told<x)){

N_temp[jold,c] = N_temp[jold,c] + 1
}

}
}
output = list(B_temp,N_temp,Z_temp,t_xj,laststate)

}

Simulatemarkov cens

This has the same function as Simulatemarkov, but are only called for censored
observations.

SimulateFailures_cens=function(m,A,Astates,Nabs,Api){
#This function simulates censored Phase-type data

x = matrix(0,nrow = m,ncol = 3)
for(i in 1:m){

initial = sample(1:(Astates-Nabs),1,replace=T,prob = Api)
j = initial
while(j < (Astates-Nabs + 1)){

x[i,1] = x[i,1] + rexp(1,rate = -A[j,j])
p = A[j,]

114

p[j] = 0
p = p/(-A[j,j])
j = sample(1:Astates,1,replace=T, prob=p)

}
C = rweibull(1,scale = 5,shape = 1.5)
if(C<x[i,1]){

x[i,1] = C
x[i,3] = 1
x[i,2] = Astates-Nabs

}
else{

x[i,3] = 0
x[i,2] = j

}
}
print(sum(x[,3])/length(x[,1]))
x

}

SimulateFailures cens

This function simulates a Phase-type data set, taking in theoretical Phase-type
parameters. It is also partially used for simulating data in the covariate case,
within another simulating function.

SimulateFailures_cens = function(m,A,Astates,Nabs,Api){
x = matrix(0,nrow = m,ncol = 3)

#Phase-type
for(i in 1:m){

initial = sample(1:(Astates-Nabs),1,replace=T,prob = Api)
j = initial
while(j < (Astates-Nabs + 1)){

x[i,1] = x[i,1] + rexp(1,rate = -A[j,j])
p = A[j,]
p[j] = 0
p = p/(-A[j,j])
j = sample(1:Astates,1,replace=T, prob=p)

}
C = rweibull(1,scale = 10,shape = 10)

115

if(C<x[i,1]){
x[i,1] = C
x[i,3] = 1
x[i,2] = Astates-Nabs

}
else{

x[i,3] = 0
x[i,2] = j

}
}
x

}

posteriormean

Function used to estimate and plot the functional values. It also uses the function
Cumincidence to estimate non-parametric sub-distribution curves. This is based
on cuminc, but har been customized such that it can plot the estimates with this
Phase-type method.

posteriormean= function(s,w,tvalues,
pivalues,Api,Nstates,Astates,

Nabs,Q1,L1,x,type,ylimit){

t = seq(0,s,w)

v_type=rep(0,Nabs)
v_type[type]=1

Alist=c(0)
mean=rep(0,length(t))

Q1inv=solve(Q1)
for(k in 1:length(tvalues)){

flist = c(0)
Q = genQLp(tvalues[[k]],Nstates,Nabs)[[1]]
L = genQLp(tvalues[[k]],Nstates,Nabs)[[2]]
Qinv = solve(Q)
for(i in 1:length(t)){

flist[i] = pivalues[[k]]%*%

116

(MatrixExp(t[i]*Q))%*%L%*%v_type

flist[i] = pivalues[[k]]%*%Qinv%*%
(MatrixExp(t[i]*Q)-diag(Nstates-Nabs))%*%L%*%v_type

flist[i] = pivalues[[k]]%*%(MatrixExp(t[i]*Q))
%*%L%*%v_type/(1-pivalues[[k]]%*%solve(Q)

%*%(MatrixExp(t[i]*Q)-diag(Nstates-Nabs))
%*%L%*%rep(1,Nabs))

mean[i] = mean[i]+flist[i]

Alist[i] = Api%*%(MatrixExp(t[i]*Q1))%*%L1%*%v_type
Alist[i] = Api%*%Q1inv%*%(MatrixExp(t[i]*Q1)-

diag(Astates-Nabs))%*%L1%*%v_type
Alist[i] = Api%*%(MatrixExp(t[i]*Q1))%*%

L1%*%v_type/(1-Api%*%Q1inv%*%(MatrixExp(t[i]*Q1)
-diag(Astates-Nabs))%*%L1%*%rep(1,Nabs))

}
print(k)

}
mean = mean/(length(tvalues))

Non-parametric estimate, specific cause
to be analyzed must be changed within this function

CumIncidence(group=type,ftime=x[,1],fstatus=x[,2],
cencode = Nstates-Nabs, t=t)

par(new = TRUE)

plot(t,Alist,col = ’red’,type = ’l’,lty = 1,
lwd=2,xlab =’’,ylab=’’, ylim = c(0,ylimit))

lines(t,mean,col = ’blue’,type = ’l’,lty = 2,
lwd=2,xlab =’’,ylab=’’, ylim = c(0,ylimit))

legend(’topleft’,legend = c(’Posterior mean’,’Empirical estimate’,
’True function’),col = c(’blue’,’black’,’red’),

lty = c(2,1,1),lwd=c(1,1,2),bty = ’n’)

legend(’topleft’,legend = c(’Posterior mean’,

117

’Theoretical function’),col = c(’blue’,
’red’),lty = c(2,1),lwd=c(2,2),bty = ’n’)

}

Cumincidence

This plots non-parametric estimates of the sub-distribution functions.

"CumIncidence" <- function(ftime, fstatus, group, t,strata,
rho = 0, cencode = 0, subset, na.action =
na.omit, level,xlab = "Time",
ylab = "Probability", col, lty,

lwd, digits = 4)
{

#This is used to plot cuminc function

if(!require("cmprsk"))
{ stop("Package ‘cmprsk’ is

required and must be installed.\n
See help(install.packages) or write the

following command at prompt
and then follow the instructions:\n
> install.packages(\"cmprsk\")") }

collect data
mf <- match.call(expand.dots = FALSE)
mf[[1]] <- as.name("list")
mf$t <- mf$digits <- mf$col <- mf$lty <- mf$lwd <- mf$level <-
mf$xlab <- mf$ylab <- NULL
mf <- eval(mf, parent.frame())
g <- max(1, length(unique(mf$group)))
s <- length(unique(mf$fstatus))
if(missing(t))

{ time <- pretty(c(0, max(mf$ftime)), 6)
ttime <- time <- time[time < max(mf$ftime)] }

else { ttime <- time <- t }
fit model and estimates at time points
fit <- do.call("cuminc", mf)
tfit <- timepoints(fit, time)
print result
cat("\n+", paste(rep("-", 67), collapse=""), "+", sep ="")

118

cat("\n| Cumulative incidence function
estimates from competing risks data |")

cat("\n+", paste(rep("-", 67), collapse=""), "+\n", sep ="")
tests <- NULL
if(g > 1)

{ tests <- fit$Tests
colnames(tests) <- c("Statistic", "p-value", "df")

cat("Test equality across groups:\n")
print(tests, digits = digits) }

cat("\nEstimates at time points:\n")
print(tfit$est, digits = digits)
cat("\nStandard errors:\n")
print(sqrt(tfit$var), digits = digits)
#
if(missing(level))

{ # plot cumulative incidence functions
if(missing(t))

{ time <- sort(unique(c(ftime, time)))
x <- timepoints(fit, time) }

else x <- tfit
col <- if(missing(col)) rep(1:(s-1),

rep(g,(s-1))) else col

lty <- if(missing(lty)) rep(1:g, s-1) else lty
lwd <- if(missing(lwd)) rep(1, g*(s-1)) else lwd

plot(time, base::t(x$est)[,group],
type="s", ylim = c(0,1))

out <- list(test = tests, est =
tfit$est, se = sqrt(tfit$var))

}
invisible(out)

}

Complete algorithm with covariates

This has very many similar help functions as the complete algorithm without co-
variates, but some different calculations must be made to handle the covariates,

119

so they are still presented here.

One of the help functions is a MH-sampler for the η-values. It has been developed
particularly for this covariate algorithm. It will be presented after the complete
algorithm.

#Initialization of dimensions and iterations
Astates =10
Nstates=10
Nabs = 3
Aabs = 3
Nbeta = 2
Nfailures= 200
Nburnin = 1000
Nsamples = 1000
Ntune = 1
cstep = 0.01*matrix(1,nrow=Nbeta,ncol=Nabs)
sigma=0.5

x=sim(Nfailures,H,L,beta,Nstates,Aabs,Api,Nbeta)
x[,2] = x[,2]+Nstates-Astates

#Follic data set
fol <- read.table("follic.txt", sep = ",", header = TRUE)

evcens <- as.numeric(fol$resp == "NR" |
fol$relsite != "")

crcens <- as.numeric(fol$resp == "CR" &
fol$relsite == "" & fol$stat == 1)

cause <- ifelse(evcens == 1, 1, ifelse(crcens == 1, 2, 0))
table(cause)
stage <- as.numeric(fol$clinstg == 2)
chemo <- as.numeric(fol$ch == "Y")
times1 <- sort(unique(fol$dftime[cause == 1]))
x=matrix(0,nrow=Nfailures,ncol=(3+Nbeta))
x[,1]=fol$dftime
x[,2]=cause+Nstates-Nabs
x[,3]=(1-fol$dfcens)
x[,4]=fol$age/10

120

x[,5]=fol$hgb/10
x[,6]=stage
x[,7]=chemo

#Initializing parameters which is to be sampled
h = matrix(0, nrow = Nstates-Nabs, ncol = Nstates-Nabs)
t = matrix(0,nrow=(Nstates-Nabs),ncol=Nabs)
A = matrix(0,nrow = Nstates,ncol = Nstates)
pi = rep(0,Nstates-Nabs)

#Specifying hyper-parameters Nhyp and Bhyp
Nhyp = matrix(0.1,nrow = Nstates,ncol = Nstates)

for(i in 1:(Nstates-Nabs)){
Nhyp[i,i] = 0

}
for(i in (Nstates-Nabs+1):Nstates){

Nhyp[,i] = 0.1
}

Nhyp[(Nstates-Nabs+1):Nstates,] = 0

Bhyp = rep(0.1,(Nstates-Nabs))

#Drawing from priors
pi = rdirichlet(1,Bhyp)

c = 1000
d = 10
tau = c(0)

theta = c(0)
Zhyp = c(0)
hdiag=matrix(0,nrow=Nfailures,ncol=(Nstates-Nabs))
for(i in 1:(Nstates-Nabs)){

tau[i] = 1*10

121

theta[i] = rgamma(1,shape = c,scale = 1/d)
Zhyp[i] = rgamma(1,shape = tau[i],scale = 1/theta[i])

}
print(theta)
print(sum(Zhyp))

beta=matrix(0,nrow=Nbeta,ncol=Nabs)
for(j in 1:Nabs){
beta[,j] = rnorm(Nbeta,mean=0,sd=sigma)

}

for(i in 1:(Nstates-Nabs)){
for(j in 1:(Nstates-Nabs)){

if(i!=j){
h[i,j] = rgamma(1,shape = Nhyp[i,j],scale = 1/(Zhyp[i]))

}
}

}
for(i in 1:(Nstates-Nabs)){

for(j in 1:Nabs){
t[i,j] = rgamma(1,shape = Nhyp[i,j+

(Nstates-Nabs)],scale = 1/Zhyp[i])
}

for(data in 1:Nfailures){
hdiag[data,i]=-((sum(h[i,])-h[i,i])+sum(t[i,]*

exp(as.double(x[data,4:(4+Nbeta-1)]%*%t(t(beta))))))
}

}

priort=t
priorh=h
priorbeta=beta
priorhdiag=hdiag
priorpi=pi

122

initial = list(0)
for(i in 1:Nfailures){

A[1:(Nstates-Nabs),1:(Nstates-Nabs)] =
(h-diag(diag(h)))+diag(hdiag[i,])

A[1:(Nstates-Nabs),(Nstates-Nabs+1):Nstates] =
t(t(t)*exp(as.double(x[i,4:(Nbeta+3)]%*%t(t(beta)))))

if(x[i,3]==1){
initial[[i]] = SimulateMarkov_cens

(x[i,1],x[i,2],A,Nstates,Nabs,pi)
}
else{

initial[[i]] = SimulateMarkov
(x[i,1],x[i,2],A,Nstates,Nabs,pi)

}
print(i)

}

tvalues = list(0)
pivalues = list(0)
betavalues=list(0)
hvalues=list(0)
for(k in 1:(Nburnin+Nsamples)){

print(k)

#Running Metropolis-Hastings
Y = MH_cens(x,h,t,hdiag,beta,Ntune,Nstates,

Nabs,Nfailures,pi,initial,Nbeta)
B = Y[[1]]
Z = Y[[2]]
N = Y[[3]]
initial = Y[[5]]
n=Y[[7]]
z=Y[[6]]

#Running Gibbs-step
pi = rdirichlet(1,(Bhyp+B))

123

for(i in 1:(Nstates-Nabs)){
theta[i] = rgamma(1,shape = c+tau[i], scale = 1/(d+Zhyp[i]))
Zhyp[i] = rgamma(1,shape = (tau[i]+sum(Nhyp[i,])),

scale = 1/(theta[i]+sum(h[i,])-h[i,i]+sum(t[i,])))
}

beta = betaMH(z,h,x,N,n,Z,Nhyp,Zhyp,pi,B,
Bhyp,beta,t,Nbeta,cstep,sigma)

for(i in 1:(Nstates-Nabs)){
h[i,i] = 0
for(j in 1:(Nstates-Nabs)){

if(i!=j){
h[i,j] = rgamma(1,shape = (Nhyp[i,j] +

N[i,j]),scale = 1/(Zhyp[i]+Z[i]))
}

}

for(j_a in 1:Nabs){
t[i,j_a] = rgamma(1,shape = (Nhyp[i,j_a+

(Nstates-Nabs)]+N[i,j_a+(Nstates-Nabs)]),
scale = 1/(Zhyp[i]+sum(z[,i]*exp(as.double

(x[,4:(4+Nbeta-1)]%*%t(t(beta[,j_a])))))))

}

for(data in 1:Nfailures){
hdiag[data,i]=-((sum(h[i,])-h[i,i])+sum(t[i,]*

exp(as.double(x[data,4:(4+Nbeta-1)]%*%t(t(beta))))))
}

}

#Generating trace plot value and saving sample
if(k>Nburnin){

hvalues[[k-Nburnin]] = h

124

tvalues[[k-Nburnin]] = t
pivalues[[k-Nburnin]] = pi
betavalues[[k-Nburnin]] = beta

}
}

analysis(c(0,0),10,0.1,1,tvalues,pivalues,betavalues,
hvalues,Api,AH,AL,beta,Nstates,Astates,Nabs,x,Nbeta,1,1)

etaMH

This is the MH-sampler for the η-values.

betaMH = function(z,H,x,N,n,Z,Nhyp,Zhyp,pi,B,
Bhyp,beta,t,Nbeta,cstep,sigma){

for(v in 1:Nbeta){
for(j in (Nstates-Nabs+1):Nstates){

u=beta[v,(j-Nstates+Nabs)]
theta = u
phi=rnorm(1,mean=theta,sd=sqrt(cstep[v,j-Nstates+Nabs]))
csumphi=0
csumtheta = 0
dsum=0
dsumphi=1
dsumtheta=1
for(k in 1:length(x[,4+v-1])){

Uphi=exp(phi*x[k,4+v-1])
Utheta=exp(theta*x[k,4+v-1])
csumphi=csumphi+sum(t[,(j-Nstates+Nabs)]*z[k,])*Uphi*

exp((x[k,4:(4+Nbeta-1)]%*%
t(t(beta[,(j-Nstates+Nabs)])))-

beta[v,(j-Nstates+Nabs)]*x[k,4+v-1])

csumtheta=csumtheta+sum(t[,(j-Nstates+Nabs)]*z[k,])*
Utheta*exp((x[k,4:(4+Nbeta-1)]%*%

t(t(beta[,(j-Nstates+Nabs)])))-
beta[v,(j-Nstates+Nabs)]*x[k,4+v-1])

dsum=dsum+x[k,4+v-1]*sum(n[[k]][,j])

125

}
csumphi=as.double(csumphi)
csumtheta=as.double(csumtheta)

w=runif(1)
if((is.finite(min(1,exp((((phi*(dsum)-
(((phiˆ2)/(2*sigmaˆ2))))+(-csumphi))-
(((theta*(dsum)-(((thetaˆ2)/(2*sigmaˆ2))))+
(-csumtheta))))))))&&(w<=min(1,exp((((phi*(dsum)-
(((phiˆ2)/(2*sigmaˆ2))))+(-csumphi))-(((theta*(dsum)-
(((thetaˆ2)/(2*sigmaˆ2))))+(-csumtheta)))))))){

u=phi

}
else{

u=theta
}
beta[v,(j-Nstates+Nabs)]=u

}
}
beta

}

MH cens cov

Just an extension of the original MH cens function, to the covariate case.

MH_cens = function(X,h,a,hdiag,beta,m,Nstates,
Nabs,Nfailures,pi,initial,Nbeta){

A=matrix(0,nrow=Nstates,ncol=(Nstates))
B = rep(0,(Nstates-Nabs))
Z = rep(0,(Nstates-Nabs))
N = matrix(0,nrow = Nstates,ncol = Nstates)
z = matrix(0,nrow=Nfailures,ncol=(Nstates-Nabs))
n = list(matrix(0,nrow=Nstates,ncol=Nstates))
ttemp = rep(0,Nfailures)
laststates = rep(0,Nfailures)
for(i in 1:length(X[,1])){

Q = (h-diag(diag(h)))+diag(hdiag[i,])

126

L = t(t(a)*exp(as.double(X[i,4:(4+Nbeta-1)]%*%t(t(beta)))))
A[1:(Nstates-Nabs),1:(Nstates-Nabs)] = Q
A[1:(Nstates-Nabs),(Nstates-Nabs+1):Nstates] = L
Qinv = solve(Q)
if(X[i,3] == 0){

v_c = rep(0,Nabs)
v_c[X[i,2]-Nstates+Nabs] = 1
temp = initial[[i]]
B_temp = temp[[1]]
Z_temp = temp[[3]]
N_temp = temp[[2]]
ttemp[i] = temp[[4]]
laststates[i] = temp[[5]]
for(j in 1:m){

temp = SimulateMarkov(X[i,1],X[i,2],A,Nstates,Nabs,pi)
v_temp = rep(0,(Nstates-Nabs))
v_temp[temp[[5]]] = 1
v_ttemp = rep(0,(Nstates-Nabs))
v_ttemp[laststates[i]] = 1
f_temp = function(t){as.double(v_temp%*%Qinv%*%

(-diag(Nstates-Nabs))%*%L%*%t(t(v_c)))}
marginal_temp = f_temp(0)
f_ttemp = function(t){as.double(v_ttemp%*%Qinv%*%

(-diag(Nstates-Nabs))%*%L%*%t(t(v_c)))}

marginal_ttemp = f_ttemp(0)
u = runif(1,0)
if(((ttemp[i]*marginal_temp)==0) || (u<=(min(1,

((temp[[4]]*marginal_ttemp)/
(ttemp[i]*marginal_temp)))))){

B_temp = temp[[1]]
Z_temp = temp[[3]]
N_temp = temp[[2]]
ttemp[i] = temp[[4]]
laststates[i] = temp[[5]]
initial[[i]] = temp

}
}

}
if(X[i,3]==1){

127

temp = SimulateMarkov_cens(X[i,1],X[i,2],A,Nstates,Nabs,pi)
B_temp = temp[[1]]
Z_temp = temp[[3]]
N_temp = temp[[2]]
initial[[i]] = temp

}
z[i,] = Z_temp
n[[i]]= N_temp
B = B + B_temp
Z = Z + Z_temp
N = N + N_temp

}
output = list(B,Z,N,ttemp,initial,z,n)

}

simulatedata phase type

This function simulates the covariate Phase-type data.

sim = function(Nfailures,H,L,beta,Astates,Aabs,pi,Nbeta){
x=matrix(0,nrow=Nfailures,ncol=(4+Nbeta-1))
for(k in 1:Nfailures){

x[k,4:(4+Nbeta-1)]=rnorm(Nbeta,mean=0,sd=5)

A=matrix(0,nrow=(length(H[1,])+length(L[1,])),
ncol=(length(H[1,])+length(L[1,])))

A[1:length(H[1,]),1:length(H[1,])] = H

temp=(exp(as.double(x[k,4:(4+Nbeta-1)]%*%t(t(beta)))))
print(temp)

A[1:length(H[1,]),(1+length(H[1,])):
length(A[1,])]=t(t(L)*temp)

d=rowSums(A)
A=A-diag(d)

print(A)
temp=SimulateFailures_cens(1,A,Astates,Aabs,pi)
x[k,1]=temp[1]
x[k,2]=temp[2]
x[k,3]=temp[3]

128

}
x

}

simulatedata weibull

This simulates Weibull-data.

sim = function(Nfailures,H,L,beta,Astates,Aabs,pi,Nbeta){
x=matrix(0,nrow=Nfailures,ncol=(4+Nbeta-1))
for(k in 1:Nfailures){

x[k,4:(4+Nbeta-1)]=rnorm(Nbeta,mean=0,sd=1.5)

t_temp=c(0)
t_temp[1]=rweibull(1,scale=sqrt(2)*exp(as.double

(-0.5*x[k,4:(4+Nbeta-1)]%*%
t(t(beta[,1])))),shape=2)

t_temp[2]=rweibull(1,scale=sqrt(2)*exp(as.double
(-0.5*x[k,4:(4+Nbeta-1)]%*%

t(t(beta[,2])))),shape=2)

C = rweibull(1,scale = 2,shape = 1.5)
if(C<min(t_temp)){

x[k,1] = C
x[k,3] = 1
x[k,2] = 0

}
else{

x[k,1]=min(t_temp)
x[k,2]=which.min(t_temp)
x[k,3]=0

}
}
x

}

analysis

This function estimates functions, and run both cmprsk and timereg. It also plots
the results.

129

analysis= function(xcov,s,w,a,tvalues,pivalues,betavalues,
hvalues,Api,AH,AL,beta,Nstates,Astates,Nabs,x,Nbeta,type,ylimit){

#Time vector
t=seq(0,s,w)

#Initializing
Alist = c(0)
flist = c(0)
mean=rep(0,length(t))

#Calcuating simulated Phase-type parameters,
take away if weibull, it will crash method

Hdiag=c(0)
A=matrix(0,nrow=(length(AH[1,])+length(L[1,])),

ncol=(length(AH[1,])+length(AL[1,])))

temp=(exp(as.double(xcov%*%t(t(beta)))))
A[1:length(AH[1,]),(1+length(AH[1,])):length(A[1,])]=t(t(AL)*temp)
for(i in 1:(Astates-Nabs)){

Hdiag[i]= -((sum(AH[i,])-AH[i,i])+
sum(AL[i,]*exp(as.double(xcov%*%t(t(beta))))))

}
A[1:length(AH[1,]),1:length(AH[1,])] =

(AH-diag(diag(AH)))+diag(Hdiag)

QA=genQLp(A,Astates,Nabs)[[1]]
LA=genQLp(A,Astates,Nabs)[[2]]
QAinv=solve(QA)

#Calculating mean parameter values
hmean=matrix(0,nrow=(Nstates-Nabs),ncol=(Nstates-Nabs))
tmean=matrix(0,nrow=(Nstates-Nabs),ncol=(Nabs))
pimean=rep(0,(Nstates-Nabs))
betamean=rep(0,Nbeta)

130

counter=0
for(k in 1:length(tvalues)){

if(((k%%a)==0) || (k==1)){
hmean=hmean+hvalues[[k]]
tmean=tmean+tvalues[[k]]
betamean=betamean+betavalues[[k]]
pimean=pimean+pivalues[[k]]
counter=counter+1

}
}
hmean=hmean/counter
tmean=tmean/counter
pimean=pimean/counter
betamean=betamean/counter

#Estimating standard deviation of beta-values
counter=0
betadev=matrix(0,nrow=Nbeta,ncol=Nabs)
for(k in 1:length(tvalues)){

if(((k%%a)==0) || (k==1)){
betadev=betadev+(betavalues[[k]]-betamean)ˆ2
counter=counter+1

}
}
betadev=sqrt(betadev/(counter-1))

v_type=rep(0,Nabs)
v_type[type]=1

#Calculations for Weibull-model used in the report
if(type==1){
Afunc=function(t){(1-pweibull(t,shape=2,

scale=sqrt(2)*exp(as.double
(-0.5*xcov%*%t(t(beta[,2]))))))*dweibull(t,shape=2,

scale=sqrt(2)*exp(as.double
(-0.5*xcov%*%t(t(beta[,1])))))}

Afunc1=function(t){(1-pweibull(t,shape=2,
scale=sqrt(2)*exp(as.double

131

(-0.5*xcov%*%t(t(beta[,1]))))))
*dweibull(t,shape=2,scale=sqrt(2)

*exp(as.double(-0.5*xcov%*%t(t(beta[,2])))))}
}
else{
Afunc=function(t){(1-pweibull(t,shape=2,scale=

sqrt(2)*exp(as.double(-0.5*xcov%*%
t(t(beta[,1]))))))*dweibull(t,shape=2,
scale=sqrt(2)*exp(as.double

(-0.5*xcov%*%t(t(beta[,2])))))}

Afunc1=function(t){(1-pweibull(t,shape=2,scale=sqrt(2)
*exp(as.double(-0.5*xcov%*%t(t(beta[,2]))))))*
dweibull(t,shape=2,scale=sqrt(2)*exp(as.double

(-0.5*xcov%*%t(t(beta[,1])))))}
}

for(i in 1:length(t)){
#Phase-type simulated

#sub-density
Alist[i] = Api%*%(MatrixExp(t[i]*QA))%*%LA%*%v_type

#sub-distribution
Alist[i] = Api%*%QAinv%*%

(MatrixExp(t[i]*QA)-diag(Astates-Nabs))%*%LA%*%v_type
#sub-hazard

Alist[i] = Api%*%(MatrixExp(t[i]*QA))%*%
LA%*%v_type/(1-Api%*%QAinv%*%(MatrixExp

(t[i]*QA)-diag(Astates-Nabs))%*%
LA%*%rep(1,Nabs))

#Weibull simulated

#Hazard rate
#Alist[i]=mvec[type]*pweibull(t[i],scale=sqrt(2)
*exp(as.double(-0.5*xcov%*%t(t(beta[,type])))),shape=2)

#sub-distribution

132

Alist[i]=integrate(Afunc,0,t[i])$value

}
counter=0
for(k in 1:length(tvalues)){

if(((k%%a)==0) || (k==1)){
Atemp=matrix(0,nrow=Nstates,ncol=Nstates)
L = t(t(tvalues[[k]])*exp(as.double(xcov%*%

(t(t(betavalues[[k]]))))))
Atemp[1:(Nstates-Nabs),1:(Nstates-Nabs)]=hvalues[[k]]
Atemp[1:(Nstates-Nabs),(Nstates-Nabs+1):Nstates] = L
Q = (hvalues[[k]]-diag(diag(hvalues[[k]])))-

diag(rowSums(Atemp[1:(Nstates-Nabs),1:Nstates]))

Qinv = solve(Q)
for(i in 1:length(t)){

#Phase-type estimate

#sub-density
flist[i] = pivalues[[k]]%*%

(MatrixExp(t[i]*Q))%*%L%*%v_type

#sub-distribution
flist[i] = pivalues[[k]]%*%Qinv%*%(MatrixExp

(t[i]*Q)-diag(Nstates-Nabs))%*%L%*%v_type

#sub-hazard
flist[i] = pivalues[[k]]%*%(MatrixExp(t[i]*Q))

%*%L%*%(t(t(v_type)))/(1-pivalues[[k]]
%*%Qinv%*%(MatrixExp(t[i]*Q)
-diag(Nstates-Nabs))%*%L%*%rep(1,Nabs))

mean[i] = mean[i]+flist[i]
}

print(k)
counter=counter+1

}

133

}
mean=mean/counter

#timereg analysis, saves everything in out,
which can be plotted if necessary

xdata=as.data.frame(x)
add1=comp.risk(Hist(x[,1],x[,2]-

(Nstates-Nabs),cens.code=0)˜const(V4)+const(V5),
data=xdata,cause=type,model=’prop’,cens.model="cox")

newdata=data.frame(V4=xcov[1],V5=xcov[2])
out<-predict(add1,newdata=newdata)

#cmprsk analysis, pred can be plotted
betaestimates=crr(ftime=x[,1],fstatus=x[,2]-
(Nstates-Nabs), cov1=x[,4:(4+Nbeta-1)],

failcode=type,cencode=0)
pred=predict(betaestimates,cov1=xcov)

#This is only for sub-distributions,
use par if out or pred are plotted

plot(pred,ylim=c(0,ylimit),
xlim=c(0,s),xlab=’t’,ylab=’Probability’)

par(new = TRUE)
plot(out, multiple = 1, se = 0, uniform = 0,

col = 1,lty=3,ylim=c(0,ylimit),xlim=c(0,s),
xlab=’t’,ylab=’Probability’)

par(new = TRUE)
lines(t,mean,col = ’blue’,type = ’l’,lty = 2,

lwd=1,xlab =’’,ylab=’’, ylim = c(0,ylimit))
lines(t,Alist,col=’red’,type=’l’,lty = 1,lwd=2,

xlab =’’,ylab=’’, ylim = c(0,1.1))

#Use this if non-parametric is not plotted
plot(t,mean,col = ’blue’,type = ’l’,

lty = 2,lwd=1,xlab =’’,ylab=’’, ylim = c(0,ylimit))
lines(t,Alist,col=’red’,type=’l’,lty = 1,

lwd=2,xlab =’’,ylab=’’, ylim = c(0,1.1))

#legend(’topleft’,legend = c(’PT estimate’,’FG estimate’,

134

’timereg estimate’),col = c(’blue’,’black’,’black’),
lty = c(2,1,3),lwd=c(2,1,2),bty = ’n’)

legend(’topleft’,legend = c(’PT estimate’,’True Hazard rate’),
col = c(’blue’,’red’),lty = c(2,1),lwd=c(2,2),bty = ’n’)

legend(’topleft’,legend = c(’PT estimate’,
’FG estimate’,’timereg estimate’,’True distribution’)

,col = c(’blue’,’black’,’black’,’red’)
,lty = c(2,1,3,1),lwd=c(1,1,2,2),bty = ’n’)

legend(’topright’,legend= c(’w =’,xcov), horiz=TRUE, bty = ’n’)
print(betamean)
print(betadev)

}

8 References
[1] Aalen, O.O.(1995), ’Phase Type distributions in Survival Analysis’, Scandina-

vian Journal of Statistics, Vol. 22, No. 4, pp. 447-463.

[2] Aalen, O.O. (1993), ’Phase Type distributions: computer algebra and a simple
mixing model’, Report of Medical Statistics, University of Oslo, Norway.

[3] Aslett, L.J.M. and Wilson, S.P. (2012), ’MCMC for Inference on Phase-type
and Masked System Lifetime Models’, partial Doctoral thesis, Department of
Statistics, Trinity College Dublin, Dublin, Ireland.

[4] Ansell, J. I., & Phillips, M. J. (1994), Practical methods for reliability data
analysis (No. 14), Oxford University Press, Oxford, U.K.

[5] Asmussen, S. Nerman, O. and Olsson, M. (1996), ’Fitting Phase-Type Distri-
butions via the EM Algorithm’, Scandinavian Journal of Statistics, Vol 23, No
4, pp. 419-441.

[6] Bladt, M., Gonzalez, A. and Lauritzen, S.A (2003), ’The estimation of phase-
type related functionals using Markov chain Monte Carlo methods’, Scandina-
vian Actuarial Journal, Issue 4, pp. 280-300.

[7] Boag, J.W. (1949). ’Maximum likelihood estimates of the proportion of patients
cured by cancer therapy’. Journal of Royal Statistical Society, Series B, 11, 15-
44.

135

[8] Braarud, I.H. (2012), ’Phase type and competing risk models in survival anal-
ysis’, Master’s project, Department of Mathematical Sciences, Norwegian Uni-
versity of Science and Technology.

[9] Fine, J.P. and Gray, R.J. (1999), ’A Proportional Hazards Model for the Sub-
distribution of a Competing Risk’, Journal of the American Statistical Associ-
ation, Vol. 94, No. 446, pp. 496-509.

[10] Gamerman, D. Lopes, H. (2006), ’Markov Chain Monte Carlo, Stochastic
Simulation for Bayesian Inference’, 2nd Edition, Chapman & Hall/CRC.

[11] Hoel, D.G (1972), ’A representation of mortality data by competing risks’,
Biometrics, Vol. 28, No. 2, Jun., International Biometric Society, Washington
DC.

[12] Laache, C.H. (2014), ’Phase-type inference on competing risk models using
Markov Chain Monte Carlo methods’, Master’s project, Department of Math-
ematical Sciences, Norwegian University of Science and Technology.

[13] Lindqvist, B.H. (2013), ‘Phase-Type Distributions for Competing Risks’. Pa-
per. Special Topic Session on Statistical analysis of competing risks data. 59th
ISI World Statistics Congress. Hong Kong, China, 25-30 August 2013.

[14] Lindqvist,B.H. (2006), ’Competing Risks’, In: Encyclopedia of Statistics in
Quality and Reliability, Ruggeri, F., Kenett, R. and Faltin, F. W. (eds). John
Wiley & Sons Ltd, Chichester, UK, pp 335-341.

[15] Pintilie M. (2007), ’Competing Risks: A Practical Perspective’. John Wiley
& Sons; New York.

[16] Rausand, M. and Høyland, (2004), ’System Reliability Theory, Models, Sta-
tistical Methods, and Applications’, 2nd Edition, Wiley.

[17] Ross, S.M. (2010), ’Introduction to Probability Models’, 10th Edition, Aca-
demic Press.

[18] Scheike, T.H. and Zhang, M.J. (2011), ’Analyzing Competing Risk Data Using
the R timereg Package’, Journal of Statistical Software. Vol. 38. Issue 2.

136

