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Part I:

Introduction





1 Introduction

Survival analysis and kriging interpolation is widely studied in statistical
litterature and frequently applied in biology and medicine, technological sys-
tems and earth science mappings.

Survival analysis have been utilized since the first life table, which was the
oldest methods for analyzing survival/failure time data, was disclosed by
John Graunt in 1662, see Kreager [6]. The name survival analysis may indi-
cate the analysis of actual survival, death rates or mortality. But, pertaining
to the analysis of the time of occurrence of events of various types, it has
a wider meaning that covers reliability theory/reliability analysis in engi-
neering, duration analysis/duration modeling in economics and event history
analysis in sociology.

Kriging as a special term in geostatistics was introduced by Matheron in
1963, to acknowledge the M.Sc Thesis of Daniel G. Krige. The philosophical
ideas behind G.Matheron’s work is presented in Matheron [8]. The adoption
of geostatistics and kriging to applications was initially made in the cele-
brated book Journel and Huijbregts [5]. Currently kriging is used as a term
for best linear unbiased predictors in mainstream statistical litterature. The
methodology is being used in a large variety of applications, for example:
natural resource explorations, climate modelling, medical image analysis and
econometrics.

1.1 Non-stationary stochastic models

Stochastic models as temporal processes or as spatial fields are discussed in
this thesis. We coin them survival analysis and kriging interpolation models,
respectively. Non-stationary versions of these models are of special interest,
and both model formulation and model parameter inference are discussed.

Survival analysis and kriging interpolation models are presented in the next
Sections. These two model types defines the backbone of the two major re-
ports in the Thesis. The exposure of the models emphasizes the similarity in
model construction in spite one is in the temporal and one is in the spatial
domain. We also outline model parameter inference techniques under varying
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model assumptions.

1.1.1 Survival Analysis Model

A stochastic process {N(t); t ∈ T ⊂ �+} with temporal reference variable
t ∈ T , is a counting process if N(t) ∈ N+ and N(s) ≤ N(t), for s < t , see
Rausand and Høyland [9].

A counting process is a non-stationary Poisson process (NSPP) with rate
function {w(t); t ∈ T}, if:

1. N(0)=0.

2. Pr {N(t+Δt)−N(t) = 1} = w(t)Δt+o(Δt), for all t where O(Δt)
Δt

→ 0
as Δt → 0 and N(t) is the number of events occurring within (0, t]

3. Pr {N(t+Δt)−N(t) ≥ 2} = o(Δt), which means that the system will
not experience more than one event at the same time.

An NSPP model is fully characterized by the intensity function {w(t); t ∈ T},
commonly denoted by Rate of ocurrence of failures (ROCOF). The associated
cumulative ROCOF (CROCOF) is defined as:

W (t) =
∫ t

0
w(s)ds; t ∈ T.

The number of events in a time interval (0, t], N(t), is Poisson distributed
with parameter W (t), for any t ∈ T :

N(t) ∼ Pois[W (t)]

The probability of n events in the interval (0, t] is then:

f(n) = [W (t)]n

n!
exp {−W (t)}; n = 0, 1, ...

The expectation and variance are defined by the model parameters for NSPPs:

E[N(t)] = W (t)

V ar[N(t)] = W (t)

The counting process {N(t); t ∈ T ⊂ �+} is said to be a stationary Poisson
process (SPP) having constant and time independent rate function:
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w(t) = λ; t ∈ T

W (t) = λt; t ∈ T

Parametric Model

Several parametric models illustrate the ROCOF of an NSPP but we use
the most celeberated parametrization of the NSPP, namely the power law
model. One reason for its popularity is that the ROCOF as a function of
t is of the same form as the hazard rate of a Weibull distribution. Hence
the time to first event of the power law NSPP is Weibull distributed. Be-
cause of this, the power law model is sometimes denoted the Weibull process.

The CROCOF of the power law is given by, see Rausand and Høyland [9]:

W (t;λ, β) = λtβ, for λ > 0, β > 0; t ∈ T

The parameter β in the power law model gives information about the sys-
tem as follows: if 0 < β < 1, then the system is improving, if β > 1, then
the system is deteriorating and if β = 1, then the model is reduces to an SPP.

Hierarchical Model

The hierarchical model is phrased in a Bayesian setting with an underlying
random model parameter a, as:

[N(t) | a] ∼ Pois[a W (t;λ, β)]

with prior model which is Gamma distributed:

a ∼ Gam[δa,
1

δa
]

where, δa ∈ �+ is a coupled location/scale parameter. This entails that
E[a] = 1 and V ar[a] = δa. The corresponding pdf is:

f(a) =

[
Γ( 1

δa
)δ

1
δa
a

]−1 [
a

1
δa
−1exp

−a
δa

]
, a > 0

3



The associated marginal pdf for N(t) is then,

N(t) ∼ NegBin

[
1

δa
,

1

δaW (t;λ, β) + 1

]
The negative binomial distribution is also known as the Gamma-Poisson
(mixture) distribution.

Dynamic Model

The dynamic model is defined by the conditional intensity function, see
Babykina and Couallier [1] and Le Gat [7]:

wd(t;λ, β, γ) = (1 + γN(t−))w(t)

where d stands for dynamic, w(t) = λβtβ−1 is the baseline intensity function
and N(t−) denotes the number of events experienced in the time interval
from (0, t].

The interpretation of {wd(t); t ∈ T} as a conditional intensity function is
as follows,

P(event in (t, t+ h) | N(t−) = n) ≈ (1 + γn)w(t)h

for small h.

As shown by Le Gat [7], the marginal distribution of N(t) is negative bi-
nomial:

N(t) ∼ NegBin

[
1

γ
, exp {−γW (t;λ, β)}

]
.

1.1.2 Kriging Interpolation Model

The random field (RF) {R(x); x ∈ D ⊂ �m} with spatial reference variable
x ∈ D and R(x) ∈ �, is a preferable model for continuous, or almost con-
tinuous, spatial variables due to its simplicity in inferences and analytical
tractability.

A RF {R(x); x ∈ D ⊂ �m} is denoted a Gaussian RF (GRF) with spatial
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expectation {μ(x); x ∈ D}, spatial variance {σ2(x); x ∈ D} and spatial cor-
relation function

{
ρ(x

′
, x

′′
); x

′
, x

′′ ∈ D2
}
, see Cressie [3] if:

R ∼ Gauss[μ,ΓΩΓT ]

for R = [R(x1), ..., R(xn)]
T , ∀ conf (x1, · · · , xn) ∈ Dn and ∀n ≥ 1.

Where μ = [μ(x1), ..., μ(xn)]
T is a [n × 1]-vector, Γ is a diagonal [n × n]-

matrix with diagonal elements [σ(x1), ..., σ(xn)] and Ω is a [n × n]-matrix
with elements ρ(xi, xj); i, j ∈ 1, ..., n.

Hence the GRF is fully characterized by {μ(x); x ∈ D}, {σ2(x); x ∈ D} and{
ρ(x

′
, x

′′
); x

′
, x

′′ ∈ D2
}
. We consider the two former to be unknown, while

the latter is considered to be a known positive definite function, which will
not be further discussed here. The corresponding pdf can be written as:

f(r) = (2π)−
n
2

∣∣ΓΩΓT
∣∣− 1

2 exp
{−1

2
(r− μ)T [ΓΩΓT ]−1(r− μ)

}
,

The expectation and variance are defined by the model parameters for GRFs:

E [R(x)] = μ(x)

V ar [R(x)] = σ2(x)

The GRF {R(x); x ∈ D ⊂ �m} is said to be stationary if the model param-
eters are:

μ(x) = μ; x ∈ D

σ2(x) = σ2; x ∈ D

ρ(x
′
, x

′′
) = ρ(x

′ − x
′′
); x

′
, x

′′ ∈ D2

Parametric Model

The so called universal kriging model is defined by, see Chiles and Delfiner
[2]:

μ(x;α1, ..., αL) =
L∑
l=1

αlgl(x); x ∈ D
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σ2(x) = σ2 for σ2 ≥ 0; x ∈ D

where, α = [α1, ..., αL]
T and σ2 are unknown and must be assessed from the

observed values while {gl(x); x ∈ D}; l = 1, ..., L need to be known func-
tions. This parametric model can be interpreted as a regression model in the
known regressor surfaces {gl(x); x ∈ D}; l = 1, ..., L. The spatial correlation
function

{
ρ(x

′ − x
′′
); x

′
, x

′′ ∈ D2
}
is considered to be known.

Hierarchical Model

In the hierarchical Bayesian representation we let the model parameters in
the stationary GRF μ and σ2 be represented by random variables m and s2.
By conditioning on [m, s2], the GRF is fully specified:

[R | m, s2] ∼ Gauss[min, s
2Ω]

where, m and s2 are univariate random variables and in is a unit [n × 1]-
vector. The stationary correlation function is considered to be known.

Assume the following prior model for [m , s2]:

[m | s2] ∼ Gauss[μm, τms
2]

s2 ∼ InvGam[ξs, γs]

with μm ∈ � , τm ∈ �+ and InvGam[ξs, γs] representing the inverse gamma
pdf:

f(s2) = [Γ(ξs)]
−1γξs

s [s2]−(ξs+1)exp {−γs[s
2]−1}, s2 > 0.

where Γ(x) is the gamma function, ξs ∈ �+ is a shape parameter and γs ∈ �+

is a scale parameter.

Note that the prior models for [m, s2] are conjugate models with respect
to multi-Gaussian models, hence the posterior models conditioned on a set
of observations belong to the same pdf classes.

The associated marginal pdf for R is then, see Røislien and Omre [10]:

R ∼ T − dist
[
μmin,ΓΩΓ

T , ν
]
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where, ν ∈ �+ is the degrees of freedom which is defined by ν = 2ξs.

Dynamic Model

Since there is no ordering in the spatial reference variable x ∈ D, it is not
easy to see how a spatial dynamic model could be defined.

1.2 Inference of model parameters

In this section we discuss the survival analysis and kriging interpolation
models separately, although these have many similarities in the inference
approaches.

Survival Analysis Model

Inference is based on the observations in time (0, τ ] for m independent sys-
tems with nj events for each system j = 1, ...,m and 0 < tij < τ ; i =
1, ..., nj, j = 1, ...,m being the times to events.

The stationary model parameter λ is assessed by maximum likelihod:

λ̂ =
∑m

i=1 nj

mτ

In the parametric model, the actual set of model parameters are [λ, β] and
their maximum likelihood estimates are:

λ̂ =

∑m
i=1 nj

m[τ β̂]

β̂ =

∑m
i=1 nj

log(τ)
∑m

i=1 nj −
∑m

j=1

∑nj

i=1 log tij

The latter equation gives an explicit solution for β̂ which can afterwards be
substituted in the former so that we have both estimates.

In the hierachical model, the actual set of model parameters are [λ, β, δ].
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The λ and β parameters have the same expression as the parametric solution
but numerical solution is needed to determine δ. The maximum likelihood
solution require the following equation to be solved:[−1

δ2a

]{ m∑
j=1

ψ(nj +
1

δa
)−mψ(

1

δa
)−m log(δa) +m

}

−
[−1

δ2a

]{
m log

[
λ̂T β̂ +

1

δa

]
− n+ m

δa

λ̂T β̂ + 1
δa

}
= 0

This defines the estimate δ̂a, and consequently ̂V ar[a] = δ̂a.

In the dynamic model, the actual set of model parameters are [λ, β, γ]. Nu-
merical solution is also recommended here.

Kriging Interpolation Model

The inference is based on the observations in locations (xo
1, ..., x

o
no
) ∈ Dno ,

hence ro = (r(xo
1), ..., r(x

o
no
)) in one realization {r(x); x ∈ D}.

In a stationary GRF model, the actual set of model parameters are [μ, σ2]
and their maximum likelihood estimates are:

μ̂ = [iTno
Ω−1oo ro][i

T
no
Ω−1oo ino ]

−1

σ̂2 = 1
no
(ro − μ̂ino)

TΩ−1oo (ro − μ̂ino)

where Ωoo is the correlation [no × no]-matrix between observations.

We also use a localized estimators of [μ, σ2] centered at arbitrary location
x+ ∈ D based on rk+o = Gk

+ro, where G
k
+ is a selection [k× no]-matrix which

selects the k-closest observations to x+.

The localized estimators are:

μ̂k
+ = [iTk [G

k
+Ωoo[G

k
+]

T ]−1Gk
+ro][i

T
k [G

k
+Ωoo[G

k
+]

T ]−1i k]−1

σ̂k2
+ = 1

k
(Gk

+ro − μ̂k
+i k)

T [Gk
+Ωoo[G

k
+]

T ]−1(Gk
+ro − μ̂k

+i k)
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In the parametric model, the parameters are (α1, ..., αL, σ
2) the estimators

can easily be assessed by a maximum likelihood criterion.

In hierarchical, stationary Gaussian RF model, we choose to make the as-
sessment in an empirical Bayes setting based on the observations ro. The
localized estimates in the observation locations μ̂k

i , σ̂
k2
i ; i = 1, ..., no are con-

sidered to be a super-population of μ̂k and σ̂k2. Based on this empirical
sample we infer the model parameters μ̂k

m and τ̂ km in the prior model for
[m | s2].

The corresponding localized estimators for the posterior expectation m cen-
tered at location x+ ∈ D based on observations rk+o=Gk

+ro is based on the
conjugate properties of the prior model:

m̂k
+ = E[m | s2, Gk

+ro]

= μ̂k
m + τ̂ kmi

T
k

[
τ̂ kmi ki

T
k + [Gk

+Ωoo[G
k
+]

T
]−1 [

Gk
+ro − μ̂k

mi k
]

which is independent of s2. This estimator appears as shrinkage estimator of
μ̂k
+ towards μ̂k

m.

The estimates for the inverse gamma prior model parameters for variance
are more complicated. We consider the squared crossvalidation errors of ob-
servation locations s2i = (roi − μ̂k

m)
2; i = 1, ..., no to be a super-population of

ŝ2. Based on this empirical sample we infer the model parameters ξ̂s and γ̂s
in the prior model for s2.

The corresponding localized estimator for the posterior variance s2 centered
at location x+ ∈ D based on observations rk+o = Gk

+ro is based on the conju-
gate properties of the prior model.

ŝk2+ = E[s2 | Gk
+ro]

=
γ̂s +

1
2

[
[Gk

+ro − μ̂k
mi k]

T
[
[Gk

+Ωoo[G
k
+]

T ] + τ̂ kmi ki
T
k

]−1
[Gk

+ro − μ̂k
mi k]

]
ξ̂s +

k
2
− 1

This estimator also appears as a shrinkage estimator.

The kriging interpolation model is used for spatial predictions. In order
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to define these predictors the model parameters must be assessed, either ex-
plicitely or implicitely. The empirical Bayes approach is used to define the
prediction r̂k+ of r(x+) in arbitrary location x+ ∈ D based on the k-closest
observations defined by Gk

+.

1.3 Summary of Thesis

In the following we summarize the Reports and Papers in the current Thesis.
The thesis consists of two reports (Report I and Report II) and three papers
(Paper I.A, Paper I.B and Paper II.A). The two first papers are based on
Report I while the last paper is based on Report II. Report I, including Paper
I.A and I.B are written for a statistical audience with particular attention to
a survival and reliability theory audience. Report II, including Paper II.A,
is written for a geostatistical audience.

Report I: A Simulation Study of Statistical Inference in Nonhomo-
geneous Poisson Processes with Emphasis on Frailty and Dynamic
Behavior. A stochastic process {N(t); t ∈ T ⊂ �+} with temporal reference
variable t ∈ T is presented. The basic model is the non-stationary Poisson
process (NSPP) with rate function {w(t); t ∈ T}. Its properties and the rele-
vant probabilistic distribution with the model parameters are discussed. The
reduced form of NSPP, stationary Poisson processes (SPP) is defined and its
model parameters are stated. We also define the most common parametriza-
tion of the NSPP, namely the power law model. When several similar systems
are observed, the assumption that the corresponding processes are indepen-
dent and identically distributed is often questionable. In practice there may
be an unobserved common heterogeneity between the systems. We consider
two different approaches for analysis of such dependencies, namely the hier-
archical and dynamic models. The consequences of ignoring heterogeneity
and the advantages of considering a hierarchical model over a parametric
model are studied. The relation between the hierachical and dynamic model
approaches is investigated, both theoretically and by simulation. Detailed
derivations of likelihood functions are provided, and maximum likelihood is
used as the inference tool throughout the report. The conclusion is that the
two approaches appear as very similar, hence hierarchical models may be
viewed as alternatives to dynamic models.
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Paper I.A: Unobserved heterogeneity in the power law nonhomo-
geneous Poisson process, presents a subset of the work in Report I, and
in addition a real data example. Possible consequences of heterogeneity in
the failure intensity of repairable systems is presented. The basic model is
the non-stationary Poisson process with power law intensity function. The
heterogeneity is modeled by introduction of unobserved gamma distributed
frailties. The relevant likelihood function is derived, and maximum likelihood
estimation is illustrated. In a simulation study we compare results from us-
ing a power law model without heterogeneity, with the results obtained when
the heterogeneity is accounted for. A motivating data example is given.

Paper I.B: Extending minimal repair models for repairable sys-
tems: A comparision of dynamic and heterogeneous extensions of
a nonhomogeneous Poisson process, contains a subset of the work in
Report I, and some additional theoretical discussion as well as the analysis
of a real data set. For many applications of repairable systems, the minimal
repair assumption, which leads to non-stationary Poisson processes (NSPP),
is not adequate. We review and study two extensions of the NSPP, the dy-
namic NSPP and the heterogeneous NSPP. Both extensions are motivated
by specific aspects of potential applications. It has long been known, how-
ever, that the two paradigms are essentially indistinguisable in an analysis
of failure data. We investigate the connection between the two approaches
by extending NSPP models, both theoretically and in data studies including
simulated failure processes. In particular we review the computation of the
likelihood functions for the two situations and demonstrate a somewhat sur-
prising similarity between them. This similarity is empirically confirmed in
the numerical examples.

The major contributions of Report I, including Paper I.A and Paper I.B, are
a study of the consequences of overlooking heterogeneity/frailities in simi-
lar repariable systems. Review of a dynamic extension of a minimal repair
model is presented. Likelihood functions are established for parametric, hi-
erarchical and dynamic models. The interrelation between the latter two are
theoretically investigated. Maximum likelihood estimators for parameters of
parametric and hierarchical models are derived. A simulation study is con-
ducted and it demonstrates the effects of heterogeneity and its ignorance in
models.

11



Report II: Localized/Shrinkage Kriging Predictors. The random field
(RF) {R(x); x ∈ D ⊂ �m} with spatial reference variable x ∈ D is defined
to be a Gaussian RF (GRF) with spatial expectation {μ(x); x ∈ D}, spatial
variance {σ2(x); x ∈ D} and spatial correlation function

{
ρ(x

′
, x

′′
); x

′
, x

′′ ∈ D2
}
.

We consider mostly stationary GRF and hierarchical stationary GRF in the
study. The objective of the study is to improve the robustness and flexibility
of spatial kriging predictors with respect to deviations from spatial station-
arity assumptions. A predictor based on a non-stationary Gaussian random
field is defined. The model parameters are inferred in an empirical Bayesian
setting, using observations in a local neighborhood and a prior model as-
sessed from the global set of observations. The localized predictor appears
with a shrinkage effect and is coined a localized/shrinkage kriging predic-
tor. The predictor is compared to traditional localized kriging predictors in
a case study on observations of annual cumulated precipitation. A crossvali-
dation criterion is used in the comparision. The shrinkage predictor appears
as uniformly preferable to the traditional kriging predictors. A simulation
study on prediction in non-stationary Gaussian random fields is conducted.
The results from this study confirms that the shrinkage predictor is favor-
able to the traditional ones. Moreover, the crossvalidation criterion is found
to be suitable for selection of predictor. Lastly, the shrinkage predictor ap-
pears as particularly robust towards spatially varying expectation functions.

Paper II.A: Localized/Shrinkage Kriging Predictors, contain a subset
of the work in Report II, and some additional theoretical discussion. The
objective of the study is to improve the robustness and flexibility of spatial
kriging predictors with respect to deviations from spatial stationarity as-
sumptions. A predictor based on a non-stationary Gaussian random field is
defined. The model parameters are inferred in an empirical Bayesian setting,
using observations in a local neighborhood and a prior model assessed from
the global set of observations. Lastly, the computational demands of local-
ized predictors are very modest, hence the localized/shrinkage predictors are
suitable for large scale spatial prediction problems.

The major contribution of Report II, including Paper II.A, is the introduc-
tion of a shrinkage concept in spatial prediction. It extends the empirical
Bayesian idea to spatial interpolation. Moreover, a technique for calibration
of localized predictors to global statistics is defined, and it provides crossval-
idated calibrated (CVC) predictors. Lastly, real data and simulation studies

12



demonstrate that the CVC localized, shrinkage predictors are favorable to
the traditional predictors.
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Abstract

A study of recurrent events for repairable systems is presented.
The basic model is the nonhomogeneous Poisson process with power
law intensity function. When several similar systems are under ob-
servation, the assumption that the corresponding processes are inde-
pendent and identically distributed is often questionable. In practice
there may be an unobserved heterogeneity among the systems. We
consider two seemingly different approaches for analysis of such differ-
ences, namely by using frailities and by using dynamic models. The
relation between the two approaches is investigated, both theoreti-
cally and in a simulation study. Detailed derivations of likelihood
functions are provided, and maximum likelihood is used as the infer-
ence tool throughout the paper. A possible conclusion is that the two
approaches are very similar, so that frailty models may be viewed as
an alternative to dynamic models.
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2 A Simulation Study of Statistical Inference

in Non-homogeneous Poisson Processes with

Emphasis on Frailty and Dynamic Behav-

ior

2.1 Introduction

Survival analysis involves the modeling of time to event data. Classically,
death or failure are considered as ”events” in the survival literature, con-
sidering only single events, after which the individual or machine is dead
or broken. More recently, many concepts in survival analysis have been
modelled by counting process theory, which adds flexibility in that it allows
modeling, for example recurrent events.

In the reliability literature, systems are generally classified into non-repairable
and repairable. Non-repairable systems are those that do not get repaired
when they fail. Thus, non-repairable system can fail only once, and a lifetime
model such as the Weibull distribution provides the distribution of the time
at which such a system fails. Most household products can be good examples
of non-repairable systems.

On the other hand, repairable systems are those systems (machines, indus-
trial plants, software, etc.) which, in the event of a failure, can be restored to
satisfactory operation by any action, including parts replacements or changes
to adjustable settings. A repairable system is often modeled by means of a
counting process. But, to what extent can the system perform after be-
ing returned back to its regular operation? We may have that the system’s
performance is in the same state that the system had at the start of the
operation, which means a renewal process or as good as new condition. Or,
its performance may be in the same state as before the failure, which leads
to a non-homogeneous Poisson process (NHPP), i.e. as bad as old condition.

NHPPs which is the main concern of this paper are useful due to their flexi-
ble assumption that events are occurring randomly in time at varying rates,
instead of events being just as likely to occur in all intervals of equal size,
which is the property of homogeneous Poisson processes (HPP).

18



There are three primary approaches to evaluating multivariate survival pro-
cesses: Marginal models, Frailty models and Dynamic models (see Aalen et.
al, 2008). We are focused on the last two due to the fact that marginal
models, unlike fraility and dynamic models, focus on parts of the avaliable
data instead of giving more realistic descriptions of the full data sets. For
each of these model types we consider parametric modelling and inference.
Although there is a fairly rich literature on the corresponding models and
methods, all their features and particularly their interrelations are yet not
fully understood nor fully investigated. The objective of the study is to per-
form such a study, by considering comparable models both theoretically and
in a simulation study.

2.2 Notation

t Failure time
S Starting time
T Ending time
τj Ending time of observation for system j
nj Total number of failure per system
n Total number of failure
m Total number of system
w(t) Failure rate (ROCOF)
W (t) Cumulative failure rate (CROCOF)
N(t) Number of failure in (0, t)
E[N(t)] Expected number of failures in (0, t)
V ar[N(t)] Variance of number of failures in (0, t)
λ Parameter of Power law model
β Parameter of Power law model
δ Parameter of Fraility model
γ Parameter of LEYP model
z1(t) Hazard rate of T1

z2(t) Hazard rate of T2

z3(t) Hazard rate of T3

G1(t) Hazard rate of T1

G2(t) Hazard rate of T2

G3(t) Hazard rate of T3
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2.3 Definition and Properties of NHPPs

A counting process is a non-homogeneous (or non-stationary) Poisson process
with rate function w(t) for t ≥ 0, if :

1. N(0)=0.

2. Pr {N(t+Δt)−N(t) = 1} = w(t)Δt+o(Δt), for all t where O(Δt)
Δt

→ 0
as Δt → 0 and N(t) is the number of events occurring within (0, t]

3. Pr {N(t+Δt)−N(t) ≥ 2} = o(Δt), which means that the system will
not experience more than one failure at the same time.

The NHPP is fully characterized by ROCOF(rate of occurrence of failure)
and usually denoted by w(t). This function is also called the peril rate of the
NHPP.

Its cumulative rate of the process is

W (t) =
∫ t

0
w(s)ds

(later called the CROCOF)
Then, the probability of seeing n events in the interval (0, t] is

Pr[N(t) = n] =
[W (t)]n

n!
e−W (t)

for n = 0, 1, 2, ...

The mean number of failures in (0, t] is therefore

E[N(t)] = W (t)

and its variance is

V ar[N(t)] = W (t)

Likewise, the probability of seeing n events in the interval (t, t+ s] is

Pr[(N(t+ s)−N(t)) = n] = e−[W (t+s)−W (t)] [W (t+s)−W (t)]n

n!
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What is said above is thatN(t+s)−N(t) is Poisson distributed with expected
value

∫ t+s

t
w(s)ds where w(s) is the time dependent intensity function.

Another probabilistic property of NHPP which can help us to simulate the
events of NHPP from that of HPP is stated as follows. If t1, t2, ... are event
times in a unit HPP, then W−1(t1),W−1(t2), ... are event times in an NHPP
with cumulative intensity function W (t). Let us use the CROCOF of power
law model to show how NHPP events are simulated from HPP. The CROCOF
of power law is,

W (t) = λtβ

Then, equate W(t) to the exponentially distributed random number having
parameter one, u ∼ exp(1).

u = λtβ

⇒ t = [u
λ
]
1
β

Graphically,

NHPP events

HPP events

Figure 1: Simulation of NHPP events from HPP

The basic difference of NHPP from HPP is that the rate of occurrence
of failures varies with time rather than being a constant. This implies that
for an NHPP model the inter occurrence times are neither independent nor
identically distributed. In line with this, frequently NHPP is used to model
repairable systems that are subject to a minimal repair strategy, with neg-
ligible repair times. Minimal repair means that a failed system is restored
just back to functioning state and the system continues as if nothing had
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happened.This implies that the likelihood of system failure is the same im-
mediately before and after a failure.

2.3.1 Parametric Models of NHPPs

Several parametric models have been established to portray the ROCOF of
an NHPP, but here we are concerned to the most celebrated process model
which is the power law model. This model is favored for several reasons.The
first reason for the popularity of this model is that it has a very practical
foundation in terms of minimal repair. The second reason here is that if the
time to first failure follows the Weibull distribution, then each succeeding
failure is governed by the Power law model in the case of minimal repair.
From the aforementioned discussion we can say the Power law model is an
extension of the Weibull distribution.

In the power law model the ROCOF of the NHPP is defined as

w(t) = λβtβ−1 for λ ≥ 0, β ≥ 0 and t ≥ 0

Its cumulative rate of ocurrence of failure (CROCOF) is

W (t) =
∫ t

0
w(s)ds

= λtβ

This intensity function was introduced in Crow (1972) as a stochastic model
for the Duane reliability growth postulate. Moreover, it is referred to as a
Weibull Poisson Process or the Power law Poisson Process.

The parameter β in the Power law model can give information about the
system as follows:

If 0 < β < 1, then the system is improving(happy).
If β > 1, then the system is deteriorating(sad).
If β = 1, then the model is reduces to an HPP.
The case β = 2 is seen to give a linearly increasing ROCOF.

2.3.2 Maximum Likelihood Estimation of Power Law Model

Suppose that the number of systems under study is m and the jth system
is observed continuously from time Sj to time Tj, j = 1, 2, 3, ...,m. During
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the period [Sj, Tj], let nj be the number of failures experienced by the jth

system and let ti,j be the age of this system at the ith occurrence of failure,
i = 1, 2, ..., nj.

It is also possible that the system boundaries Sj and Tj may be observed
failure times for the jth system. If tnjj = Tj, then the data on the jth system
are said to be failure terminated and Tj is a random variable with nj fixed.
If tnjj < Tj, then the data on the jth system are said to be time terminated
with nj a random variable. Suppose that data are available from m indepen-
dent systems with the same intensity function w(t) and system j is observed
in the interval [Sj, Tj], j = 1, 2, ...,m, and the system j recurrence times are
denoted by t1j, t2j, ..., tnjj.

Then, the NHPP likelihood function is simply the product of the individ-
ual system likelihoods

L =
∏m

j=1

[∏nj

i=1 [w(tij)] exp {−[W (Tj)−W (Sj)]}
]

Due to the monotonicity characteristics of log transformation and for the-
oretical as well as technical reasons it is well recommended to work with
the logarithm of the likelihood function or with the negative logarithm of
it. Although the shape of these(likelihood and log-likelihood) functions are
different, they have their maximum point at the same value.

Hence,

The log-likelihood function of NHPP is

l = log(L)

=
m∑
j=1

[
nj∑
i=1

[logw(tij)]− [W (Tj)−W (Sj)]

]
.

The log-likelihood function of power law model with intensity function
w(t) = λβtβ−1 is,
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l = log(L)

=
m∑
j=1

[
nj∑
i=1

[
log(λβtβ−1ij )

]
−
[
λT β

j − λSβ
j

]]

=
m∑
j=1

[
nj∑
i=1

[log λ+ log β + (β − 1) log tij]−
[
λT β

j − λSβ
j

]]

=
m∑
j=1

[
nj log λ+ nj log β + (β − 1)

nj∑
i=1

log tij − λ
[
T β
j − Sβ

j

]]

=
m∑
j=1

nj log λ+
m∑
j=1

nj log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij − λ

m∑
j=1

[
T β
j − Sβ

j

]
= n log λ+ n log β + (β − 1)

m∑
j=1

nj∑
i=1

log tij − λ
m∑
j=1

[
T β
j − Sβ

j

]
=

m∑
j=1

nj log λ+
m∑
j=1

nj log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij − λ
m∑
j=1

[
T β
j − Sβ

j

]
= n log λ+ n log β + (β − 1)

m∑
j=1

nj∑
i=1

log tij − λmT β

where n =
∑m

j=1 nj

In the last line above we set Sj = 0 i.e. all systems have the same intial
point which is zero and all Tj = T , where T is a constant number. The
standard, analytical method of finding the MLEs is to take the first partial
derivatives of the likelihood/log-likelihood function with respect to each pa-
rameter in the model and equate to zero.

Hence,

∂l

∂λ
=

n

λ
−mT β

λ̂ =
n

m[T β̂]
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Similarly,

∂l

∂β
=

n

β
+

m∑
j=1

nj∑
i=1

log tij − λmT β[log(T )]

Setting this equal to zero and using the above λ̂ we get

β̂ =
n

n log(T )−∑m
j=1

∑nj

i=1 log tij

This gives an explicit solution for β̂ which can afterwards be substituted in
the expression for λ̂.

We might consider the Fisher information matrix for the computation of
variances and covariances of the MLEs. Fisher information matrix is used
to measure the amount of information that the observed data carries about
the unknown parameters. The log-likelihood function is twice differentiable
with respect to each parameter,and

∂2l(λ, β)

∂λ2
=

−n

λ2

Similarly for β parameter

∂2l(λ, β)

∂β2
=

−n

β2
− λmT β(log(T ))

Second mixed-partial derivatives of the log-likelihood,

∂2l(λ, β)

∂λ∂β
= −mT β(log(T ))

Thus, the Fisher information matrix is

I (λ, β) =

⎡⎣ n
λ2 mT β(log(T ))

mT β(log(T )) n
β2 + λmT β(log(T ))

⎤⎦
25



For large sample size, maximum likelihood estimate have an approximate
normal distribution centered on the true parameter and the variance, which
is given by Fisher information matrix after substituting the maximum like-
lihood estimates for λ and β. Thus, asymptotically, maximum likelihood
estimator is normally distributed.

Once λ̂ and β̂ have been estimated, the maximum likelihood estimate of
the intensity function is given by:

w(t) = λ̂β̂tβ̂−1, t > 0

and then we can draw failure intensity versus time.

2.4 Frailties in NHPP

2.4.1 Definition and Parametric Model

The notion of fraility provides a convenient way to introduce random effects,
association and unobserved heterogeneity into models for survival variables.
It may be considered as unmeasured risk factors, where the relevant covari-
ates are not included in the model’s specification and unknown to exist. This
may otherwise be a problem in having inconsistent parameter estimates and
wrong standard estimate values.

The term fraility itself was introduced by Vaupel et al. (1979) for univariate
survival models, but was substantially promoted by applications to multivari-
ate survival data from around 1980. Fraility models extend popular models
such as the Cox model. Normally, survival analysis implicitly assumes a
homogeneous population to be studied. In many applications, however, the
study population can not be assumed to be homogeneous but must be con-
sidered as a heterogeneous sample.

Here we consider parametric models for NHPP, with a serious consideration
of frailties ( hidden heterogeneity) among systems. This is done in accor-
dance with the definition of frailties in connection with the power law model.
Recall that the CROCOF of power law model is
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W (t) = λtβ where λ > 0, β > 0 and t ≥ 0

With a consideration of frailties this model can be written as W (t) = aλtβ

where λ > 0, β > 0, t ≥ 0 and a is a gamma distributed random number
with mean 1 and variance δ. The idea is then that in the case of m systems,
each system has its own value of a, i.e. a1, a2, ..., am, which are assumed to
be independent and identically distributed with the distribution just given.

Although we have several potential frailty models to choose for the above
”a’s” we choose gamma frailties deliberately due to the following reason:There
is no physical justification to prefer gamma frailties instead of the other but
only in the line of computational and analytical aspect we prefer it. From a
computational and analytical perspective, it fits very well to failure data be-
cause it is easy to derive the closed form expressions of unconditional survival,
cumulative density and hazard function. This is due to the simplicity of the
Laplace transform. The density of the two-parameter gamma distribution is
given as

ha(a) =
ak−1e−

a
θ

θkΓ(k)

where a ≥ 0, k is shape parameter and θ is scale parameter.
Moreover, E(a)=kθ and Var(a)=k θ2 But we want to have E(a)=1 and
Var(a)=δ. Thus we have k=1

δ
and θ=δ and density

ha(a) =
a
1
δ
−1exp

−a
δ

Γ( 1
δ
)δ

1
δ
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Figure 2: Graph of Gamma Densities with expected value 1

2.4.2 Maximum Likelihood Estimation of Power Law Model with
Gamma Distributed Frailty

We considered the likelihood function for m systems without consideration
of frailty but in this subsection we are eager to see the change in parameter
estimation with a consideration of frailty a. We use similar argument as be-
fore, but now with ”δ” as an additional parameter and CROCOF should be
multiplied with the frailty.

Individual system likelihood function is:

Lj(aj) =
∏nj

i=1 ajw(tij)exp [−aj [W (Tj)−W (Sj)]]

Since aj is a random variable we should find the expected value of Lj(aj)
with respect to the distribution of aj. In our case the distribution of aj is
gamma with expected value 1 and its probability density function is

h(aj) =
a
1
δ
−1

j e
−aj
δ

Γ( 1
δ
)δ

1
δ
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The expected value of Lj(aj) is

Lj = E [Lj(aj)]

=

∫
Lj(aj)h(aj)daj

=

∫ nj∏
i=1

ajw(tij)exp [−aj [W (Tj)−W (Sj)]]h(aj)daj

=

∫ nj∏
i=1

ajw(tij)exp [−aj [W (Tj)−W (Sj)]]
a

1
δ
−1

j e
−aj
δ

Γ(1
δ
)δ

1
δ

daj

=

∫ nj∏
i=1

aj

[
λβtβ−1ij

]
exp
[
−aj

[
λT β

j − λSβ
j )
]] a 1

δ
−1

j e
−aj
δ

Γ(1
δ
)δ

1
δ

daj

=

∫ ∞

0

a
nj

j λnjβnj

(
nj∏
i=1

tij

)β−1

exp
[
−aj

[
λT β

j − λSβ
j )
]] a 1

δ
−1

j e
−aj
δ

Γ(1
δ
)δ

1
δ

daj

=

[
λnjβnj

(∏nj

i=1 tij
)β−1

Γ(1
δ
)δ

1
δ

]∫ ∞

0

a
nj+

1
δ
−1

j exp

[
−aj

[
λT β

j − λSβ
j +

1

δ

]]
daj

Let rj = nj +
1
δ
− 1 and sj = λT β

j − λSβ
j + 1

δ

Then the above equation can be written as:

Lj =

[
λnjβnj

(∏nj

i=1 tij
)β−1

Γ(1
δ
)δ

1
δ

]∫ ∞

0

a
rj
j e

−ajsjdaj

To have the integrand expression of the above integration let us substitute
v = ajsj. After a certain mathematical operation we have the following
expression:

Lj =

[
λnjβnj

(∏nj

i=1 tij
)β−1

Γ(1
δ
)δ

1
δ

][
1

s
rj+1
j

∫ ∞

0

vrje−vdv

]
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But, 1

s
rj+1

j

∫∞
0

vrje−vdv equals 1

s
rj+1

j

Γ(rj + 1) by using gamma function

Hence,

Lj =
λnjβnj

(∏nj

i=1 tij
)β−1

Γ(nj +
1
δ
)

Γ(1
δ
)δ

1
δ

[
λT β

j − λSβ
j + 1

δ

]nj+
1
δ

Although power law model can have a potential to model systems that start
from any time t, we restrict to time zero as starting operation time of all
systems i.e Sj = 0 ∀j = 1, 2, ...,m in this study. Then, the aforementioned
individual likelihood function simplifies to

Lj =
λnjβnj

(∏nj

i=1 tij
)β−1

Γ(nj +
1
δ
)

Γ(1
δ
)δ

1
δ

[
λT β

j + 1
δ

]nj+
1
δ

Thus, the total likelihood function is

L =
m∏
j=1

Lj

The log likelihood function is
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l(λ, β, δ) = logL

= log

[
m∏
j=1

Lj

]

= log

⎡⎢⎣ m∏
j=1

λnjβnj
(∏nj

i=1 tij
)β−1

Γ(nj +
1
δ
)

Γ(1
δ
)δ

1
δ

[
λT β

j + 1
δ

]nj+
1
δ

⎤⎥⎦
=

m∑
j=1

⎧⎨⎩log

⎡⎣λnjβnj

(
nj∑
i=1

tij

)β−1

Γ(nj +
1

δ
)

⎤⎦− log

[
Γ(

1

δ
)δ

1
δ

[
λT β

j +
1

δ

]nj+
1
δ

]⎫⎬⎭
=

m∑
j=1

{
nj log λ+ nj log β + (β − 1) log

(
nj∑
i=1

tij

)
+ log Γ(nj +

1

δ
)

}

−
m∑
j=1

{
log Γ(

1

δ
) + (

1

δ
) log δ +

[
nj +

1

δ

]
log

[
λT β

j +
1

δ

]}

= n log λ+ n log β + (β − 1)
m∑
j=1

log

(
nj∑
i=1

tij

)
+

m∑
j=1

log Γ(nj +
1

δ
)

−
[
m log Γ(

1

δ
) +m

1

δ
log δ +

m∑
j=1

[[
nj +

1

δ

]
log

[
λT β

j +
1

δ

]]]

Hereafter, let all Tj=T and T=τ .

= n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij +
m∑
j=1

log Γ(nj +
1

δ
)

−
[
m log Γ(

1

δ
) +m

1

δ
log δ +

m∑
j=1

[[
nj +

1

δ

]
log

[
λT β +

1

δ

]]]

= n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij +
m∑
j=1

log Γ(nj +
1

δ
)

−
[
m log Γ(

1

δ
) +m

1

δ
log δ +

[
n+

m

δ

]
log[λT β +

1

δ
]

]
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Partial derivative of l (λ, β, δ) with respect to λ is

∂l (λ, β, δ)

∂λ
=

n

λ
−
[

τβ

λτβ + 1
δ

] [
n+

m

δ

]
Then,

∂l (λ, β, δ)

∂λ
= 0

⇒ n

λ
=

[
τβ

λτβ + 1
δ

] [
n+

m

δ

]

⇒ λ̂ =
n

mτ β̂

Similarly, Partial derivative of l (λ, β, δ) with respect to β is

∂l (λ, β, δ)

∂β
=

n

β
+

m∑
j=1

nj∑
i=1

log tij −
[
λτβ log(τ))

λτβ + 1
δ

] [
n+

m

δ

]

Hence,

∂l (λ, β, δ)

∂β
= 0

⇒ n

β
+

m∑
j=1

nj∑
i=1

log tij − n log (τ)

⇒ β̂ =
n

n log(τ)−∑m
j=1

∑nj

i=1 log tij

Thus, λ̂ and β̂ are exactly the same as for the power law without frailities.

Likewise, using the digamma function ψ defined by

ψ(x) =
d

dx
log Γ(x) =

Γ
′
(x)

Γ(x)
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, the partial derivative of l (λ, β, δ) with respect to δ is

∂l (λ, β, δ)

∂δ
= − 1

δ2

m∑
j=1

ψ(nj +
1

δ
) +

m

δ2
ψ(

1

δ
)−m

[
− 1

δ2
log(δ) +

1

δ2

]
−
[
−m

δ2
log[λτβ +

1

δ
]− 1

δ2

[
n+ m

δ

λτβ + 1
δ

]]
= − 1

δ2

m∑
j=1

ψ(nj +
1

δ
) +

m

δ2
ψ(

1

δ
) +

m

δ2
log(δ)

− m

δ2
+

m

δ2
log[λτβ +

1

δ
] +

1

δ2

[
n+ m

δ

λτβ + 1
δ

]
=

[−1

δ2

]{ m∑
j=1

ψ(nj +
1

δ
)−mψ(

1

δ
)−m log(δ) +m

}

−
[−1

δ2

]{
m log

[
λτβ +

1

δ

]
− n+ m

δ

λτβ + 1
δ

}
It might be difficult to have the explicit solution of this expression by equat-
ing to zero so that using an iterative procedure is recommendable. Therefore,
a function of δ will be utilized in The Newton-Raphson Method.

Since we have the explicit formula for λ and β estimate, which is independent
of δ, ∂l(λ,β,δ)

∂δ
is a function of δ only and we can denote it by, f(δ)

f(δ) =

[−1

δ2

]{ m∑
j=1

ψ(nj +
1

δ
)−mψ(

1

δ
)−m log(δ) +m−m log

[
λτβ +

1

δ

]
− n+ m

δ

λτβ + 1
δ

}
Note that in Matlab, psi means digamma function and psi(x) computes the
digamma function of x. Similarly, psi(k,x) computes the polygamma func-
tion of x, which is the kth derivative of the digamma function at x, denoted
by ψk(k, x) .

2.5 Dynamic Models: Extending the NHPP

2.5.1 Introduction

In the previous section we concentrated on modeling recurrent events for
repairable systems by non-homogeneous Poisson processes with and without
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frailty. But, it might be difficult to quantify the effect of the repair by an
amount proportional to the current intensity of the processes. Moreover, the
number of repair actions up to the current time may have a heavier impact
on failure intensity than aging. Due to this fact, in the following we are
interested in the dynamic aspect of repairable systems to make a comparison
between them.

2.5.2 Maximum Likelihood Estimation in Dynamic Model

Here we are considering maximum likelihood estimation of a dynamic model.
An intensity process that depends on previous repair actions is termed as
conditional intensity. The LEYP model (Linear Extension of Yule Process)
(Babykina and Couallier, 2009; Le Gat, 2013) assumes that the conditional
intensity evolves as

E[dNj(t)|Nt− ] = wj(t)dt,

where Nj(t) counts the number of events for process j, and the history Nt−
contains information on (fixed and time-dependent) covariates as well as
censoring and observed events in all counting processes prior to time t. Here
we look at the situation where

wj(t) = [1 + γNj(t)]λβt
β−1

We suppose that the data concerns m systems with a consideration of these
systems in a calender time interval [S,T] where S and T are the starting and
the ending time of observation.

The likelihood function for the jth process may be expressed as

Lj(θ) =

[
nj∏
i=1

wj (tij)

]
exp [−Wj(τj)] (∗)

To write the explicit form of this likelihood function we should define the
ROCOF wj (tij) to be (1 + γNj(tij))w0(tij) where Nj(tij) is the number of
previous observed failures for process j and w0(tij) could be power law model

i.e w0(tij) = λβtβ−1ij .

Next we show how to obtain W(t) for the LEYP model.
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In fact we can use any positive number as a starting time of a single re-
current event process but for simplicity we consider t=0 as initial point. Let
0 ≤ T1 < T2 < ... denote the event times, where Tk and Tk+1 are the time
of the kth and (k + 1)th events, in respective order. In counting processes
[N(t), 0 ≤ t] records the cumulative number of events generated by the pro-
cess but while we look in depth on the processes, the counting processes can
be written as N(t) =

∑∞
k=1 I(Tk ≤ t) counting the number of events occuring

over the time interval [0, t].

t

1

2

3

N(t)

N(t)N(t) 10 ... ...

Figure 3: Counting processes representation of data on recurrent events
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Now W(t) for LEYP model can derived as follows, being a function of
T1, T2, ..., TN(t)

W (t) =

∫ t

0

w(u)du

=

∫ t

0

(1 + γN(u))w0(u)du

=

N(t)−1∑
k=0

∫ Tk+1

Tk

(1 + γk))w0(u)du+

∫ t

TN(t)

(1 + γN(u)))w0(u)du

=

N(t)−1∑
k=0

(1 + γk)(W0(Tk+1)−W0(Tk)) + (1 + γN(t))(W0(t)−W0(TN(t)))

=

N(t)−1∑
k=0

(W0(Tk+1)−W0(Tk)) + (W0(t)−W0(TN(t)))

+ γ

N(t)−1∑
k=0

k(W0(Tk+1)−W0(Tk)) + γN(t)(W0(t)−W0(TN(t)))

By manipulating through all k values i.e k = 0, 1, 2, ..., N(t)− 1 we arrive at

W (t) = W0(t) + γ

⎡⎣N(t)W0(t)−
N(t)∑
k=1

W0(Tk)

⎤⎦

Hence, from (*) on page 34,

Lj(θ) =

[
nj∏
i=1

(1 + γNj(tij))w0(tij)

]
exp [− [Wj(τj)]]

Substituting the ROCOF of power law model on the above equation is

Lj(θ) =

[
nj∏
i=1

(1 + γNj(tij)λβt
β−1
ij )

]
exp

[
−
[
λτβj + γ

[
N(τj)λτ

β
j −

nj∑
i=1

λtβij

]]]
Thus, the total likelihood function is

L =
m∏
j=1

Lj(θ)
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The log likelihood function is

l = logL

= log

[
m∏
j=1

Lj(θ)

]

= log

[
m∏
j=1

{[
nj∏
i=1

(1 + γNj(tij)λβt
β−1
ij )

]
exp

[
−
[
λτβj + γ

[
njλτ

β
j −

nj∑
i=1

λtβij

]]]}]

=
m∑
j=1

{[
nj∑
i=1

log(1 + γNj(tij)λβt
β−1
ij )

]
−
[
λτβj + γ

[
njλτ

β
j −

nj∑
i=1

λtβij

]]}

=
m∑
j=1

[
nj∑
i=1

[log(1 + γNj(tij)) + log λ+ log β + (β − 1) log(tij)]

]

−
m∑
j=1

[
λτβj + γ

[
njλτ

β
j −

nj∑
i=1

λtβij

]]

=
m∑
j=1

nj∑
i=1

log (1 + γNj(tij)) +
m∑
j=1

nj log λ+
m∑
j=1

nj log β + (β − 1)
m∑
j=1

nj∑
i=1

log (tij)

− λ

m∑
j=1

[
τβj + γ

[
njτ

β
j −

nj∑
i=1

tβij

]]

=
m∑
j=1

nj∑
i=1

log (1 + γ(i− 1)) + n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log (tij)

− λ

m∑
j=1

[
τβ + γ

[
njτ

β −
nj∑
i=1

tβij

]]

Note that Nj(tij) = i− 1 since before the event at tij we had i− 1 events.

Recall property of gamma function:

Γ[k + 1] = kΓ[k]
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So,

Γ[
1

γ
+ nj] = Γ[

1

γ
+ nj − 1 + 1]

= [
1

γ
+ nj − 1]Γ[

1

γ
+ nj − 1]

= [
1

γ
+ nj − 1][

1

γ
+ nj − 2]Γ[

1

γ
+ nj − 2]

= [
1

γ
+ nj − 1][

1

γ
+ nj − 2][

1

γ
+ nj − 3]Γ[

1

γ
+ nj − 3]

·
·
·

=
1

γnj
[[1 + γ(nj − 1)][1 + γ(nj − 2)][1 + γ(nj − 3)] · · · [1 + γ]] Γ[

1

γ
]

Hence,

log[Γ[
1

γ
+ nj]] = −nj log(γ) +

nj∑
i=1

log[1 + γ(i− 1)] + log[Γ(
1

γ
)]

Thus, for all systems,

m∑
j=1

log[Γ[
1

γ
+ nj]] = −

m∑
j=1

nj log(γ) +
m∑
j=1

nj∑
i=1

log[1 + γ(i− 1)] +
m∑
j=1

log[Γ(
1

γ
)]

⇒
m∑
j=1

nj∑
i=1

log[1 + γ(i− 1)] =
m∑
j=1

log[Γ[
1

γ
+ nj]] + n log(γ)−m log[Γ(

1

γ
)]

Hence, complete likelihood function for dynamic model:

l = n log(λ) + n log(β) + (β − 1)
m∑
j=1

nj∑
i=1

log (tij) +
m∑
j=1

log

[
Γ(

1

γ
+ nj)

]

−m log

[
Γ

(
1

γ

)]
+ n log(γ) + γλ

m∑
j=1

nj∑
i=1

(tβij)− λτβ [m+ nγ]
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Partial derivative of l (λ, β, γ) with respect to λ

∂l (λ, β, γ)

∂λ
=

n

λ
+ γ

m∑
j=1

nj∑
i=1

(tβij)− τβ [m+ nγ]

Second partial derivative of l (λ, β, γ) with respect to λ

∂2l (λ, β, γ)

∂λ2
=

−n

λ2

Mixed partial derivative of l (λ, β, γ) with respect to λ and then β

∂2l (λ, β, γ)

∂λ∂β
= γ

m∑
j=1

nj∑
i=1

(tβij log(tij))− τβ log(τ) [m+ nγ]

Mixed partial derivative of l (λ, β, γ) with respect to λ and then γ

∂2l (λ, β, γ)

∂λ∂γ
=

m∑
j=1

nj∑
i=1

(tβij)− nτβ

Partial derivative of l (λ, β, γ) with respect to β

∂l (λ, β, γ)

∂β
=

n

β
+

m∑
j=1

nj∑
i=1

log(tij) + λγ
m∑
j=1

nj∑
i=1

(tβij log(tij))− λτβ log(τ) [m+ nγ]

Second partial derivative of l (λ, β, γ) with respect to β

∂2l (λ, β, γ)

∂β2
=

−n

β2
+ λγ

m∑
j=1

nj∑
i=1

(tβij [log(tij)]
2)− λτβ [log(τ)]2 [m+ nγ]
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Mixed partial derivative of l (λ, β, γ) with respect to β and then λ

∂2l (λ, β, γ)

∂β∂λ
= γ

m∑
j=1

nj∑
i=1

(tβij log(tij))− τβ log(τ) [m+ nγ]

which is the same expression as

∂2l (λ, β, γ)

∂λ∂β

Mixed partial derivative of l (λ, β, γ) with respect to β and then γ

∂2l (λ, β, γ)

∂β∂γ
= λ

m∑
j=1

nj∑
i=1

(tβij log(tij))− nλτβ log(τ)

In mathematics, the trigamma function, denoted ψ1(x),is the second of the
polygamma functions, and is defined as

ψ1(x) =
d2

dx2
log Γ(x)

=
d

dx
ψ(x)

where ψ(x) = d
dx

log Γ(x) = Γ
′
(x)

Γ(x)
is the digamma function, which is the

logarithmic derivative of the gamma function. As stated before, in mat-
lab,digamma function at x, ψ(x), is psi(x).

So, here after we will use thus facts in first and second derivative of l (λ, β, γ)
and l (β, γ) with respect to γ
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Partial derivative of l (λ, β, γ) with respect to γ

∂l (λ, β, γ)

∂γ
= − 1

γ2

m∑
j=1

ψ(
1

γ
+ nj) +

m

γ2
ψ(

1

γ
) +

n

γ
+ λ

[
m∑
j=1

nj∑
i=1

tβij − nτβ

]

Second partial derivative of l (λ, β, γ) with respect to γ

∂2l (λ, β, γ)

∂γ2
=

1

γ4

m∑
j=1

[
ψ1(

1

γ
+ nj) + 2γψ(

1

γ
+ nj)

]
− m

γ4

[
ψ1(

1

γ
) + 2γψ(

1

γ
)

]
− n

γ2

Mixed partial derivative of l (λ, β, γ) with respect to γ and then λ

∂2l (λ, β, γ)

∂γ∂λ
=

m∑
j=1

nj∑
i=1

[
tβij

]
− nτβ

which is the same expression as

∂2l (λ, β, γ)

∂λ∂γ

Mixed partial derivative of l (λ, β, γ) with respect to γ and then β

∂2l (λ, β, γ)

∂γ∂β
= λ

m∑
j=1

nj∑
i=1

[
tβij log [tij]

]
− nλτβ [log(τ)]

which is the same expression as

∂2l (λ, β, γ)

∂β∂γ
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Since it is difficult to get the explicit solution of λ, β and γ the Newton-
Raphson method will be used.The Newton-Raphson method converges rela-
tively fast for most functions regardless of the initial value even if difficult to
set the best initial value. The steps that we should follow in the aforemen-
tioned method:
Step1: Set initial value for all the three parameter λ0,β0 and γ0.
Step2: Iterative formula:

⎡⎣ λi+1

βi+1

γi+1

⎤⎦ =

⎡⎣ λi

βi

γi

⎤⎦−

⎡⎢⎢⎢⎢⎢⎣
∂2l(λ,β,γ)

∂λ2

∂2l(λ,β,γ)
∂λ∂β

∂2l(λ,β,γ)
∂λ∂γ

∂2l(λ,β,γ)
∂β∂λ

∂2l(λ,β,γ)
∂β2

∂2l(λ,β,γ)
∂β∂γ

∂2l(λ,β,γ)
∂γ∂λ

∂2l(λ,β,γ)
∂γ∂β

∂2l(λ,β,γ)
∂γ2

⎤⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎣
∂l(λ,β,γ)

∂λ

∂l(λ,β,γ)
∂β

∂l(λ,β,γ)
∂γ

⎤⎥⎥⎥⎥⎥⎦

where the matrix H=

⎡⎢⎢⎢⎢⎢⎣
∂2l(λ,β,γ)

∂λ2

∂2l(λ,β,γ)
∂λ∂β

∂2l(λ,β,γ)
∂λ∂γ

∂2l(λ,β,γ)
∂β∂λ

∂2l(λ,β,γ)
∂β2

∂2l(λ,β,γ)
∂β∂γ

∂2l(λ,β,γ)
∂γ∂λ

∂2l(λ,β,γ)
∂γ∂β

∂2l(λ,β,γ)
∂γ2

⎤⎥⎥⎥⎥⎥⎦
is called Hessian Matrix.

It might be easier to find solution from profile likelihood so

∂l (λ, β, γ)

∂λ
= 0

⇒ λ =
n

τβ [m+ nγ]− γ
∑m

j=1

∑nj

i=1 t
β
ij

put in to complete likelihood function and then the profile likelihood function
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is:

l = n log(n) + n log(β)− n log

[
τβ [m+ nγ]− γ

m∑
j=1

nj∑
i=1

tβij

]
+ [β − 1]

m∑
j=1

nj∑
i=1

log [tij]

+
m∑
j=1

log

[
Γ

[
1

γ
+ nj

]]
−m log

[
Γ[

1

γ
]

]
+ n log(γ)− n

Partial derivative of l (β, γ) with respect to β

∂l (β, γ)

∂β
=

n

β
+

m∑
j=1

nj∑
i=1

log(tij)−
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj

i=1 log(tij)t
β
ij

]
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

Second partial derivative of l (β, γ) with respect to β

∂2l (β, γ)

∂β2
=

−n

β2

−
n
[
τβ [log(τ)]2 [m+ nγ]− γ

∑m
j=1

∑nj

i=1 [log(tij)]
2 tβij

] [
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]2
+
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij log(tij)

]2
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]2

Mixed partial derivative of l (β, γ) with respect to β and then γ

∂2l (β, γ)

∂β∂γ
= −

n
[
nτβ [log(τ)]−∑m

j=1

∑nj

i=1 [log(tij)] t
β
ij

] [
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]2
+
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij log(tij)

] [
nτβ −∑m

j=1

∑nj

i=1 t
β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]2
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Partial derivative of l (β, γ) with respect to γ

∂l (β, γ)

∂γ
= −

n
[
nτβ −∑m

j=1

∑nj

i=1 t
β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]
− 1

γ2

m∑
j=1

ψ(
1

γ
+ nj) +

m

γ2
ψ(

1

γ
) +

n

γ

Second partial derivative of l (β, γ) with respect to γ

∂2l (β, γ)

∂γ2
=

n
[
nτβ −∑m

j=1

∑nj

i=1 t
β
ij

]2
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]2
+

1

γ4

m∑
j=1

[
ψ1(

1

γ
+ nj) + 2γψ(

1

γ
+ nj)

]
− m

γ4

[
ψ1(

1

γ
) + 2γψ(

1

γ
)

]
− n

γ2

Mixed partial derivative of l (β, γ) with respect to γ and then β

∂2l (β, γ)

∂γ∂β
= −

n
[
nτβ [log(τ)]−∑m

j=1

∑nj

i=1 [log(tij)] t
β
ij

] [
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]2
+
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij log(tij)

] [
nτβ −∑m

j=1

∑nj

i=1 t
β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj

i=1 t
β
ij

]2
which is the same expression as

∂2l(β, γ)

∂β∂γ

Step in Newton Raphson’s method for profile likelihood function is: Step1:
Set initial value for all the three parameter β0 and γ0.
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Step2: Iterative formula:

[
βi+1

γi+1

]
=

[
βi

γi

]
−

⎡⎢⎣
∂2l(β,γ)

∂β2

∂2l(β,γ)
∂β∂γ

∂2l(β,γ)
∂γ∂β

∂2l(β,γ)
∂γ2

⎤⎥⎦
−1 ⎡⎢⎣

∂l(β,γ)
∂β

∂l(β,γ)
∂γ

⎤⎥⎦

where the matrix H=

⎡⎢⎣
∂2l(β,γ)

∂β2

∂2l(β,γ)
∂βγ

∂2l(β,γ)
∂γ∂β

∂2l(β,γ)
∂γ2

⎤⎥⎦
is called Hessian Matrix.

2.6 Interrelation Between Dynamic Behaviour And
Frailty Model For Poisson Processes

It is generally agreed that fraility represents an unmeasured risk factor that
eventually leads to wrong conclusions if not taken into account. Moreover,
there is even a misunderstanding in the concept itself. That is, it is hard to
differentiate between static and dynamic fraility.

So, the first and the critical point is a confirmation of whether there is fraility
or not. Second, is this fraility static or dynamic? Sometimes the current frail
may depend on the past. Thus, we are keenly interested to see the interrela-
tion between static/fixed fraility for each individual and dynamic/stochastic
processes that change over time (Aalen et al., 2008).

The idea of intensity functions and counting processes are vital for modelling
and statistical analysis of recurrent events. The event intensity function gives
the instantaneous probability of an event occuring at t, conditional on the
process history. The intensity is defined formally as

λ(t|H(t)) = limΔt↓0
Pr[ΔN(t)=1|H(t)]

Δt

where H(t) = [N(s) : 0 ≤ s < t] denote the history of the process at time t
(see e.g. Cook and Lawless, 2006).

Just referenced to (Aalen et al., 2008), in this study, individual intensity
given the fraility variable aj is
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λ(t) = aw(t)

where w(t) = λβtβ−1 is a common baseline intensity and fixed function,
that is, independent of the past, while aj, j = 1, 2, ...,m, are independent
identically distributed random variables give in the multiplicative factor that
determines the risk of an individual. Here we considered aj to be gamma
distributed with scale parameter δ and shape parameter 1

δ
.

Hence, the conditional intensity of the fraility model,

λ(t) = w(t)
1
δ
+N(t−)
δ+A(t)

where A(t) =
∫ t

0
w(u)du ≡ λtβ

Thus

λ(t) =

[
w(t)

δ[δ + A(t)]

]
[1 + δN(t−)]

=

[
λβtβ−1

δ[δ + λtβ]

]
[1 + δN(t−)]

Recall LEYP model:

λ(t) = w∗(t)[1 + γN(t−)]

Hence,

Fraility ⇔ LEY P : if w∗(t) = w(t)
δ[δ+A(t)]

This bi-implication shows us that fraility models may alternatively be viewed
as dynamic models. Hereafter, we are interested in confirming this theoretical
observation by a simulation study.

2.7 Simulate m Systems With Dynamic ROCOF

As mentioned before we suppose that the data concerns on m systems with a
consideration of these systems in a calender time interval [S,T] where S and
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T are the starting and the ending time of observation. We might look the
system at the start of the operation i.e S=0 and up to T=10.

We can use ordinary power law model w(t) = λβtβ−1 to simulate failure
time T1 = S1; to simulate T2 in the interval [S1,∞) we might use the inten-
sity w(t) = (1 + γ)λβtβ−1; to simulate T3 from the interval [S2,∞) where
S2 = S1+T2, we can consider the intensity w(t) = (1+2γ)λβtβ−1 and so on.

How to simulate T1? To generate the failure time T1 we can see the fol-
lowing procedures

Step 1: Let us take z1(t) = λβtβ−1 the hazard rate of T1. Its survival function

G1(t) = P (T1 > t) = e−
∫ t
0 z1(u)du. By integrating the intensity function the

survival function is G1(t) = e−λt
β

Step 2: Draw a random variable u1 ∼ u[0, 1] and equate to the survival
function G1(t) = e−λt

β

Thus,
e−λt

β

= u1

⇒ − log u1 = λT β
1

⇒ S1 = T1 =

(
− log u1

λ

)1/β

How to simulate T2?

Claim: T2 has hazard rate z2(t) = (1 + γ)λβ(S1 + t)β−1, which is condi-
tional on S1. The survival function of T2 conditional on S1 is

G2(t) = P (T2 > t)

= e−
∫ t
0 z2(u)du

= e−
∫ t
0 (1+γ)λβ(S1+u)β−1du

= e−(1+γ)λβ
∫ t
0 (S1+u)β−1du
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= e−(1+γ)λβ
∫ S1+t
S1

xβ−1dx

= e−(1+γ)λ[(S1+t)β−Sβ
1 ]

Let us draw a random variable u2 ∼ u[0, 1] and equate to the survival func-

tion u2 = e−(1+γ)λ[(S1+T2)β−Sβ
1 ]

This implies that

u2 = e−(1+γ)λ[(S1+T2)β−Sβ
1 ]

⇒ log u2 = −(1 + γ)λ
[
(S1 + T2)

β − Sβ
1

]
⇒ − log u2

(1 + γ)λ
= (S1 + T2)

β − Sβ
1

⇒ S1 + T2 =

(
Sβ
1 − log u2

(1 + γ)λ

)1/β

⇒ T2 =

(
Sβ
1 − log u2

(1 + γ)λ

)1/β

− S1

Thus,

S2 =

(
Sβ
1 − log u2

(1 + γ)λ

)1/β

How to simulate T3?
Claim: T3 has hazard rate z3(t) = (1+2γ)λβ(S2+ t)β−1, which is conditional
on S2. The survival function of T3 is

G3(t) = P (T3 > t)

= e−
∫ t
0 z3(u)du
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= e−
∫ t
0 (1+2γ)λβ(S2+u)β−1du

= e−(1+2γ)λβ
∫ t
0 (S2+u)β−1du

= e−(1+2γ)λβ
∫ S2+t
S2

xβ−1dx

= e−(1+2γ)λ[(S2+t)β−Sβ
2 ]

Let us draw a random variable u3 ∼ u[0, 1] and equate to the survival func-

tion u3 = e−(1+γ)λ[(S2+T2)β−Sβ
2 ]

This implies that

u3 = e−(1+2γ)λ[(S2+T3)β−Sβ
2 ]

⇒ log u3 = −(1 + 2γ)λ
[
(S2 + T3)

β − Sβ
2

]
⇒ − log u3

(1 + 2γ)λ
= (S2 + T3)

β − Sβ
2

⇒ S2 + T3 =

(
Sβ
2 − log u3

(1 + 2γ)λ

)1/β

⇒ T3 =

(
Sβ
2 − log u3

(1 + 2γ)λ

)1/β

− S2

Thus,

S3 =

(
Sβ
2 − log u3

(1 + 2γ)λ

)1/β

Similarly,

S4 =

(
Sβ
3 − log u4

(1 + 3γ)λ

)1/β
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,

S5 =

(
Sβ
4 − log u5

(1 + 4γ)λ

)1/β

and so on. Graphically,

0S
1tβλβ −

1S 1(1 ) tβγ λβ −+ 2S 1(1 2 ) t βγ λβ −+ 3S 1(1 3 ) tβγ λβ −+ 4S 10τ =

1T 2T 3T
4T

Figure 4: Relation between the interoccurrence times (Ti), caleander time Si

and intensity w(t) = (1 + iγ)λβtβ−1 where i = 0, 1, ....

If γ = 0, then LEYP process is an ordinary power law process.

S1 = T1 =

(
− log u1

λ

)1/β

S2 =

(
Sβ
1 − log u2

λ

)1/β

S3 =

(
Sβ
2 − log u3

λ

)1/β

and so on but stop while we are passing τ . So we can simulate ordinary
power law process from LEYP model by making γ = 0.
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We may describe it graphically as:

• • •
11t 2 jt 1T0

• • •
2mt mT0
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11nt

1 j
t

2 jt
jn jt

1mt
mn mt

Figure 5: Observation of failure times of m systems.

Similarly, we can simulate power law with frailty from LEYP model. For
process �1, draw an ”a1” from gamma distribution with expected value 1
and variance δ. Then the failure times are simulated as

S
(1)
1 = T

(1)
1 =

(
− log u1

λ · a1

)1/β

S
(1)
2 =

(
S
(1)β
1 − log u2

λ · a1

)1/β

S
(1)
3 =

(
S
(1)β
2 − log u3

λ · a1

)1/β

and so on.

For process �2, draw an ”a2” from gamma distribution.
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S
(2)
1 = T

(2)
1 =

(
− log u1

λ · a2

)1/β

S
(2)
2 =

(
S
(2)β
1 − log u2

λ · a2

)1/β

S
(2)
3 =

(
S
(2)β
2 − log u3

λ · a2

)1/β

and so on. Graphically, provided β = 3
2
,
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Figure 6: Observation of failure times of m system with frailties a

2.8 Maximum Likelihood Estimation

Although the method of maximum likelihood is an efficient method once we
have an explicit likelihood function,it is a routine procedure for obtaining
estimators for unknown parameters from a set of data. It’s estimate for θ
is a value of θ which maximize the likelihood function over the parameter
space. It is a single parameter value which is most likely in light of what
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have been observed.

Definition:

1. The likelihood function is the joint probability (density) function of
observable random variables but it is viewed as the function of the pa-
rameters given the realized random variables.

Mathematically,let x1, x2, ..., xn be a random sample of size n from the
discrete pdf pX (x; θ). The likelihood function, L(θ), is the product of
the pdf evaluated at the n x

′
is. That is,

L (θ) = Πn
i=1pX (xi; θ)

Similarly,if x1, x2, ..., xn be a random sample of size n from a continuous
pdf, fX (x; θ). The likelihood function can be written as

L (θ) = Πn
i=1fX (xi; θ)

where θ is an unknown parameter in both cases. Moreover, let θl is the
value of the parameter such that L(θl) ≥ L(θ) for all possible values of
θ. Then θl is maximum likelihood estimate(MLE) θ.

2. The function l (θ) = lnL (θ) is the log likelihood function of x1, x2, ..., xn.

3. The function S (θ) = ∂
∂x
l (θ) is the score function of x1, x2, ..., xn.

4. The function I (θ) = − ∂2

∂x
l (θ) is the information matrix of x1, x2, ..., xn.

The Fisher information matrix is used to calculate the covariance matrices
associated with maximum-likelihood estimates so that we can easily estimate
the standard deviation of estimates.
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2.9 Preliminary Analysis

The main objective of the preliminary analysis is to give a simple overview
about simulation of a single process observed on the time interval [0,10].

2.9.1 Ordinary Power Law Model

This is simulation of a single process observed on the interval [0,10], where
parameter values are λ = 2 and β = 1.5.
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Figure 7: Random failures time t Vs number of failure N(t)

2.9.2 Fraility

These are simulations of single processes observed on the interval [0,10] for
the same λ = 2 and β = 1.5 but varying δ values
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Figure 8: Random failures time t Vs number of failure N(t), δ=0.2
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Figure 9: Random failures time t Vs number of failure N(t), δ=0.4
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Figure 10: Random failures time t Vs number of failure N(t), δ=0.6
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Figure 11: Random failures time t Vs number of failure N(t), δ=0.8
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Figure 12: Random failures time t Vs number of failure N(t), δ=1

2.9.3 Dynamic Behaviour

These are simulations of single processes observed on the interval [0,10] for
the same λ = 2 and β = 1.5 but varying γ values
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Figure 13: Random failures time t Vs number of failure N(t), γ=0.001
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Figure 14: Random failures time t Vs number of failure N(t), γ=0.01
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Figure 15: Random failures time t Vs number of failure N(t), γ=0.02
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Figure 16: Random failures time t Vs number of failure N(t), γ=0.04
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Figure 17: Random failures time t Vs number of failure N(t), γ=0.06
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Figure 18: Random failures time t Vs number of failure N(t),γ=0.08
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Figure 19: Random failures time t Vs number of failure N(t), γ=0.1
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2.10 Simulation Study

2.10.1 Power Law Model

2.10.1.1 Maximum Likelihood Estimate
Maximum likelihood estimates of ordinary power law model for single simula-
tion with a given value m=20, λ=2, β=1.5. The ML estimates are λ̂=1.9926
and β̂=1.4999. This resulted in the Fisher information

I
(
λ̂, β̂
)
=

⎡⎣ 0.0407 −0.0082

−0.0082 0.0018

⎤⎦
From the Fisher information matrix we can further derive the standard de-
viation of λ̂ and β̂ to be 0.2018 and 0.0423 in respective order. Its maximum
likelihood,
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Figure 20: Maximum likelihood estimates of ordinary power law model
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Figure 21: Histogram of Number of failure Vs Systems; λ=2, β=1.5, 10000
data sets and m=20 systems per data sets
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Hereafter, average (Ave.)and standared deviation (St.D) are denoted as fol-
lows:

For estimate [λ̂, β̂, δ̂ and γ̂]: Average (Ave.) is the sum of all estimates
divided by number of data sets and standard deviation (St.D) is the average
distance between the estimates and the mean(Average of estimates).

For number of failures [n]: Average (Ave.) is the sum of all number of
failure per system divided by the product of number of system per data set
,and number of total data sets. Its standard deviation (St.D) is the square
root of the quadratic distance between the number of failures per process
and the mean(Average number of failures).

Data m True Value n Estimates

10000 20 λ β Average St.D λ̂ β̂

Average St.D Average St.D

2 1.5 63.2896 7.9675 2.0034 0.2042 1.5012 0.0424

1 19.9312 4.4597 2.0000 0.2495 1.0030 0.0504

0.75 11.2457 3.3483 2.0015 0.2619 0.7526 0.0497

Table 1: Power law data and power law estimates
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Data m True Value n Estimates

10000 20 λ β δ Average St.D λ̂ β̂

Average St.D Average St.D

2 1.5 0.2 62.5152 29.2594 1.9850 0.3041 1.5036 0.0488

0.4 63.0461 40.7118 1.9918 0.3623 1.5023 0.0486

0.6 62.6755 49.3998 1.9892 0.4078 1.5020 0.0485

0.8 63.1969 56.7187 1.9962 0.4543 1.5018 0.0485

1 61..5949 63.0386 1.9845 0.4952 1.5019 0.0494

1 0.2 19.9349 9.9328 2.0050 0.3188 1.0024 0.0508

0.4 19.9346 13.2303 1.9942 0.3754 1.0036 0.0504

0.6 20.0902 16.4537 1.9949 0.4270 1.0033 0.0512

0.8 20.0922 18.5500 1.9966 0.4700 1.0049 0.0520

1 19.9214 20.3878 1.9906 0.5143 1.0085 0.0533

0.75 0.2 11.3481 6.0628 1.9478 0.3118 0.7671 0.0469

0.4 11.2743 7.7920 1.9453 0.3678 0.7680 0.0462

0.6 11.5032 9.3936 1.9335 0.4249 0.7712 0.0479

0.8 11.3861 10.5682 1.9247 0.4760 0.7745 0.0499

1 11.5880 11.9995 1.9198 0.5246 0.7799 0.0523

Table 2: Fraility data and power law estimates

Table Summary
Case 1: β > 1
As δ increases: average number of failures per system are nearly constant but
the standard deviation (St.D) increases; average of λ estimates are nearly
constant but the standard deviation (St.D) increases; average and standared
deviation (St.D)of β estimates are fairly constant.

Case 2: β = 1
As δ increase: similar to case 1.

Case 3: β < 1
As δ increase: average number of failures per system are very nearly con-
stant but the standard deviation (St.D) increases; average of λ estimates are
slightly decrease but standard deviation of λ estimates are increases; average
and standared deviation (St.D)of β estimates are increases.
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Data m True Value n Estimates

10000 20 λ β γ Average St.D λ̂ β̂

Average St.D Average St.D

2 1.5 0.001 65.0923 8.2762 1.9566 0.2013 1.5256 0.0428

0.01 88.1634 12.6667 1.5068 0.1652 1.7700 0.0455

0.02 126.9190 21.5008 0.9970 0.1171 2.1080 0.0483

0.04 289.1689 59.6044 0.2704 0.0344 3.0315 0.0516

0.06 726.9944 180.2163 0.0356 0.0045 4.3109 0.0495

1 0.001 20.2509 4.5139 2.0015 0.2537 1.0073 0.0512

0.01 22.1547 5.1818 1.9607 0.2539 1.0558 0.0517

0.02 24.5958 6.0606 1.9192 0.2549 1.1105 0.0532

0.04 30.8249 8.4493 1.7955 0.2505 1.2356 0.0551

0.06 38.8179 11.3669 1.6233 0.2399 1.3812 0.0575

0.75 0.001 11.2690 3.3855 1.9966 0.2703 0.7562 0.0515

0.01 11.8937 3.5962 2.0140 0.2696 0.7743 0.0507

0.02 12.6623 4.0317 2.0249 0.2805 0.7978 0.0523

0.04 14.2409 4.7588 2.0406 0.2861 0.8462 0.0529

0.06 16.0941 5.5937 2.0576 0.3010 0.8961 0.0550

Table 3: Dynamic data and power law estimates

Table Summary
Case 1: β > 1
As γ increase: average and standard deviation (St.D) of number of failure
per system are highly increases; averages and standard deviation (St.D) of λ
estimates are highly decrease; average of β estimates increases but the stan-
dard deviations (St.D) fairly constant.

Case 2: β = 1
As γ increase: average and standard deviation (St.D) of number of failure
per system are increase; average of λ estimates are decrease and its standard
deviation (St.D) estimates are fairly constant; average of β estimates are in-
crease but the standard deviation (St.D) fairly constant.
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Case 3: β < 1
As γ increase: average and standard deviation (St.D) of number of failure
per system are slowly increases; average of λ estimates are fairly constant
but the standard deviations (St.D) slowly increases; average of β estimates
are slowly increase but standard deviation (St.D) fairly constant.

2.10.2 A Gamma Multiple(Frailty)Power Law Model

2.10.2.1 Maximum Likelihood Estimate
Here we are keenly interested to estimate parameters λ, β and δ.
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Figure 22: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.2,10000 data sets and m=20 systems per data sets
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Figure 23: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.4,10000 data sets and m=20 systems per data sets
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Figure 24: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.6,10000 data sets and m=20 systems per data sets
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Figure 25: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.8,10000 data sets and m=20 systems per data sets
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Figure 26: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=1,10000 data sets and m=20 systems per data sets
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Data m True Value n Estimates

10000 20 λ β δ Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 0.0001 63.2373 7.8956 2.0062 0.2024 1.5005 0.0423 0.002 0.0037

0.01 63.4082 10.2008 2.0054 0.2071 1.5009 0.0422 0.0112 0.0097

0.1 63.0648 21.4421 2.0075 0.2456 1.5005 0.0421 0.0942 0.0352

0.2 63.2006 29.6606 2.0042 0.2853 1.5013 0.0425 0.1897 0.0651

0.4 63.0469 40.1756 2.0033 0.3450 1.5009 0.0426 0.3795 0.1208

0.6 63.3880 49.3983 2.0063 0.4033 1.5014 0.0431 0.5718 0.1750

0.8 63.0149 56.1749 2.0050 0.4452 1.5013 0.0430 0.7511 0.2223

1 63.4131 64.1655 2.0033 0.5023 1.5021 0.0432 0.9309 0.2610

1 0.001 19.9770 4.6594 2.0057 0.2559 1.0030 0.0511 0.0071 0.0137

0.2 19.9885 9.9238 1.9987 0.3231 1.0023 0.0509 0.1879 0.0774

0.4 20.2335 13.4745 2.0052 0.3802 1.0026 0.0508 0.3742 0.1305

0.6 19.8679 15.8587 1.9968 0.4285 1.0043 0.0514 0.5520 0.1769

0.8 20.1814 18.2127 1.9923 0.4691 1.0051 0.0518 0.7158 0.2107

1 20.4585 20.8251 1.9843 0.5149 1.0083 0.0524 0.8679 0.2421

0.75 0.001 11.2590 3.3240 2.0083 0.2626 0.7521 0.0513 0.0123 0.0231

0.2 11.8200 6.8717 2.0535 0.3142 0.7502 0.0493 0.1888 0.0924

0.4 11.2779 7.8143 1.9923 0.3934 0.7557 0.0519 0.3620 0.1381

0.6 11.1454 9.2048 1.9846 0.4330 0.7572 0.0522 0.5234 0.1763

0.8 11.1906 10.4320 1.9702 0.4873 0.7624 0.0539 0.6685 0.2054

1 11.1918 11.4700 1.959 0.5285 0.7663 0.0552 0.7917 0.2274

Table 4: Fraility data and fraility estimates

Table Summary
Case 1: β > 1
As δ increase: average number of failure per system are constant but its stan-
dard deviation (St.D) increases; average of λ estimates are fairly constant but
the standard deviation (St.D) slowly increase: average and standard devia-
tion (St.D) of β estimates are fairly constant; average and standard deviation
(St.D) of δ estimates are increase.

Case 2: β = 1
As δ increase: similar as Case 1
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Case 3: β < 1
As δ increase: average number of failure per system are fairly constant but
the standard deviation (St.D) increases; average of λ estimates are decrease
but the standard deviation (St.D) increases: average of β estimates are in-
crease but the standard deviations (St.D) constant; average and standard
deviation (St.D) of δ are increase.

Data m True V. n Estimates

10000 20 λ β Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 63.1451 8.0541 2.0059 0.2057 1.5008 0.0430 0.0021 0.0036

1 20.0288 4.4658 2.0051 0.2526 1.0019 0.0509 0.0064 0.0119

0.75 11.2920 3.3512 1.9992 0.2653 0.7535 0.0507 0.0116 0.0215

Table 5: Power law data and fraility estimates
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Data m True Value n Estimates

1000 20 λ β γ Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 0.00001 63.3176 8.0255 2.0030 0.2019 1.5017 0.0423 0.0020 0.0038

0.001 65.2978 8.2883 1.9562 0.1972 1.5254 0.0425 0.0026 0.0042

0.01 88.4093 12.8219 1.5084 0.1668 1.7694 0.0459 0.0111 0.0080

0.02 127.0301 21.0328 0.9979 0.1159 2.1078 0.0480 0.0229 0.0119

0.04 287.3850 61.2510 0.2698 0.0349 3.0325 0.0516 0.0387 0.0133

0.06 719.8430 176.3796 0.0354 0.0044 4.3141 0.0479 0.0569 0.0194

1 0.00001 19.9410 4.3837 2.0018 0.2592 1.0019 0.0513 0.0062 0.0114

0.001 20.4110 4.6004 1.9959 0.2521 1.0097 0.0509 0.0069 0.0118

0.01 21.9510 5.0593 1.9584 0.2518 1.0558 0.0514 0.0135 0.0174

0.02 24.5330 6.0879 1.9214 0.2596 1.1113 0.0537 0.0238 0.0221

0.04 30.8490 8.4581 1.8012 0.2496 1.2348 0.0551 0.0474 0.0296

0.06 37.9590 11.3169 1.6259 0.2481 1.3816 0.0589 0.0682 0.0334

0.08 50.1180 16.0797 1.4173 0.2131 1.5465 0.0587 0.0763 0.0305

0.1 64.0240 22.7574 1.1807 0.1888 1.7359 0.0616 0.0943 0.0361

0.2 269.6050 120.1785 0.2495 0.0397 3.0342 0.0576 0.1902 0.0602

0.75 0.00001 11.2950 3.3210 2.0022 0.2644 0.7536 0.0490 0.0117 0.0215

0.001 11.3640 3.5082 2.0046 0.2663 0.7550 0.0513 0.0126 0.0229

0.01 11.8860 3.5045 2.0044 0.2715 0.7769 0.0520 0.0164 0.0253

0.02 12.5950 4.1497 2.0310 0.2757 0.7970 0.0511 0.0261 0.0320

0.04 14.3780 4.8219 2.0294 0.2925 0.8478 0.0541 0.0441 0.0410

0.06 16.0900 5.8230 2.0615 0.3080 0.8961 0.0544 0.0668 0.0461

0.08 18.5330 7.1101 2.0409 0.3171 0.9561 0.0574 0.0942 0.0534

0.2 40.9700 19.5547 1.6950 0.2931 1.4002 0.0611 0.1937 0.0709

0.4 219.4870 136.0986 0.5884 0.1085 2.5791 0.0532 0.3823 0.1157

Table 6: Dynamic data and fraility estimates

Table Summary
Case 1: β > 1
As γ increase: average and standard deviation (St.D) of number of failures
per system are highly increases; average and standard deviation (St.D) of λ
estimates are highly decreases; average of β estimates are increases but the
standard deviation (St.D) fairly constant; average and standard deviation
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(St.D) of δ estimates are increases.

Case 2: β = 1
As γ increase: average and standard deviation (St.D) of failures per system
are increases; average and the standard deviation (St.D) decreases; average
of β estimates are increases but the standard deviations (St.D) fairly con-
stant; average and standard deviation (St.D) of δ estimates are increases.

Case 3: β < 1
As γ increase: average and standard deviation (St.D) of failure per system
are increases; average and standard deviation (St.D) of λ estimates are de-
creases; average of β estimates increase but the standard deviations (St.D)
fairly constant; average and standard deviation (St.D) of δ estimates are
increases.

2.10.3 A Dynamic View of Power Law Model

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

350

400

450

500

Number of failure time

Sys
tem

s

Figure 27: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.001,10000 data sets and m=20 systems per data sets
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Figure 28: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.01,10000 data sets and m=20 systems per data sets
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Figure 29: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.02,10000 data sets and m=20 systems per data sets
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Figure 30: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.04,10000 data sets and m=20 systems per data sets
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Figure 31: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.06,10000 data sets and m=20 systems per data sets

2.11 Conclusion

In this paper, interrelation between fraility and dynamic models have been
investigated. We have considered parameter δ as measure of fraility and γ as
measure of dynamic behaviour. Moreover, these, parameters are considered
as the main focus of the study and to see the difference from the baseline
model. We were forced to use a smaller γ than δ to have a reasonable number
of failures for dynamic behaviour. Unlike δ, as γ increases, a decrease in λ
is seen, but the converse for β due to the fact that higher number of failures
happen in system. Both features dynamic behaviour and frailty have great
impact on analyses, avoiding wrong conclusions occurring if they are not
taken into account. We have considered dynamic and fraility data sets and
estimate their parameters by the fraility likelihood function. Often the true
γ value and δ estimates are close to being equal. Hence, we can say that
fraility models may be viewed as an alternative to dynamic models.
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Abstract

The objective of the study is to improve the robustness and flexi-
bility of spatial kriging predictors with respect to deviations from spa-
tial stationarity assumptions. A predictor based on a non-stationary
Gaussian random field is defined. The model parameters are inferred
in an empirical Bayesian setting, using observations in a local neigh-
borhood and a prior model assessed from the global set of observations.
The localized predictor appears with a shrinkage effect and is coined
a localized/shrinkage kriging predictor. The predictor is compared to
traditional localized kriging predictors in a case study on observations
of annual cumulated precipitation. A crossvalidation criterion is used
in the comparision. The shrinkage predictor appears as uniformly
preferable to the traditional kriging predictors. A simulation study
on prediction in non-stationary Gaussian random fields is conducted.
The results from this study confirms that the shrinkage predictor is
favorable to the traditional ones. Moreover, the crossvalidation cri-
terion is found to be suitable for selection of predictor. Lastly, the
shrinkage predictor appears as particularly robust towards spatially
varying expectation functions.
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3 Localized/Shrinkage Kriging Prediction

3.1 Introduction

Consider a set of exact observations from a continuous regionalized variable.
Focus is on prediction of the regionalized variable in an unobserved location
with associated prediction variance. One option is to use traditional kriging
prediction, see Journel and Huijbregts (1978) and Chiles and Delfiner (1999).
If one assume a model with spatially constant expectation and variance with
a shift-invariant spatial correlation function, then a global, ordinary kriging
predictor will be a natural choice. This model assumption may be tested
statistically, see Fuentes (2005).

A more flexible and robust spatial predictor can be defined by applying the
ordinary kriging predictor locally. This entails using only observations in a
specified finite neighborhood around the location of the variable to be pre-
dicted. This approach is termed local neighborhood kriging, see Chiles and
Delfiner (1999), and it robustifies the predictor with respect to deviations
from the assumption of spatially constant expectation and variance. More-
over, local neighborhood predictors can give huge computational gains in
large scale problems.

The major challenge in using localized predictors is to specify the size of
the neighborhoods, or the set of neighboring observations involved. Classical
statistical trade-offs between bias and variance in the local predictor must
be made. The spatial correlation structure may provide a screening effect by
the neighboring observations, see Stein (2002), and this effect may be used
to justify localization. The localized predictors can cause artifacts in the
predicted regionalized variable as discontinuities when extreme observations
are included or excluded in the neighborhood as it is shifted, see Gribov and
Krivoruchko (2004).

The objective of this study is to improve the flexibility and robustness of the
spatial predictor. We define a spatial model as a Gaussian random field with
spatially varying expectation and variance. The spatial correlation function
is shift invariant and known. Under these model assumptions the local neigh-
borhood kriging predictor require expectation and variance to be assessed in
the prediction and observation locations. In traditional kriging approaches
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this inference is made by a sliding neighborhood maximum-likelihood esti-
mator.

We define a new localized predictor inspired by the empirical Bayes approach
discussed in Efron and Morris (1973). We phrase the inference of the spatial
expectation and variance in a Bayesian setting along the lines of Røislien
and Omre (2006). The conjugate prior models are assessed empirically from
the global set of observations. The resulting local kriging predictor appear
with shrinkage caused by the global prior model. We term the predictor as
localized/shrinkage kriging.

The report is organized as follows : Section 2.2 contain a list of notation. In
Section 2.3 general random field models are defined and discussed. Model
parameter inference in these random field models are discussed in Section
2.4, while Section 2.5 contain definitions of the localized predictors. In Sec-
tion 2.6 a presentation of the evaluation criteria is included. Section 2.7
contain a demonstration and evaluation of the predictors on a couple of real
data examples, while Section 2.8 presents the empirical simulation study on
Gaussian random fields. Lastly, Section 2.9 contains the conclusions from
the study.

3.2 Notation

The folowing notation is used:
LD grid over D
n number of grid nodes in D
Lo locations of sampled observations
no number of sampled observation
k number of closest observation
r vector of values in grid LD

ro vector of values of observations in Lo

r+ value at location x+

rk+o vector of values in k-closest observations to location x+

in unit [n× 1]vector
In unit diagonal [n× n] matrix
μr expected value
σ2
r variance value

Σrr covariance matrix

79



Ωr correlation matrix
Γr diagonal standard deviation matrix
H selection matrix
ν degree of freedom for hierarichical representation

3.3 Random field models

A random field (RF) is a generalization of a stochastic process, taking refer-
ences on some topological space. Due to the complexity of natural phenom-
ena and the actual problem, several kind of random fields are defined, among
them Gaussian RF, Poisson RF and Markov RF. The former is of concern in
the current study. We consider Gaussian RF {r(x); x ∈ D ⊂ �}, where x is
a reference location running over the domain D as a subset of �m, with r(x)
being the random variable of interest.

3.3.1 General Gaussian Random Field Model

A Gaussian RF is defined by the Gaussian probability density functions.
The Gaussian RF is a preferable model for continuous, or almost continuous,
spatial variables due to its simplicity in inferences and analytical tractability.

The definition of a Gaussian RF is:

A RF {r(x); x ∈ D ⊂ �m} is denoted a Gaussian RF if

r =

⎡⎢⎣ r(x1)
...

r(xn)

⎤⎥⎦ ∼ Nn(μr,Σrr) (1)

for ∀ conf (x1, · · · , xn) ∈ Dn, ∀n ≥ 1

and the corresponding pdf can be written as:

f(r) = (2π)−
n
2 |Σrr|−

1
2 exp

{−1
2
(r− μr)

TΣ−1rr (r− μr)
}
,

where
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μr =

⎡⎢⎣ μr(x1)
...

μr(xn)

⎤⎥⎦ ,

and

Σrr = ΓrΩrrΓ
T
r ,

with

Γr =

⎡⎢⎢⎢⎣
σr(x1) 0 . . . 0

0 σr(x2) . . . 0
...

...
. . .

...
0 0 . . . σr(xn)

⎤⎥⎥⎥⎦

Ωrr =

⎡⎢⎣ ρr(x1, x1) ρr(x1, x2) . . . ρr(x1, xn)
...

...
. . .

...
ρr(xn, x1) ρr(xn, x2) . . . ρr(xn, xn)

⎤⎥⎦
The model parameters for Gaussian RFs are:

{μr(x) = E [r(x)] ; x ∈ D} - spatial expectation field.{
σ2
r(x) = V ar [r(x)] ; x ∈ D

}
- spatial variance field.{

ρr(x
′
, x

′′
) = Corr

[
r(x

′
), r(x

′′
)
]
; x

′
, x

′′ ∈ D2
}

- spatial correlation field.{
φr(x

′
, x

′′
) = Cov[r(x

′
), r(x

′′
)] = σr(x

′
)σr(x

′′
)ρr(x

′
, x

′′
); x

′
, x

′′ ∈ D2
}

- spatial covariance field.

Hence, the model parametrization for a Gaussian RF is: {μr(x), σ
2
r(x); x ∈ D}

and
{
ρr(x

′
, x

′′
); x

′
, x

′′ ∈ D2
}
. The requirements for the model parameters

are:

• σr(x) ≥ 0 for x ∈ D.

• −1 ≤ ρr(x
′
, x

′′
) ≤ 1 for x

′
, x

′′ ∈ D2
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• Ωrr - non-negative definite matrix.

Thus, a correlation field must be a positive semi-definite field to ensure that
Ωrr is valid. A correlation field ρr(x

′
, x

′′
) is called positive semi-definite if

the associated quadratic form is non-negative,then:

∑n
i=1

∑n
j=1 αiαjρr(xi, xj) ≥ 0

∀ conf(x1, ..., xn) ∈ Dn, ∀n > 1, ∀α = (α1, ..., αn)
T ∈ �n

If in addition the quadratic form
∑n

i=1

∑n
j=1 αiαjρr(xi, xj) = 0 only for

α = 0in, then the correlation field ρr(x
′
, x

′′
) is called positive definite. Ex-

pectation, variance and correlation fields determine all stochastic properties
of a Gaussian RF.

Consider a regular grid over D, denote it LD and let the number of grid
nodes be n. Define the discretized Gaussian RF r = {r(x); x ∈ LD}.

Further let the expectation [n×1] vector μr = {μr(x); x ∈ LD}, the standard
deviation [n×n] matrix Γr be diagonal with elements {σr(x); x ∈ LD} and the
correlation [n× n] matrix Ωrr have elements

{
ρr(x

′
, x

′′
); x

′
, x

′′ ∈ LD × LD

}
.

Moreover, the covariance [n× n] matrix is Σrr = ΓrΩrrΓ
T
r .

Let ro be a [no × 1] vector of observations which occur at grid locations
hence at a subset of LD,

ro =

⎡⎢⎢⎢⎣
r(xo1)
r(xo2)

...
r(xono)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ro1
ro2
...

rono

⎤⎥⎥⎥⎦
Hence, [ro | r] = Hr, where H is a binary selection [no × n] matrix having
one on all sampled location and zero in unsampled location.

Consider the combined vector of values at grid nodes and observations:
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[
r
ro

]
∼ Nn+no

⎡⎣⎡⎣ μr

Hμr

⎤⎦ ,
⎡⎣ Σrr ΣrrH

HΣrr HΣrrH
T

⎤⎦⎤⎦
Hence, the conditional Gaussian RF is

[r | ro] ∼ Nn(μr|ro ,Σrr|ro). (2)

where

μr|ro=E[r | ro] = μr + ΣrrH
T
[
HΣrrH

T
]−1

(ro −Hμr).

Σrr|ro=Var[r | ro] = Σrr − ΣrrH
T
[
HΣrrH

T
]−1

HΣrr

Consider prediction of the value in an arbitrary location x+ ∈ D, and denote
it r+ = r(x+). The avaliable observations are ro.

[
r+
ro

]
∼ N1+no

⎡⎣⎡⎣ μ+

Hμr

⎤⎦ ,
⎡⎣ σ2

+ σ+ω
T
o+HΓrH

T

σ+HΓrHωo+ HΓrΩrrΓrH
T

⎤⎦⎤⎦

= N1+no

⎡⎣⎡⎣ μ+

μo

⎤⎦ ,
⎡⎣ σ2

+ σ+ω
T
o+Γo

σ+Γoωo+ ΓoΩooΓ
T
o

⎤⎦⎤⎦
where μ+ = μ(x+), σ

2
+ = σ2(x+) and

μo =

⎡⎢⎣ μ(xo1)
...

μ(xono)

⎤⎥⎦ = Hμr

ωo+ =

⎡⎢⎣ ρ(xo1, x+)
...

ρ(xono , x+)

⎤⎥⎦
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Γo =

⎡⎢⎢⎢⎣
σ(xo1) 0 . . . 0

0 σ(xo2) . . . 0
...

...
. . .

...
0 0 . . . σ(xono)

⎤⎥⎥⎥⎦ = HΓrH
T

Ωoo =

⎡⎢⎣ ρ(xo1, xo1) ρ(xo1, xo2) . . . ρ(xo1, xono)
...

...
. . .

...
ρ(xono , xo1) ρ(xono , xo2) . . . ρ(xono , xono)

⎤⎥⎦ = HΩrrH
T

and let Σoo = ΓoΩooΓ
T
o .

The conditional Gaussian random variable in location x+ given the observa-
tion vector ro is:

[r+ | ro] ∼ N1

[
μ+|o, σ2

+|o
]

with

μ+|o = μ+ + σ+ω
T
o+Γo [ΓoΩooΓo]

−1 [ro − μo]

= μ+ +KG[ro − μo]

σ2
+|o = σ2

+ − σ+ω
T
o+Γo [ΓoΩooΓo]

−1 Γoωo+σ+

= σ2
+[1− ωT

o+Γo [ΓoΩooΓo]
−1 Γoωo+]

= σ2
+ −KGΓoΩooΓoK

T
G

where KT
G = σ+ω

T
o+Γo [ΓoΩooΓo]

−1 is a weight [no × 1] vector.
Note that the weight vector, termed generalized kriging weights, are func-
tions of the variances in all the locations involved in the prediction and the
correlation structure.

Simulation of a Gaussian RF
Consider a conditional discretized Gaussian RF represented by [r | ro] with
parameters as in Equation (1). We may want to generate a sample of [r | ro]
from the conditional model. This simulated surface can be generated as
follows:
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1. Cholesky factorization of Σrr|ro = LLT where L and LT are lower/upper
triangular [n× n] matrices.

2. Sample z ∼ Nn(0, In)

3. Compute v = Lz

4. Compute [r | ro] = μr|ro + v

5. Return [r | ro]

3.3.2 Stationary Gaussian RF Model

Stationarity is a property of a regionalized variable that has shift invariant
statistical properties within the area of interest. Stationary random field is
a random field whose joint probability distribution does not change when
shifted in location. Prediction in stationary Gaussian RF is termed either
simple or ordinary kriging dependent on wheather the expectation is known
or must be estimated.

A RF {r(x); x ∈ D} is defined to be stationary if it satisfies:

{μr(x) = E [r(x)] = μr; x ∈ D}{
σ2
r(x) = V ar[r(x)] = σ2

r ; x ∈ D
}{

ρr(x
′
, x

′′
) = Corr

[
r(x

′
), r(x

′′
)
]
= ρr(x

′ − x
′′
); x

′
, x

′′ ∈ D2
}

{
φr(x

′
, x

′′
) = Cov

[
r(x

′
), r(x

′′
)
]
= σ2

rρr(x
′ − x

′′
); x

′
, x

′′ ∈ D2
}

A Gaussian RF having stationary model parameters is said to be station-
ary Gaussian RF. The predictor in r+ = r(x+), in a stationary Gaussian RF
is defined by the expression:

[
r+
ro

]
∼ N1+no

⎡⎣⎡⎣ μr

μrino

⎤⎦ ,
⎡⎣ σ2

r σ2
rω

T
o+

ωo+σ
2
r σ2

rΩoo

⎤⎦⎤⎦
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hence,

[r+ | ro] ∼ N1

[
μr|o, σ2

r|o
]

μr|o = μr + σ2
rω

T
o+

[
σ2
rΩoo

]−1
[ro − μrino ]

= μr +KS [ro − μrino ]

σ2
r|o = σ2

r − σ2
rω

T
o+

[
σ2
rΩoo

]−1
ωo+σ

2
r

= σ2
r

[
1−KSΩooK

T
S

]
where KT

S = ωT
o+Ω

−1
oo , is a weight [no×1] vector. Note that the weight vector,

termed stationary (simple) kriging weights, is dependent on the correlation
structure only, not on the variance.

3.3.3 Hierarchical Stationary Gaussian Random Field

For a stationary Gaussian RF to be fully specified, the model parameters μr,
σ2
r and ρr(.) need to be known. In the hierarchical representation we let μr

and σ2
r be represented by random variables m and s2 while ρr(.) is considered

to be known. By conditioning on [m, s2], the Gaussian RF is fully specified.

Consider the discrete representation of stationary Gaussian RF. Let r con-
ditional on the random parameters [m, s2] be distributed as

[r | m, s2] ∼ Nn(min, s
2Ωrr)

where, m and s2 are univariate random variables and Ωrr is a known positive
definite correlation [n × n] matrix.

Moreover, assume the following prior model for [m , s2]:

[m | s2] ∼ N1(μm, τms
2) (3)
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s2 ∼ IG(ξs, γs) (4)

with μm ∈ � , τm ∈ �+ and IG(ξs, γs) representing the inverse gamma pdf

f(s2) = 1
Γ(ξs)

γξs
s [s2]−(ξs+1)exp {−γs[s

2]−1}, s2 > 0.

where Γ(x) is the gamma function, ξs ∈ �+ is a shape parameter and γs ∈ �+

is a scale parameter.

Hence, it can be demonstrated, see Røislien and Omre (2006) that:

r ∼ Tn(μmin,Σrr, ν)

represent a T-dist RF defined by the multivariate T-distribution:

f(r) =
Γ( ν+n

2
)

Γ( ν
2
)(νπ)

n
2
|Σrr|−

1
2

[
1 + 1

ν
[r− μmin]

T Σ−1rr [r− μmin]
]− ν+n

2

where ν ∈ �+ is the degrees of freedom which is defined by ν = 2ξs. This
definition specifies a spherical-symmetric pdf centered at μmin with Ωrr con-
trolling scale and multivariate dependence, while ν controls the tail behav-
ior(Mardia et al., 1979).

Multivariate Gaussian and Cauchy distributions are special cases of mul-
tivariate T-distributions. That is,

Tn(μmin,Σrr, ν)
ν→∞−−−→ Nn(μmin,Σrr) - Gaussian distribution.

Tn(μmin,Σrr, 1) = Cn(μmin,Σrr) - Cauchy distribution.

This hierarchical representation can be interpreted in a Bayesian setting with
[m, s2] being random hyperparameters.

Consider a set of observations ro as previously defined. The posterior model
for the model parameters [m, s2 | ro] can then be determined. From the
definition of hierachical stationary Gaussian RF one has:
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[ro | m, s2] ∼ Nno(mino , s
2Ωoo)

and using the prior model for [m | s2], in Equation (3), one obtains:[
ro
m

| s2
]
∼ Nno+1

⎡⎣⎡⎣ μmino

μm

⎤⎦ ,
⎡⎣ τms

2inoi
T
no

+ s2Ωoo τms
2ino

τms
2iTno

τms
2

⎤⎦⎤⎦
Consequently,

[m | ro, s2] ∼ N1

[
μm|o, σ2

m|o
]

with

μm|o = μm + τms
2iTno

[
τms

2inoi
T
no

+ s2Ωoo

]−1
(ro − μmino)

= μm + τmi
T
no

[
τminoi

T
no

+ Ωoo

]−1
(ro − μmino).

σ2
m|o = τms

2 − τms
2iTno

[
τms

2inoi
T
no

+ s2Ωoo

]−1
τms

2ino

Note that μm|o = E[m | ro, s2] = E[m | ro] and hence independent of s2.
Similarly, the marginal pdf of [ro | s2] is,

[ro | s2] ∼ Nno

[
μmino , τms

2inoi
T
no

+ s2Ωoo

]
and using the prior model for s2, in Equation (4), one obtains, see Appendix
A:

[s2 | ro] ∼ IG(ξs|o, γs|o)

with

ξs|o = ξs +
no

2

γs|o = γs +
1
2

[
[ro − μmino ]

T [Ωoo + τminoi
T
no

]−1
[ro − μmino ]

]
Note that from the characteristics of the inverse Gamma distribution we
have:

μs|o = E[s2 | ro] = γs|o
ξs|o−1 , ξs|o > 1

σ2
s|o = V ar[s2 | ro] = γ2

s|o
(ξs|o−1)2(ξs|o−2) , ξs|o > 2
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3.4 Model Parameter Inference

Both the stationary Gaussian RF model, see Section 3.2, and the hierarchical,
stationary Gaussian RF model, see Section 3.3, depends on a set of model
parameters. These model parameters must be assessed from the avaliable
observations ro in order to make the respective models operable.

In the study we also use localized estimators for the model parameters. Con-
sider location x+ ∈ D and define the [k × 1] vector of observations:

rk+o = Gk
+ro

where Gk
+ is a binary [k×no] matrix which selects the k observations located

closest to x+. The selection may also include some symmetry criteria.

3.4.1 Stationary Gaussian RF model

The actual set of model parameters are [μr, σ
2
r , ρr(τ)]. We consider the spa-

tial correlation function ρr(τ) to be known, hence the expected value μr and
variance value σ2

r must be assessed from ro.

We choose to use a maximum likelihood criterion in the assessment, and
the log-likelihood function is:

l(μr, σ
2
r ; ro) = −no

2
log(2π)− no

2
log(σ2

r)

− 1

2
log |Ωoo| − 1

2
[σ2

r ]
−1 [(ro − μrino)

TΩ−1oo (ro − μrino)
]

Hence the maximum likelihood estimates are:

μ̂r = [iTno
Ω−1oo ro][i

T
no
Ω−1oo ino ]

−1

σ̂2
r = 1

no
(ro − μ̂rino)

TΩ−1oo (ro − μ̂rino)

The corresponding localized estimators of [μr, σ
2
r ] centered at location x+ ∈ D

based on rk+o = Gk
+ro are:

μ̂k
+ = [iTk [G

k
+Ωoo[G

k
+]

T ]−1Gk
+ro][i

T
k [G

k
+Ωoo[G

k
+]

T ]−1ik]−1

σ̂k2
+ = 1

k
(Gk

+ro − μ̂k
+ik)

T [Gk
+Ωoo[G

k
+]

T ]−1(Gk
+ro − μ̂k

+ik)
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Define also the expectation [no × 1] vector centered at the observation loca-
tions:

μ̂k
o =

⎡⎢⎣ μ̂k
1
...

μ̂k
no

⎤⎥⎦ ,

and the corresponding standared deviation diagonal [no × no] matrix

Γ̂k
o =

⎡⎢⎣ σ̂k
1 . . . 0
...

. . .
...

0 . . . σ̂k
n0

⎤⎥⎦
3.4.2 Hierarchical, stationary Gaussian RF model

The actual set of model parameters is [μm, τm, ξs, γs, ρr(τ)]. We consider the
spatial correlation function ρr(τ) to be known, hence the prior model param-
eters for expectation [μm, τm] and for variance [ξs, γs] must be assessed from
ro.

We choose to make this assessment in an empirical Bayes setting based on the
observations ro. The k-closest localization is used to define a set of localiza-
tions centered at the observations over the domain D. This set is considered
to be a super-population from which the k-closest prior model is assessed.

The estimates for the Gaussian prior model parameters for expectation are:

μ̂k
m = 1

no
iTno

μ̂k
o

σ̂k2
m = 1

no
[μ̂k

o − μ̂k
mino ]

T [μ̂k
o − μ̂k

mino ]

σ̂k2
r|. =

1
no
Tr[Γ̂k

o ]

τ̂ km = σ̂k2
m

σ̂k2
r|.

The corresponding localized estimators for the posterior expectation m cen-
tered at location x+ ∈ D based on observations rk+o = Gk

+ro is:

m̂k
+ = E[m | s2, Gk

+ro]

= μ̂k
m + τ̂ kmi

T
k

[
τ̂ kmiki

T
k + [Gk

+Ωoo[G
k
+]

T
]−1 [

Gk
+ro − μ̂k

mik
]
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which is independent of s2.

Define also the expectation [no × 1] vector centered at the observation lo-
cations:

m̂k
o =

⎡⎢⎣ m̂k
1
...

m̂k
no

⎤⎥⎦ ,

The estimates for the inverse gamma prior model parameters for variance
are more complicated. Note first that the prior expectation and variance for
ξs > 2 are :

μs = E[s2] = γs
ξs−1

σ2
s = V ar[s2] = γ2

s

[ξs−1]2[ξs−2]

Consquently,

ξs =
μ2
s

σ2
s
+ 2

γs = μs

[
μ2
s

σ2
s
+ 1
]

Define the [no × 1] vector defined for a k-neighborhood

s2 =

⎡⎢⎣ (ro1 − μ̂k
m)

2

...
(rono − μ̂k

m)
2

⎤⎥⎦
The two first moments are estimated by:

μ̂s =
1
no
iTno
s2

σ̂2
s = 1

no
[s2 − μ̂sino ]

T [s2 − μ̂sino ]

The prior model estimates ξ̂s and γ̂s are obtained by inserting μ̂s and σ̂2
s into

the expressions above.
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The corresponding localized estimator for the posterior variance s2 centered
at location x+ ∈ D based on observations rk+o = Gk

+ro is:

ŝk2+ = E[s2 | Gk
+ro]

=
γ̂s|o

ξ̂s|o − 1

=
γ̂s +

1
2

[
[Gk

+ro − μ̂k
mik]

T
[
[Gk

+Ωoo[G
k
+]

T ] + τ̂ kmiki
T
k

]−1
[Gk

+ro − μ̂k
mik]
]

ξ̂s +
k
2
− 1

Define also the diagonal standard deviation [no × no] matrix centered at the
observation locations

Ŝk
o =

⎡⎢⎣ ŝk1 . . . 0
...

. . .
...

0 . . . ŝkn0

⎤⎥⎦
3.5 Prediction Models

The objective of the study is to define improved spatial predictors, and we
consider localized predictors which only utilizes observations in a neighbor-
hood of the location in focus for prediction.Two model types are defined: lo-
calized/stationary [Loc/Stat] model and localized/non-stationary [Loc/Non-
stat] model. For each model type we consider a traditional [Trad] predictor
and a shrinkage [Shr] predictor.

Focus is on predicting r(x+) = r+ in arbitrary location x+ ∈ D. The predic-
tion is based on the observation [no × 1] vector ro = [r(xo1), · · · , r(xono)] =
[ro1, · · · , rono ]. Define also the binary, selection [k × no] matrix Gk

+ which
selects the k closest observations to location x+. Note that Gk

+ may also
include some symmetry criteria.

3.5.1 Localized/Stationary Model

The predictor is based on the stationary Gaussian RF model, see Section 3.2,
with the model parameters assessed in two different localized ways.
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3.5.1.1 Traditional Predictor

The Loc/Stat/Trad predictor of r+ with associated prediction variance is
defined as:

r̂kSTP+ = μ̂k
+ + [Gk

+ωo+]
T [Gk

+Ωoo[G
k
+]

T ]−1
[
Gk

+ro − μ̂k
+ik
]

σ̂k2
STP+ = σ̂k2

+

[
1− [Gk

+ωo+]
T [Gk

+Ωoo[G
k
+]

T ]−1Gk
+ωo+

]
with the parameter estimators defined in Section 4.1.

The expectation μ+ and the variance σ2
+ are estimated by maximum like-

lihood in a neighborhood of x+, hence the predictor appears like a localized
ordinary kriging predictor. This corresponds to the traditional approach to
localized spatial interpolation, see Chiles and Delfiner (1999). The challenge
is to define the size of the neighborhood to obtain a suitable bias-variance
trade-off. The neighborhood must be small to adopt to possible spatially
varying expectation /variance functions and large to contain enough obser-
vations to provide stable estimates.

3.5.1.2 Shrinkage Predictor

The Loc/Stat/Shr predictor of r+ with associated prediction variance is de-
fined as:

r̂kSSP+ = m̂k
+ + [Gk

+ωo+]
T [Gk

+Ωoo[G
k
+]

T ]−1
[
Gk

+ro − m̂k
+ik
]

σ̂k2
SSP+ = ŝk2+

[
1− [Gk

+ωo+]
T [Gk

+Ωoo[G
k
+]

T ]−1Gk
+ωo+

]
with the parameters estimators defined in Section 4.2.

The expectation m+ and the variance s2+ are estimated in a Bayesian setting
as the posterior expectations given the observations in a neighborhood of
x+. Hence the prior model acts like a regulizer when estimating the local
expectation and variance. The prior models for m+ and s2+ are assessed from
the avaliable observations in an empirical Bayesian setting. This makes it
possible to use smaller neighborhoods which hopefully provides predictors
with less bias.
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3.5.2 Localized/Non-stationary Model

The predictor is based on the general Gaussian RF model, see Section 3.1,
with the model parameters assessed in two different localized ways.

3.5.2.1 Traditional Predictor

The Loc/Non-stat/Trad predictor of r+ with associated prediction variance
is defined as:

r̂kNTP+ = μ̂k
+ + σ̂k

+[G
k
+Γ̂

k
oωo+]

T
[
Gk

+Γ̂
k
oΩooΓ̂

k
o [G

k
+]

T
]−1

Gk
+[ro − μ̂k

o ]

σ̂k2
NTP+ = σ̂k2

+

[
1− [Gk

+Γ̂
k
oωo+]

T
[
Gk

+Γ̂
k
oΩooΓ̂

k
o [G

k
+]

T ]
]−1

Gk
+Γ̂

k
oω+o

]
with the parameter estimators defined in Section 4.1.

The expectation and variance is locally and uniquely estimated for each ob-
servation according to the General Gaussian RF model in Section 3.1. The
number of parameter estimates is 2(no +1), expectation and variance for x+

and all observation locations. Hence the predictor is very sensitive to the
estimate precision, which favors large neighborhoods. Large neighborhoods
will however introduce larger bias in the predictor, which is unfavorable.

3.5.2.2 Shrinkage Predictor

The Loc/Non-stat/Shr predictor of r+ with associated prediction variance
is defined as:

r̂kNSP+ = m̂k
+ + ŝk+[G

k
+Ŝ

k
oωo+]

T
[
Gk

+Ŝ
k
oΩooŜ

k
o [G

k
+]

T
]−1

Gk
+[ro − m̂k

o ]

σ̂k2
NSP+ = ŝk2+

[
1− [Gk

+Ŝ
k
oωo+]

T
[
Gk

+Ŝ
k
oΩooŜ

k
o [G

k
+]

T
]−1

Gk
+Ŝ

k
oωo+

]
with the parameter estimators defined in Section 4.2.

The expectation and variance for both x+ and all observation locations are
assessed in a Bayesian setting as conditional expectations given the obser-
vations in a neighborhood. Hence the empirical prior model for expectation
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and variance act as regulizers in the inference. Note that this regularization
will influence each individual kriging weight under this model. Hence this
can be seen as a truly shrinkage kriging predictor. This regularized approach
makes it possible to use smaller neighborhoods which hopefully entails less
biased predictions.

3.5.3 CrossValidation Calibrated Predictor

Consider a specific predictor with associated prediction variance in arbitrary
location x+ ∈ D:

r̂∧+ = μ̂+ = Ê[r(x+) | ro]
σ̂2
∧+ = ˆV ar[r(x+) | ro]

based on the observations ro = [r(xo1), ..., r(xono)].

Define the crossvalidation predictions:

r̂∧oi = Ê[r(xoi) | ro(−i)]; i = 1, ..., no

σ̂2
∧oi = ˆV ar[r(xoi) | ro(−i)]

where ro(−i) entails ro with observation i removed.

The corresponding normalized crossvalidation errors are:

Δ∧i =
r(xoi)−r̂∧oi

σ̂∧oi
; i = 1, ..., no

and define the two first moments:

Δ∧ = 1
no

∑no

i=1 Δ∧i

κ2
∧ = 1

no

∑no

i=1[Δ∧i −Δ∧]2

Note that both Δ∧ and κ2
∧ can be calculated, and that for a reliable predictor

we want Δ∧ ≈ 0 and κ2
∧ ≈ 1. Actually, we can adjust the predictor with as-

sociated prediction variance such that the global normalized crossvalidation
statistics are exactly 0 and 1.

Define the crossvalidation calibrated (CVC) predictor with associated pre-
diction variance at an arbitrary location x+ ∈ D:
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r̃∧+ = r̂∧+ + σ̂∧+Δ∧

σ̃2
∧+ = κ2

∧σ̂
2
∧+

where the associated normalized crossvalidation errors will have the two first
moments equal to 0 and 1 respectively.

Hence we are able to construct a predictor which always reproduce the fa-
vored values for the global crossvalidation statistics. The CVC predictor can
be seen as a globally centered and scale corrected version of the original pre-
dictor. These calibrations are particularly beneficial for localized predictors
which often lack global references.

3.6 Evaluation Criteria

The test criteria are based on the CVC predictors with associated prediction
variances, see Section 5.3:

r̃∧+ = Ẽ[r(x+) | ro]

σ̃2
∧+ = ˜V ar[r(x+) | ro]

The corresponding crossvalidation predictions are:

r̃∧oi = Ẽ[r(xoi) | ro(−i)]; i = 1, ..., no

σ̃2
∧oi = ˜V ar[r(xoi) | ro(−i)]

The CVC predictions will be globally centered and scaled with respect to the
normalized cross-validation errors. This means however that large deviations
in predictions may be compensated by a large estimated prediction variance.

A prediction criterion which favors precise predictions is mean squared cross-
validation error non-normalized:

PMSE = 1
no

∑no

i=1[r(xoi)− r̃∧oi]2
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We favor small values for this prediction criterion of course.

The CVC prediction variances are also globally scaled. This scaling does
not ensure close agrement between large observed deviation in predictions
and large estimated prediction variances, however. This agreement is indi-
cated by the normalized crossvalidation errors being close to one, not only
unity in average.

A prediction variance criterion which favors agreement between observed
prediction deviations and estimated prediction variances is :

VMSE = 1
no

∑no

i=1

[
[ r(xoi)−r̃∧oi

σ̃∧oi
]2 − 1

]2
We favor small values for this prediction variance criterion of course.

3.7 Case Studies

Two case studies are presented: US precipitation and Gamma-log data. The
former consists of observations in a number of locations in the US. The latter
contain observations very densely located along a vertical subsurface profile.

3.7.1 US precipitation

We consider a data set of yearly accumulated precipitation in locations in an
area in the US, see Figure 1. The study area contains 1001 locations with ob-
servations. The data is a subset of a much larger spatio-temporal data base
http://www.image.ucar.edu/GSP/Data/US.monthly.met/, see also Craig et
al (2003), and we use data from 1997 in an subarea in the south-east US.

By inspecting the data in Figure 1.b there appears to be a slight increase in
values in the south-east direction, but the observation density is very high.
The empirical spatial correlation function is displayed in Figure 2, and we fit
a generalized exponential correlation function:

ρr(τ) = exp
{
− ∣∣ τ

3.5

∣∣1.4} ; τ ≥ 0

which represents a fairly smooth precipitation surface. This correlation func-
tion is used throughout the study.
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We aim at demonstrating and evaluating the predictors defined in Section 5.
The evaluation criteria presented in Section 6 are used.

The Global ordinary kriging predictor, using all 1001 observations under
a stationary model with unknown expectation/variance, is used as reference.
In Figure 3 the results from the corresponding CVC predictor is presented.
The crossvalidation predictions in the observation locations and the associ-
ated prediction standard deviations are displayed. These predictions results
from predictions based on the global data set with the observation in the ac-
tual location removed. We observe that the predictions appear with similar
patterns as the observations in Figure 1, and that the standard deviations
are fairly constant across the area. The standard deviations are only depen-
dent on the location configuration of the observations used in the predictor,
not on the actually observed values. This explains the somewhat higher val-
ues along the boundary since the location configurations are unfavourably,
asymmetric along the boundary. In Figure 4 the corresponding normalized
crossvalidation errors and the resulting histogram are displayed. Recall that
the use of the CVC predictor ensures that these errors are globally centered
to zero and scaled to one. From the figure we observe some larger errors in
areas with high-value predictions and that the histogram appears as some-
what peaked with heavy tails. These effects may indicate that the variance
of the observations does vary across the area.

We study localized kriging predictors with a k = 10 neighborhood in some
detail, see Figure 5 through 13. In Figure 5 the CVC predictions from the
Loc/Stat/Trad predictor defined in Section 5.1.1 are displayed. The format
of the figure correspond to Figure 3. The global predictions in Figure 3.a
and the Loc/Stat/Trad predictions in Figure 5.a look fairly similar, which
is not surprising since there is a large number of observations and a fairly
smooth spatial correlation model is used. The standard deviations for global
and Loc/Stat/Trad predictors do differ significantly, though, see Figure 3.b
and 5.b respectively. The former does only depend on location configuration
while the latter also depend on the locally estimated variance. One concern
is, however, that estimated variances based on k = 10 observations may be
unstable. We observe that there is larger dispersion in Figure 5.b than in
Figure 3.b. The resulting normalized crossvalidation errors in Figure 6 for
the Loc/Stat/Trad predictor appears as homogeneous across the area. More
so than the corresponding errors for the Global predictor in Figure 4. By
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comparing the histograms from the Loc/Stat/Trad and Global predictors in
Figure 6.b and Figure 4.b respectively, we observe that the former has much
lighter tails.

The Loc/Stat/Shr predictor is defined in Section 5.1.2 and we study a k = 10
neighborhood version. The empirical Bayes approach used in the predictor
include prior models on the expectation and variance inferred from the global
data set. These prior models are displayed in Figure 13. The results from
the CVC Loc/Stat/Shr predictor are presented in Figure 7. These results
are compared to the corresponding results for the Global and Loc/Stat/Trad
predictors presented in Figure 3 and 5, respectively. The crossvalidation
predictions appear as fairly similar for all predictors, while the standard de-
viations differs significantly. The Loc/Stat/Shr results seem to lie in between
the results for the two other predictors. The former predictor does actually
shrink the localized estimates towards the global ones, hence this results are
not surprising. The normalized crossvalidation error results are displayed in
Figure 8. The results do not deviate much from the corresponding results in
Figure 6. Note, however, that the histogram of the errors in Figure 8.b are
very symmetrical with very light tails.

The Loc/Non-stat/Trad predictor is defined in Section 5.2.1. This predictor
has weighting of the observations that depends on the spatially varying vari-
ance estimates. The results from the CVC Loc/Non-stat/Trad predictor with
k = 10 are displayed in Figure 9 and 10. The crossvalidation predictions do
not deviate much from the other predictors. The standard deviations are even
more dispersed than the ones obtained from the Loc/Stat/Trad predictor in
Figure 5. The normalized crossvalidation errors from the Loc/Non-stat/Trad
predictor in Figure 10 have very little dispersion, hence the histogram is very
compact almost without tails.

The Loc/Non-stat/Shr predictor is defined in Section 5.2.2 and it is based on
the empirical Bayes approach and uses the prior models in Figure 13. The
CVC prediction results are presented in Figure 11 and 12, and the crossval-
idation predictions are similar to the other predictors. The prediction stan-
dard deviations appear as a shrunk version of to the ones for the Loc/Non-
stat/Trad predictor in Figure 9. By inspecting the normalized crossvalidation
errors, in Figure 12, they appear with little dispersion, and the histogram is
compact with fairly light tails. Recall that for the Loc/Non-stat/Shr predic-
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tor shrinkage is enforced on the observation weighting itself.

In Table 1, the evaluation criteria defined in Section 6 are displayed for
the various predictors. The results for the Global predictor, corresponding
to Loc/Stat/Trad k = 1000, are presented in the leftmost column. The mean
normalized error (MNE) and mean squared normalized error (MSNE) repre-
sents statistics of the normalized crossvalidation errors prior to crossvalida-
tion calibration (CVC). We observe that the errors are correctly centered at
zero, but somewhat over-dispersed. The evaluation criteria prediction mean
square error (PMSE) and variance mean square error (VMSE) are based on
the CVC predictors, see Section 5.3. These CVC predictors are globally cen-
tered to zero and scaled to unity. The PMSE criterion represents prediction
quality while the VMSE represents prediction variance quality, and for both
criteria small values are favored. We consider the prediction criteria PMSE
as more important than the prediction variance criterion VMSE. The criteria
have no absolute scale and are only suitable for comparision between various
predictors.

In Table 1, column two, the evaluation criteria for the Loc/Stat/Trad k = 10
predictor are displayed. The non-calibrated centering appear as very good,
while the variance is too large. The former follows from the localized predic-
tors all being unbiased, while the latter is caused by the localized prediction
variances lacking a global reference. The criteria PMSE and VMSE are based
on the corresponding CVC predictors which are globally calibrated. The pre-
diction quality, represented by PMSE, appears to be slightly better for the
Loc/Stat/Trad predictor than for the Global predictor. The prediction vari-
ance quality, represented by VMSE, however, appears as significantly better
for the former than for the latter. Hence the Loc/Stat/Trad k = 10 predictor
dominates the Global predictor in this study.

In Table 1, column three, the evaluation criteria for the Loc/Stat/Shr k = 10
predictor are presented. From the MNE and MSNE values we observe good
centering and over dispersion in the non-caliberated normalized crossvalida-
tion errors. The PMSE and VMSE values based on the corresponding CVC
predictor, are very encouraging. The prediction quality appears as slightly
better than for the Loc/Stat/Trad and Global predictors, while the predic-
tion variance quality seems to be significantly better than for the two other
predictors. Hence the localized/shrinkage kriging predictor appears to dom-
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inate the global and localized kriging predictors in this study.

Table 1, column four and five, contain results from the Loc/Non-stat/Trad
k = 10 and Loc/Non-stat/Shr k = 10 predictors, respectively. Both these
predictors are well centered, and are highly over-dispersed prior to global
crossvalidation caliberation. The criteria PMSE and VMSE based on the
corresponding CVC predictors give some mixed signals. The PMSE repre-
senting prediction quality appear as poorer than for the global and local-
ized, stationary predictors. This lack of precision in the predictions may be
explained by the large number of model parameters that are implicitly esti-
mated. Recall that the observation weights are based on locally estimated
variances. The quality of the prediction variances, represented by PMSE,
appear as very favourable compared to the other predictors. It is somewhat
surprising that the Loc/Non-stat/Trad predictor performs better than the
Loc/Non-stat/Shr one for prediction variance assessment for k = 10, how-
ever.

To summarize, localized predictors appear favorably to the global predic-
tor. This effect is most likely caused by lack of stationarity in both expec-
tation and variance of the phenomen under study. For a phenomenon that
is less smooth and with more sparse observations the localized predictors
are expected to be even more favorable. The localized, shrinkage predic-
tors stabilizes the corresponding localized, traditional predictors and provide
very encouraging prediction results in the study. The previous results are all
based on a localization with a k = 10 neighborhood. In Table 2 through 4
corresponding results for k = 4, 8, 16 respectively, are presented.

In Table 2, results are displayed from the Global predictor, Loc/Stat/Trad
k = 1000, and the other predictors with k = 4. By Comparing prediction
quality PMSE and prediction variance quality VMSE we observe that such a
small neighborhood provide very unstable local estimates of expectation and
variance. The corresponding predictors have poor performance compared to
the Global predictor. Note, however, the improvements in prediction vari-
ance quality VMSE by using shrinkage.

Table 3 contain results from the k = 8 neighborhoods. The results are
very similar to ones for k = 10, in Table 1. If we compare each predictor for
different k-neighborhoods, we observe that precision quality PMSE is best
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for k = 8 while precision variance quality VMSE is best for k = 10. There
appears to be some kind of trade-off between the criteria PMSE and VMSE.

Table 4 presents results for k = 16 neighborhoods. The localized, shrinkage
predictors perform very favorably for this case, particularly the Loc/Stat/Shr
predictor which has high prediction quality PMSE and very favorable predic-
tion variance quality VMSE. This may indicate the neighborhood somewhat
larger than k = 10 should be used. In fact, one may optimize the size of the
neighborhood with respect to a loss criterion combining PMSE and VMSE.
One may also perform predictor selection along these lines.
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Figure 32: Annual accumulated prepecitation observation in the US and
sub-area studied.

102



0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Spatial correlation fit

Figure 33: Spatial correlation function with estimated values.
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Figure 34: Global CVC predictor-ordinary kriging.
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Figure 35: Global crossvalidation errors.
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Figure 36: Loc/Stat/Trad/10 CVC predictor.
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Figure 37: Loc/Stat/Trad/10 crossvalidation errors.
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Figure 38: Loc/Stat/Shr/10 CVC predictor.
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Figure 39: Loc/Stat/Shr/10 crossvalidation errors.
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Figure 40: Loc/Non-stat/Trad/10 CVC predictor.
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Figure 41: Loc/Non-stat/Trad/10 crossvalidation errors.
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Figure 42: Loc/Non-stat/Shr/10 CVC predictor.
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Figure 43: Loc/Non-stat/Shr/10 crossvalidation errors.
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Figure 44: Priors model for expectation and variance.
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 10 k = 10 k = 10 k = 10

MNE 1.0148e-17 -5.3792e-18 5.9892e-17 1.5084e-16 -1.1579e-16

MSNE 1.5399 2.9740 3.3928 9.2487 5.1702

PMSE 6.8758e + 03 6.8745e + 03 6.8654e + 03 2.2181e + 04 9.3555e + 03

VMSE 9.8749 5.9746 5.2027 4.0787 4.3475

Table 7: Precipitation crossvalidation: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and
Variance mean squared error (VMSE).

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 4 k = 4 k = 4 k = 4

MNE 1.0148e-17 2.3291e-18 -1.8677e-16 1.7080e-17 5.6565e-17

MSNE 1.5399 12.4782 6.8602 14.9119 7.0732

PMSE 6.8758e + 03 7.2351e + 03 7.1938e + 03 1.0271e + 04 6.2025e + 03

VMSE 9.8749 76.5237 14.7642 39.6900 10.3703

Table 8: Precipitation crossvalidation: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and
Variance mean squared error (VMSE).
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 8 k = 8 k = 8 k = 8

MNE 1.0148e-17 -1.5639e-17 3.9207e-17 -1.2422e-16 -1.7258e-16

MSNE 1.5399 3.6322 3.9626 8.7274 5.3399

PMSE 6.8758e + 03 6.8421e + 03 6.8275e + 03 1.8969e + 04 8.3440e + 03

VMSE 9.8749 8.0073 5.9935 4.2336 4.5284

Table 9: Precipitation crossvalidation: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and
Variance mean squared error (VMSE).

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 16 k = 16 k = 16 k = 16

MNE 1.0148e-17 1.7191e-17 1.6304e-17 -5.1907e-17 1.8367e-16

MSNE 1.5399 2.2864 2.5668 9.4840 4.9365

PMSE 6.8758e + 03 6.8581e + 03 6.8549e + 03 2.5527e + 04 1.1038e + 04

VMSE 9.8749 5.8588 4.8849 4.3886 4.0764

Table 10: Precipitation crossvalidation: Mean normalized error (MNE),
Mean square normalized error (MSNE), Prediction mean squared error
(PMSE)and Variance mean squared error (VMSE).

3.7.2 Gamma-log Data

In Figure 14 a Gamma ray data set from a vertical subsurface well is dis-
played. The data set locations are numbered as [1, 2, ..., 600]. We split the
data in an observations set [1, 30, ..., 570, 600] with no = 21, and a control set
containing the 579 remaining data. The two sets are presented in Figure 14.
Contrary to the US precipitation study, we have control data here, while we
only operate in one dimension with a limited number of observations.

We use the observation set of size no = 21 in a cross-validation study and
we also do prediction into the locations of the control data set. The spatial
correlation function
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ρr(τ) = exp
{− 1

30
τ 1.5
}
; τ ≥ 0

is used throughout the study. The predictors in Section 5 are evaluated by
the evaluation criteria in Section 6.

In Figure 15 results from both the Global predictor and the localized pre-
dictor are displayed. The predictions look fairly similar, while the prediction
variances differ. The localized predictors have prediction variances that vary
with location. In the shrinkage predictors empirical prior models for expec-
tation and variance are used, and these prior models are displayed in Figure
16. The former being Gaussian and the latter Inverse-Gamma. Note how
the prediction variances in the shrinkage predictor shrink the localized ones
towards the global ones.

Table 5 contains values of the evaluation criteria for the four predictors for
different values of k = 4, 8, 12 by using crossvalidation within the observa-
tion data set of size no = 21. Note that all normalized crossvalidation errors
are reasonably centered, MNE close to zero, but under-dispersed, MSNE
greater than unity. The CVC predictions that normalize with respect to this
under-dispersion provide the base for the prediction criterion PMSE and the
prediction variance criterion VMSE. Both are favored to be small. Note that
the shrinkage predictors make significantly better predictions than their tra-
ditional counterparts, ie smaller PMSE. For the prediction variance criterion
VMSE we observe the same picture. The shrinkage predictors appears with
smallest VMSE. The best shrinkage predictors have very small neighbor-
hoods ±2 which indicates fast changing model characteristics in the Gamma
ray data.

Table 6 contain values of the evaluation criteria based on the differences
between the control set and the different CVC predictors. The prediction
criterion PMSE is almost equal for all predictors, while the prediction vari-
ance criterion VMSE appears as favourable for the traditional predictors.
The latter constitutes a surprising result. Note, however, that these results
are based on a very limited number of observations.

To summarize, if crossvalidation within the no = 21 observations is used
in the calculations of the criteria, then we obtain results similar to the ones
on the US precipitation data. The shrinkage predictors are clearly favorable
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to their traditional counterparts. If, however, the criteria is based on a con-
trol set of data, shrinkage predictors do not appear as favourable. We do not
understand why, but it may just be by chance in a limited dataset.
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Figure 45: Gamma ray observations-with observations (*) and control values.
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Figure 46: Gamma ray predictions and prediction variances.
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Figure 47: Prior model for expectation and variance.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

MNE 0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1

MSNE 3.2 4.5 3.0 2.3 2.5 1.9 4.1 6.0 4.2 2.5 2.7 1.8

PMSE 639.7 705.2 703.3 589.6 594.1 561.1 921.5 1318.4 1247.7 662.6 704.3 595.7

VMSE 5.3 6.7 4.5 4.3 5.0 3.5 3.8 4.3 2.8 3.5 3.8 2.5

Table 11: Gamma ray crossvalidation: Mean normalized error (MNE), Mean
Squared normalized error (MSNE) Prediction Mean squared error (PMSE)
and Variance Mean Squared error (VMSE).

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

PMSE 336.71 331.40 330.40 340.98 335.22 333.86 346.16 340.86 335.60 345.93 342.59 358.97

VMSE 9.6033 4.9232 72.3516 19.4386 15.2300 50.1785 5.7387 3.1133 42.3435 16.4979 13.6487 57.3204

Table 12: Gamma ray control values: Prediction Mean squared error (PMSE)
and Variance Mean Squared error (VMSE) .
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3.8 Empirical Study

The prediction models defined in the previous section can be evaluated based
on one realization only. We define a test design and several evaluation criteria
and make the evaluation for a variety of Gaussian random field models for
which the exact solutions are analytically obtainable.

3.8.1 Test Design and Criteria

We define a variety of 1D Gaussian RF: {r(x); x ∈ D ∈ �1}, discretised as
r = {r(x); x ∈ LD} where LD = {1, 2, ..., 199, 200} and hence n = 200. The
observations are obtained as ro = {r(x); x ∈ Lo} where Lo = {1, 10, ..., 190, 200}
and hence no = 21. We use the CVC predictors defined in Section 5 based on
ro to obtain the predictions r̃ = [r̃1, ..., r̃200]

T and the associated prediction
variances σ̃2 = [σ̃2

1, ..., σ̃
2
200]

T .

Note that all the Gaussian RF are analytically tractable when the model
parameters are known, hence the optimal predictions r∗ = [r∗1, ..., r

∗
200]

T and
associated prediction variances σ∗2 = [σ∗21 , ..., σ∗2200]

T are avaliable.

The evaluation for a single realization is based on both comparison with
the correct predictions and predictions variances and cross-validation in the
15 centrally located observations.

The evaluation criteria in the comparison with correct results are:

PMSC = 1
126

∑170
i=30
i/∈Lo

[r̃i − r∗i ]
2

VMSC = 1
126

∑170
i=30
i/∈Lo

[
σ∗2i
σ̃2
i
− 1
]2

We randomize over the model by averaging over 1000 realizations to obtain
APMSC and AVMSC. Note that this is the ultimate criteria for goodness for
the predictor and prediction variances.

The evaluation criteria in the cross-validation are PMSE and VMSE as in
previous sections, but in addition we randomize over the model by averag-
ing over 1000 realizations to obtain the criteria APMSE and AVMSE. These
are the criteria we need to use when only one set of observations are avaliable.
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This study is targeted at identifying a good spatial predictor and suitable
number of neighborhood observations involved in the predictor. Thus, k =
±2,±4,±6 observations located closest to prediction location x+ is consid-
ered.

3.8.2 Test Cases

We generate four different test cases with varying expectation and variance
fields but with one identical correlation field defined as:

Corr[r(x
′
), r(x

′′
)] = ρr(x

′
, x

′′
) = exp

{
−1

5

∣∣x′ − x
′′∣∣1.5}

Case I-Test

This case defines a regular stationary Gaussian random field with constant
expectation and variance. We use μr(x) = 10 and σ2

r(x) = 20, see Figure
17.a. In Figure 17.b, the optimal prediction and prediction variance are an-
alytically obtained from the correct model for one realization of the field.
The prediction and prediction variance in Figure 17.c are obtained from a
stationary model with globally estimated model parameters. These results
correspond to ordinary kriging. Figure 17.d displays Loc/Stat/Trad/ ±4
predictions made according to CVC predictors defined in Section 5, while
Figure 17.e displays the results from the corresponding Loc/Stat/Shr/±4
CVC predictor.

Figure 18 displays the prior models for expectation and variance for one
realization in the Loc/Shr predictors defined in Section 5. The parametric
prior models for expectation and variance are infered in an empirical Bayes
framework as defined in Section 5.
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Figure 48: Case I - Predictions and prediction variances for one realization.
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Figure 49: Case I - Prior model for expectation and variance for one realiza-
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The values of evaluation criteria are listed in Table 7. In Figure 19, his-
tograms of the deviations between one realization and the corresponding
predictors, for all the evaluated predictors are displayed.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.2666 0.3484 1.3569 0.2027 0.2181 0.2696 0.3809 0.6220 2.2520 0.2318 0.2860 0.5083

AVMSC 0.4139 0.6684 43.3676 0.4149 0.5338 1.1251 0.4004 0.6353 37.1616 0.4099 0.5245 1.1335

APMSE 21.6177 22.5767 25.0502 18.5324 18.1406 16.3947 22.1637 23.4164 29.8467 18.6158 18.2514 16.5170

AVMSE 1.8692 1.9430 2.6963 1.6603 1.5907 1.3328 1.8588 1.9239 2.3750 1.6532 1.5778 1.2846

Table 13: Case I Deviation from correct predictions and crossvalidation:
Average prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 50: Case I - Histogram for normalized error for one realization.

Case I-Discussion

In Figure 17, the predictions from all CVC predictors appear fairly similar.
This is not surprising since the model is stationary in both expectation and
variance and the correlation function is known. The prediction variances,
however, vary considerably between the predictors. The Global predictor
appears with a somewhat under-estimated variance, but otherwise identi-
cal to the correct prediction variance. The localized predictors appear with
locally varying variances. Note that the shrinkage predictor has variances
that are in between the localized traditional and the global traditional one,
and hence justifies its shrinkage label. The shrinkage is caused by the prior
models on expectation and variance, see Figure 18, which are inferred in an
empirical Bayesian setting.

Table 7 contain the values for the evaluation criteria APMSC/AVMSC and
APMSE/AVMSE, defined at the begining of Section 8. The two former are
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based on comparisions with the correct predictions which are analytically
obtainable while the two later relates to crossvalidation. Recall that we fa-
vor all four criteria to be as small as possible. For each pair of criteria, the
P-criterion is most important since it reflects prediction quality while the
V-criterion reflects prediction variance quality. The results for the ultimate
criteria APMSC/AVMSC are not surprising, all predictors improve with in-
creasing neighborhood and the shrinkage predictors are almost consistently
favorable to the corresponding traditional ones. For a model with stationar-
ity in both expectation and variance, global predictors are optimal of course
which favors large neighborhoods. Moreover, shrinkage does reduce local es-
timation variability which obviously improve the localized predictors. This
effect is clearly observable for small neighborhoods, where shrinkage provides
dramatic improvements in localized predictors.

In Table 7, also the corresponding crossvalidation criteria APMSE/AVMSE
are listed, which we must rely on with only one set of observations avali-
able. Note that also these criteria consistently favor the shrinkage predictors
relative to their traditional counterparts. The best shrinkage predictor with
respect to the APMSE/AVMSE criterions appear with the smallest neigh-
borhood, however. This is unfortunate, and it may be caused by overfitting
to the observations.

The normalized error histograms for one realization for all CVC predictors
are displayed in Figure 19. The histograms are fairly similar, but for small
neighborhoods, ±2, we can observe that the errors are somewhat regularized
by the shrinkage effect.

Case II-Test

This case defines a non-stationary Gaussian random field with varying expec-
tation and variance. We use μr(x) = 10 sin(π x

200
) and σ2

r(x) = 20 sin(π x
200

),
see Figure 20.a. In Figure 20.b, the optimal prediction and prediction vari-
ance are analytically obtained from the correct model. The prediction and
prediction variance in Figure 20.c are obtained from a stationary model with
globally estimated model parameters. These results correspond to ordinary
kriging. Figure 20.d displays Loc/Stat/Trad/±4 predictions made according
to CVC predictors defined in Section 5, while Figure 20.e displays the results
from the corresponding Loc/Stat/Shr/±4 CVC predictor.
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Figure 21 displays the prior models for Loc/Shr predictors, and these mod-
els capture the gross variability over the domain. Table 8 and Figure 22
correspond to Table 7 and Figure 19, for Case I.

0 50 100 150 200
0

10

20
Expected field

a)

0 50 100 150 200
0

10
20
30

Variance field

0 50 100 150 200
0

10

20
Correct prediction

b)

0 50 100 150 200
0

10
20
30

Correct prediction variance

0 50 100 150 200
0

10

20
Global prediction

c)

0 50 100 150 200
0

10
20
30

Global prediction variance

0 50 100 150 200
0

10

20
Loc/Stat/Trad [+/-4] prediction

d)

0 50 100 150 200
0

10
20
30

Loc/Stat/Trad [+/-4] prediction variance 

0 50 100 150 200
0

10

20
Loc/Stat/Shr [+/-4] prediction

e)

0 50 100 150 200
0

10
20
30

Loc/Stat/Shr [+/-4] prediction variance 

Figure 51: Case II - Predictions and prediction variances for one realization.
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Figure 52: Case II - Prior model for expectation and variance for one real-
ization.
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.3665 0.3357 1.0100 0.3968 0.2838 0.2563 0.4815 0.6669 2.1658 0.4259 0.4305 0.6264

AVMSC 0.5287 1.0939 159.3760 0.3927 0.5944 1.2491 0.5108 1.0369 138.6639 0.3860 0.5723 1.2327

APMSE 18.2536 17.8311 19.8851 16.9502 15.6486 13.8070 18.6699 18.4643 23.7843 17.0732 15.8705 14.1365

AVMSE 1.8936 2.0277 2.9888 1.7271 1.7306 1.4011 1.8908 2.0086 2.4491 1.7277 1.7187 1.3483

Table 14: Case II Deviation from correct predictions and crossvalidation:
Average prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 53: Case II - Histogram for normalized error for one realization.
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Case II-Discussion

In Figure 20, the predictions vary considerably. The global predictor is based
on a stationary model and predictions between observations are clearly biased
towards the global average of the observations. The localized predictors are
fairly similar and do not deviate much from the correct prediction. The pre-
diction variances for the global predictor reflect the stationarity assumptions
made and only capture the localization configuration of the observations.
The prediction variances from the localized predictors capture much more
of the non-stationarity of the model. Note also that the shrinkage predictor
provides prediction variances in between the local traditional and global tra-
ditional predictors. The shrinkage is caused by the prior models displayed in
Figure 21.

Table 8 contain the values of the evaluation criteria. Consider first the
APMSC for Loc/Stat/Trad CVC predictors with varying neighborhoods.
These are prediction quality relative to the correct predictions. Observe the
pattern, best for ±4 and poorer for ±6 and ±2. We observe a bias/variance
crossing point, since too large neighborhood provides biased estimates of the
non-stationary expectation and variance, while too small neighborhood pro-
vides large estimation variance due to few observations. Consider now the
APMSC criterion for corresponding shrinkage CVC predictor, Loc/Stat/Shr.
This predictor regularizes the estimates of the expectation and variances and
appear as clearly favorable for small neighborhoods. The improvements are
so large that the bias/variance crossing point is moved to ±2 for the shrink-
age predictor. The prediction variance quality is reflected by AVMSC relative
to the correct predictions. The stability of variance estimates are of course
very poor, and use of shrinkage predictors has a dramatic positive effect
for small neighborhood predictors. A joint assessment based on both pre-
diction and prediction variance quality, would probably make us choose the
Loc/Stat/Shr/±4 CVC predictor among the stationary predictors.

Note, however, that for models which are non-stationary in both expecta-
tion and variance, localized, non-stationary predictors have the potential of
being better than stationary ones. By inspecting the APMSC/AVMSC cri-
teria for Loc/Non-stat/Trad and Loc/Non-stat/Shr predictors for varying
neighborhoods, we observe that they are less favorable than the stationary
ones. We belive this is caused by the need to estimate a large number of
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parameters.

In practice, with one set of observations we need to select a predictor based
on the crossvalidation criteria APMSE/AVMSE. Based on these criteria the
shrinkage predictors appear as consistently favorable to the corresponding
traditional ones. As they actually are. Moreover, we would select a station-
ary, shrinkage predictor prior to a non-stationary one. However, we would
select the Loc/Stat/Shr ±2 predictor since the prediction variance criterion
appears as under-estimated for the crossvalidation criterion. Hence we select
a too small neighborhood in the predictor.

In Figure 22, normalized error histograms for one realization are displayed.
Observe the favorable shape of the global histogram, but this is caused by
normalization based on severely over-estimated prediction variances. Note
also that the histograms for the correct predictor and Loc/Stat/Shr with
±4 and ±2 are very similar. Lastly, a small regularization effect on the
histograms can be seen from shrinkage.

Case III-Test

This case defines a non- stationary Gaussian random field with varying expec-
tation and constant variance. We use μr(x) = 10 sin(π x

200
) and σ2

r(x) = 20,
see Figure 23.a. In Figure 23.b, the optimal prediction and prediction vari-
ance are analytically obtained from the correct model. The prediction and
prediction variance in Figure 23.c are obtained from a stationary model with
globally estimated model parameters. These results correspond to ordinary
kriging. Figure 23.d displays Loc/Stat/Trad/±4 predictions made according
to CVC predictors defined in Section 5, while Figure 23.e displays the results
from the corresponding Loc/Stat/Shr ±4 CVC predictor.

Figure 24 displays the prior models for Loc/Shr predictors, which represents
the gross variability over the domain. Table 9 and Figure 25 correspond to
Table 7 and 8, and Figure 19 and 22 for Case I and II, respectively.
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Figure 54: Case III - predictions and prediction variances for one realization.
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Figure 55: Case III - Prior model for expectation and variance for one real-
ization.
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.4339 0.4027 1.5498 0.4628 0.3354 0.3152 0.5800 0.7993 3.0182 0.5014 0.4956 0.7195

AVMSC 0.5783 1.0568 687.1633 0.3919 0.5517 1.0074 0.5566 0.9922 590.5700 0.3847 0.5302 0.9891

APMSE 22.5294 22.3758 24.8330 20.6543 19.2866 17.0429 23.0463 23.1767 29.0106 20.7936 19.5368 17.3665

AVMSE 1.8404 1.9649 3.3623 1.6693 1.6335 1.3537 1.8366 1.9477 2.5569 1.6691 1.6236 1.3147

Table 15: Case III Deviation from correct predictions and crossvalidation:
Average prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 56: Case III - Histogram for normalized error for one realization.
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Case III-Discussion

In Figure 23, the predictions vary somewhat, since the global predictions are
biased towards the global average of the observations. The prediction vari-
ances are different because they merge variance and expectation curvature.
Note the upwards bias in the variance of the global stationary model. The
localized predictors appear with localized variance estimates and the shrink-
age predictor is somewhat closer to the global prediction variance. The prior
models in Figure 24 causes this shrinkage.

Table 9, contain the results for the evaluation criteria APMSC/AVMSC and
they exposes patterns very similar to the results from the model with non-
stationarity in both expectation and variance, see Figure 8. The stationary,
traditional predictor makes bias/variance trade-offs in the predictor, while
the stationary, shrinkage improve on the predictor by regularization of the
estimation and hence reducing variance. This shrinkage make small neighbor-
hood predictors more favorable. The prediction variances are more unstable,
and we probably end up recommending the Loc/Stat/Shr/±4 CVC predic-
tor. The non-stationary predictors are less favorable due to their dependence
on a large number of parameters.

In practice, with only one set of observations avaliable, we must select a
predictor based on the crossvalidation criteria APMSE/AVMSE. We would
correctly favor shrinkage predictors for traditional ones and stationary pre-
dictors for non-stationary ones. However, we would select a too small neigh-
borhood, as Loc/Stat/Shr ±2 would be the favorable predictor.

In Figure 25, the normalized error histograms for one realization for all the
CVC predictors are presented. Note in particular the localized predictors
with a ±2 neighborhood. The histograms for the shrinkage predictors are
clearly regularized compared to the histograms for the traditional ones.

Case IV-Test

This case defines a Gaussian random field with constant expectation and
varying variance. We use μr(x) = 10 and σ2

r(x) = 20 sin(π x
200

), see Figure
26.a. In Figure 26.b, the optimal prediction and prediction variance are an-
alytically obtained from the correct model. The prediction and prediction
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variance in Figure 26.c are obtained from a stationary model with globally
estimated model parameters. These results correspond to ordinary kriging.
Figure 26.d displays Loc/Stat/Trad/±4 predictions are made according to
CVC predictors defined in Section 5, while Figure 26.e displays the results
from the corresponding Loc/Stat/Shr/±4 CVC predictor.

Figure 27 displays the prior models for Loc/Shr predictors, and these models
capture the gross variability over the domain. Table 10 and Figure 28 corre-
spond to Table 7, 8 and 9, and Figure 19, 22 and 25, for Case I, II and III,
respectively.
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Figure 57: Case IV - Predictions and prediction variances for one realization.
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Figure 58: Case IV - Prior model for expectation and variance for one real-
ization.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.1891 0.2810 1.0623 0.1357 0.1510 0.2023 0.2576 0.4462 1.6301 0.1510 0.1886 0.4097

AVMSC 0.3821 0.7524 33.0924 0.4556 0.6696 1.9722 0.3689 0.7104 26.8692 0.4506 0.6606 1.9826

APMSE 16.9439 17.5722 19.1127 14.5025 14.1418 12.7449 17.3596 18.2110 22.9114 14.5563 14.2143 12.9016

AVMSE 1.8534 1.8717 2.7330 1.6950 1.5993 1.3174 1.8438 1.8514 2.3343 1.6881 1.5868 1.2709

Table 16: Case IV Deviation from correct predictions and crossvalidation:
Average prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 59: Case IV - Histogram for normalized error for one realization.

Case IV-Discussion

In Figure 26, all predictions appear as very similar. The prediction variances
are of course very different since the global predictor estimate one global
variance. The shrinkage predictor regularizes the prediction variances of the
traditional predictor. The prior models are presented in Figure 27.

Table 10 contain the values of the evaluation criteria APMSC/AVMSC. Large
neighborhoods are clearly favorable for all CVC predictors both for prediction
and prediction variance criteria. Moreover, shrinkage predictors are clearly
favorable to their traditional counterparts, and stationary are favorable to
non-stationary. If we select predictor based on the crossvalidation criteria
APMSE/AVMSE, we would select Loc/Stat/Shr/±2, hence correct predic-
tor type but with too small neighborhood. All histograms in Figure 28 are
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very similar.

Summary

For a model with stationarity in both expectation and variance the global
stationary predictor is of course favorable. Only the global expectation and
variance must be estimated. If, however, localized predictors are required,
for example to reduce computational demands, then localized shrinkage CVC
predictors are clearly favorable.

For models with non-stationary expectation and variances across the domain
of study, localized predictors will often appear as clearly favorable to global
ones. Moreover, localized, shrinkage CVC predictors seem to be favorable to
localized, traditional ones since it regularizes the expectation and variance
estimates and hence can operate with larger localization hence smaller neigh-
borhoods. The critical factor appears to be non-stationarity in expectation.
If the expectation vary across the domain of study, global predictors can
be severely biased towards the average of the observations and the variance
estimates are upwards biased by the interplay of expectation and variance.
Localized, shrinkage CVC predictors appear as robust towards non-stationary
expectations. Non-stationary variances across the domain of study appears
to have less influence on the predictors.

In practice, with only one set of observations avaliable, we must rely on
crossvalidation criteria in the selection of optimal CVC predictors. We will
correctly select localized, stationary, shrinkage predictors, but we will tend
to select too small neighborhoods.
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3.9 Conclusion

Spatial prediction is usually made under Gaussian assumptions by kriging. In
order to robustify the predictor towards lack of spatial stationarity, localized
kriging, which includes only observations in a neighborhood, is frequently
used. Bias/variance trade-off must be made in order to specify the local
neighborhood. We introduce a shrinkage version of kriging in a Bayesian
setting, where estimates in a local neighborhood are regularized by a global
prior model. This prior model is assessed in an empirical Bayes tradition
from the complete, global set of observations.

Two versions of the shrinkage kriging predictor are defined. One station-
ary version perform regularization only of the model parameter estimates,
while the other non-stationary version make regularized estimates of both
parameter estimates and kriging weights. Further we define crossvalidation
calibrated (CVC) predictors which empirically calibrates the predictor for
centering and scale.

The localized/shrinkage CVC predictors are compared to localized/traditional
kriging CVC predictors in an empirical simulation study. The experimental
design include 1D Gaussian random fields with varying expectation and vari-
ance trends. Deviation measures between the predictors specified above and
the correct predictions and prediction variances which are analytically as-
sessible under the model specification are compared. The major conclusions
are:

• localized/shrinkage kriging appears to be almost uniformily superior
to the corresponding localized/traditional kriging - for relatively small
neighborhoods.

• localized/shrinkage kriging with a regulizer only on model parameter
estimates appears superior to the version that also regularizes the krig-
ing weight. In the latter a large number of parameters need to be
inferred and uncertainty related to this estimation detoriate the pre-
dictor.

• cases with both non-stationary expectation and variance make the lo-
calized/shrinkage predictor more favorable to the localized/traditional
kriging predictors. Large curvature in the expected trend seems to be
the important factor.
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• optimal size of the neighborhood is not specifically studied since only
one correlation function and one observation design is evaluated. The
optimal neighborhood shall normally increase with more smoothness
in expectation and variance trends and longer range in the correlation
function.

A set of criteria for evaluating the localized CVC predictors based on cross-
validation are developed. This set of criteria can be computed from the set
of observations only. The characteristics of this criteria set are explored in
the empirical study, and the major conclusions are:

• the crossvalidation criteria can be used to identify the favorable pre-
dictor type most frequently being localized, stationary, shrinkage pre-
dictors.

• the optimal neighborhood of the favorable predictor seems to be under-
estimated, hence too small neighborhoods are selected.

We evaluated the localized predictors on two different real datasets: Obser-
vations of annually cumulated precipitation in locations in an sub-area of the
US, and Gamma ray recordings along a vertical well through the subsurface.

The findings are:

• in the precipitation study, 1001 observations are avaliable, and cross-
validation based evaluation criteria are used. Localized CVC predictors
are found to be clearly favorable to the global ordinary kriging predic-
tor. Since a model non-stationary in both expectation and variance ap-
pears as most representative for the observation, this conclusion make
sense. The localized, shrinkage predictors are uniformily favorable to
the corresponding localized traditional ones for the neighborhoods be-
ing studies. Moreover, the stationary, shrinkage predictors appear as
favorable to the non-stationary shrinkages ones. Lastly, a neighborhood
of about 10 observations are found to be suitable.

• in the Gamma ray study, one observation set of size 21 and a control set
of 579 are used. By using the crossvalidation based criteria, we conclude
that the localized, stationary, shrinkage predictors are clearly favorable
to the other predictors. The evaluation results from the control set
of data, can not confirm this conclusion, though. We have no clear
explanation for this result.
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We conclude that whenever a localized predictor is prefered - either due to
non-stationaries in the expectation and variance fields, or due to need for
computational efficiency - one should use a localized, stationary, shrinkage
CVC predictor. Since this predictor is also reliable for stationary models, the
recommendation may as well be to always use localized, stationary, shrinkage
CVC predictors whenever there are a fair number of obervations.
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Appendices
A Posterior pdf

The conditional pdf for [s2 | ro] is:
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Unobserved heterogeneity in the power law

nonhomogeneous Poisson process
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Abstract

A study of possible consequences of heterogeneity in the failure intensity of re-
pairable systems is presented. The basic model studied is the nonhomogeneous
Poisson process with power law intensity function. When several similar systems
are under observation, the assumption that the corresponding processes are inde-
pendent and identically distributed is often questionable. In practice there may
be an unobserved heterogeneity among the systems. The heterogeneity is modeled
by introduction of unobserved gamma distributed frailties. The relevant likelihood
function is derived, and maximum likelihood estimation is illustrated. In a simula-
tion study we then compare results when using a power law model without taking
into account heterogeneity, with the corresponding results obtained when the het-
erogeneity is accounted for. A motivating data example is also given.

Key words: Repairable system, Likelihood function, Frailty, Monte Carlo
simulation.

1 Introduction

In the reliability literature, systems are generally classified as either non-
repairable or repairable (see, e.g., Ascher and Feingold [1]). Non-repairable
systems are those that do not get repaired when they fail. Thus, non-repairable
system can fail only once, and a lifetime model such as the Weibull distribution
provides the distribution of the time to failure of such systems.
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On the other hand, repairable systems are those systems (machines, indus-
trial plants, software, etc.) which, in the event of a failure, can be restored to
satisfactory operation by any action, including parts replacements or changes
to adjustable settings. But, to what extent can the system perform after be-
ing returned back to its regular operation? We may have that the system’s
performance is in the same state that the system had at the start of the oper-
ation, which means an “as good as new” condition. Or, its performance may
be returned to the same state as before the failure, which means an “as bad
as old” condition.

The latter case is usually referred to as a “minimal repair”, modeled by a
nonhomogeneous Poisson process (NHPP). Minimal repair thus means that
a failed system is restored just back to a functioning state, and after repair
the system continues as “if nothing had happened”. This implies that the
likelihood of system failure, right after a failure and subsequent repair, is the
same as it was immediately before the failure. Note that repair times in this
kind of modeling are assumed to be negligible.

NHPP models, which are the main concern of this paper, are useful due to
their flexible assumption that events are occurring randomly in time, with
rates which may vary with time. This is in contrast to the more established
homogeneous Poisson process (HPP), where the rate of events is constant in
time.

The present paper is concerned with the problem of predicting the behaviour
of a system based on failure data from several similar systems. There is a well
established theory for analysis of data for NHPPs. But as discussed for example
in Lindqvist [5], there may be unobserved heterogeneity between the monitored
systems which, if overlooked, may lead to non-optimal or possibly completely
wrong decisions. An intuitve way of interpreting heterogeneity is to imagine an
unknown covariate, with values that may vary between systems, and leading
to an unexpected variation in the failure intensity of the different processes
(see, e.g., Slimacek and Lindqvist [8]). Still it is believed that heterogeneity
has been neglected in many reliability applications, and it is the purpose of
the present paper, through a simulation study and a real data set, to point to
some of the consequences that may result from not including heterogeneity in
a model for repairable systems.

A striking example of heterogeneity is given by some data presented by Bhat-
tacharjee et al. [2], presenting failure data for motor operated closing valves
in safety systems at two boiling water reactor plants in Finland. Failures of
the type “External Leakage” were considered for 104 valves with a follow-up
time of 9 years. The data shows an apparently unnormal variation in the num-
ber of failures per valve, suggesting a heterogeneity between valves. In their
analysis, Bhattacharjee et al. (2003) stressed the importance of taking hetero-
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geneity into consideration and concluded that even very simple models may
describe the heterogeneous behavior successfully. For illustration, their data
are given in Section 5 together with a statistical analysis using the approach
of the present paper.

The paper is structured as follows. In Section 2 we give the formal definition of
the NHPP and derive the likelihood function for the case of a power law inten-
sity model, which will be the basic model considered in the paper. Section 3
introduces heterogeneity between systems, in the form of individual unob-
served multiplicative “frailties” defined for each system, assumed independent
and, for simplicity of exposition, gamma distributed with unit expectation.
The likelihood function of data from several systems under heterogeneity is
developed, leading to explicit expressions for the power law parameter esti-
mates in the case where each process is observed on the same time frame.
Section 4 is devoted to a simulation study; first giving an algorithm for sim-
ulation of data, and then performing a comprehensive simulation study with
the aim of illustrating the main messages of the paper. The data from Bhat-
tacharjee et al. [2] are analysed in Section 5, while some concluding remarks
are given in the final Section 6.

2 The classical power law process

2.1 Characteristics of an NHPP model

An NHPP model is fully characterized by the intensity function w(t), com-
monly denoted ROCOF (Rate of ocurrence of failures), see e.g. Rausand and
Høyland [7]. It is furthermore convenient to introduce the cumulative rate
function W (t) =

∫ t
0 w(s)ds, later called the CROCOF (cumulative ROCOF).

As is well known, the number of failures experienced in a time interval from
0 to t, N(t), is Poisson-distributed with parameter W (t), for any t, so that in
particular E[N(t)] = W (t) and V ar[N(t)] = W (t).

2.2 The power law NHPP

For illustration, we shall in this paper concentrate on the most celebrated
parameterization of the NHPP, namely the power law model. One reason for
its popularity is that the ROCOF as a function of t is of the same form as
the hazard rate of a Weibull distribution. Hence the time to first failure of the
power law NHPP is Weibull distributed. Because of this, the power law model
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is sometimes denoted the Weibull process.

The CROCOF of the power law is given by (see e.g. Rausand and Høyland [7])

W (t) = λtβ, for λ > 0, β > 0. (1)

Thus, by differentitation, the ROCOF of the power law process is

w(t) = W ′(t) = λβtβ−1.

This intensity function was introduced in Crow [3] as a stochastic model for
the Duane reliability growth postulate. The parameter β in the power law
model gives information about the system as follows; if 0 < β < 1, then the
system is improving (happy); if β > 1, then the system is deteriorating (sad);
and if β = 1 the model reduces to an HPP.

2.3 Maximum likelihood estimation in the power law NHPP

Suppose that data are available from m independent systems governed by
NHPPs with the same intensity function w(t), where system j is observed
in the time interval [Sj, Tj], j = 1, 2, ...,m, with events observed at times
t1j, t2j, ..., tnjj.

The likelihood function of these data is given by (see, e.g., Meeker and Esco-
bar [6])

L =
m∏
j=1

{ nj∏
i=1

w(tij)

}
e−[W (Tj)−W (Sj)], (2)

which is the product of the individual likelihoods of each of the m systems.
The log-likelihood function, which is usually easier to work with, is hence

l = log(L) =
m∑
j=1

[{ nj∑
i=1

logw(tij)

}
− [W (Tj)−W (Sj)]

]
.

For the power law model, with the parametization given in (1), the log-
likelihood function is given by

l = n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij − λ
m∑
j=1

[
T β
j − Sβ

j

]
(3)
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where n =
∑m

j=1 nj

For simplicity we shall in the following assume that Sj = 0 and Tj = τ for
j = 1, . . . ,m. Thus all them processes are observed on the time interval from 0
to a fixed time τ . As we shall see, this simplifies several results, while the main
ideas prevail. Using the standard method of finding the maximum likelihood
estimators (MLEs) of λ̂ of λ and β̂ of β by setting the partial derivatives of
the log-likelihood function with respect to each parameter equal to zero, we
get from (3),

∂l

∂λ
=

n

λ
−mτβ = 0,

which implies

λ̂ =
n

mτ β̂
(4)

Similarly we get the equation

∂l

∂β
=

n

β
+

m∑
j=1

nj∑
i=1

log tij − λmτβ log τ = 0,

which by using (4) leads to

β̂ =
n

n log τ −∑m
j=1

∑nj

i=1 log tij
.

This gives an explicit solution for β̂, which can afterwards be substituted in
the expression (4) for λ̂.

We now consider the Fisher information matrix for the computation of vari-
ances and covariances of the MLEs. The Fisher information matrix is used to
measure the amount of information that the observed data carries about the
unknown parameters. It is defined as

I (λ, β) = E

⎡⎢⎣−∂2l(λ,β)
∂λ2 −∂2l(λ,β)

∂λ∂β

−∂2l(λ,β)
∂λ∂β

−∂2l(λ,β)
∂β2

⎤⎥⎦ ,
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and a straightforward computation in our case implies that

I (λ, β) = E

⎡⎢⎣ n
λ2 mτβ log τ

mτβ log τ n
β2 + λmτβ(log τ)2

⎤⎥⎦ . (5)

The only random element in the above matrix is n, so we need to substitute
E(n) = mλτβ to get the final expression

I (λ, β) = mτβ

⎡⎢⎣ 1
λ

log τ

log τ λ( 1
β2 + (log τ)2)

⎤⎥⎦ .

Standard theory for maximum likelihood tells us that the maximum likeli-
hood estimates for λ and β are, for large samples, approximately normally
distributed centered at the true parameter values and with variances given
as the diagonal elements, respectively, of the inverse of the Fisher informa-
tion matrix. It is hence possible to estimate those variances by inverting the
estimated matrix I

(
λ̂, β̂

)
.

Alternatively, one may invert the so called observed Fisher information matrix,
which is the matrix (5) where one does not take the expectation, but instead
uses the observed value of n, and substitute maximum likelihood estimates for
the parameters.

3 Heterogeneity in the power law model

3.1 Heterogeneous NHPPs

Consider an NHPP with intensity function w(t). With the inclusion of hetero-
geneity, this model is modified to assuming that the intensity is given by

wa(t) = a w(t),

where w(t) is the basic (“baseline”) intensity function, and a is an unobserved
positive constant, which may vary from system to system. More precisely, a
is assumed to be a positive random variable with mean 1 and variance δ ≥ 0.
The idea is that in the case of m systems, each system has its own value of
a, i.e., a1, a2, ..., am, which are assumed to be independent draws from this
distribution. The aj are in survival analysis usually called “frailties” (Vaupel,
Manton and Stallard [9]).
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Although there are several potential distributions for the frailties aj, we shall
here apply the most commonly used one, namely the gamma distribution.
The popularity of this distribution as a frailty distribution is due to both
mathematical convenience and often good fit to actual data. There is, however,
no physical justification to prefer gamma frailties instead of other models.

The density of the two-parameter gamma distribution is generally given as

f(a) =
ak−1e−

a
θ

θkΓ(k)

for a > 0, where k > 0 is the shape parameter and θ > 0 is the scale parameter.
The corresponding expected value and variance are, respectively, kθ and kθ2.
Since we require E(a) = 1 and V ar(a) = δ, we use k = 1/δ and θ = δ. The
density of a hence becomes

h(a) =
a

1
δ
−1e−

a
δ

Γ(1
δ
)δ

1
δ

(6)

Figure 1 shows several densities of gamma distributions with expected value 1.

The likelihood function for data from m systems modeled by NHPPs, was
given in (2). We now study the changes needed when including a frailty a. We
use a similar argument as before, but now with V ar(a) = δ as an additional
parameter.

Now the likelihood function for system j, for given value of the frailty, aj, is

Lj(aj) =

{ nj∏
i=1

w(tij)

}
aje

−aj [W (Tj)−W (Sj)].

Since aj is an unobservable random variable, the contribution to the full likeli-
hood from this system is obtained by unconditioning with respect to aj, which
in practice will mean to compute the expected value of Lj(aj) with respect
to the distribution of aj. Since, furthermore, aj is gamma distributed with
expected value 1, and hence has probability density function (6), the expected
value of Lj(aj) is

Lj =E [Lj(aj)]

=
∫

Lj(aj)h(aj)daj
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=
∫ { nj∏

i=1

w(tij)

}
aje

−aj [W (Tj)−W (Sj)]
a

1
δ
−1

j e
−aj
δ

Γ(1
δ
)δ

1
δ

daj

=

∏nj

i=1 w(tij)

Γ(1
δ
)δ

1
δ

∞∫
0

a
rj−1
j e−ajsjdaj

where rj = nj +
1
δ
and sj = W (Tj)−W (Sj) +

1
δ
.

Now it is easy to show that
∫∞
0 ar−1e−sada = Γ(r)/sr for all r, s > 0, so we get

Lj =

∏nj

i=1 w(tij)

Γ(1
δ
)δ

1
δ

Γ(nj +
1
δ
)[

W (Tj)−W (Sj) +
1
δ

]nj+
1
δ

.

3.2 Maximum likelihood estimation for the heterogeneous power law NHPP

Specializing the above to the power law (1), we get

Lj =
λnjβnj

(∏nj

i=1 tij
)β−1

Γ(nj +
1
δ
)

Γ(1
δ
)δ

1
δ

[
λT β

j − λSβ
j + 1

δ

]nj+
1
δ

Further, assuming Sj = 0, Tj = τ for all j, and then taking log and summing
over all the m systems, we obtain the full log-likelihood

l(λ, β, δ) =n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij +
m∑
j=1

log Γ(nj +
1

δ
)

−
[
m log Γ(

1

δ
) +m

1

δ
log δ +

[
n+

m

δ

]
log[λτβ +

1

δ
]
]

In order to find the maximum likelihood estimators for λ, β, δ we first compute

∂l (λ, β, δ)

∂λ
=

n

λ
−
[

τβ

λτβ + 1
δ

] [
n+

m

δ

]
,

which when set to 0 implies

λ̂ =
n

mτ β̂
(7)
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Next we compute

∂l (λ, β, δ)

∂β
=

n

β
+

m∑
j=1

nj∑
i=1

log tij −
[
λτβ log τ

λτβ + 1
δ

] [
n+

m

δ

]

which when set to 0, using (7), leads to

β̂ =
n

n log τ −∑m
j=1

∑nj

i=1 log tij
.

Thus, λ̂ and β̂ are exactly the same functions of the data as for the power law
case without frailities. (Note that this would not be the case if the observation
time intervals were not all equal for all the m processes.)

The partial derivative of the log likelihood with respect to δ involves the
digamma function ψ defined by

ψ(x) =
d

dx
log Γ(x) =

Γ
′
(x)

Γ(x)
,

and we get

∂l (λ, β, δ)

∂δ
=− 1

δ2

m∑
j=1

ψ(nj +
1

δ
) +

m

δ2
ψ(

1

δ
)−m

[
− 1

δ2
log δ +

1

δ2

]

−
[
−m

δ2
log[λτβ +

1

δ
]− 1

δ2

[
n+ m

δ

λτβ + 1
δ

]]

=− 1

δ2

m∑
j=1

ψ(nj +
1

δ
) +

m

δ2
ψ(

1

δ
) +

m

δ2
log δ

− m

δ2
+

m

δ2
log[λτβ +

1

δ
] +

1

δ2

[
n+ m

δ

λτβ + 1
δ

]

=− 1

δ2

⎧⎨⎩
m∑
j=1

ψ(nj +
1

δ
)−mψ(

1

δ
)−m log δ +m

⎫⎬⎭
+

1

δ2

{
m log

[
λτβ +

1

δ

]
− n+ m

δ

λτβ + 1
δ

}

The likelihood equation given by equating this to 0 is simplified by substituting
the estimators for λ and β, which gives an equation of δ alone. No explicit
expression for the maximum likelihood estimator δ̂ is available, however, so a
numerical method like Newton-Raphson’s method needs to be used.
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4 Simulations

4.1 Simulate systems from the power law process with heterogeneity

The following probabilistic property of the NHPP can help us to simulate
event times of an NHPP from that of an HPP. Namely, if U1, U2, ... are
the event times of an HPP with intensity 1, then it can be shown that
W−1(U1),W

−1(U2), ... are the event times of an NHPP with CROCOF W (t).
Here the inverse functionW−1(u) is uniquely determined fromW (t) if w(t) > 0
for all t.

We now apply this property to the power law NHPP with CROCOF defined
by (1). Then it is seen that

W−1(u) = (u/λ)1/β.

Thus if U1, U2, . . . are the event times of an HPP with intensity 1, we obtain
a simulated realization of the power law NHPP with given parameters λ and
β as (U1/λ)

1/β, (U2/λ)
1/β, . . .. Note that here that the HPP, U1, U2, . . . can be

simulated by first drawing U1 from an exponential distribution with parameter
1; then letting U2 = U1 + V2 where V2 is an independent draw from the expo-
nential distribution with parameter 1; and so on by adding new independent
Vi from the exponential distribution with parameter 1, until the boundary
time τ is reached for the transformed variables (Ui/λ)

1/β.

In order to simulate from a power law process with gamma distributed frailty,
we first draw the value of a for each process, and then for the jth process
replace λ by ajλ in the above simulation strategy.

4.2 Simulated single processes

Throughout the simulation study we assume that there are m = 20 systems,
each observed on the fixed time interval from 0 to τ = 10. The failure processes
will be power law NHPPs with basic ROCOF λβtβ−1, for varying values of
λ and β, but possibly with heterogeneity obtained by multiplying the system
intensities by independent random variables a from the gamma distribution
with expected value 1 and variance δ.

Figure 2 shows a simulation of a single power law process observed on the time
interval [0,10], where parameter values are λ = 2 and β = 1.5. Figure 3 shows
similarly a single process from a power law process with the same λ and β,
but with a frailty parameter δ (= V ar(a)) = 0.2.
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We also illustrate, for the data in Figure 2, the estimated parameters, and
the observed Fisher infromation matrix. The ML estimates are λ̂=1.9926 and
β̂=1.4999, while the observed information matrix is

I
(
λ̂, β̂

)
=

⎡⎢⎢⎢⎢⎢⎣
0.0407 −0.0082

−0.0082 0.0018

⎤⎥⎥⎥⎥⎥⎦

By inversion of this matrix we obtain on the diagonal the estimated standard
errors of λ̂ and β̂, respectively, 0.2018 and 0.0423.

4.3 Simulation study

For each setup of parameters we consider 10, 000 simulations, each consisting
of m = 20 systems. The results are shown in Table 1. For each simulation
we estimate parameters and their standard errors by maximum likelihood,
and report averages of these numbers based on the 10, 000 simulations. These
numbers can hence be viewed as approximations of expected values of the
parameters, which enables consideration of possible bias in the estimators.
Further, the columns named by “St.D” give empirical standard errors of the
corresponding 10,000 computed estimates, obtained as the square roots of
empirical variances.

The table also gives the averages (approximation of expected values) of number
of failures in the time interval [0, 10] for each parameter combination, as well
as the corresponding standard deviations, computed as square roots of the
empirical variances. Note that each such number is based on m × 10, 000
simulated processes, i.e. 200,000 simulations.

In the discussion below we use the property that the maximum likelihood
estimators λ̂ and β̂ are given by the same function of the data whatever be
the value of δ (see Section 3.2. Thus, the estimates are the same whether we
assume the power law model without frailty or the power law model with
frailty. (It should be noted that this would not be the case if the observation
intervals of the m systems differed). Here it enables us to reach at many
interesting conclusions regarding heterogeneity.

The main conclusions to be drawn from the simulation study are given below.
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Data m True Value n Estimates

10000 20 λ β δ Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 0 63.1451 8.0541 2.0059 0.2057 1.5008 0.0430 0.0021 0.0036

0.1 63.0648 21.4421 2.0075 0.2456 1.5005 0.0421 0.0942 0.0352

0.2 63.2006 29.6606 2.0042 0.2853 1.5013 0.0425 0.1897 0.0651

0.4 63.0469 40.1756 2.0033 0.3450 1.5009 0.0426 0.3795 0.1208

0.6 63.3880 49.3983 2.0063 0.4033 1.5014 0.0431 0.5718 0.1750

0.8 63.0149 56.1749 2.0050 0.4452 1.5013 0.0430 0.7511 0.2223

1 63.4131 64.1655 2.0033 0.5023 1.5021 0.0432 0.9309 0.2610

1 0 20.0288 4.4658 2.0051 0.2526 1.0019 0.0509 0.0064 0.0119

0.2 19.9885 9.9238 1.9987 0.3231 1.0023 0.0509 0.1879 0.0774

0.4 20.2335 13.4745 2.0052 0.3802 1.0026 0.0508 0.3742 0.1305

0.6 19.8679 15.8587 1.9968 0.4285 1.0043 0.0514 0.5520 0.1769

0.8 20.1814 18.2127 1.9923 0.4691 1.0051 0.0518 0.7158 0.2107

1 20.4585 20.8251 1.9843 0.5149 1.0083 0.0524 0.8679 0.2421

0.75 0 11.2920 3.3512 1.9992 0.2653 0.7535 0.0507 0.0116 0.0215

0.2 11.8200 6.8717 2.0535 0.3142 0.7502 0.0493 0.1888 0.0924

0.4 11.2779 7.8143 1.9923 0.3934 0.7557 0.0519 0.3620 0.1381

0.6 11.1454 9.2048 1.9846 0.4330 0.7572 0.0522 0.5234 0.1763

0.8 11.1906 10.4320 1.9702 0.4873 0.7624 0.0539 0.6685 0.2054

1 11.1918 11.4700 1.9590 0.5285 0.7663 0.0552 0.7917 0.2274

Table 1
Data simulated from the heterogeneity model with varying δ, and estimation done
with the heterogeneity model in Section 5.

4.3.1 An ordinary power law is anticipated, while there may be an unrecog-
nized heterogeneity

Consider first the situation where one thinks that the ordinary power law
model is the true model, but that in reality there is heterogeneity between the
m = 20 systems.

For each combination of λ and β is seen that, as δ increases, the average
number of failures per system is approximately constant, which is in fact
exactly true by a theoretical computation of expected values. However, the
standard deviations (St.D) of the number of failures per system increase with δ.
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This is caused by the heterogeneity, which in practice means that some system
will have a higher failure intensity, while others will have a lower intensity than
for the base case. (On average, the intensity will be the same as for the no
heterogeneity case, however, since the variables ai have expected value 1.)

Now let us consider the estimated parameters. It is remarkable that neither
the expected value nor the standard error of β̂ are much influenced by the
heterogeneity. As regards λ̂, this is close to the true value, 2, but is increas-
ingly biased downwards as δ increases. This is most clearly seen when β �= 1.
Its standard error, on the other hand, clearly increases with δ for all cases.
Practical implications of these results are:

(i) For predictions of number of failures of new systems, by an erroneous
assumption of no heterogeneity, one gets too short predicted intervals for the
number of failures in a given time period. In fact, the expected value is cor-
rectly estimated, but the variation could be much bigger than expected if
heterogeneity is not accounted for. For example, suppose the true values are
λ = 2 and β = 0.75. In a model not taking heterogeneity into account, the
number of failures will be predicted to be in the interval (expected value ± 2
standard deviations) approximately from 4.5 to 18. If the true heterogeneity
variance is, e.g., δ = 0.4, this interval would be much wider, namely from 0 to
27.

(ii) A similar problem is seen for the estimation of λ. Here one would get a
too optimistic estimate for the standard error by assuming no heterogeneity,
and also a downward bias will be present in the estimate.

4.3.2 The correct model, a power law model with heterogeneity, is used for
statistical inference

In this case, the table contains information on all the maximum likelihood
estimators of the model, λ̂, β̂, δ̂.

It is seen that the maximum likelihood estimator δ̂ slightly underestimates
the true value of δ. Further, its standared error increases with δ as should
be expected. The conclusion is that the estimator δ̂ seems to behave quite
satisfactorily. The properties of the estimators λ̂ and β̂ are in fact already
discussed, since the formulas for their maximum likelihood estimators are the
same with and without including δ in the model.
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5 The data example from Bhattacharjee et al. (2003)

Recall the closing valve failure example (Bhattacharjee et al. [2]), which was
considered in the introduction. There are m = 104 systems, each observed on
the time interval [0,3286] (hours). The failure times are given in Table 2.

System # Failure times

1 610 614 943 2024 2087 2104 2399 2525

2 126 323 943 1132 2087 2399 2426

3 860 915 1606 3181

4 10 19 104 2352

5 293 2567

6 2434 2676

7 1963

8 1262

9 2501

10 1963

11 132

12 1623

13 3127

14 3211

15 1225

16 1222

17-104 −
Table 2
Failure times for 104 closing valves, with follow-up time of 3286 hours, at two boiling
water reactor plants in Finland. Failures type is “External Leakage”.

Let the model be as given in Section 3.2. Using the approach in that subsection
we get λ̂ = 4.594×10−4, β̂ = 0.8215, δ̂ = 0.7207. The estimate of δ thus reveals
a considerable heterogeneity between the systems. This heterogeneity is also
clearly visible from computation of the standard deviation of the number of
failures per system. In fact, the empirical standard deviation of number of
observed failures per system is 1.206. On the other hand, using the estimates
for λ and β and assuming an ordinary power law model without heterogeneity,
the standard deviation would be estimated to 0.3558. The latter number is
obtained as the square root of the estimated cumulative intensity of the process
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at time 3286, using the fact that expected value equals variance for a Poisson
distributed random variable.

6 Conclusion

The motivation for the present paper is the fact that an unobserved hetero-
geneity between observed systems of the same kind may, if ignored, lead to
wrong conclusions or bad predictions of system behaviour.

In the present paper we show, in a partly tutorial manner, how a possible
heterogeneity between systems may be included in a statistical investigation
of repairable systems. In order to simplify the exposition we considered the
fairly standard case of a power law nonhomogeneous Poisson process with
heterogeneity of the gamma type. The advantage of the approach is that it
leads to relativly simple formulas and procedures, while main ideas, pitfalls
and possible remedies are clearly demonstrated.

In a forthcoming paper we will in a similar simulation study explore the rela-
tion between models for heterogeneity as considered here, and a certain class
of dynamic models, considered for example in a recent paper by Le Gat [4].
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Fig. 1. Graphs of gamma densities with expected value 1
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Fig. 2. Cumulative number of failures, N(t), versus time for a power law process
with λ = 2 and β = 1.5.
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Fig. 3. Cumulative number of failures, N(t), versus time for a single power law
process with λ = 2, β = 1.5 and δ=0.2.
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1 Introduction

1.1 Minimal repair model (NHPP)

Reliability analyses of repairable systems are commonly made under the as-
sumption of minimal repairs, leading to nonhomogeneous Poisson process
(NHPP) models. Minimal repair intuitively means that a failed system is re-
stored just back to a functioning state, which is commonly named an “as bad
as old” condition. In many cases, such models, although simple, are fully ade-
quate for useful analyses. Indeed, the natural goal is often to return the system
to a functioning condition as soon as possible, and it is therefore reasonable
that the system after repair is brought to the exact same state it was in just
before the failure. The concept of minimal repair was apparently introduced
by Ascher [2], who considered that the “age” (in the sense of effectiveness) of
the system after repair is the same as it was before failure. A classical compre-
hensive reference to repairable systems, and in particular to minimal repair,
is the 1984-book by Ascher and Feingold [3].

In most of the theoretical derivations to follow, we will use a generic intensity
function w(t), which as we shall see will play the role of a baseline intensity for
an NHPP. In applications involving maximum likelihood estimation, the w(t)
will typically be a parametric function. In Sections 4 and 5 we shall consider
the celebrated power law intensity,

w(t;λ, β) = λβtβ−1 for t > 0, (1)

where λ > 0, β > 0 are parameters.

1.2 Heterogeneous extension of NHPP

Asfaw and Lindqvist [4] noted that when conclusions are to be drawn from
several similar systems, there may be an unobserved heterogeneity between
the systems which, if overlooked, may lead to wrong predictions for future
systems of the given kind.

Consider a set of systems, e.g. pumps of the same make, for which one models
the failure process by an NHPP with intensity function w(t). The common
way of introducing heterogeneity is to modify the intensity for a particular
system to the heterogeneous NHPP model by assuming that the intensity is
given by

wh(t) = a w(t),
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where w(t) is the baseline intensity function, while a is an unobserved positive
constant corresponding to the system under study, and which may vary from
system to system. Thus, in the case of m systems, each system is assumed to
have its own value of the “frailty” a, i.e., a1, a2, ..., am, which in the mathe-
matical model are assumed to be independent realizations from a probability
distribution with mean 1 and variance δ ≥ 0, say.

In practice, the aj may be thought of as coming from some unobserved covari-
ate. The randomness of the aj may well be due to a difference in meterological
conditions; or it might be due to different maintenance strategies or even more
unquantifiable effects such as differences in maintenance philosophy or atti-
tude. It may of course also be due to variation in the quality of the production
of the units themselves.

Asfaw and Lindqvist [4] demonstrated how to derive the likelihood function
for data from m power law systems under the assumption of a heterogene-
ity as described above, when the aj are independent and gamma-distributed.
By maximizing the likelihood function one may then estimate the parame-
ters of the baseline hazard (1), as well as the variance parameter δ of the
unobserved aj.

1.3 Dynamic extension of NHPP

Motivated by applications to urban drinking water infrastructures, Le Gat
[8,9] suggested a seemingly different way of modifying the commonly used
NHPP methods (as studied, e.g, by Røstum [11]). Water pipe failures are
considered to be highly dependent on past events, in the sense that repairs
may be harmful, leading to a possible accumulation of failures. Le Gat [8,9]
therefore defined the following extension of an NHPP, involving the desired
dependency on past failures. For further studies of this model we also refer to
Babykina and Couallier [5,6].

The definition of Le Gat’s failure process is given in the form of a conditional
intensity function, here denoted wd(·), where d stands for dynamic,

wd(t) = (1 + γN(t−))w(t). (2)

As is common notation, N(t−) denotes the number of failures experienced in
the time interval from 0 to t, not including t, while w(t) is the baseline inten-
sity function. The interpretation of wd(t) as a conditional intensity function
is as follows,

P (failure in time interval (t, t+ h) | failure history until time t)
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≈ (1 + γN(t−))w(t)h

for small h. The meaning of this is that, if we imagine to be present at time
t (or more precisely, immediately before t), and get to know the exact failure
history until that time, then we predict a failure to happen in the interval
(t, t+ h) with probability (1 + γN(t−))w(t)h.

Note the distinction in general between the conditional intensity and the com-
mon definition of the ROCOF r(t) (rate of occurence of failures, e.g, Ascher
and Feingold [3]), which is the corresponding unconditional intensity. The lat-
ter can be interpreted as follows. Suppose we are present at time 0 and want to
predict whether a failure will occur in the time interval (t, t+h). Then the rel-
evant probability of this is approximately r(t)h. For an NHPP, the conditional
intensity and the ROCOF are the same, while for the dynamic extension of
an NHPP as defined in (2), they are different. (The ROCOF of the dynamic
NHPP may in fact be rather difficult to compute).

The resulting “non-memoryless property” of the dynamic NHPP has an im-
portant implication as regards predictions of future failures. Consider two
disjoint time intervals [a, b] and [c, d] with a < b < c < d. While for an NHPP,
the number N(c, d) of failures in [c, d] is independent of the number of failures
N(a, b) in [a, b], Le Gat [9] showed that for the dynamic NHPP, the failure
countsN(a, b) andN(c, d) are not independent, withN(c, d) givenN(a, b) = k
having a negative binomial distribution depending on k.

Following Le Gat [8,9], the failure process defined by (2) may be viewed as
an extension of the well known Yule process, which is a birth process with a
constant birth rate, and [8,9] therefore denoted the process (2) by the LEYP
process (Linear Extension of the Yule Process). We will in the following denote
the process by the dynamic NHPP model, in accordance with Aalen et al. [1,
Chapter 8].

1.4 Heterogeneous versus dynamic extension of NHPP

As indicated above, the motivations for the heterogeneous and the dynamic
extensions of the NHPP are quite different. The heterogeneous model assumes
that there is a fixed frailty a for each system. As was pointed out in [4],
a “footprint” of heterogeneity is a larger variation in number of failures per
system than expected from an ordinary NHPP. Such a variation may, however,
as well be caused by an underlying dynamic model, where the failure behavior
depends on the history of failures in the way that failures may escalate through
time.
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Despite the apparent difference between the two paradigms, it is a fact that
one is not able to distinguish between the two kinds of departures from the
ordinary NHPP model. Thus, unexpected variations in number of failures may
either be caused by an unobserved covariate, leading to the heterogeneous
model; or by a dynamic effect caused by failures in the past. (Or, of course,
the truth may be a mixture of the two effects).

Thus, although the heterogeneous and dynamic models may look very differ-
ent, they also have several similarities. It is the purpose of the present paper
to point to such similarities, and to perform a simulation study in order to
illustrate certain effects of failure data coming from the dynamic model, while
the heterogeneous model is fitted.

1.5 Organization of the paper

The paper is organized as follows. In Section 2 we review the derivation of the
likelihood function of the dynamic NHPP, as given, e.g., in Le Gat [9]. We also
reconsider the likelihood function of the heterogeneous NHPP as given in [4].
In Section 3 we compare the two likelihood functions, pointing to a somewhat
surprising similarity. Then, following Aalen et al. [1], we compare the con-
ditional intensities of the two models, identifying a corresponding similarity.
Section 4 reconsiders the example of Bhattacharjee et al. [7], also considered in
[4]. Both the dynamic and the heterogeneous models are fitted, both leading
to apparently satisfactory fits. In Section 5 we present results of a simulation
study, after first having given a recipe for simulation from the dynamic model.
The paper is ended by some concluding remarks in Section 6.

2 Likelihood functions of the extended NHPP models

2.1 The likelihood function for the dynamic NHPP

Assume that we have observed a repairable system on the time interval [0, τ ].
Let n(t) be the realization of the process N(t) counting failures in [0, t], and
let the observed failure times be t1, t2, . . . , tn(τ). The likelihood function for the
data under the dynamic model (2) is given in Le Gat [9], but for completeness
we go through the complete derivation below.

Note that even if the process (2) is no longer an NHPP, the formula for the
likelihood function in terms of the (conditional) intensity is the same as the
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one for an ordinary NHPP (see, e.g., Lindqvist [10]),

Ld =

⎧⎨⎩
n(τ)∏
i=1

wd(ti)

⎫⎬⎭ e−Wd(τ),

where Wd(τ) =
∫ τ
0 wd(u)du.

Consider first

Wd(τ)=

τ∫
0

wd(u)du =

τ∫
0

(1 + γn(u))w(u)du

=
n(τ)∑
k=1

tk∫
tk−1

(1 + γ(k − 1)))w(u)du+

τ∫
tn(τ)

(1 + γn(τ)))w(u)du

=
n(τ)∑
k=1

(1 + γ(k − 1))(W (tk)−W (k−1)) + (1 + γn(t))(W (τ)−W (tn(t)))

=
n(τ)∑
k=1

(W (tk)−W (tk−1)) + (W (τ)−W (tn(t)))

+ γ
n(τ)∑
k=1

(k − 1)(W (tk)−W (tk−1)) + γn(τ)(W (τ)−W (tn(τ)))

=W (τ) + γ

⎡⎣n(τ)W (τ)−
n(τ)∑
k=1

W (tk)

⎤⎦ . (3)

Next, consider

n(τ)∏
i=1

wd(ti)=
n(τ)∏
i=1

(1 + γn(ti))w(ti)

=

⎧⎨⎩
n(τ)∏
i=1

(1 + (i− 1)γ)

⎫⎬⎭
n(τ)∏
i=1

w(ti)

=
Γ( 1

γ
+ n(τ))

Γ( 1
γ
)

γn(τ)
n(τ)∏
i=1

w(ti). (4)

Here Γ(·) is the gamma-function, and the last equality is proven by repeated
use of the relation Γ(k + 1) = kΓ(k), valid for all k > 0.

By combining (3) and (4), we get the likelihood for a single system,
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Ld =

⎧⎨⎩
n(τ)∏
i=1

w(ti)

⎫⎬⎭ · Γ(
1
γ
+ n(τ))

Γ( 1
γ
)

· γn(τ) · eγ
∑n(τ)

i=1
W (ti)

e(1+γn(τ))W (τ)

=

⎧⎨⎩
n(τ)∏
i=1

w(ti)e
γW (ti)

⎫⎬⎭ · Γ(
1
γ
+ n(τ))

Γ( 1
γ
)

· γn(τ) · 1

e(1+γn(τ))W (τ)
. (5)

In practice we will have data from m independent systems of the same kind.
Suppose the jth is observed in the time interval [0, τj], with events observed at
times t1j, t2j, ..., tnj(τj), j = 1, 2, ...,m. The total likelihood for the m systems
is given by a product of the likelihood (5) for each system, thus giving

Ld =
m∏
j=1

Ldj,

where

Ldj =

⎧⎨⎩
nj(τj)∏
i=1

w(tij)e
γW (tij)

⎫⎬⎭ · Γ(
1
γ
+ nj(τj))

Γ( 1
γ
)

· γnj(τj) · 1

e(1+γnj(τj))W (τj)
.

If a parametric form of w(t) is given, then Ld is the basis of maximum likeli-
hood estimation of the parameters of w(t) in addition to γ. If the power law
function (1) is chosen for w(t), then the resulting model has been called the
Yule-Weibull model by Le Gat [9].

2.2 The likelihood function for the heterogeneous NHPP

We reconsider the heterogeneous NHPP model as described in Section 1.2 and
treated more in detail in the paper by Asfaw and Lindqvist [4]. Following [4]
(see also [10]), the likelihood function for each single system can be written,

Lh =

⎧⎨⎩
n(τ)∏
i=1

w(ti)

⎫⎬⎭ · Γ(
1
δ
+ n(τ))

Γ(1
δ
)

· 1

δ
1
δ

[
1
δ
+W (τ)

] 1
δ
+n(τ)

.

Rewriting the denominator of the last factor of the above expression, we obtain
the alternative expression

Lh =

⎧⎨⎩
n(τ)∏
i=1

w(ti)

⎫⎬⎭ · Γ(
1
δ
+ n(τ))

Γ(1
δ
)

· δn(τ) · 1

[1 + δW (τ)]
1
δ
+n(τ)

. (6)
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As for the dynamic NHPP, the likelihood form systems is given by the product
of factors (6), one for each system. (In fact, fitting of heterogeneous NHPPs
make sense only if data from several systems (m > 1) are available. This also
applies to the likelihood (5) for the dynamic case.)

3 Comparison of the dynamic and heterogeneous NHPPs

3.1 Comparison of likelihood functions

If we equate the parameters γ and δ, then the two likelihood functions (5) and
(6) differ only in the first and last factors.

In (6), the denominator of the last factor can be approximated as follows,

[1 + δW (τ)]
1
δ
+n(τ) = [1 + δW (τ)]

1
δ [1 + δW (τ)]n(τ)

≈ eW (τ) · eδn(τ)W (τ) = e(1+δn(τ))W (τ), (7)

where the approximation can be justified when δ > 0 is small and n(τ) is
large, with δn(τ) moderate.

If we replace the denominator of the last factor in (6) by (7), then (again
equating γ and δ), the expressions (5) and (6) differ only in the first fac-

tors, which are, respectively,
{∏n(τ)

i=1 w(ti)e
δW (ti)

}
for the dynamic model and{∏n(τ)

i=1 w(ti)
}
for the heterogeneous model.

Now rename the baseline intensity of (5) as w∗(t) and assume that

w(t) = w∗(t)eδW
∗(t). (8)

Then (5) and the approximated version of (6) are the same, except that the
W (τ) in (7) should be replaced by W ∗(t). This approximation can be justified
by noting that (8) implies

W (t) =
eδW

∗(t) − 1

δ
≈ W ∗(t)

for small δ.

Thus the dynamic model with baseline intensity w∗(t) and the heterogeneous
model with intensity w(t) given by (8) are approximately the same in the
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sense that the likelihood functions are approximately equal, and the maximum
likelihood estimates of, respectively, γ and δ of the two models are hence
similar. Note that this similarity requires the connection between the baseline
intensities given by (8). We shall see below that this connection also pops up
in the comparison of conditional intensity functions of the two models.

3.2 Comparison of conditional intensity functions given the failure history

By using the definition of a conditional intensity function as indicated in
Section 1.3, Aalen et al. [1, page 333] computed the conditional intensity of
the heterogeneous model with baseline intensity w(t) and gamma-distributed
frailties with expected value 1 and variance δ (we will not consider the com-
putations here), to get

λ(t|history) = w(t) ·
1
δ
+N(t−)

1
δ
+W (t)

=
w(t)

1 + δW (t)
· (1 + δN(t−)). (9)

An intuitive interpretation of this result might be useful. Recall that the prob-
ability mechanism that produces the heterogeneous NHPP can be described
as follows. First, draw a value of a from the given frailty distribution with
expected value 1 and variance δ (usually a gamma-distribution). Then run an
ordinary NHPP with intensity function aw(t), where w(t) is the given baseline
intensity. Since a is unobserved, we do not know at the start of the process
whether there will be few or many failures, since this to a large extent will
depend on the value of a. Thus if we visit the process at some time t (or rather
immediately before t), and want to predict the future based on observation
of the process until time t, then the number of failures so far, N(t−), is intu-
itively very relevant, with a high number indicating an increased probability
of a new failure. This effect is precisely what is formulated in (9).

We next note that, after equating the parameters γ and δ, (9) equals the
conditional intensity of a dynamic model with baseline intensity function

w∗(t) =
w(t)

1 + δW (t)
.

Solving this equation for w(t) we get in fact precisely (8), thus confirming
the informal finding in the previous subsection, and again implying that that
heterogeneous model and the dynamic model are in some sense equivalent. We
will in the following pursue this idea in a real data example and in a simulation
study.
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4 Data example (Bhattacharjee et al. [7])

This example was also considered in [4]. It concerns failure data for motor
operated closing valves in safety systems at two boiling water reactor plants
in Finland. Failures of the type “External Leakage” were considered for 104
valves with a follow-up time of 9 years. The data, given in Table 1, show
an apparently abnormal variation in the number of failures per valve, and
were therfore analyzed in [7] using a (Bayesian) heterogeneity model, and in
[4] using a power law heterogeneous NHPP with gamma distributed frailties.
The latter analysis is reproduced here, together with an analysis using the
power law dynamic NHPP model described in Section 1.3.

For both the dynamic and the heterogeneous model we use the power law
baseline intensity (1).

The maximum likelihood estimates for the two models are given in Table 2.
It is remarkable that the estimates of the γ and δ are fairly equal, while the
estimated baseline intensities are very different. This is in accordance with
the findings in the previous section, although we have not investigated the
connection further. It is also remarkable that the estimates of γ and δ are
rather high. This is of course caused by the large variation in the number of
failures per valve. As a final remark, the computed maximum values of the log
likelihood functions of the two models are quite similar, informally suggesting
that the models are in some sense equally good (with the dynamic model
having a slight advantage).

A way of checking the realism of the two estimated models is to compute, for
each of them, the estimated expected number of systems which will have no
failures. This obviously equals 104 · P (T1 > 3286).

For the dynamic model, we note that T1 is simply Weibull-distributed with
reliability function P (T1 > t) = e−λt

β
, so the estimated value for t = 3286 is

e−0.00175·3286
0.563

= 0.846,

giving an estimated expected number of systems with 0 failures given as 104∗
0.846 = 88.0 (which is exactly the same as the observed one!)

For the heterogeneous model we need to condition upon the value of the frailty
variable a which is gamma-distributed. In order to get the estimated value of
P (T1 > 3286) this amounts to computing the expected value

E[e−λ̂·3286
b̂·a]
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when a is gamma-distributed with expected value 1 and variance δ̂. This gives
0.848 and hence the estimated number of systems with 0 failures is now 88.2,
very close to what we obtained above.

5 Simulation study

5.1 Simulation of failure data from the dynamic NHPP

Consider the process with conditional intensity function given by (2). Suppose
the process is observed on the time interval [0, τ ], with N failures occurring
at successive times T1, T2, . . . , TN . For convenience, put T0 = 0.

Then for i = 1, 2, . . . , N , for given Ti−1, the interfailure time Ti −Ti−1 has the
hazard rate function

(1 + (i− 1)γ)w(t+ Ti−1) for t > 0.

Thus, given Ti−1, we can simulate a value of Ti by first drawing Ui from the
uniform distribution on [0, 1] and solving for Ti the equation

Ui = exp{−(1 + (i− 1)γ)(W (Ti)−W (Ti−1)}. (10)

Here we used the fact that the survival function of a lifetime with hazard rate
z(t) equals exp{− ∫ t0 z(u)du}. (Note that (10) is also clear from results in Le
Gat [9]).

It follows from (10) that

W (Ti)−W (Ti−1) =
− lnUi

1 + (i− 1)γ

so

Ti = W−1
(
W (Ti−1)− lnUi

1 + (i− 1)γ

)
(11)

for i = 1, 2, . . . , N , where N is the smallest i such that Ti+1 > τ .

Since it is used in the simulation study below, we display the special case of
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(11) when the baseline is given by the power law intensity (1). Then

Ti =

(
T β
i−1 −

lnUi

λ(1 + (i− 1)γ)

)1/β

for i = 1, 2, . . . , N. (12)

5.2 Simulation scenarios

Throughout the simulation study we assume that there are m = 20 systems,
each observed on the fixed time interval from 0 to τ = 10. The failure processes
will be simulated using (12) with varying values of λ, β and γ.

5.3 Simulation study

For each setup of parameters we consider 10, 000 simulations, each consisting
of m = 20 systems. The results are shown in Table 3. For each simulation
we estimate parameters by maximum likelihood, and report averages of these
numbers based on the 10, 000 simulations. These numbers can hence be viewed
as approximations of expected values of the parameters, which enables con-
sideration of possible bias in the estimators. Further, the columns named by
“St.D” give empirical standard errors of the corresponding 10,000 computed
estimates, obtained as the square roots of empirical variances.

Table 3 also gives the averages of number of failures for the single processes
in the time interval [0, 10], for each parameter combination. Also, the cor-
responding standard deviations, computed as square roots of the empirical
variances, are given. Note that each such number is based on m × 10, 000
simulated processes, i.e. 200,000 simulations.

One aspect that we wanted to study with the simulations is the connection
between the parameters γ and δ. It is seen from the table that throughout,
there is a remarkably good correspondence between the two. This applies,
however, not to the estimate parameters of the power law baseline functions.
This should however be expected from the results of Section 3. This effect
was also seen in the data example of Section 4. Table 3 shows in particular
that the estimates of β increase substantially when γ increases. This is natural
since an increasing γ by the definition (2) induces an increasing trend in the
failure occurrences. The estimates λ̂ have a similar effect as compensators for
the variation in failures, but less interpretable.

It is clear from the displays of averages and standard deviations of number
of failures per system that the simulation study involves systems with high
number of failures. Thus the interesting values of γ are small compared to
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estimated value in the data example of Section 4. Regarding number of failures,
it is seen that the average number increases with γ, which of course is natural.
Thus a direct comparison of standard deviations is not so interesting. It is
seen, however, that the coefficient of variation (St.D/Ave) are consistently
increasing with γ, which also seems reasonable.

6 Conclusion

In this paper we have reviewed and compared two extensions of the NHPP
model, the heterogeneous NHPP and the dynamic NHPP. Each of these models
are in the literature well motivated by specific applications, shown to imply
better fit to data than ordinary NHPPs in certain real cases. For example,
Le Gat [8,9] found the dynamic NHPP and its underlying idea to be relevant
for applications to failures of water pipes. Bhattacharjee et al. [7] found the
heterogeneous extension of the NHPP to give the most plausible explanation
of a certain data set for valve failures.

It is therefore interesting to notice that, theoretically, the two paradigms are
not distinguishable given ordinary failure data for several systems. As noted
by Aalen et al. [1, Section 8.5], this dilemma has in fact been recognized for
a long time in many different application areas, ranging from psychiatry to
economics.

One aspect of this paper has been to point at the importance of challenging
the ordinary NHPP model when appropriate. While the NHPP is usually char-
acterized as a “black box” model, the two extensions considered in this paper
are based on exploiting extra insight regarding the particular applications.
The essential equivalence of the two studied models, may of course be viewed
as a source of further insight and perhaps further investigations regarding the
underlying failure mechanisms.
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System # Failure times

1 610 614 943 2024 2087 2104 2399 2525

2 126 323 943 1132 2087 2399 2426

3 860 915 1606 3181

4 10 19 104 2352

5 293 2567

6 2434 2676

7 1963

8 1262

9 2501

10 1963

11 132

12 1623

13 3127

14 3211

15 1225

16 1222

17-104 −
Table 1
Failure times for 104 closing valves, with follow-up time of 3286 hours, at two boiling
water reactor plants in Finland. Failures type is “External Leakage”.

Model λ̂ β̂ ĝ δ̂ logL

Dynamic 1.75 · 10−3 0.563 8.25 -340.32

Heterogeneous 4.59 · 10−4 0.822 8.34 -340.79

Table 2
Maximum likelihood estimates of parameters of, respectively, the dynamic model
and the heterogeneous model applied to the valve failure data of [7]. The last column
shows the maximum of the corresponding log likelihood functions.
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Data m True Value n Estimates

10000 20 λ β γ Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 0 63.3176 8.0255 2.0030 0.2019 1.5017 0.0423 0.0020 0.0038

0.001 65.2978 8.2883 1.9562 0.1972 1.5254 0.0425 0.0026 0.0042

0.01 88.4093 12.8219 1.5084 0.1668 1.7694 0.0459 0.0111 0.0080

0.02 127.0301 21.0328 0.9979 0.1159 2.1078 0.0480 0.0229 0.0119

0.04 287.3850 61.2510 0.2698 0.0349 3.0325 0.0516 0.0387 0.0133

0.06 719.8430 176.3796 0.0354 0.0044 4.3141 0.0479 0.0569 0.0194

1 0 19.9410 4.3837 2.0018 0.2592 1.0019 0.0513 0.0062 0.0114

0.001 20.4110 4.6004 1.9959 0.2521 1.0097 0.0509 0.0069 0.0118

0.01 21.9510 5.0593 1.9584 0.2518 1.0558 0.0514 0.0135 0.0174

0.02 24.5330 6.0879 1.9214 0.2596 1.1113 0.0537 0.0238 0.0221

0.04 30.8490 8.4581 1.8012 0.2496 1.2348 0.0551 0.0474 0.0296

0.06 37.9590 11.3169 1.6259 0.2481 1.3816 0.0589 0.0682 0.0334

0.08 50.1180 16.0797 1.4173 0.2131 1.5465 0.0587 0.0763 0.0305

0.1 64.0240 22.7574 1.1807 0.1888 1.7359 0.0616 0.0943 0.0361

0.2 269.6050 120.1785 0.2495 0.0397 3.0342 0.0576 0.1902 0.0602

0.75 0 11.2950 3.3210 2.0022 0.2644 0.7536 0.0490 0.0117 0.0215

0.001 11.3640 3.5082 2.0046 0.2663 0.7550 0.0513 0.0126 0.0229

0.01 11.8860 3.5045 2.0044 0.2715 0.7769 0.0520 0.0164 0.0253

0.02 12.5950 4.1497 2.0310 0.2757 0.7970 0.0511 0.0261 0.0320

0.04 14.3780 4.8219 2.0294 0.2925 0.8478 0.0541 0.0441 0.0410

0.06 16.0900 5.8230 2.0615 0.3080 0.8961 0.0544 0.0668 0.0461

0.08 18.5330 7.1101 2.0409 0.3171 0.9561 0.0574 0.0942 0.0534

0.2 40.9700 19.5547 1.6950 0.2931 1.4002 0.0611 0.1937 0.0709

0.4 219.4870 136.0986 0.5884 0.1085 2.5791 0.0532 0.3823 0.1157

Table 3
Data simulated from the dynamic model with varying γ, and estimation done with
the heterogeneity model.
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Localized/Shrinkage Kriging Predictors
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Abstract

The objective of the study is to improve the robustness and flexibility of spatial krig-
ing predictors with respect to deviations from spatial stationarity assumptions. A
predictor based on a non-stationary Gaussian random field is defined. The model pa-
rameters are inferred in an empirical Bayesian setting, using observations in a local
neighborhood and a prior model assessed from the global set of observations. The lo-
calized predictor appears with a shrinkage effect and is coined a localized/shrinkage
kriging predictor. The predictor is compared to traditional localized kriging pre-
dictors in a case study on observations of annual accumulated precipitation. A
crossvalidation criterion is used in the comparision. The shrinkage predictor ap-
pears as clearly preferable to the traditional kriging predictors. A simulation study
on prediction in non-stationary Gaussian random fields is conducted. The results
from this study confirms that the shrinkage predictor is favorable to the traditional
one. Moreover, the crossvalidation criterion is found to be suitable for selection
of predictor. Lastly, the computational demands of localized predictors are very
modest, hence the localized/shrinkage predictors are suitable for large scale spatial
prediction problems.

Key words: Spatial statistics, Gaussian random fields, Bayesian inference,
Conjugate models.

1 Introduction

Spatial prediction is required in many applications, and examples can be found
in natural resource mapping, meteorology and image analysis. Consider a re-
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gionalized variable {r(x); x ∈ D ⊂ �m} where r(x) ∈ �1 is the variable of
interest while x is a reference variable in the domainD. The challenge is to pre-
dict the regionalized variable from a set of observations ro = [r(x1), ..., r(xn)];
x1, ..., xn ∈ D. We define the predictors in a probabilistic setting and can also
obtain associated predictor uncertainties.

The classical probabilistic approach to spatial prediction is kriging, see Journel
and Huijbregts (1978) and Chiles and Delfiner (1999). The traditional ordinary
kriging predictor is based on a stationary model for the regionalized variable,
with spatially constant expectation and variance, and a shift invariant spa-
tial correlation function. Localized predictors, local neighborhood kriging, see
Chiles and Delfiner (1999) can be defined to robustify the predictor with re-
spect to deviations from the stationarity assumptions. The major challenge
in using localized predictors is to define the size of the local neighborhood
where a bias/variance trade-off must be made. For some spatial correlation
structures a screening effect is provided by the observations closest to the
prediction location, see Stein (2002), and this effect may robustify the local-
ization. In Anderes and Stein (2011) a weighted localized approach is defined
and demonstrated to be useful for non-stationary random fields.

Recent developments in computer and sensor technology have provided enor-
mous spatio-temporal sets of observations, see Johns et al (2003). Computa-
tional demands in spatial prediction have been a critical factor and consider-
able research is devoted to numerical algorithmes for large sparse correlation
matrices. Localized predictors may provide an alternative solution to reduce
these computational demands.

In the current study we define spatial predictors which are robust with re-
spect to deviations from assumptions about spatial stationary. We define a
Gaussian random field with spatially varying expectation and variance. The
spatial correlation function is shift invariant and known. We assess the expec-
tation and variance locally by a sliding window approach. In traditional local
neighborhood kriging this assessment is done by some maximum likelihood
procedure. The new feature of the study is that these local assessments are
done by shrinkage estimators in an empirical Bayes setting, inspired by the
study of Efron and Morris (1973). The hierarchical, Gaussian random field
model discussed in Røislien and Omre (2006) is used locally and the hyper-
parameters are assessed from the global set of observations. Since the predictor
is locally defined it is extremely computationally effecient. We denote the spa-
tial predictor localized/shrinkage kriging.

In the two first sections, various Gaussian random field models for the region-
alized variable {r(x); x ∈ D} are presented with associated model parameter
estimators. In the following section, five spatial predictors are defined, one
global and four localized. Two of these predictors appear with shrinkage. The
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next section defines the evaluation criteria used in the comparison of the pre-
dictors. In the next to last section the five predictors are compared on a real
set of annual accumulated precipitation data and in a synthetic simulation
study. Thereafter, in the last section, the conclusions are forwarded. The pa-
per summarises the major findings in an extended study, reported in Asfaw
and Omre (2014).

2 Predictor Models

The spatial predictors will be based on probabilistic models for the regional-
ized variable {r(x); x ∈ D}.

In traditional kriging prediction {r(x); x ∈ D} is associated with a station-
ary Gaussian random field, see Chiles and Delfiner (1999). This assumption
entails that:

E [r(x)] = μ; ∀x ∈ D

V ar [r(x)] = σ2; ∀x ∈ D (1)

Corr
[
r(x

′
), r(x

′′
)
]
= ρ(x

′ − x
′′
); ∀x′ , x′′ ∈ D

where expected level μ ∈ �1, variance level σ2 ∈ �1
+ and spatial correlation

function ρ(x
′ − x

′′
) is positive definite. Note that for these model assump-

tions the random field is shift invariant, and this property is extensively used
to make inference about the model parameters [μ, σ2, ρ(.)] from the set of
observations ro. This traditional kriging model may be extended to have an
expectation surface μ(x) =

∑L
l=1 αege(x) where {ge(x); x ∈ D}; l = 1, ..., L

are known basis surfaces while α = (α1, ..., αL) are unknown coefficients. This
model corresponds to a spatial regression model, and the shift invariance prop-
erty is lost, which complicates model parameter inference. Note that for given
correlation function ρ(.), maximum likelihood estimates based on ro is ana-
lytically assessable for the other model parameters, under both these model
assumptions.

In the current study it is assumed that {r(x); x ∈ D} is associated with a
general Gaussian random field, which entails that:

E [r(x)] = μ(x); ∀x ∈ D

V ar [r(x)] = σ2(x); ∀x ∈ D (2)

Corr
[
r(x

′
), r(x

′′
)
]
= ρ(x

′
, x

′′
); ∀x′ , x′′ ∈ D
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with μ ∈ �1, σ2 ∈ �1
+ and ρ(x

′
, x

′′
) being positive definite. There is obvi-

ously lack of shift invariance under these assumptions. We can expect that
inference of the spatial model parameters {μ(x); x ∈ D}, {σ2(x); x ∈ D} and{
ρ(x

′
, x

′′
); ∀x′ , x′′ ∈ D

}
, based on ro is complicated. If we fix the correla-

tion function ρ(., .) we may use localized estimators in a kernel spirit to assess
the spatial model parameters μ(.) and σ2(.). When selecting the size of local-
ization we face a bias/variance trade-off. Large local neighborhood introduce
bias in the estimators due to smoothing while small neighborhoods introduce
instability in the estimators due to sensoring of observations. In the current
study we adress this bias/variance trade-off by defining shrinkage estimators
in an empirical Bayes setting.

In order to define the shrinkage estimators we introduce a stationary, hier-
archical Gaussian random field model for a local neighborhood D+ around an
arbitrary x+ ∈ D, i.e for {r(x); x ∈ D+}. In this model the expected level m
and the variance level s2 are considered to be random variables. Moreover,
{[r(x) | m, s2] ; x ∈ D+} is defined to be a stationary Gaussian random field,
hence:

E [r(x) | m, s2] = m; ∀x ∈ D+

V ar
[
r(x) | m, s2

]
= s2; ∀x ∈ D+ (3)

Corr
[
r(x

′
), r(x

′′
) | m, s2

]
= ρ(x

′ − x
′′
); ∀x′ , x′′ ∈ D+

By assuming that ρ(.) is known, and that the model parameters [m | s2] and
s2 have prior models which are Gaussian and Inverse Gamma respectively,
with:

E [m | s2] = μm

V ar [m | s2] = τms
2

E
[
s2
]
= [ξs − 1]−1γs (4)

V ar [s2] = [(ξs − 1)2(ξs − 2)]−1γ2
s

where the model parameters are μm ∈ �1
+, τm ∈ �1

+, ξs ∈ 2+�1
+ and γs ∈ �1

+.
The prior model on [m, s2] is a conjugate model for the stationary Gaussian
random field, and the marginal random field {r(x); x ∈ D+} will be a T-dist
random field, see Røislien and Omre (2006), and be analytically tractable.

The estimators for the model parameters μ(x+) and σ2(x+) in arbitrary loca-
tion x+ ∈ D are localized to observations in D+ and with shrinkage according
to the localized hierarchical Gaussian model. These estimators will of course
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depend on the parameters of the prior model [μm, τm, ξs, γs], and we assess
these parameters in an empirical Bayesian spirit from a set of local neighbor-
hood D+ covering D.

3 Inference of Model Parameters

In order to use the probabilistic models for {r(x); x ∈ D} to spatial prediction
the model parameters must be assessed from the set of observations repre-
sented by the [n× 1]-vector ro = [r(x1), ..., r(xn)]

T = [r1, ..., rn]
T .

Throughout the study we assume the spatial correlation function{
ρ(x

′
, x

′′
) = ρ(x

′ − x
′′
); ∀x′ , x′′ ∈ D

}
to be known, with associated inter-

observation correlation [n × n]-matrix Ωoo. This correlation model must of
course also be infered in one way or the other, but in our study we do not
account for the uncertainty related to this.

For a stationary Gaussian random field, given the correlation function, the
model parameters can be assessed by a maximum likelihood estimator:

μ̂ = [iTnΩ
−1
oo in]

−1[iTnΩ
−1
oo ro] (5)

σ̂2 = 1
n
[ro − μ̂in]

TΩ−1oo [ro − μ̂in]

For a general Gaussian random field, given the correlation function, the as-
sessments of the spatial model parameters {μ(x); x ∈ D} and {σ2(x); x ∈ D},
are more complicated. We prescribe localized estimators. Consider an arbi-
trary location x+ ∈ D and parameterize the localization by the k observations
in ro localized closest to x+, and denote it as k-localization. Define a binary-
selection [k×n]-matrix Gk

+ such that Gk
+ro is a [k×1]-vector containing the k

observations in the k-localization of x+. Note that G
k
+ easily can be extended

to also account for favorable configurations of observations around x+. The
k-localized maximum likelihood estimators for the model parameters are:

μ̂k
+ = μ̂k(x+) = [iTk [G

k
+Ωoo[G

k
+]

T ]−1Gk
+ro][i

T
k [G

k
+Ωoo[G

k
+]

T ]−1ik]−1 (6)

σ̂k2
+ = σ̂k2(x+) =

1
k
[Gk

+ro − μ̂k
+ik]

T [Gk
+Ωoo[G

k
+]

T ]−1(Gk
+ro − μ̂k

+ik)

By letting x+ coinside with the observation locations [x1, ..., xn] we obtain the
estimators for observation expectation [n×1]-vector and for diagonal standard
deviation [n× n]-matrix respectively.

μ̂k
o =

[
μ̂k
1, ..., μ̂

k
n

]T
(7)
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Γ̂k
o =

⎡⎢⎢⎢⎢⎢⎣
σ̂k
1 . . . 0
...

. . .
...

0 . . . σ̂k
n

⎤⎥⎥⎥⎥⎥⎦
For a stationary, hierarchical Gaussian random field, given the correlation
function, we need to assess the model parameters of the prior model [μm, τm, ξs, γs].
We choose to make this assessment in an empirical Bayes setting, by consider-
ing the localized estimates in the observation locations, [μ̂k

i , σ̂
k2
i ]; i = 1, ..., n,

to be a super population of the k-localized estimate in an arbitrary location.
Then natural estimators for the parameters of the prior model are dependent
on k:

μ̂k
m =

1

n
iTn μ̂

k
o (8)

τ̂ km = [σ̂k2
. ]−1σ̂k2

m

where

σ̂k2
. = 1

n
Tr[Γ̂k

o ]

σ̂k2
m = 1

n
[μ̂k

o − μ̂k
min]

T [μ̂k
o − μ̂k

min]

and

ξ̂ks = [σ̂k2
s ]−1[μ̂k2

s ] + 2 (9)

γ̂k
s = μ̂k

s

[
[σ̂k2

s ]−1[μ̂k2
s ] + 1

]
where

μ̂k
s =

1
n
iTns

2

σ̂k2
s = 1

n
[s2 − μ̂k

s in]
T [s2 − μ̂k

s in]

s2 =
[
(r1 − μ̂k

m)
2, ..., (rn − μ̂k

m)
2
]T

We have now defined estimators for all model parameters based on the observa-
tions ro. Hence all probabilistic models for the regionalized variable {r(x); x ∈ D}
are fully specified. Focus is on spatial prediction however, and in the following
Section we define spatial predictors under the various model assumptions and
insert the estimators for the model parameters to obtain operable predictors.
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4 Spatial Predictors

Focus of the study is on spatial prediction in a random field {r(x); x ∈ D}
based on a set of observations represented in a [n× 1]-vector ro. Consider an
arbitrary location x+ ∈ D with value r(x+) = r+. The challenge is to provide
a reliable predictor for r+ based on ro. We use a squared error loss, hence
the predictor is r̂+ = Ê[r+ | ro], with associated estimated predictor variance
σ̂2
+ = V̂ ar[r+ | ro]. Note that a predictor for the entire regionalized variable

{r(x); x ∈ D} can be obtained by letting x+ run over the domain D.

Recall that the correlation function
{
ρ(x

′ − x
′′
); x

′
, x

′′ ∈ D
}
is assumed known

and that the inter observation correlation [n×n]-matrix is denoted Ωoo, while
the observation to x+ correlation [n × 1]-vector is denoted ωo+. Recall also
that the localization operator Gk

+ is defined such that Gk
+ro is a observation

[k × 1]-vector which contain the k observations located closest to x+.

Glob/Stat/Trad Predictor
This predictor is global and based on a stationary Gaussian random field
model with traditional parameter estimates. It corresponds to the frequently
used global ordinary kriging predictor, and it is defined by:

[r | ro] ∼ Gauss[μ+|o, σ2
+|o]

with

μ+|o = μ+ ωT
o+Ω

−1
oo [ro − μin] (10)

σ2
+|o = σ2[1− ωT

o+Ω
−1
oo ωo+]

Note that the predictor is independent of the variance σ2 while the prediction
variance is independent of the observed values ro only the location configura-
tion. These are well recognized characteristics of kriging.

The Glob/Stat/Trad predictor with associated predictor variance is defined
as:

r̂GST = μ̂+|o

σ̂2
GST = σ̂2

+|o

which are defined by Expression (10) with the estimates in Expression (5)
inserted.

Loc/Stat/Trad Predictor
This predictor is k-localized and based on a stationary Gaussian random field
model with traditional parameter estimators. It corresponds to a localized or-
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dinary kriging predictor which is frequently used in practice, and it is defined
by:

[r+ | Gk
+ro] ∼ Gauss[μk

+|o, σ
k2
+|o]

with

μk
+|o = μk

+ + [Gk
+ωo+]

T [Gk
+Ωoo[G

k
+]

T ]−1
[
Gk

+ro − μk
+ik
]

(11)

σk2
+|o = σk2

+

[
1− [Gk

+ωo+]
T [Gk

+Ωoo[G
k
+]

T ]−1Gk
+ωo+

]
Also this predictor is locally independent on σ2 with predictor variance locally
independent on the observed values ro. Since both μk

+ and σk2
+ will vary across

the field, the predictor and predictor variance will vary across the field.

The Loc/Stat/Trad predictor with associated predictor variance is defined
as:

r̂kLST = μ̂k
+|o

σ̂k2
LST = σ̂k2

+|o

which are defined by Expression (11) with the estimates in Expression (6)
inserted.

Loc/Stat/Shr Predictor
This predictor is k-localized and based on a stationary Gaussian random field
model with shrinkage parameter estimators defined in an empirical Bayes set-
ting. The predictor is denoted the stationary localized/shrinkage kriging pre-
dictor and it constitutes one new predictor in the study:

[r+ | mk
+, s

k2
+ , Gk

+ro] ∼ Gauss[μk
+|o, σ

k2
+|o]

with

μk
+|o = mk

+ + [Gk
+ωo+]

T [Gk
+Ωoo[G

k
+]

T ]−1
[
Gk

+ro −mk
+ik
]

(12)

σk2
+|o = sk2+

[
1− [Gk

+ωo+]
T [Gk

+Ωoo[G
k
+]

T ]−1Gk
+ωo+

]
where the posterior expectations for the hyper-parameters are, see Appendix
A:

mk
+ = E[m | s2, Gk

+ro]

= μk
m + τ kmi

T
k

[
τ kmiki

T
k + [Gk

+Ωoo[G
k
+]

T
]−1 [

Gk
+ro − μk

mik
]

(13)

sk2+ = E[sk2+ | Gk
+ro] =

[
ξks +

k
2
− 1

]−1
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×
[
γk
s +

1
2

[
[Gk

+ro − μk
mik]

T
[
[Gk

+Ωoo[G
k
+]

T ] + τ kmiki
T
k

]−1
[Gk

+ro − μk
mik]

]]

Expression (12) follows from the definition of a stationary hierarchical Gaus-
sian random field conditioned on the model parameters and on Gk

+ro. Ex-
pression (13) follows from the prior model of [m, s2] being conjugate, hence
the posterior models are analytically assessible, and so are their expectations.
Note in particular that mk

+ = E[m | Gk
+ro] hence independent of s

k2
+ . Note also

that the predictor is independent of the variance while the predictor variance
is dependent on the actual observed values.

The predictor appears with shrinkage through the estimators for shift and
scaling parameters mk

+ and sk2+ . The actual observations weights are indepen-
dent of mk

+ and sk2+ .

The Loc/Stat/Shr predictor with associate predictor variance is defined as:

r̂kLSS = μ̂k
+|o

σ̂k2
LSS = σ̂k2

+|o

which are defined by Expressions (12) and (13) with the estimators in Expres-
sions (8) and (9) inserted.

Loc/Non-stat/Trad Predictor
This predictor is k-localized and based on a general Gaussian random field
model with traditional parameter estimators. This predictor is surprisingly
seldom used, and it is defined as:

[r+ | Gk
+ro] ∼ Gauss[μk

+|o, σ
k2
+|o]

with

μk
+|o = μk

+ + σk
+[G

k
+Γ

k
oωo+]

T [Gk
+Γ

k
oΩooΓ

k
o [G

k
+]

T ]−1
[
Gk

+[ro − μk
o ]
]

(14)

σk2
+|o = σk2

+

[
1− [Gk

+Γ
k
oωo+]

T [Gk
+Γ

k
oΩooΓ

k
o [G

k
+]

T ]−1Gk
+Γ

k
oωo+

]
where

μk
o =

[
μk
1, ..., μ

k
n

]T

Γk
o =

⎡⎢⎢⎢⎢⎢⎣
σk
1 . . . 0
...

. . .
...

0 . . . σk
n

⎤⎥⎥⎥⎥⎥⎦
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Note that this predictor is dependent of the variance variability across the
field while the predictor variance is independent of the observation values.

The Loc/Non-stat/Trad predictor with associated predictor variance are de-
fined as:

r̂kLNT = μ̂k
+|o

σ̂k2
LNT = σ̂k2

+|o

which are defined by Expression (14) with the estimates in Expressions (6)
and (7) inserted.

Loc/Non-stat/Shr Predictor
This predictor is k-localized and based on a non-stationary Gaussian ran-
dom field model with shrinkage parameter estimators defined in an empirical
Bayesian setting. The predictor is denoted the non-stationary localized/shrinkage
kriging predictor and it constitutes another new predictor in the study:

[r+ | mk
+,m

k
o , s

k2
+ , Sk

o , G
k
+ro] ∼ Gauss[μk

+|o, σ
k2
+|o]

with

μk
+|o = mk

+ + sk+[G
k
+S

k
oωo+]

T [Gk
+S

k
oΩooS

k
o [G

k
+]

T ]−1
[
Gk

+[ro −mk
o ]
]

(15)

σk2
+|o = sk2+

[
1− [Gk

+S
k
oωo+]

T [Gk
+S

k
oΩooS

k
o [G

k
+]

T ]−1Gk
+S

k
oωo+

]
where mk

+ and sk2+ are defined as in Expression (13) while

mk
o =

[
mk

1, ...,m
k
n

]T

Sk
o =

⎡⎢⎢⎢⎢⎢⎣
sk1 . . . 0
...
. . .

...

0 . . . skn

⎤⎥⎥⎥⎥⎥⎦
are defined from the x+-centred m+ and sk2+ shifted to the observation loca-
tions [x1, ..., xn].

The predictor appears with shrinkage through the estimators of mk
+ , sk2+ and

mk
i , sk2i ; i = 1, ..., n. Hence both shift and scaling, as well as observation

weights are influenced by the shrinkage effect. This is a full shrinkage predictor.

The Loc/Non-stat/Shr predictor with associated predictor variance are de-
fined as:

10



r̂kLNS = μ̂k
+|o

σ̂k2
LNS = σ̂k2

+|o

which are defined by Expression (15) with the estimates in Expressions (8)
and (9) inserted.

Crossvalidation Calibrated (CVC) Predictors
We have defined five predictors, one global and four localized. One challenge
with localized predictors is lack of global anchoring. The variance estimates
are localized and coupled with the expectation estimates which may cause
wrong scaling of the prediction variances. We introduce crossvalidation cali-
brated (CVC) predictors to provide a global calibration.

Consider an arbitrary predictor in an arbitrary location x+ ∈ D, r̂+ = Ê[r+ |
ro]. The predictor may be global or localized, and it is based on the observa-
tions ro = [r1, ..., rn] in locations [x1, ..., xn]. The associated prediction variance
is σ̂2

+ = V̂ ar[r+ | ro].

Define the crossvalidation predictors with associated predictor variances in
the observation locations [x1, ..., xn]:

r̂i = Ê[ri | ro(−i)] ; i = 1, ..., n

σ̂2
i = V̂ ar[ri | ro(−i)] ; i = 1, ..., n

where ro(−i) represents observations ro with observations ri removed.

The normalized crossvalidation errors are defined as:

ei = [σ̂i]
−1[ri − r̂i] ; i = 1, ..., n

Under a fully specified model, these errors will be centred at zero and be scaled
to unity. Consider the estimators:

μ̂e =
1
n

∑n
i=1 ei

σ̂2
e = 1

n

∑n
i=1[ei − μ̂e]

2

and the μ̂e and σ̂2
e should be close to zero and unity, respectively.

We define the CVC predictor and CVC prediction variance in an arbitrary
location x+ ∈ D by:

r̃+ = r̂+ + σ̂+μ̂e (16)

σ̃2
+ = σ̂2

e σ̂
2
+
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Note that the corresponding normalized crossvalidation errors will have μ̂e and
σ̂2
e which are identical to zero and unity, respectively. These CVC predictors

with associated CVC prediction variances will be used in the study.

5 Evaluation Criteria

We have defined several spatial CVC predictors with associated CVC predic-
tion variances. We need to select one based on the set of observations ro only.
Recall that all predictors have normalized crossvalidation errors centred at
zero and scaled to unity.

The precision of the CVC predictors r̃+ measured by mean square crossvali-
dation error:

PMSE =
1

n

n∑
i=1

[ri − r̃i]
2 (17)

may vary. In the CVC predictor the scale of the normalized crossvalidation
error is identical to unity but large deviations may be reduced by large pre-
diction variances in this measure. We use PMSE as measure for precision in
the CVC predictor r̃+ and we prefer small values of PMSE, of course.

The precision of the CVC prediction variances σ̃2
+ is indicated by the de-

pendence between crossvalidation squared errors [ri − r̃i]
2 and corresponding

prediction variances σ̃2
i . Since these are variance estimates we define the mean

square measure:

VMSE =
1

n

n∑
i=1

[
[ri − r̃i]

2

σ̃2
i

− 1

]2
(18)

Recall that normalized crossvalidation squared error in this expression is cen-
tred exactly at unity. We use VMSE as measure for precision in the CVC
prediction variance σ̃2

+ and we prefer small values of VMSE, of course.

By comparing values of PMSE and VMSE for different CVC predictors we
are able to evaluate the relative quality of the predictors. Normally, the crite-
rion PMSE is considered more important than criterion VMSE.

5.1 Empirical Studies

It is difficult to compare the various predictors analytically, hence we conduct
an empirical comparision. We present two case: set of observations of yearly
accumulated precipitation and a simulation study on a general Gaussian ran-
dom field.
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US Precipitation Study
We consider observations of 1997 accumulated precipitation in 1001 locations
in an area of the US, see Figure 1. The observations is a subset of much larger
data set, see Data (2014) and Johns et al (2003).

By inspecting the observations in Figure 1 we note relatively dense, uniform
coverage of observations with a slight south-eastern trend in the values. The
spatial correlation function is inferred under a stationary model, see Figure 2,
and the following model is fitted:

ρ(τ) = exp
{
−
[

τ
3.5

]1.4}
; τ ≥ 0

with τ =
∣∣∣x′ − x

′′ ∣∣∣. This spatial correlation model is used throughout the study.
The localized predictors require that the number of observations in the neigh-
borhood k is specified. We have, after a small preliminary study, chosen k=10.

We compare the five alternative CVC predictors defined Section 4 by using
the evaluation criteria defined in Section 5. The results from the evaluation
are displayed in Figure 3 thru 9 and Table 1.

The results from the Glob/Stat/Trad CVC predictor are displayed in Figure
3 and 4 and in Table 1. Figure 3 display the actual crossvalidation predic-
tions and crossvalidation prediction standard deviations in the observations
locations. The predictions can be compared to the actual observations in Fig-
ure 1, and no dramatic deviations are seen since the observation coverage is
dense. Figure 4 display the normalized crossvalidation errors both spatially
and as a histogram. Note that the histogram is centred to zero and scaled
to unity since the CVC predictor is used. The locations of large errors seem
to fall in the south-eastern corner where the trend effect is largest. The val-
ues of the evaluation criteria are listed in Table 1, first column (k = 1000).
The two first lines MNE and MSNE contain the values of μ̂e and σ̂2

e respec-
tively, hence the empirical moments of the normalized crossvalidation errors of
the non-calibrated predictor. The predictor appears as well centred but with
downward biased prediction variances. The two next lines contain the values of
the evaluation criteria PMSE and VMSE, for the CVC predictor. The former
criteria is related to prediction precision while the latter is related to precision
in the prediction variance. These criteria provide the base for comparision of
the various CVC predictors.

The results from the Loc/Stat/Trad k=10 CVC predictor are displayed in
Figure 5 and 6 and in Table 1. The formats are identical to the ones discussed
in the previous paragraph. The crossvalidation predictions and prediction stan-
dard deviations in Figure 5 are very similar to the results for the global predic-
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tor in Figure 3. The normalized crossvalidation errors in Figure 6 do deviate
from the results for the global predictor in Figure 4. Note that the large errors
tend to be more uniformly located in the area and that the histogram have
somewhat lighter tails. From Table 1 we see that the non-calibrated predictor
is well centred but with downward biased prediction variances. The evaluation
criteria PMSE and VMSE of the Loc/Stat/Trad k=10 CVC predictor have
values that are favorable compared to the global CVC predictor. Not much
favorable for prediction but clearly favorable for prediction variance.

The results from the Loc/Stat/Shr k=10 CVC predictor are displayed in Fig-
ure 7 thru 9, and in Table 1, on similar formats as above. The predictor relies
on a set of hyper-parameters that defines the prior model for localized expec-
tation and variance. These prior models are assessed in an empirical Bayesian
spirit from the complete set of observations. For the current predictor with
k=10 we obtain the prior model displayed in Figure 9. The crossvalidation pre-
dictions and crossvalidation standard deviations in Figure 7 appear as very
similar to the results for the other CVC predictors in Figure 3 and 5. The nor-
malized crossvalidation errors in Figure 8 appear as similar to the ones for the
traditional localized predictor in Figure 6. Note, however, that the histograms
are different in the sense that the histogram of the shrinkage predictor have
lighter tails than for the traditional one. This is very much in the shrinkage
spirit, since extreme predictions, often caused by unstable model parameter
estimates, are dampened towards the centre of the model. From Table 1, we
observe that the non-calibrated predictor is well centred but with downward
biased prediction variances. The evaluation criteria PMSE and VMSE for the
Loc/Stat/Shr k=10 CVC predictor are both favorable to both the traditional
global and localized predictors. Minor improvement on prediction precision is
obtained, while the precision in the prediction variance is clearly improved.

The results from the Loc/Non-stat/Trad k=10 CVC predictor and the Loc/Non-
stat/Shr k=10 CVC predictor are only summarized in Table 1. By comparing
the values of the evaluation criteria PMSE and VMSE to the other predictors,
we conclude that the precision in prediction is clearly poorer. Note, however,
the improvement in precision for the prediction variance. These results may
indicate that there is a trade-off in the precision of prediction and prediction
variance.

To summarize the current study, we conclude that localized predictors can
be clearly favorable to the global one. Favorable both in prediction preci-
sion and particularly in precision of prediction variance. The localized models
are robust with respect to deviations from assumptions of global stationary,
and this robustness causes improvements of the localized predictors. Local-
ized stationary predictors are favorable to the localized non-stationary ones,
since the precisions in prediction are clearly better. The precision in the pre-
diction variance can, however, be improved by non-stationary predictors. In
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the non-stationary models we must estimate expectation and variance in each
observation location, which introduces additional uncertainity in the model.
This uncertaininty is dominating the advantage of using a more general model.
Among localized, stationary predictors, the shrinkage predictor is clearly fa-
vorable to the traditional one. The prediction precision is slightly better, while
the precision in prediction variance is clearly favorable. For localized models
we need to make bias/variance trade-offs when selecting the localization. Using
a regularizer representing the global variability in the parameter estimators
provide more stable estimates. It is not surprising that the effect is largest
for prediction variance, since traditional variance estimators are notoriously
unstable.

In the current study we have used a localization with k=10. In the extended
study, see Asfaw and Omre (2014), we have evaluated the sensitivity to choise
of k-value. If we reduce k considerably, to for example k=4, the localized pre-
dictor are poorer than the global one. This is probably caused by overfitting
to the observations. Results for k in the range 8 to 16 are consistent with
the results in the current study with localized shrinkage predictors clearly fa-
vorable. By increasing k we will of course in the limit have the localized and
global predictors to coinside.

Simulation Study
We conduct a simulation study on a general Gaussian random field model
{r(x); x ∈ D ⊂ �1} with D = [1, ..., 200] discretized to grid LD = {1, ..., 200}.
The expectation and variance fields are displayed in Figure 10.a, and note
the non-stationarity with inter-dependence. The known correlation function
is ρ(τ) = exp {−0.2τ 1.5} with τ =

∣∣∣x′′ − x
′ ∣∣∣. We generate one realization from

this random field model and use realizations at locations Lo = {1, 10, ..., 190, 200}
as observations, hence n = 21.

With known model parameters, the correct predictions and prediction vari-
ances in locations LD are analytically assessable, see Figure 10.b. The predic-
tor reproduces the observations and the prediction variances reflects the non-
stationarity. We use the various CVC predictors Glob/Stat/Trad, Loc/Stat/Trad
and Loc/Stat/Shr with localization k=±4 when relevant, and obtain results
as in Figure 10.c-e. Note that the global predictor have regression towards the
observation average and prediction variance accounting only for the observa-
tion configuration. The localized predictors are fairly similar, capturing the
local variability in the observations. The shrinkage-version appears as some-
what dampened relative to the traditional one. This dampening is caused by
the prior models on local expectation and variance which are assessed in an
empirical Bayesian spirit. The prior model for this realization are displayed
in Figure 11. We also perform prediction based on the non-stationary models
but the results are not displayed in Figure 10.
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To summarize, the global predictor, which corresponds to classical ordinary
Kriging, appears as highly unreliable due to deviations from the stationarity
assumptions, and will not be further evaluated. The localized predictors are
difficult to distinguish by visual inspection.

The evaluation criteria discussed in Section 5 can be revised to character-
ize the deviations between the CVC predictions and prediction variances and
the correct ones in Figure 10.a. We repeat 1000 realizations and average the
criteria to obtain APMSC and AVMSC as evaluation criteria for prediction
and prediction variance respectively, see Table 2 with k=±4. We repeat this
procedure for varying localizations k. Note that for localized, stationary pre-
dictors the shrinkage-versions are favorable to the traditional one for both
criteria and all k, except one extreme case with large k. For the localized,
non-stationary predictors the shrinkage-versions are uniformly favorable to
the traditional one.

One typical feature is observed for localized/stationary predictors for crite-
rion APMSC, characterizing precision in prediction, for varying localizations
k. The traditional predictor makes bias/variance trade-offs, with poor perfor-
mances for large k due to bias and for small k due to instability in parameter
estimates. Localization k=±4 appears as favorable. The shrinkage predictor
stabilizes the variance estimates by shrinkage and tolerates smaller localiza-
tions with k=±2. We consider the Loc/Stat/Shr k=±4 CVC predictor to be
the favorable one, since the APMSC criterion is seen as more important than
the AVMSC one.

The evaluation criterion discussed above require the correct predictors to be
avaliable, which is not the case in real studies. We have also computed the
crossvalidation criteria discussed in Section 5 which always are available. We
average over 1000 realizations to obtain APMSE and AVMSE, and the values
are listed in Table 2. For these criteria the shrinkage-versions are uniformly
favorable to the traditional ones for all cases. We consider the Loc/Stat/Shr
k=±2 CVC predictor to be best based on these criteria, of course.

To summarize, the crossvalidation based criteria are representative for the
exact criteria based on the correct predictions. Note that the former can be
computed in real studies with only one set of observations avaliable. The
Loc/Stat/Shr CVC predictors are favorable to other predictors, although the
localization k tends to be somewhat underestimated by crossvalidation.

In the current study we have only used one expectation and variance function.
In the extended study, see Asfaw and Omre (2014), we have considered many
other cases. The results are consistent with the ones presented here, and it
is demonstrated that the traditional predictors are particularly sensitive to
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deviations from stationarity in expectation which also influences the variance
estimates of course. Lastly, recognize that the synthetic simulation case is
Gaussian, no outliers and no heavy-tailed distributions are involved. In spite
of this, we find that the shrinkage predictors are favorable to the traditional
ones. In presence of outliers and heavy-tailed models, we expect the shrinkage
predictors to perform even more favorably.

6 Conclusion

We specify two versions of localized, shrinkage CVC predictors, one based
on local stationarity and one with local non-stationarity. The shrinkage is de-
fined in an empirical Bayes setting while the crossvalidation calibration (CVC)
ensures correct global scaling of the predictor variance. The introduction of
spatial shrinkage predictors constitutes the new feature of the study, and they
are termed localized/shrinkage kriging predictors.

The localized/shrinkage kriging predictors are compared to the traditional
kriging predictors, both global and localized, in a study on real precipita-
tion data and in a synthetic simulation study. We use two crossvalidation
based criteria in the comparison. The localized/shrinkage kriging predictors
are found to be clearly favorable to traditional kriging predictors on the real
data set of yearly accumulated precipitation. The synthetic study is based
on a Gaussian random field with spatially varying expectation and variance
which make local predictors suitable. The localized/shrinkage kriging predic-
tors appear as clearly favorable to traditional localized kriging predictors. The
shrinkage predictors based on local stationarity seems to be the superior ones.

Our recommendation is to use localized, shrinkage kriging predictors, based
on a local stationarity model, for spatial prediction whenever deviation from
stationarity in the observations is suspected. Even for a stationary Gaussian
model localized, shrinkage kriging predictors can be preferable to global ordi-
nary kriging, if focus is on computational demands.
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Appendix A

Hierarchical, Gaussian model

Consider a stationary hierarchical, Gaussian random field {r(x); x ∈ D ⊂ �m}
and a set of observations ro = [r(x1), ..., r(xn)], x1, ..., xn ∈ D.

The pdf are:

[ro | m, s2] ∼ f [ro | m, s2] = Gaussn[min, s
2Ωoo]

= [2π]
−n
2

∣∣∣s2Ωoo

∣∣∣− 1
2 exp

{−1

2
[ro −min]

T
[
s2Ωoo

]−1
[ro −min]

}

[m | s2] ∼ f [m | s2] = Gauss1[μm, τms
2]

= [2π]
−1
2 [τms

2]−
1
2 exp

{−1

2

[
τms

2
]−1

[m− μm]
2
}

[s2] ∼ f [s2] = InvGam1[ξs, γs]

= [Γ(ξs)]
−1γξs

s [s2]−[ξs+1]exp
{
−γs[s

2]−1
}

Note that:
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E[s2] = [ξ − 1]−1γs ; ξs > 1, γs > 0

V ar[s2] = [(ξ − 1)2(ξ − 2)]
−1

γ2
s ; ξs > 2, γs > 0

From the pdfs above

[m | s2, ro] ∼ f [m | s2, ro] = f [ro | m, s2]f [m | s2]∫
f [ro | m, s2]f [m | s2]dm

= Gauss1(μm|o, σ2
m|o)

μm|o = μm + τmi
T
n

[
τmini

T
n + Ωoo

]−1
[ro − μmin]

σ2
m|o = τms

2 − τms
2iTn
[
τms

2ini
T
n + s2Ωoo

]−1
[τms

2in]

[s2 | ro] ∼ f [s2 | ro] =
∫
f [ro | m, s2]f [m | s2]f [s2]dm∫ ∫
f [ro | m, s2]f [m | s2]f [s2]dmds2

= InvGam1(ξs|o, γs|o)

ξs|o = ξs +
n
2

γs|o = γs +
1
2

[
[ro − μmin]

T
[
τmini

T
n + Ωoo

]−1
[ro − μmin]

]
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Fig. 1. The 1997 accumulated precipitation observations in the US with sub-area to
be studied (top). The 1001 observations used in the study (bottom).
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Fig. 2. Spatial correlation function used with estimated correlation values.
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Fig. 3. Glob/Stat/Trad CVC Predictor-ordinary kriging.
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Fig. 4. Glob/Stat/Trad crossvalidation errors.
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Fig. 5. Loc/Stat/Trad k=10 CVC Predictor.
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Fig. 6. Loc/Stat/Trad k=10 crossvalidation errors.
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Fig. 7. Loc/Stat/Shr k=10 CVC Predictor.
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Fig. 8. Loc/Stat/Shr k=10 crossvalidation errors.
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Fig. 9. US Precipitation study. Priors model for expectation and variance.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 10 k = 10 k = 10 k = 10

MNE 1.0148e-17 -5.3792e-18 5.9892e-17 1.5084e-16 -1.1579e-16

MSNE 1.5399 2.9740 3.3928 9.2487 5.1702

PMSE 6.8758e + 03 6.8745e + 03 6.8654e + 03 2.2181e + 04 9.3555e + 03

VMSE 9.8749 5.9746 5.2027 4.0787 4.3475

Table 1
US Precipitation study. Evaluation criteria: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and Vari-
ance mean squared error (VMSE).
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Fig. 10. General Gaussian random field. Expectation and variance field (a), Predic-
tions and prediction variances for one realization (b-e).
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.3665 0.3357 1.0100 0.3968 0.2838 0.2563 0.4815 0.6669 2.1658 0.4259 0.4305 0.6264

AVMSC 0.5287 1.0939 159.3760 0.3927 0.5944 1.2491 0.5108 1.0369 138.6639 0.3860 0.5723 1.2327

APMSE 18.2536 17.8311 19.8851 16.9502 15.6486 13.8070 18.6699 18.4643 23.7843 17.0732 15.8705 14.1365

AVMSE 1.8936 2.0277 2.9888 1.7271 1.7306 1.4011 1.8908 2.0086 2.4491 1.7277 1.7187 1.3483

Table 2
General Gaussian random field. Evaluation criteria: Average prediction mean
squared correct (APMSC), Average variance mean squared correct (AVMSC), Av-
erage prediction mean squared error (APMSE) and Average variance mean squared
error (AVMSE).
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