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Abstract—In this paper, we propose a novel approach, called
SENATUS, for joint anomaly detection and root-cause analysis.
Inspired from the concept of a senate, the key idea of the
proposed approach is divided into three stages: election, voting
and decision. At the election stage, a small number of traffic
flow sets (termed as senator flows) are chosen based on the K-
sparse approximation technique, which can be used to represent
approximately the total (usually huge) set of traffic flows. In
the voting stage, Principal Component Pursuit (PCP) analysis
is used for anomaly detection on the senator flows. In addition,
the detected anomalies are correlated across traffic features to
identify the most possible anomalous time bins. Finally, in the
decision stage, a machine learning (ML) technique is applied to
the senator flows of anomalous time bins to find the root cause
of the anomalies. The performance of SENATUS is evaluated
using real traffic traces collected from a Pan European network,
GEANT, and compared against another approach which detects
anomalies using lossless compression of traffic histograms. The
evaluation shows that SENATUS has higher effectiveness in
diagnosing traffic anomalies.

Keywords—Principal Component Pursuit; K-sparse Approxi-
mation; Random Decision Tree; Network Traffic Anomaly Detection

I. INTRODUCTION

New applications, emerging every year or even every day,
have made it imperative to investigate effective techniques that
can extract communication patterns from Internet traffic for
security management. Among others, identifying anomalous
events such as denial-of-service (DoS) attacks, distributed DoS
(DDoS) attacks and network scans is a crucial task.

A key challenge in traffic anomaly detection is the curse
of dimensionality, which refers to the problems that arise
when analyzing and organizing data in a high-dimensional
space. For example, in a pan-European network, the GEANT
network, it was recorded (even after traffic sampling) that
there were around 109 flows distributed over 216 ports and
232 IP addresses over a 15-minute time interval on a link.
In addition, in order to identify the possible root cause of
traffic anomaly on a time interval, correlating analysis on
different traffic features, e.g. source Autonomous System (AS)
and destination port number, is often necessary. This implies
that the analysis will have to even deal with those numbers in a
combinatorial manner, which further complicates the analysis
making it hardly implementable.

In the literature, an extensive body of prior investigation
on traffic anomaly detection exists (e.g. see [1],[2]). In these
works, unusual abrupt variations in traffic time series, defined
as traffic anomalies, raise alarms. Unfortunately, the practical
usefulness of the reported alarms is often limited, mainly
due to the tremendous amount of time and effort additionally
required to analyze the root cause of the reported alarms [3].
This results in another challenge and a pressing need for
approaches that perform anomaly detection and root cause
analysis jointly.

To address these challenges, we propose a novel approach,
called SENATUS, in this paper. SENATUS conducts root-
cause analysis jointly with traffic anomaly detection through
traffic aggregation and lossy compression. Specifically, SEN-
ATUS detects time intervals where anomalous events are
suspicious to occur, identifies suspicious aggregate flows, and
diagnoses the type of anomaly. In brief, SENATUS operates
in three stages: election, voting, and decision. Inspired from
the concept of senate, a key idea and the starting point of
SENATUS is to choose or elect a small number of traffic flow
sets (termed as senator flows) to represent the total (usually
huge) set of traffic flows. Then, on the elected senator flows,
traffic anomaly detection is performed and the results for each
time bin are used together to decide or vote if the time bin
may be considered as anomalous. Finally, root cause analysis
is conducted on every anomalous time bin to identify the root
cause of anomaly type for that time bin.

The techniques proposed to use in the three stages are,
respectively, K-sparse approximation of traffic histogram [4],
Principal Component Pursuit (PCP) [5], and random decision
tree (RDT) machine learning (ML) classification [6]. These
techniques, together with the ideas and heuristics proposed in
the paper when using them, e.g. in senator flow election and
in anomalous time bin voting, form the novelty of SENATUS.

The specific contributions of this paper are as follows:

• Instead of performing analysis directly on the original
traffic histograms that suffer from the curse of dimen-
sionality, we propose to use K-sparse approximation
to select only the flow sets whose feature values are
among the top K on the traffic histogram. This forms
the core of the SENATUS election stage to choose
senator flows.

• At the voting stage, SENATUS performs PCP analysis
on the time series of each senator flow to detect time
bins with abrupt changes. The detected time bins with
abrupt changes are correlated across senator flows to
flag the most possible anomalous bins.

• SENATUS, at the decision stage, performs root-cause
analysis for each anomalous time bin, based on the
joint application of two intuitive heuristics and a linear
time signature and machine learning-based technique.

• The performance of SENATUS is evaluated and com-
pared using real traffic traces, which shows appealing
effectiveness of SENATUS, outperforming the com-
pared approach.

The rest of this paper is structured as follows. Sec. II
provides background basics and Sec. III gives a detailed
introduction of SENATUS. Sec. IV provides evaluation and
results. Sec. V discusses the related work. Finally, the paper
is concluded in Sec. VI.



II. BASICS OF SENATUS

A. Targeted Anomalies

Table I lists the categories of anomalies considered in this
paper and their traffic characteristics, though the central ideas
of SENATUS are not limited to them.

TABLE I. TARGETED ANOMALY TYPES

Anomaly Type Traffic Characteristics

DoS Small or large-sized flows sent from one source AS (Au-
tonomous System) via one or multiple source ports to one
destination AS on one or multiple destination ports

DDoS Many small or large-sized flows sent from one or many
source AS via one or multiple source ports to one destination
AS on one or multiple destination ports

Network Scan Many small sized flows from one source AS via one source
port to one or many destination AS on one destination port

Table I implies that the targeted anomalies are often carried
by small-sized flows. It is worth highlighting that while apply-
ing this implication may lead to under-detection of anomalies
present in large-sized flows, focusing on small-sized flows can
reduce the risk of false positives in anomaly detection. This is
because large-sized flows frequently involve benign activities
such aslarge file transfers, and high-volume streaming [7].

B. Traffic Histogram and K-sparse Approximation

The proposed SENATUS approach is a traffic histogram-
based approach. A traffic histogram is the distribution of the
amount of traffic (in number of flows, packets or bytes) over
all possible values of a traffic feature. A feature is a field in
the header of a packet, such as source port, or a function of
some header field values, such as AS numbers [8].

While there are many traffic features that may be analyzed,
we focus on four of them, which are source AS (srcAS),
destination AS (dstAS), source port (srcPort) and destination
port (dstPort). This is motivated by the traffic characteristics
of the targeted anomaly types as discussed in Table I.

K-sparse approximation is a technique proposed for traffic
histogram compression [4]. It relies on the fact that a traffic
histogram may be highly compressible if it exhibits a power-
law decay when sorted, and consequently, one may use the top
K-feature values to approximate the original traffic histogram.

More formally, consider a traffic histogram X with n
possible distinct feature values (e.g. port 1, port 2, . . . , port n).
Let X ′ ≡ (x′(1), x

′
(2), ...x

′
(n)) denote the sorted histogram,

where the coefficients are in the non-increasing order, i.e.
x′(1) ≥ x′(2) ≥ ...x′(n). Suppose that the sorted histogram
decays according to a power law as, for all i = 1, 2, . . . , n,

x′(i) ≤ R · i(−
1
p ) (1)

where R is a normalization constant and 0 < p ≤ 1 is a scaling
parameter. Then, X can be approximated by the first few
“top”-K coefficients, i.e. x′(1), . . . , x′(K), with approximation
error σK upper-bounded by [4]:

σK = ||X ′ −X ′K ||2 ≤ (ps)−
1
2 ·R ·K(−s) (2)

where X ′K has in total n elements defined as

X ′K ≡ (x′(1), . . . , x
′
(K), 0, . . . , 0)

and s = 1
p−

1
2 . If the decay of the coefficients is rapid, a small

value of K(<< n) can lead to close approximation.

C. Principle Component Pursuit (PCP)

Principle Component Analysis (PCA) is a statistical tool for
high-dimensional data analysis and dimensionality reduction.
It basically assumes that the data approximately lies on a low-
dimensional linear subspace. Let X ∈ Rn1×n2 be a matrix of
interest. A foundation of PCA is that it seeks the best rank-k
estimate A of data matrix X by solving:

min ‖X −A‖2, subject to rank(A) 6 k.

When applying PCA to structural analysis of network traf-
fic [9][10] and traffic anomaly detection [11], the essential idea
is to decompose X into two components, normal component
N and anomalous component A, i.e. X = N + A. In the
decomposition, the PCA technique attempts to find the matrix
A such that the matrix N = X − A has the lowest possible
rank. More formally, the structural analysis tries to solve the
following optimization problem:

min
N,A
‖A‖0, subject to X = N +A and rank(N) ≤ k (3)

where rank(N) denotes the rank of a matrix N, ‖ ‖0 denotes
the `0-norm, i.e. the cardinality of the non-zero elements.

However, the optimization problem (3) is NP-hard [5].
Fortunately, based on recent advances in optimization theory, it
has been proved that the nuclear norm, i.e, the sum of singular
values, recovers the low rank component N [5]. In addition, the
`1 norm, i.e, the sum of absolute values, recovers component
A in terms of sign and support with remarkable robustness to
the outliers in comparison to the `2 norm.

Accordingly, Eq. (3) can be solved using a convex opti-
mization problem called Principal Component Pursuit [5] as:

min
N,A

‖N‖∗ + λ‖A‖1, subject to X = N +A, (4)

where ‖ ‖∗ denotes the nuclear norm, i.e., the sum of the
singular values of the normal matrix, ‖ ‖1 denotes the `1-norm
of the anomalous events matrix A, and λ > 0 is a weighting
parameter.

We highlight that, while (3)-based PCA has been widely
used in anomaly detection, the study in [2] indicates that (4)-
based PCP provides more stable performance, in addition to
its reduced complexity in finding A, and has seen increased
applications, e.g., [12].

D. Random Decision Tree

SENATUS uses a machine learning (ML) technique, ran-
dom decision tree (RDT) [13], to find the root cause of
anomalies. In fact, RDT is an ensemble of decision trees. The
process for generating a tree is as follows.

First, it starts with a list of features or attributes from the
data set. Then, it generates a tree by randomly choosing one
of the features without using any training data. The tree stops
growing once the height limit is reached. Then, it uses the
training data to update the statistics of each node. Note that
only the leaf nodes need to record the number of examples
of different classes that are classified through the nodes in the
tree. The training data is scanned exactly once to update the
statistics in multiple random trees. A further explanation of
RDT can be found in Sec. III-D.



III. DETAILED SENATUS APPROACH

In this section, an overview of the proposed three-stage
SENATUS approach is first presented, followed by an intro-
duction to each of the three stages in detail.

A. Overview

SENATUS adopts the idea of senate, where senators elected
from a population make decision for the population based on
voting. Similarly, SENATUS involves three stages, which are
the election stage, the voting stage and the decision stage.

Specifically, SENATUS first pre-filters the traffic to con-
struct the base population, from which the top-K traffic feature
values, namely senators, are extracted. For each feature value,
a time series of the number of flows is constructed. Such time
series are organized in a subspace called senator subspace, and
analyzed using PCP to detect abrupt changes. The detected
abrupt variations form the votes for each time bin to decide
if the time bin is anomalous, and to flag the set of suspicious
flows for each anomalous time bin. Finally, this set of flagged
flows is further processed using RDT to diagnose the root-
cause of anomalous behavior in the time bin.

B. Election Stage

In this stage, the traffic traces are pre-filtered using two
heuristic H1 and H2 defined in Table II. In H1, small size
flows are defined as those flows whose packet counts are not
larger than threshold value α and in H2, small size flows are
defined as those flows whose byte counts are not larger than
threshold value β, in a time bin. A detailed investigation of
the effect of the threshold values will be presented in Sec. IV.

TABLE II. HEURISTICS

Heuristic Definition

H1 Small packet count per flow: # of packets ≤ α
H2 Small byte count per flow: # of bytes ≤ β

After filtering, for every measurement time bin, K-sparse
approximation is applied to the flow number histogram of each
of the four traffic features (srcAS, dstAS, srcPort, dstPort) on
the time bin. These traffic feature are most common feature
considered in networking. Here, the idea behind pre-filtering
traffic before applying K-sparse approximation is that, with
pre-filtering, it is more likely that an anomalous feature value
is included in the selected top K components.

After K-sparse approximation is applied for a traffic fea-
ture (e.g. srcAS) on a time bin t, K top values of this feature
j for this time bin are obtained. Let Ij(t) denote the set
of these K top values of the feature j on the time bin t.
Suppose there are N time bins in the traffic trace. Let Ij be
the consolidation of these N sets of such feature values, i.e.
Ij = Ij(1)∪ · · · ∪ Ij(N). Then, for every feature j ∈ {srcAS,
dstAS, srcPort, dstPort}, if it has a value i in Ij , i.e. i ∈ Ij ,
this feature value defines a senator flow or simply senator for
the feature j.

We remark that each senator is indeed a flow aggregate
where all flows have the same feature value. Accordingly, we
have a three-dimensional flow count matrix Y (t, ij , j) that is
defined on time t(= 1, . . . , N) with feature value ij ∈ Ij
across all features j ∈ {srcAs, dstAs, srcPort, dstPort}, which
we call the senator subspace.

C. Voting Stage

At this stage, SENATUS analyzes each senator’s time
series using PCP to detect abrupt changes on the time series.
The detected abrupt variations, called votes, are correlated to
identify or vote the most likely anomalous time bins.

For every feature j ∈ {srcAS, dstAS, srcPort, dstPort}, let
X(t, ij) be its traffic amount time series matrix. Specifically,
the element at (t, ij) of X records the number of flows that
have the same feature value ij (e.g. srcPort 80) at time bin t
in the measurement period. Essentially, X(t, ij) = Y (t, ij , j)
with j fixed to be the considered feature.

Applying the PCP technique described in Sec. II.C to the
time series matrix X , with n1(= N) being the number of time
bins in the measurement period and n2(= Ij) being the num-
ber of senators from feature j, the corresponding anomalous
events matrix A is obtained. The positive-value elements in the
obtained anomalous events matrices are referred to as votes.

For every time bin t, a feature j (e.g. srcPort) is flagged
anomalous if (at least) one of its values in Ij makes a vote on
this time bin. In other words, at least one senator time series
of this feature has abrupt variation at t. For a time bin t, if all
features {srcAS, dstAS, srcPort, dstPort } give their vote on it,
this time bin is considered to be an anomalous time bin.

D. Decision Stage

In this stage, SENATUS diagnoses the root-cause for every
anomalous time bin. In particular, the objective is to investigate
if the traffic behavior on an anomalous time bin is due to one
of the focused anomaly types listed in Table I. To this aim,
the following actions are performed.

1) Identifying Suspicious Flow Aggregate: Let mj denote
the cardinality or the number of senator members of Ij . In
addition, define a flow aggregate using values of srcAS,
dstAS, srcPort and dstPort. Then, for the time bin, there are
M = msrcAS×mdstAS×msrcPort×mdstPort flow aggregates,
which we call suspicious flow aggregates. These combinations
essentially tell that we consider flows that might be originated
from any suspicious source AS at any suspicious port and
target at any suspicious destination AS at any suspicious port.
Note that, for some of these combinations, the number of
flows in the flow aggregate is zero. Such flow aggregates will
be skipped in later analysis. We call the remaining ones the
effective suspicious flow aggregates.

2) Root Cause Analysis: After identifying the set of suspi-
cious aggregate flows, we aim to infer the event that has caused
flagging the time bin as anomalous. To this aim, a simple
(with linear time complexity) threshold-based classification
algorithm is performed, which is introduced below.

(i) For every dstIP that is included in the dstAS of the
suspicious flow aggregate, find the number of flows that are
destined to this dstIP, regardless of their srcAS, srcPort
or dstPort. Take the maximum of all such numbers and
call it the anomaly intensity. Compare this intensity with a
threshold, denoted as θ1. If the former is greater, output is
DDoS. Otherwise, perform the next.

(ii) For every {srcIP, dstIP} pair included in the
{srcAS, dstAS} pair of the suspicious flow aggregate, per-
form similarly as above: Find the number of flows that have



the same srcIP and dstIP , regardless of their srcPort or
dstPort. Take the maximum of all such numbers, and compare
with another threshold, denoted as θ2. If the former is greater,
output is DoS. Otherwise, perform the next.

(iii) For the dstPort of the suspicious flow aggregate and
every srcIP that is included in the srcAS of the aggregate,
find the number of flows that are originated from this srcIP
and destined to this dstPort, regardless of their srcPort or
dstAS. Take the maximum of all such numbers and compare
the intensity value with another threshold, denoted as θ3. If the
former is greater, output is Network Scan. Otherwise, repeat
these steps for the next effective suspicious flow aggregate.

(iv) The above procedure is repeated until an attack signature
comparison is successful. Or, in the end, the anomaly type
cannot be identified and in this case the alarm is reported as
false positive.

3) Threshold Values: As described above, there are three
threshold parameters, θi, (i = 1, 2, 3), used in the classification
algorithm. We highlight that they are key parameters in the root
cause analysis. To decide them, the RDT ML algorithm [13]
is used: In addition to being fast and easy to interpret, RDT
exhibits optimality in probability estimation [14].

In our RDT algorithm, each anomaly is mapped as a point
into a space where anomalies are classified based on their
intensities. Under this taxonomy, we create a set of labeled
instances with one intensity attribute: the number of flows.
This set is mapped to one of the three anomaly classes: DoS,
DDoS and Scans. The labeled instances serve as input to the
RDT learning algorithm that outputs a tree which indicates the
range of intensities per anomaly class.

Specifically, our RDT algorithm works as follows. It is
an iterative algorithm. For time T = 1, 2, . . . , N , the inputs
are the set of unknown anomalies at this time and the set
of previously labeled anomalies for times 1, . . . , T − 1. The
algorithm first applies the decision tree technique on the
labeled items of anomalies and their corresponding intensity.
The output is a tree DT[1,T−1] = (Br(i, j), Class(j)), i ≤
size(DT ), j ≤ size(Br) where each path constitutes a set
of branches from the root to a leaf. A branch j of a path i,
Br(i, j), introduces an upper or a lower bound of an anomaly
intensity while a leaf of a path i: Class(i) corresponds to a
class of anomaly.

We then explore the output tree and map it into a set of
association rules to enable classification of anomalies based on
their intensity. A rule is an antecedent {Br(1, i), ...Br(n, i)}
which represents the ith path of the tree and a consequent, i.e, a
class of anomalies. Since only one attribute (anomaly intensity)
is adopted in the learning process, the branch Br(n, i) from
each leaf to its direct parent defines each association rule
antecedent which is, defined as comparator, i.e, ≥,≤ and a
value, i.e, a threshold of anomaly intensity. The threshold
values are then extracted by simple parsing of the set of
rule antecedents: rule antecedents which introduce an upper
bound of intensity for a class of anomaly are ignored, while
those which introduce a lower bound (comparator={≥}) are
considered. A lower bound of anomaly intensity in association
rule antecedent represents a candidate threshold. The output
threshold value, θi(i = 1, 2, 3), for a given class of anomalies
is the minimum among all candidate thresholds.

IV. EVALUATION

In this section, we evaluate the performance of SENATUS
and compare it against that of a literature approach.

A. Dataset

The measurement dataset used in the evaluation is com-
prised of four traffic traces collected from the GEANT net-
work. GEANT is a pan-Europe backbone network intercon-
necting European NRENs (National Research and Educational
Networks) and provides them access to other NRENs and the
Internet using dedicated links. The traces in the adopted dataset
were collected from the following four links: (1) a peering link
between the Internet and the Frankfurt router in GEANT (Trace
A); (2) a peering link between the Internet and the Vienna
router in GEANT (Trace B); (3) a peering link between the
Internet and the Amsterdam router in GEANT (Trace C); (4) a
peering link between the Internet and the Copenhagen router
in GEANT (Trace D).

The four traces, which are available from GEANT on
request, were collected during a 18-day measurement period
in June – July 2011, and involve flow records over 15-minute
measurement time bins at a sampling rate of 1/1000. A flow
record involves different information fields such as source and
destination IP address and AS numbers, source and destination
ports, transport protocol (TCP/UDP), the duration of a flow (in
second) and the flow size in packets and bytes. We analyzed
the four traces and found that they have low rank traffic metrics
and sparse abrupt variations [15].

B. Apriori Approach

When evaluating the performance of SENATUS, it is
compared against an approach based on [16], which we call
Apriori approach in later presentation. In this approach, it first
uses histogram-based detectors to identify suspicious flows and
then applies association rule mining to find and summarize
anomalous event flows. For the former, it uses Kullback-
Leibler (KL) distance, and for the latter, it makes use of the
Apriori algorithm introduced in [17].

We remark that the KL distance idea has been widely
applied for anomaly detection [8]. Motivated with the basic
assumption that anomalies deteriorate traffic histograms, the
KL distance identifies anomalous time intervals by measuring
the similarity between the current traffic histogram and a ref-
erence histogram. More formally, given a discrete distribution
q and a reference distribution p, KL distance D is defined as
follows:

D(p||q) =
m∑
i

pilog(pi/qi). (5)

To compare with SENATUS, we apply the KL distance
on random projections (hash functions) of traffic histograms
at each of the 4-tuple features on each of the measurement
intervals. Particularly, the hash function randomly places each
traffic feature value into a set of lower-dimensional bins, which
represents a lossless compression process. In addition, the
distribution from the previous time interval is used as the
reference distribution p [16]. The KL distance value which
exceeds a predefined threshold for any time interval serves to
detect anomalies.



After the set of anomalous time bins are identified by the
KL distance, root-cause analysis is performed, extracting the
set of candidate anomalous flows responsible for the flagged
anomalies using the Apriori flow pre-filtering algorithm [16].
This algorithm generates the meta-data that is suspicious to
contain the highest amount of anomalous flows. Such flows are
further extracted using a frequent item-set mining algorithm
(Apriori) proposed in [17].

C. Ground-Truth Construction

Note that for the four traffic traces, there is no ground-truth
anomaly data available. In addition, the process of manually
inspecting anomalous time intervals, each of which may con-
tain hundreds or thousands of anomalous flows, is an onerous
process. To address this challenge, we adopt a combined
method, similar to what has been used in the literature when
ground-truth data is not available, to construct the ground-truth.

Specifically, we run both SENATUS (using a given heuris-
tic) and the Apriori approach on the dataset traces. For each
time bin, if both approaches flag the same anomaly type, then
the anomaly is added to the ground-truth. However, if for a
particular time bin, only one of them flags an anomaly or each
flags a different type of anomaly, we extract the following
four tuple features: srcIP, dstIP, srcPort and dstPort for each
of the flagged anomalous flows and do manual inspection in
the following way. We draw a scatter plot per each couple
of traffic features in addition to a graphlet of communication
pattern [18] and check whether the label suggested by either
method matches visual inspection of the graph. If there is a
match, the alarm is added to the ground-truth; otherwise, the
alarm is considered as a false positive.

D. SENATUS Parameters

In SENATUS, several parameters are associated with its
algorithms and heuristics, which are summarized in Table III.
In the following, we discuss their value setting in SENATUS.

TABLE III. SENATUS PARAMETERS

Parameter Description Constraints

α (for H1) flow size in packets small
β (for H2) flow size in bytes small

K number of senator small
λ PCP weighting parameter ≥ 2
j flow aggregation level [1, 4]

1) Traffic Filtering Heuristics H1 and H2: As previously
discussed, traffic pre-filtering tends to concentrate anomalies in
the top-K feature values, thus reducing the number of compo-
nents required for traffic histogram approximation. Below we
study the range of both parameters α and β and explain our
choice of their values.

Related to heuristic H1, previous study (e.g. [19]) has
reported that most of the encountered anomalies (including
scans) in datasets are carried by flows with the number of
packets in the range of [1, 3]. Authors of [20] also claim that
most of the detected scans are carried by flows having a packet
count number ≤ 2.

Our investigation of the flow size in the constructed
ground-truth is shown in Fig. 1. The figure illustrates the
flow size distribution in number of packets for the inspected
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Fig. 1. Flow size distribution per anomaly type

anomaly types in our traces. Fig. 1(a) depicts that anomalies
involving flow-size of less than or equal to 3 packets are in
the order of 85% of all attacks in our dataset.

Related to heuristic H2, several previous studies have tried
to investigate the validity of using H2 as a heuristic to filter out
traffic carrying network abuse attacks. Authors of [19] show
that most of the detected anomalies (including scans, worms,
etc.) in their dataset are carried by small flows having a byte
count ∈ [40, 144]. Authors of [21] give narrower range of byte
count and show that over 99% of the detected DDoS attacks in
CAIDA traces have a packet size falling in the range between
40 and 60 bytes.

Our inspection of the attacks in the constructed ground-
truth shows similar results. The flow size distribution in
number of bytes is illustrated in Figure 1(b). Although of a
long tail due to variable size of the flagged anomalous flows,
most frequent DoS/DDoS and scans in our traces are of a small
size (≤ 64 bytes). For example 52% of the detected DOS and
99% of the detected scans carry flows of size 60 bytes. In
the remaining, the threshold values for α and β used in the
evaluation are set to respectively 3 and 64.

2) The choice of K: We choose K such that it realizes an
average approximation error σK ∈ [0.01, 0.3] depending on the
measurement trace and the type of traffic under analysis. We
assume that the resultant K value under such an approximation
error is an acceptable “information-loss” tradeoff.

Fig. 2 illustrates the range of the K value which achieves
an average approximation error in the range [0.01, 0.3] per
pre-filtering heuristic, for each of the traces. Expectedly, as
the approximation error decreases the required number of
coefficients for traffic histogram approximation exponentially
increases. The figure additionally reports that the value of K
can vary from several tens to hundreds in order to achieve a
targeted approximation error, depending on the measurement
trace and the pre-filtering heuristic.

TABLE IV. APPROXIMATION ERRORS UNDER K = 20

Feature Heuristic A B C D

Srcport H1 0.03 0.02 0.14 0.02
H2 0.02 0.01 0.12 0.02

Dstport H1 0.18 0.03 0.18 0.18
H2 0.06 0.06 0.25 0.25

To avoid complex tuning of the K parameter and motivated
with the observation that the value of K is stable over time
[4], we choose for simplicity one value of K, i.e. K = 20,
for all traces under both heuristics. Table IV illustrates the
resultant average approximation error for the four measurement
traces using each of the proposed heuristics, H1 and H2, under
K = 20.
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Fig. 2. K value as a function of the approximation error

3) The choice of the PCP Tuning Parameter: Since PCP
aims to minimize the weighted combination of the nuclear
norm and the `1-norm, one has to identify an appropriate value
of the weight parameter λ such that the matrix A captures the
maximum number of anomalies with the least false positive
rate. In PCP, parameter λ is also expressed as [5]:

λ =
C√

max{N,K}
, C ∈ R (6)

where N and K are the dimension parameters of the senator
subspace, and C is a constant that needs to be set.

It has been previously shown that C = 2 is appropriate
for anomaly detection in traffic time series [2]. We base our
analysis on this previous observation and tune the parameter λ
to find an “optimal” value that achieves the “best” detection-
false positive tradeoff. To illustrate this, Fig. 3 is presented,
which shows the number of detected anomalies and the false
positives as functions of the parameter C. The figure shows
that both the detection and false positive rates decrease as the
value of C increases. For example, when H2 is used, 113
anomalies are detected with 9 false positives for the value of
C = 2, while only 57 anomalies are detected with 1 false
positive for C = 2.5, both in trace A. The figure additionally
shows that while the number of false positives, when H1 is
chosen, is higher than those when H2 is used, it remains low
for all values of C. In the remaining of the evaluation we
choose C = 2 for both heuristics H1 and H2.
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Fig. 4. Anomalous time bin detection

E. Anomalous Time Bin Detection

As an example, Fig. 4 illustrates anomalous time bin
detection and suspicious aggregate flows identification based
on senators’ votes. It shows the flow count time series per
srcAS, dstAS, srcPort or dstPort senator. These time series
were extracted, organized within the senator subspace and
processed during the voting stage. As previously discussed,
senators’ votes consist in the detection of abrupt variations in
each senator’s time series using PCP.

The figure shows that for every feature, i.e., srcAS, dstAS,
srcPort or dstPort, PCP detects abrupt variation at time bin
60 in at least one time series of this feature. Based on the
chosen decision rule, this time bin is flagged to be anomalous.
However, unlike time bin 60, the previous time bin is only
flagged with abrupt variation by a srcPort senator (number
58643). In this case the vote from this senator does not trigger
the rule which flags the time bin as anomalous.



TABLE V. ANOMALIES FOUND BY EACH APPROACH: SENATUS H1,
H2 AND APRIORI (AP)

Trace A

Anomaly type Total H1 H2 AP

DDoS 75 33 10 32
DoS 12 4 7 1

Scans 223 58 96 69
Total 310 95 113 102

Trace B

Anomaly type Total H1 H2 AP
DDoS 76 34 15 27
DoS 18 8 8 2

Scans 335 125 167 43
Total 429 167 190 72

Trace C

Anomaly type Total H1 H2 AP

DDoS 54 16 13 25
DoS 22 5 3 14

Scans 374 153 178 43
Total 450 174 194 82

Trace D

Anomaly type Total H1 H2 AP

DDoS 101 24 18 59
DoS 10 2 4 4

Scans 220 75 118 27
Total 331 101 140 90

F. Detected Anomalies per Type

Table V presents the number of anomalies per type found
by each method. The table shows that SENATUS generally de-
tects more anomalies (particularly network scans) than Apriori.
However, Apriori detects more DDoS attacks for trace C and
D. We also observe that while SENATUS using H1 or H2
detects more DoS attacks for traces A, B and D, the situation
is reversed for trace C. To understand this, we observed that the
missed DDoS attacks are mostly originated with or targeted at
a random port number. In this paper, we have adopted the rule
(srcAS∧dstAS∧srcPort∧dstPort) in flagging anomalous
time bins. This rule could not be best suitable for detecting
such anomalies and new rules could be tried, but we leave this
for future investigation.

In addition, Table V shows that SENATUS using H1 finds
more DDoS attacks than using H2. This is likely due to the
fact that only one third (around 29%) of the DDoS attacks
found in the collected dataset have packets size less than 64
bytes, as indicated by Fig. 1.

Furthermore, we have observed that SENATUS using H2
detects more network scans than using H1. Most of the
additionally detected network scans are small intensity SYN
scans using small packets, which are more easily spotted using
the second heuristic.

G. Performance Comparison

We now evaluate the tradeoff between detection and false
positive rates for SENATUS(H1

⋃
H2), SENATUS(H1), SEN-

ATUS(H2) and Apriori. Here, the detection rate is defined as
the ratio of the detected number of anomalies using the method
with respect to the total detected number of anomalies using
either method. In addition, the false positive rate is defined as
the ratio of the number of false positives caused by the method
with respect to the number of detected anomalies using this
method. For ease of notation, we refer the detection rate of
the combined set of anomalies resulting from the union of H1
and H2, i.e. SENATUS(H1

⋃
H2), as SENATUS’ detection

rate. As in calculating the false positive rate for SENATUS(H1⋃
H2), if any of SENATUS(H1) and SENATUS(H2) flags

an anomaly but it is identified by visual inspection as a
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Fig. 5. Receiver Operator Characteristics (ROC) curves

Fig. 6. D.X: detection rate of X, and FP.X: false positive rate of X, where
X= S for SENATUS and X= AP for Apriori.

false positive, then the combined number of false positive for
SENATUS(H1

⋃
H2) increments by one.

Fig. 5 displays the ROC (Receiver Operator Characteris-
tics) curves that illustrate the detection rate of SENATUS as
a function of the false positive rate. The figure firstly shows
that while the detection rate of SENATUS using either H1 or
H2 is low, the detection rate of SENATUS using the union of
the two heuristics is much higher. For example, the detection
rate for SENATUS(H2), SENATUS(H1), and SENATUS (H1⋃

H2) are around 73%, around 64%, and 84% in trace B. The
figure additionally shows that the false positive rate is low for
all collected traces: it does not exceed 10% for the four traces.

To illustrate more directly the detection-false positive trade-
off for SENATUS (H1

⋃
H2) and Apriori, Fig. 6 is presented.

Each bar graph shows either the detection or the false pos-
itive rate for SENATUS or Apriori. The figure shows that
while SENATUS experiences the best detection-false positive
tradeoff, Apriori generally exhibits the lowest detection and
the highest false positive rate among the three approaches for
the four collected traces. For example, for trace D, while the
SENATUS’ detection rate is about 75% with a false positive
rate about 2%, the Apriori’s detection rate is around 40% with
a false positive rate about 5%.



V. RELATED WORK

The problem of network anomaly detection has attracted a
lot of research effort. Earlier techniques have mostly relied
on volume metrics such as packets and bytes, using time
series prediction [22], signal processing [23] machine learning
[24] or information entropy techniques [25] to detect abrupt
variations in traffic volume signals.

In addition, histogram-based approaches have also been
investigated, but they often face the challenge of histogram
dimensionality reduction [8][16]. The authors of [8] proposed
to keep the well-known source and destination ports, remove
the components that remain constant, and additionally apply
the PCA technique. In [26], network anomalies are detected via
sparsity and low rank property. There, the goal was to construct
a map of anomalies in real time, which summarizes the net-
work “health state” along both the flow and time dimensions.
Recently, another anomaly detection scheme was proposed
in [1], which focuses on the anomaly detection problem for
dynamic data streams through the lens of random cut forests.
While SENATUS also relies on traffic histograms, it originally
resorts to a simple low-complexity lossy compression approach
[4] to deal with the curse of dimensionality.

In the literature, several works have tried to conduct root-
cause analysis on the traffic anomaly related alarms. Fernandes
et al [27] tried to address this using a set of predefined
signatures, such as traffic descriptors describing the behavior
of network attacks including DoS, DDoS and scans. These
predefined signatures involve a large number of empirical
threshold values. In addition, authors of [28] proposed a
technique for root cause analysis in component-based systems
and their approach focuses on application-level anomaly cor-
relation. Differently, SENATUS relies on an algorithm where
the threshold values are automatically identified based on the
RDT machine learning classification technique [6].

VI. CONCLUSION

In this paper, we proposed SENATUS, a novel approach
for traffic anomaly detection and root-cause analysis, and
evaluated it in comparison with the Apriori approach. We
found that SENATUS not only uncovers a high number of
anomalies but also performs better in diagnosing the root
causes. This makes SENATUS an appealing approach. In
addition to the novel joint treatment of root cause analysis
and anomaly detection, the specific novelty and contribution
of SENATUS are: (i) Instead of performing analysis directly
on the original traffic histograms, SENATUS uses approximate
traffic histograms with much reduced dimensionality as inputs
to the analysis. (ii) SENATUS uses PCP, instead of PCA, to
detect time bins with abrupt changes. Another novel idea is
to use the detected abrupt variations as votes to collectively
flag if a time bin is anomalous. (3) For root-cause analysis on
each anomalous time bin, a simple linear time classification
algorithm is used, where the threshold values are decided using
the RDT machine learning algorithm.
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