
1

ClusPR: Balancing Multiple Objectives at Scale for
NFV Resource Allocation

Y. T. Woldeyohannes, Ali Mohammadkhan, K. K. Ramakrishnan Fellow, IEEE, and Yuming Jiang, Senior
Member, IEEE

Abstract—Network Function Virtualization (NFV) implements
network middleboxes in software, enabling them to be more
flexible and dynamic. NFV resource allocation methods can
exploit the capabilities of virtualization to dynamically instantiate
network functions (NFs) to adapt to traffic demand and network
conditions. Deploying NFs requires decisions for NF placement,
and routing of flows through these NFs in accordance with the
sequence of NFs required to process each flow. The challenges
in developing an NFV resource allocation scheme include the
need to manage the dependency between flow-level (routing)
and network-level (placement) decisions and to efficiently utilize
resources that may be distributed network-wide, while fulfilling
the performance requirements of flows.

We propose a scalable resource allocation scheme, called
ClusPR, that addresses these challenges. By elegantly captur-
ing the dependency between flow routing and NF placement,
ClusPR strikes a balance between multiple objectives including
minimizing path stretch, balancing the load among NF instances,
while maximizing the total network utilization by accommodating
the maximum number of flows possible. ClusPR addresses the
offline problem of NFV resource allocation. To address the online
problem of dynamically placing and routing flows upon their
arrival, we propose iClusPR. iClusPR is an online algorithm
that performs dynamic scaling by adjusting the number of NF
instances based on the traffic demand and the network state.

Our experiments show that ClusPR achieves the near-optimal
solution for a practical large-sized network in reasonable time.
Compared to the state-of-the-art approaches, ClusPR decreases
the average normalized delay by a factor of 1.2− 1.6× and the
worst-case delay by more than 10×, with the same or slightly
better network utilization and balances the load among NF
instances. Furthermore, the performance of iClusPR, the online
version, is comparable to the offline ClusPR algorithm.

Index Terms—NFV, orchestration, placement, flow routing,
multi-objective, load balancing, clustering.

I. INTRODUCTION

Middleboxes such as firewalls, VPN gateways, proxies,
intrusion detection and prevention systems play a central role
in today’s Internet by providing network resident functionality
that examines and potentially modifies the end-to-end traffic
flow [2]. Implementing middleboxes is gradually migrating
to software platforms, providing additional flexibility and
extensibility for the capabilities of the network compared
to purpose-built hardware appliances. Evolving the network’s

Y. T. Woldeyohannes and Yuming Jiang are with the Department of
Information Security and Communication Technology, Norwegian University
of Science and Technology, NTNU, Norway

Ali Mohammadkhan and K. K. Ramakrishnan are with the Department
of Computer Science and Engineering, University of California, Riverside,
California, USA.

Preliminary version of this article appeared in ICIN, 2018 conference [1].

capabilities can thus involve lower capital expenditures as
the software can run on commercial off-the-shelf (COTS)
hardware. Network Function Virtualization (NFV) decouples
the software of network functions from the physical machine
and runs it on virtual machines, or more recently on “con-
tainers” [3]. This also brings greater flexibility in resource
management as instances of the network functions (NFs) can
be created dynamically, and the capacity for a particular
function can be scaled up or down depending on the traffic
demand. Sequences of NFs are common, and the overall
service provided by the network by such sequences of NFs is
termed “service function chaining” [4]. Using the capability
of Software Defined Networks (SDN) to perform flow specific
routing, we can route the flows requiring the service chain
functionality through the NF service instances.

A. The Challenge

Resource allocation of NF service chains continues to be
a challenge because of the complexity of making network-
level as well as flow-level decisions holistically, since each
impacts the other. An NFV resource allocation (NFV-RA)
mechanism has determine at the network-level the number of
NF instances to instantiate across all the nodes in the network
to process all admitted flows. Further, the algorithm needs to
determine the placement of the NFs or the physical machines
that should host the NFs. The flow-level decision making
includes the assignment of NF instances for the service chain
of the flow and the determination of the route for each flow.
However, the network-level decision making has to be coupled
with the decision making at the flow-level, because placement
decisions resulting in NFs placed on network nodes not along
the shortest path will result in “path stretch”, contributing to
increased latency for the flow. This interdependence between
network-level (placement, instantiating the requisite number of
NFs) and flow-level (instance assignment, routing) decisions
makes the NFV-RA problem new and challenging, warranting
the recent attention it has received in the research community.

In addition, network resources such as bandwidth of links,
memory and processing capacities of nodes are limited. These
resource limitations call for efficient utilization of the available
resources, which could be achieved for example by minimizing
the number of NF instances, balancing the load among the NF
instances and/or minimizing the number of distinct resources
used. However, these efficient resource utilization objectives
could sometimes be in conflict with the objective of fulfilling
the performance requirement of flows. Thus, one of the chal-
lenges in developing an NFV resource allocation scheme is to



2

find a balance across multiple objectives, involving minimizing
path stretch, maximizing the number of flows accommodated,
and balancing the load among NF instances, while considering
the resource constraints in the network.

The end-to-end latency for flows can potentially decrease
if NF instances are placed closer to users instead of routing
the network traffic to a limited number of centralized data-
centers [5]. However, most of the work in the literature focus
only on the placement of NFs in the Cloud e.g., Stratos [6]
and [7] or at central offices (COs), as in E2 [8]. In this
paper, we develop a scalable resource allocation scheme for
the joint NF placement and flow routing problem in a geo-
distributed, general, network. The novelty of our approach
comes from considering multiple objectives at the same time
(minimizing path stretch, maximizing the total utilization of
the network and balancing the load among NF instances).
Our work furthers the state of the art by capturing the inter-
dependency between flow-level and network-level decisions
in a scalable manner and striking a balance across multiple
objectives. While existing works typically restrict the flow
to the shortest-path avoiding path stretch, and disregarding
its effect on network utilization [9], [10]. Others maximize
network utilization at the expense of increased path stretch
[11], [12].

B. Our Contributions

Our first contribution is that we model the joint NF place-
ment and flow routing problem as a multi-objective integer
linear programming (ILP) problem. The model is able to
allocate NF instances and find the end-to-end route of flows
while maintaining the precedence constraint among NFs of the
service chain. We solve the ILP using a conventional solver
(CPLEX) for a reasonable scale problem with realistic pa-
rameters. Although the ILP formulation gives optimal results,
the run time of the algorithm increases exponentially with
the size of the network and/or the number of flows. This is
because the joint NF placement and flow routing problem is
NP-hard, encompassing the two NP-hard problems (placement
and flow routing) [13]. The results obtained from solving the
ILP model provide us with valuable insights to develop a
heuristic solution capable of solving the NFV-RA problem at
a larger scale in reasonable time.

Secondly, taking as input the insights, we develop a
heuristic-based NFV-RA scheme called ClusPR. ClusPR
strikes a balance between multiple objectives including mini-
mizing the path stretch experienced by flows, maximizing the
total utilization of the network (the number of flows admitted)
and balancing the load among NF instances. ClusPR utilizes
a divide-and-conquer approach, decomposing the NFV-RA
problem into two sub-problems: for NF placement and flow
routing. To capture the dependency between the network-
level (NF placement) and flow-level (flow routing) decisions,
ClusPR adapts a novel hierarchical architecture in which first
flows are grouped based on their path proximity. Then, the
route information of flows is extracted and used as input when
making NF placement decisions.The features of ClusPR are:

• Network: ClusPR can be used in general settings where
NF instances may be hosted not only in the cloud but
also on the edge computing nodes.

• Path stretch vs utilization: Path stretch can be avoided
if NF instances that are needed by a flow are placed
on its (shortest) path as done in [9]. This can however
lead to low utilization of the network. ClusPR strikes a
balance between minimizing path stretch and maximizing
the network utilization.

• Load balancing vs path stretch: Studies have demon-
strated that NF overload is a common cause of failures
and therefore it is important to balance the load across
NFs [2], [14]. However, such load balancing decisions
might lead to increased delay and thus violating Service
Level Agreement (SLA) for flows. Our proposed flow
routing algorithm balances the load among NF instances
while taking into account the delay requirement of flows
without redirect existing flows.

Finally, we propose an online algorithm iClusPR, which
dynamically scales the number of NF instances depending on
the traffic demand and network state. iClusPR makes resource
allocation decisions on a time slot basis.
• Online algorithm features: iClusPR has the same design

principle as the offline algorithm, ClusPR, so it also has
the aforementioned features of ClusPR.

• Experiment: The performance of iClusPR is analyzed
through realistic experiments in which flows arrive ran-
domly and depart after being served for a random amount
of time.

II. THE SYSTEM MODEL

We consider a network of nodes and links, modeled as a
directed graph, G(N ,L), where N is the set of nodes in the
network and L is the set of links interconnecting the nodes. A
node can be in a data-center with multiple servers, a router or
a commercial off-the-shelf (COTS) server along with a router.
The network carries a set of flows, F , and supports a set of
NFs, denoted as V . For each NF type, multiple instances may
be instantiated on one or multiple nodes.

A node n is characterized by the number of CPU cores at
the node, denoted as Kn, and memory capacity, denoted as
Mn. A CPU core is dedicated to a single NF instance [15],
and does not span CPU cores to avoid Non-Uniform Memory
Access (NUMA) overheads. An NF instance can be hosted on
any node that has enough available resources.

An NF instance v ∈ V hosted on node n is characterized
by its service rate of requests, µvn. Here, we assume that the
instances of the same NF type at the same node have the same
service rate. An instance of type v needs kv cores and mv

amount of memory. In addition, an NF instance can process
multiple flows whose service chains include the type of NF
instance. We use Dv

n to denote the expected nodal delay for
type v NF at node n, consisting of both processing delay and
queuing delay for flows with NF type v at the node.

Each link l ∈ L is assumed to be bi-directional, and we
use ln

n′
to represent the link from node n to n

′
and Cl its

expected transmission rate. Each node n has a set of outgoing



3

links represented by Loutn and a set of incoming links, Linn .
The expected delay on link l, that comprises transmission and
propagation delays, is written as Dl.

A flow f ∈ F is a sequence of data packets that are
generated at expected rate λf and sent from a source to a
destination node, traversing a sequence of intermediate nodes
and links in the network. Each flow f has a specified service
chain of NFs, denoted as

−→
S f = (S1

f , S
2
f ..., S

Jf
f ), which is an

ordered sequence of required NFs that the flow’s packets must
go through, where Sjf ∈ V denotes the jth NF on flow f ’s
service chain and Jf := |

−→
S f | is the length of the NF chain

of flow f .
In addition to the sequence of NFs to be followed for

the service chain, each flow f also has an end-to-end delay
requirement, denoted as Df , between the source node sf and
the destination node df of the flow. The end-to-end delay is
composed of two types of delays: total delay on links, denoted
as DT , and total delay on nodes, denoted as DP .

III. THE NFV RESOURCE ALLOCATION PROBLEM

As discussed earlier, in a network supporting NFV, resource
allocation decisions should be made both at the network-level
and the flow-level. For the former, an NFV resource allocation
mechanism needs to decide the number of NF instances to
instantiate in the network to process the flows and where or
at which nodes in the network such NF instances should be
placed. For the latter, the mechanism needs to decide how to
route the flows to go through the NF instances according to the
order of NFs in their service chains and at the same time try
to meet the flows’ delay requirements by limiting path stretch.

For this NFV resource allocation problem, three objectives
are of interest: (1) to maximize the number of flows admitted
to the network, (2) to minimize the use of nodal processing
capacities or cores, and (3) to minimize the utilization of link
capacities, where (2) and (3) are purposed to maximally leave
resources for future use.

A flow is admitted to the network if and only if there are NF
instances that can serve all the services in the NF service chain
of the flow without violating the flow’s delay requirement. Let
indicator variable Ivn(f ; j) = 1 denoting that an NF instance v
hosted at node n is used by the jth service on the service chain
of flow f , and indicator variable Il(f ; j, nj ; j + 1, nj+1) = 1
denoting that link l is used by flow f to route from the jth to
(j+1)th service/NF hosted at node nj and nj+1 respectively.
Since more than one instance of the same NF type may be
hosted at the same node, we use an integer decision variable
yvn to represent the number of type v NF instances that are
hosted at node n. Note that, while yvn is a network-level
decision variable that decides the number and placement of
NF instances, Ivn(f ; j) and Il(f ; j, nj ; j + 1, nj+1) are flow-
level decision variables that specify which NF instances will
be used by a given flow and which links will be used in routing
that flow through, respectively.

The three objectives can then be respectively represented as

maximize
∑
∀f∈F

⌊∑Jf
j=1

∑
∀n∀v I

v
n(f ; j)

Jf

⌋
(1)

minimize
∑
∀n∀v

yvnk
v

Kn
(2)

minimize
∑
∀l∀f

Jf∑
∀j

Il(f ; j, nj ; j + 1, nj+1)λf
Cl

(3)

The above three objective functions are combined into a
single-objective function, using the traditional weighted sum
method [16]. Since, maximizing a given function is equivalent
to minimizing the negative of the function, the single-objective
function is to minimize the summation of the objective func-
tions (2), (3) and negative of (1). The objective functions are
weighted equally, with unit weights. For positive weights, the
optimal solution of the single-objective representation is also
a Pareto optimal solution of the multi-objective problem [16].

A. Constraints

In solving the ILP problem, a number of constraints must be
satisfied, which can be classified into three categories: capacity
constraints, delay constraints, and NF chaining constraints.
The first category is capacity constraints, which ensure that
the total traffic rate on any link does not exceed the link’s
transmission capacity (i.e., Constraint (4)), the total number of
cores allocated to NF instances at any node does not exceed
the number of cores at this node (Constraint (5)) and memory
capacity (Constraint (6)), and the total processing capacity
required for the admitted flows flowing through any NF
instance does not exceed that instance’s processing capacity
(Constraint (7)):∑

∀f

Jf∑
∀j

Il(f ; j, nj ; j + 1, nj+1)λf < Cl ∀l ∈ L (4)∑
∀v

yvnk
v < Kn ∀n ∈ N (5)∑

∀v

yvnm
v < Mn ∀n ∈ N (6)

∑
∀f

Jf∑
∀j

Ivn(f ; j)λf < µvn ∀v ∈ V,∀n ∈ N (7)

Related and hence put in this category are two constraints
implied by the definition of Ivn(f ; j). One is that a flow is
assigned to use NF instance of type v on node n only if
there is at least one instance of NF type v hosted on node
n. (i.e., Constraint (8)). Another is the constraint that any NF
in the service chain of any flow is served by only one such
NF instance (i.e., Constraint (9)).

yvn ≥ Ivn(f ; j) ∀n ∈ N ,∀v ∈ V,∀f ∈ F ,∀j ∈ {1 . . . Jf}
(8)∑

∀n∀v

Ivn(f ; j) = 1 ∀f ∈ F ,∀j ∈ {1 . . . Jf} (9)

The second category are delay constraints to ensure that a
flow is admitted only if its end-to-end delay requirement is
met (i.e., Constraint (10)):

DT +DP < Df ∀f ∈ F (10)



4

where DT =
∑
∀l
∑Jf
∀j∀nj∀nj+1

Il(f ; j, nj ; j+1, nj+1)Dl and

DP =
∑Jf
∀j
∑
∀n∀v I

v
n(f ; j)D

v
n are respectively the total link

delay and the total nodal delay that the flow f will experience
in the network if admitted.

The third category is NF chaining constraints, which are to
ensure that the order of NFs of any flow is followed when
it is routed from its source node, through NF instances of
its service chain and finally to its destination node. As shown
below, several constraints, i.e., (11) – (20), are in this category.
In these constraints, variable j is used to represent the service
order, i.e., j = 1 represents the first service, j = 2 the second
service, and so on in an NF service chain. The source and
the destination are represented by j = 0 and j = J + 1
respectively.

We start with Constraints (11) and (12) that can be regarded
as the flow conservation equations for the set of nodes that host
NF instances assigned to serve a flow. Specifically, Constraint
(11) ensures that one of the outgoing links of node nj that is
running jth service of flow f has to be assigned for routing
flow f from its jth to (j + 1)th service order. The NF
assignment decision variables Ivnj

(f ; j) and Ivnj+1
(f ; j + 1)

are multiplied to make sure that the constraint applies to the
case where node nj is used to serve the jth service and node
nj+1 the (j + 1)th service of flow f . Similarly, Constraint
(12) makes sure that one of the incoming links of node nj+1

that runs (j + 1)th service of flow f has to be assigned for
routing flow f from its jth to (j+1)th service. We remark that
both (11) and (12) are not linear but since they are multiples
of binary variables, they can easily be substituted by a set of
linear equations.

∀f ∈ F ,∀j ∈ {1 . . . Jf − 1},∀nj , nj+1 ∈ N :

∑
l∈Lout

nj

Il(f ; j, nj ; j + 1, nj+1)I
v
nj
(f ; j)Ivnj+1

(f ; j + 1) = 1

(11)∑
l∈Lin

nj+1

Il(f ; j, nj ; j + 1, nj+1)I
v
nj
(f ; j)Ivnj+1

(f ; j + 1) = 1

(12)
Constraints (13) and (14) are used to guarantee that no more

than one link outgoing from or incoming to a node are assigned
to a given service order of a flow respectively:

∀n ∈ N ,∀f ∈ F ,∀j ∈ {0, ..Jf} :∑
l∈Lout

n

∑
nj ,nj+1∈N

Il(f ; j, nj ; j + 1, nj+1) ≤ 1 (13)

∑
l∈Lin

n

∑
nj ,nj+1∈N

Il(f ; j, nj ; j + 1, nj+1) ≤ 1 (14)

Constraint (15) is a flow conservation constraint of the
intermediate nodes, which are nodes that do not host NF
instances that are assigned to the flow but still should route
the flow in a given order of the route. It makes sure that, if
one of the incoming links of a node is assigned for a given

order of the route then one of the outgoing links of the same
node has to be assigned to the same order.∑
l∈Lin

n

Il(f ; j, nj ; j + 1, nj+1)−
∑
l∈Lout

n

Il(f ; j, nj ; j + 1, nj+1)

= 0,∀f ∈ F ,∀j ∈ {0, ..Jf},∀n ∈ N/n 6= nj , nj+1, sf , df
(15)

Constraints (16) and (17) are source node flow conservation
constraints. Constraint (16) ensures that one of the outgoing
links of the source node of flow f is used to route from the
0th to 1st service of the service chain. As defined earlier,
the source node represents the 0th service. That is, node n0
is equivalent to sf , the source node of flow f . In addition,
Constraint (17) is used to assign one of the incoming links of
a node (n1), serving the 1st service of the service chain, to
the 1st service order of the service chain.

n0 = sf ,∀n1 ∈ N ,∀f ∈ F :∑
l∈Lout

n0

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (16)∑

l∈Lin
n1

Il(f ; 0, n0; 1, n1) = Ivn1
(f ; 1) (17)

Constraints (18) and (19) are flow conservation constraints
for the (destination node). Constraint (18) makes sure that one
of the incoming links of the destination node is assigned to
route from the node hosting the last NF of the service chain
(nJ ) to the destination node (df ) that is also represented as
the J + 1 service, as defined earlier. In addition, Constraint
(19) assigns one of the outgoing links of the node serving the
last service to the (J + 1)th service order.

nJ+1 = df ,∀nJ ∈ N ,∀f ∈ F :∑
l∈Lin

nJ+1

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f ; J)

(18)

∑
l∈Lout

nJ

Il(f ; J, nJ ; J + 1, nJ+1) = IvnJ
(f ; J) (19)

Finally, Constraint (20) is used to avoid loops: If link ln
n′

is

assigned for a given service order then link ln
′

n should not be
assigned to the same service order.

Iln
n
′ (f ; j, nj ; j + 1, nj+1) + I

ln
′

n

(f ; j, nj ; j + 1, nj+1) ≤ 1,

∀l ∈ L,∀f ∈ F ,∀j ∈ {0 . . . Jf},∀nj , nj+1 ∈ N
(20)

B. Observations from Solving the ILP Problem

We implemented our ILP model and used CPLEX to arrive
at the optimal placement on a number of small size networks.
We realize that the results from these small scale experiments
are not generalizable, but the results provide us with valuable
guidance to develop a heuristic solution that can solve the
placement and routing problem at a much larger scale. Based
on solving the ILP model for a number of scenarios (service
chains varying in length, nodes having varying number of
cores, and NFs needing multiple, but different numbers of
cores), we make the following observations.



5

1) Observation 1 (O1): The nodes chosen for NF placement
are usually on the shortest path of at least one of the flows.
If a node that is on the shortest path of all the flows has
enough capacity to host all the NFs required for those flows,
the optimal solution places all the NFs on that node.
2) Observation 2 (O2): In the optimal solution, different
NF types are usually placed on a node rather than multiple
instances of the same NF type. If various types of NFs are
placed on a node, a flow will be able to get all the services of
its chain in one node with a high probability. This is especially
true for flows with shorter service chains.
3) Observation 3 (O3): The total number of flows that can be
accommodated in the network is a function of many factors,
including the amount of network resources available, the NFs’
service rate and flow types. Prioritizing flows that require
popular services (at least one) increases the total number
of flows that can be accommodated in the network. This is
because, if instances that are needed by very few flows are
instantiated a priori, those instances will occupy resources but
will be under utilized, thus not accommodating popular NFs
that could have been utilized more.
4) Observation 4 (O4): To satisfy the performance require-
ments (e.g., stringent delay) of some flows, more than the
minimum number of NF instances needed may be instantiated.

IV. CLUSPR: A HEURISTIC APPROACH FOR NFV
RESOURCE ALLOCATION

Based on the observations summarized in Sec. III-B, we
develop ClusPR, a scalable NFV resource allocation algorithm.
ClusPR consists of three phases: Initialization/Clustering,
Placement, and Routing phase. Fig. 1 shows the overall design
of ClusPR.

Shortest Path
Initialization  Phase

Placement Phase

Routing  Phase

Nodes

NFs

N
e

tw
o

rk

Le
ve

l 

D
e

cisio
n

F
lo

w

Le
v
e

l 

D
e

cisio
n

Number of NF 

instances

Clustering

NFsNFsNFs

Placement 

Heuristics

Flow Routing

Placment of  NF 

instances

Flow service 

chaining & routing

Fig. 1: ClusPR Resource Allocation Phases
Network resources (such as CPU cores, memory, band-

width) should be used efficiently so as to maximize the total
utilization of the network (i.e., the total number of flows
admitted to the network with the minimum resources). On
the other hand, path stretch of flows needs to be minimized,
as increased latency could lead to violation of a flow’s SLA.
However, these objectives could be conflicting. For example,
path stretch can be avoided if flows are served by NF instances
placed on their shortest path as in [9], [10]. However, relatively
few flows share a specific end-to-end path and those that do
might have different service chain requirements. So this could
lead to under-utilization of the network. For increasing the
utilization of the network, an NF instance should serve a larger
number of flows.

Given that a number of flows may need to share the same
NF instance, that NF may not be on the shortest path of all of

the flows it serves. Thus, a significant number of flows may
have to deviate from their shortest path to be served by the NFs
instantiated. However, this deviation needs to be constrained
so as not to violate the delay requirement of flows. To strike
a balance between minimizing path stretch and maximizing
network utilization, ClusPR groups flows based on their path
information. That is, flows whose paths are in close proximity
to each other will be grouped together. Then flows within a
group will share NF instances. The intuition is that since flows
within a group have paths that are ’close’ to each other, they
can share NF instances with zero or minimal path stretch.

After grouping the flows, their path information is extracted
by identifying the nodes that are on the shortest path of each
group of flows. Then, NF instances are placed and assigned to
flows, and flows are routed end-to-end. In Summary, ClusPR’s
design principle is to first (1)group flows based on their
path proximity, (2) then extract the flows’ path information,
(3) place instances considering the path information and (4)
finally, assign NF instances and route flows taking into account
their performance requirement and the utilization level of the
instances.

A. Initialization Phase

1) Clustering: The purpose of the clustering module is to
find a set/group of flows whose paths are in close proximity to
each other. To group the flows, ClusPR clusters access nodes
(e.g., first/last hop routers to sources and destinations in a
wide-area network). Access nodes are clustered based on their
proximity to each other, i.e., access nodes that are close to each
other are clustered together. Because of the topological prox-
imity between clustered access nodes, flows originating from
access nodes of a cluster and going to access nodes in another
cluster or vice versa will have their paths close to each other.
Thus, these flows can also potentially share NF instances
with minimal path stretch. Inspired by this insight, ClusPR
groups flows into intra-cluster (i.e., flows whose source and
destination nodes are in the same access cluster) and inter-
cluster flows (i.e., flows whose source and destination nodes
belong to two different clusters) and performs the placement of
NF instances for each of these groups of flows independently.

To cluster the access nodes, a network clustering algorithm,
Kruskal’s algorithm [17], which is a minimum spanning
tree (MST) based clustering algorithm [18], is used. Given
a network graph G(N ,L), the algorithm first organizes all
nodes/vertices of the graph in disjoint sets with a set containing
one node/vertex. The edges of the graph are sorted and listed
in ascending order, based on their weight, which is equal to
the delay on the edge. Then, an edge that is on top of the
sorted list of edges is considered. If the vertices of the edge
belong to two different disjoint sets, the sets will be merged
into a single set. In order to find an MST, this step is repeated
until all the edges in the sorted list are visited.

Given the number of clusters k, an MST based clustering
algorithm can be used to find the k clusters by sorting edges
and merging sets until the heaviest k− 1 edges are left in the
sorted edge list [19].



6

a) Optimal Number of Clusters: Kruskal’s algorithm
can be used to find clusters given that the number of clusters
is known. But finding the optimal number of clusters apriori
might be challenging especially if the network size is large.
To solve this problem, cluster validation techniques can be
used to automatically find the optimal number of clusters [20].
One of the classical cluster validation techniques is the Dunn
index [21]. The Dunn index is useful for finding dense and
well-separated clusters. It is defined as the ratio between the
minimum inter-cluster distance to the maximum intra-cluster
distance.

D(k) = min
i,j∈{1...k},i6=j

{
δi,j

max1≤l≤k4l

}
(21)

Here δi,j is the inter-cluster distance between clusters i and
j, defined as the minimum distance between a pair of nodes
across clusters i and j, i.e., minxi∈Ci{minxj∈Cj d(xi, xj)}, Ci
is the set of nodes in cluster i. The distance metric, d(xi, xj),
is the edge cost or the shortest path cost between the nodes.
The intra-cluster distance of a given cluster l, 4l, is defined
as the maximum distance between a pair of nodes within that
cluster i.e., maxxl∈Cl

{maxxk∈Cl
d(xl, xk)}.

The Dunn index will be maximum when the minimum
inter-cluster distance is large and the maximum intra-cluster
distance is small. Larger values of the Dunn index corresponds
to good clusters. Therefore, the number of clusters (k) that
maximizes the Dunn index is taken as the optimal number of
clusters [22].

Algorithm 1 ClusPR: Clustering Phase

1: G(N ,L): where n , n
′ ∈ N

2: sort the links/edges l ∈ L in ascending order
3: k ← N number of disjoint sets(clusters)
4: kopt ← k
5: for l : {n, n′} ∈ L do
6: if n and n

′
are in disjoint sets then

7: merge sets’ of n and n
′

8: k ← k − 1
9: if D(k) > D(kopt) then

10: kopt ← k

11: return kopt
12: Kruscal’s Algorithm( kopt)

Finding the Optimal Number of Clusters: To find the
optimal number of clusters, Kruskal’s algorithm can be run
multiple times for different numbers of clusters, and the
number of clusters that maximizes the Dunn index value
will be considered the optimal. However, this approach can
be computationally cumbersome as it requires running the
clustering algorithm multiple times. To efficiently calculate
the optimal number of clusters, we propose an approach that
exploits the structure of Kruskal’s clustering algorithm.

Kruskal’s clustering algorithm is a hierarchical algorithm
in which the number of clusters decreases at each step until
the target number of clusters is reached. In the beginning, the
number of clusters is equal to the number of nodes in the
network (N). The number of clusters decreases step by step
from N until the target number of clusters is reached. The

Dunn index can be calculated in the middle of the MST based
clustering algorithm execution.

For example, in the beginning the Dunn index can be
calculated for N clusters, before two clusters are merged and
then the number of clusters decreases to N-1. The Dunn index
is then calculated for N-1 clusters before two sets are merged
and the cluster number becomes N-2 and so on. Algorithm
1 shows the pseudo code for efficiently calculating the Dunn
index inside the Kruskal’s clustering algorithm. At line 10, the
Dunn index for the current number of clusters k is calculated
using equation (21). If it is more than the Dunn index of the
temporarily optimal number of clusters (kopt), k will take the
place of kopt. After getting the optimal number of clusters
that has the maximum value of the Dunn index, Kruskal’s
clustering algorithm will finally be run for the optimal number
of clusters (line 13).

Number of NF Instances: Latency-sensitive flows have
less tolerance for path stretch. Thus, as noted in O4, a larger
number of NF instances might have to be instantiated to satisfy
the delay requirement for this type of flows. In this section, we
propose two ways for deciding the number of NF instances to
be created in the network. In the first approach, the minimum
number of instances required to serve all the flows in the set
(F) is calculated first, then these instances are divided among
the groups of flows. In the second approach, the minimum
number of instances needed to serve each group of flows is
calculated first, then the total number of instances instantiated
will be a summation of the number of instances created for
the groups.

First approach: this approach creates the minimum number
of instances needed to serve all the flows in the set F .

Theorem 1. Given a set of flows (F), each flow having an
average arrival rate of λ, out of which F v number of flows
require the v type NF. The minimum number of NF instances
of type v ∈ V (Ivmin), with service rate µv , required to serve
the set of flows is equal to Ivmin =

⌈
Fvλ
µv

⌉
.

Proof: refer to Appendix A.

The minimum number of instances of each type of NF (v ∈
V) needed to serve the flows in F is calculated using Theorem
1. The calculated number of instances will then be divided
among the groups of flows.
• For large numbers of flows: If the number of flows in
F is large, the minimum number of NFs calculated can
be proportionally divided among the groups of flows. Let
G represent the set of groups of flows. For each group
g ∈ G, the number of NF instances of type v instantiated
(Ivg ) is allocated in proportion to the number of flows
in the group that require NF type v (F vg ) to the total

number of flows that need v, F v . That is Ivg =
IvminF

v
g

Fv .
Since this fraction might not always be an integer number,
two conditions are used for assigning positive integer
values to Ivg . If

IvminF
v
g

Fv > 1, Ivg = bI
v
minF

v
g

Fv c. If

0 <
IvminF

v
g

Fv < 1, Ivg = dI
v
minF

v
g

Fv e. The latter condition
is used to instantiate one instance for groups that have a
smaller number of flows. This approach works best when
the number of flows is large (Ivmin is large).



7

• For small numbers of flows: If the number of flows is
small and the objective is to minimize the number of NF
instances, the clustering module could be skipped. In this
case, all flows will be in one group and Iv = Ivmin.

Second approach: In this approach the minimum number
of NF instances needed to serve each group of flows (g ∈ G) is
calculated using Theorem 1. ClusPR groups flows into intra-
cluster and inter-cluster sets of flows. If there are k access
clusters, there will be k(k−1)

2 number of cluster-pairs. Thus,
there will be a maximum of k groups of intra-cluster flows and
k2−k

2 groups of inter-cluster flows. The maximum number of
groups of flows in G is equal to k2+k

2 . Ivg,min is the minimum
number of NF instances of type v needed for serving the
set of flows in group g. The maximum total number of NF
instances instantiated by ClusPR (Ivmax) is a summation of
the number of instances instantiated for each of the groups.
That is, Ivmax =

∑
∀g Ivg,min.

Theorem 2. The number of NF instances of type v ∈ V
instantiated by ClusPR, Iv , is bounded by Ivmin ≤ Iv ≤
Ivmin + k2+k

2 where k is the number of access clusters.
Proof: refer to Appendix B.

From Theorem 2, it can be observed that the number of
NF instances created by ClusPR using the second approach
is upper bounded. And the upper bound is a function of the
number of access clusters.

2) Shortest Path: The second module in the initialization
phase is the shortest path module. The purpose of this module
is to obtain path information about the groups of flows by
identifying nodes that are on the shortest path of flows. The
shortest path between access nodes of the flows is calculated
using classical shortest path algorithms such as Dijkstra’s
algorithm. The nodes that are on the shortest paths are regarded
as the “best” candidates for hosting NF instances (as noted in
O1). In addition, one hop and two hops neighboring nodes
of the shortest path nodes are also identified. This is done
to increase the number of candidate nodes for hosting NF
instances as the shortest path nodes might not have enough
resources. The path information captured through the selected
shortest path and neighboring nodes is then transferred to the
placement phase.

Flows have various service chain requirements. To ensure
that NF instances placed on a shortest path node are needed
by flows whose shortest path passes through the node, each
shortest path node keeps a list. The list is used to record the
different types of services the flows require. In addition, the
nodes will have a weight that is used to record the number
of flows whose shortest path passes through the node. For
example, if a node is on the shortest path between three pairs
of access nodes that have 3, 5 and 10 flows between them,
the node will have a weight equal to 18. In addition, if these
flows require DPI, proxy and firewall services, the node will
have a list containing these three services.

Shortest path nodes are ordered based on their weight:
the higher the weight of a node the higher its priority for
hosting NF instances. In other words, nodes that are on the
shortest path of many flows are given higher priority to host

NF instances, as noted in (O1). If the weight of the nodes is
equal, then nodes that have higher processing power are given
priority over nodes that have lower processing power. Next the
NF placement decisions are made for each group of flows.

B. Placement Phase
In this phase, NF instances are placed on the shortest path

nodes and/or their neighboring nodes. The type and number of
NF instances required to serve each of the groups of flows have
been calculated in the initialization phase. The set of NF types
to be placed for a group of flows are ordered according to
their popularity, which is measured by the number of flows that
require the NF type. The most popular NFs are prioritized to be
placed first, considering (O3), with ties broken by prioritizing
the NF requiring more processing power. The number of each
type of NF to be instantiated is recorded. The placement phase
places NF instances for each group of flows.

Algorithm 2 ClusPR’s Placement Heuristic

1: Qn ← priority queue of candidate nodes
2: Qnf ← priority queue of NF types to be placed
3: iv ← number of instances of NF type v to be placed
4: ActiveNode← null
5: n.(list) list of node n ∈ Qn
6: C ∈ {0, 1} ← C = 1 if consolidation is used
7: T ← per NF utilization threshold for consolidation
8: while Qnf not empty do
9: v ← NF type from top of Qnf

10: while Qn not empty do
11: if ActiveNode and v ∈ ActiveNode.(list)) then
12: if C & ActiveNode has v& ρvn < T then
13: iv = iv − 1, Continue to next v in Qnf
14: else if n has resources then
15: Place v on ActiveNode
16: iv = iv − 1, Continue to next v in Qnf
17: else
18: n← top of Qn
19: if v ∈ n.(list) then
20: if C &n has v hosted and ρvn < T then
21: iv = iv − 1, continue to next v in Qnf
22: else if n has resources then
23: Place v on n, ActiveNode← n
24: iv = iv − 1, Continue to next v in Qnf

Bin-Packing: The placement heuristic, summarized in Al-
gorithm 2, does a bin-packing of the ordered NF types on the
set of best candidate shortest path nodes and their one hop
and two hops neighboring nodes. An NF instance is placed on
a shortest path node if and only if the node has the NF type
in its list, which contains a list of the NF types needed by the
flows whose shortest paths pass through the node. An NF type
that is on top of the priority queue of NF types is taken and
the queue of “best” candidate nodes is iterated through until
a node that has the NF type in its list is found. Once a node
is found, it is checked if the node has enough processing and
memory capacity to support the NF type.

If all the “best” candidate shortest path nodes do not have
enough resources to host the NF type, the algorithm checks for



8

one hop neighboring nodes of the shortest path nodes followed
by two hops neighboring nodes. Once a node is found the NF
is placed and the number of instances of the NF type to be
placed is decreased by one. The node will then be regarded
as an active node for placing the next NF type. Nodes that
are more than two hops away from the shortest path nodes
could also be considered for hosting NFs but the farther the
candidate nodes are from the shortest path nodes, the higher
the probability that flows will experience larger path stretch
by using NFs hosted on these nodes.

Diversity: The placement heuristic diversifies the types of
NFs placed on a node. That is, the algorithm prioritizes placing
different types of NF instances on one node rather than placing
multiple instances of the same type of NF on the node. If
different types of NFs are placed on one node, the probability
that a flow can get all of the services it requires from one node
will be high, as noted in (O2). Serving a flow’s chain in one
node has advantages such as decreasing the communication
cost and the delay experienced by the flow.

Next, the following NF type is picked from the queue of
NFs and placed on the active node provided that the NF is
found in its list. If not the algorithm returns to the queue of
the nodes, and looks for another node following the same steps
as above. After placing one instance of all types of NFs, the
algorithm returns back to the top of the queue of NFs and
places the second instances. This process is repeated until all
the instances of all NF types are placed.

Consolidation: The aim of the consolidation step is to share
placed NF instances among groups of flows to facilitate better
utilization of the NF instances. If consolidation is applied,
before placing an NF instance at a given node, the algorithm
checks if the node has already hosted this type of NF for
the other groups of flows. If the estimated utilization of the
instance already placed on the node, ρvn, is below a given
threshold (e.g.,50%), it is assumed that the instance has enough
available capacity to host the flows in the other group as well
so a new instance will not be instantiated. Consolidation will
result in the instantiation of fewer number of instances.

Higher values of the threshold encourage consolidation thus
leading to the instantiation of less number of NF instances.
However, this has a risk of increased path stretch and rejection
of flows. Comparatively lower threshold values discourage
consolidation. If the first approach (initialization phase) is used
to decide the number of instances, then the instances created
are already the minimum number of instances needed to serve
the set of flows so the consolidation step should not be applied.

Fig. 2: Example of paths in Rknj
and R for k=2

C. Routing Phase
The routing phase is responsible for making flow-level

decisions of assigning NF instances to flows and routing

flows end-to-end i.e., from their source node through the
assigned NF instances of their service chain and finally to their
destination node. In making these decisions, two objectives are
considered: satisfying delay requirements of flows and load
balancing among NF instances.

A flow’s routing problem is modeled as a multi-stage graph
in which the stages of the multi-stage graph represent the
services in the service chain of the flow. The vertexes of a
stage of the graph represent the NF instances the flow can
be assigned to. At each stage, a flow can be assigned to one
of the NF instances that are placed for its group. These are
the NF instances placed on the shortest path nodes and their
neighboring nodes of the flow’s group.

For constructing the multi-stage graph, the costs on the links
of the graph also need to be calculated. The costs can be
calculated using shortest path algorithms such as Dijkstra’s
algorithm. The shortest path costs of the links from the source
node to the nodes hosting the first NF instance of the chain
and the links from the destination node to nodes hosting
the last NF of the service chain need to be calculated for
each of the flows. The costs of the links between the stages
(nodes hosting NFs in the chain) are calculated once, which
decreases the computational complexity of constructing the
graph. We propose a new algorithm that is based on the ideas
of dynamic programming and incorporates novel methods to
enable solving the flow routing problem considering both end-
to-end delay and the utilization level of instances. Before
explaining the algorithm, the dynamic programming based
shortest path algorithm is explained for completeness.

To formulate the dynamic program, two distance notations
are adopted: C(n, n

′
) and D(nj , df ). C(n, n

′
) is used to

represent the cost of the shortest distance between nodes n and
n
′

that belong to two consecutive stages (NFs in the chain).
e.g., C(sf , n1) represents the cost of the shortest distance
between the source node of flow f (sf ) and node n1 that hosts
the 1st service instance. D(nj , df ) represents the shortest
distance between node nj that is hosting the jth service of
the flow to the destination node, e.g., D(n2, df ) represents
the shortest distance from node n2 that is hosting the 2nd

service to the destination node (df ).
The dynamic program formulation is given as

D(sf , df ) = min
n1∈N1

(C(sf , n1) +D(n1, df )) (22)

D(nj , df ) = min
nj+1∈Nj+1

(C(nj , n(j+1)) +D(n(j+1), df ))

(23)
Nj is the set of nodes that are on the shortest path and one

hop and two hops away from the shortest path and are hosting
the flow’s jth service type for the group the flow belongs to.
The dynamic program is solved starting from the destination
node until the source node is reached.

1) The proposed flow routing algorithm: The objectives
of the proposed flow routing algorithm are to satisfy the
delay requirement of the flow and balance the load among
NF instances. To achieve these, the algorithm first (1) finds
a set of routes that satisfy the delay requirement of the flow,
then (2) out of these paths a flow is assigned to a path that
has the minimum maximum NF utilization (to balance the load
among NF instances).



9

To find a set of routes that could potentially satisfy the delay
requirement of the flow, k shortest paths are saved from a node
in a stage of a graph to the destination. That is the distance
D(nj , df ), which represents the shortest distance between a
node nj that is hosting the jth service of the flow to the
destination node, is extended to a set of paths, Rknj

, which
has k elements (k shortest paths from a node nj of the jth

stage to the destination). Fig. 2 shows an example of the paths,
which are highlighted, saved for k=2. Rnj represents a set of
paths from a node nj that is hosting the jth service of flow f
to the destination node, so Rknj

⊆ Rnj
.

Nodes found in the last stage of the multi-stage graph have
a direct link with the destination node, so for each node in the
last stage, nJ ∈ NJ , RknJ

will have one element only. The
distance from nodes in the last stage, J , to the destination node
i.e., D(nJ , df )) is calculated using shortest path algorithms.
A set of paths from nodes in the J−1 stage to the destination
node (RnJ−1

) can be calculated as:

RnJ−1
= {C(nJ−1, nJ) +D(nJ , df ) : (24)

nJ ∈ NJ , nJ−1 ∈ NJ−1}

The set of k shortest paths from a node in the J − 1 stage
to the destination node (RknJ−1

) is taken from the set RnJ−1
.

For a node in a stage j ∈ {1 . . . J − 2}, a set of distances
(Rnj

) can be calculated as

Rnj
= {C(nj , nj+1) +D(nj+1, df ) : (25)

D(nj+1, df ) ∈ Rknj+1
, nj+1 ∈ Nj+1, nj ∈ Nj}

The set Rnj is constructed by using the set of k shortest paths
to the destination saved in the j + 1th stage (i.e., Rknj+1

) and
costs between nodes in the stages j and j+1 of the multi-stage
graph, C(nj , nj+1). Similarly, a set of k shortest distances
(Rknj

) is found from the set Rnj
for each node nj ∈ Nj . That

is the k shortest paths from all NFs of a stage to the destination
node are calculated for the stages one to J − 1. Finally a set
of source to destination end-to-end paths are calculated as:

R = {C(sf , n1) +D(n1, df ) : (26)
D(n1, df ) ∈ Rkn1

, n1 ∈ N1}

If there are N1 number of nodes in N1 i.e., the first stage
of the graph, with each node having k shortest paths to the
destination, there will be in total kN1 number of source to
destination end-to-end paths in the set R.

Out of these paths in R, the set of paths that are able to
fulfill the delay requirement of the flow (Rd) are identified.
Then, the objective of balancing the load among the NF
instances is considered by adopting the min-max fairness. The
maximum utilization of the NF instances on each of the routes
inRd is calculated. The route that has the minimum maximum
NF utilization is then chosen for serving and routing the flow.
In the situation where there are no routes that can satisfy the
delay requirement of the flows (Rd is empty), the flow is
assigned to a route that has the minimum end-to-end delay.

Theorem 3. ClusPR has a complexity of O(FNgL logN)),
where Ng is the average number of shortest path and neigh-
boring nodes per group. F,N and L are the number of flows,
nodes and links respectively.

Proof: refer to Appendix C.

V. ONLINE PLACEMENT AND FLOW ROUTING:
INCREMENTAL CLUSPR(ICLUSPR)

ClusPR is an offline algorithm that performs NF placement
and flow routing decisions for a set (F) of flows, i.e., the
information of all flows is known to ClusPR beforehand. In an
online environment, flows will arrive sequentially so resource
allocation decisions need to be made for the flows that arrive
without knowledge of future incoming flows. iClusPR is an
online NFV resource allocation algorithm. It is developed
based on ClusPR so it has a design similar to ClusPR (shown
in Fig. 1). iClusPR performs dynamic scaling specifically
horizontal scaling that is adjusting the number of NF instances
depending on the traffic demand. iClusPR makes resource
allocation decisions on a time slot basis. That is flows that
arrive at a given time will be assigned resources at the
subsequent decision time slot. The modifications made in
iClusPR for each of the modules are explained below:

A. Initialization phase

1) Clustering: The clustering module of iClusPR serves the
same purpose as in ClusPR, that is to group flows based on
the proximity of their path. The same clustering algorithm
as in ClusPR is used. iClusPR clusters access nodes once
when the algorithm is run for the first time on a network
topology. Upon arrival of flows, the clustering module simply
groups flows based on their source and destination nodes.
Then, the NF instances needed to serve each group of flows
are calculated using the second approach, which is explained
in the initialization phase of ClusPR.

2) Shortest Path: This module of iClusPR is similar to
its counterpart in ClusPR and it extracts path information by
identifying nodes that are on the shortest path of flows. This
calculation needs to be performed upon arrival of flows.

B. Placement phase

This phase performs dynamic scaling by adjusting the
number of NF instances instantiated in the network. It takes as
input the shortest path nodes and their one hop and two hops
neighboring nodes, the NF instances created on these nodes as
well as the type and number of NF instances needed to serve
each group of flows.

The NF instances instantiated in the previous decision slots
can serve the incoming flows as well provided that they have
enough available capacity. iClusPR uses a threshold based
approach to decide if an NF instance is able to serve the
incoming flows or not. That is NF instances whose residual
or available capacity is above the threshold value are assumed
to have enough available capacity for hosting the incoming
flows. Higher threshold values encourage the instantiation
of new NF instances and might lead to overprovisioning
or underutilization of resources. On the other hand, lower
threshold values encourage the use of existing NF instances
but could result in over-utilization of resources and rejection
of flows.

Similar to ClusPR’s placement heuristics, iClusPR orders
the set of NF types needed to be created based on their
popularity, which is measured by the number of flows that
need the NF type. The most popular NF type is prioritized to



10

!

"!

#!

$!

%!

&!!

&"!

&#!

' &' "' (' #' '' $' )' %' *' &!' &&' &"' &(' &#' &''

+
,
-
.
/
01
2
31
34
2
5
6

7/489:-6;

<4,6=> ?" 7/@429ABC

(a) Distribution of total delay

!

"!

#!!

#"!

$!!

$"!

%!!

! " #! #" $! $" %! %" &! &" "! "" '! '" (! (" )! )" *! *" #!!

+
,
-
.
/
0
12
31
34
2
5
6

789:11690/9;:<-6=

>4,67? @$ A/B42CDEF

(b) Distribution of path stretch

Fig. 3: Delay performance with service chain length=2

!

"!!

#!!

$!!

%!!

&'()*+ ," -./'01234

5
(
6
7
.
89
0
:9
:'
0
;
)

<=62>>.= -.'?19@?>2):2.=

(a) Network utilization, chain = 2

! " # $ %

&'()*+

,#

-./'01234

(b) Average delay, chain = 2

! " #! #" $!

%&'()*

+$

,-.&/0123

(c) Worst delay, chain = 2

! " #! #" $! $"

%&'()*

+$

,-.&/0123

(d) Worst delay, chain= 4

Fig. 4: Network utilization, average and worst-case normalized total delays for different chain lengths

!

"!

#!!

#"!

$!!

! #! $! %! &! "! '! (! )! *! #!! ##! #$! #%! #&! #"! #'!

+
,
-
.
/
0
12
31
34
2
5
6

789:1;90/9<:=-6>

?4,67@ A$ B/C42DEFG

Fig. 5: Path stretch distribution, chain length = 4

be placed first. The NF type that is on the top of the NF queue
is picked first and the placement heuristic checks whether there
is an existing NF of the same type whose residual capacity is
above the threshold specified. If so, the algorithm goes to the
next NF type without instantiating a new instance. If there
are no existing NF instances of the same type, a node that
is on top of the selected nodes queue is picked and a new
instance of the NF type is instantiated following the same steps
as in ClusPR’s placement heuristic. Besides creating new NF
instances, an instance might also be removed from the network
if all the flows it was serving have departed.

C. Routing phase

In this phase, flows are assigned NF instances and routed
end-to-end that is from their source node through the NF
instances of its chain finally to their destination node. The
same algorithm as in the routing phase of ClusPR is used.

VI. EXPERIMENTAL RESULTS

We analyze the performance of ClusPR and iClusPR ex-
tensively. ClusPR’s performance is also compared with two
alternatives, E2 [8] and [11] (referred to as “Deploying” here),
on realistic networks. We report results on experiments with a
practical ISP network topology, the Rocketfuel [23] topology

Fig. 6: Rocketfuel topology AS 1221:100 nodes and 294 links

AS 1221 shown in Fig. 6 used as a test network. The nodes in
the topology are classified as “access” (in blue), “edge” (green)
and “core” (orange) nodes, in a manner similar to [24]. NFs
are considered to be hosted on (or adjacent to) edge and core
nodes. It is assumed that each host has 4 CPU cores and 8GB
memory. Every NF instance requires one CPU core and 2GB
memory, with a service rate of 10Mbps. There are five types
of NFs (e.g., Firewall, DPI, NAT, IDS, and Proxy).

All the links have a capacity of 1 Gbps, and the delays
on the links are: access-edge: 3 ms; edge-core: 10 ms; core-
core: 40 ms. The source and destination nodes of flows as well
as the services required by the flows are generated randomly.
The arrival rate of each flow is assumed to follow a log-normal
distribution [25] with an average rate of 0.5 Mbps. The length
of the service chain for each flow is assumed to vary in the
range of 2 to 4 NFs and the service types in the chain for each
flow are selected randomly.

The performance metrics used are total delay, path stretch
(measured as the difference between the total delay and
shortest path delay), network utilization (measured by the
number of flows admitted and also by those whose delay
requirement is satisfied), number of NF instances created and
the per-NF utilization level. These performance metrics are
compared for different setups such as variable chain length
and distribution of node processing capacity.



11

!

"!

#!!

#"!

$!!

! " #! #" $! $" %! %" &! &" "! "" '!

(
)
*
+
,
-.
/
0.
01
/
2
3

4567.36-,6879*3:

;/-, <=>,.?.;/-,

(a) Distribution of path stretch

!

"!!

#!!

$!!

%!!

&'() *+,)-.-&'()

/
0
1
2
)
(-
'
3-
34
'
5
6

7+1899)+ :)4;<-6;98638)+

(b) Network utilization

!"!!

!"#!

!"$!

!"%!

!"&!

'"!!

'"#!

' # ( $ ) % * & +

,
-
.

-/0123456789/59:196;

,78/ <=>/?@?,78/

(c) CDF of the Normalized Delay

Fig. 7: Effect of using edge computing nodes

A. Evaluation of ClusPR

Total Delay and Path Stretch:
The total delay of a flow is measured as the summation

of the delays on the links it is routed through. Fig. 3 shows
the total delay and path stretch distributions with 720 flows
that have a two NFs long service chain. Both E2 and ClusPR
instantiated 74 instances, which is the minimum number of
instances needed for the flows.

ClusPR has a shorter path stretch compared to both De-
ploying [11] and E2 for the same number of instances. The
performance gain is partly because ClusPR uses the flows’
path information in NF placement decision-making and it
diversifies the type of NFs placed on a node, thus increasing
the probability that a flow can get all of the services of its
chain at one node.

Average and Worst-case Delays: Fig. 4b and 4c show
the average and worst-case total delays, respectively. They
are normalized with respect to the shortest path delay of
flows. ClusPR is able to achieve a worst-case normalized delay
that is 10× less than the worst-case normalized delay of E2
and Deploying. The average normalized delay of ClusPR is
1.2− 1.6× less compared to E2 and Deploying.

Network Utilization: To analyze the delay satisfaction of
flows, flows are set to have a specified delay requirement
in terms of the maximum normalized total delay that they
can tolerate. The normalized delay requirement of flows is
assumed to be uniformly distributed between 1 − 2.5× their
shortest path delay.

Fig. 4a shows the number of flows that are admitted
out of the 720 flows and those whose delay requirement is
satisfied. ClusPR, E2 and Deploying achieve similar network
utilization in terms of the number of admitted flows, but their
delay performance differs considerably, which also results
in a noticeable difference in terms of the number of flows
whose delay is satisfied. The delay difference is due to the
following underlying reason. For E2, delay or path stretch
is not considered in the heuristic. Deploying, on the other
hand, prioritizes maximizing network utilization and does not
balance the load across NF instances. ClusPR satisfies the
delay requirement of 95% of the flows while E2 and Deploying
managed to fulfill the delay requirement of 60% and 70% of
the flows, respectively. ClusPR satisfied the delay requirement
of 25− 35% more flows compared to E2 and Deploying.

Effect of Service Chain Length: We now analyze the effect
of the service chain length. Fig. 5 demonstrates the path stretch
distribution of 650 flows with a service chain length of four.

Both E2 and ClusPR instantiated 132 NF instances for serving
the flows.

In comparison to the path stretch experienced by flows
with service chain length=2 (Fig. 3b), flows with a service
chain length of four experienced a larger path stretch. This
is because flows with longer service chains need to traverse
through multiple NF instances which might not be co-located
in the same node. The worst-case delay is shown in Fig. 4d.
Compared to the worst-case delay experienced for service
chain length of 2 (Fig. 4c), ClusPR’s worst-case delay for
a chain length of 4 has increased slightly from 5× to 6×
the shortest path delay. E2 and Deploying have observed 6×
and 7× increase in the worst-case normalized delay. Thus,
ClusPR can adapt better to the change in the service chain
length compared to both E2 and Deploying.

Effect of edge computing nodes: In this section, the effect
of using edge computing nodes as hosts of NF instances is
analyzed. Two network setups are considered. In the first setup
the processing power is concentrated in three centralized (core)
clouds. Each of the clouds has 44 cores. Thus, in total there
are 132 CPU cores in the network. In the second setup, some
of the processing power of the central clouds is distributed to
the edge nodes. The three central cloud nodes have 24 cores
each while 30 edge nodes have two cores each. We will refer
to this setup as “Edge + Core” and the first setup as “Core”.
Thus, in total the “Edge + Core” network setup will also have
132 CPU cores.

Fig. 7a shows the path stretch observed by 700 flows in the
“Edge + core” and “Core” network setups. The “Edge + core”
setup has a better performance as more flows experience zero
or a small amount of path stretch compared to the “Core”
setup. As can be inferred from the CDF of the normalized
delay shown in Fig. 7c, the “Edge + core” setup has a smaller
worst-case and average total delays. The number of flows that
are admitted and those whose delay requirement is satisfied is
shown in Fig. 7b. The delay requirement of 75% and 86%
of the flows is satisfied in the “Core” and “Edge + core”
setups respectively. These results demonstrate that hosting
NF instances on edge computing nodes also has a significant
performance gain by decreasing the latency.

B. Effect of load balancing across NF instances

ClusPR’s flow routing algorithm balances the load among
the instantiated NF instances. In this section, ClusPR’s load
balancing approach is analyzed and compared with the no load
balancing approach, which assigns to flows NFs that are on



12

n1

n2

n3

n5

n6

n9

n7

n4

Cloud
n8

(a) Test network

!

!"#

!"$

!"%

!"&

'

'"#

'"$

()*+,- (,./0 ()*+,- (,./0

12 1%

3
*
4
5
6
78
9
:8
3
;
8<
1
+=
>
1
?
6
+ ,79@A ;<76B>)) CDE D,C 3FG

(b) NFs on nodes n3 & n6

0

10

20

30

40

50

60

70

80

90

100

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

C
lu

sP
R

C
P

L
E

X

Proxy Firewall IDS DPI NAT

N
F

 U
ti

li
za

ti
o

n
(%

)

n3 n6

(c) Per-NF utilization

Fig. 8: Comparison between ClusPR and CPLEX

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

C
D
F

NF utilization

No Load Balance ClusPR (k=1)

ClusPR (k=2) ClusPR (k=3)

ClusPR (k=4)

(a) CDF of NFs utilization

!"!!

#!"!!

$!"!!

%!"!!

&!"!!

'!!"!!

'#!"!!

()*+),-*

.,+,/01

2+3456*789': 2+3456*789#: 2+3456*789;:

<
1
+,
=
*4
,
>?
4@
?1
-
*@
+)
A
47
B
:

(b) Network utilization

Fig. 9: Effect of load balancing

the shortest path of the multi-stage graph model of the flow,
provided the NFs are not 100% utilized. ClusPR’s flow routing
algorithm saves k shortest paths from a node at a given stage
to the destination node, then it balances the load considering
the multiple paths saved. k is an algorithmic parameter and
the impact of the value of k is also assessed.

In Fig. 9a the utilization of instances when no load balanc-
ing is applied is compared with ClusPR with k varying from
one to four. When no load balancing is applied, some of the
instances have very low utilization while some other instances
are highly utilized, going up to 100%. For ClusPR with k=1,
there is a better distribution of load among the instances. For
higher values of k, the load is balanced across the instances
with most instances having a utilization between 65%-75%.
There is only a slight difference in the utilization level of
instances for k more than 3. As a result of the load balancing,
ClusPR is able to satisfy the delay requirement of 8% more
flows compared to the no-load balancing approach (Fig. 9b).

C. Comparison of ClusPR and ILP Model
The performance of ClusPR is compared with the proposed

ILP model (solved using CPLEX) for a small Test network
topology with 9 nodes and 11 links shown in Fig. 8a. Nodes
n3, n4, n5, n6 and n8 are able to host NF instances and have
a processing capacity of 5,4,4,5 and 10 cores, respectively.

The number and type of instances instantiated for serving
50 flows are shown in Fig. 8b. Two nodes, node n3 and n6,
which are on the shortest path of flows are chosen to host NFs
by both CPLEX and ClusPR. As can be seen from the figure,
ClusPR has created the same number and type of instances as
the optimal CPLEX solution. The utilization of the instances
is shown in Fig. 8c. ClusPR balances the load across the NF
instances and the utilization is only very slightly different from
the utilization of the instances in the CPLEX solution. Both
ClusPR and CPLEX are able to satisfy the delay requirement
of all 50 flows. For the execution time, CPLEX takes 1 hour
while ClusPR takes less than 1 second. to get the solution,
on the same computer. This indicates that, ClusPR is able to
reach a near optimal result, but is much faster.

D. Evaluation of iClusPR

The performance of iClusPR is analyzed and compared with
ClusPR, and the effect of the parameter, α, which is a per-NF
utilization threshold value, is assessed. In this evaluation, a
flow-level simulation was performed.

Simulation setup: The flow arrival process is assumed to be
Poisson with an average arrival rate of 1 flow per time unit.
The sojourn time of flows is exponentially distributed with an
average of 700 time units. The decision time slot is assumed to
be 40 time units long. Under these settings, the network can
be modeled as an M/M/∞ system. From queuing theory,
theoretically, the average number of flows expected in the
network is 700.

Fig. 10a shows the number of flows in the system at
different decision time slots. In total, by time slot 125, 5000
flows have arrived. As expected, the number of flows in the
system converges to the theoretical average value i.e., 700.
The number of NF instances created for different values of the
threshold value (α) is shown in Fig. 10b. For α = 0.8, a new
NF instance will be instantiated if the existing NF instances
have less than 80% available capacity. Thus, the larger the
value of α the more the number of instances created. iClusPR
also balances the load across the NF instances as can be seen
from Fig. 10c. Figs. 11a and 11b show the percentage of flows
whose delay requirement is satisfied and the worst-case delays,
respectively, for different threshold values. For α = 0.2, the
network has the lowest performance of all and α = 0.4 and
0.8 have almost similar performance. An implication is, α
values that are in the middle e.g., α = 0.4 or 0.5, give a
good trade-off between the number of NF instances and the
network performance (delay, utilization).

VII. RELATED WORK AND DISCUSSION

In the literature, a number of approaches have been pro-
posed for the NFV-RA problem. A detailed survey can be
found in [26]. In the following, we review the most related
and recent works.

ILP models for the joint NF placement and flow routing
problem have been presented in papers such as [27], [28] and
[29]. In addition to the models, heuristic algorithms (based on
the models) have been proposed in [27] and [28] and a greedy
heuristic is proposed in [29]. A shortcoming of the [27] and
[29] models is that they do not keep the routing order among
services of a chain. In addition, the ILP models are generally
not scalable due to the complexity of the problem.

Recently, heurisitc approaches have been proposed to tackle
the scalability problem associated with the ILP models. Here



13

!

"!!

#!!

$!!

%!!

&!!

'!!

(!!

)!!

" )

"
&

#
#

#
*

$
'

%
$

&
!

&
(

'
%

(
"

(
)

)
&

*
#

*
*

"
!
'

"
"
$

"
#
!

+
,
-
.
/
0
12
31
34
2
5
6

7/89692:1;9-/1642;

(a) Number of flows

!

"!

#!

$!

%!

&!!

&"!

& %

&
'

"
"

"
(

)
$

#
)

'
!

'
*

$
#

*
&

*
%

%
'

(
"

(
(

&
!
$

&
&
)

&
"
!

+
,
-
.
/
01
2
31
45
67
8
5
9
/
6

:/946425174-/16;27

4<;,6=>1?1!@1!A"B 4<;,6=>1?1!@1!A#B

4<;,6=>1?1!@1!A%B <;,6=>

(b) Number of instances

!

"!

#!

$!

%!

&!

! "! #! $! %! &! '! (! )! *! "!!

+
,
-
.
/
01
2
31
+
4
15
6
78
9
6
:
/
7

+41;85<5=98526>?@

5A<,7BC1>1!D1!E#@ 5A<,7BC1>1!D1!E%@

5A<,7BC1>1!D1!E)@

(c) Per-NF utilization

Fig. 10: Evalutaion of iClusPR for different values of per-NF utilization theshold(α)

!

"!

#!

$!

%!

&!!

&"!

'()*+,-./.!0.

!1"2

'()*+,-./.!0.

!1#2

'()*+,-./.!0.

!1%2

()*+,-

3
4
)5
6
.+
5
7'
+8
'4
9
.8
):
;
+.
/<
2

(a) Network utilization

!

"

#

$

%

&!

'()*+,-./.!0.

!1"2

'()*+,-./.!0.

!1#2

'()*+,-./.!0.

!1%2

()*+,-

3
4
5+
67
8
9
+:
.;
:
)9
<

(b) Worst-case Delay

Fig. 11: Evalutaion of iClusPR

we broadly divide the algorithms into two classes. The first
class includes algorithms that avoid path stretch by serving
the flows in their path. For example, the resource allocation
algorithm in, CoMb [9], [10] and centrality-based heuristics
such as [30] and [31] belong in this class. In CoMb, a flow
is constrained to use NF instances running in the same node
that is found on its path. However, the CoMb approach can
considerably limit the utilization of the network since flows
are constrained to stay on their path and use a single node for
all their services. Relatively, the centrality-based heuristic in
[31] has a relaxed restriction as it allows a flow to use NFs
placed on more than one node, but still the nodes have to be
located on the shortest path of the flow.

In the second class are algorithms that try to increase the
utilization of the network disregarding the path stretch. For
examples, algorithms proposed in [8], [11], [12], [32] and [33]
belong in this class. In [11], referred to as Deploying in this
paper, an algorithm that tries to make better use of network
resources by promoting flows to reuse instances which have
been created instead of instantiating new ones is proposed.
Another heuristic approach is the E2 framework [8] which
is developed for allocating NF instances and routing flows
inside a central office or small data centers. The placement is
modeled as a graph partitioning problem and solved using a
modified Kernighan-Lin heuristic. Flows are assigned to NFs
balancing load across the NF instances.

The proposed schemes, ClusPR and iClusPR, take an ap-
proach that can be regarded as being in the middle of these
two classes. They do not impose strict restrictions on flows
to not deviate from their shortest path. This is because flows
might have a relaxed delay requirement which may not be
violated even if they deviate from their shortest path. They
also do not disregard the effect of path stretch as methods in
the second class. ClusPR and iClusPR rather find a balance
between minimizing the path stretch, maximizing network
utilization and balancing the load among the NF instances.
ClusPR and iClusPR are targeted at general networks where
resources are distributed in the networks. For networks that
have minimal delay between the nodes, as for example in

a data-center network, we expect that the performance gain
with ClusPR will not be as significant, compared to [8]
and [21]. However, ClusPR and iClusPR address the more
general problem of having NFs placed at diverse locations,
including multiple data-centers across a WAN, which would
be required to address scale and diversity typically observed
in service provider networks. We believe that ClusPR’s ability
to consider the trade-off across multiple dimensions will prove
invaluable in production networks

VIII. CONCLUSION

The flexibility brought about by NFV can potentially change
the way networks are managed and services are provisioned.
However, efficient resource allocation algorithms are needed
to instantiate NF instances when and where needed, and route
flows through them accordingly. A comprehensive ILP model
is provided for the NFV-RA problem. Based on the useful
insights obtained from the optimal solution of the ILP model,
we develop an offline heuristic algorithm, ClusPR, that is
scalable and balances across multiple objectives. In addition,
an online algorithm, iClusPR, that dynamically adjusts the
number of NFs depending on the traffic demand and network
state is presented. By factoring in information about the path of
flows into the NF placement decision making and diversifying
the type of NFs placed on a node, ClusPR and iClusPR are
able to considerably minimize the path stretch and maxi-
mize the network utilization while balancing the load across
NF instances. Compared to the state-of-the-art approaches,
ClusPR manages to decrease the average normalized delay by
a factor of 1.2−1.6× and the worst-case delay by 10×, while
admitting the same or slightly larger number of flows. At the
same time, ClusPR satisfies the delay requirement of 25-35%
more flows and balances the load across NF instances. The
online algorithm iClusPR is also able to perform dynamic NF
scaling while having performance that is comparable to that
of ClusPR.

APPENDIX A
Proof of Theorem 1:

In order to have a stable system, a server (NF instance)
should not be loaded more than its service rate. The aggregate
arrival rate of flows that require an NF type v is equal to
F vλ. The total service rate of v type NF instances should
be more than the aggregate arrival rate of the flows, that is
F vλ < Ivminµv . Where Ivmin is the minimum number of v
type NF instances. Thus, Ivmin = dF

vλ
µv e



14

APPENDIX B

Proof of Theorem 2:
For each of the group of flows g ∈ G, ClusPR calculates the

minimum number of NF instances needed to serve the flows
using Theorem 1. The maximum total number of NF instances
instantiated is a summation of the minimum number of NF
instances calculated for each of the groups, that is Ivmax =∑
∀gd

Fv
g λ

µv e, F vg is the number of flows in group g that require

NF type v. The maximum value Ivmax can take is
∑
∀g(

Fv
g λ

µv +

1). Where
Fv

g λ

µv is an integer quotient of the float division.
Since there are a maximum of k2+k

2 number of groups.

Ivmax =
∑
∀g

(
F vg λ

µv
+ 1) =

∑
∀g F

v
g λ

µv
+
k2 + k

2
. (27)

since
∑
∀g F

v
g = F v ,

Ivmax =
F vλ

µv
+
k2 + k

2
= Ivmin +

k2 + k

2
(28)

According to Theorem 1, the minimum number of instances
that need to be instantiated to serve the set of flows (F)
is Ivmin. Thus, the number of NF instances instantiated by
ClusPR(Iv) is bounded by

Ivmin ≤ Iv ≤ Ivmin +
k2 + k

2
(29)

APPENDIX C

Proof of Theorem 3:
The initialization phase has two modules these are cluster-

ing and shortest path. The clustering module uses Kruskal’s
algorithm which has a complexity of O(LlogL). The shortest
path utilizes Dijkstra’s shortest path algorithm which has
a complexity of O(L logN ). Thus the complexity of the
initialization phase is O(L logL + L logN ).

The complexity of the placement heuristics depends on, the
number of flow groups, number of instances to be placed and
the number of nodes that can host NFs. From Theorem 1, the
number of instances to be placed can roughly be approximated
by the number of flows (F ). The placement heuristic is run
for each of the group of flows. For each group, ClusPR
utilizes the nodes that are on the shortest path of flows and
their neighboring nodes as candidate nodes for placing NF
instances. Let Ng be the number of these candidate nodes and
G be the total number of groups. Thus, the complexity of the
placement heuristics will be O(GFNg).

The routing of a flow is modeled as a multistage graph.
The maximum number of vertices of the graph is equal to
JNg where J the number of stages of the graph and Ng is
the number of candidate nodes. The number of edges between
the stages of the graph is equal to Ng(Ng − 1)(J − 1). In
addition, there will be 2Ng edges between the source node of
the flow and the nodes in the first stage and the destination
node and nodes in the last stage of the graph. Simplifying, in
total the multi-stage graph will have N2

g+Ng edges. Dijkstra’s
shortest path algorithm is used to find the cost of the edges,
which will have a complexity O(L logN(FNg +N2

g )).

ClusPR’s routing algorithm has complexity proportional to
the complexity of a dynamic programming shortest path algo-
rithm whose complexity is in the order of the summation of the
number of edges and vertices of the multi-stage graph. Since
the graph is constructed for each of the flows, the complexity
of solving the multi-stage graph for all of the flows will be
O(F (N2

g+Ng+JNg)). Thus, the complexity of the routing al-
gorithms is O(L logN(FNg+N

2
g )+F (N

2
g+Ng+JNg)). The

complexity of ClusPR will be a summation of the complexity
of the three phases and can be simplified to O(FNgL logN)).

ACKNOWLEDGMENT

The work for this paper was performed in the context of
the EU FP7 Marie Curie Actions project Grant Agreement
No. 607584 (the CleanSky project).

REFERENCES

[1] Y. Woldeyohannes et al., “A scalable resource allocation scheme for
NFV: Balancing utilization and path stretch,” in Innovations in Clouds,
Internet and Networks (ICIN), 2018 21th Conference on. IEEE, 2018.

[2] J. Sherry et al., “Making middleboxes someone else’s problem: network
processing as a cloud service,” ACM SIGCOMM Computer Communi-
cation Review, vol. 42, no. 4, pp. 13–24, 2012.

[3] W. Zhang et al., “Opennetvm: A platform for high performance network
service chains,” in Proceedings of the 2016 workshop on Hot topics in
Middleboxes and Network Function Virtualization. ACM, 2016, pp.
26–31.

[4] Y. Zhang et al., “Steering: A software-defined networking for inline
service chaining,” in Network Protocols (ICNP), 2013 21st IEEE Inter-
national Conference on. IEEE, 2013, pp. 1–10.

[5] A. L. Andreas Lemke, “Why service providers need an NFV platform:
Strategic white paper,” Tech. Rep., January, 2015.

[6] A. Gember et al., “Stratos: A network-aware orchestration layer for
middleboxes in the cloud,” Technical Report, Tech. Rep., 2013.

[7] M. Xia et al., “Network function placement for NFV chaining in
packet/optical data centers,” in Optical Communication (ECOC), 2014
European Conference on. IEEE, 2014, pp. 1–3.

[8] S. Palkar et al., “E2: a framework for NFV applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 2015.

[9] V. Sekar et al., “Design and implementation of a consolidated middlebox
architecture,” in Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), 2012.

[10] Y. Sang et al., “Provably efficient algorithms for joint placement
and allocation of virtual network functions,” in Proceedings of IEEE
INFOCOM 2017. IEEE, 2017, pp. 829–837.

[11] T.-W. Kuo et al., “Deploying chains of virtual network functions:
On the relation between link and server usage,” in INFOCOM, 2016
Proceedings IEEE. IEEE, 2016.

[12] S. Khebbache et al., “Virtualized network functions chaining and routing
algorithms,” Computer Networks, vol. 114, pp. 95–110, 2017.

[13] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on. IEEE, 2014, pp. 7–13.

[14] Z. A. Qazi et al., “Simple-fying middlebox policy enforcement using
sdn,” in ACM SIGCOMM computer communication review, vol. 43,
no. 4. ACM, 2013, pp. 27–38.

[15] W. Zhang et al., “SDNFV: flexible and dynamic software defined control
of an application-and flow-aware data plane,” in Proceedings of the 17th
International Middleware Conference. ACM, 2016, p. 2.

[16] R. T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: new insights,” Structural and multidisciplinary
optimization, vol. 41, no. 6, pp. 853–862, 2010.

[17] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48–50, 1956.

[18] C. T. Zahn, “Graph-theoretical methods for detecting and describing
gestalt clusters,” IEEE Transactions on computers, vol. 100, no. 1, pp.
68–86, 1971.

[19] O. Grygorash et al., “Minimum spanning tree based clustering algo-
rithms,” in 2006 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’06). IEEE, 2006, pp. 73–81.



15

[20] N. Bolshakova and F. Azuaje, “Cluster validation techniques for genome
expression data,” Signal processing, vol. 83, no. 4, pp. 825–833, 2003.

[21] J. C. Dunn, “A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters,” Journal of cybernetics,
vol. 3, no. 3, pp. 32–57, 1974.

[22] U. Maulik et al., “Performance evaluation of some clustering algorithms
and validity indices,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 24, no. 12, pp. 1650–1654, 2002.

[23] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 133–145, 2002.

[24] A. Afanasyev et al., “Interest flooding attack and countermeasures in
named data networking,” in IFIP Networking Conference, 2013. IEEE,
2013, pp. 1–9.

[25] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics
and origins of internet flow rates,” in ACM SIGCOMM Computer
Communication Review, vol. 32, no. 4. ACM, 2002, pp. 309–322.

[26] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[27] B. Addis et al., “Virtual network functions placement and routing
optimization,” in Cloud Networking (CloudNet), 2015 IEEE 4th Inter-
national Conference on. IEEE, 2015, pp. 171–177.

[28] A. Mohammadkhan et al., “Virtual function placement and traffic
steering in flexible and dynamic software defined networks,” in Local
and Metropolitan Area Networks (LANMAN), 2015 IEEE International
Workshop on. IEEE, 2015, pp. 1–6.

[29] M. C. Luizelli et al., “Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. IEEE, 2015, pp. 98–106.

[30] M. Bouet et al., “Cost-based placement of vdpi functions in NFV
infrastructures,” International Journal of Network Management, vol. 25,
no. 6, pp. 490–506, 2015.

[31] S. Ahvar et al., “CCVP: Cost-efficient centrality-based VNF placement
and chaining algorithm for network service provisioning,” in Network
Softwarization (NetSoft), 2017 IEEE Conference on.

[32] M. C. Luizelli et al., “A fix-and-optimize approach for efficient and
large scale virtual network function placement and chaining,” Computer
Communications, 2016.

[33] M. Mechtri et al., “A scalable algorithm for the placement of service
function chains,” IEEE Transactions on Network and Service Manage-
ment, vol. 13, no. 3, pp. 533–546, 2016.

Yordanos Tibebu Woldeyohannes Yordanos
Tibebu Woldeyohannes received the B.S.
degree in Electrical Engineering from Mekelle
University, Ethiopia in 2007 and M.S degree
in Telecommunication Engineering (cum laude)
from University of Trento, Italy in 2013. From
2008 to 2010 she was with ZTE corporation
Ethiopian branch. Yordanos is currently pursuing
the PhD degree in Telematics with the department
of Information Security and Communication
Technology, NTNU, Norway. Her current research

work and interest focuses on mathematical modeling and algorithm design
(optimization), resource allocation, network function virtualization and
software defined networks. She is also interested in AI, machine learning
and wireless networks.

Ali Mohammadkhan was born in Tehran, Iran in
1987. He received the B.Sc. degree in computer
engineering from the University of Tehran, Iran, in
2010. In 2013, he obtained his M.Sc. degree from
Sharif University of Technology, Tehran, Iran. Ali
is currently a fifth-year PhD. candidate in computer
science department at the University of California,
Riverside. His current research interests are in the
areas of computer networks and distributed systems
with a special focus on software-defined networking,
network function virtualization, and cellular net-

works.

Dr. K. K. Ramakrishnan is Professor of Computer
Science and Engineering at the University of Cali-
fornia, Riverside. Previously, he was a Distinguished
Member of Technical Staff at AT& T Labs-Research.
He joined AT& T Bell Labs in 1994 and was
with AT& T Labs-Research since its inception in
1996. Prior to 1994, he was a Technical Director
and Consulting Engineer in Networking at Digital
Equipment Corporation. Between 2000 and 2002,
he was at TeraOptic Networks, Inc., as Founder and
Vice President.

Dr. Ramakrishnan is an ACM Fellow, an IEEE Fellow and an AT&
T Fellow, recognized for his fundamental contributions on communication
networks, including his work on congestion control, traffic management and
VPN services. His work on the ”DECbit” congestion avoidance protocol
received the ACM Sigcomm Test of Time Paper Award in 2006. He has
published nearly 250 papers and has 170 patents issued in his name. K.K.
has been on the editorial board of several journals and has served as the TPC
Chair and General Chair for several networking conferences. K. K. received
his MTech from the Indian Institute of Science (1978), MS (1981) and Ph.D.
(1983) in Computer Science from the University of Maryland, College Park,
USA.

Yuming Jiang has been a Professor with NTNU,
Norwegian University of Science and Technology,
Trondheim, Norway, since 2005. He received his
BSc degree from Peking University and PhD degree
from the National University of Singapore. From
1996 to 1997, he worked with Motorola, Beijing,
China, and from 2001 to 2003, with the Institute
for Infocomm Research (I2R), Singapore. He visited
Northwestern University from 2009 to 2010, and
Columbia University from 2015 to 2016. He is re-
cipient of a fellowship from the European Research

Consortium for Informatics and Mathematics (ERCIM). He was Co-Chair
of IEEE Globecom 2005 - General Conference Symposium, TPC Co-Chair
of 67th IEEE Vehicular Technology Conference (VTC) 2008, General/TPC
Co-Chair of International Symposium on Wireless Communication Systems
(ISWCS) 2007-2010, General Chair of IFIP Networking 2014 Conference, and
Chair of the inaugurating 2018 International Workshop on Network Calculus
and Applications (NetCal 2018). He is first author of the book “Stochastic
Network Calculus”. His research interests are the provision, analysis, and
management of quality of service guarantees, with a particular focus on
(stochastic) network calculus and its applications.


