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Sammendrag

I denne masteroppgaven implementeres og testes to algoritmer for å �nne gruppe-
struktur i nettverk, nemlig Louvain-metoden ogDi�usion and Propagation-metoden.
Et nettverks gruppestruktur består av en naturlig inndeling av nettverkets noder i
ikke-overlappende sett, der hvert sett består av noder som er tettere koblet til hver-
andre, enn til resten av nettverket. De ovennevnte algoritmene er to alternativer
blant mange gode iterative teknikker som har sett dagens lys i løpet av de siste 15
årene [31, 32, 5].

Vi presenterer tre endringer til metodene nevnt over. Først introduserer vi en
tredje fase i Louvain-metoden, og endrer dens aggregerende natur ved å la metoden
bryte opp grupper i tillegg til å slå dem sammen. Videre undersøker vi hva som
skjer med den beregnede gruppestrukturen når matrisen som representerer det un-
derliggende nettverket gjennomgår en av �ere matrisetransformasjoner. Spesi�kt er
vi interesserte i se på transformasjoner der kantmatrisen til nettverket opphøyes i
andre og tredje potens, samt matriseeksponentialet. Til slutt tester vi og sammen-
ligner resultatene til metodene på genererte nettverk av ulike slag [21, 20, 22], samt
to store sosiale nettverk med millioner av noder fra den virkelige verden.





Abstract

The purpose of this master's thesis is �rst and foremost to implement and benchmark
two well-known methods for community detection, namely the Louvain method [5]
and the Di�usion and Propagation Algorithm [37]. With a community partitioning
we wish to uncover the network's intrinsic subdivision into groups of vertices that
are more densely connected with each other, than to the rest of the network. The
two above mentioned algorithms are two of many good iterative methods that have
been researched over the past 15 years [31, 32, 5].

In this thesis we present three novel alterations to the basic methods. First,
we introduce a third phase to the Louvain method, which lets it divide up com-
munities in which vertices are stuck in �local optimas�, modifying its aggregating
nature slightly. Second, we also present, implement and analyze a naive method
of constructing communities around high-degree vertices. Third, we compare the
community structure outputted by these methods when the adjacency matrix have
been transformed by a di�erent matrix functions, speci�cally, the matrix exponen-
tial and matrix powers. We dodge the added computational cost incurred by the
denseness of the outputted matrices, by introducing what we call edge restriction.
Finally, we benchmark the methods on both weighted and unweighted state-of-the-
art computer generated benchmark graphs [21, 20, 22] and on two large real-world
social networks.
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1 Introduction

Networks are structures of great importance. As modern human beings, we are
surrounded by them every minute of every day. The people we talk to, the bus
routes in our city, the Internet and our cell phones are all examples of things that
constitute networks. Formally, a network is a set of items together with a set of
ties between said items. The ties represent a connection, or interaction, between a
pair of items in the network. There is a formidable number of structures that can
be considered, or modeled as, a network, and analyzing such structures have never
been more popular.

In this thesis we consider a mesoscopic analysis method of networks, known as
community detection. Along with other methods, community detection compose the
increasingly popular �eld of network analysis. The recent leap in available network
data provided by the gains in bandwidth, computational power and storage capacity,
has made this �eld more relevant than ever. We understand by mesoscopic analysis,
the analysis of �intermediate� levels of the network. In this age of �big data�, where
the size of the available networks increase to millions or even billions of actors,
analyzing them on a micro level becomes a daunting task, and in fact macro level
analysis may be of little value as properties often vary throughout the network.
With this increase in network size, assessing the intrinsic, intermediate structures
of the network grows more and more important.

Community detection aims to reveal groups of items in our network, that are
more closely knit towards each other, than towards the rest of the network. Al-
though communities may arise in all types of networks, our intuitive understanding
of them is particularly clear in a social network. In a social network, the connected
items are social actors, such as persons or organizations, and the ties refer to social
interaction or communication between pairs of actors. A group of friends together
with their phone records, or internet chat logs, can most certainly be considered a
social network. At the same time, it is clear that the group must also be part of a
much larger network, and within this larger network they likely constitute exactly
what we are looking to �nd, that is a community. Communities may also be de�ned
in a hierarchical matter. The network of all high-school students in some city, for
example, may be broken down into communities comprised of students that all go to
the same school. These communities may again be re�ned into groups of friends, or
even students that share the same classes. Many methods for �nding communities,
in fact outputs such a hierarchic structure, and it is often so that each level in the
hierarchy has a di�erent interpretation.

For social networking companies such as Twitter or Facebook, the community
structure in combination with meta-data may provide valuable insight into how the
network is organized. For telecommunication companies, knowing how the customer
base clusters together may open up several possibilities. It may provide more e�-
cient ways for communicating with the di�erent customer segments, a way of giving
o�ers to customers that behave and respond in the same manner, or assessing the
overall stability of a customer base. The old-school way of commercial clustering
based purely on a customer's attributes such as age, gender and address, is clearly
challenged when faced with modern community detection that produces information
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on how customers actually link together.
In this master's thesis we investigate the state of the art of community detec-

tion, implementing both the Louvain method and the Di�usion and Propagation
Algorithm. Each one representing the �nest of the modularity- and label propaga-
tion based approaches, respectively. We continue by presenting ideas for extending
the Louvain method, and introduce the stand-alone algorithm Degree-rank. Mod-
ern benchmark graphs [22] for testing and benchmarking community detection al-
gorithms are generated, and the algorithms' performances are compared on these
networks. We investigate the impact of transforming the adjacency matrix repre-
senting the graph in various ways. Finally, we run our algorithms on two real-world
datasets provided by Telenor Research, representing all the phone calls and SMSs
for millions of Telenor customers during three months.

Small parts of this thesis have earlier been presented in a project entitled �Com-
munity Detection in Large Social Networks� [33], where the focus was entirely on
the Louvain method. Speci�cally, the implementation of the Louvain method and
parts of Sections 2 and 5, was part of the project report. Building on the project re-
port, much of the notation has been revised, and the implementation of the Louvain
method is part of a larger community-detection framework.

This thesis is structured as follows. Section 2 introduces the necessary graph
theory, as well as presenting measures borrowed from information theory for com-
paring community structures. Section 3 introduces, on a theoretical level, the above
mentioned community detection algorithms, among them the novel approaches Com-
munity Dissolve and Degree-rank. Section 4 proceeds to discuss the implementation
of these algorithms, while Section 5 discusses how to generate benchmark graphs and
explains necessary pre-processing steps for the real-world data sets. In this section,
the matrix transformations aimed to bene�t community detection are also presented.
The results of the analysis are presented in Section 6, while some concluding remarks
are given in Section 7.

2 Theory

2.1 Social Networks

Conceptually, we understand by the term social network, a structure that maps the
interaction between individuals. A social network is a network where the items are
social actors, and the ties of the network represent interaction or communication.
Examples of social actors include persons, animals, organizations and so on.

The reader is probably aware of several examples of such structures, among them
the social networking sites billions of people use daily. It is not so, however, that
social networks are an artifact of the internet. In fact there are countless examples
of social networks in society, and the recent boom in online social networking sites
are merely a natural result of recent gains in computational power and network
bandwidth.

Consider, as an example, the �ow of letters between households in a city. It is
clear that a letter between address A and address B indicates an interaction between
the di�erent households, and hence all the addresses together with the letters form
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Figure 1: Simple, undirected graph consisting of four vertices and four edges.
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a network. If we rather consider the people that sent and received the letters as the
interacting items, the resulting structure may be considered a social network.

A class of social network important for this thesis, and which has been studied
in great detail [5, 35, 30, 6], is cell phone networks. Here, the actors are phone
subscribers, and the ties represent e.g. phone calls or SMSs between two individuals.

2.2 Graphs

In mathematics, a network is often called a graph. A graph, as we know, is a set
of objects V together with a set of ties between them, E. We call the connected
objects vertices, and the set consisting of them, V , the vertex set. The ties are
commonly referred to as edges, and indicate the connectivity or interaction between
two vertices. Formally, an edge is a two element subset of V , and the edge between
vertices i and j may be written (i, j). The set holding all edges, E, is called the edge
set. An edge may be undirected or directed, indicating a symmetric or asymmetric
relationship between two vertices. A graph that has undirected edges and no edges
from a vertex to the vertex itself, is called simple. An example of a simple graph is
shown in Figure 1.

A weighted graph G is an ordered triple of V , E and ω, G = (V,E, ω), where E
consists of two-element subsets of V , and ω is a function from E → R+ specifying
the weight of an edge as a real, positive number. An unweighted graphs, is a graph
where the function ω is simply the identity, setting the weight of all edges to 1. In
this case ω is often omitted in the triple, and we express G as the ordered tuple
G = (V,E), instead.

It is clear that an edge represents a relation between vertices, and we usually call
this relation the adjacency relation, interpreting vertices u and v to be adjacent if
and only if (u, v) ∈ E. This leads us to consider the adjacency matrix, A, where we
assign integer labels to the vertices such that the ij'th entry marks the weight of the
edge between vertex i and j. Usually we denote by n the number of vertices in the
graph, and it follows that n is also the number of rows and columns of A. If there
is no edge between i and j, the ij'th entry is zero, and if the graph is unweighted,
each nonzero entry equals 1. The adjacency matrix of the unweighted, undirected
graph in Figure 1 is simply
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Figure 2: Disconnected graph with two connected components.
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A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 .
Note that for an undirected graph the adjacency matrix is symmetric, and that for
a simple graph the diagonal elements are always zero. This is because in a simple
graph, edges from vertex u to vertex u, i.e. self-loops or simply loops, are not allowed.
The diagonal entries of the matrix encodes exactly these loops. Throughout the rest
of this thesis, we will not specify ω even if the graph is weighted, as this information
is naturally encoded in the adjacency matrix.

The out-degree of a vertex i, is de�ned to be the sum of the weights of all the
edges leaving i. Similarly, the in-degree is the sum of the weights of edges ending
at i. If the graph is undirected, the in-degree coincides with the out-degree, and is
simply denoted degree. The degree of vertex i will throughout this thesis be denoted
as ki. Given the adjacency matrix of the graph, the out-degree of vertex i is trivially
computed as the sum of row i, and correspondingly the in-degree is the sum of
column i. Onwards we denote by m half of the sum of all entries in the adjacency
matrix, m = 1

2

∑
ij Aij, which for an unweighted graph translates into the number

of edges, while for a weighted graph is the sum of the weights, each edge counted
exactly once1.

A walk from vertex u to vertex v of length k is a sequence of vertices (uo, . . . , uk),
such that uo = u and uk = v, and such that each vertex in the sequence is adjacent
to both the previous and the next vertex; (ui, ui−1) ∈ E. If all vertices (and all
edges) in the walk are distinct, we say that the walk is a (simple) path.

A graph may or may not be connected. If the graph is connected, there exists a
path from any vertex i, to all other vertices j in the graph. If this is not true, we say
that the graph is disconnected. A connected graph has one connected component, the
graph itself. A connected component is de�ned as a subset of the vertices VC ⊆ V ,
for which any two vertices are reachable with a path, and such that no vertex in
VC is connected to any vertex in V \ VC . As such, a disconnected graph may have
several connected components, each of them de�ned as above. Figure 2 shows a
disconnected graph with two connected components.

1In fact, we are really count each edge twice, but then we divide by 2 to account for it.
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2.3 Community Detection

Any network may be analyzed on micro-, meso- and macroscopic levels, all of which
provides di�erent, but more or less meaningful information about the network. At
the microscopic level one might investigate the properties of the edges between any
two actors; the strength of, reciprocity of and the number of such ties in the net-
work. At the macro level, one might be interested in the degree distribution or
the diameter2 of the network. However, when the networks in question grow large,
the information at a meso level becomes increasingly important. At the mesoscopic
level, we consider how the network is structured; for example how vertices group to-
gether into dense clusters known as communities. The exercise which is �nding these
communities is known as community detection, and it is an increasingly popular way
of analyzing networks at the mesoscopic level.

Abstractly, community detection is the task of dividing the vertex set of a net-
work into subsets such that the connections within these subsets are denser than
the connections between them. These subsets are called communities, or clusters,
and each community is a subset of vertices that are more tightly knit together with
each other, than to the rest of the graph. We de�ne a non-overlapping community

structure, or clustering3, as set of communities such that all vertices are included
in exactly one community. In other words, a community structure, C, on the graph
G = (V,E) is de�ned as

C = {c1, c2, . . . cnC
} s.t. ci ∩ cj = ∅ and ∪nC

i=1 ci = V, (1)

where ci is a non-empty subset of V and nC denotes the number of communities in
C. Throughout this thesis we'll assume that a community detection algorithm is a
procedure that accepts as input a graph G or its adjacency matrix A, and outputs a
community structure C. Some methods for community detection outputs a hierar-
chical community structure. We de�ne here a hierarchical community structure to
be a sequence of community structures (C1, C2, . . .) such that Ci+1 can be obtained
by merging communities in Ci. The condition is equivalent with Ci having to be a
re�nement of Ci+1, that is, that Ci is obtained by splitting some of the communities
of Ci+1 [29]. As a result, nCi+1

< nCi
.

Depending on the initial graph, communities might indicate anything from groups
of friends within a social networking site, to a family in the call data of a cell phone
provider or even books on amazon treating the same topic [9]. In some cases the
structure found may be evidence of groups of which we had no prior knowledge,
providing new information about the structure of the network.

2.4 Modularity

The modularity, Q, of a network divided into communities, is the sum of the fraction
of edges within communities minus the expected fraction of such edges if the edges

2The length of the longest shortest path between any two vertices.
3We will use the terms community structure and clustering interchangeably throughout this

thesis, interpreting a clustering as a vertex clustering
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were distributed at random. Modularity successfully encodes the underlying intu-
itive feature of a community; that vertices within one are more densely connected to
each other, than to the rest of the network. The modularity of a graph G = (V,E)
is expressed as

Q =
∑
ij

[
Aij

2m
− eij

]
δcicj , (2)

where Aij denotes the ij'th entry of the adjacency matrix A of the graph, m =
1
2

∑
ij Aij the total weight in the graph (or number of edges if the graph is un-

weighted), δcicj is 1 if the community of i, ci, is equal to the community of j, cj, and
zero otherwise. The expected fraction of edges falling between two vertices i and j
is eij, and is given by a chosen null model.

2.4.1 Null models

A null model of a graph G is a another graph, G′, that matches G in some structural
feature, but otherwise is an instance of a random graph. In principle, we may choose
any null model when calculating the modularity, but certain models have properties
that make them better choices than others. Among these desired properties, are the
similarity between G′ and G, and the ease-of-computation of eij.

The simplest choice is the standard Bernoulli random graph. In the Bernoulli
random graph, edges appear uniformly with probability p between all vertex-pairs,
and this satis�es our demand for ease-of-computation. However, the model is not a
good representation of a real-world network [32]. This becomes especially apparent
when we compare this random graph's binomial (Poisson for large graphs) degree
distribution with real-world degree distributions, which for network data often is
observed to follow Power Laws [2] or even Lognormals [35].

The con�guration model is another choice. It produces a random graph very
similar in structure to the original graph, by realizing the identical degree sequence
(k1, k2, . . . , kn) of the graph G, but placing the edges at random. The drawback
of this model is that the probability of having an edge between vertex i and j is
especially hard to calculate due to the dependency of the edges [7].

To address this issue Chung and Lu proposed a variation of the con�guration
model in which instead the random graph G′'s expected degree sequences, rather
than its actual degree sequence, matches the given degrees of G [8, 7].

2.4.2 The Chung-Lu Variation

While the con�guration model generates a random graph that realizes a provided
degree sequence, the Chung-Lu variant generates a random graph with a given
expected degree sequence. Given an observed graph G = (V,E) with n vertices, the
Chung-Lu null model will construct a graph with expected degree sequence identical
to the degrees, (k1, k2, . . . , kn), of the original graph, and where the edges are placed
at random.

Assume that the probability that there exists an edge between vertex i and j in
the random graph is Pij. The expected degree of vertex i is then given as the sum of
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these probabilities for all j. As the model assumes the expected degree to be equal
to ki, we have that ∑

j

Pij = ki. (3)

To calculate the probability that a vertex i is connected to a vertex j given the
expected degree sequence, we cut all edges at the middle and consider them as
stems. First, we note that when edges are placed totally at random, the probability
of choosing a stem of i is only dependent on the expected degree ki, and that the
probabilities of two stems connecting to each other are two independent probabilities
multiplied together [31]. Hence we may think of Pij as the product of some density
function evaluated at ki and kj. Equation (3) can now be written as∑

j

Pij = f(ki)
∑
j

f(kj), (4)

such that f(x) = Cx for some constant C. The implicit constraint that the sum of
the degrees must equal the number of edges in the graph, m, or equivalently that∑

ij Pij = 2m yields

2m =
∑
ij

Pij =
∑
ij

C2kikj = (2mC)2. (5)

This gives C = 1√
2m

and hence the expected fraction of edges between vertex i and

j is eij =
Pij

2m
=

kikj
(2m)2

. The modularity may be written as

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δcicj . (6)

We must also assume that k2i < 2m such that Pij is always less than 1, so that it
encodes a valid probability. In practice, this condition may not be met by networks
consisting of only a few vertices and edges with high weights, but for larger networks
this impose no problem. Technically, we say that the Chung-Lu variation is a random
graph conditioned on the expected degree sequence, whereas the con�guration model
is conditioned on the actual sequence. In the limit of large networks, the probability
of the edges of the con�guration model approaches that of the Chung Lu variant
[31].

As a side note, observe that (6) may also be written as a sum over all the di�erent
communities in our community structure C:

Q =
1

2m

∑
c∈C

∑
ij∈c

[
Aij −

kikj
2m

]
. (7)

In fact, we may also write this as

Q =
∑
c∈C

Qc, (8)
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letting Qc be the modularity of community c given by

Qc =
1

2m

∑
i,j∈c

[
Aij −

kikj
2m

]
. (9)

2.5 Comparing Community Structures

It's clear that modularity encodes in some way how signi�cant a community struc-
ture is. Modularity takes the value 0 when all vertices are placed in a single com-
munity, and often negative values when all vertices are in their own community.
Higher values of modularity indicates a good community structure, and the value
may approach 1 if the network admits a close to perfect community structure. All
networks may have a theoretical maximum value of modularity, which in fact may
be far from 1, but this maximum value of modularity is an intrinsic property of the
network, not the algorithm that outputted the community structure. This means,
among other things, that we, if we don't brute force the solution, can never be sure
what this maximum value of the network really is.

All community structures C have an associated modularity QC . Given a known
ground truth community structure C∗, can we assess the quality of some outputted
community structure C ′ by means of its modularity QC′? The answer is not clear.
Sure, we may compare two values of modularity, but saying that some algorithm
outputted a structure that had 0.099 less modularity than the ground truth struc-
ture, really has no clear interpretation. It's also perfectly possible for two di�erent
community structures to obtain the same modularity. After all, modularity is not a
measure of the similarity of clusterings.

When benchmarking community detection algorithms on networks with a pri-
orly known community structure, what we want is some measure of �how far� the
outputted structure was from the known, ground truth structure. In other words,
we wish to measure the distance between to clusterings. As it turns out, this is not
an uncommon problem in information theory, and we shift our focus there for the
rest of this section, however always trying to ground the theory in our application
to community detection.

2.5.1 Empirical Probability Distributions

Consider the graph G = (V,E) and two community structures C and C ′ of length
nC and nC′ , respectively. Let X be a random variable that draws a label at random
from the above de�ned clustering C. The (empirical) probability of X taking label
x is the relative frequency of x in C

p(X = x) = p(x) =
nx

n
, (10)

where nx denotes the number of vertices labeled x in the community structure C
and n =| V |. The same holds for a random variable Y drawing labels from C ′. The
nC′ × nC confusion matrix N de�ned by
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N =

 N1,1 · · · N1,nC

... . . . ...
NnC′ ,1

· · · NnC′ ,nC

 (11)

where element Nij indicates the number of vertices that lies in community i in C ′

and j in C, is known as the contingency table of X and Y . By dividing every
element in N by n, the total number of vertices in the graph, we have the joint
distribution of the variables drawing labels from C and C ′. Hence we have just
de�ned the probability mass function

p(c, c′) =
1

n
Nc,c′ , (12)

and it tells us the probability that a vertex in our network is given label c in C and
c′ in C ′. The sums p(c) =

∑
j∈C′ p(c, j) for c ∈ C de�nes the marginal distribution

of X, the random variable that draws its label from C, as seen above. Doing the
corresponding sum over C gives the corresponding marginal distribution for Y . We
know that p(c) and p(c, c′) are valid probability distributions since 0 < Nij < n and∑

j Nij =
∑

iNij = 1 for all j and i respectively.

2.5.2 Entropy

We've now seen how we can interpret the output of a community detection algorithm
by means of probabilities and densities. Let us now de�ne an important concept
in information theory that measures the uncertainty in the outcome of a random
variable, namely the entropy. The entropy of a random variable X taking values x
in C is de�ned as

H(X) = −
∑
x∈C

p(x) log p(x). (13)

The entropy of a clustering C takes the value 0 if and only if the clustering has only
one partition. This we interpret as C having no uncertainty in what community
some vertex u belongs to. We may also consider the entropy of X conditioned on
the outcome of another random variable Y by using conditional probabilities:

H(X | Y ) =
∑
y∈C′

p(Y = y)H(X | Y = y)

= −
∑
y∈C′

p(Y = y)
∑
x∈C

p(X = x | Y = y) log p(X = x | Y = y).

From this we may write the joint entropy,

H(X, Y ) = −
∑

x∈C,y∈C′
p(x, y) log p(x, y), (14)

where p(x, y) is shorthand for p(X = x, Y = y), as
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H(X, Y ) = −
∑
x∈C
y∈C′

p(x, y) log[p(x | y)p(y)]

= −
∑
x∈C
y∈C′

p(x, y) (log p(x | y) + log p(y))

= −
∑
x∈C
y∈C′

p(x, y) log p(x | y)−
∑
x∈C
y∈C′

p(x, y) log p(y) (15)

= −
∑
y∈C′

[p(y)
∑
x∈C

p(x | y) log(p(x | y))]−
∑
y∈C′

p(y) log p(y) (16)

= H(X | Y ) +H(Y ).

From (15) to (16) we use the de�nition of marginal probability. The above is known
as the �chain rule� of entropy. Having de�ned conditional and joint entropy, we're
now ready to look at some ways to judging the distance between two community
structures.

2.5.3 Mutual Information

Mutual information is a measure of two variable's mutual dependence. Formally, we
de�ne the mutual information of random variables X and Y taking values from C
and C ′ as

I(X, Y ) =
∑
x∈C

∑
y∈C′

p(x, y) log
p(x, y)

p(x)p(y)
. (17)

If we're given a random vertex u ∈ V , and we're interested in the uncertainty in its
community in C, it is measured by the entropy of X, H(X), as X is the random
variable taking values from C. Now, if we're told what community u belongs to in
C ′, does the uncertainty in what community u belongs to in C change? It might, and
this change is measured by the mutual information ofX and Y , which is the speci�ed
change averaged over all pairs of communities in C and C ′ [29]. We may represent
di�erent measures of the information of two variables X and Y in a information

diagram, see Figure 3. The illustration makes among others the following identity
clear:

I(X, Y ) = H(X) +H(Y )−H(X, Y ). (18)

We should keep in mind that distances like the mutual information are rarely
used one by one. Given a graph G and a ground truth community structure, C, we
wish to compare the outputs of algorithms A and B, CA and CB pairwise against C
using some measure. If the algorithms are not deterministic, often the results of the
pairwise comparison are averaged over several runs. Hence the distances between
the community structures are subject to addition and subtraction [29]. Adding
distances between clusterings measured in mutual information does not have a clear
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H(X)

H(X | Y )

H(Y )

H(Y | X)I(X, Y )

H(X, Y )

Figure 3: Basic quantities in information theory

interpretation. This is because mutual information is not a metric4; it does not obey
the triangle inequality [10].

2.5.4 Variation of Information

Variation of information is another measure of the distance between two clusterings.
It's a true metric, and a simple linear expression involving entropies and the mutual
information of X and Y :

V I(X, Y ) = H(X) +H(Y )− 2I(X, Y ) = H(X, Y )− I(X, Y ). (19)

We may think of V I(X, Y ) as how much knowing the outcome of X reduces
the uncertainty of Y . In other words, if the variation of information is high, the
partitionings C and C ′ are very di�erent. If it's approaching zero, they are almost
the same. The variation of information is a true metric [29, 28] on clusterings. The
fact that the triangle inequality holds, tells us that if two community structures are
close to a third, they have to be close to each other. By looking at �gure 4 we see
the useful identity

V I(X, Y ) = H(X | Y ) +H(Y | X) (20)

For a thorough introduction to variation of information the reader is directed to
[29].

2.5.5 Normalization

Both the mutual information and the variation of information are measures whose
outcome depend on the number of possible outcomes of the involved random vari-
ables [28, 29, 26]. As such, comparing community structures of di�erent sizes does
not have a clear meaning. To be able to do such a comparison, we normalize the
measures making them output values between 0 and 1. If D is some measure of
distance, normalization is typically done by the division of some constant c

4The reader is referred to http://en.wikipedia.org/wiki/Metric_(mathematics) for a quick
introduction to metrics.
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V I(X, Y )

H(Y | X)H(X | Y )

Figure 4: Variation of information is colored green.

Dnorm =
D

c
,

such that c is always great than D, leaving Dnorm a measure within the unit interval.
We proceed to review a few proposed normalizations to both the mutual information
and the variation of information.

Sum-normalization of mutual information

Mutual information de�ned in (18) may be normalized by 2
H(X)+H(Y )

I(X, Y )sum = 2 · I(X, Y )

H(X) +H(Y )
. (21)

as proposed in [11].

Max-normalization of mutual information

We may also normalize (18) by the maximum of H(X) and H(Y )[26]

I(X, Y )max =
I(X, Y )

max(H(X), H(Y ))
. (22)

It was proposed as a as a �x to (21), as (21) may overestimate the similarity between
clusters.

Normalization of variation of information

The variation of information from (19) may be normalized as

V I(X, Y )norm =
1

2
(
H(X | Y )

H(X)
+
H(Y | X)

H(Y )
), (23)

as done in [11]. It can be interpreted as the average lack of inferring X given Y .

Joint entropy-normalization of variation of information

We may also normalizes (19) as T

V I(X, Y )joint =
V I(X, Y )

H(X, Y )
= 1− I(X, Y )

H(X, Y )
, (24)
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as in [38]. In Section 6 we'll use this normalization, when the results are marked
normalized variation of information.

3 Methods for Community Detection

3.1 Louvain Method

The Louvain method method, proposed by Blondel et. al. [5], is an e�cient al-
gorithm that �nds a heuristic structure of communities. It consists of two phases
which are repeated iteratively until the community structure has been su�ciently
revealed. When the two phases have been completed we say that the algorithm has
completed a pass and the algorithm does at leas two such passes successively.

3.1.1 First Phase

The �rst phase begins by placing all vertices in their own community. We then
loop through all vertices and consider all the neighbors of vertex i, that is, all the
vertices j such that Aij is nonzero, and calculate the gain of removing i from its
community and placing it in the community of j, cj. The vertex i is then put in
the community cj for which the increase in modularity is largest. If none of the
potential reassignments of i into other communities are associated with positive
gains in modularity, i stays in its original community and the algorithm moves on to
the next vertex. The loop is repeated until no further improvements are obtained,
i.e. when the modularity has reached a local optima. In practice, having a stopping
criterion (threshold) based on the absolute change of modularity during one full loop
can boost the speed of the algorithm, with an accompanying loss of quality in the
partitioning.

3.1.2 Second Phase

In the second phase of the algorithm, a new network is constructed with the com-
munities from the �rst phase as vertices. The weights of the edges between the
new vertices are given by the sum of the weights between all vertices in the two old
communities. The edges and vertices within a community lead to loops in the new
network, weighted by the total edge weight between the included vertices. When this
procedure is �nished, the algorithm has completed what we previously called a pass,
and it jumps to �rst phase in order do several more passes to create a hierarchy of
communities. The algorithm stops when a maximum of the modularity is obtained,
or in practice, when the last performed pass did not increase the modularity.

3.1.3 Calculating Modularity

The Louvain method is in its essence a method that moves vertices sequentially from
their present community to their best match. A vertex' best match is simply the
community that, with the addition of the vertex considered, increases the modularity
of the network the most.
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Let us consider the potential reassignment of a vertex i into the community c,
forming the community c∗ = {c, i} We may think of the modularity of C∗ as

Qc∗ = Qc + ∆Qc
i , (25)

where we consider ∆Qc
i to be amount of modularity i adds to the modularity of

community c when joining it. To �nd the modularity of c∗ we �rst introduce some
notation. We write Ac =

∑
j,k∈cAjk for twice the sum of the weights inside commu-

nity c, Aic =
∑

j∈cAij the sum of the weights from i to vertices in c and kc =
∑

j∈c kj
the sum of the degrees of vertices in c. Putting this into (7) we get

Qc∗ =

[
Ac + 2Aic + Aii

2m
−
(
kc + ki

2m

)2
]
. (26)

Expanding the quadratic term and grouping the terms leaves us with

Qc∗ =

(
Ac

2m
− k2c

(2m)2

)
+

(
2Aic

2m
− 2kcki

(2m)2

)
+

(
Aii

2m
− k2i

(2m)2

)
. (27)

Now, we introduce qxy =
(

2Axy

2m
− 2kxky

(2m)2

)
such that Q{x,y} can be expressed as

Q{x,y} = Qx + qxy +Qy, (28)

interpreting qxy as the modularity the pair of vertices x and y generates in addition
to their individual modularities Qx = Axx

2m
− ( kx

2m
)2 and Qy. Note that by de�nition

qxx to be 2Qx. With this in mind we may write

Qc∗ = Qc + qic +Qi. (29)

Here c is a set, and we interpret that

qic =
∑
v∈c

qiv. (30)

Hence, from (29) we conclude that ∆Qc
i from (25) must be de�ned by

∆Qc
i = qic +Qi. (31)

We may �nd a similar expression for the loss of modularity when a vertex i is
removed from its community d. Now we're looking for the quantity ∆Qd

i such that

Qd′ = Qd −∆Qd
i . (32)

Now realize that we may write, following the notation from before,

Qd′ =
Ad − 2Aid + Aii

2m
−
(
kd − ki

2m

)2

, (33)

noting that we're adding Aii/2m since at the time of the calculation, i is included
in d, and hence 2Aid includes 2Aii, which is indeed twice the amount we should
subtract. Equation (33) can be expanded and regrouped into

Qd′ =

(
Ad

2m
− k2d

(2m)2

)
−
(

2Aid

2m
− 2kikd

(2m)2

)
+

(
Aii

2m
− k2i

(2m)2

)
. (34)
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Again, letting qid =
(

2Aid

2m
− 2kikd

(2m)2

)
be the sum of the pairwise additional modulari-

ties between i and the vertices of d we have that

∆Qd
i = qid −Qi. (35)

Now, if we want to know how much the modularity of the network as a whole
has changed, we may simply add Qd′ −Qd and Qc′ −Qc to obtain

∆Q = (Qc′ −Qc) + (Qd′ −Qd) = qic − qid + 2Qi (36)

3.1.4 Creating the new network

Consider the matrix S ∈ {0, 1}n×nc , where nc denotes the number of communities.
Let Sij be equal to 1 if vertex i is in community j, and 0 otherwise. The new network
with the old communities as vertices can now be created as

A∗ = STAS. (37)

Thus if si is the i'th column of S, we have that

A∗ =

s
T
1
...
sTnc

A [s1, . . . , snc

]
=

s
T
1As1 · · · sT1Asnc

... . . . ...
sTnc
As1 · · · sTnc

Asnc

 , (38)

and A∗ij is the sum of the entries of A from community i into community j. Observe
also that A∗ is now a nc × nc matrix, which is the number of vertices in the next
pass.

3.2 Dissolving Communities

We here present an idea based on �dissolving� communities. Dissolving a community
means moving all vertices from the community, to their best possible alternatives.
The Louvain method has a very aggregating nature, its second phase can only merge
communities. In Section 3.2.4 we'll introduce a phase in between the �rst and second
phase of the Louvain method, that focuses on the di�usion of the vertices within a
community to neighboring communities.

3.2.1 Motivation

The idea of dissolving a community requires a shift in focus from sequentially moving
vertices into doing so simultaneously. Considering vertices simultaneously loosens
the modularity gain criteria we saw for the Louvain method in Section 3.1.3 for each
vertex, and in turn may help �stuck� vertices move from their communities. We saw
in Equation (9) that modularity is a quantity de�ned for communities, as well as
for the network as a whole. The modularity of individual communities is a local
quantity; it only depends on the involved vertices. Consider the scenario presented
in Figure 5. Two vertices u and v comprise a community c, with modularity

Qc = Qu + quv +Qv (39)
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u v

c

U V

Figure 5: Two vertices u and v constituting the community c.

Now consider the loss of modularity c experiences when we move u, ∆Qc
u. If we

consider moving u as in the Louvain method, we �nd that if we want to move u
from c to some other community U , ∆QU

u must be larger than ∆Qc
u. After all

we need the modularity of U to grow more than the modularity of c drops. This
translates into the following set of inequalities:

∆QU
u > ∆Qc

u

quU +Qu > quv +Qu

quU > quv. (40)

Of course, the above situation is totally analogous for moving v. If we instead
consider moving u and v at the same time, we see that the loss in modularity in
c cannot exceed Qc. In other words, for a positive modularity gain, we want that
∆QU

u + ∆QV
v > Qc, since the modularity of c is zero after we've moved the two

vertices. Examining closer, this means that

∆QU
u + ∆QV

v > Qc

quU +Qu + qvV +Qv > Qu + quv +Qv

quU + qvV > quv, (41)

and we see how quU and qvV now added together must be larger than the same
quantity they before had to exceed individually.

3.2.2 Local Modularity Changes

Each move in the Louvain method requires the global modularity gain to be calcu-
lated, and in Section 3.1 we saw how to calculate it after �rst �nding the local gains.
When dissolving communities we're also interested in the global modularity, but
then only as a sum over the modularity of the communities. What really matters is
the modularity of individual communities before and after moves happen. This shift
in mindset from global to local change, is interesting, but we have to take special care
as the modularity gains associated with a vertex u is dependent on all other vertices
v. Following this paragraph are two paragraphs of modularity-considerations.
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Moving two vertices

Moving two vertices u and v at the same time, we have to be careful as ∆Qc
u and

∆Qd
u may depend on v and u, respectively. Let's now see how we can reach an

expression for the modularity gains of the receiving community and the community
the vertices leave. The modularity of a community c with vertices u and v added to
it, denoted c∗, can be found analogously as for the single vertex case. The following
equation is our starting point.

Qc∗ =
Ac + 2Auc + 2Avc + 2Auv + Auu + Avv

2m
−
(
kc + ku + kv

2m

)2

. (42)

By expanding the quadratic term in k and grouping the terms to match known
quantities, we have that

Qc∗ =

(
Ac

2m
− k2c

(2m)2

)
+

(
2Auc

2m
− 2kukc

(2m)2

)
+

(
Auu

2m
− k2u

(2m)2

)
+(

2Avc

2m
− 2kvkc

(2m)2

)
+

(
Avv

2m
− k2v

(2m)2

)
+

(
2Auv

2m
− 2kukv

(2m)2

)
.

(43)

Keeping the order of terms in (43), we see that it may be written

Qc∗ = Qc + quc +Qu + qvc +Qv + quv, (44)

which in turn may be written nicely as

Qc∗ = Qc + ∆Qc
u + ∆Qc

v + quv, (45)

or equivalently as
Qc∗ = Qc + quc + qvc +Q{u,v}. (46)

Similarly, for the case of two vertices u and v leaves a community d, we have
that

Qd′ =
Ad − 2Aud − 2Avd + 2Auv + Auu + Avv

2m
−
(
kd − ku − kv

2m

)2

. (47)

The reason for the plus signs in in the �rst fraction, is that Auv and Auu are included
in Aud as u is a part of d. The same goes for the terms including v. Again, we expand
the quadratic term and get

Qd′ =

(
Ad

2m
− k2d

(2m)2

)
−
(

2Aud

2m
− 2kukd

(2m)2

)
+

(
Auu

2m
− k2u

(2m)2

)
−
(

2Avd

2m
− 2kvkd

(2m)2

)
+

(
Avv

2m
− k2v

(2m)2

)
+

(
2Auv

2m
− 2kukv

(2m)2

)
.

(48)

Simplifying, and following the same ordering as above, we �nd

Qd′ = Qd − qud +Qu − qvd +Qv + quv. (49)

Again, we may write this as

Qd′ = Qd −∆Qd
u −∆Qd

v + quv, (50)
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or simply
Qd′ = Qd − qud − qvd +Q{u,v}. (51)

We might have expected the signs of quv in (50) and Q{u,v} in (51) to be negative.
The reason they are not, is that within ∆Qd

u and ∆Qd
u lies 2quv, and hence we need

to add it once to subtract the correct value from Qd.

Moving a set of vertices

We generalize without the above rigor and have that the modularity of c with the
set s added to it is

Qc∗ = Qc +
∑
u∈s

quc +Qs. (52)

However, if we extend the previous de�nition of qxy when x or y is a set/community
to be valid for when both x and y are sets, such that

qsc =
∑
x∈s

∑
y∈c

qxy, (53)

we have that
Qc∗ = Qc + qsc +Qs. (54)

The community that loses s, d, has a new modularity, Q′d, of

Qd′ = Qd − qsd +Qs. (55)

Let's check the edge case when s = d. Now d′ will be empty, and should have zero
modularity. Now, according to the above notation, the quantity qdd is given as

qdd =
∑
x∈d

∑
y∈d

qxy

=
∑
x∈d

2Qx +
∑

x,y∈d,x6=y

qxy (56)

= 2Qd. (57)

From (56) to (57) we realize that within
∑

x,y∈d,x 6=y qxy each qxy is counted twice;
both as qxy and qyx. Hence we have that (55) simply becomes

Qd′ = Qd − 2Qd +Qd = 0, (58)

when s = d.

3.2.3 Moving Criteria

We saw above how to calculate the modularity when moving vertices. Now the
trick is to �gure out when we wish to dissolve a community. When dissolving a
community c, we lose all the modularity of c, Qc, as illustrated in and between (55)
and (58). Letting D be the set of destinations, and d ∈ D the destination to which
some subset of c is moving to. The latter subset we de�ne as cd = {x ∈ c|x → d}.
Then the gain in global modularity is given by
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∆Q =
∑
d∈D

(qcdd +Qcd)−Qc. (59)

Hence, our criteria for dissolving a community becomes∑
d∈D

(qcdd +Qcd) > Qc. (60)

3.2.4 Extending the Louvain Method

The Louvain method consists of two phases that together comprise what is called a
pass. We now introduce a dispersing phase, placed between the �rst and the second
phase of the original Louvain method. This step uses the techniques for dissolving
communities de�ned above, and considers all communities in order of increasing
modularity.

Algorithm 1 Community-Dissolve Algorithm
1: Obtain the community, c, with the lowest modularity Qc which has not yet been

considered.
2: For each vertex v in the community, determine the community, dv of which

including v would experience the highest jump in Qdv .
3: If the sum of the gains for all vertices in c is greater than the modularity of c,
Qc; dissolve the community c.

4: Repeat until all communities have been considered.

Algorithm 1 describes the introduced third phase in the Louvain method. For
later reference, we call the Louvain method with the introduced pass, Community-

dissolve. Note that step 3 in Algorithm 1 may introduce new communities comprised
by only a single vertex. These single-vertex community will however be considered
almost immediately in step 1, as such a community does not have high modularity.

3.3 Degree-Rank Algorithm

Yet another idea for extending the Louvain method, is including our knowledge
of the degree-sequence of the graph. Communities often may be based around
high-degree vertices, as high-degree vertices are though to be more central in the
network [12]. This knowledge has been taken into account in among others the label
propagation algorithm we'll see in Section 3.4, where it is sometimes used as giving
preference to high-degree vertices. We will here try to use the degree-sequence in a
di�erent way in order to establish communities around the vertices with the highest
degree. The following method is not an extension of the Louvain method, in the
same way as Community-dissolve. The Louvain method considers the neighbors of
each vertex, trying to determine which community to include said vertex in. The
Degree-rank algorithm, however, considers the neighbors of a high-degree vertex,
trying to determine if the modularity of the network will increase by including the
neighbor in the community of the vertex.
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Algorithm 2 Degree-rank
1: Sort the vertices from high degree to low degree
2: Consider the vertex, u with the highest degree, that has not yet been considered.

3: For each neighbor v of u, calculate the modularity gain from moving v into the
community of u. If this gain is positive, move the vertex. Mark v as seen.

4: If there are vertices that are not seen; go to line 2. If not, mark all vertices as
not seen and restart on line 2. The algorithm �nishes when a the above steps
did not increase the modularity more than some provided treshold.

3.4 Label Propagation

So far we've seen community detection algorithms that try to maximize the modularity-
function. It should be made clear, though, that the modularity approach is not the
only feasible approach for revealing communities. Another branch of methods char-
acterized as label propagation algorithms, has gained ground after an algorithm
with close to O(m) complexity5 was proposed in [34]. An important thing to note,
though, is that label propagation has not been generalized into taking into account
weighted graphs. We also would like to specify that throughout this thesis we will
use the terms label interchangeably with community, as they for this application
mean exactly the same.

3.4.1 General Label Propagation

The general label propagation algorithm is the basis for most label propagation
algorithms. Like the Louvain method, we start by assigning each vertex its unique
label indicating its community a�liation. We then proceed to iterate through all
vertices in a random or pseudo-random fashion, and giving the vertex the label
shared by most of its neighbors. Ties are uniformly broken at random, however with
preference often given to the present label to avoid �uctuations [37]. The procedure
is repeated until convergence. This epidemic spreading-like algorithm is remarkably
e�cient, uncovering a layer of communities fast [34]. The community structure
found by this approach is, however, often not the best, usually because one label
ends up ��ooding� or �plaguing� the majority of the vertices [37]. In recent years
several algorithms have spun o� the general label propagation algorithm, extending
it to increase its accuracy, but often also its complexity.

3.4.2 Hop Attenuation and Vertex Preferences

As noted above, the reason label propagation sometimes outputs less than optimal
community structures, is because of the the epidemic nature of the method. Of-
ten one can observe large communities holding more than half the vertices in the
network. In order to hinder a label to �ood the network, the label propagation
algorithm above may be extended by adding a score to each label, which decreases

5Here, m refers to the number of edges, not the total weight. Label propagation does not work
on weighted networks.
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as the label travels beyond its starting vertex [24]. Letting sj(cj) be the hop score

of label/community cj at vertex j, the new community of vertex i, may now be
assigned by

di = argmax
c

∑
j∈N(i)

sj(c
j)f(j)pAij, (61)

where f(j) is the vertex preference of j. Vertex preference is a function that de�nes
what vertices are given preference in (61) and which are not. For example, we may
let the vertex preference of a vertex j be kj, such that if p is positive, preference is
given to high-degree vertices and their communities.

After i has found its new community using (61), the next step is to attenuate the
score of label di. This is done by giving si(di) the value of the maximum observed
sj(c

j) in the above equation, and then subtracting a hop attenuation factor δ. The
factor δ's role here is to govern how far a label can spread, and may be supplied to the
algorithm as an additional parameter to tune the performance. The introduction
of δ e�ectively hinders the formation of huge communities, but also in the cases
when the network indeed allows such a structure, and hence high values of δ may
hinder healthy growing of communities [24, 37]. The introduction of δ also leaves
the algorithm �semi�-supervised, as one often must try di�erent values to �nd which
δ works the best for the network in question. In the next section we'll see how we
may avoid the �ooding nature of label propagation while dynamically setting δ.

3.4.3 Di�usion and Propagation Algorithm

Vertex preferences and hop attenuation have been carried forward into two unique
strategies for label propagation in networks, namely defensive preservation of com-
munities, and o�ensive expansion of communities. The �rst give vertex preference to
vertices in the core of each community, while the latter give preference to bordering
vertices. The two approaches may be combined into what is known as the Di�usion
and Propagation Algorithm [37].

As noted above, the value of the hop attenuation parameter δ is not easily set
without deep prior knowledge about the network, and it may be so that there is
no universal value that's good for all networks. Having to manually control this
parameter quickly becomes awkward, as we often don't have good knowledge of
what the value of this parameter should be. One solution to this is dynamically
updating the value of δ after each iteration. In [37] δ is set to be the proportion of
vertices that changed their label in the previous iteration, however never letting it
exceed 1

2
. When more than half the vertices change label in an iteration, δ is set to

zero, to avoid hindering natural community growth.

Defensive and O�ensive Propagation

Node preferences was �rst introduced in [24], and since a variety of di�erent measures
including vertex clustering coe�cient, degree- and eigenvector centrality, have been
used to model preference. Still, no static measure have been found that works for
all networks [37]. A proposed solution is to model preference by a random walker on
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the network, within each community. Letting the probability that a random walker
in community c visits vertex i be pi, we have that

pi =
∑

j∈N(i)∩ c

pj
kcj
, (62)

where kcj is the number of edges leaving vertex j for vertices in c. The defensive
propagation changes the updating rule in (61) into

di = argmax
c

∑
j∈N(i)

sj(c
j)pjAij, (63)

e�ectively giving preference to vertices in the center of each community, as these
vertices have high values of p. Replacing pi by (1 − pi) in (63), and replacing kcj
by kj in (62) yields the o�ensive version, which actively gives preference to vertices
at the edge of each community. The defensive version unveils a larger number of
community cores, which survives throughout the algorithm. The o�ensive version
allows for propagating a label further, and such outputs community structures with
a more heterogeneous selection of community sizes. In fact, laying the pressure
on the border of the communities expands only the communities that are strongly
de�ned in the network topology, hence resulting in a more natural partitioning than
defensive propagation [37].

Basic Di�usion and Propagation Algorithm

The Basic Di�usion and Propagation Algorithm is put together by combining the
defensive and the o�ensive label propagation in the following way. First, defensive
label propagation is run on the network, producing �estimates� of the community
cores. Then all border vertices are relabeled with a unique label and o�ensive
propagation is run. This combined strategy preserves the advantages of both the
mentioned propagation types. However, for larger networks the o�ensive propaga-
tion will often yield a very large community, a problem which is attempted solved
in the Di�usion and Propagation Algorithm.

Di�usion and Propagation Algorithm

The Di�usion and Propagation Algorithm is the most advanced label propagation
method we consider in this thesis. In this method we apply the defensive propagation
to the network, and proceed to construct the community network as in Section
3.1.4. Now we run the o�ensive version on the community network to extract a
major community. If the communities found on the community network are better
according to some measure, than the output of the �rst defensive iteration, we
translate the labels from the community network onto the original network. If
not, we simply keep the labels outputted by the defensive approach. If either of
the two results in just a single community, i.e. they put all vertices in the same
community, we run the Basic Di�usion and Propagation Algorithm on the network
and output the structure found. However, if this is not the case, we extract the
largest community, cmax (in terms of number of vertices in the original network)
and recursively apply the Di�usion and Propagation Algorithm on this subset of the
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vertices. After each recursive application, we get a community structure that is a
re�nement of cmax. If the re�nement is better (again, by some measure) than cmax,
we translate the labels found into our full network. For step by step instructions,
see Algorithm 3.

Algorithm 3 Di�usion and Propagation Algorithm
1: Run defensive label propagation on the network G to obtain the community

structure C.
2: Construct the community network GC , and run o�ensive label propagation on

it to obtain C ′.
3: If the community structure C ′ is better than C, translate the labels onto G

(from GC), and let C denote the better community structure (regardless of our
choice).

4: If there is only one community in C, run the Basic Di�usion and Propagation
Algorithm, and do not continue.

5: Else, extract the largest community in C, c, and let Gc be the subgraph of G
de�ned on the vertices of c.

6: Run the Di�usion and Propagation Algorithm recursively on Gc to obtain Cc,
the re�nement of c.

7: If splitting c into the communities in Cc is better than just having c, translate
Cc onto G, such that c now has been split, but the other communities in C are
intact.

4 Implementation

The methods discussed in Section 2 have been implemented in Python 2.7 [25]
for this Master's thesis, and are available on Github6 and in Appendix B. The
methods were implemented as a learning experience, and as well in order to be able
to fully control the output and running environment of the methods. Using the
original implementations of the Louvain method and the Di�usion and Propagation
algorithm to produce the results in Section 6 is unfeasible, simply because of their
limited import and output capabilities.

The choice of Python over any other language comes down to preference. Some
of the good things are its readability, the fact that it's open source, and its huge user
community contributing to free and open packages. In many ways, using Python
with NumPy [17] is also extremely similar to the experience of MATLAB [15] or
Octave [16], and has only a few syntactical di�erences [1]. We also wanted to show
with the implementation that it is indeed possible to write performance critical
software in Python, if you do it the �right� way, and not seek to imitate some other
language.

All methods are built on top of a common object-oriented framework for rep-
resenting communities, allowing for easy interaction with communities and modi�-
cation of vertex a�liations, see Section A.2. Internally, the graphs are represented

6https://github.com/mewwts/communitydetection
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by n × n adjacency matrices, stored using SciPy's Compressed Sparse Row imple-
mentation, see Appendix A.1. SciPy's implementation has fast row slice operations
and fast matrix-products, which are handy when implementing the methods found
in this thesis.

The methods are run from your terminal, and runs on Unix and non-Unix plat-
forms alike. More information about the implementation and the structure can be
found in Appendix A. The most important parts of the source code are available in
Appendix B.

4.1 Louvain Method

The original implementation of the Louvain method is written in C++ and may be
found online7. There are few di�erences in the implementations, apart from choice
of programming language, but one of them is how the modularity is calculated.

In the original C++ version the modularity gain associated with moving a ver-
tex from its community to its alternative is only correct up to a constant, in what
seems to be a scheme to avoid division by m for the sake of code clarity. While the
community associated with the highest gain is still the same, the modularity gain
can't be used further in any calculations. The implementation resorts to calculating
the global modularity of Equation (7) after each repetition of the �rst phase. In
the Python implementation the gain for each move is added to the initial modu-
larity along the way, avoiding the heavy, global modularity calculation. In fact, a
global calculation is only needed once, before the iterations start, but then only
over the single-vertex communities, which is simply a O(n) operation. It is worth
mentioning that calculating the global modularity in the original implementation is
not as time consuming as it is in the Python implementation because of di�erent
memory utilization and because of the languages' obvious performance di�erence,
but it is nevertheless a redundant operation, which does not belong in an e�cient
implementation.

4.1.1 Calculating the Modularity Gain

The calculation of the gain of moving vertex i from its community d into the com-
munity c. The gain is calculated as in (36), and as noted in Section 3.1.3 the move
only a�ects the two communities involved, so a result the modularity gain is quite
easy to compute. It is implemented in Listing 7 in Appendix B. A simple for-loop
is used to iterate through the neighbors of the vertex we consider, calculating the
qic and qid of (36) as it goes. As we remember from (30), qic de�ned as the sum of
(28) for each vertex in c. So, when we iterate over the neighbors j of vertex i, we
add the quantity qij to qicj where cj is the community of j. This way, we calculate
qic for all neighboring communities in one for-loop, and if we're feeling particularly
e�ective, we may even keep track of the community c whose qc is the largest during
the for-loop, avoiding iterating through all the di�erent qic to �nd the maximum.

7https://sites.google.com/site/�ndcommunities/
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4.2 Community-Dissolve

More interesting is the implementation of community dissolve, as it faces several
challenges. The Community-dissolve Algorithm utilizes a subclass of the community-
object mentioned above, which at any time holds the correct modularity of each
community. The global modularity may then be found simply as a sum over these
values for each community. As the moving criterion in Community-dissolve is that
the total gain in modularity from moving all vertices from a community is larger
than the original communitys modularity, it's critical that this quantity is calcu-
lated correctly. The code that calculates this is the function mass_modularity found
in Listing 7. In reality it is just an extension of the calculation of modularity gains
for a single vertex, but for the modularity gain to be correct, we must remember
that two vertices x and y, going to the same community has a joint modularity even
if there is no edge (x, y) in the edge set, E. This means that the calculation of the
modularity gains for a community is heavier than just a single iteration over the
edges, as one must also iterate over the vertex pairs that share no edges.

4.3 Degree-Rank

The initial idea behind the Degree-rank Algorithm was to use our prior knowledge
of vertex degree as a bias of a Louvain-like iteration, in order to speed up the
convergence. What was done instead was using the sorted vertex degrees the order
of iteration in a stand-alone community detection method. In practice, the Degree-
rank algorithm is also slower than the Louvain method on larger networks. One of
the reasons is that sorting the vertices by their degree, is in the best case a O(n log n)
operation. More notably, as will become apparent in Section 6, the method provides
slightly poor results.

4.4 When to Stop Iterating

The inner loops of the algorithms de�ned above in Sections 3.1, 3.2 and 3.3 returns
when the last iteration through the vertex set did not yield any gain in modularity
higher than a provided threshold. The default value for this threshold is 0.02, but it
may be set for each run. The outer loop of these algorithms may be seen in Listing
2, and it handles constructing the community network after each of the algorithms'
�rst phase, and it returns when the last iteration yielded no gain in modularity.

4.5 Di�usion and Propagation Algorithm

Label propagation is in its essence a lightening fast framework for community de-
tection. In [37] the Di�usion and Propagation Algorithm is said to have close to
linear complexity, in fact it's measured to O(m1.19), which should scale better than
the basic label propagation algorithm. Throughout the Java implementation that
follows the paper [37], the measure used to determine whether a community struc-
ture is better than an other, for example when deciding to keep the labels of the
constructed community network or not, is modularity. This is unfortunate for a few
reasons. First, the modularity is not calculated while propagating labels, leaving the
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heavy calculation of (7) to be done several times during the course of the algorithm.
While this is done in the original C++ implementation of the Louvain method as
well, as noted in Section 4.1, such a calculation is unnecessary and very time con-
suming in Python, especially for larger networks. Second it's slightly inappropriate
for a method alternative to modularity maximization to use modularity as a measure
of �goodness�, especially when it sets the method back in terms of performance.

The Python implementation in Listing 6 follows the Java code closely, deviating
mostly by utilizing custom data structures to store communities. The reason for this
is that the Java code provided deviates signi�cantly from the pseudo-code in [37],
and hence was hard to follow. This makes the Python implementation very slow,
and it fails to converge in 24 hours on the real world datasets with a few million
vertices.

A small �x that would help speed up both implementations of the algorithm fol-
lows. When determining if the re�nement of some community c increases the global
modularity, it is unnecessary to calculate the modularity for the whole network. It
is enough to calculate the modularity of community c, Qc, and compare it against
the sum of the modularities of the re�nements. That is, we include the re�nement,
Cc, only if

∑
c′∈Cc

Qc′ > Qc. This would speed up each recursive application and
in principle make the Di�usion and Propagation Algorithm run in a comparable
amount of time to the Louvain method.

4.6 Random Numbers

The Louvain method, Community-dissolve and the Di�usion and Propagation algo-
rithm should visit the vertices in their main loop in a random order to avoid getting
stuck in local optima. In practice this means drawing numbers from {0, 1, . . . n− 1}
without replacing the numbers that are drawn. This can be done by storing the
sequence as a set, converting it to a list and using some random seed to choose
elements, then removing the item from the set. However, as this is at least an O(n)
operation, that has to be done for each step in a for loop of length n, our methods
would be of quadratic complexity O(n2). The better way would be to shu�e the
list in place before the iteration starts. This again, is an O(n) operation, but it
turns out we can avoid it and obtain su�cient randomness by doing something less
obvious. Given any number p less than n such that p and n are relatively prime,
i.e. gcd(p, n) = 1, we can generate all the numbers from 0 through n − 1 by a
simple multiplication and modulo scheme. Any number in {1, . . . n} multiplied by
p modulo n will produce another number in {0, . . . , n − 1}. So if we for each it-
eration of the above mentioned community detection methods, take the number of
the current iteration, multiply it by p and modulo it by n, we will get some number
from {0, . . . , n−1}. What we're really doing is just generating the group Z/nZ, and
strictly speaking it's not really a random order as for each p there is a de�ned order
of the returned vertices. However, p is chosen at random, and if p does not coincide
with some hidden numbering of the vertices in our graph, the vertices will be drawn
in what seems like a random way. The code can be found in Listing 12, and the
calculation of gcd is managed by an implementation of the Binary-gcd Algorithm
[36].
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4.7 Testing Infrastructure

The testing interface is a Python program that is run in your terminal. You simply
feed it a directory from which it crawls all subdirectories looking for �les. For each
directory it appends a tuple ([�le1, �le2, . . .], �legt), where the �rst element is a list
of �lepaths to run each community detection method on, and the second is the path
to the ground-truth community structure. The module uses the Python Multipro-
cessing module, applying jobs asynchronously to all processors in your computer.
The results in Section 6 are obtained by running some 12000 tests on a 24 core
computer, taking only an hour to �nish. The code may be inspected in Listing 15.

5 Datasets

5.1 Benchmark Networks for Community Detection

In Section 6 we'll thoroughly test and benchmark the methods for community de-
tection presented in Section 3 on networks with a known community structure. In
order to test in a sound way, we need a wide array of test networks, with di�erent
properties. This means that we have to generate such graphs, and below we review
two known classes of benchmark graphs.

5.1.1 Girvan-Newman Benchmark

Girvan and Newman introduced in a paper [14] a class of computer generated graphs
for benchmarking community-detection algorithms, which since has been widely
adopted and used as a measure of performance. The graphs are generated with
128 vertices divided into four communities consisting of 32 vertices each. Further,
edges are placed independently at random, with two di�erent probabilities Pin and
Pout. Vertex pairs within a community have edges placed between them with the
probability Pin, while vertices in di�erent communities are connected with proba-
bility Pout. Of course, if we are to keep our notion of a community that vertices
within communities are more tightly connected than expected, we need to impose
that Pin > Pout. It is common to choose Pin and Pout such that the average degree
of a vertex, k̄, is approximately 16.

5.1.2 LFR Benchmark

The LFR benchmark [22, 21, 20], introduced by Lancichinetti, Fortunato and Radic-
chi, seeks to provide a class of more realistic benchmark graphs which models two
important properties of real-life networks; the heterogeneity of vertex degrees and
community sizes [30, 9]. The benchmark is an extension of the Girvan-Newman
benchmark. We will use two versions of this benchmark. Both generates undirected
graphs, but one makes unweighted graphs while the other makes weighted. In both
versions the vertex degrees are distributed by a power law with exponent τ1, and
community sizes follow a power law with exponent τ2. The parameter µt is the
average topological mixing parameter, which speci�es the average ratio between the
number of edges leaving a vertex reaching vertices outside its community, and the
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number of edges leaving the vertex. The mixing parameter e�ectively determines
how signi�cant the communities are. As we'll see in Section 6, a value of µt larger
than 0.5, makes it very hard for the algorithms to �nd the communities within in
the network. An additional parameter µw is used for the weighted networks, and it
expresses the average ratio between the weight from a vertex to vertices outside of
its community, and the degree of the vertex. When testing the algorithms on the
unweighted networks, we'll keep the network size and both τ1 and τ2 �xed, while
varying the mixing parameter µt in the interval (0.2, 0.9) in order to determine how
the algorithms perform in �nding communities that are increasingly inde�nite. In
the weighted case, we'll also keep µt �xed while varying µw, as well as testing the
case where µt = µw.

5.1.3 Test Network Parameters

For the LFR-benchmark graphs, we follow for the most part the parameters used
in [21], for easier validation and comparison. For both classes of graphs, weighted
and unweighted, we generate sets of networks with 1000 and 5000 vertices. We let
the average and maximum degree equal to 20 and 50, respectively. For the largest
networks with 5000 vertices, we let the minimum community size be 20 vertices, and
the maximum 100. For the smaller networks we let the minimum community size
be 10 and the maximum 50. We generate unweighted networks for values of µt in
(0.2, 0.3, . . . 0.9), omitting the edge cases 0.0, 0.1 and 1.0 as they are uninteresting.
For values below 0.2, the community structure should be easy to reveal, and for
1.0 it should hardly be present in the network. For the weighted case we �x the
topological mixing parameter µt �rst to 0.5, and vary µw within the above interval,
then repeat for µt = 0.8. We also include the results when we �x µt = µw and let
them vary within (0.2, . . . 0.9).

5.2 Telenor Datasets

We also benchmark the algorithms on two datasets provided by Telenor Research.
Our goal is to investigate whether or not the Telenor customer base admits a sig-
ni�cant community structure. Both datasets are adjacency matrices representing
graphs with some 2.9 million vertices, where each vertex characterize a phone num-
ber. The �rst data set, which we'll call the �call-graph�, has directed edges repre-
senting phone calls from one vertex to another. The weight on the edge uv is a real
number representing the number of minutes u has called v. The other data set has
edges representing communication via SMSs between vertices. The weight on the
edge uv is a positive integer, representing the number of SMSs sent from u to v. We
call this data set the �SMS-graph�.

5.3 Pre-processing

Both datasets include self-loops, which indicates that a person has called or messaged
him- or herself. We consider this as noise, which we remove, as self-calls or messages
are often mistakes or notes to oneself. In addition, these self-edges may hinder
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the formation of communities, and as such, we remove them simply by setting the
diagonal of the adjacency matrix A, of any of the above mentioned graphs, to zero.

As mentioned, these communication networks are directed, but the methods
discussed in this paper, and most other community detection approaches, do not
work on directed networks, as this might require a generalization of the modularity
function [23]. Although neglecting the information encoded in directed networks may
seem like a big sacri�ce [21], we argue below that it's �ne to do so in communication
networks, like the Telenor datasets.

5.3.1 Symmetrization

We'll consider two di�erent ways to symmetrize a matrix A. The �rst and easiest
way is simply letting A∗ = 1

2

(
A+ AT

)
, letting the ij'th entry of A∗ be the mean

of the ij and ji elements of A. The alternative is based on the notion of reciprocal
ties, letting A∗ij = A∗ji be nonzero only if both Aij and Aji are nonzero. This is done
by letting A∗ij = A∗ji = Aij + Aji if both of these two entries of A are di�erent from
zero.

Let us now consider the two approaches. The �mean�-approach doesn't care if
j called i, as long as i called j. The reciprocal ties approach does, and as it turns
out, not caring about reciprocity can be bad. The networks provided by Telenor are
communication networks, of all Telenor customers, including call-centers and and
tele-marketers. We have no way of knowing which vertices are which, as the network
is anonymous, but we may have a hunch that the vertices with the highest number
of outgoing or ingoing edges may be one of the two. Now, if we simply symmetrize
by the �rst approach, these vertices with high out- or in-degree would have a large
degree in the symmetric A∗, as well. If we symmetrize by reciprocal ties, however,
the vertices with high in- or high out-degree in A, will have low degrees in A∗.
Leaving us with less of a negative impact on the community structure, caused by
these �directed� vertices. We may use this argument to justify the symmetrization
in the �rst place8.

5.3.2 Connectivity

We saw in Section 2.2 what it means for a graph to be connected, and usually we
assume that this property is present in the input graphs of our community detection
algorithms. Naturally, if the graph is disconnected, each connected component will
give rise to a community structure of its own, as no vertex in the component is
connected to a vertex outside it. This is �ne, and we may just as well include
them in the analysis. However, as an illustrating example, the raw �call-graph� has
more than 400,000 connected components. Most of them are of size 1 or 2, and
hence they, trivially, form communities of their own. We aren't really interested in
revealing communities that are already de�ned in the topology, as they could be
revealed by simply using a breadth-�rst search. More interesting are the groupings
of vertices that are not apparent. With this in mind, we choose to only consider the
largest connected component of the graphs. The largest connected component of a

8Not that we have a choice, since the methods really can't handle directed networks
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graph G = (V,E) is the connected subset VC holding the most vertices. The call-
and SMS graph has approximately 2, 000, 000 and 1, 900, 000 vertices, respectively.

5.4 Modifying the Adjacency Matrix

Almost any matrix can be thought to represent some underlying graph. If we run
our community detection algorithm on some matrix representing a slightly di�erent
graph, G′, than our original graph, it happens that we can learn something about
the community structure in G = (V,E). In this section we'll see what happens when
we leave our vertex set V intact, while modifying our edge set E by some matrix
transformations.

5.4.1 Matrix Powers

Let A denote the adjacency matrix of some graph G whose community structure
we're interested in revealing. A well known fact in graph theory, is that the number
of walks of length l between vertices u and v in G is equal to the uv'th entry of
the matrix Al, Al

uv. Recall the de�nition of modularity in Equation (6). The idea
of the equation is that communities have more than the expected number of edges
between its vertices. Changing the matrix used in (6), from A to Al, we discover a
concept known as �walk-modularity� [27]. If we denote the walk-modularity by Ql,
we may de�ne it as

Ql =
1

2ml

∑
ij

[
Al

ij −
klik

l
j

2ml

]
δcicj , (64)

where klj is the degree of vertex j in A
l, and not the l'th power of kj, as to follow

the null models proposed earlier in Section 2.4.2. Walk-modularity is based on the
notion that a community will have higher than expected number of walks between its
vertices. Simply feeding our algorithms Al instead of A is enough to maximize this
walk-modularity. Since the vertex set of the graphs are the same, the communities
found using the walk-modularity are valid in G.

5.4.2 Matrix Exponential

Consider the matrix function eA, and its power series expansion

eA = I + A+
A2

2!
+
A3

3!
+ . . .+

Ak

k!
+ . . . =

∞∑
i=0

Ai

i!
. (65)

If we disregard the denominator, we interpret the ij'th entry of eA to be the sum of
all walks of all lengths from i to j. Now, considering the the denominator as well,
we see that the 1

k!
is a penalty factor for any walk of length k, deeming shorter walks

more important than long walks in eA. The ii'th entry of the matrix, eAii , is called the
subgraph centrality of vertex i [12], whereas eAij is called the subgraph communicability

between vertex i and j [4]. Centrality, as a concept, measures a vertex' relative
importance in the graph. As such, a vertex with high subgraph centrality, relative
to the others, is considered to be more important than vertices with low subgraph
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centrality. If the ij'th entry of eA is high relative to other entries, this indicates
that information �ows more easily between i and j than between vertices with lower
communicability [4, 12]. When we try to reveal communities in eA, we e�ectively
try to identify groups of vertices that communicate better with each other than one
would expect.

5.4.3 Edge Restriction

All of the above described matrix functions will in general produce matrices denser
than the original matrix. For example; in the second power of A, A2, the column
indices of the nonzero entries on row i are the vertex i's neighbors neighbors. Or,
in other words, vertices reachable by following two consecutive edges away from i.
In the third power, a nonzero entry on row i indicates that a vertex is reachable
in three steps from i. The methods for community detection in this thesis all have
complexities dependent of the number of edges, which obviously lead to slow conver-
gence times if run on a dense matrix. We also note that the funtion exp(A) leaves a
fully dense matrix with m = n×n entries. In such a dense graph, grouping vertices
into meaningful communities becomes very hard, as any given vertex will have n−1
neighbors.

We here propose a way around this, edge restriction, which on a graph G means
that we switch the weight function of G, ω, with the weight function, ω′ of some
other graph G′, restricting it to the edge set of G. In our case, the weight function
we're interested in is the weight function resulting from the above mentioned matrix
transformations. Alternatively, we may think of it as keeping the weight function
of our new graph, but we consider only the edge set of the original graph. In a
matrix, this is equivalent to considering the entry A′ij of our new matrix A′ only if
the corresponding entry of A is di�erent from zero, that is Aij 6= 0.

A problem with this approach is that if the vertex u is connected to vertex v
by an edge, but the two do not share any neighbors, |N(u) ∩ N(v)| = 0, the uv'th
entry of A2 will be zero. This follows from the fact that if u and v do not share
any neighbors, there are no ways to get from u to v in exactly two steps, and hence
this entry will be zero in A2. The worst case scenario is that the edge restriction
applied to this network leaves the resulting graph disconnected. To overcome this,
we instead consider Â2 = (A + I)2, adding self-loops to every vertex in A before
squaring the matrix. Now, any vertex that is reachable from u in one step in A, is
reachable in two steps in A + I, resulting in a nonzero uv'th entry in Â2, even if u
and v share no neighbors.

6 Results

6.1 Validation

We start by running the algorithms on a few well known datasets, to validate our im-
plementations' output, and to ensure that the novel approaches Community-dissolve
and Degree-rank are viable methods. In Table 1 the best values of modularity
obtained over 10 runs on a few datasets, are presented. As expected, Community-
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Table 1: Modularity obtained on a few networks. The best value out of 10 runs is
reported. The values in parenthesis are modularity obtained with the Java version
of the Di�usion and Propagation Algorithm.

Louvain Dissolve Rank Di�. & Prop.
Karate [39] 0.4198 0.4198 0.3875 0.4156 (0.416)
Lesmis [18] 0.5600 0.5600 0.4998 0.5519 (0.553)
Political books [19] 0.5268 0.5268 0.5216 0.5238 (0.524)

dissolve is performing level with the Louvain method, but somewhat disappointingly
it does not provide better results. Degree-rank is struggling to obtain a high value
of modularity, and is not really performing anywhere near the state-of-the-art. The
Di�usion and Propagation algorithm is also slightly behind both the results of the
Louvain method, but also the values reported in [37]. The values obtained by the
original implementation (run on the same machine as the Python implementation),
are provided as well and also deviate slightly from the previously reported values.
The Python implementation of the Louvain method was validated and tested against
the original in [33].

6.2 Benchmarks and Comparison of Community Detection

Methods

In this section we'll thoroughly review the performance of the Louvain method,
the Di�usion and Propagation Algorithm, Community Dissolve and Degree-rank
on the LFR-benchmark, presented in Section 5.1.2. The methods are run on both
weighted and unweighted networks, with parameters as speci�ed in Section 5.1.3.
For the methods that output a hierarchical community structure, that is the Louvain
method, Community-dissolve and Degree-rank, the results are obtained by using the
top level of the hierarchy, if no other remarks are made.

6.2.1 Unweighted Networks

Figure 6 shows the performance of the methods on unweighted networks of sizes
n = 1000 and n = 5000. The results are given as the joint entropy-normalization
of the variation of information, as shown in Section 2.5.5. We will use this measure
throughout the section, and we refer to this metric simply as normalized variation
of information, or even NVI. As NVI measures the distance between two clusterings,
where in our case one of them is the gold standard/ground truth, lower values are
always better.

We notice how the Louvain method and the other modularity-based methods are
performing worse than the label propagation algorithm. While the Di�usion and
Propagation algorithm succeeds in revealing the full ground truth partitioning up
to µw = 0.6 for n = 5000, the Louvain method fails to �nd the ground truth even
when µw = 0.1. In Figure 6, the top level of the outputted hierarchical community
structure was picked for each test network. If we instead consider the level in the
hierarchy that minimizes the NVI, we get the results presented in Figure 7. It tells



6.2 Benchmarks and Comparison of Community Detection Methods 33

(a) n = 1000 (b) n = 5000

Figure 6: Comparison of all methods on unweighted LFR-benchmark graphs. Top
level of hierarchy chosen.

a di�erent story, where the Louvain method is even better than the Di�usion and
Propagation Algorithm, at least for n = 5000. We must, however, keep in mind that
it is the last level in the hierarchy that is the ��nal� results of the modularity based
methods, and hence it might be misleading to consider Figure 7. From both �gures,
we see that detecting communities when the fraction of inter-community edges, µt

increases beyond 0.5 is hard, and there are signi�cant and rapid ascents present in
both Figures 6a and 6b.

Nevertheless, by further inspection, we see that all methods perform better on
the higher network size when we pick the NVI-minimizing level. While this could
simply be a result of the network size, most likely it is a by-product of increasing the
community sizes. Modularity has been shown to su�er under the resolution limit

[13], which in essence means that it is biased towards detecting larger communities,
rather than smaller ones.

6.2.2 Weighted Networks

When benchmarking the algorithms on weighted networks, we �x the topological
mixing parameter µt and vary the mixing parameter for the weights µw. This means
that for a given set of networks with the same µt, the number of intra-community
edges will be the same, but the fraction of edge weights leaving a vertex to vertices
outside the community will vary with µw. In Figures 8 and 9 we have plotted the
results of benchmarking the Louvain method, Community-dissolve and Degree-rank
on weighted networks of size n = 1000 and n = 5000, respectively. In Figure 9,
that is for n = 5000, the case when µt = µw is also included. In this last case, the
Di�usion and Propagation is also tested, even though it turns the weighted graphs
into unweighted ones. This is because we may compare the results of the other
methods against it, although it's performance obviously only depends on µt.

Looking at Figure 8 we see evidence of the same trends we saw for the unweighted
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(a) n = 1000 (b) n = 5000

Figure 7: Comparison of all methods on unweighted LFR-benchmark graphs. Min-
imal NVI-resulting level chose.

networks in Section 6.2.1. In Figure 8a, Community-dissolve is very similar to its
parent, the Louvain method. When we increase the fraction of inter-community
edges from 0.5 to 0.8, however, Community-dissolve apparently makes bad choices
compared to the Louvain method, as can be seen in Figure 8b. The Louvain methods
ascent in this plot comes both later, and less steeply now than for µt = 0.5, e�ectively
providing better recovery of the ground truth partitioning. The reason behind this
is not clear, as it is quite unintuitive that the partitioning revealed by the Louvain
method is better when the intrinsic partitioning is less de�ned in the topology.

When the fraction of edges between communities is equal to the fraction of edges
within communities, as seen in Figures 8a and 9a, Degree-rank provides a better
recovery of the ground truth than both Louvain and Community-dissolve, for values
of µt above 0.5. However, we see that both Community-dissolve and Degree-rank are
especially sensitive to changes in the topology that makes communities less de�ned,
i.e. the parameter µt, as their performance is much worse when µt changes to 0.8,
see Figures 8b and 9b.

The LFR-benchmark graphs do not provide particularly heterogeneous degree
sequences. Its maximum degree is set to be 50, and its average to 20. In real
world networks, the maximum degree in a network of size n = 5000, would typically
be much larger. In a network of size n = 1000, such a degree can be justi�ed if
the network is sparse, and we see in the plots that the method performs better in
this case. As the Degree-rank method is tailored to walk down a heterogeneous
degree distribution, we can understand that it stumbles when it meets the more
homogeneous networks for n = 5000.

In Figure 9c the topological mixing parameter and the mixing parameter are set
to the same values. However, here we again see that the Di�usion and Propagation
algorithm reveals the complete gold standard partitioning all the way up to µt =
µw = 0.6. The other methods fail to perform this well, even though they have the
extra information that the label propagation approach lacks; the edge weights.
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(a) µt = 0.5 (b) µt = 0.8

Figure 8: Comparison of all methods on weighted LFR-benchmark graphs of size
n = 1000.

For high values of the mixing parameters µt and µw, recovering the planted
ground truth partitioning becomes almost impossible. The algorithms all output
community structure that are almost entirely di�erent from the planted one. In
these cases, how well are the communities really de�ned? For µt > 0.5 the fraction
of edges within communities decrease. When µt approaches 1, there are hardly any
edges within communities. Are the communities really de�ned at this point? The
same goes for µw. When we shift all the weight onto edges between communities,
how can we expect any methods to reveal the planted partitioning?

6.3 E�ects of Network Structure Alterations

In this section we examine how altering the underlying network of the community
detection algorithms a�ects the results. As we saw in Sec. 5.4 there are three
di�erent matrix transformations we wish to investigate; the second power of A,
A2, the third power A3, and the matrix exponential exp(A). First we'll investigate
when A is representing an unweighted network. The entries of A are then either
0 or 1, but the entries in A2 and A3 are integers not necessarily equal to 1. We
would like to point out that the matrices used in this section really are Â2 and Â3,
which we presented in Section 5.4.3. The entries in the matrix exponential are real
numbers. As noted above in Section 6.2, the Di�usion and Propagation Algorithm
will always replace the edge function a graph with the identity, and together with
the edge restriction, it will always be run on the same graph. We therefore omit any
results including the label propagation approach here. In addition, the results of
altering the adjacency matrix for Community-dissolve and Degree-rank are omitted.
This is because the outcomes are completely analogous for these methods as for the
state-of-the-art Louvain method.

Consider the results altering unweighted networks, as presented in Figure 10.
We see indications that the second and third power of A are useful when detecting
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(a) µt = 0.5 (b) µt = 0.8

(c) µt = µw

Figure 9: Comparison of the methods on weighted LFR-benchmark graphs of size
n = 5000.
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(a) n = 1000 (b) n = 5000

Figure 10: In�uence of matrix transformations on unweighted LFR-benchmark
graphs for the Louvain method

communities, each of them helping the Louvain method to unveil a slightly more
correct community structure. On the unweighted networks, it is clear that the
matrix exponential is not helping at all, worsening the performance signi�cantly
over all values of µt < 0.8.

For the weighted case, we only examine the networks of size n = 5000, but the
again for a broader array of values for µt than before. Figures 11a to 11e shows
the e�ect of transforming the weighted networks for values µt equal to 0.2, 0.35,
0.5, 0.65 and 0.8. The results are remarkable. Transforming the matrices by the
transformation eA, gives results that are seemingly una�ected by the distribution
of weights in the graphs. If anything, the Louvain method applied to eA performs
better when the weights are placed between communities, than within. The results
of eA are on the other hand very susceptible to changes in topology, moving from a
consistent �belt� around 0.2 when µt = 0.2, to a belt around 0.9 when µt = 0.8. As
we remember from Section 5.4.2, when detecting communities in eA, we are revealing
groups of nodes that communicates better with each other, than with the rest of
the network. This is done by summing the entries of A, A2

2!
, A3

3!
and so on. As

noted before, the ij'th entry of Ax, where x is some positive integer, is the number
of walks (the weight of all walks) of length x. In order to �nd communities in a
weighted matrix A, clearly it is important that vertices within communities have
strong connections in terms of edge weights. However, in A2, it is more important
that two vertices share many of the same connections, as the weights of all these
entries are summed. The same goes for A3. This explains why the topology is more
important than edge weights for the matrix exponential.

Another striking result from Figure 11, is the performance of A2. When commu-
nities are strongly de�ned in the topology, that is for values of µt < 0.5, detecting
communities using A2 provided partitions much more similar to the ground truth
than the partitions outputted while using A. This is even true for µt <= 0.65. We
again point out that the results here are obtained using the top level of the hierarchy,
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(a) µt = 0.20 (b) µt = 0.35

(c) µt = 0.5 (d) µt = 0.65

(e) µt = 0.80 (f) µt = µw

Figure 11: In�uence of matrix transformations on weighted, n = 5000 LFR-
benchmark graphs for the Louvain method.
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Table 2: Modularity and number of communities on the Telenor call dataset. The
run with the best modularity out of 5 is reported here.

Louvain Degree-rank Community�dissolve
Pass nC Q nC Q nC Q
1 415540 0.7427 225367 0.8116 343747 0.7685
2 75536 0.8598 25565 0.8816 31254 0.8686
3 8942 0.8903 10131 0.8836 942 0.8900
4 2014 0.8980 8179 0.8838 621 0.8906
5 705 0.8995 8140 0.8838
6 506 0.8996
7 498 0.8996

and the results of using the NVI-minimizing level is a bit better for A and A3. With
that out of the way, the information we may draw from Figure 11, is that, when
communities are clearly de�ned in the topology, but the weights are predominantly
present between communities, using A2 and eA for community detection may help
unveiling the community structure.

Figure 11f depicts the results when µt is �xed to µw. The results are akin to the
unweighted case, seen in Figure 10.

6.4 Telenor Data

We here present the modularities obtained by the di�erent methods on the Telenor
Data sets. As the Python implementation of the Di�usion and Propagation algo-
rithm did not converge in 24 hours, there are unfortunately no results from it to
present. Typically, the other methods all use under an hour for datasets with 2
million vertices, and the Louvain method below 20 minutes.

In Table 2 the results of the analysis of the call-graphs community structure is
presented. The values of modularity here are strikingly high, indicating that the
preprocessed call-network admits a signi�cant community structure. The number
of communities found in the last pass of the Louvain method is 498, a number
that perhaps may be linked to the number of municipals in Norway, namely 428. As
stated in the introduction, the community structure combined with meta-data, could
provide powerful information about the entities in the network. It's also exciting to
see that, despite the bad results obtained in Section 5.1, Community-dissolve and
Degree-rank obtains comparable modularities to the output of the Louvain method.

On the SMS-graph, the best obtained modularity is lower than in the call-graph.
Here, the Louvain method only obtains a value of 0.8422. Although lower than
for the previous graph, we may indeed claim that the SMS-graph also admits a
subdivision into signi�cant communities. What's striking about the result on the
SMS-graph, however, is the number of communities found by the Louvain method.
This number is only 110, which should be a manageable number of communities
for visualization in programs such as Gephi [3]. Visualizing community structures
are however outside the scope of this thesis, but the community structure of the
call-graph has been visualized in [33], but then with a mean-symmetrization of the
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Table 3: Modularity and number of communities on the Telenor SMS dataset. The
run with the best modularity out of 5 is reported here.

Louvain Degree-rank Community-dissolve
Pass nC Q nC Q nC Q
1 352043 0.6475 141802 0.7042 266375 0.6634
2 60415 0.7507 4357 0.8303 17645 0.7722
3 2844 0.8262 2795 0.8319 215 0.8241
4 485 0.8398 2570 0.8319 165 0.8253
5 162 0.8421 2567 0.8319 162 0.8253
6 113 0.8422
7 110 0.8422

network.
As mentioned above, the Python implementation of the Di�usion and Propa-

gation Algorithm did not converge in comparable time to the other methods. We
did however have the chance to run the Java implementation of the Di�usion and
Propagation implementation on both data sets to see if we could obtain a better
value of the modularity than the Louvain method. After all, the results in Section
5.1 indicates that the label propagation algorithm may better at revealing commu-
nity structure. The Di�usion and Propagation Algorithm, however, does not obtain
values anywhere close to the modularity-based methods. On the call-graph, it found
16247 communities with an associated value of modularity 0.683. The results on the
SMS-graph is worse. Here it found 10551 communities obtaining only a modularity
of 0.462.

7 Closing Remarks

In this thesis we have benchmarked four community detection methods on com-
puter generated bechmark graphs. The methods considered are the Louvain method
and the Di�usion and Propagation Algorithm, as well as the novel approaches
Community-dissolve and Degree-rank. We saw in Section 6 that the Di�usion and
Propagation Algorithm o�ers the best performance on unweighted graphs. When
considering the highest level in the hierarchical output of the state-of-the-art Lou-
vain method, we see that it often fails to uncover the full ground truth partitioning
in both unweighted and weighted networks alike. Both Community-dissolve and
Degree-rank have comparable results to the Louvain method for unweighted graphs.
For weighted graphs, the novel approaches are more sensitive to changes to the topol-
ogy than the Louvain method, and have worse performance when the topological
mixing parameter µt increases.

We questioned in Section 6.2.2 the existence or signi�cance of communities in
the extreme cases of µt and µw, and particularly how we could expect community
detection algorithms to uncover the partitioning when it is only weakly de�ned.
However, we saw in Section 6.3 that we are actually able to recover signi�cant parts
of the ground truth community structure when µw is large, simply by transforming
the underlying adjacency matrix, A, by A2 or eA. Of course, transforming networks
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by these functions are heavy, time consuming operations and are perhaps not viable
if speed is the number one priority. We did, however, introduce a technique for
reducing the number of edges in the transformed matrices, called edge restriction,
in Section 5.4.3. An experiment was done, trying to detect communities in eA

without restricting the edges in this way. Although the results are omitted from
this thesis, the unrestricted graphs did not aid the unveiling of the ground truth
partitioning at all, they only increased the convergence times for all methods. From
this we understand that edge restriction is a viable tool in community detection,
that should be explored further. More study should also be made one the in�uence
of matrix transformations. For example, is there a matrix transformation that can
aid community detection algorithms when µt increases?

The community structures of two large, real world social networks, provided by
Telenor Research, were analyzed towards the end. One of which, for the graph
representing the cell phone network of Telenors customers, has an accompanying
modularity of 0.8996. This value is strikingly high, and there's no doubt that the
network admits a community structure. The result obtained on the graph repre-
senting the SMS exchanges between customers is interesting mainly because the
number of communities in the top level is low, only 110. Although, the value of
modularity is also high, 0.8422, it is the low number of communities that allow for
easy visualization and clustering, that is interesting here.

The formulation of the Degree-rank method should be altered. Through careful
analysis of its output on networks with homogeneous degree distributions, it has
become clear that during its �rst iteration, it may form several small communities
that are never dissolved. Perhaps the dispersing phase of Community-dissolve could
be put to more use here? After all, the Community-dissolve method, although
well motivated, seemingly failed to help the Louvain method unveil partitionings,
especially in weighted networks, where it was very sensitive to increasing values of
µt. However, the shift in focus from sequential to simultaneous moves could be used
as a building block for other methods, or as a stepping stone for building a di�erent
dispersing phase for the Louvain method.
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A Technical Appendix

A.1 Compressed Sparse Row Format

Sparse matrix formats are used to store (no surprise) sparse matrices. A sparse
matrix is a matrix that has more zero entries than non-zero entries. A sparse
matrix format therefore saves only the non-zero entries, and the di�erent formats
di�er in what way the entries are stored. The compressed sparse row format is a
sparse matrix format implemented by three arrays. One array holds the entries of
the matrix, and is called data. The array indices points to the column indices for
the corresponding entry in data. The �nal array, indptr, is the index pointer of
the matrix, specifying what portions of the �rst two arrays corresponds to what
row. This is done such that the column indices for the values in row i are found
in indices[indptr[i]:indptr[i+1]] and the corresponding values in data[indptr[i]:

indptr[i+1]]. The : is the slice operator giving the values from and until the indices
in front and behind it.

Another example of a di�erent storage format is the dictionary-of-keys format,
which is a dictionary of dictionaries, such that the ij'th entry is found at dok_matrix
[i][j]. The dictionary-of-keys implementation has a default entry such that if the
ij-pair speci�ed is not found in the dictionary, 0 is returned.

A.2 Communities Object

A disjoint community structure could perhaps be represented in memory by a
disjoint-set forest data structure. Without going into to much detail, a disjoint-
set forest is a data structure that constructs trees out of the sets, such that the
root element of the tree is the set label (community label). To �nd the a�liation of
some vertex you must recurse up the tree to the root node. The disjoint-set forest
requires only O(n) memory for n vertices, but it's best implementation yields a
time complexity of O(log n) as it's worst-case performance when merging communi-
ties, determining community a�liation of a vertex and when constructing the sets.
However, if all vertices in a tree are connected directly to the root-node, all opera-
tions take constant time. The problem with this data structure, is that it can only
merge the sets, not dissolve them. Hence, moving a vertex out of it's community c,
where | c |> 1 would be impossible. Because of this, the communities object in the
python implementation is not implemented as a disjoint-set forest. Instead there
are a dictionary with keys the community labels, and values the corresponding set
of vertices, as well as a n long list, where the i'th entry determines the community
a�liation, ci of vertex i. This uses twice the amount of memory, O(2n), but has
constant time operations for retrieving a community and determining a vertex' af-
�liation. There's not much magic going on in the class Communities in Listing 8, but
the Communities.move-method is worth a look. More interesting is the ModCommunities

found in Listing 10 that extends Communities. It's special feature is that it holds
a dictionary of the modularities of all communities as well. It was developed for
use with the Community-dissolve method, so the modularity dictionary is really
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a heapdict 9, or a sorted dictionary if you prefer, to allow the extraction of the
community with the lowest modularity.

A.3 NumPy and SciPy

SciPy was a clear requirement of this implementation, as a sparse data structure for
storing the adjacency matrices was necessary. The �rst versions of the implementa-
tion used NumPy arrays for all lists and data structures, as NumPy is known to be
much faster and more memory e�cent for big volume numerical calculations. This is
because NumPy stores it's arrays in what is basically a C array. The obvious di�er-
ence for a Python user is that a Python list can store any object, while the NumPy
array can only store numbers of a prior speci�ed type, e.g. integers or �oats. During
the development of this thesis we have discovered that the NumPy arrays, although
super fast for dot products and matrix operations, are very slow at indexing. As
an example, consider the list that holds the degree sequence k. Our (only) use case
is looking up elements individually, and although it's stored as a lightweight �oat
object in the NumPy array, the key is that it has to be converted into a Python
�oat object, and this process is time consuming. The memory is really no issue,
a Python list with a million integer entries only uses 72 bytes more memory than
the NumPy version, so any machine with 4 GB of RAM should be able to run the
methods (perhaps not label propagation) on networks of size O(106).

A.4 Structure

In Figure 12 we've made an attempt to outline the structure of the program. The
�le main.py is run from the command line, with the path to the dataset and what
method to use as arguments. If the method is the Di�usion and Propagation Algo-
rithm, the �le labelprop.py will handle everything until it outputs communities using
export_communities.py. If it the method speci�ed is one of the three other's however,
community_detection.py has a function that handles the outer loop structure for all
methods. If the methods have converged the community structure is outputted.

B Code Listings

9https://github.com/DanielStutzbach/heapdict
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main.py

community_detection.py labelprop.py

louvain.py dissolve.py degree_ranking.py

Converged?

export_communities.py

No

Yes

Figure 12: Structure of the community detection code.
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Listing 1: main.py
1 import numpy as np

2 from export_communities import Exporter

3 from visexport import Viswriter

4 from csdexport import Csdwriter

5 import argparse

6 from scipy import sparse

7 import os

8 from community_detection import community_detect

9 from utils import Method

10 from utils import Arguments

11 from utils import Graph

12
13 def initialize(A, filepath , args):

14 """

15 Set up a Graph (named tuple) and instantiate some objects based

on

16 the arguments passed to the program , then run the algorithm

17 specified by args.method.

18
19 Args:

20 A: A symmetric SciPy CSR -matrix

21 filepath: Path to the file from which A was loaded

22 args: All the arguments provided to the program

23
24 """

25 filename , ending = os.path.splitext(filepath)

26
27 k = np.array(A.sum(axis =1), dtype=float).reshape(-1,).tolist ()

28 m = 0.5*A.sum()

29 n = A.shape [0]

30 G = Graph(A, m, n, k)

31
32 prop = True if args.prop else False

33 exporter = Exporter(filename , G.n, prop) if args.output else

None

34 cytowriter = None

35 if args.visualize:

36 cytowriter = Viswriter(filename , args.vizualize [0],

37 args.vizualize [1], A)

38
39 analyzer = Csdwriter(filename) if args.csd else None

40 tsh = args.treshold if args.treshold else 0.02

41 verbose = args.verbose if args.verbose else False

42 dump = args.dump if args.dump else False

43
44 if args.prop:

45 import labelprop

46 method = Method.prop

47 elif args.rank:

48 method = Method.rank

49 elif args.dissolve:

50 method = Method.dissolve

51 else:

52 method = Method.luv
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53
54 arguments = Arguments(exporter , cytowriter , analyzer ,

55 tsh , verbose , dump , method)

56
57 if arguments.verbose:

58 print("File loaded. {} nodes in the network and total 

weight "

59 "is {}".format(G.n, G.m))

60 if arguments.method == Method.prop:

61 labelprop.propagate(G, arguments)

62 else:

63 community_detect(G, arguments)

64
65 def get_graph(filepath):

66 """

67 Load the matrix saved at filepath.

68
69 Args:

70 filepath: path to file holding a sparse matrix

71
72 Returns:

73 A: SciPy CSR matrix

74
75 """

76 filename , ending = os.path.splitext(filepath)

77 if ending == '.mat':

78 from scipy import io

79 A = sparse.csr_matrix(io.loadmat(filepath)['mat'], dtype=

float)

80 elif ending == '.csv':

81 A = sparse.csr_matrix(np.genfromtxt(filepath , delimiter=','

),

82 dtype=float)

83 elif ending == '.gml':

84 import networkx as nx

85 A = nx.to_scipy_sparse_matrix(nx.read_gml(filepath), dtype=

float)

86 elif ending == '.dat':

87 adjlist = np.genfromtxt(filepath)

88
89 if adjlist.shape [1] == 2:

90 data = np.ones(adjlist.shape [0])

91 if np.min(adjlist) == 1:

92 adjlist -= 1 # 0 indexing

93 else:

94 data = adjlist[:, 2]

95 if np.min(adjlist[:, :-1]) == 1:

96 adjlist[:, :-1] -= 1 # 0 indexing

97 A = sparse.coo_matrix ((data ,

98 (np.array(adjlist [:,0], dtype=int),

99 np.array(adjlist [:,1], dtype=int))),

100 dtype=float).tocsr()

101
102 elif ending == '.gz' or ending == '.txt':

103 filename = os.path.splitext(filename)[0]

104 import networkx as nx
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105 A = nx.to_scipy_sparse_matrix(

106 nx.read_weighted_edgelist(filepath , delimiter =' ')

,

107 dtype=float)

108 else:

109 raise IOError("Could not parse file")

110 return A

111
112 def main():

113 """

114 Parses all arguments passed in the command line and loaded the

graph

115 located at args.path_to_file. Calls initialize if all arguments

116 are valid

117
118 """

119 parser = argparse.ArgumentParser ()

120 parser.add_argument("path_to_file",

121 help="Specify the path of the data set")

122 parser.add_argument("-t", "--treshold", type=float ,

123 help="Specify an modularity treshold used 

in the \

124                         first phase. Default is 0.002")

125 parser.add_argument("-v", "--verbose", action="store_true",

126 help="Turn verbosity on")

127 parser.add_argument("-o", "--output", action="store_true",

128 help="Output community structure to .txt 

file"

129 "in ./ results/")

130 parser.add_argument("--dump", action="store_true",

131 help="Dump communities into pickle file")

132 parser.add_argument("-c", "--csd", action="store_true",

133 help="Output component sizes")

134 parser.add_argument("-vis", "--visualize", nargs='+', type=int ,

135 help="Export communitiy structure to 

vizualize with \

136                               e.g. gephi :\

137                               arg[0] pass# that should be the 

vertices \

138                               arg[1] pass# that indicates the 

community \

139                               structure")

140 parser.add_argument("-p", "--prop", action="store_true",

141 help="Use labelpropagation algorithm")

142 parser.add_argument("-r", "--rank", action="store_true",

143 help="Use degree -rank algorithm")

144 parser.add_argument("-d", "--dissolve", action="store_true",

145 help="Use community -dissolve algorithm")

146
147 args = parser.parse_args ()

148
149 if os.path.isfile(args.path_to_file):

150 try:

151 A = get_graph(args.path_to_file)

152 except IOError:

153 print("This file extension is not recognized.")
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154 return

155 initialize(A, args.path_to_file , args)

156 else:

157 print("Please provide a valid input file")

158
159 if __name__ == '__main__ ':

160 main()

Listing 2: louvain.py
1 from utils import Method

2 from labels import Labels

3 from communities import Communities

4 from modularity_communities import ModCommunities as ModComs

5 from louvain import louvain

6 from degree_ranking import degree_rank

7 from dissolve import community_dissolve

8 import modularity

9 import numpy as np

10 from utils import Graph

11 from scipy import sparse

12 import time

13
14 def community_detect(G, args):

15 """

16 The outer loop that does all modularity based community

detection

17 algorithms. Runs the respective methods , and constructs the

18 community network.

19
20 Args:

21 G: Graph named tuple

22 args: All arguments , including the args.method specifying which

23 method to run.

24
25 """

26 i = 1

27 t = time.time()

28 old_q = modularity.diagonal_modularity(G.A.diagonal (), G.k, G.m

)

29
30 while True:

31 if args.method == Method.luv:

32 C = Communities(xrange(G.n), G.k)

33 q = louvain(G, C, old_q , args.tsh)

34 elif args.method == Method.dissolve:

35 C = ModComs(xrange(G.n), G)

36 q = community_dissolve(G, C, old_q , args.tsh)

37 elif args.method == Method.rank:

38 C = Labels(xrange(G.n), G.k, G.A.diagonal ())

39 q = degree_rank(G, C, old_q , args)

40 else:

41 raise Exception("What are you doing here.")

42
43 coms = C.dict_renamed
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44
45 if args.exporter:

46 args.exporter.write_nodelist(coms)

47
48 if not (q > old_q):

49 print("It took {} seconds".format(time.time() - t))

50 if not args.verbose:

51 print("pass: {}. # of communities: "

52 "{}. Q = {}".format(i-1, len(coms), q))

53 if args.exporter:

54 args.exporter.close ()

55 print('Community structure outputted to .txt -file')

56 if args.analyzer:

57 args.analyzer.show()

58 print 'CSD dumped to file'

59 return

60
61
62 A = community_network(G.A, coms)

63 k = np.array(A.sum(axis =1), dtype=float).reshape(-1,).

tolist ()

64 m = 0.5*A.sum()

65 n = A.shape [0]

66 G = Graph(A, m, n, k)

67
68 if args.dump:

69 C.dump(i)

70 if args.cytowriter:

71 args.cytowriter.add_pass(coms , G.A)

72 if args.analyzer:

73 args.analyzer.add_pass(coms)

74
75 if args.verbose:

76 print("pass: {}. # of coms: {}. Q = {}".format(i, len(

coms), q))

77
78 old_q = q

79 i += 1

80
81 def community_network(A, communities):

82 """

83 The second phase of the Louvain algorithms consists of making

the

84 community network in which the communities of the first phase

are

85 nodes in a new network.

86
87 Args:

88 A: Adjacency matrix of the graph

89 coms: A dictionary with keys from 0 to n-1. Values are lists of

90 nodes.

91
92 Returns:

93 B: Adjacency matrix of the community network

94
95 """
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96
97 B = community_affiliation_matrix(communities , A.shape [1])

98 return B.dot(A.dot(B.T))

99
100 def community_affiliation_matrix(coms , n):

101 """

102 Constructing the matrix of community affiliation. Entry ij

indicates

103 that vertex i is in community j.

104
105 Args:

106 coms: A dictionary with keys from 0 to n-1. Values are lists of

107 nodes.

108 n: The number of vertices in the graph. A.shape [1]

109
110 Returns:

111 A csr matrix indicating community affiliation of vertex i. Each

row

112 has one 1-entry , and is per node. The columns are communities.

113
114 """

115 # must make sure that dictionary is sorted

116 keys = sorted(coms)

117 ivec = np.array([k for k in keys for j in coms[k]])

118 jvec = np.array([v for r in keys for v in coms[r]])

119 vals = np.ones(len(jvec))

120 coo = sparse.coo_matrix ((vals , (ivec , jvec)), shape =(len(keys),

n))

121 return sparse.csr_matrix(coo)

Listing 3: louvain.py
1 import modularity as mod

2 import functions as fns

3
4 def louvain(G, C, init_q , tsh):

5 """

6 Find the communities of the graph represented by A using the

first

7 phase of the Louvain method.

8
9 Args:

10 A: Adjacency matrix in CSR format

11 m: 0.5 * A.sum()

12 n: A.shape [1] the number of vertices in the graph

13 k: degree sequence

14 args: flags and objects for data export etc.

15
16 """

17 n = G.n

18 k = G.k

19 mod_gain = mod.modularity_gain

20 move = C.move

21 new_q = init_q

22
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23 while True:

24 old_q = new_q

25
26 for i in fns.yield_random_modulo(n):

27 (c, movein , moveout) = mod_gain(G, C, i)

28 gain = movein + moveout

29 if gain > 0:

30 move(i, c, k[i])

31 new_q += gain

32
33 if new_q - old_q < tsh:

34 break

35
36 return new_q

Listing 4: dissolve.py
1 import modularity as mod

2 import functions as fns

3 # from louvain import louvain

4
5 def community_dissolve(G, C, init_q , tsh):

6 """

7 Run first the first phase of Louvain(with a bit modified

notation),

8 then run dissolve once.

9
10 """

11 luv_q = luvxdiss(G, C, init_q , tsh)

12 dis_q = dissolve(G, C, luv_q)

13
14 return dis_q

15
16 def luvxdiss(G, C, init_q , tsh):

17 """

18 Find the communities of the graph represented by A using the

Louvain

19 method.

20
21 Args:

22 A: Adjacency matrix in CSR format

23 m: 0.5 * A.sum()

24 n: A.shape [1] the number of vertices in the graph

25 k: degree sequence

26 args: flags and objects for data export etc.

27
28 """

29 n = G.n

30 k = G.k

31 mod_gain = mod.modularity_gain_new_notation

32 move = C.move

33 new_q = init_q

34
35 while True:

36 old_q = new_q
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37 no_moves = set(C.communities.keys())

38 for i in fns.yield_random_modulo(n):

39 (c, movein , moveout) = mod_gain(G, C, i)

40 gain = movein - moveout + 2*C.node_mods[i]

41 if gain > 0:

42 no_moves.discard(c)

43 move(i, c, k[i], movein , moveout , C.node_mods[i])

44 new_q += gain

45
46 if new_q - old_q < tsh:

47 break

48 return new_q

49
50 def dissolve(G, C, init_q):

51 """

52 Extracts the community with the lowest modularity and tries to

53 'dissolve ' it (move all vertices) repeatedly. When all

communities

54 have been considered it is finished.

55
56 Args:

57 G: Graph named tuple

58 C: Community structure

59 init_q: the initial modularity

60
61 Returns:

62 q: the modularity of the network after a round of dissolve

63
64 """

65 def move(i, dest):

66 """ Move vertex i to dest in our community object """

67 if dest != -1:

68 C.move(i, dest , k[i], movein[i],

69 moveout[i], quv[dest])

70 else:

71 C.move(i, dest , k[i], movein[i],

72 moveout[i], C.node_mods[i])

73 quv[dest] = 0.00 # Only add this the first time.

74
75 k = G.k

76 # q = init_q

77 num_dissolved = 0

78 while True:

79 c, (seen , q_c) = C.pop()

80
81 if seen:

82 print("We dissolved: {} communities".format(

num_dissolved))

83 return C.network_modularity

84
85 (node2c , c2node , movein ,

86 moveout , quv , best) = mod.mass_modularity(G, C, C[c], c)

87
88 if sum(movein.values ()) + sum(quv.values ()) > q_c:

89 num_dissolved += 1

90 for dest , nodes in c2node.iteritems ():
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91 for i in nodes:

92 move(i, dest)

93
94 print("We dissolved: {} communities".format(num_dissolved))

95 return C.network_modularity

Listing 5: degree_ranking.py
1 from modularity import get_gain

2 from utils import rank

3
4 def degree_rank(G, C, q, arguments):

5 """ Finds the communities of A by the degree -rank method. """

6 consider = rank(G.k)

7 not_seen = set(xrange(G.n))

8 while True:

9 new_q , moved = degree_rank_inner(G, C,

10 consider , not_seen , q,

arguments)

11 not_seen = set(xrange(G.n))

12 if new_q - q <= arguments.tsh:

13 break

14 q = new_q

15 return new_q

16
17 def degree_rank_inner(G, C, consider , not_seen , old_q , args):

18 """

19 Establish communities around the vertices specified in consider

.

20
21 Args:

22
23 G: Graph object

24 C: Community structure

25 consider: The vertices we are establish communities around

26 not_seen: Set of nodes marked as not not seen

27 old_q: The modularity of the network when this function is

called

28 args: Namedtuple of arguments

29
30 Returns:

31 q: modularity of the network

32
33 """

34 A, m, n, k = G

35 q = old_q

36 moved = set ([])

37 index = 0

38 i = consider[index]

39
40 while True:

41 not_seen.discard(i)

42 nbs = A.indices[A.indptr[i]:A.indptr[i+1]]

43 for j in nbs:

44 not_seen.discard(j)
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45 if C.nodes[i] != C.nodes[j] and j not in moved:

46 movein , moveout = get_gain(G, C, j, C.nodes[i])

47 if movein + moveout > 0:

48 moved.add(j)

49 moved.add(i)

50 C.move(j, C.nodes[i], k[j])

51 q += movein + moveout

52
53 if not_seen:

54 while True:

55 index += 1

56 try:

57 next = consider[index]

58 except IndexError:

59 return q, moved

60
61 if next not in moved:

62 i = next

63 break

64 else:

65 return q, moved

Listing 6: labelprop.py
1 from __future__ import division

2 from operator import itemgetter

3 from collections import defaultdict

4 import functions as fns

5 import modularity

6 import copy

7 import numpy as np

8 from labels import Labels

9 from utils import Graph

10 from community_detection import community_network

11 MAX_ITER = 100

12
13 def propagate(G, args):

14 """ Start the Diffusion and Propagation Algorithm """

15 G.A.data = np.repeat(1, G.A.data.shape [0]) # convert to

unweighted

16 k = np.array(G.A.sum(axis =1), dtype=float).reshape(-1,).tolist

()

17 G = Graph(G.A, len(G.A.data) / 2, G.n, k)

18 C = dpa(G, args)

19 print("Found {} communities".format(len(C.dict_renamed)))

20 print("Modularity = {}".format(modularity.modularity(G, C)))

21 if args.exporter:

22 args.exporter.write_nodelist(C.dict_renamed)

23 args.exporter.close ()

24 print('Community structure outputted to .txt -file')

25
26 def dalpa(G, C, offensive=False):

27 """

28 Defensive and offensive diffusion and label propagation

algorithm.
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29
30 Propagates labels along the graph until an equilibrium is

reached.

31
32 """

33 print("Running Dalpa. Offensive ={}".format(offensive))

34 global MAX_ITER

35 A, m, n, k = G

36 num_iter = 0

37 delta = 0.0

38 while num_iter < MAX_ITER:

39 num_moves = 0

40
41 for i in fns.yield_random_modulo(G.n):

42 indices = A.indices[A.indptr[i]:A.indptr[i+1]]

43 scores = defaultdict(float)

44 for j in indices:

45 if j != i:

46 if not offensive:

47 first_term = C.p[j]

48 else:

49 first_term = (1 - C.p[j])

50 scores[C.nodes[j]] += first_term * (1.0 - delta

* C.d[j])

51
52 old = C.nodes[i]

53
54 if scores:

55 new = max(scores.iteritems (), key=itemgetter (1))[0]

56
57 if scores[old] < scores[new]:

58 C.move(i, new , k[i])

59 dist = n * 10

60 C.p[i] = 0.0

61 C.internal[i] = 0

62 for v in A.indices[A.indptr[i]:A.indptr[i+1]]:

63 if v != i:

64 if C.nodes[v] == new:

65 if C.d[v] < dist:

66 dist = C.d[v]

67 C.internal[i] += 1

68 C.internal[v] += 1

69 if not offensive:

70 C.p[i] += C.p[v] / C.internal[v

]

71 else:

72 C.p[i] += C.p[v] / k[v]

73
74 elif C.nodes[v] == old:

75 C.internal[v] -= 1

76
77 C.d[i] = dist + 1

78 num_moves += 1

79
80 ratio = num_moves / n

81 if ratio < 0.5 and num_iter > 0:
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82 delta = ratio

83 else:

84 delta = 0.0

85
86 num_iter += 1

87 print num_moves

88 if num_moves == 0:

89 break

90
91 if num_iter >= MAX_ITER:

92 print "reached max iter"

93 print "found {} communities".format(len(C))

94
95 def dpa(G, args):

96 """

97 Diffusion and propagation algorithm.

98
99 """

100 # Run defensive dalpa

101 defensive_C = Labels(xrange(G.n), G.k, G.A.diagonal ())

102 dalpa(G, defensive_C , offensive=False)

103 defensive_Q = modularity.modularity(G, defensive_C)

104
105 # Construct the community network

106 A_C = community_network(G.A, defensive_C.dict_renamed)

107 G_C = Graph(A_C ,

108 G.m,

109 A_C.shape [1],

110 np.array(A_C.sum(axis =1), dtype=float).reshape (-1,)

.tolist ()

111 )

112
113 # Run offensive dalpa on the community network

114 offensive_C = Labels(xrange(G_C.n), G_C.k, G_C.A.diagonal ())

115 dalpa(G_C , offensive_C , offensive=True)

116 offensive_Q = modularity.modularity(G_C , offensive_C)

117
118 # if the modularity of the offensive run is higher than the

modularity

119 # of the defensive run , we wish to transfer the labels/

communities of

120 # community network onto the real network.

121
122 if offensive_Q > defensive_Q and len(offensive_C) > 1:

123 clustering = [-1] * G.n

124 # community in G_C holds communities in G

125 for high_level_c , low_level_cs in offensive_C:

126 for low_level_c in low_level_cs:

127 for node in defensive_C[low_level_c ]:

128 clustering[node] = high_level_c

129
130 # Keep in mind that the internal edges are wrong below

131 defensive_C = Labels(clustering , G.k, G.A.diagonal ())

132 defensive_Q = offensive_Q

133
134 # # If we need to fix the intra -community edges:
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135 # defensive_C.internal = [0] * G.n

136 # for c, nodes in defensive_C:

137 # for u in nodes:

138 # for v in G.A.indices[G.A.indptr[u]:G.A.indptr[u

+1]]:

139 # if v != u:

140 # if defensive_C.nodes[v] == c:

141 # defensive_C.internal[u] += 1

142
143 if len(offensive_C) == 1:

144 defensive_C = Labels(xrange(G.n), G.k, G.A.diagonal ())

145 defensive_C = bdpa(G, defensive_C)

146 return defensive_C

147 else:

148 print "RECURSING"

149 # print defensive_C.dict

150 largest = list(defensive_C[defensive_C.largest ])

151 largest.sort()

152
153 # mapping vertex in subset -graph to vertex in real graph

154 mapping = {i: j for i, j in enumerate(largest)}

155
156 A_subset = G.A[largest , :][:, largest]

157 G_subset = Graph(

158 A_subset ,

159 A_subset.sum() / 2,

160 A_subset.shape[1],

161 np.array(A_subset.sum(axis =1), dtype=float).reshape(-1,

).tolist ()

162 )

163 recursive_C = dpa(G_subset , args)

164 new_C = copy.deepcopy(defensive_C)

165
166 for c, nodes in recursive_C:

167 new_C.insert_community ([ mapping[node] for node in nodes

], G.k)

168
169 new_Q = modularity.modularity(G, new_C)

170
171 if new_Q > defensive_Q:

172 defensive_C = new_C

173
174 return new_C

175
176 def bdpa(G, C):

177 print "Running BDPA"

178 dalpa(G, C, offensive=False)

179 defensive_Q = modularity.modularity(G, C)

180 print "defensive_Q = {} ".format(defensive_Q)

181 new_C = copy.deepcopy(C)

182 for c, nodes in C:

183 median = np.median ([C.p[j] for j in nodes])

184 for i in C[c]:

185 if new_C.p[i] <= median:

186 new_C.move(i, -1, G.k[i])

187 new_C.d[i] = 0
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188 new_C.p[i] = 0

189 new_C.internal[i] = G.A[i,i]

190 # Fix internal edges

191 new_C.internal = [0] * G.n

192 for i in xrange(G.n):

193 for j in G.A.indices[G.A.indptr[i]:G.A.indptr[i+1]]:

194 if new_C.nodes[i] == new_C.nodes[j]:

195 new_C.internal[i] += 1

196 dalpa(G, new_C , True)

197 offensive_Q = modularity.modularity(G, new_C)

198 print "offensive_Q = {} ".format(offensive_Q)

199 if offensive_Q > defensive_Q:

200 return new_C

201 else:

202 return C

Listing 7: modularity.py
1 from collections import defaultdict

2 import numpy as np

3 import numexpr as nr

4
5 def diagonal_modularity(diag , k, m):

6 """

7 Calculates the modularity when all vertices are in their own

8 community.

9
10 Args:

11 diag: numpy array of length n holding the diagonal entries of

some

12 matrix

13 k: degree sequence of the above mentioned matrix. n long.

14 m: The total weight of the graph. 0.5 * A.sum()

15
16 """

17 ks = np.array(k)

18 return (1.0/(2*m))*nr.evaluate("sum(diag)") -(1/(4*m**2))*nr.

evaluate("sum(ks**2)")

19
20 def modularity(G, C):

21 """

22 Calculates the global modularity by summing over each community

.

23 Should be deprecated.

24
25 Args:

26 G: Graph named tuple

27 C: Community structure

28
29 Returns:

30 q: Modularity of the network with the provided community

structure

31
32 """

33 A, m, n, k = G
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34 q = 0.0

35 for com , c in C:

36 rowslice = A[c,:]

37 data = rowslice.data

38 indices = rowslice.indices

39 q += ((1.0/(2*m))*np.sum(data[np.in1d(indices , c)]) -

40 (C.strength[com ]/(2*m))**2)

41 return q

42
43 def single_node_modularity(G, i):

44 """

45 Calculates the modularity of an isolated node.

46 Args:

47
48 A: Adjacency matrix of the graph

49 k: Degree sequence of the graph

50 m: The total weight of the graph. 0.5 * A.sum()

51 i: the vertex considered

52
53 Returns:

54 A float representing the modularity of the isolated node.

55
56 """

57 return G.A[i,i]/(2*G.m) - (G.k[i]/(2*G.m))**2

58
59 def modularity_of_partition(A, k, m, nodes):

60 """

61 Calculates the modularity of the group consisting of the

vertices in

62 'nodes '.

63
64 Args:

65
66 A: Adjacency matrix of the graph

67 k: Degree sequence of the graph

68 m: The total weight of the graph. 0.5 * A.sum()

69 nodes: A list of vertices

70
71 Returns:

72 q: The modularity of the partition defined by 'nodes '

73
74 """

75 rowslice = A[nodes ,:]

76 data = rowslice.data

77 indices = rowslice.indices

78 q = ((1.0/(2*m))*np.sum(data[np.in1d(indices , nodes)]) -

79 (sum(k[i] for i in nodes)/(2*m))**2)

80 return q

81
82 def modularity_gain(G, C, i):

83 """"

84 Calculates the modularity gain of moving vertex i into the

85 community of its neighbors. NB: Follows the notation of Olsen

(2013)

86
87 Args:
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88 G: Graph named tuple

89 C: Community structure

90 i: A vertex whose neighbors we iterate over.

91
92 Returns:

93 Destination , modularity gain and modularity loss of the move.

94
95 """

96 A, m, n, k = G

97 indices = A.indices[A.indptr[i]:A.indptr[i+1]]

98 data = A.data[A.indptr[i]:A.indptr[i+1]]

99
100 movein = {}

101 k_i = k[i]

102 c_i = C.nodes[i]

103 const = k_i /(2.0*m**2)

104 moveout = (2.0/(4.0*m**2))*k_i*(C.strength[c_i] - k_i)

105 max_movein = (-1, -1.0)

106 for ind ,j in enumerate(indices):

107 aij = data[ind]

108 c_j = C.nodes[j]

109 if c_j == c_i:

110 if i != j:

111 moveout -= aij/m

112 continue

113
114 if c_j in movein:

115 movein[c_j] += aij/m

116 else:

117 movein[c_j] = aij/m - const*C.strength[c_j]

118
119 if movein[c_j] > max_movein [1]:

120 max_movein = (c_j , movein[c_j])

121
122 if not movein:

123 return (-1, -1.0, 0.0)

124
125 return (max_movein [0], max_movein [1], moveout)

126
127 def modularity_gain_new_notation(G, C, i):

128 """

129 The new notation essentially means that moveout now includes

q_i.

130
131 Args:

132 G: Graph named tuple

133 C: Community structure

134 i: A vertex whose neighbors we iterate over.

135
136 Returns:

137 Destination , modularity gain of Destination and modularity loss

138 the old community of i.

139
140 """

141 A, m, n, k = G

142 indices = A.indices[A.indptr[i]:A.indptr[i+1]]
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143 data = A.data[A.indptr[i]:A.indptr[i+1]]

144
145 movein = {}

146 k_i = k[i]

147 c_i = C.nodes[i]

148 movein = {}

149 moveout = -2*k_i*C.strength[c_i ]/((2*m)**2)

150 max_movein = (-1, -1.0)

151 for ind , j in enumerate(indices):

152 aij = data[ind]

153 c_j = C.nodes[j]

154 if c_j == c_i:

155 moveout += aij / m

156 continue

157 try:

158 movein[c_j] += aij/m

159 except KeyError:

160 movein[c_j] = aij/m - 2*k_i*C.strength[c_j ]/((2*m)**2)

161
162 if movein[c_j] > max_movein [1]:

163 max_movein = (c_j , movein[c_j])

164
165 if not movein:

166 return (-1, -100.0, 0.0)

167 return (max_movein [0], max_movein [1], moveout)

168
169 def get_gain(G, C, i, dest):

170 """

171 Calculates and returns the gain of moving i to dest.

172
173 Args:

174 i: the integer label of the vertex to be moved

175 dest: the label of the proposed community

176 C: the community object

177
178 Returns:

179 Two floats , movein and moveout , such that the modularity after

the

180 move is q += movein + moveout.

181
182 """

183 A, m, n, k = G

184 data = A.data[A.indptr[i]:A.indptr[i+1]]

185 indices = A.indices[A.indptr[i]:A.indptr[i+1]]

186 k_i = k[i]

187 c_i = C.nodes[i]

188 movein = - k_i*C.strength[dest ]/(2.0*m**2)

189 moveout = (2.0/(4.0*m**2))*k_i*(C.strength[c_i] - k_i)

190 for ind ,j in enumerate(indices):

191 aij = data[ind]

192 c_j = C.nodes[j]

193 if c_j == c_i:

194 if i != j:

195 moveout -= aij/m

196 continue

197 elif c_j == dest:
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198 movein += aij/m

199
200 return movein , moveout

201
202 def mass_modularity(G, C, nodes , c):

203 """

204 Calculates the modularity gain of moving each of the nodes

205 to the best match.

206
207 Args:

208 G: Graph object

209 nodes: list of nodes in community

210 C: Community structure

211 c: original affiliation of nodes

212
213 Returns:

214 node2c: dict holding best match for vertex i

215 c2node: dict holding the vertices going to community c

216 dqins: holds the global gain of moving vertex i to node2c[i].

217 dqouts: holds the global loss of --"--

218 quv: the modularity of the subsets that is moved. If only one

vertex

219 is moved to a community , this is q_i.

220 best_move: the (node , community) move that has the highest

221 modularity gain associated to it

222
223 """

224 A, m, n, k = G

225
226 node2c = {}

227 c2node = defaultdict(set)

228 dqins = {}

229 dqouts = {}

230 quv = defaultdict(float)

231 best_move = (-1, -1)

232
233 for i in nodes:

234 indices = A.indices[A.indptr[i]:A.indptr[i+1]]

235 data = A.data[A.indptr[i]:A.indptr[i+1]]

236 nbs = set ([])

237 crossterms = defaultdict(float)

238 movein = {}

239 k_i = k[i]

240 moveout = -2*k_i*C.strength[c]/((2*m)**2)

241 max_movein = (-1, 0.0)

242
243 for ind , j in enumerate(indices):

244 aij = data[ind]

245 k_j = k[j]

246 c_j = C.nodes[j]

247 if c_j == c:

248 moveout += aij/m

249
250 try:

251 nc_j = node2c[j]

252 except KeyError:
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253 continue

254 else:

255 if nc_j != -1:

256 qij = aij /(2*m) - (k_i*k_j)/(2*m)**2

257 nbs.add(j)

258 crossterms[nc_j] += 2*qij

259 continue

260
261 try:

262 movein[c_j] += aij/m

263 except KeyError:

264 movein[c_j] = aij/m - 2*k_i*C.strength[c_j ]/(2*m)

**2

265
266 if movein[c_j] > max_movein [1]:

267 max_movein = (c_j , movein[c_j])

268
269 dest , q_in = max_movein

270 node2c[i] = dest

271 c2node[dest].add(i)

272 dqins[i] = q_in

273 dqouts[i] = moveout

274
275 if q_in - moveout > best_move [1]:

276 best_move = (i, q_in - moveout)

277
278 qi = C.node_mods[i]

279 quv[dest] += qi

280 quv[dest] += crossterms[dest]

281
282 for node in c2node[dest] - (nbs | set([i])):

283 qij = -2*k[i]*k[node ]/(2*m)**2

284 quv[dest] += qij

285
286 return node2c , c2node , dqins , dqouts , quv , best_move [0]

Listing 8: communities.py
1
2 class Communities(object):

3 """

4 This class represents a community structure. A collection of

5 disjoint sets(communities) such that all vertices in a graph

are found in

6 exactly one such set.

7
8 """

9 def __init__(self , iterable , k):

10 """

11 Initialize the community -object by a iterable specifying a

12 vertex -> community mapping.

13
14 Args:

15 iterable: Iterable such that the i'th element specifies

16 the community affiliation of vertex i.



67

17 k: Degree sequence of same length as 'iterable '.

18
19 """

20 self.nodes = list(iterable)

21 self.communities = {}

22 self.strength = {}

23 self.used = set ([])

24 for i, c in enumerate(iterable):

25 if c not in self.communities:

26 self.communities[c] = set([i])

27 self.strength[c] = k[i]

28 self.used.add(c)

29 else:

30 self.communities[c].add(i)

31 self.strength[c] += k[i]

32
33
34 def move(self , i, s, k_i):

35 """

36 Move the vertex i to community s.

37
38 Args:

39 i: the integer label of the vertex that is moving

40 s: the destination(new community) of i

41 k_i: the degree of i

42
43 """

44
45 s_i = self.nodes[i]

46
47 # remove i from it's community

48 self.communities[s_i]. remove(i)

49
50 # if there's no nodes left , remove community from dicts

51 if not self.communities[s_i]:

52 del self.communities[s_i]

53 del self.strength[s_i]

54 # key might not be in strength

55 try:

56 self.strength[s_i] -= k_i

57 except KeyError:

58 pass

59
60 if s == -1:

61 # Isolate vertex i

62 j = self._unused_key ()

63 self.communities[j] = set([i])

64 self.strength[j] = k_i

65 self.nodes[i] = j

66 else:

67 self.nodes[i] = s

68 self.strength[s] += k_i

69 self.communities[s].add(i)

70
71 def insert_community(self , nodes , k):

72 newkey = self._unused_key ()
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73 self.communities[newkey] = set ([])

74 self.strength[newkey] = 0

75 for node in nodes:

76 self.move(node , newkey , k[node])

77
78 def delete_community(self , c, k):

79 nodes = self.communities[c].copy()

80 for node in nodes:

81 self.move(node , -1, k[node])

82
83 def _unused_key(self):

84 for j in xrange (4* len(self.nodes), 0, -1):

85 if j not in self.used:

86 self.used.add(j)

87 return j

88 raise Exception("Couldn 't find key")

89
90 def neighbors(self , x):

91 a = self.communities[self.get_community(x)]

92 try:

93 b = a.copy()

94 b.remove(x)

95 return list(b)

96 except TypeError:

97 return []

98
99 def size(self , c):

100 return len(self.communities[c])

101
102 @property

103 def dict(self):

104 return {key: list(value) for key , value in

105 self.communities.iteritems ()}

106
107 @property

108 def dict_renamed(self):

109 # sort keys

110 keys = sorted(self.communities.keys())

111 # rename communities and return

112 return {i:list(self.communities[x]) for i, x in enumerate(

keys)}

113
114 def dump(self , i):

115 import cPickle as pickle

116 pickle.dump(self , open("".join(['pickled_ ', \

117 'coms', str(i), '.p']), "wb"))

118
119 def recluster(self , com_dict , k):

120 for name , coms in com_dict.iteritems ():

121 for c_i in coms [1:]:

122 for i in self.getnodes(c_i):

123 self.move(i, coms[0], k[i])

124 @property

125 def largest(self):

126 largest = (-1, -1)

127 for c, nodes in self.communities.iteritems ():
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128 if len(nodes) > largest [1]:

129 largest = (c, len(nodes))

130 return largest [0]

131
132 def __iter__(self):

133 for key in self.communities.keys():

134 yield (key , list(self.communities[key]))

135
136 def __getitem__(self , c_i):

137 try:

138 com = self.communities[c_i]

139 except KeyError:

140 com = set ([])

141 return com

142
143 def __len__(self):

144 return len(self.communities)

Listing 9: labels.py
1 from communities import Communities

2
3 class Labels(Communities):

4 """ Extension of Community structure to handle label

propagation """

5 def __init__(self , iterable , k, diagonal):

6 super(Labels , self).__init__(iterable , k)

7 self.internal = [diagonal[i] for i in iterable]

8 self.d = [0.0] * len(self.nodes)

9 self.p = [1.0/ len(self.nodes)] * len(self.nodes)

Listing 10: modularity_communities.py
1 import modularity

2 from labels import Labels

3 from heapdict import heapdict

4
5 class ModCommunities(Labels):

6
7 def __init__(self , iterable , G):

8 """

9 Modularity holds {key: (0/1, priority)} pairs

10 """

11 super(ModCommunities , self).__init__(iterable , G.k, G.A.

diagonal ())

12 self.modularity = heapdict ()

13 self.node_mods = {}

14 self.changed = False

15 self.network_modularity = 0.0

16
17 for i in iterable:

18 q = modularity.single_node_modularity(G, i)

19 self.modularity[i] = (0, q)

20 self.node_mods[i] = q

21 self.network_modularity += q
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22
23 def pop(self , i=0):

24 """

25 Pop the community with the lowest modularity , push it back

26 (but with the first value of the tuple 1 and not 0) and

return

27 the item.

28
29 Args:

30 i: the index to pop. Default 0.

31
32 Returns:

33 (x, y, z): x the key of the community , y=0/y=1, z

modularity of

34 the community.

35
36 """

37 item_key , (item_seen , item_val) = self.modularity.peekitem

()

38 self.modularity[item_key] = (1, item_val)

39 return item_key , (item_seen , item_val)

40
41 def move(self , i, s, k_i , movein , moveout , quv):

42 """

43 Move a vertex from it's community to the community s.

44
45 Args:

46 i: the integer label of the vertex to be moved

47 s: the destination of vertex i. May be -1 to indicate that

we

48 want to isolate the vertex.

49 k_i: k[i], the degree of vertex i

50 movein: The global modularity gain of moving vertex i to s.

51 moveout: The global modularity loss of moving vertex i from

it's

52 community.

53 quv: q_s + movein + quv = q_s* the new modularity. If

54 mass_modularity is being used , remember to only add

this

55 quantity once.

56
57 """

58 s_i = self.nodes[i]

59
60 # remove i from it's community

61 self.communities[s_i]. remove(i)

62
63 # if there's no nodes left , remove community from dicts

64 if not self.communities[s_i]:

65 del self.communities[s_i]

66 del self.strength[s_i]

67 self.network_modularity -= self.modularity[s_i ][1]

68 del self.modularity[s_i]

69
70 # key might not be in strength , since we might have deleted

it
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71 try:

72 self.strength[s_i] -= k_i

73 except KeyError:

74 #The community has been deleted.

75 pass

76
77 # same goes for modularity

78 try:

79 (seen , mod) = self.modularity[s_i]

80 except KeyError:

81 #The community has been deleted.

82 pass

83 else:

84 self.modularity[s_i] = (seen , mod - moveout + quv)

85 self.network_modularity -= moveout

86 self.network_modularity += quv

87
88 if s == -1:

89 # Isolate vertex i

90 j = self._unused_key ()

91 self.communities[j] = set([i])

92 self.strength[j] = k_i

93 self.nodes[i] = j

94 self.modularity[j] = (0, quv)

95 self.network_modularity += quv

96
97 else:

98 self.nodes[i] = s

99 self.communities[s].add(i)

100 self.strength[s] += k_i

101 (seen , mod) = self.modularity[s]

102 self.modularity[s] = (seen , mod + movein + quv)

103 self.network_modularity += (movein + quv)

104
105 def unsee_all(self):

106 """

107 Sets the first entry in the value tuple to 0 for all

entries

108 in the modularity -heapdict.

109
110 """

111 for key , (seen , val) in self.modularity.iteritems ():

112 self.modularity[key] = (0, val)

Listing 11: transform.py
1 import argparse

2 import os

3 import numpy as np

4 from scipy import io , sparse

5 from scipy.sparse import linalg

6 import main

7
8 def matrix_power(mtx , exp):

9 """ Return the exp power of (mtx + I) """
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10 I = sparse.identity(mtx.shape[1], dtype=float , format='csr')

11 A = mtx + I

12 for i in xrange(int(exp) -1):

13 A = A.dot(mtx + I)

14 return A

15
16 def walk_generator(A):

17 """ Return the walk -generating function of A. """

18 I = sparse.identity(A.shape[1], dtype=float)

19 inv_mat = linalg.inv((I-A).tocsc ()).tocsr ()

20 return inv_mat

21
22 def exponentiate(mat):

23 """ Return the matrix exponential of A, exp(A). """

24 exp_mat = linalg.expm(mat.tocsc ()).tocsr ()

25 return exp_mat

26
27 def reciprocal_ties(mat):

28 """ Symmetrize A considering reciprocal ties. """

29 A = mat.todok ()

30 B = sparse.dok_matrix(A.shape)

31 for (i, j), aij in A.iteritems ():

32 if (j,i) in A:

33 val = aij + A[j, i]

34 B[i, j] = val

35 B[j, i] = val

36
37 return B.tocsr()

38
39 def symmetrize(mat):

40 """ Symmetrize by taking the mean of the aij and aji entries

"""

41 return (mat + mat.T)/2

42
43 def extract_largest_component(mat):

44 """ Extract the largest component using scipy 's method """

45 num_comp , affiliation = sparse.csgraph.connected_components(mat

)

46 if num_comp == 1:

47 return mat

48 max_comp = np.argmax(np.bincount(affiliation))

49 indices = np.arange(mat.shape [0])

50 indices = indices[affiliation == max_comp]

51
52 return mat[indices , :][:, indices]

53
54 def edge_restriction(restrictee , restrictor):

55 """

56 Restrict the edges of restrictee by the edges of restrictor:

57
58 Returns:

59 A matrix with the elements of restrictee where restrictors

elements

60 are nonzero.

61
62 """



73

63 indptr = restrictor.indptr

64 indices = restrictor.indices

65 nz = restrictor.nonzero ()

66 data = np.array(restrictee[nz[0], nz[1]], dtype=float)[0]

67 return sparse.csr_matrix ((data , indices , indptr), dtype=float)

68
69
70 def power_main ():

71 parser = argparse.ArgumentParser ()

72 parser.add_argument("path_to_input",

73 help="Specify the path of the input data 

set")

74 parser.add_argument("-p", "--power", type=int ,

75 help="Specify to which power to raise the 

matrix to")

76 parser.add_argument("-w", "--walk", help="Calculate (I-A)^-1",

77 action="store_true")

78 parser.add_argument("-e", "--exp", help="Calculate exp(A)",

79 action="store_true")

80 parser.add_argument("-r", "--restrict",

81 help="Restrict the elements of the "

82 "transformed matrix to the coordinates of 

the nonzero "

83 "elements of the original matrix.",

84 action="store_true")

85 parser.add_argument("--recip", action="store_true",

86 help="Symmetrize by reciprocal ties")

87 parser.add_argument("--symmetrize", action="store_true",

88 help="Symmetrize by the mean of entry ij 

and ji")

89 parser.add_argument("-lcc", "--components", action="store_true"

,

90 help="Extract the largest connected 

component")

91 parser.add_argument("path_to_output", \

92 help="Specify where to save output")

93
94 args = parser.parse_args ()

95 in_path = args.path_to_input

96 out_path = args.path_to_output

97 if os.path.isfile(in_path):

98 filename , ending = os.path.splitext(in_path)

99 out_path , out_ending = os.path.splitext(out_path)

100 try:

101 A = main.get_graph(in_path)

102 except IOError:

103 print("File format not recognized")

104 else:

105 if args.power:

106 mat = matrix_power(A, args.power)

107 elif args.walk:

108 mat = walk_generator(A)

109 elif args.exp:

110 mat = exponentiate(A)

111 else:

112 mat = A
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113
114 if args.recip:

115 mat = reciprocal_ties(mat)

116 elif args.symmetrize:

117 mat = symmetrize(mat)

118
119 if args.components:

120 mat = extract_largest_component(mat)

121
122 if args.restrict:

123 mat = edge_restriction(mat , A)

124
125 if out_path:

126 io.savemat(out_path , {'mat': mat}, do_compression=

True ,

127 oned_as='row')

128 else:

129 print("Specify a valid input -file")

130
131 if __name__ == '__main__ ':

132 power_main ()

Listing 12: functions.py
1 import random

2 """

3 Functions for generating the cyclic group [0 ,...n-1]. Use instead

of

4 random.

5
6 Functions:

7 yield_random_modulo(n) <- generate the numbers in 0,...n-1

8 bin_gcd(a, b) <- calculate the gcd of a and b fast

9
10 """

11
12 def yield_random_modulo(n):

13 """

14 Generates the cyclic group 0 through n-1 using a number

15 which is relative prime to n.

16
17 """

18 while True:

19 rand = random.random ()

20 rand = int(rand * n) # number between 0 and n

21 if bin_gcd(rand , n) == 1:

22 break

23 i = 1

24 while i <= n:

25 yield i*rand % n

26 i += 1

27
28 def bin_gcd(a, b):

29 """

30 Return the greatest common divisor of a and b using the binary
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31 gcd algorithm.

32
33 """

34 if a == b or b == 0:

35 return a

36 if a == 0:

37 return b

38
39 if not a & 1:

40 if not b & 1:

41 return bin_gcd(a >> 1, b >> 1) << 1

42 else: # b is odd

43 return bin_gcd(a >> 1, b)

44 if not b & 1:

45 return bin_gcd(a, b >> 1)

46 if a > b:

47 return bin_gcd ((a - b) >> 1, b)

48
49 return bin_gcd ((b - a) >> 1, a)

Listing 13: utils.py
1 """

2 This module defines an Enum and some namedtuples for use throughout

3 the whole lib.

4
5 """

6
7 from collections import namedtuple

8 from enum import Enum

9 from operator import itemgetter

10
11 Method = Enum('Method ', 'luv rank dissolve prop')

12
13 Arguments = namedtuple('Arguments ',

14 ['exporter ',

15 'cytowriter ',

16 'analyzer ',

17 'tsh',

18 'verbose ',

19 'dump',

20 'method ']

21 )

22
23 Graph = namedtuple('Graph ', ['A', 'm', 'n', 'k'])

24
25 def rank(sequence):

26 """

27 Return the index from the original sequence the element

28 has in the sorted array.

29
30 """

31 ranked = zip(* sorted(enumerate(sequence), key=itemgetter (1))

[:: -1]) [0]

32 return list(ranked)
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Listing 14: graphing.py
1 import numpy as np

2 import argparse

3 import matplotlib

4 matplotlib.use('Agg')

5 import matplotlib.pyplot as plt

6 import pandas as pd

7 import os

8 try:

9 import seaborn as sns

10 cols = np.array(sns.color_palette("husl", 8))

11 paired = np.array(sns.color_palette("Paired", 10) [2:])

12
13 except ImportError:

14 print 'Fancy plots disabled as Seaborn is not installed '

15
16 """

17
18 This module should load the results from a tab -delimitered csv -file

19 into some data -structure , and then plot it

20
21 """

22
23 def import_and_format(filename , separator):

24 """

25 Read csv file and infer from the filename the parameters

26 of the network.

27
28 Will fail if the csv is not structured as expected.

29
30 """

31 data = pd.read_csv(filename , sep=separator)

32 data['n'] = np.nan

33 data['mu_t'] = np.nan

34 data['mu_w'] = -1

35 data['transformation '] = 'A'

36
37 for i in xrange(data.shape [0]):

38 filename = data.loc[i, 'File']

39 properties = filename.split('_')

40 properties [-1] = properties [-1][: -4]

41 for p in properties:

42 if p.startswith('no'):

43 data['transformation '][i] = str(p)

44 elif p.startswith('n'):

45 data['n'][i] = int(p[1:])

46 elif p.startswith('mut'):

47 data['mu_t'][i] = int(p[3:])

48 elif p.startswith('muw'):

49 data['mu_w'][i] = int(p[3:])

50 else:

51 data['transformation '][i] = str(p)

52 return data

53
54 def plot(filepath):
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55 """

56 Reads the output of suite.py and

57 plots the performance of the methods.

58
59 """

60 data = import_and_format(filepath , '\t')

61 print np.unique(data.mu_t)

62 data.mu_t = data.mu_t / 100

63 data.mu_t[data.mu_t == 0.35] = 0.035

64 data.mu_t[data.mu_t == 0.65] = 0.065

65 data.mu_t[(data.mu_t == 0.2) & (data.mu_w != -1)] = 0.02

66
67 data.mu_w = data.mu_w.astype(float)

68 data.mu_w = data.mu_w / 100

69 data.transformation[data.transformation == "pow2"] = "A^2"

70 data.transformation[data.transformation == "pow3"] = "A^3"

71 data.transformation[data.transformation == "exp"] = "exp(A)"

72 data.method[data.method == "luv"] = "Louvain"

73 data.method[data.method == "rank"] = "Rank"

74 data.method[data.method == "prop"] = "Propagation"

75 data.method[data.method == "dissolve"] = "Dissolve"

76 means = data.groupby (['method ',

77 'n',

78 'mu_t',

79 'mu_w',

80 'transformation ']).mean()

81
82 methods = ["Louvain", "Rank", "Dissolve"]

83 transformations = ["A", "A^2", "A^3", "exp(A)"]

84
85 binary = means.query("mu_w == -0.01")

86 binary.index = binary.index.droplevel("mu_w")

87
88 coolness = means.query("mu_t == 0.99")

89
90 weighted = means.query("mu_t < 0.10")

91 weighted = weighted.drop("norest", level="transformation")

92
93
94
95
96 for metric in ["NMI", "NVI"]:

97 # Compare methods on binary networks

98
99 for i, n in enumerate ((1000 , 5000)):

100 fig = plt.figure(figsize = (4, 4), tight_layout=True)

101 axis = fig.add_subplot (1,1,1)

102
103 xs = binary.xs([n, "A"], level=['n', 'transformation '])

104 xs[metric ]. unstack ().T.plot(ax=axis , color=cols[[0, 2,

5, 6]])

105 axis.set_ylim (0.0, 1.0)

106 axis.set_xlim (0.2, 0.9)

107 # axis.set_title ("n = {}". format(n))

108
109 if metric == "NVI":
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110 axis.set_ylabel("Normalized Variation of 

Information")

111 axis.legend(loc="upper left")

112 else:

113 axis.set_ylabel("Normalized Mutual Information")

114 axis.legend(loc="lower left")

115 if i > 0:

116 axis.legend ().set_visible(False)

117
118 fig.savefig("../ Master/figures/binary_compare/

binary_compare_ {}_{}_xx.png".format(metric , n), dpi

=600)

119 plt.close(fig)

120 continue

121 # Plot all transformations of binary networks for all

methods

122 for n in (1000, 5000):

123 for i, method in enumerate(methods):

124 fig = plt.figure(figsize =(4, 4), tight_layout=True)

125 axis = fig.add_subplot (1,1,1)

126 xs = binary.xs([n, method], level=['n', 'method '])

127 xs[metric ]. unstack ().plot(ax=axis , color=cols[[3,

1, 5, 7]])

128 axis.set_ylim (0.0, 1.0)

129 axis.set_xlim (0.2, 0.9)

130 if metric == "NVI":

131 axis.set_ylabel("Normalized Variation of 

Information")

132 axis.legend(loc="upper left")

133 else:

134 axis.set_ylabel("Normalized Mutual Information"

)

135 axis.legend(loc="lower left")

136 if i > 0:

137 axis.legend ().set_visible(False)

138 fig.savefig("../ Master/figures/binary_methods/

binary_methods_n {}_{}_{}".format(n, metric ,

method), dpi =600)

139 plt.close(fig)

140
141 # Compare methods on weighted graph

142
143 for i, n in enumerate ((1000 , 5000)):

144 for j, mu in enumerate ((0.05 , 0.08)):

145 fig = plt.figure(figsize = (4, 4), tight_layout=

True)

146 axis = fig.add_subplot (1,1,1)

147 xs = weighted.xs([n, mu , "A"], level=['n', 'mu_t',

'transformation '])

148 xs[metric ]. unstack ().T.drop("Propagation", 1).plot(

ax=axis , color=cols [[0 ,2 ,6]])

149 axis.set_ylim (0.0, 1.0)

150 axis.set_xlim (0.2, 0.9)

151 if metric == "NVI":

152 axis.set_ylabel("Normalized Variation of 

Information")
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153 axis.legend(loc="upper left")

154 else:

155 axis.set_ylabel("Normalized Mutual Information"

)

156 axis.legend(loc="lower left")

157 # axis.set_title ("n = {}, mu_t = {}". format(n, mu

*10))

158
159 if j != 0:

160 axis.legend ().set_visible(False)

161 fig.savefig("../ Master/figures/weighted_compare/

weighted_compare_ {}_n{}_mu{}.png".format(metric ,

n, int(mu *100)), dpi =600)

162 plt.close(fig)

163
164 # Plot the transformations on the weighted network

165 for n in ((5000 ,)):

166 for mu in [0.02, 0.035 , 0.05, 0.065 , 0.08]:

167 for i, method in enumerate (["Louvain"]):

168 fig = plt.figure(figsize = (4, 4), tight_layout

=True)

169 axis = fig.add_subplot (1,1,1)

170 print np.unique(data.mu_t)

171 print n, mu , method , metric

172 xs = weighted.xs([method , n, mu], level=['

method ', 'n', 'mu_t'])

173
174 xs_col = xs[metric ]. unstack ()

175 print xs_col

176 xs_col.plot(ax=axis , color=cols[[3, 1, 5, 7]])

177
178 axis.set_ylim (0.0, 1.0)

179 axis.set_xlim (0.2, 0.9)

180 if metric == "NVI":

181 axis.set_ylabel("Normalized Variation of 

Information")

182 axis.legend(loc="upper left")

183 else:

184 axis.set_ylabel("Normalized Mutual 

Information")

185 axis.legend(loc="lower left")

186 # axis.set_title(method)

187 if i > 0:

188 axis.legend ().set_visible(False)

189 fig.savefig("../ Master/figures/weighted_methods

/weighted_methods_n {}_mu{}_{}_{}.png".format

(n, int(mu*100) , metric , method), dpi =600)

190 plt.close(fig)

191
192 # Plot the results for transformation when mu_t = mu_w

193 for i, method in enumerate(methods):

194 fig = plt.figure(figsize = (4, 4), tight_layout=True)

195 axis = fig.add_subplot (1,1,1)

196 xs = coolness.xs([5000 , 0.99, method], level =['n', "

mu_t", 'method '])

197 xs_col = xs[metric ]. unstack ()
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198 xs_col.plot(ax=axis , color=cols[[3, 1, 5, 7]])

199 axis.set_ylim (0.0, 1.0)

200 axis.set_xlim (0.2, 0.9)

201 if metric == "NVI":

202 axis.set_ylabel("Normalized Variation of 

Information")

203 axis.legend(loc="upper left")

204 else:

205 axis.set_ylabel("Normalized Mutual Information")

206 axis.legend(loc="lower left")

207 # axis.set_title(method)

208 if i > 0:

209 axis.legend ().set_visible(False)

210 fig.savefig("../ Master/figures/mutmuw/mutmuw_ {}_{}. png"

.format(metric , method), dpi =600)

211 plt.close(fig)

212
213 # Compare methods

214 fig = plt.figure(figsize = (4, 4), tight_layout=True)

215 axis = fig.add_subplot (1,1,1)

216 xs = coolness.xs([5000 , 0.99, 'A'], level=['n', "mu_t", '

transformation '])

217 xs_col = xs[metric ]. unstack ().T

218 xs_col.plot(ax=axis , color=cols[[0, 2, 5, 6]])

219 axis.set_ylim (0.0, 1.0)

220 axis.set_xlim (0.2, 0.9)

221 if metric == "NVI":

222 axis.set_ylabel("Normalized Variation of Information")

223 axis.legend(loc="upper left")

224 else:

225 axis.set_ylabel("Normalized Mutual Information")

226 axis.legend(loc="lower left")

227
228 fig.savefig("../ Master/figures/mutmuw/mutmuw_compare_ {}. png

".format(metric), dpi =600)

229 plt.close(fig)

230
231
232
233 if __name__ == '__main__ ':

234 parser = argparse.ArgumentParser ()

235 parser.add_argument("filepath")

236 args = parser.parse_args ()

237 if args.filepath and os.path.isfile(args.filepath):

238 plot(args.filepath)

239 else:

240 print("Provide a valid file")

Listing 15: suite.py
1 from __future__ import division

2 import argparse

3 import labelprop

4 import main

5 import numpy as np
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6 import os

7 import tester

8 from multiprocessing import Pool

9 from export_communities import Exporter

10 from utils import Graph , Arguments , Method

11 from community_detection import community_detect

12
13 def get_right_column(comlist , ncom):

14 """

15 Return the column of comlist that has closest to ncom unique

entries

16
17 """

18 smallest = (-1, 99999999999)

19 for i in xrange(comlist.shape [1]):

20 uniq = len(np.unique(comlist[:,i]))

21 if abs(uniq - ncom) < smallest [1]:

22 smallest = (i, uniq - ncom)

23 return comlist[:, smallest [0]]

24
25 def get_best_column(result_matrix):

26 """ Get the index of the column that minimizes the NVI. """

27 indices = result_matrix [:, -2]. argmin(axis =0)

28 try:

29 idx = indices [0]

30 except IndexError:

31 idx = indices

32 return idx

33
34 def get_files(dir):

35 """

36 Recursively walks through all folder within 'dir' and outputs

37 the paths of all the files together with the file specifying

38 the ground truth community structure.

39
40 """

41 file_list = []

42 for root , dirs , files in os.walk(dir):

43 dir_files = []

44 for f in files:

45 if f.endswith('truth.dat'):

46 truth = os.path.join(root , f)

47 elif (not f.endswith('walk.mat') and

48 not f.endswith('.DS_Store ')):

49 dir_files.append(os.path.join(root , f))

50 if files:

51 file_list.append ((dir_files , truth))

52 return file_list

53
54
55 def format(f, mi , nmi , vi , nvi , n_found , n_known , method):

56 """ Return the arguments as a tab -delimitered string """

57 return "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(

58 f, mi, nmi , vi, nvi , n_found , n_known , method)

59
60 class Run(object):
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61 """

62 This class is used to run one of the community detection

methods ,

63 gather the community structure , and test it against the ground

64 truth.

65
66 """

67 def __init__(self , truth , method):

68 """

69 Instantiate the object with a ground truth and a method.

70
71 Args:

72 truth: the ground truth community structure of the network

73 it will be run on.

74 method: A constant indicating what method the object will

run

75 when called.

76
77 """

78 self.truth = truth

79 self.method = method

80
81 def __call__(self , f):

82 """

83 When the object is called like a function , we run the

method

84 specified by self.method on the dataset in file 'f '.

85
86 Args:

87 f: path to file where the network corresponding the the

ground

88 truth community structure lies.

89
90 Returns:

91 A string of test results.

92
93 """

94 print(self.method)

95 print(f)

96 G = initialize_graph(f)

97 known = tester.parse(self.truth)

98 known -= 1

99 exporter = Exporter(f, G.n, False)

100 arguments = Arguments(exporter , None , None , 0.02,

101 False , False , self.method)

102 if self.method == Method.prop:

103 labelprop.propagate(G, arguments)

104 found = arguments.exporter.comlist[:, -1]

105 numcoms = len(np.unique(found))

106 test_results = tester.test(found , known)

107 else:

108 community_detect(G, arguments)

109 hierarchy = arguments.exporter.comlist[:, 1:] # Exclude

the 0...n col

110 colresult = np.empty(shape =( hierarchy.shape[1], 4))

111 lengths = []



83

112
113 for j, column in enumerate(hierarchy.T):

114 lengths.append(len(np.unique(column)))

115 colresult[j, :] = tester.test(column , known)

116
117 idx = get_best_column(colresult)

118 test_results = colresult[idx , :]

119 numcoms = lengths[idx]

120
121 return format(os.path.basename(f), test_results [0],

test_results [1],

122 test_results [2], test_results [3], numcoms ,

123 len(np.unique(known)), str(arguments.method).split(

'.')[-1])

124
125 def initialize_graph(f):

126 """ Helper method to load file and make the Graph named tuple

"""

127 A = main.get_graph(f)

128 G = Graph(A,

129 0.5*A.sum(),

130 A.shape [1],

131 np.array(A.sum(axis =1), dtype=float).reshape (-1,).

tolist ()

132 )

133 return G

134
135 def output_to_file(filename , results):

136 """

137 Write the array of result -strings 'results ' to the file '

filename '.

138 Will write a header if one is missing.

139 """

140 with open(filename , 'a+') as output:

141 output.seek (0)

142 if not output.readline ():

143 output.write("File\tMI\tNMI\tVI\tNVI\tn_found\tn_known\

tmethod\n")

144 else:

145 output.seek(0, 2) # Put cursor at the end of the file.

146 for line in results:

147 output.write(line)

148
149 if __name__ == '__main__ ':

150 """ Run the tests using the multiprocessing module """

151 parser = argparse.ArgumentParser ()

152 parser.add_argument("path_to_dir",

153 help="Specify the path of the data set")

154 parser.add_argument("n",

155 help="The number of runs for each data set"

)

156 args = parser.parse_args ()

157
158 result_strings = []

159 def res_app(res):

160 result_strings.append(res)
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161
162 if not os.path.isdir(args.path_to_dir):

163 print("That's not a folder.")

164 else:

165 pool = Pool()

166 files = get_files(args.path_to_dir)

167 for fs , ground_truth in files:

168 for f in fs:

169 # rank is deterministic

170 pool.apply_async(Run(ground_truth , Method.rank),

171 args=(f, ),

172 callback=res_app)

173 for i in xrange(int(args.n)):

174 #Louvain , dissolve and labelprop are not , so we

average

175 pool.apply_async(Run(ground_truth , Method.luv),

176 args=(f, ),

177 callback=res_app)

178 pool.apply_async(Run(ground_truth , Method.

dissolve),

179 args=(f, ),

180 callback=res_app)

181 pool.apply_async(Run(ground_truth , Method.prop)

,

182 args=(f, ),

183 callback=res_app)

184 pool.close()

185 pool.join()

186 output_to_file('results/results.txt', result_strings)

187 print("Tests ended just fine.")

Listing 16: tester.py
1
2 """

3 This module containes measures from information theory to compare

4 to clusterings.

5
6 """

7
8 import argparse

9 import numpy as np

10 from scipy import sparse

11 from math import log

12
13 def parse(path):

14 return np.loadtxt(path , dtype=int)[:, -1]

15
16 def log2(x):

17 return log(x, 2)

18
19 def mutual_information(N):

20 hxy = joint_entropy(N)

21 h_known = entropy(N.sum(axis =1)) # row sums

22 h_found = entropy(N.sum(axis =0)) # col sums
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23 return h_known + h_found - hxy

24
25 def joint_entropy(N):

26 H = 0

27 for (i,j) in zip(*N.nonzero ()):

28 nij = N[i,j]

29 H += -1 * nij * log2(nij)

30 return H

31
32 def entropy(n):

33 H = 0

34 for e in n:

35 if e !=0:

36 H += -1 * e * log2(e)

37 return H

38
39 def variation_of_information(N):

40 hxy = joint_entropy(N)

41 ixy = mutual_information(N)

42 return hxy - ixy

43
44 def normalized_variation_of_information(N):

45 hxy = joint_entropy(N)

46 ixy = mutual_information(N)

47 return 1 - (ixy/hxy)

48
49 def normalized_mutual_information(N):

50 ixy = mutual_information(N)

51 h_known = entropy(N.sum(axis =1))

52 h_found = entropy(N.sum(axis =0))

53 return 2*ixy/( h_known + h_found)

54
55 def max_mutual_information(N):

56 ixy = mutual_information(N)

57 h_known = entropy(N.sum(axis =1))

58 h_found = entropy(N.sum(axis =0))

59 return ixy/max((h_known ,h_found))

60
61 def joint_density(found , known):

62
63 n_found = len(np.unique(found))

64 n_known = len(np.unique(known))

65 # print ("{} x {} density ". format(n_found , n_known))

66
67 # coo -matrix will sum duplicate entries

68 confusion = np.asarray(

69 sparse.coo_matrix(

70 (np.ones(known.shape[0], dtype=float), (known , found)),

71 shape =(n_known , n_found)

72 ).todense ()

73 )

74 return confusion/confusion.sum(dtype=float)

75
76 def test(found , known):

77 N = joint_density(found , known)

78 return (mutual_information(N),
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79 max_mutual_information(N),

80 variation_of_information(N),

81 normalized_variation_of_information(N))

82
83 def main():

84 parser = argparse.ArgumentParser ()

85 parser.add_argument("found")

86 parser.add_argument("known")

87 parser.add_argument("--ext", action="store_true",

88 help="Put this if nodes are number from 1."

)

89 args = parser.parse_args ()

90
91 if not (args.found and args.known):

92 print("Please specify both files")

93 return

94
95 found = parse(args.found)

96 known = parse(args.known)

97
98 if args.ext:

99 known -= 1

100 N = joint_density(found , known)

101
102 print("---Testing {} vs. {}---".format(args.found , args.known))

103 print("Variation of information (VI): {}".format(

variation_of_information(N)))

104 print("Normalized VI: {}".format(

normalized_variation_of_information(N)))

105 print("Mutual Information (MI): {}".format(mutual_information(N

)))

106 print("Normalized MI: {}".format(normalized_mutual_information(

N)))

107 print("Max -normalized MI: {} \n".format(max_mutual_information(

N)))

108
109 if __name__ == '__main__ ':

110 main()


