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Abstract—Network design and operation of a mobile network
infrastructure, especially its access points, need to consider sur-
vivability as a fundamental requirement. Quantifiable approaches
to survivability analysis of such infrastructures are crucial.
Most existing analytical models analyze the networks transient
behaviors by applying homogeneous continuous-time Markov
chain (CTMC). However, the distributions for transitions between
states during a failure recovery are not exponential in many real
cases. To address this problem, we first propose to use a non-
Markovian model to characterize the transient behavior of the
phased recovery of the network after a failure. Then, based on the
proposed model, we conduct survivability analysis of the network.
Moreover, numerical results are presented to validate the phase
type (PH) approximation used in the proposed model. A case
study illustrates the effects of different model parameters on the
network’s survivability. These results shed new insights not only
on survivability analysis, e.g. the non-Markovian phased recovery
model, but also on survivability provisioning, e.g. how the model
parameters affect the network’s survivability, of such a network
against failure events.

I. INTRODUCTION

With the explosive growth of Internet and mobile usage
around the world, wireless communications plays a funda-
mental role in critical applications. However, wireless com-
munication infrastructures, especially wireless access points
(e.g., access point (AP), base transceiver station (BTS), NodeB
and eNB for WLAN, GSM, UMTS and LTE respectively) are
confronted with numerous threats, such as natural disasters,
common mode software/hardware failures, and security attack.
To evaluate the capability of a wireless network infrastructure
in surviving failures tractably, it is essential to develop quan-
titative models for assessing the network performance during
the (transient) period that starts from a failure occurs till the
system fully recovers. In addition, the survivability evaluation
models can be used to provide results and insights for network
design and optimization to avert the impact of failures.

This paper focuses on exploiting state space models for
assessing the network survivability. Most of the existing
analytical models and the numerical solutions analyzed the
infrastructure network survivability by applying homogeneous
continuous-time Markov chain (CTMC) [1], [2], [3]. However,
the actual recovery behavior of networks might be complex,
i.e., dependent upon several factors such as resources, logistics
and environments. In real cases, the exponential distribution
assumption of the recovery time may not hold [4]. Such strong
assumption may cause service providers to assess operational
risk inaccurately, and consequently to inadequately plan un-
der/overprovisioning of recovery resources. To overcome this

problem, it is necessary to revisit the distribution of recovery
time to better understand the recovery time characteristics.

The objective of this paper is to propose a model to
better model the recovery time characteristics and based on
the proposed model to conduct survivability analysis. The
time-dependent performance metrics are computed given that
the system initially is in a failed state. We apply phase type
(PH) distributions technique to relax exponential assumptions
related to the homogeneous CTMC. As such, non-exponential
state sojourn time distributions can be taken into account.

The contributions of this paper are summarized as follows.

• We develop a non-Markovian survivability evaluation
model that supports state transitions following non-
exponential distributions, and conduct survivability
analysis based on the proposed model.

• We apply PH distributions technique to approximate
the non-exponential distributions, thereby inducing
a Markovian structure, to simplify the analysis and
obtain tractable analytical results.

• We provide numerical studies with real-life data on
how the proposed approach analyzes the transient
performance of an infrastructure wireless network.

Together, the results of this paper shed new insights not
only on survivability analysis, e.g. the non-Markovian phased
recovery model, but also on survivability provisioning, e.g.
how the model parameters affect the network’s survivability,
of an infrastructure wireless network against failure events.

Sec. II presents some background knowledge and related
work. In Sec. III, the survivability analysis of the system is
performed. In Sec. IV, the PH approximation is validated.
In addition, the effects of different model parameters on the
network’ survivability are investigated. Finally, conclusion is
given in Sec. V.

II. BACKGROUND AND RELATED WORK

A. Background

Regarding the term “survivability”, different definitions
have been proposed and applied under different scenarios [5],
[6]. The many definitions of survivability can be summarized
as “the system’s ability to continuously deliver services in
compliance with the given requirements in the presence of
failures and other undesired events” [1].

Many network operators have increasingly invested in
strengthening their network reliability and survivability [7].



However, wireless network systems are still vulnerable to
undesired events, such as natural disasters, software/hardware
failures, and security attacks. When an undesired event occurs
in a network system, networking infrastructure may partially or
even fully breakdown. For example, after Hurricane Maria hit
Puerto Rico, the mobile network in this area almost entirely
failed [8]. Our work focuses on infrastructure wireless net-
work’s massive failures caused by natural disasters. Following
a disaster, critical infrastructure issues affecting a mobile
network often include loss of cell sites due to damage to the
site itself and lack of transmission or power. Additionally, in
the aftermath of a disaster quite often logistics and transport
are also challengeable [9].

One of the fastest methods of restoring networks is the
rapid deployment of temporary and portable backup cell sites
- cells on wheels (COW) or cells on light truck (COLT)
[10], [11]. The deployment of backup cell sites can either
reduce local network congestion or plug gaps in a damaged
network. Furthermore, in the disaster areas where COWs and
COLTs may struggle for access to, lightweight portable base
stations (e.g., [9], [12]) give operators more deployment flex-
ibility. Other emergency network solutions include unmanned
aerial vehicles (UAVs) [13], and Device-to-Device (D2D)
communication [14]. The introduction of various survivability
methods to infrastructure wireless networks motivates the need
for a quantitative assessment of network survivability against
disasters.

B. Related Work

Quantitative analysis of survivability could help enhance
the system’s capability providing critical services when failure
occurs to the system. To quantify the survivability of com-
munication networks, the ANSI T1A1.2 [15] working group
defined the survivability, which is concerned with the transient
behavior of the system (performance) from the instant when
a failure (attack or natural disaster) occurs until the system
fully recovers. Liu et al. [6] proposed a general survivability
quantification approach based on this definition. Starting from
this framework, Xie et al. [3] extended it to the survivability
analysis of a two-tier infrastructure wireless network. Both
work assumed single phase recovery, i.e., multiple recovery
actions are simply merged as one activity.

A refinement of the single phase recovery model is to
sub-divide the recovery time into several phases. That is,
multiple phases recovery [16], where each phase represents
a new system/service restoration attempt. Multiple phases
recovery has been considered for the survivability analysis of
communication networks [1], [17]. In [2], the proposed model
in [1] was further extended and adapted to capture the behavior
of the situation with multiple failures due to disaster spreading.
However, these studies were based on the strong assumption
that state holding times are all exponentially distributed. In
real cases, the distribution of the random time spent in each
stage of the recovery may be either non-exponential or simply
unknown. The assumption of exponentially distributed events
might lead to inaccurate results and limits the model’s real-
world applicability. In line with that, our paper explores non-
Markovian modeling approach to relax such assumption.

Although the non-Markovian models have been applied for
survivability analysis of Intrusion Tolerant Database Systems

[18] and distribution power grid networks [19], there is limited
similar work on infrastructure wireless systems. We use PH
distributions to approximate the non-exponential distributions,
thereby inducing a Markovian structure, to simplify the anal-
ysis and obtain tractable analytical results. This complements
survivability analysis by the methods described in [1], [2], [3].

III. SURVIVABILITY ANALYSIS

A. Non-Markovian Phased Recovery Model

Consider an infrastructure wireless network deployed in a
small-sized geographic area to serve the total capacity required
by its users. This network was stroked by a large-scale natural
disaster. We assume that the disaster area is much larger than
the area of interest, and the disaster event caused all the cell
sites in this area entirely failed.

We consider a combination of the escalated levels of
recovery process, and the deferred repair due to unavailability
of the repair crews. An emergency backup network solution
(deploying a portable cell site) is initiated by the mobile net-
work operator after a preliminary assessment of the situation
and will run until the manual repair is completed. Particularly,
the backup network solution provides a minimum standard of
communications, such as short message service (SMS) and
emergency voice call to the disaster area.

Repair crews are dispatched to the field to deploy portable
cell sites, and to do manual repair through a visit to non-
functional cell sites. Promptness of failure recovery thus
depends on environmental constraints, preparedness and re-
sources. The survivability measure of interest is relative loss
of capacity. Before the failure, the loss of capacity is 0.
The backup solution will typically have a reduced capacity
0 < α% < 1.

A state transition diagram of this 6-phase non-Markovian
model is illustrated in Fig. 1, where each phase is clustered in
three recovery stages. The system states (each state is assigned
a number to simplify the notation) are defined as:

• Plan (1) - the recovery is planned and the repair crew
has to be assigned and instructed.

• Init backup, Def rep (2) - initialization of backup while
waiting for the repair crews.

• Init backup, Repair (3) - initialization of backup
during system repair.

• Run backup, Def rep (4) - the backup is running and
providing partial service with reduced capacity, while
waiting for repairman.

• Run backup, Repair (5) - the backup is running and
providing partial service with reduced capacity during
system repair.

• OK (0) - system is running with 100% capacity.

For each phase, the system is assumed to be in a perfor-
mance wise steady-state with unchanged operational condition-
s. The circular states represents the full capacity of the service,
while the rectangular states represent the null capacity. During
the service recovery, the system may visit octagonal states
which represent reduced capacity. Let ci, i ∈ {0, 1, · · · , 5}
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Fig. 1. Survivability model with 6 phases for the example.

TABLE I. MODEL PARAMETERS

Parameter Description

π12 probability that there is logistic delay after failure

π13 probability that there is no logistic delay after failure

1/µ expected time to plan the disaster recovery

1/γ expected time to initialize backup

Gr(t) the distribution of repair time

Gd(t) the distribution of time until repair crew is located

denote the capacity in the state i. We assume c0 = 1 with full
capacity, ci = 0 when i = 1, · · · , 3 and ci = α with reduced
capacity when i = 4, 5. The reward rates, 1− ci, are assigned
to each state according to the capacities. The transition from
a state to another state is triggered by events such as failure
detection, repair completion, etc.

This model is adapted from [16] but with non-exponential
event time distributions. Since the time to initialize backup is
predictable, we assume that these event times are exponentially
distributed. But the time distributions of manual repair Gr(t)
and logistic delay Gd(t) defined in Table I might be non-
exponential.

Note that for survivability analysis, our focus is on the
system’s recovery behavior after the disaster. For this reason,
this paper does not consider the effect of the failure types and
rates. The time-dependent performance metrics are computed
by assuming that the system initially is in a failed state. The
model could be modified to refine the recovery phases to also
model other failure modes including dynamic failures caused
by disaster spreading as discussed in [2].

B. Analysis

Let P(t) = [pi(t)] denote a row vector of transient
state probabilities at time t. For a homogeneous CTMC, the
transient probabilities pi(t) are easily determined by solving

the linear system of ordinary differential equations P
′

(t) =
P(t)Q, where Q is the transition rate matrix. Then the
transient state probability vector can be obtained as follows:

P(t) = P(0)eQt, (1)

where P(0) is the initial state probability vector.

Combining the transient state probabilities pi(t) and the
relative loss of capacity 1− ci associated with each state, the
expected instantaneous reward m(t) gives the relative loss of
capacity of the system at time t, which is expressed as follows:

m(t) =

5
∑

i=0

(1− ci) · pi(t). (2)

We highlight that to obtain Eq. (1) in above, an implicit
exponential state holding time assumption has been made.
To deal with situations where this assumption may not hold,
the PH expansion approach proposed in [20] is used, through
which the result of Eq.s (1) and (2) can still be applied.

Specifically, the non-exponential distributions such as
Gr(t), Gd(t) can be approximated by a PH distribution. That
is, an absorbing Markov chain with k+ 1 states, where states
1, 2, · · · , k are transient, and state k + 1 is absorbing. Its

infinitesimal generator matrix T̂ is in the form

T̂ =

[

T To

0 0

]

,

where T is the k×k matrix of transition rates among the first
k states, and To is the k × 1 vector of transition rates out of
the first k states into the absorbing state k + 1 [20]. Given
the 1 × (k + 1) initial probability vector βββ, the cumulative
distribution function (CDF) of a random variable following
the PH distribution can be derived as 1−βββ ·eTt ·1, t ≥ 0. The
basis of choosing which PH distribution is the non-exponential
distributions’s squared coefficient of variation ϕ, which is its
variance divided by the square of its expectation. If ϕ > 1, use
three-moment, 2-phase Coxian distribution; if 0.5 ≤ ϕ ≤ 1,
use two-moment, 2-phase Coxian distribution; otherwise use
two-moment, ki-phase Erlang distribution.

With this approximation approach, the non-Markovian
model is converted into a CTMC with a new (and expanded)
infinitesimal generator matrix, which can be applied directly
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(b)

Fig. 2. PH approximation of the Weibull distribution. (a) Gd(t) is Weibull
(1, 0.01); (b) Gr(t) is Weibull (1, 0.02).

to Eq. (1) to solve for P(t). Subsequently, the expected
survivability performance is found from Eq. (2).

The procedure presented above for survivability analysis
with a non-Markovian model is summarized in Algorithm 1.

Algorithm 1 Survivability analysis with a non-Markovian
model

Step 1. Compute squared coefficient of variation (ϕ) of one
non-exponential state holding time distribution.
Step 2. Approximate the time distribution with,
if ϕ < 0.5 then

two-moment, k-phase Erlang distribution.
else if 0.5 ≤ ϕ ≤ 1 then

two-moment, 2-phase Coxian distribution.
else

three-moment, 2-phase Coxian distribution.
end if
Step 3. Use PH representation to construct a new infinites-
imal generator matrix.
Step 4. Calculate the expected survivability performance
value by combining the new infinitesimal generator matrix
and the performance associated with each state.

IV. NUMERICAL INVESTIGATION

In this section, the validity of the PH approximation
approach is first investigated, before results and insights from
numerical experiments are presented.

A. Validity of PH Approximation

We assume that Gd(t) and Gr(t) both follow Weibull
distribution in the example. Specifically, Gd(t), the distribution
of logistic delay is assumed to be Weibull(1,0.02), where 1
is the shape parameter and 0.02 is the scale parameter. The
distribution of repair time Gr(t) is Weibull(1,0.01).

As a sample illustration of the quality of the approxima-
tions, Fig. 2(a) depicts the CDF of Gd(t) and its approximated
CDF obtained using the procedure presented in Algorithm 1. In
this scenario, coefficient of variation is 0.79. Then the type of
approximation used is 2-moment, 2-phase Coxian distribution
with an infinitesimal generator matrix

T̂d =

[

−0.038 0.025 0.013
0 −0.025 0.025
0 0 0

]

,

and the initial probability vector βββ = [1, 0]. Fig. 2(b) depicts
the CDF of Gr(t) and its approximated 2-moment, 2-phase
Coxian distribution. Its infinitesimal generator matrix is

T̂r =

[

−0.021 0.011 0.01
0 −0.011 0.011
0 0 0

]

.

These results in Fig. 2 indicate that the PH distribution is very
close to the original Weibull distribution. Then the original
generator matrix Q is expanded to account for transitions
among the phases of the approximated states. The average
value of logistic delay and repair time during their event time
are 1/0.038 + 1/0.025 = 1/0.015 and 1/0.021 + 1/0.011 =
1/0.007, used in the Markovian analysis in the next subsection.

B. Impact of Parameters on Survivability Performance

To gain more insights, we perform numerical experiments
in this subsection to investigate the impact of different model
parameters on the defined survivability performance.

In the numerical solution of the state space model of Fig.
1, we assume the probability that there is logistic delay π12

is set as 0.64, and the probability without logistic delay π13

is set as 0.36. The average disaster recovery planning time
in the system is exponentially distributed with µ = 1/15
(time unit is minutes). The parameterizations for the reduced
capacity α and the time to initialize backup 1/γ refers to one
commercial small cell based deployable LTE solutions [12],
which needs about 10 to 15 minutes setup time. The small
cell based deployable system can support up to 400 active
users, while a macro cell based eNodeB supports up to 1000
active users. Based on the granularity of these real data, we
set α = 0.4 and 1/γ = 15.
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Fig. 3. Impact of mean time to initialize backup.
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Fig. 4. Impact of the reduced capacity.



In Fig. 3, consider the scenario in which 1/γ, the mean
time to initialize backup is low (1/γ = 15). In this scenario,
the expected relative capacity lost is lower. In contrast, if 1/γ
is relatively higher (1/γ = 60), the expected capacity lost
is higher. This indicates that the system can recover quickly
under the lower mean time to initialize backup.

In Fig. 4 the different recovery phases from Fig. 1 can be
observed. For t < 15 recovery planning dominates, and t > 15
(approx) the recovery stage with or without backup. The last
stage shows the effect of investing in larger backup capacity,
α = 1, versus some, α = 0.5, and no α = 0.

The above results implies that the proposed model might
be more applicable in real cases owing to relaxing the non-
fitting exponential state holding time distribution assumption.
In addition, with the proposed model and analysis approach,
operators could use the quantification results to assess the
fundamental trade-offs between survivable network planning
and survivability performance. Based on such tradeoffs, op-
erators might further implement optimization algorithms to
achieve how to use the minimal cost (e.g. minimal number
of wireless access points) while maximizing the network’
survivability (e.g. maximizing the average capacity per area),
or to strengthen some of the existing infrastructures to ensure
that they will still function after a disruption of the system.

V. CONCLUSION

We have conducted analysis on the survivability of an
infrastructure wireless network that is subject to catastrophic
breakdown. The focus has been on the transient behavior of the
network under large-scale failures, of which a non-Markovian
model is established. To simplify the model analysis, the non-
Markovian model has been converted to a CTMC using PH
approximations so that the model solving methods applicable
for CTMC can be used. Numerical investigation has been
conducted to validate the PH approximation. In addition, a
case study of large-scale disaster has shown how the proposed
survivability analysis approach may be performed and how the
model parameters may affect the network’ survivability.

Although this paper focuses on the transient performance
analysis of infrastructure wireless network, the proposed ap-
proach can be applied to the other systems, for example, power
grids. Future work includes extensions of the analytical model
to the situation with multiple-dependent failures.
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