
A Scalable Resource Allocation Scheme for
NFV: Balancing Utilization and Path Stretch

Y.T. Woldeyohannes∗, Ali Mohammadkhan†, K.K. Ramakrishnan†, Yuming Jiang∗
∗Norwegian University of Science and Technology, NTNU, Trondheim, Norway

†University of California Riverside, California, USA

Abstract—Network Function Virtualization (NFV) im-
plements network middlebox functions in software, en-
abling them to be more flexible and dynamic. NFV resource
allocation methods can exploit the capabilities of virtual-
ization to dynamically instantiate network functions (NFs)
to adapt to network conditions and demand. Deploying
NFs requires decisions for both NF placement and routing
of flows through these NFs in accordance with the required
sequence of NFs that process each flow. The challenge in
developing NFV resource allocation schemes is the need to
manage the dependency between flow-level (routing) and
network-level (placement) decisions.

We model the NFV resource allocation problem as a
multi-objective mixed integer linear programming prob-
lem, solving both flow-level and network-level decisions
simultaneously. The optimal solution is capable of provid-
ing placement and routing decisions at a small scale. Based
on the learnings from the optimal solution, we develop
ClusPR, a heuristic solution that can scale to larger,
more practical network environments supporting a larger
number of flows. By elegantly capturing the dependency
between flow routing and NF placement, ClusPR strikes a
balance between minimizing path stretch and maximizing
network utilization. Our experiments show ClusPR is
capable of achieving near-optimal solution for a large sized
network, in an acceptable time. Compared to state-of-the-
art approaches, ClusPR is able to decrease the average
normalized delay by a factor of 1.2− 1.6× and the worst-
case delay by 9 − 10×, with the same or slightly better
network utilization.

I. INTRODUCTION

Middleboxes such as firewalls, VPN gateways, prox-
ies, intrusion detection and prevention systems, etc.,
play a central role in today’s Internet by providing net-
work resident functionality that examines and potentially
modifies the end-to-end traffic flow [1]. Implementation
of network resident functionality is gradually migrating
to software platforms, providing additional flexibility
and extensibility for the capabilities of the network com-
pared to purpose-built hardware appliances. Evolving
the network’s capabilities can thus involve lower capital
expenditures as the software can run on commercial off-
the-shelf (COTS) hardware. Network Function Virtual-
ization (NFV) decouples the software of network func-
tions from the physical machine and runs it on virtual
machines, or more recently on “containers” [2]. This
also brings greater flexibility in resource management as
instances of the network functions (NFs) can be created

dynamically, and the capacity for a particular function
can be scaled up or down depending on traffic demand.
Sequences of NFs are common, and the overall service
provided by the network by such sequences of NFs is
termed “service function chaining” [3].

A. The Challenge

Resource management of NF service chains continues
to be a challenge because of the complexity involved.
An NFV resource allocation (NFV-RA) mechanism has
to make decisions at multiple levels to ensure resources
are properly utilized, while performance requirements
of flows are met. Resource allocation decisions have
to be made both at the network-level and at the flow-
level. At the network-level, the allocation algorithm
determines the number of NF instances to instantiate
in the network to process the flows. In addition, the
algorithm needs to determine the placement of the NFs
or the physical machines that should host the NFs.
However, this network-level decision making has to be
coupled with the decision making at the flow-level, as
the flow has to be sequenced through the NF instances to
form the desired service chain. The flow-level decision
making includes the determination of the route for the
flow based on the service chain requirement and the
choice of the NF instances initiated in the network.

Suboptimal decisions, resulting in NFs placed on
network nodes not along the shortest path will result
in “path stretch”, contributing to increased latency for
the flow. In addition, it is important to use resources
efficiently and avoid over provisioning of resources so
as to maximize the utilization of the network. Finally,
it is critical to consider both link capacity and node
processing capacity (in terms of CPU cores) when mak-
ing the resource allocation decisions. The interdepen-
dence between network-level (placement, instantiating
the requisite number of NFs) and flow-level (routing)
decisions makes the NFV-RA problem new and chal-
lenging, warranting the recent attention it has received
in the literature.

There have been a number of papers on NFV-RA
published in the recent past. A detailed survey on
existing NFV-RA approaches can be found in [4]. Some
have focused on NF placement alone [5], [6]. Some



recent works have tried to solve NF placement and flow
routing jointly. One group of works seeks to minimize
the path stretch (delay) while limiting the utilization
of the network [7], [8] and thereby limiting capacity.
Another seeks to increase capacity by allowing the
network utilization to increase, but at the expense of
higher delay [9], [10]. Additionally, some of the existing
approaches consider only the node capacity constraint
(e.g. the MILP formulation in [11] and [12]), ignoring
link capacity constraints.

In general, these literature approaches have only ad-
dressed part of the NFV-RA problem, far from solving
it completely, which demands balancing between path
stretch and utilization, factoring all the key resources,
and concurrently solving the NF placement and flow
routing problem.

B. Our Contributions

Our first contribution is that we model the joint NF
placement and flow routing problem as a multi-objective
mixed integer linear programming (MILP) problem. The
model is able to allocate NF instances and find end-to-
end routes of flows while maintaining the precedence
constraint among NFs of a service chain. The MILP
is solved using conventional (CPLEX) solvers for a
reasonable scale problem with realistic parameters. The
results provide us valuable insights to develop a heuristic
solution capable of solving the NFV-RA problem for
larger scale in a reasonable time.

Secondly, we develop a heuristic-based NFV-RA
scheme, ClusPR, which strikes a balance between min-
imizing the path stretch experienced by flows and max-
imizing the utilization of the network. ClusPR captures
the dependency between the routing and placement de-
cisions. Both our MILP model and ClusPR consider link
and node capacity constraints in making their decision.
Unlike most papers in the literature that restrict the
placement of NFs in the Cloud [10], [13], ClusPR can be
used in a more general setting where NFs may be hosted
not only in the cloud but also on the edge computing
nodes.

To the best of our knowledge, there is no existing
work that is scalable, creates a balance between min-
imization of the path stretch and maximization of the
utilization of the network and considers the various
resource limitations as our proposed approach ClusPR.

In summary, the contributions of this paper are:

• A novel multi-objective MILP formulation for the
joint NF placement and flow routing problem.

• ClusPR, a heuristic-based scalable resource alloca-
tion scheme that is developed taking as input the
insights observed from the MILP’s results.

• Results from a number of experiments with realistic
topologies demonstrate the effectiveness of ClusPR.

II. THE SYSTEM MODEL

We consider a network of nodes and links, modeled as
a directed graph, G(N ,L), where N is the set of nodes
in the network and L is the set of links interconnecting
the nodes. A node can be, a data-center, a router or
a commercial off-the-shelf (COTS) hardware together
with a router. The network carries a set of flows, F ,
and supports a set of NFs, denoted as V . For each NF
type, multiple instances may be instantiated on one or
multiple nodes.

A node n is characterized by the number of cores at
the node, denoted as Kn. An NF instance can be hosted
on any node that has enough number of cores. An NF
instance v ∈ V hosted on node n is characterized by its
service rate of requests, µv

n. Here, we assume that the
instances of the same NF type at the same node have
the same processing capacities. Note that an instance of
type v may need multiple cores, kv . In addition, an NF
instance can process multiple flows whose NF service
chains include the NF of the instance. We use Dv

n to
denote the expected nodal delay for type v NF at node n,
consisting of both processing delay and queueing delay
for flows with NF type v at the node.

Each link l ∈ L is assumed to be bi-directional, and
we use ln

n′ to represent the link from node n to n
′

and
Cl its expected transmission rate of bits. Each node n
has a set of outgoing links represented by Lout

n and a
set of incoming links, Lin

n . The expected delay on link
l, that comprises transmission and propagation delays,
is written as Dl.

A flow f ∈ F is a sequence of data packets that
are generated at expected rate λf and sent from a
source to a destination node, traversing a sequence of
intermediate nodes and links in the network. Each flow
f has a specified service chain of NFs, denoted as−→
S f = (S1

f , S
2
f ..., S

Jf

f ), which is an ordered sequence
of required NFs that the flow’s packets must go through,
where Sj

f ∈ V denotes the jth NF on flow f ’s service
chain and Jf := |

−→
S f | is the length of the NF chain

of flow f . We assume that the NFs in a flow’s service
chain are different.

In this paper, in addition to the sequence of NFs to be
followed for the service chain, each flow f also has an
end-to-end delay requirement, denoted as Df , between
the source node sf and the destination node df of the
flow. The end-to-end delay is composed of two types
of delays: total delay on links, denoted as DT and total
delay on nodes, denoted as DP .

III. THE NFV RESOURCE ALLOCATION PROBLEM

As discussed earlier, in a network supporting NFV,
resource allocation decisions should be made both at
the network-level and at the flow-level. For the former,
an NFV resource allocation mechanism needs to decide
the number of NF instances to instantiate in the network



to process the flows and at which nodes in the network
such NF instances should be placed. For the latter, the
mechanism needs to decide how to route the flows to go
through the NF instances according to the order of NFs
in their service chains and at the same time to meet the
flows’ throughput and delay requirements.

A flow is admitted to the network if and only if
there are NF instances that can serve all the services in
the NF service chain of the flow without violating the
flow’s delay requirement. Indicator variable Ivn(f ; j) = 1
denotes that an NF instance v hosted at node n is used
by the jth service on the service chain of flow f , and
indicator variable Il(f ; j, nj ; j + 1, nj+1) = 1 denotes
that link l is used by flow f to route from the jth

to (j + 1)th NF service, hosted at node nj and nj+1

respectively. Since more than one instance of the same
NF type may be hosted at the same node, we use an
integer decision variable yvn to represent the number of
NF type v instances that are hosted at node n. Note that,
while yvn is a network-level decision variable that decides
the number and placement of NF instances, Ivn(f, j) and
Il(f ; j, nj , j+1, nj+1) are flow-level decision variables
that specify which NF instances will be used by a given
flow and which links will be used to route the flow
respectively.

For this NFV resource allocation problem, three ob-
jectives are of interest: (1) to maximize the number
of flows admitted to the network, (2) to minimize the
use of nodal processing capacities or cores, and (3) to
minimize the utilization of link capacities, where (2) and
(3) are purposed to maximally leave resources for future
use. The objective functions can then be represented as:

max.
∑
∀f∈F

⌊∑Jf

j=1

∑
∀n∀v I

v
n(f ; j)

Jf

⌋
(1)

min.
∑
∀n∀v

yvnk
v

Kn
(2)

min.
∑

∀l∀f∀nj∀nj+1

Jf∑
∀j

Il(f ; j, nj ; j + 1, nj+1)λf
Cl

(3)

The above three objective functions are combined
into a single-objective function, using the traditional
weighted sum method [14]. Since, maximizing a given
function is equivalent to minimizing the negative of the
function, the single-objective function is to minimize the
summation of the objective functions (2), (3) and neg-
ative of (1). The three objective functions are weighted
equally, with unit weights. For positive weights, the
optimal solution of the single-objective representation
is also a Pareto optimal solution of the multi-objective
problem [14].

A. Constraints

In solving the MILP problem, a number of constraints
must be satisfied, which can be classified as: capacity
constraints, delay constraints, and NF chaining con-
straints.

The capacity constraints are to ensure that the total
traffic rate on any link does not exceed the link’s
transmission capacity (i.e., Constraint (III-A)), the total
number of cores allocated to NF instances at any node
does not exceed the cores at that node (i.e., Constraint
(5)), and the total processing capacity required for
admitted flows for any NF instance does not exceed that
instance’s processing capacity (i.e., Constraint (6)):

∑
∀f∀nj∀nj+1

Jf∑
∀j

Il(f ; j, nj ; j+1, nj+1)λf ≤ Cl ∀l ∈ L

(4)∑
∀v

yvnk
v ≤ Kn ∀n ∈ N (5)

∑
∀f

Jf∑
∀j

Ivn(f ; j)λf ≤ µv
n ∀v ∈ V,∀n ∈ N (6)

Related also are two constraints implied by the defi-
nition of Ivn(f ; j). One is that a flow is assigned to use
NF instance of type v on node n only if there is at
least one instance of NF type v hosted on node n. (i.e.,
Constraint (7)). Another is the constraint that any NF in
the service chain of any flow is served at most by one
such NF instance (i.e., Constraint (8)).

yvn ≥ Ivn(f ; j) ∀n ∈ N ,∀v ∈ V,∀f ∈ F ,∀j ∈ Jf
(7)∑

∀n∀v

Ivn(f ; j) ≤ 1 ∀f ∈ F ,∀j ∈ Jf (8)

The second category are delay constraints to ensure
that a flow is admitted only if its end-to-end delay
requirement is met (i.e., Constraint (3)):

DT +DP < Df ∀f ∈ F (9)

where DT =
∑
∀l∀nj∀nj+1

∑Jf

∀j Il(f ; j, nj ; j +

1, nj+1)Dl and DP =
∑Jf

∀j
∑
∀v

∑
∀n I

v
n(f ; j)D

v
n are

respectively the total link delay and the total nodal delay
that the admitted flow f experiences in the network.

The third category is NF chaining constraints, which
are used to ensure that the order of NFs of any flow is
followed when it is routed from its source node, through
NF instances of its service chain and finally to its
destination node. As shown below, several constraints,
i.e., (10) – (16), are involved in this category. In these
constraints, variable j is used to represent the service
order, i.e., j = 1 represents the first service, j = 2 the
second service, and so on in an NF service chain. For the



source and the destination we use j = 0 and j = J +1,
respectively.

We start with Constraints (10) and (11) that can be
regarded as the flow conservation equations for the set
of nodes that host NF instances assigned to serve a
flow. Specifically, Constraint (10) ensures that one of the
outgoing links of node nj that is running the jth service
of flow f has to be assigned for routing flow f from its
jth to (j + 1)th service order. The placement decision
variables Ivnj

(f ; j) and Ivnj+1
(f ; j+1) are multiplied to

make sure that the constraint applies to the cases where
node nj is used for the jth service and node nj+1 is
utilized for the (j + 1)th service. Similarly, Constraint
(11) makes sure that one of the incoming links of node
nj+1 that runs (j + 1)th service of flow f has to be
assigned for routing flow f from its jth to (j + 1)th

service. We remark that both (10) and (11) are not linear
but since they are multiples of binary variables they can
easily be substituted by a set of linear equations.

∀f ∈ F ,∀j ∈ 1, ..J − 1,∀nj , nj+1 ∈ N :∑
l∈Lout

nj

Il(f ; j, nj ; j + 1, nj+)I
v
nj
(f ; j)Ivnj+1

(f ; j+) = 1

(10)∑
l∈Lin

nj+

Il(f ; j, nj ; j +1, nj+)I
v
nj
(f ; j)Ivnj+1

(f ; j+) = 1

(11)
Constraint (12) is a flow conservation constraint of

the intermediate nodes that do not host NF instances for
the flow but still should route the flow in a given service
order path. It makes sure that, if one of the incoming
links of a node is assigned for a given service order then
one of the outgoing links of the same node has to be
assigned to the same service order.

∀f ∈ F ,∀j ∈ 0, ..J,∀n ∈ N/n 6= nj , nj+1 :∑
l∈Lin

n

Il(f ; j, nj ; j + 1, nj+1)

−
∑

l∈Lout
n

Il(f ; j, nj ; j + 1, nj+1 = 0,
(12)

Constraints (13) and (14) are source node flow con-
servation constraints. Constraint (13) ensures that one of
the outgoing links of the source node of flow f is used
to route from the 0th to 1st service of the service chain.
As defined earlier, the source node represents the 0th

service. That is, node n0 is indeed sf , the source node
of flow f . In addition, Constraint (14) is used to assign
one of the incoming links of a node (n1) serving the 1st

service of the service chain.

n0 = sf ,∀n0, n1 ∈ N ,∀f ∈ F :∑
l∈Lout

n0

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (13)

∑
l∈Lin

n1

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (14)

Constraints (15) and (16) are flow conservation con-
straints for the destination node. Constraint (15) makes
sure that one of the incoming links of the destination
node is assigned to route from the node hosting the last
NF of the service chain (nJ ) to the destination node (df )
that is also represented as the J + 1 service, as defined
earlier. Constraint (16) completes the route by assigning
one of the incoming links of the destination node to the
last J to (J + 1)th service order path.

nJ+1 = df , J = Jf ,∀nJ , nJ+1 ∈ N ,∀f ∈ F :∑
l∈Lin

nJ+1

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f, ; J)

(15)

∑
l∈Lout

nJ

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f ; J) (16)

B. Observations from Solving the MILP Problem

We implemented our MILP model and used CPLEX
to arrive at the optimal placement on a small topology
of 11 nodes and 13 links. Though the results from such
small scale experiments are not generalizable, the results
provide us guidance to develop a heuristic solution that
can solve the placement and routing problem at much
larger scale. Based on solving the MILP for a number of
scenarios (service chains varying in length, nodes having
varying number of cores, and NFs needing multiple, but
different numbers of cores), whose details are omitted
due to space limitation, we make the following obser-
vations.

1) Observation 1 (O1): It is desirable that all the nodes
chosen for NF placement are on the shortest path of
at least one of the flows. If a node that is on the
shortest path of many flows has enough capacity to
host all the NFs required for those flows, the optimal
solution places all the NFs on that node.

2) Observation 2 (O2): Different instances of the same
type of NF are mostly placed on different nodes in
the optimal solutions.

3) Observation 3 (O3): The total number of flows that
can be accommodated is a function of many factors
such as the the node and link capacities, NFs’ service
rate and flow types. Prioritizing flows that require
popular services (at least one) increases the total
number of flows that can be accommodated in the
network.

4) Observation 4 (O4): More than the minimum num-
ber of NF instances needed might be instantiated to
satisfy the performance requirements (e.g., stringent
delay) of some flows.



IV. CLUSPR: A HEURISTIC APPROACH FOR NFV
RESOURCE ALLOCATION

Based on the observations summarized in Sec. III-B,
we develop ClusPR, a heuristic-based NFV resource
allocation algorithm. ClusPR consists of three phases:
Initialization/Clustering, Placement, and Routing phase.
Fig. 1 shows the overall design of ClusPR.
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Fig. 1: ClusPR Resource Allocation Phases
Given that a number of flows potentially need to share

the same NF instance, the NF may not be on the shortest
path of all of the flows. Thus, a significant number of
flows may have to deviate from their shortest path to be
served by the NFs instantiated. However, this deviation
needs to be constrained, so as not to violate the delay
requirement of flows.

ClusPR uses clustering of access nodes (e.g. last
hop routers to sources and destinations in a wide-area
network) to minimize the deviation. Access nodes are
clustered based on their proximity to each other i.e
access nodes that are close to each other are clustered
together. Because of the proximity between clustered
access nodes, flows originating from access nodes of
a cluster and going to access nodes in another cluster
have a high probability of sharing path, thus, can also
potentially share NF instances with no or minimal path
stretch. Inspired by this insight, ClusPR groups flows
into intra-cluster(cluster) and inter-cluster(cluster-pair)
flows and performs the placement of NF instances for
each of these groups of flows independently.

After clustering, nodes that are on the shortest path of
flows are identified for each of the intra-cluster and inter-
cluster set of flows. Note that the clustering is targeted
at finding close by access nodes, and the shortest path
nodes need not necessarily belong to a cluster or cluster-
pair. The shortest path nodes that have a processing
power for hosting NFs are regarded as the “best” can-
didates for hosting NFs. Information about the path of
each group of flows is captured through the shortest path
nodes selected. In the placement phase, NF instances
are placed on the “best” candidate shortest path nodes
or their neighboring nodes. Subsequently, flows are
mapped to instances and routed while respecting their
precedence constraints for service chains. A flow will be
assigned to NF instances that have the minimum overall
end-to-end communication cost.

A. Initialization Phase
The first module in the initialization phase is cluster-

ing. In this phase, access nodes are clustered based on
proximity. Nodes that are either the source or destination
of one or more flows are identified as access nodes. A
network clustering algorithm, Kruskals algorithm [15],
which is a minimum spanning tree (MST) based clus-
tering algorithm [16], is used.

The second module is the shortest path. Dikjstra’s
shortest path algorithm is adapted for shortest path
calculation between all pairs of access nodes (in a cluster
or cluster-pair) and used to identify nodes that are on the
shortest path of flows. This set of shortest path nodes are
considered the “best” nodes for placing NFs (as noted in
O1). The number and type of services required by each
of the flows between access nodes can be different. To
account for these differences, each node keeps a weight
and a list. The weight is used to record the number
of flows between the access nodes whose shortest path
passes through the node. The list is used to record the
different types of services these flows require.

For example, if a node is on the shortest path between
three pairs of access nodes that have 3, 5 and 10 flows
between them, the node will have a weight equal to 18.
In addition, if these flows require DPI, proxy and firewall
services, the node will have a list containing these three
services.

Shortest path nodes are ordered based on their weight:
the higher the weight of a node the higher its priority for
hosting NF instances. In other words, nodes that are on
the shortest path of many flows are given higher priority,
as noted in (O1). If the weight of the nodes is equal,
then nodes that have higher processing power are given
priority over nodes that have lower processing power.
Next the placement decisions are made for intra-cluster
group of flows followed by inter-cluster flows starting
from a cluster that has the largest number of intra-cluster
flows.

B. Placement Phase
The placement phase receives the set of best candidate

nodes from the initialization phase. The required type
and number of instances to serve a set of flows in a
cluster or cluster-pair are calculated. This set of NF
types are ordered according to their popularity, which
is measured by the number of flows that require the NF.
The most popular NFs are prioritized to be placed first,
considering (O3), with ties broken by prioritizing the
NF requiring more processing power. NFs are prioritized
based on their type. The number of each type of NFs to
be instantiated is recorded.

Bin-Packing: The placement heuristic does a bin-
packing of the prioritized NFs on the set of “best” can-
didate shortest path nodes or their neighboring nodes.
An NF instance is placed on a node if and only if the



node has the NF type in its list. This constraint is used
to make sure that an NF instance placed on a node is
needed by the flows whose shortest path passes through
the node. An NF type that is on top of the priority queue
of NF types is taken and the ordered queue of “best”
candidate nodes is iterated through until a node that has
the NF type in its list is found. Once a node is found
the NF is placed and the number of instances of the NF
type is decreased. The node will then be regarded as an
active node for placing the next NF type.

Diversity: The placement heuristic diversifies the
types of NFs placed on a node. That is, if more than one
instance of a given type of NF is needed, the algorithm
prioritizes placing different types of NF instances in one
node rather than placing multiple instances of the same
type of NF on the node. If different types of NFs are
placed on one node, the probability that a flow can get
all of the services it requires from one node will be high,
as noted in (O2). Serving a flow’s chain in one node has
advantages such as decreasing the communication cost
and the delay experienced by the flow.

Next, the following NF type is picked from the queue
of NFs and placed on the active node provided that the
NF is found in its list. If not the algorithm returns to
the queue of the nodes, and looks for another node that
has the NF in its list. After placing one instance of all
types of NFs, the algorithm returns back to the top of
the queue of NFs and place the second instances.This
process is repeated until all the instances of all NF types
are placed.

C. Routing Phase
Finally, the routing phase assigns NF instances and

determines the routes for all flows. A flow will use
NF instances that are placed on the set of shortest path
nodes and/or their neighboring nodes for the cluster or
cluster-pair the flow belongs to. Out of this set of NF
instances, a flow is assigned to NF instances that have
the smallest end-to-end cost. In order to select these NFs,
a flow’s routing is modeled as a multi-stage shortest path
problem in which the stages of the multi-stage graph
represent the services in the service chain of the flow.

For constructing the graph, the costs on the links
of the graph need to be calculated. The costs can
be calculated using shortest path algorithms such as
Dijkstra’s algorithm. The shortest path costs of the links
from the source node to the nodes hosting the first NF
instance of the chain and the links from the destination
node to nodes hosting the last NF of the service chain
need to be calculated for each of the flows. The costs
of the links between the stages (nodes hosting NFs in
the chain) are calculated only once, which decreases the
computation complexity of constructing the multi-stage
graph.

Dynamic programming is used to find the optimal
shortest path in a multi-stage graph. To formulate the

dynamic program, two distance notations are adapted.
C(n, n

′
) is used to represent the cost of the shortest

distance between node n and n
′

that belong to two
consecutive stages. e.g., C(sf , n1stnf ) represents the
cost of the shortest distance between the source node
of flow f (sf ) and node (n1stnf ) that hosts the 1st

service instance. D(n, j) represents the shortest distance
between node n that is hosting the jth service of the
flow to the destination node(df ), e.g., D(n2ndnf , 2)
represents the shortest distance from node n2ndnf that
is hosting the 2nd service to the destination node.

The dynamic program formulation is given as

D(sf , df ) = min
n1st∈N1thnf

(C(sf , n1stnf )+D(n1stnf , 1))

(17)

D(njthnf , j) = min
n
jthnf

∈N
jthnf

(C(njthnf , n(j+1)thnf )

+D(n(j+1)thnf , j + 1))
(18)

Njthnf is the set of nodes that are on the shortest path
or the fewest hops away from the shortest path nodes and
are hosting the flow’s jth service type for the cluster or
cluster-pair the flow belongs to. The dynamic program
is solved starting from the destination node until the
source node is reached. Note that the clustering helps
in decreasing the computation complexity by decreasing
the possible set of instances(Njthnf ) that a flow can
choose from, which increases the scalability of ClusPR.
The algorithm checks for all the possible pairs of combi-
nations of available instances and chooses the instances
that give the minimum overall communication cost.

V. EXPERIMENTAL RESULTS

We extensively analyze the performance of ClusPR
and compare its performance with two alternatives, E2
[10] and [9] (refered to as “Deploying” for ease of
reference). We report here on experiments with the
Rocketfuel topology AS 1221 [17] shown in Fig. 2 used
as a test network. We classify nodes in the topology as
“access” (in blue), “edge” (green) and “core” (orange)
nodes, in a manner similar to [18]. NFs are considered
to be hosted on (or adjacent to) edge and core nodes.
Each node hosting NFs has 4 cores and each instance
of an NF requires one core, with a service rate of
10Mbps.There are 5 types of NFs (e.g., Firewall, Deep
Packet Inspection (DPI), Network Address Translator
(NAT), Intrusion Detection System (IDS) and Proxy).
All the links have a capacity of 1 Gbps, and the delays
on the links are: access-edge: 3 ms; edge-core: 10 ms;
core-core: 40 ms. The source and destination nodes of
flows as well as the services required by the flows are
generated randomly. The arrival rate of flows is assumed
to follow a log-normal distribution [19] and the length



of the service chain for each flow is assumed to be equal
to two. The service types in the chain of each flow
are generated randomly. The MILP model in Section
III which is solved using CPLEX is not able to scale
to the network scenario considered in this experiment.
The main performance measures we evaluate are total
delay, path stretch and the number of flows admitted.
In addition, we have done a trade-off analysis between
the number of NF instances instantiated and the delay
of flows.

Fig. 2: Test Network:100 nodes and 294 links

Average and Worst-case Delays: ClusPR restricts
flows to use instances placed near/on the shortest path
nodes of a cluster or cluster-pair that flows belong to.
This constraint helps ClusPR minimize the worst-case
delay of flows. Fig. 4a and 4b show the average and
worst-case normalized delays of flows respectively. Fig.
5 shows Cumulative Distribution Function(CDF) of the
delay normalized with respect to the shortest path delay.
ClusPR is able to achieve a worst-case normalized delay
that is 9−10× less than the worst-case delay of E2 and
Deploying. In addition, the averaged normalized delay of
ClusPR is 1.2−1.6× less compared to E2 and Deploying

Total Delay and Path Stretch: The total com-
munication delay flows experience is a summation of
links propagation delay and queuing delay on the NF
instances of service chains. Assuming that the queuing
delay of flows is small compared to the propagation
delay [20], the total delay of a flow is then measured
as the summation of propagation delay on its links. The
path stretch is measured as the difference between the
total delay and the shortest path delay. Fig. 3 shows the
total delay and path stretch distributions with 720 flows
that have average flow arrival rate of 0.5 Mbps. Both
E2 and ClusPR instantiated 74 instances for serving the
flows.

ClusPR has a shorter path stretch compared to both
Deploying and E2 for the same number of instances.
The performance gain is achieved because ClusPR takes
as input the path of flows in making NF placement
decisions. ClusPR seeks to minimize the path stretch
by placing NF instances near the shortest path of flows.
In addition to placing NFs near the path of the flows that
need them, ClusPR diversifies the type of NFs placed on
a node by placing different types of NFs. This increases
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the probability that a flow can get all of the services
of its chain in one node. Which in turn can decrease
the additional path stretch incurred for fulfilling the
precedence constraint. Both E2 and Deploying do not
explicitly reduce the path stretch of flows.

Delay Requirement Satisfaction of Flows: For this
experiment, flows are assumed to have a specified delay
requirement in terms of the maximum normalized delay
that they can tolerate. The normalized delay requirement
of flows is assumed to be uniformly distributed between
1− 2.5× their shortest path delay.

The number of flows whose delay requirement is
satisfied is shown in Fig. 6. ClusPR is able to satisfy
the delay requirement of 87% of the flows while E2
and Deploying managed to fulfill the delay requirement
of 60% and 70% of the flows respectively. ClusPR
satisfies the delay requirement of 17% to 27% more
flows compared to E2 and Deploying.

Trade-off Analysis: One of the observation from
the optimal solutions of the MILP model in Section
III-B(O4) is that more NF instances might need to be
instantiated if stringent delay requirement of flows is
to be satisfied. An experiment is conducted in order
to analyze the trade-off between the number of NF
instances instantiated and the delay performance of
flows. Fig. 7 shows the path stretch of flows when
ClusPR is instantiating 74 and 88 NF instances. The path
stretch has decrease with an increase in the number of
NF instances.
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With 74 instances the delay requirement of 87% of the
flows is satisfied. By increasing 14 more NF instances,
the delay requirement of 92% of the flows is satisfied as
shown in Fig. 8a. As can be inferred from the CDF in
Fig. 8b, the average and worst-case normalized delays
have also seen a slight decrease with an increase in the
number of NF instances. The average normalized delay
has reduced from 1.36× to 1.32× and the worst-case
delay has decreased from 6× to 5× the short path delay.

VI. CONCLUSION

The flexibility brought about by NFV can potentially
change the way networks are managed and services
are provisioned. Nevertheless, an efficient resource al-
location algorithm is needed to instantiate NF instances
when and where needed, and route flows through them
accordingly. In this paper, a comprehensive novel multi-
objective MILP model is formulated for the NFV-RA
problem. Based on the useful insights obtained from the
optimal solutions of the MILP model, a clustering-based
heuristic scheme, ClusPR, is developed. ClusPR is scal-
able and balances between minimizing the path stretch
and maximizing the network utilization. By factoring in
information about the path of flows in the NF placement
decision making and diversifying NFs, ClusPR is able
to considerably minimize the path stretch. Compared
to the state-of-the-art approaches ClusPR has managed
to decrease the average normalized delay by a factor
of 1.2 − 1.6× and the worst-case delay by 9 − 10×,
while utilizing the same number of instances. This
minimization of the path stretch has enabled ClusPR
to satisfy the delay requirement of 17% to 27% more

flows. In addition, the trade-off between the number of
NF instances and delay is shown by demonstrating the
gain in delay performance for an increase in the number
of NF instances.
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