
A Security Analysis of the Helios Voting
Protocol and Application to the
Norwegian County Election

Kristine Salamonsen

Master of Science in Physics and Mathematics

Supervisor: Kristian Gjøsteen, MATH
Co-supervisor: Anders Smedstuen Lund, IMF

Department of Mathematical Sciences

Submission date: June 2014

Norwegian University of Science and Technology

i

Preface
This paper represents my Master’s thesis and last work at NTNU. I would like
to thank my supervisor Anders Smedstuen Lund. Without your help this thesis
would not have been written. Thank you for teaching me the theory in an un-
derstandable way and encouraging me to do my best. I would also like to thank
Kristian Gjøsteen for guiding me at my project last fall and for inspiring me to
study cryptography. At last I will say thanks to Thomas for reading through my
thesis, correcting errors and discussing the paper (even though you probably did
not understand the half of it).

Kristine Salamonsen
Trondheim, June 2014

ii

Abstract
We present Helios, an end-to-end verifiable internet voting system. We describe
the existing protocol, the encryption and decryption process with corresponding
proofs, and analyse an attack against ballot secrecy.

Further we do some changes to the existing voting protocol. In the original
protocol we are not able to prove soundness and extract the witness in the proof
of correct encryption. Hence, we are not able to make a formal proof of ballot
secrecy. We solve this problem by adding a different proof of correct encryption.
In the second change we combine the ElGamal encryption with a generalisation of
the Paillier encryption and analyse whether it can be used as an efficient voting
protocol for the Norwegian county election.

iii

Sammendrag
Vi presenterer Helios, et ende-til-ende verifiserbart internett valgsystem. Vi beskriver
protokollen, krypteringen og dekrypteringen med tilhørende bevis for korrekthet.
Vi analyserer ogs̊a et angrep mot protokollen og ser p̊a hvilke forbedringer som er
gjort i denne sammenheng.

Videre utfører vi to endringer i den eksisterende valgprotokollen. I den originale
protokollen klarer vi ikke å lage et formelt sikkerhetsbevis som viser at det man
stemmer er hemmelig. Vi løser dette ved å legge til et ekstra krypteringsbevis
i tillegg til det vi kaller et proof of knowledge. Til slutt kombinerer vi ElGa-
malkrypteringen med en generalisering av Pailliers kryptering og analyserer om
det er en effektiv valgprotokoll for det norske fylkestingsvalget.

iv

Contents

1 Introduction 1

2 Theory 3
2.1 The Decision Diffie-Hellman Problem 3
2.2 Encryption and Decryption . 4
2.3 Correct Encryption . 5

2.3.1 Zero-Knowledge, Σ-Protocols and Proofs of Knowledge . . . 5
2.4 Correct Decryption . 9
2.5 More on Soundness . 11
2.6 The Fiat-Shamir Heuristic . 11
2.7 The Probability of Faking Decryption Proofs 12

3 The Voting Protocol 15
3.1 The Different Players . 15
3.2 Setup Phase . 16
3.3 Voting Phase . 16
3.4 Counting Phase . 18
3.5 Development . 18

4 An Attack Against Ballot Secrecy 19
4.1 Description of the Attack . 19
4.2 Variants of the Attack . 20

4.2.1 Integer Representation Attack 21
4.2.2 Permutation Attack . 21
4.2.3 Malformed Ciphertext Attack 21
4.2.4 Homomorphic Attack . 22
4.2.5 Another Malleability Attack 23

4.3 Solving the Problem . 23

5 Changing the Protocol 25
5.1 The New Protocol . 25

v

vi CONTENTS

5.2 Security Analysis . 26
5.2.1 Defining Verifiability . 26
5.2.2 Defining Ballot Secrecy . 27
5.2.3 Verifiability in the New Protocol 28
5.2.4 Ballot Secrecy in the New Protocol 29

6 Applying Helios to the Norwegian County Election 35
6.1 The New Encryption Scheme . 35
6.2 Correct Encryption . 37
6.3 Applying Helios to the Norwegian County Election 38
6.4 Security Analysis . 40
6.5 Numerical Example . 40
6.6 Costs of the Calculations . 41

7 Conclusion 45

Chapter 1

Introduction

Electronic voting is upcoming and increases the flexibility of voting. It gives the
opportunity of either remote voting where voters may submit their votes from
home or voting electronically via computers in a voting booth at polling stations.
In this thesis I have studied an example of a protocol for use in remote voting,
namely Helios.

Along with the opportunity of remote voting over the internet follows a lot
of challenges. In traditional paper elections voters do their choices secretly in a
voting booth, making sure no one is looking. They submit their ballots into a
locked ballot box, and make sure no one else is able to tamper with their ballots.
Turning this into a digital process makes it all more complicated, introducing the
need for techniques to guarantee privacy and integrity. The computations in the
encryption and decryption process might also be tedious.

As mentioned, my work is based upon Helios, a publicly available internet
voting system from 2008. This thesis is a continuation of my project the last fall,
in which I introduced the existing Helios voting protocol. Now I dig a bit deeper
and I make some changes to the protocol. These changes enable us to prove that
any vote given in an election is kept secret, given some reasonable assumptions.

Helios supports homomorphic encryption allowing us to jointly decrypt the
ciphertexts to reveal the sum of the votes. This could be very efficient, especially
for simple elections, but for Helios where we use the exponential version of ElGamal
this becomes hard when the exponent tends to grow large, since we have to compute
the discrete logarithm.

We want to find a reasonably efficient voting protocol with homomorphic en-
cryption for the Norwegian county election, and as Helios is today, it will not
be efficient. ElGamal has some nice properties which we want to keep. Hence,
we combine the ElGamal encryption with a generalisation of Paillier’s public key
system.

1

2 CHAPTER 1. INTRODUCTION

Overview of the Paper
Chapter 2 gives the theoretical background for this thesis. We discuss zero knowl-
edge, Σ-protocols and proofs of knowledge.

Chapter 3 describes the voting protocol and the different players in it. We
describe the voting phase with encryption and the counting phase with decryption,
where we apply theory from the previous chapter.

Chapter 4 analyses an attack against the voting protocol. We will see how this
effected the voter privacy and explain how the problem was solved. We will also
propose another possible solution with unique identifiers.

In Chapter 5 we introduce a change to the voting protocol. We make a security
analysis to make sure the new protocol still fulfills verifiability and we are now able
to prove ballot secrecy.

In the last chapter we combine the exponential ElGamal cryptosystem with
a generalisation of Paillier’s public key system. The last thing we do is to apply
Helios with the new encryption on the Norwegian county election and analyse the
efficiency.

Chapter 2

Theory

This chapter will introduce the theory behind this thesis and will be useful in the
work we do. We will first present the Decision Diffie-Hellman problem on which the
security of the Helios voting protocol relies. Secondly we introduce the ElGamal
Cryptosystem, which we use to encrypt and decrypt ballots. Then we look at
zero-knowledge, Σ-protocols and proofs of knowledge, which we will use to show
correct encryption and decryption in Helios. Lastly we present the Fiat-Shamir
heuristic which makes our interactive proofs non-interactive.

2.1 The Decision Diffie-Hellman Problem
The security of our protocol relies on the complexity of the Decision Diffie-Hellman
(DDH) problem. Consider a cyclic group G of prime order q and let g be a
generator of the group. Generally speaking the DDH assumption claims that there
exists no algorithm which efficiently distinguishes the distribution {g, ga, gb, gab}
from the distribution {g, ga, gb, gc} for random a, b, c ∈ G. More formally, we have:

Decision Diffie-Hellman Problem. Given (g0, g1) ∈ G × G (where at least g1
is sampled at random), decide if (u0 , u1) ∈ G×G was sampled uniformly from the
set {(gt0, gt1) | 0 ≤ t < q} or uniformly from G×G.

It can be proven (e.g [13], [10]) that the DDH problem is equivalent to the
following problem:

L-DDH. Given (g0, g1, . . . , gL) ∈ GL+1 (where at least g1, g2, . . . , gL are sampled
at random), decide if (u0, u1, . . . , uL) ∈ GL+1 was sampled uniformly from the set
{(gt0, gt1, . . . , gtL) | 0 ≤ t < q} or uniformly from GL+1.

3

4 CHAPTER 2. THEORY

2.2 Encryption and Decryption
The encryption of ballots in Helios is based on the ElGamal encryption system.
This section will specify the key generation, encryption and decryption for the
exponential ElGamal Cryptosystem. We will also see some of the advantages of
the additive homomorphic properties of this version of ElGamal.

Let p and q be primes such that q | p − 1. Let G be a finite cyclic subgroup
of Z∗p with order q, and let g be a generator for the group, G = 〈g〉. The key
generation is as follows:

• Select a at random, a ∈R Z∗q, and compute y ← ga(mod p). The private key
is a while the public key is y, p and q.

Let m ∈ Zq, then we have the encryption of m:

• Select r at random, r ∈R Z∗q.

• A ciphertext is computed as c = (α, β) = (gr (mod p), yrgm(mod p)).
The ciphertext is decrypted using the secret key, and we obtain

• gm = βy−r = β(ga)−r = βα−a (mod p).

We choose the exponential version of ElGamal such that we get the plaintext
m in the exponent, then we achieve an additive homomorphic cryptosystem, and
we will exploit this further.

There is two common ways to anonymise the ballots; by homomorphic encryp-
tion or by a mix-net. By the homomorphic property of ElGamal we have that

Enc(m1) · Enc(m2) = Enc(m1 +m2).

This allows us to multiply all the ballots together and then jointly decrypt them,
revealing no single ballot. This explains why the exponential version of ElGamal
is desirable. We obtain:∏

ci =
(∏

gri ,
∏
yrigmi

)
=
(
g
∑

ri (mod p), y
∑

rig
∑

mi (mod p)
)
.

Remark that we have to compute the discrete logarithm to obtain the final
result ∑mi, a problem assumed to be hard in our group G. This is indeed possible
for small values of ∑mi, by raising g to higher and higher powers until it equals
βα−a (mod p). But for large exponents this will be tricky.

The other way the ballots are made anonymous is by a mix-net. The mix-net
shuffles and re-encrypts the encrypted votes and thus destroys the link between
a voter and the corresponding vote. The shuffling is based on the Sako-Kilian
protocol [14], a provable mix-net based on ElGamal re-encryption. The mix-net

2.3. CORRECT ENCRYPTION 5

was used in some previous versions of Helios, but this thesis will consider the
homomorphic encryption and we will not describe the mix-net any further.

We remark that all calculations further in the chapter are done modulo p, we
just omit the notation for simplicity and to save space.

2.3 Correct Encryption
Given a ciphertext (α, β) we want to prove that it contains a value between 0 and
q − 1 without revealing the value. This is done by a disjunctive proof of equality
between two discrete logarithms. We prove that (loggα = logyβ) ∨ (loggα =
logy

β
g
) ∨ . . . ∨ (loggα = logy(β

gq−1)).
We will use a Σ-protocol, so we will first introduce zero-knowledge proofs,

Σ-protocols and proofs of knowledge.

2.3.1 Zero-Knowledge, Σ-Protocols and Proofs of Knowl-
edge

We consider a protocol between two parties, which we call prover and verifier. The
goal is for the prover to show knowledge of some secret or convince the verifier
of the validity of a statement without revealing the secret or anything beyond
the validity of the statement. The idea is that the verifier should gain no (zero)
additional knowledge than what he had before the execution of the protocol. We
will now introduce a Σ-protocol, which is a zero-knowledge protocol.

A Σ-protocol is a 3-round protocol defined for a relation R. In a 3 round
protocol the prover makes the first move and sends a message/commitment to the
verifier. The verifier replies with a challenge and the last move is the prover’s
response.

Let R = (v;w) ⊆ V ×W be a binary relation. v ∈ V is the common input
for the prover and the verifier, and w ∈ W is the private input for the prover.
We call w the witness. We define a language for the relation R: LR = {v ∈ V :
∃w∈W (v, w) ∈ R}. The definition of a Σ-protocol is given in [4], and we give it
here:

Definition 1. A protocol is said to be a Σ-protocol for a relation R if it satisfies
the following properties:

• Completeness. In a conversation between an honest prover and an honest
verifier and if (v, w) ∈ R, the verifier will always accept.

• Special soundness. Given the common input v and two accepting con-
versations (A, e, t) and (A, e′, t′) (with the same commitment but different

6 CHAPTER 2. THEORY

challenges), a probabilistic polynomial time algorithm should be able to com-
pute a witness w such that (v, w) ∈ R.

• Special honest-verifier zero-knowledge. There exists a probabilistic
polynomial time algorithm which, on common input (any given v and any
challenge e), simulates an accepting conversation indistinguishable from a
real conversation between an honest prover and an honest verifier.

The proof of equality between two discrete logarithms which we use to prove
correct encryption is a proof of knowledge, demonstrating knowledge of the ran-
domness r used to create the ciphertext. Generally speaking, the protocol is a
proof of knowledge if the prover convinces the verifier that he knows some infor-
mation which is related to the common input v. In our case the prover knows the
discrete logarithm r.

Technically a Σ-protocol is a proof of knowledge if there exists a probabilistic
polynomial time algorithm that is able to extract the witness by interacting with a
prover, with the same success probability as a prover convincing a real verifier. We
call this algorithm a knowledge extractor. The extractor may rewind the prover
to the point after the prover sent it commitments, send it different messages and
play it several times, until it get two accepting conversation. From the requirement
of special soundness there exists an algorithm which now is able to compute the
witness.

2.3.1.1 OR-Protocol with n Options

Let us go back to what we wanted to prove, namely that (α, β) contains a value
between 0 and q − 1 without revealing the value. We use an OR-protocol which
is a Σ-protocol for the relation R1 ∨ R2 = {(v1, v2;w1, w2) : (v1;w1) ∈ R1 ∨
(v2;w2) ∈ R2}. We extend this to an OR-protocol with n options and prove that
(loggα = logyβ)∨ (loggα = logy

β
g
)∨ . . .∨ (loggα = logy

β
gn−1). We call this protocol

a n-OR-protocol and it is presented in Figure 2.1.
The common input is g, y, α and β

gm
, while the private input to the prover is r.

We show that the n-OR-protocol is a Σ-protocol.
Claim 1. The n-OR-protocol is a Σ-protocol for the relation {((α, β); 0, 1, . . . , n−
1) : (loggα = logyβ) ∨ (loggα = logy

β
g
) ∨ . . . ∨ (loggα = logy

β
gn−1)}.

Proof. • Completeness: Consider the case where (α, β) = (gr, yrgi), 0 < i <
n− 1, then:

gti = gxi+rei = Aiα
ei ,

yti = yxi+rei = Bi(βgi)
ei .

Clearly for j 6= i we have gtj = Aαej , ytj = Bj(βgj)
ej by construction, and

completeness holds.

2.3. CORRECT ENCRYPTION 7

Prover Verifier

Private input: r.
Assume:(α, β) = (gr, yrgi),

i ∈ {0, 1, . . . , n− 1}.
xi ∈R Z∗q .

e0, e1, . . . , ei−1, ei+1, . . . , en−1 ∈R Z∗q .
t0, t1, . . . , ti−1, ti+1, . . . , tn−1 ∈R Z∗q .

A0 ← gt0α−e0

B0 ← yt0β−e0

A1 ← gt1α−e1

B1 ← yt1(βg)−e1

Ai−1 ← gti−1α−ei−1

Bi−1 ← yti−1(β
gi−1)−ei−1

Ai ← gxi

Bi ← yxi

Ai+1 ← gti+1α−ei+1

Bi+1 ← yti+1(β
gi+1)−ei+1

An−1 ← gtn−1α−en−1

Bn−1 ← ytn−1(β
gn−1)−en−1

e ∈R Z∗q

ei ← e− e0 − . . .− ei−1 − ei+1 − . . .− en−1
ti ← xi + rei

Verify that:
e

?= e0 + e1 + . . .+ en−1
For all i ∈ {0, 1, . . . , n− 1}

check that:
gti

?= Aiα
ei

yti
?= Bi(βgi)

ei

...

...

A0, B0, A1, B1, . . . , An−1, Bn−1

e

e0, t0, e1, t1, . . . , en−1, tn−1

Figure 2.1: Protocol n-OR.

8 CHAPTER 2. THEORY

• Special soundness: Given two accepting conversations

(A0, B0, A1, B1, . . . , An−1, Bn−1, e; e0, e1, . . . , en−1, t0, t1, . . . , tn−1),
(A0, B0, A1, B1, . . . , An−1, Bn−1, e

′; e′0, e′1, . . . , e′n−1, t
′
0, t
′
1, . . . , t

′
n−1),

where the commitments are the same and the challenges are different. We
should now be able to compute the witness to prove special soundness.
Since e = e0 + e1 + . . .+ en−1 6= e′0 + e′1 + . . .+ e′n−1 = e′, we have e0 6= e′0 or
e1 6= e′1 or . . . en−1 6= e′n−1. We also have the following:

gt0=A0αe0 , gt
′
0=A0α

e′0 , yt0=B0βe0 , yt
′
0=B0β

e′0 ,

gt1=A1αe1 , gt
′
1=A1α

e′1 , yt1=B1
(
β
g

)e1 , yt
′
1=B1

(
β
g

)e′1 ,
...
gtn−1=An−1α

en−1 , g
t′n−1=An−1α

e′n−1 , ytn−1=Bn−1

(
β

gn−1

)en−1
, y

t′n−1=Bn−1

(
β

gn−1

)e′n−1
.

From this follows:

gt0−t
′
0 = αe0−e′0 , yt0−t

′
0 = βe0−e′0

gt1−t
′
1 = αe1−e′1 , yt1−t

′
1 =

(
β
g

)e1−e′1

...
gtn−1−t′n−1 = αen−1−e′n−1 , ytn−1−t′n−1 =

(
β

gn−1

)en−1−e′n−1
,

and we can extract the witness. Let i ∈ {0, 1, . . . , n − 1} such that ei 6= e′i.
Then we obtain the witness ri = ti−t′i

ei−e′i
, and we see that ri = loggα = logy

β
gi

.

• Special honest-verifier zero-knowledge: We will again consider the case where
(α, β) = (gr, yrgi), i ∈ {0, 1 . . . n − 1}. We have the distribution from the
honest-verifier for any given challenge e:

{(A0, B0, A1, B1, . . . , An−1, Bn−1, e; e0, e1, . . . , en−1, t0, t1, . . . , tn−1) :
xi, e0, e1, . . . , ei−1, ei+1, . . . , en−1, t0, t1, . . . , ti−1, ti+1, . . . , tn−1 ∈R Z∗q,
ei ← e− e1 − . . .− ei−1 − ei+1 − . . .− en−1,
ti ← xi + rei,
A0 ← gt0α−e0 , B0 ← yt0β−e0 ,

A1 ← gt1α−e1 , B1 ← yt1
(
β
g

)−e1
,

...
Ai ← gxi , Bi ← yxi ,
...
An−1 ← gtn−1α−en−1 , Bn−1 ← ytn−1

(
β

gn−1

)−en−1},

2.4. CORRECT DECRYPTION 9

and the simulated distribution:

{(A0, B0, A1, B1, . . . , An−1, Bn−1, e; e0, e1, . . . , en−1, t0, t1, . . . , tn−1) :
e0, e1, . . . , ei−1, ei+1, . . . , en−1, t0, t1, . . . , tn−1 ∈R Z∗q,
ei ← e− e1 − . . .− ei−1 − ei+1 − . . .− en−1,
A0 ← gt0α−e0 , B0 ← yt0β−e0 ,

A1 ← gt1α−e1 , B1 ← yt1
(
β
g

)−e1
,

...
Ai ← gtiα−ei , Bi ← yti

(
β
gi

)−ei
,

...
An−1 ← gtn−1α−en−1 , Bn−1 ← ytn−1

(
β

gn−1

)−en−1}.

It can be verified that these distributions are identical, and hence, we have
special honest-verifier zero-knowledge, and the n-OR-protocol is a Σ-protocol.

2.4 Correct Decryption
Proving the decryption correct is almost the same as proving correct encryption.
But instead of proving knowledge of the randomness r used to create the ciphertext,
we now want to prove knowledge of the secret key a. For integrity we prove equality
between two discrete logarithms, namely loggy = logα

β
gm

. Hence, we see that this
protocol is simpler than the OR-protcol used for encryption. The equality protocol
is given in Figure 2.2.

The common input is g, y, α and β
gm

, while the private input to the prover is a.
We show that this equality protocol is a Σ-protocol as well.

Claim 1. The equality protocol is a Σ-protocol for the relation {(g, y, α, β
gm

) :
loggy = logα

β
gm
}.

Proof. • Completeness: Completeness follows from:

gt = gx+ae = Aye,

αt = αx+ae = B
(
β
gm

)e
.

• Special soundness: Let (A,B, e, t) and (A,B, e′, t′) be two accepting tran-
scripts with the same commitments A and B, and different challenges e 6= e′.
We have

gt = Aye, gt
′ = Aye

′

αt = B
(
β
gm

)e
, αt

′ = B
(
β
gm

)e′
.

10 CHAPTER 2. THEORY

Prover Verifier

Private input: a.
x ∈R Z∗q
A← gx

B ← αx

e ∈R Z∗q

t← x+ ae

Verify that:
gt

?= Aye

αt
?= B

(
β
gm

)e

A,B

e

t

Figure 2.2: Equality Protocol.

From this follows:
gt−t

′ = ye−e
′

αt−t
′ =

(
β
gm

)e−e′
,

and we can extract the witness a = t−t′
e−e′ . We have a = loggy and a = logα

β
gm

and it follows that loggy = logα
β
gm

.

• Special honest-verifier zero-knowledge: The distribution from the honest-
verifier for any given challenge e:

{(A,B, e, t) : x ∈R Z∗q, A← gx, B ← αx; t← x+ ae},

and the simulated distribution:

{(A,B, e, t) : t ∈R Z∗q, A← gty−e, B ← αt
(
β

gm

)−e
}.

It can be checked that these distributions are identical, and we have special
honest-verifier zero-knowledge, and the equality protocol is a Σ-protocol.

Remark that we only are able to prove zero-knowledge against an honest veri-
fier, but that suffices for our purpose.

2.5. MORE ON SOUNDNESS 11

2.5 More on Soundness
We now argue that the relation loggy = logα

β
gm

holds in the equality protocol given
one accepting conversation, though we are not able to extract the witness.

Let (A,B, e, t) be a conversation such that gt = Aye and αt = B(β
gm

)e. g is
a generator for the group, so we can write gt = gρ(gν)e for some ρ and ν ∈ Z∗q.
Similarly, α = gr is a generator and we have that αt = αρ+δ(αν+∆)e. From this
follows that t = ρ + νe and t = ρ + δ + (ν + ∆)e. Subtracting the first one from
the second one gives 0 = δ + ∆e. Since e is sampled after δ and ∆ are chosen
we have that δ = ∆ = 0. This means that loggA = logαB and loggy = logα

β
gm

.
Hence, given one accepting conversation the relation loggy = logα

β
gi

always holds
except with probability (q − 1)−1.

The same holds for the n-OR-protocol. Since Ai, Bi are defined before we
know e, at least one ei must be undefined. This gives us the same argument for
loggα = logy

β

gi
. Looking at one specific i in the n-OR-protocol is just the same

as one equality protocol. Hence we have that the relation loggα = logy
β
gm

always
holds with just one accepting conversation except with probability (q − 1)−1.

2.6 The Fiat-Shamir Heuristic
We use the Fiat-Shamir heuristic [7] to obtain a non-interactive zero knowledge
proof. This is done by replacing the response of the verifier by a hash function H
modelled as a random oracle. A random oracle could be viewed as a theoretical
black box returning completely random answers for every query. It is also consis-
tent, always returning the same answer on a given input. Consider every player
to have access to this oracle. For more information about random oracles see [2].

As an example we look at the equality protocol in Figure 2.2. From the 3-round
communication flow in the Σ-protocol, we now get a 1-round protocol. It works
as follows for the decryption proof:

• The prover does the same as before, but instead of sending the commitments
A,B to the verifier, he computes e← H(g, α, y, β, A,B).

• The prover continues as before and computes t← x+ae, and sends A,B, e, t
to the verifier.

• At last the verifier checks if e = H(g, α, y, β, A,B) and if gt = Aye and
αt = B(β

gm
)e.

The protocol is still complete and special honest-verifier zero-knowledge. The
simulator works just as before; for any e choose t uniformly at random, and com-

12 CHAPTER 2. THEORY

pute A ← gty−e and B ← αt(β
gm

)−e. Then we can just reprogram the random
oracle such that

H(g, α, y, β, A,B)← e.

We will further in this thesis use that H1i is a hash function for an i-OR
proof, that is H1i : G2i+4 → Z∗q by e ← H1i(g, y, α, β, A0, B0, A1, B1, . . . , Ai, Bi).
Further we will use that H2 is a hash function for the equality protocol, that is
H2 : G6 → Z∗q by e← H2(g, α, y, β, A,B).

The soundness on the other hand is more difficult to prove. In the non-
interactive case we are no longer able to extract the witness. We can not longer
rewind and obtain two accepting conversations with the same commitment but
different challenges, since a random oracle will always return the same challenge
on the same commitment query. There is no known attack against it, we just
do not know how to prove it. In Chapter 5 we will add an extra proof to the
knowledge proof and thus fix this problem, because we no longer need to extract
the witness.

2.7 The Probability of Faking Decryption Proofs
In this section we take a look at the probability of faking the decryption proofs.
We will need a bound for this event when we prove ballot secrecy later. We prove
the following theorem.

Theorem 2.1. Take any algorithm that outputs integers ν, e, and group elements
g, α, y and β

gm
such that loggy 6= logα

β
gm

. If the algorithm uses at most η queries
to the random oracle H2, then we have that the probability that

A = gty−e, B = αt
(
β

gm

)−e
and e = H(g, α, y, β, A,B)

is at most (η + 1)(q − 1)−1.
We use the following lemma from [9] to prove the theorem.

Lemma 2.2. Let G be a group of prime order q, and let g be a generator for
the group. Let ν and ∆ be integers, and A,B, x1, x2 are group elements such that
x1 = gν and x2 = αν+∆.

Then if ∆ 6= 0 and e is an integer chosen uniformly at random from a set with
q − 1 elements, the probability that there exists an integer t such that

Axe1 = gt and Bxe2 = αt

is at most (q − 1)−1.

2.7. THE PROBABILITY OF FAKING DECRYPTION PROOFS 13

Proof. We have x1 = gν and x2 = αν+∆. Suppose ∆ 6= 0, that is loggy 6= logα
β
gm

.
Let e be chosen at random from Z∗q.

Since both g and α are generators of the group we have that A = gρ and
B = αρ+δ for some ρ and δ ∈ Z∗q . We want to find the probability that there
exists a t, given A,B, g, α, x1, x2, such that

Axe1 = gt and Bxe2 = αt.

We get gρgνe = gt and αρ+δα(ν+∆)e = αt. This gives t = ρ+νe and t = ρ+δ+(ν+
∆)e. Subtracting the first one from the second gives δ+ ∆e = 0. Since ∆ 6= 0 and
since δ and ∆ was fixed before we choose e, there is only one e which satisfies this
equation. e is chosen randomly from Z∗q, and from this follows that the probability
of finding t such that the above holds is (q − 1)−1.

Proof. (Proof of Theorem 2.1). If H2 has not been queried at the relevant point,
we have that A = gty−e, B = αt

(
β
gm

)−e
and e = H2(g, α, y, β, A,B) holds with

probability (q − 1)−1. From Lemma 2.2 we have that every time the algorithm
queries H2 with some input for which he cannot already create a forged proof, the
probability that the random oracle replies with something that the adversary is
able to use to forge a proof is (q − 1)−1. This is done η times.

This adds up to (1 + η) times where each event has probability (q − 1)−1. Let
δ = (q−1)−1. Now we have that the probability that at least one of them happens
is bounded by 1− (1− δ)1+η ≤ 2(η + 1)δ.

14 CHAPTER 2. THEORY

Chapter 3

The Voting Protocol

The voting protocol consists of several cryptographic operations and different en-
tities which we call players. In this chapter we will present the players and their
interaction with each other. We will divide the election into three phases: Setup
phase, voting phase and counting phase, and we describe the roles of the players
in the different phases.

Helios has developed through four versions, and some of the improvements are
done due to attacks discovered against the voting system. We will briefly mention
some of these changes in this chapter, but the important improvements done to
the protocol are discussed further in Chapter 4.

3.1 The Different Players

The voting protocol consists of several players interacting with one or several other
players. The players we will consider in this protocol are the voter V , the voter’s
computer P , the election officer E, the bulletin board B and the decryptor D.
Figure 3.1 presents the players and the communication channels between them.

The protocol works as follows: V submits a vote to P , which encrypts the vote
and sends it further to E along with proofs of correct encryption. E verifies the
proofs and if they are correct he publishes the encrypted vote and corresponding
proofs on B. B is a publicly available website. When the election is done, E
can compute the encrypted tally. All the ciphertexts are then homomorphically
combined, and E sends the combination to D. D decrypts the ciphertexts, sends
the result back to E along with a proof of correct decryption, and if the proof are
correct, E publishes the final result on B with corresponding correction proofs.

15

16 CHAPTER 3. THE VOTING PROTOCOL

V1 V2 Vn

P1 P2 Pn

E BD

. . .

. . .

Figure 3.1: Overview of the Protocol Players.

3.2 Setup Phase
Anyone is able to create an election with Helios and invite people to vote. The
person creating the election is considered as the administrator. He specifies the
eligible voters, the questions or the candidates for the election, the opening and
closing time (the voting phase), and controls E.

Helios generates a pair of keys, one public and one private. A set of n trustees
are also selected. Helios supports threshold decryption, which means that the
private key is shared among several trustees. Each trustee gets its own private key
share ai which is randomly chosen, ai ∈R Z∗q. The private key is then the sum of
all the key shares, a = a0 + a1 + . . .+ an−1.

Each trustee computes yi ← gai . Then y ← y0 · y1 · . . . · yn is the public key
that is used for encryption and is publicly available at the bulletin board. This
way, each trustee is committed to their key share by the value yi. By a proof of
knowledge as in Figure 2.2 (without showing equality) with ai as the private input
and only one commitment gx, each trustee shows that yi was correctly constructed.
As we will see all the trustees are required for the decryption process.

The administrator can choose to have only one trustee as well, the Helios server
itself.

When it is time, the administrator freezes the election. The voter list is now
finished and the questions/candidates are unchangeable and ready for download-
ing.

3.3 Voting Phase
When the administrator freezes the election, the eligible voters receive an e-mail
with information that the election is open and the questions/candidates are avail-

3.3. VOTING PHASE 17

able for download. The mail also includes an individual username, a randomly
generated password, a hash of the election parameters and the URL for the voting
booth.

A voter V is first met by the ballot preparation. At this step anyone, not only
eligible voters, is able to look and choose alternatives. Once every choice is made,
they are immediately encrypted. A ballot contains a list of encrypted answers,
where each encrypted answer represents one election question. Each encrypted
answer has again a list of n ciphertexts ((α1, β1), (α2, β2), . . . , (αn, βn)), where n
is the number of possible choices or candidates for that question. Each encrypted
answer contains also the product of the n ciphertexts (α, β) = (α1 ·α2 · . . . ·αn, β1 ·
β2 · . . . · βn).

The ciphertexts are constructed as described in Section 2.2. Let m ∈ {0, 1} and
let (α, β) = (gr, yrgm) represents a ciphertext for some candidate. Then m = 1
means that the voter voted for the candidate, and m = 0 means that V did not
vote for the candidate.

The product of ciphertexts (α, β) for each question will contain a value between
0 and n − 1. In some cases the voter may be restricted to vote for at most one
candidate, then the product of ciphertexts will contain a 0 or a 1.

When every plaintext is encrypted, a hash of the encryption appears and V can
choose to audit or cast the ballot. The auditing reveals the ciphertexts for each
possible answer along with proofs of correct encryption as described in Section
2.3.1.1. The proofs include individual proofs that each ciphertext contains a 0 or
a 1 and overall proofs that the product of ciphertexts for each question contains a
value between 0 and n− 1.

The auditing allows every voter to verify the encryption, though, some mathe-
matical knowledge is required to do so. V should not be able to know the random-
ness used to encrypt the ballot, so he is asked to reconstruct the ballot. A new
r is randomly generated, and hence, a new encryption is made. He can choose to
audit as many times as he wants.

The voter is not asked to authenticate before he chooses to cast his ballot.
This way, anyone is able to check the ballot preparation, audit the encryption and
check that a ballot is well formed. This feature, separating the ballot preparation
and casting, is based upon Benaloh’s principle of ballot casting assurance [3], and
it is important for the end-to-end verifiability Helios offers.

The voter authenticates by typing the username and the password received in
the e-mail. The ciphertext is cast and the records of it are then deleted from the
voter’s computer. The encrypted ballot is published on the bulletin board along
with V ’s ID or some alias, and proofs of correct encryption. Hence, V and everyone
else can verify that V ’s ballot is included and that he cast a valid vote. V also
receives a confirmation on e-mail, with the encrypted vote and the hash.

18 CHAPTER 3. THE VOTING PROTOCOL

3.4 Counting Phase
When the election is closed and the voters have cast their votes, the cast votes are
stored at the bulletin board. It is time for decryption and counting. To preserve
anonymity, a ballot should never be decrypted alone. By the homomorphic prop-
erties of ElGamal described in Section 2.2, the ballots are multiplied together and
then jointly decrypted.

In the case of several trustees, they are all required for decryption, where they
use their private key share for a partial decryption. The partial decryption factor
is ki = αai , given (α, β). We stress that we use the inverse of the decryption factors
in the decryption. Let k denote the product of all decryption factors. Then we
have gm = βk−1.

The trusteees also need to show that the decryption is correct. This is done
by proving equality between two discrete logarithms. Since every trustee gener-
ates their own proof, they prove that loggyi = logαki by using the Σ-protocol for
equality from Section 2.4.

When the homomorphic tallying is done the final result is made public at the
bulletin board, along with proofs of correctness.

3.5 Development
The first version of Helios was published in 2008 and has by now developed to the
fourth version. In 2010 Helios was attacked and major improvements were made
due to this attack. The proofs were made more robust after the attack by including
more parameters in the hash which generates the challenge in the knowledge proof
for correct encryption. We will discuss the attack and the improvements further
in Chapter 4.

Among other changes was the transition from mix-nets in the first version to
homomorphic encryption in the second version. In the third version it became
possible to authenticate in several new ways, e.g. Google, Facebook and Twitter.

We remark that the documentation of the fourth version is still in progress, as
it has been since August 2012 [1].

Chapter 4

An Attack Against Ballot Secrecy

Helios has suffered from three known attacks. We will focus on the second one, an
attack against voter privacy. The attack was first described and discussed in [18].
The attack is done by an adversary replaying another voter’s ballot or a variant of
it. Due to this attack, privacy has been taken care of and the improvements done
are the greatest change in the voting protocol.

The attack exploits the lack of ballot independence. That is, an adversary
is able to create a relating ballot by observing another voter’s interaction with
the system. This chapter will describe the attack, different variants of it and the
improvements done to prevent similar future attacks.

4.1 Description of the Attack
In this section we will give a general description of the attack and in the next section
we will give different variants of it. We remark that in the following attacks, the
only parameters included in the hash functions generating the challenges, are the
commitments. Otherwise, many of the attacks would be avoided.

For simplicity we consider an election with only three voters, V1, V2 and V3,
which makes it easy to see the impact of the attack. Assume that each voter is
allowed to vote for at most one candidate, but the attack may be generalized to
n candidates. We will illustrate that an adversary replaying another voter’s ballot
will destroy ballot secrecy in this particular election.

Consider two of the voters to be honest, say V1 and V2. The adversary V3 is
able to recast the same vote as one of the others. Let us say that V3 recasts the
same vote as V1. We define a ballot for voter Vi, where i ∈ {1, 2}, in an election
with n candidates as:

Vi, ci,1, . . . , ci,n, poki,1, . . . , poki,n, pok
′
i,

19

20 CHAPTER 4. AN ATTACK AGAINST BALLOT SECRECY

where for all i ∈ {1, 2} and j ∈ {1, . . . , n}:

ci,j = (αi,j, βi,j)
poki,j = (Ai,j, Bi,j, ei,j, ti,j, A

′
i,j, B

′
i,j, e

′
i,j, t

′
i,j)

pok′i = (Ai, Bi, ei, ti, A
′
i, B

′
i, e
′
i, t
′
i)

where poki,j represents the proof of knowledge which demonstrates that each ci-
phertext ci,j contains a 0 or a 1, and pok′i represents the overall proof which demon-
strates that voter i has voted for at most one candidate.

When the voting phase is over and the election result is published, the adversary
will immediately recognize what V1 voted by observing the only candidate with at
least two votes, which immediately destroys privacy. He will obviously also notice
what V2 voted, since this is the only remaining vote.

This attack can violate ballot secrecy in an election with more than three voters
as well. An adversary observing an honest voter’s ballot and ID at the bulletin
board may interfere with other dishonest voters, making them all recast the same
vote. This will result in a major contribution to the vote of the honest voter, which
again will result in violated privacy.

Throughout this chapter we will assume that:

• There are three voters V1, V2 and V3.

• Voters V1 and V2 are honest.

• There are n candidates.

• The adversary is using the ballot of voter k to violate privacy. The ballot is
given as:

Vk, ck,1, . . . , ck,n, pokk,1, . . . , pokk,n, pok
′
k.

• It is only possible to vote for zero or one candidate.

4.2 Variants of the Attack
An adversary may not necessarily recast a ballot, he can cast a variant of it. In this
section we give several variants of the attack and we will see how the adversary,
by exploiting ballot malleability, can construct new ballots depending on already
existing ballots. These constructions prove the lack of ballot independence in
Helios.

4.2. VARIANTS OF THE ATTACK 21

4.2.1 Integer Representation Attack
The first variant of the attack uses the possibility to change the response value in
the encryption proof. The adversary constructs a new ballot without changing the
vote. He can do so by adding a multiple of q to the response component in the
knowledge proof. Let γ1, γ

′
1, . . . , γn, γ

′
n, γ, γ

′ ∈ N. The adversary constructs the
ballot:

ck,1, . . . , ck,n, pokk,1, . . . , pokk,n, pok
′
k,

where for all j ∈ {1, . . . , n}

pokk,j = (Ak,j, Bk,j, ek,j, tk,j + γjq, A
′
k,j, B

′
k,j, e

′
k,j, t

′
k,j + γ′jq)

and
pok

′
k = (Ak, Bk, ek, tk + γq, A′k, B

′
k, e
′
k, t
′
k + γ′q).

Hence, the ballot is different, while the vote remains unchanged. The proofs are
still valid.

4.2.2 Permutation Attack
The second variant of the attack is done by a permutation of the ciphertexts in
the ballot. Let π be a permutation on the set {1, 2, . . . , n} (not the identity map).
The adversary constructs the ballot:

ck,π(1), . . . , ck,π(n), pokk,π(1), . . . , pokk,π(n), pok
′
k.

Since we just have a permutation the proofs are still valid.

4.2.3 Malformed Ciphertext Attack
We will once again see how the adversary, by observing the bulletin board and the
other ballots, may construct a new ballot which is related to an already existing
ballot.

Let v ∈ {1, . . . , n}, then the adversary can construct the following ballot:

(1, 1), . . . , (1, 1)︸ ︷︷ ︸
v-1 times

, (αk,v, βk,v), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
n-v times

,

pok1, . . . , pokv−1, pokk,v, pokv+1, . . . , pokn, pokk,v,

which represents a vote for candidate number v. pokk,v is the knowledge proof
demonstrating that (αk,v, βk,v) contains a 0 or a 1, described in Section 2.3.1.1.
Following the protocol in Figure 2.1 with n = 2, we see that this is a valid proof.

22 CHAPTER 4. AN ATTACK AGAINST BALLOT SECRECY

For all j ∈ {1, . . . , v − 1, v + 1, . . . , n} we have that the proof of knowledge for
ciphertext j is given by pokj = (Aj, Bj, ej, tj, A

′
j, B

′
j, e
′
j, t
′
j), where e′j, t′j, tj ∈R Z∗q

and
Aj ← gtj

A′j ← gt
′
j

Bj ← ytj

B′j ← yt
′
jge
′
j

ej ← H(Aj, Bj, A
′
j, B

′
j)− e′j

We have the ciphertext (α, β) = (1, 1). Then, αej = 1 and αe′j = 1, and from this it
follows that Ajαej = Aj = gtj and A′jαe

′
j = A′j = gt

′
j . Similarly, we have (β

g0)ej = 1
and (β

g1)e′j = g−e
′
j . Hence, Bj(βg0)ej = Bj = ytj and B′j(βg1)e′j = B′jg

−e′j = yt
′
j , and

it follows that pokj is a valid proof for the ciphertext (1,1).
If the honest Vk, voted for candidate number v, the adversary will cast the

same vote. If Vk casts a vote of abstention, the adversary will also cast a vote of
abstention. In any other case the adversary will cast a vote of abstention, which will
be different from Vk who voted for any other candidate in {1, . . . , v−1, v+1, . . . , n}.

We illustrate that this form of the attack will also violate ballot secrecy. Con-
sider the outcome of the election to be two votes for one candidate and one vote for
another candidate (no abstention vote), then the adversary knows that Vk voted
for the candidate with two votes, and privacy is again violated.

4.2.4 Homomorphic Attack
Another variant of the attack exploits the homomorphic properties of ElGamal.
If Vk casts a vote of abstention, the adversary is able to cast the same vote. The
adversary constructs the ballot

(αk,1 · . . . · αk,n, βk,1 · . . . · βk,n), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
n-1 times

, pok′k, pok2, . . . , pokn, pok
′
k

As long as Vk does not cast a vote of abstention, we see that this ballot represents
a vote for the first candidate.

poki for 2 ≤ i ≤ n is a valid proof for the ciphertext (1, 1). This can be shown
in the same way as we did in the malformed ciphertext attack. pok′k is a valid
proof for (αk,1 · . . . ·αk,n, βk,1 · . . . · βk,n) as it is a valid overall proof for Vk’s ballot.

As before this type of attack violates privacy. Consider the outcome of the
election to be at least two votes of abstention, then it is clear for the adversary
that Vk cast a vote of abstention, and if there are two votes for the same candidate
and at least one vote for the first candidate, the adversary also knows what Vk
voted.

4.3. SOLVING THE PROBLEM 23

4.2.5 Another Malleability Attack
The last variant we will present is another malleability attack. The adversary
chooses γ1, . . . γn ∈ N. Let γ = γ1 + . . .+ γn. He constructs the ballot:

ck,1, . . . , ck,n, pokk,1, . . . , pokk,n, pok
′
k,

such that for all j ∈ {1, . . . n} we have

ck,j = (αgγj , βyγj)
pokk,j = (Ak,j, Bk,j, ek,j, tk,j + γjek,j, A

′
k,j, B

′
k,j, e

′
k,j, t

′
k,j + γje

′
k,j)

pok′k = (Ak, Bk, ek, tk + γek, A
′
k, B

′
k, e
′
k, t
′
k + γe′k).

The adversary will in this case cast a vote for the same candidate as Vk. The ballot
will obviously be accepted by the election officier, we have just added some new
randomness in the exponent and likewise we added γjek,j in the proof.

Once again privacy is broken. If the outcome of the election is two votes for
one candidate and one vote for another (or a vote of abstention), the adversary
will learn what Vk voted.

4.3 Solving the Problem
After these attacks were discovered, improvements were made to the scheme to
ensure voter privacy. We present the improvements here.

First of all the proofs were made more robust by including more parameters in
the hash generating the challenge. Here we also have the option to bind any ballot
to its respective voter, by including the identity in the hash. This was not done in
Helios, but we will still present the option. First we will discuss several changes
made in the protocol to prevent the different variants of the attack described in
the previous sections.

To prevent the first type of attack, the integer representation attack, we want
to prevent the adversary from tamper with the response value in the proof. We
solve this by a simple modification in the protocol of the knowledge proof such
that the response components are unchangeable. We explain how below. Another
possible solution is to let the election officer reject all the ballots which contains
a ciphertext that already exists on the bulletin board. This last method will also
prevent the homomorphic attack.

The malformed ciphertext attack could also be avoided by rejecting already
existing ciphertexts. Another alternative is to force the decryptor to only decrypt
ciphertexts (α, β) where α, β 6= 1, that is r 6= 0. This method will also be sufficient
to avoid the homomorphic attack, which includes a lot of ciphertexts on the form
(1, 1).

24 CHAPTER 4. AN ATTACK AGAINST BALLOT SECRECY

The last attack described, another malleability attack, can be avoided the same
way as the first attack, by making it impossible to change the response value.

Overall a lot more contexts were included in the hash generating the chal-
lenge. Especially, α, β were included. In the previous versions of Helios, the hash
generating the challenge only used the commitments as input. Including more
parameters will make it more difficult to fake the proofs for an adversary. This
way the response components are unchangeable. Note that when we presented
the non-interactive version in Section 2.6 we took the changes into account and
included (g, y, α, β) in the hash.

In addition we can also bind the ballots to voters by including the voter identity
in the hash. This technique uses unique identifiers, first proposed by [8], and in-
clude the voter’s identity within in the hash that generates e. In the non-interactive
proof we have that e ← H12(g, y, α, β, A0, B0, A1, B1). To make the ballot unique
to every voter we include their identity e ← H12(g, y, α, β, A0, B0, A1, B1, ID).
Then, we have for i ∈ {0, 1}

ei ← H12(g, y, α, β, A0, B0, A1, B1, ID)− ej 6=i,

where j ∈ {0, 1}.
This method prevents an adversary from recasting a ballot or a variant of it,

because he is not able to include his ID in an already existing ballot. Despite
this, unique identifiers were not implemented in Helios due to Benaloh’s principle
of ballot casting assurance. Use of the unique identifiers will require the voters
to sign in before preparing their ballots, since their ID will be included in the
proof. Then there is no longer possible for people not eligible to vote, to audit
the ballot preparation and encryption. Hence, this change would have weakened
the auditability and verifiability in the protocol. The creators of Helios consider
Benaloh’s principle of ballot casting assurance and verifiability as more important,
and recommend other systems if voter privacy is of great importance.

Chapter 5

Changing the Protocol

This chapter will introduce some changes we have done to the protocol. The main
changes is done in the proof of correct encryption, where we introduce a new
generator and add one more proof of correction. In Section 2.6 we mentioned that
we are not able to prove soundness in the non-interactive proof. Because of this
we are not able to give a formal proof of ballot secrecy. We will solve this problem
by adding a new correction proof to the knowledge proof, then we no longer need
to extract the witness.

We will further make a security analysis to make sure that the new protocol
satisfies verifiability as the old protocol did, and then make a formal proof of ballot
secrecy.

5.1 The New Protocol

This section will present the new encryption proof. The encryption remains the
same, so an encrypted vote is still given as (α, β) = (gr, yrgm). The Σ-protocol
in Figure 2.1 proving that each ciphertext contains a 0 or a 1 and the Σ-protocol
proving that the product contains a value between 0 and n− 1 are still included.
We will further only point out the changes, what is not mentioned remains the
same as before.

We introduce a new generator g which is chosen randomly from Z∗q and must be
generated during key generation. During encryption we add the element α ← gr

to the ciphertext. We use a Σ-protocol for equality for loggα = loggα, defined in
Section 2.4, and add it in the proof of correctness, in addition to the Σ-protocols
used in the previous version. Let H2 be the hash function in this proof. Hence,

25

26 CHAPTER 5. CHANGING THE PROTOCOL

we add the following to the proof

Let x ∈ Z∗q,
A← gx, A← gx,

e← H2(g, g, α, α,A,A), t← x+ re,

and verify that
gt

?= Aαeand gt
?= Aαe.

There is no known way to prove that the non-interactive proof is a proof of
knowledge. As described in Section 2.3.1 proving the encryption proof to be a
proof of knowledge is done by rewinding. In order to extract the witness, the
extractor needs to rewind the prover to the point after the prover has sent his
commitments, send the prover different challenges and play it several times, until
the extractor gets two accepting conversations. This works fine in the interactive
case, but with a hash function it will never work. The hash function will never find
two different challenges and hence not two accepting conversations, corresponding
to the same commitments.

Remember that, as mentioned in Section 2.5, we are still able to prove the
equality between two logarithms with just one accepting conversation in the non-
interactive proof, though we are not able to rewind and extract the witness.

In the security analysis in the following section we introduce a trick based upon
ideas from [17], which enables us to cheat in a way so that we avoid extracting the
witness.

5.2 Security Analysis
The original version of Helios offers end-to-end verifiability and ballot secrecy
(though we are not able to formally prove the last one). To avoid lack of security
it is important that our new protocol fulfills these requirements as well. The
following sections will give an analysis of the security requirements in the new
protocol. First will we give some formal definitions.

5.2.1 Defining Verifiability
Helios offers end-to-end verifiability meaning that the voter and anyone else can
audit every step from ballot preparation to the final tally.

Verifiability gives the opportunity to verify that every ballot is included in the
tally and counted correctly. It is a part of the integrity in the system making sure
that no one tampers with the ballots. The votes coming into the system, being
encrypted, combined and decrypted, should be consistent with the final result.

5.2. SECURITY ANALYSIS 27

What we really want when a voter is submitting a vote is that the vote is cast
as intended. Then the vote is stored at the bulletin board, and we want it to be
stored as cast. At last the the ballot should be counted as stored.

The original version of Helios fulfills these requirements. With the ballot cast-
ing assurance everyone is able to audit the encryption process. When voters have
cast their votes, the encrypted ballots appear on the bulletin board along with
proofs and ID’s or aliases of the voters. This way anyone can check that the vote
is included and that the proofs are correct.

The final tally is published on the bulletin board along with proofs of correct-
ness, available for anyone to verify. Hence, Helios offers end-to-end verifiability.

5.2.2 Defining Ballot Secrecy
We will in this section discuss the notion of ballot secrecy. Briefly speaking, ballot
secrecy means that no one should be able to see your vote.

Consider the system in Figure 5.1, representing a voting system. The final
output is known to everyone, that is, the sum of all the votes. Then, no one
should be able to tell what you voted from this output, and this is the meaning of
a secret ballot.

System

v1

v2

vn

n∑
i=1

vi

Figure 5.1: Voting system.

Now, assume that some of the input is known. Say, there are n votes in total
and m of these are known. As long as n −m ≥ 2, we should still not be able to
say anything about the remaining votes.

Consider a smaller scenario, an election with four voters V1, V2, V3 and V4, and
their corresponding votes v1, v2, v3 and v4. This scenario is represented in Figure
5.2. After the election is done and the final result is counted and published, we
have the sum of the four votes ∑4

i=1 vi. Assume that we know v1 and v2, that is,
the input to V1 and V2. Then, the only remaining information is the sum of v3 and
v4, and we are still not able to say anything about what V3 and V4 voted.

Now, consider two voters V0 and V1, both honest, and two possible candidates
d0 and d1. We claim that it should be impossible to distinguish the scenario where
V0 is voting for d0 and V1 is voting for d1, from the scenario where V0 is voting for

28 CHAPTER 5. CHANGING THE PROTOCOL

System

v1
v2
v3
v4

4∑
i=1

vi

Figure 5.2: Ballot secrecy.

d1 and V1 is voting for d0. We generalize it, and give a formal definition of ballot
secrecy. We play the following game between a simulator and an adversary.

Ballot Secrecy. The simulator chooses a bit b ∈R {0, 1}, generates g, g ∈R Z∗q and
the keypair (a, y), and sends g, g and y to the adversary. The adversary queries
the encryption oracle for encryptions of m1,m2, . . . ,mn where mi = mi0 or mi1 ∀
i ∈ {1, 2, . . . , n}. The simulator computes

cij ← ((gri0 , gri0 , yri0gπb(mi0)), (gri1 , gri1 , yri1gπb(mi1)))

∀ i ∈ {1, 2, . . . , n} and sends cij to the adversary along with the proof of correct
encryption. That is, he encrypts m1,m2, . . . ,mn or a permutation of them.

The adversary may at all times query a decryption oracle for decryptions of
arbitrary ciphertexts c∗, as long as c∗ 6= cij ∀ i ∈ {1, 2, . . . , n}. The simulator
verifies the proofs included in the ciphertexts and if they are valid, he responds
with the decryption, otherwise he outputs ⊥.

At last the adversary outputs b′ and wins if b = b′. Then the advantage of the
adversary is given as

ε = |Pr[E0]− 1
2 |.

The reason why we subtract the half is that an adversary may always guess
with success probability 1

2 , but we want to find the advantage which is better than
just guessing.

Note that since the proofs are checked, the adversary will not be able to create
ciphertexts related to the ci’s.

5.2.3 Verifiability in the New Protocol
The changes we have made to the protocol will not affect the end-to-end verifia-
bility. As before the voter and anyone else are able to run the ballot preparation
as many times as they want and verify that the encryption is correct. The public
bulletin board enables a voter to see that his vote is included and anyone else is
also able to follow the votes appearing on the bulletin board and verify the proofs.

5.2. SECURITY ANALYSIS 29

When the election is ended, the ballots are jointly decrypted and the result is
published at the bulletin board along with proofs of correctness. Hence, anyone is
able to verify that the decryption was correct.

So, the new system still offers end-to-end verifiability.

5.2.4 Ballot Secrecy in the New Protocol
In this section we will prove that our new system offers ballot secrecy. We prove
the following theorem.

Theorem 5.1. If Decision Diffie-Hellman is (εDDH , T)-hard, then any adversary
against ballot secrecy has advantage at most εDDH + 5n

q−1nq + 2(η+1)
q−1 , where nq is

the number of hash queries made by the adversary and η is the number of queries
to H2.

The proof of Theorem 5.1 is a sequence of games between a simulator and an
adversary. We start with the initial game described in the definition in section
5.2.2. In the end we want to make sure that no information about b leaks to the
adversary, so we start to change the initial game and make small modifications
through several games.

The first change made is just some bookkeeping to remember the ciphertexts for
later use, and then we forge the encryption proofs of honestly generated ciphertexts
by using the honest verifier simulation.

Further we remove the secret key, so that the adversary has no chance to learn
it. Before we remove it, we introduce a little trick based upon ideas from [17]. This
in addition to the new encryption proof give us another way to decrypt ciphertexts.

At last we modify the encryption process, first by encrypting using DDH tuples,
then by encrypting using random tuples. This way no information about b is
available to the adversary.

Let σ be the set of all the proofs with commitments, challenges and responses.
In the following proof let a ciphertext be given as cij = (αij, αij, βij, σij) and let
Ei denote the event that the adversary outputs b = b′ in game i.

Proof. Game 0 The initial game is exactly the same as described in the definition
of ballot secrecy, in Section 5.2.2.
Assume that the adversary sends n messages, uses time at most T and queries
nq times to the hash oracle.
The advantage of the adversary is

ε = |Pr[E0]− 1
2 |.

30 CHAPTER 5. CHANGING THE PROTOCOL

Game 1 This game proceeds exactly as the previous one, we just add
a little bookkeeping. We will later remove the secret key and change the
decryption process, and we will need to remember the content of any hon-
estly generated ciphertext. So in this game, every time an honest computer
encrypts a valid ballot, we store the content of the ciphertext for later use.
It is not possible to observe this additional bookkeeping and the game is
indistinguishable from Game 0. Hence

Pr[E0] = Pr[E1].

Game 2 This game is exactly as Game 1, but now we are forging the
proofs for every honestly generated ciphertext. This is done the same way as
the honest verifier simulation in Section 2.3.1.1. We simulate the individual
proofs, the overall proof and the new equality proof. Then, for challenges
e1i, e2 and e3i, where i ∈ {1, 2, . . . , n}, we reprogram the random hash func-
tions such thatH12(g, yi, αi, βi, A0i, B0i, A1i, B1i)← e1i, H1n(g, y, α, β, A0, B0,
A1, B1, . . . , An−1, Bn−1)← e2 and H2(g, g, αi, αi, Ai, Ai)← e3i.
This modification may be observable. If any of the hashes is already asked for
by the adversary, we have a problem. A random oracle is consistent, asking
for the same hash will always return the same answer. That means, if the
adversary has already queried for the hash, we are not able to reprogram the
random hash function, and hence not able to fake the proofs. From this it
follows that the difference between this game and the previous is dependent
on whether or not the adversary has queried the hash. The challenge is asked
for 2n times in the individual proofs, n times for the overall proof and 2n
times for the new protocol, which adds up to 5n. Since the number of queries
to the hash oracle is nq and a challenge is in the group Z∗q, we have

|Pr[E1]− Pr[E2]| ≤ 5n
q − 1nq.

Game 3 This game proceeds as before. In addition we pick a random value
l from the group Z∗q and we set g ← yl. Given a valid ciphertext cij and the
soundness property we have loggαij = loggαij, then αij = grij and αij = grij .
From this follows α1/l

ij = grij/l = yrij l/l = yrij .
Introducing this is not observable and we have

Pr[E2] = Pr[E3].

5.2. SECURITY ANALYSIS 31

Game 4 We change the decryption and decrypt by βα(−1/l). Then we
remove the secret key a, and from now on the public key y is just randomly
chosen from Z∗q.
These changes can only be observed if the adversary manages to fake the
equality proofs. Theorem 2.1 gives that the probability of this is 2(η+1)(q−
1)−1, where η is the number of queries to H2. Note that η ≤ nq. From this
follows

|Pr[E3]− Pr[E4]| ≤ 2(η + 1)
q − 1 .

Game 5 We continue as before, but now we make a modification to the en-
cryption process. We want to encrypt using 3-DDH tuples. Let (g, g, y, u1, u1, u2)
be a 3-DDH tuple, where u1 = gtij , u1 = gtij and u2 = ytij for some tij in
Z∗q. We use this tuple to encrypt, and for rij, sij ∈R Z∗q we get

(αij, αij, βij) = (grijusij1 , griju
sij
1 , yriju

sij
2 gmij).

This modification is unobservable and

Pr[E4] = Pr[E5].

Game 6 In the last game we want to change the encryption a little more.
Now we let (g, g, y, u1, u1, u2) be a random tuple where u1 = gtij , u1 = g t

′
ij

and u2 = yt
′′
ij for some tij, t

′
ij, t
′′
ij in Z∗q, and tij 6= t′ij 6= t′′ij. Then, for

rij, sij ∈R Z∗q we have

(αij, αij, βij) = (grijusij1 , griju
sij
1 , yriju

sij
2 gmij).

Note that the adversary will not notice that loggαij 6= loggαij from the proofs,
since they are forged.
We observe that the only difference between this game and the previous one
is whether or not we use the 3-DDH tuple for encryption. We prove the
following lemma.

Lemma 5.2. Suppose 3-DDH is (εDDH , T)-hard, then

|Pr[E5]− Pr[E6]| ≤ εDDH .

Proof. Let D be a distinguisher between Game 5 and Game 6 and let A
be the adversary against ballot secrecy. A runs D as a subroutine and it is

32 CHAPTER 5. CHANGING THE PROTOCOL

important to notice that A controls what D sees. A will use D to distinguish
3-DDH tuples from random tuples.
Let (g, g, y, u1, u1, u2) be a random instance of the decision Diffie-Hellman
problem. If u1 = gtij , u1 = g tij and u2 = ytij = gatij , the tuple was drawn
from the distribution G4, and if u1 = gtij , u1 = g t

′
ij and u2 = yt

′′
ij = gat

′′
ij , the

tuple was drawn from the distribution of random tuples.
The job of A is to distinguish between these two distributions.
A makes encryptions (grijusij1 , griju

sij
1 , yriju

sij
2 gmij), simulates the proofs and

sends the ciphertexts to D. Since A runs D, A controls the hash values
which D will use to verify the proofs. This way A is always able to fake
proofs such that they will always be accepted by D. At last A waits for D
to distinguish whether the encryption came from Game 5 or from Game 6.
If (g, g, y, u1, u1, u2) is drawn from the 3-DDH distribution, A simulates the
ciphertexts from Game 5. If (g, g, y, u1, u1, u2) is drawn from the distribution
of random tuples, A simulates the ciphertexts from Game 6. Eventually D
makes a guess and outputs a bit, then A outputs the same bit. Since the
ciphertexts perfectly model Game 5 and Game 6 respectively, we must have

|Pr[E5]− Pr[E6]| ≤ εDDH ,

which proves the lemma.

Game 7 In this game we go back and let everything be as in Game 2, but
instead of encrypting the message mij, we encrypt random group elements
γij.
In the previous game the βij’s are encryptions of random elements from G,
since u2 is random. In this game we encrypt random elements γij. Hence,
the distribution of βij is equal in Game 6 and Game 7, and the adversary
will not see any difference between these games.

Pr[E6] = Pr[E7].

Analysis We observe that we encrypt random group elements in the last
game. Therefore the ciphertexts contain no information about the bit b, and
the adversary has no more advantage than guessing, that is

Pr[E7] = 1
2 .

5.2. SECURITY ANALYSIS 33

Finally, we have that the advantage of any adversary is given by

ε = |Pr[E0]− 1
2 |

= |Pr[E0]− Pr[E1] + Pr[E1]− . . .− Pr[E7] + Pr[E7]− 1
2 |,

using the triangle inequality we get

ε ≤ |Pr[E0]− Pr[E1]|+ |Pr[E1]− Pr[E2]|+ . . .+ |Pr[E7]− 1
2 |.

From this follows
ε ≤ εDDH + 5n

q − 1nq + 2(η + 1)
q − 1 ,

which proves the theorem.

34 CHAPTER 5. CHANGING THE PROTOCOL

Chapter 6

Applying Helios to the Norwegian
County Election

So far we have encrypted using the exponential ElGamal cryptosystem. This
chapter introduces a combination of ElGamal and the generalisation of Paillier’s
public key system. We want to see if we can find a reasonably efficient voting
protocol with homomorphic encryption for the Norwegian county election.

The current version of Helios with the exponential ElGamal works perfectly fine
for elections where the exponents are relatively small. As previously mentioned we
have to compute the discrete logarithm to obtain the final result. This becomes
hard in elections with homomorphic encryption where the exponents tend to grow
large. Homomorphic encryption is desirable, but in the Norwegian county elec-
tion the exponents will grow large. In the new system it is possible to efficiently
compute discrete logarithms to a base (1 + n).

We will first describe the system and the encryption and decryption process.
Secondly we will apply the voting scheme to the Norwegian county election and
at last we will use a numerical example with data from Hordaland and analyse if
it is an efficient voting scheme.

6.1 The New Encryption Scheme
We introduce the new encryption scheme where we combine ElGamal with a gen-
eralisation of Paillier’s public key system [12]. With this new system we obtain the
properties from both ElGamal and Paillier. With ElGamal follows the Σ-protocol
which enables us to prove correct encryption, and we are also able to make a formal
security proof, as in the previous chapter. Blending this with Paillier, we obtain
a system where we are able to compute discrete logarithms, and hence get the
final result even if the exponent is large. In this section we give some theoretical

35

36CHAPTER 6. APPLYING HELIOS TO THE NORWEGIAN COUNTY ELECTION

background and explain the encryption and decryption.
Let p = 2p′ + 1 and q = 2q′ + 1, where p, p′, q and q′ are primes. We have

that gcd(p− 1, q − 1) = 2. Let n = pq. We will work in the ring Z∗ns+1 which has
some nice properties. A property we will use is that the discrete logarithm to base
(1 + n) is easy to compute. We will soon explain how.

We fix the element g in Z∗ns+1 and let |g| = p′q′. We have some T such that
T ≥ |g|2 (one alternative is to choose T = n2). Let x ∈R {0, 1, . . . , T} and y = gx.
Then Z∗ns+1 , g and y are the public keys while x is the private key.

To encrypt we choose a random ri from {0, 1, . . . , T}. The encryption of a
message mi ∈ Zns is then given by

ci = (αi, βi) = (gri , yri(1 + n)mi) mod ns+1.

The encryption is homomorphic, which is of our interest. We see that by
multiplying the ciphertexts together, the mi’s, for i ∈ {1, 2, . . . , k}, are added in
the exponent, and we obtain

c =
k∏
i=1

ci =
(

k∏
i=1

αi,
k∏
i=1

βi

)
=
(

k∏
i=1

gri ,
k∏
i=1

yri(1 + n)mi
)

=

g
k∑
i=1

ri

, y

k∑
i=1

ri

(1 + n)
k∑
i=1

mi

 mod ns+1.

To obtain the original plaintext we compute

(1 + n)
k∑
i=1

mi

=
k∏
i=1

βiy
−

k∑
i=1

ri

=
(

k∏
i=1

βiαi

)−x
.

In the original protocol we had g
∑

mi and in that group it was hard to compute
discrete logarithms. Now we are in the ring Z∗ns+1 and we have (1 + n)

∑
mi where

we are able to compute ∑mi [5]. We explain how to do it.
Set a = ∑

mi and we want to find a (modns+1). The idea is to compute
aj = a (modnj) for j = 1, 2, . . . , s+ 1. Let L() be a function such that L(b) = b−1

n
.

We apply the function on (1 + n)a, and we will find a way to extract a. First of
all we have

(1 + n)a =
a∑
j=0

(
a

j

)
nj = 1 + an+

(
a

2

)
n2 + . . .+

(
a

a− 1

)
na−1 + na.

Applying the function L() we get

L((1 + n)a modns+1) = (a+
(
a

2

)
n+ . . .+

(
a

s

)
ns−1) modns.

6.2. CORRECT ENCRYPTION 37

Assume we are in the j’ th step and that we know aj−1, that is a (modnj−1).
We have that aj = aj−1 (modnj−1) which implies aj = aj−1 + γnj−1 for some
0 ≤ γ < n.

We want aj = a (modnj), so

L((1 + n)a modnj+1) = (aj +
(
aj
2

)
n+ . . .+

(
aj
j

)
nj−1) modnj.

Let 0 < t < j and assume that(
aj
t+ 1

)
nt =

(
aj−1

t+ 1

)
nt (modnj).

Using this we have

L((1 + n)a modnj+1) = (aj−1 + γnj−1 +
(
aj−1

2

)
n+ . . .+

(
aj−1

j

)
nj−1) modnj.

We rewrite the above and obtain

aj = aj−1 +γnj−1 = L((1 +n)a modnj+1)− (
(
aj−1

2

)
n+ . . .+

(
aj−1

j

)
nj−1) modnj.

Algorithm 1 could be used to calculate aj = a (modnj) which gives us the result∑
mi.

Algorithm 1 Calculating as+1

a = 0;
for i = 1 to s do
t1 = L(a modni+1);
t2 = a;
for k = 2 to i do
a = a− 1;
t2 = t2a (modni);
t1 = t1 − t2nk−1

k! (modni);
end for
a = t1;

end for

6.2 Correct Encryption
We can use the same protocol as in Figure 2.1 with just some small modifications
to prove correct encryption. We are now working in the ring Z∗ns+1 , hence we pick

38CHAPTER 6. APPLYING HELIOS TO THE NORWEGIAN COUNTY ELECTION

the elements from other sets. For a ciphertext c = (gr, yr(1+n)i) we pick a random
xi from {0, 1, . . . , T}. We also choose ej and tj for all j 6= i ∈ {0, 1, . . . , k} from
the set {0, 1, . . . , T}. The challenge e is randomly chosen from {0, 1}l for some l.

The protocol is still complete and special honest verifier zero-knowledge, but
we are not able to prove special soundness required for it to be a Σ-protocol.

But we do have some soundness if we can find t, t′, e, e′ such that gcd(e, e′) = 1,
and gt = αe and gt

′ = αe
′ . Then, since e and e′ are relatively prime, there exists

a, b such that ae+ be′ = 1, and we obtain

gat+bt
′ = gatgbt

′ = αaeαbe
′ = αae+be

′ = α.

We need some ei and e′i such that gcd(ei, e′i) = 1. Now, if we rewind four times
instead of two, we get gti−t′i = αei−e

′
i and gt

′′
i −t
′′′
i = αe

′′
i −e

′′′
i . This could be used to

extract the discrete logarithm, but we do not have a formal proof that ei − e′i is
relatively prime to e′′i − e′′′i . From [11] we have that the probability of two random
elements being relatively prime is 6

π2 , hence it is not unreasonable to expect that
they will be.

6.3 Applying Helios to the Norwegian County
Election

We consider the Norwegian county election and apply Helios with Paillier encryp-
tion.

In the Norwegian county election it is possible to vote for at most one party
and in addition it is possible to submit personal votes for candidates within the
party you voted for.

We represent a vote as (m1,m2, . . . ,mk) where k is the number of parties and
candidates. Hence, a ballot consists of a list of parties followed by candidates.

Let N be the total number of eligible voters and we use Li for some L > N to
be a unique representation of each party/candidate for i ∈ {1, 2, . . . , k}.

Like before, we encrypt each party/candidate to encode a 0 or a 1, and thus
we get k ciphertexts. Each ciphertext of voter Vj is given as

cij = (grij , yrij(1 + n)mij) mod ns+1,

where mij = 0 or mij = 1.
We multiply all the ballots together, and for Vj we obtain

c(j) =
k∏
i=1

cL
i

ij =

g
k∑
i=1

rijL
i

, y

k∑
i=1

rijL
i

(1 + n)
k∑
i=1

mijL
i

mod ns+1.

6.3. APPLYING HELIOS TO THE NORWEGIAN COUNTY ELECTION 39

The final result is then given as

C =
N∏
j=1

c(j) =

 N∏
j=1

k∏
i=1

grijL
i
,
N∏
j=1

k∏
i=1

yrijL
i(1 + n)

k∑
i=1

mijL
i

=

g
N∑
j=1

k∑
i=1

rijL
i

, y

N∑
j=1

k∑
i=1

rijL
i

(1 + n)

N∑
j=1

k∑
i=1

mijL
i

mod ns+1.

The decryption of the final tally is

m =
k∑
i=1

aiL
i (mod ns+1),

where ai = ∑N
j=1mij, that is the total amount of votes for candidate i.

The result can be calculated with Algorithm 1 in Section 6.1.
In the original version of Helios we used an overall proof to show that the prod-

uct of ciphertexts for each voter contains a value between 0 and some maximum
number. In this case we have to multiply the cij’s together for each voter without
the representation of Li. Remark that we are still not able to prove that a voter
voted for eligible candidates. In the county election the voters are not allowed
to vote for candidates outside the party they voted for. If we apply the proof in
Section 2.3.1.1 on the product of ciphertexts, we just guarantee that V did not
submit too many votes, it says nothing about whether or not the candidates that
V voted for belong to the party that V voted for.

So we do the following. Each single ciphertext ci is proved to contain a 0 or a
1 with the protocol in Section 6.2. Secondly we need to check that the product of
ciphertexts of the parties contains a 0 or a 1, that is that the voter voted for at
most one party.

Next we need to check if the product of ciphertexts of candidates of a party
contains a value larger than 0. If so, the ciphertext of the corresponding party
should contain a 1 and all the other products should be 0. For simplicity we
enumerate the ciphertexts for the candidates cil with two indices where i tells us
which party the candidates represent and l is the candidate number. Hence the
representation will be

c1, c2, . . . , ckp , c1,1, c1,2, . . . , c1,l1max , c2,1, c2,2,
. . . , c2,l2max , . . . , ckp,1, ckp,2, . . . , ckp,lkpmax .

If a party has less than lmax candidates, we add several 1’s to complement the
party.

40CHAPTER 6. APPLYING HELIOS TO THE NORWEGIAN COUNTY ELECTION

To check that a voter did not submit votes for candidates outside the party
he voted for, we check if the next limax ciphertexts corresponding to party i is
different from 0. If it is, ci should contain a 1. That is, we prove that the product
of the limax ciphertexts contains 0 or that ci contains a 1. This can be done with
a 2-OR-protocol and must be done for each party.

So, what should be published on the bulletin board is each single ciphertext
c1, c2, . . . , ck along with individual proofs that each ciphertext contains a 0 or a 1.
We also publish the product of the ciphertexts of parties along with a proof that
it contains a 0 or a 1. At last we publish the product of ciphertexts of candidates
for each party, and the 2-OR-protocols as described above.

6.4 Security Analysis
In this section we will analyse the security in the new protocol.

Since we publish every ciphertext on the bulletin board along with individual
proofs and the 2-OR-protocols as described in the previous section, we see that
verifiability is still maintained. The principle of ballot casting assurance is also as
before, a voter needs to login before he wants to cast his vote, hence everyone can
verify the encryption process.

Then there is ballot secrecy left to prove. In the previous chapter we introduced
α← gr, and we were able to make a formal proof of ballot secrecy. We are not able
to do this anymore. We could make the same security proof as that of Theorem
5.1, but the cheating we do in Game 3 will not work in this ring. There probably
exists some similar trick which we could use in this version or we could use other
protocols to prove correct encryption, but we did not have time to consider other
solutions.

6.5 Numerical Example
In this section we will give a numerical example from the county election i Horda-
land 2011. The reason why we look at this is because we get the restriction∑k
i=1 aiL

i < ns, since the element (1 + n) has order ns in the ring Z∗ns+1 for any
s < p, q [5].

We have chosen some data from the last county election in Norway, held in 2011.
The data are given in Table 6.1. By investigating the last election in Norway and
the statistics regarding number of voters, number of candidates and parties, we
found Hordaland to be one of the counties with most parties and candidates. The
data are from [15]. The number of people eligible to vote in Hordaland is 368 514
[16].

6.6. COSTS OF THE CALCULATIONS 41

Table 6.1: Statistics from the county election 2011 in Hordaland.

Number of eligible voters 368 514
Number of parties 15
Total number of different candidates 704
Maximum number of candidates within a party 63

We need ∑k
i=1 aiL

i < ns. We also need each ai to be less than L, such that the
representation ∑k

i=1 aiL
i is unique. In the most extreme case the value of ai is 368

514, that is, every voter voted for party/candidate number i. If we also consider
that Oslo had 477 933 eligible voters and take population growth into account, we
should set L = 500 000 ≈ 219. The value of k is 704 + 15 = 719. From this follows

k∑
i=1

aiL
i < Lk+1 = (219)720.

This means that ns must be (219)720. Using s = 1 results in n = 213680, a very
large number, thus we should use s ≥ 2, which tells us why we should work in
Z∗ns+1 , s ≥ 2. Trying different values for s we obtain the values in Table 6.2.

Table 6.2: Values of n and ns+1 for different s.

s values n values ns+1

s = 1 n = 213680 ns+1 = 227360

s = 2 n = 26840 ns+1 = 220520

s = 3 n = 24560 ns+1 = 218240

s = 4 n = 23420 ns+1 = 217100

s = 5 n = 22736 ns+1 = 216416

s = 6 n = 22280 ns+1 = 215960

s = 7 n = 21954.5 ns+1 = 215636

For s > 7 we have that n becomes so small that we could worry about the
security of n. Hence, we choose to stop at s = 7, and will do the further calculations
with s ∈ {1, 2, . . . , 7}.

6.6 Costs of the Calculations
We will now study the actual cost of doing the computations in the encryption
and decryption. First we will look at the time it takes to do one exponentiation,
then we will look at the cost of the encryption process and the counting.

42CHAPTER 6. APPLYING HELIOS TO THE NORWEGIAN COUNTY ELECTION

It is the exponentiation which is expensive in the encryption process, thus we
measure the time it takes to calculate one exponentiation for s ∈ {1, 2, . . . , 7}. The
computations are done in PARI/GP [6] on a PC with 2.67 GHz 4×6-core Xeon
24 Intel CPUs. n is found by generating two different primes with roughly the
same size where their product is close to (and larger than) the n values in Table
6.2. We do 100 computations and then average the result to get the time of one
exponentiation. The output is presented in Table 6.3.

Table 6.3: The cost of the encryption.

s values Time (ms)
s = 1 1829
s = 2 1179
s = 3 973
s = 4 876
s = 5 824
s = 6 776
s = 7 752

As we see, for the highest nmodulus, one exponentiation takes nearly 2 seconds.
It is quite much considering that we have to do several exponentiations in the
encryption and in the proofs.

We also want to see the total cost related to the encryption and decryption.
We assume that calculating the product and the sum of two elements, and com-
puting the hash of the commitments use negligible time. Thus we only count the
exponentiations. The result is presented in Table 6.4 where kp is the number of
parties and kl is the maximum number of candidates in each party.

Table 6.4: Costs of Calculations.

Operation Cost
Encryption (16 + 10kl)kp + 6
Decryption (17 + 9kl)kp + 12 + s

Since we need to verify the proofs before we do the decryption we have included
the cost of the verification which is (17 + 9kl)kp + 11.

Using Tables 6.3 and 6.4 and the numbers from Hordaland 2011 we get the
following table for how long time it takes to make one encryption with proofs for
s = 1, 2, . . . , 7.

As we see from Table 6.5, it takes a lot of time to make one encryption with
proofs. For s = 7, the smallest modulus, it takes 2 hours, which is pretty much.
For the largest modulus it takes nearly 5 hours.

6.6. COSTS OF THE CALCULATIONS 43

Table 6.5: Time of the Encryption Process.

s values Time (ms) Time (h m)
s = 1 17733984 4h 55m
s = 2 11431584 3h 11m
s = 3 9434208 2h 37m
s = 4 8493696 2h 21m
s = 5 7989504 2h 13m
s = 6 7524096 2h 5m
s = 7 7291392 2h 2m

44CHAPTER 6. APPLYING HELIOS TO THE NORWEGIAN COUNTY ELECTION

Chapter 7

Conclusion

We have presented the existing voting protocol Helios, to which we have done two
changes. The first change was to add an extra encryption proof, and the second
was to change the whole encryption process.

We added another proof for correct encryption in addition to the proof of
knowledge. The reason we did this was to make a security proof for ballot secrecy.
We were not able to do this before, because we were not able to extract the witness
in the non-interactive case. Then we had a problem with the decryption when we
removed the secret key in the security proof.

We solved this problem with the new encryption proof by adding α = gr, where
g is a generator for the group. This resulted in a complete security proof.

We kept the old proof of knowledge, to still be able to prove that each single
ciphertext contains a 0 or a 1 and that the product of ciphertexts contains a value
between 0 and n− 1.

The other change we did was to combine the already existing exponential El-
Gamal with a generalisation of Paillier encryption. We wanted to find an efficient
voting protocol for the Norwegian county election. The new protocol is a good
theoretical protocol for the county election. We have a good way to encrypt ballots
with the unique representation Li for parties and candidates i ∈ {1, 2, . . . , k} and
we are able to prove the encryption correct and make a formal security proof.

Unfortunately, the voting protocol is not efficient. From Table 6.3 in Section
6.5 we see that the time it takes to make just one exponentiation with the largest
modulus is nearly 2 seconds. This is quite much considering that we are going
to compute three exponents in each ciphertext for each party/candidate and we
have to compute some exponentiations in the proofs as well. We see the result
of this in Table 6.5. It takes 2 hours to encrypt one ballot for one voter along
with corresponding proofs with the smallest modulus. With the largest modulus
it takes nearly 5 hours. In both cases the time needed is simply too much for the
protocol to be efficient.

45

46 CHAPTER 7. CONCLUSION

Bibliography

[1] Ben Adida. Helios Voting: Technical Documentation, 2012.

[2] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. Proceeding of the First ACM
Conference on Computer and Communication Security, pages 62–73, 1993.

[3] Josh Benaloh. Simple Verifiable Elections. EVT’06: Electronic Voting Tech-
nology Workshop, 2006.

[4] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Pro-
tocols. pages 19–27, 1996.

[5] Ivan B. Damg̊ard and Mads J. Jurik. A Generalisation, a Simplification and
some Applications of Paillier’s Probabilistic Public-Key System. 2000.

[6] PARI/GP Developement. PARI/GP.

[7] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. 1986.

[8] Rosario Gennaro. Achieving Independence Efficiently and Securely.
PODC’95: Principles of Distributed Computing Symposium, page § 4.2, 1995.

[9] Kristian Gjøsteen. The Norwegian Internet Voting Protocol. 2013.

[10] Kristian Gjøsteen. A Latency-Free Elecion Scheme. Topics in Cryptology-
CT-RSA 2008, pages 425–436, Springer 2008.

[11] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers,
Fourth Edition. 1975.

[12] Jens Groth Ivan B. Damg̊ard and Gorm Salomonsen. The Theory and Imple-
mentation of an Electronic Voting System. July 31, 2002.

47

48 BIBLIOGRAPHY

[13] Kasper Dupont Ivan B. Damg̊ard and Michael Østergaard Pederesen. Un-
clonable Group Identification. Advances in Cryptology-EUROCRYPT 2006,
pages 555–572, Springer 2006.

[14] Kazue Sako and Joe Kilian. Receipt-Free Mix-Type Voting Scheme - A Prac-
tical Solution to the Implementation of a Voting Booth. 1995.

[15] Statistisk Sentralbyr̊a. Kommunestyret- og fylkestingsvalget, listekandidater
2011, 1. juli 2011.

[16] Statistisk Sentralbyr̊a. Kommunestyret- og fylkestingsvalget, personer med
stemmerett, 25. august 2011.

[17] Victor Shoup and Rosario Gennaro. Securing Threshold Cryptosystems
against Chosen Ciphertext Attack. Journal of Cryptology, pages 15(2): 75–96,
2002.

[18] Ben Smyth and Véronique Cortier. Attacking and Fixing Helios: An Analysis
of Ballot Secrecy. CSF’ 11: 24th Computer Security Foundations Symposium,
pages 297–311, 2011.

