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Abstract—Traditional control of robot manipulators assume
that the base of the manipulator is fixed in the environment.
However, underwater vehicle-manipulator systems are usually
floating freely. Using traditional fixed-base manipulator control
for floating systems requires thruster actuation and a station-
keeping algorithm capable of stabilizing the manipulator base.
This paper describes a method for underwater manipulation
that needs no stationkeeping, and therefore no thrusters. For
vehicles with thrusters, the method presented can reduce the
energy that the thrusters use on vehicle stabilization. The
method is based on inverse kinematics using the generalized
Jacobian matrix, a generalization of the traditional fixed-base
manipulator Jacobian, formerly used for spacecraft manipu-
lators. The generalized Jacobian matrix makes it possible to
control the manipulator end-effector in inertial coordinates
while the base remains passive and unactuated. The proposed
control method is verified through simulations of an underwater
swimming manipulator, using the Vortex Studio software. We
compare the performance of the method in open-loop and with
position feedback in closed-loop. The simulations show that
underwater manipulation without base actuation is possible and
that accuracy improves with access to position estimates.

I. INTRODUCTION

Underwater robots exist in numerous forms and have
many applications. Some examples are seafloor mapping and
geological sampling in research and science; construction,
inspection, maintenance and repair of subsea installations in
the oil and gas industry; and search and disposal of mines in
the military [1].

Underwater intervention requires a vehicle equipped with
a robotic manipulator arm. In the most general sense,
such vehicles are termed underwater vehicle-manipulator
systems (UVMSs) [2]. Traditional UVMSs and intervention-
autonomous underwater vehicle (AUV) [3] resemble remotely
operated vehicles (ROVs) with robotic arms attached. More
recent designs include snake-like robots where the flexible
body itself acts as the manipulator. Examples are underwater
snake robots (USRs) [4] and underwater swimming manipu-
lators (USMs) [5]. The USM is a new class of underwater
robots that combines a bio-inspired snake-like appearance
with thruster actuators [5].

Fig. 1. The Eelume USM, an example of an underwater snake robot. It is
approximately 3.3m long and weighs 80 kg.

The control of freely floating UVMSs is complicated by
the many forces acting on them. The most significant forces
are:

1) Reaction forces: Moving the joints of the manipulator
will induce reaction forces that disturb the position and
orientation of the manipulator base [6]. The disturbance
occurs because the base is floating freely in the water.
By contrast, the base of an industrial manipulator is
firmly fixed to its environment and is not disturbed by
the joint motion. Figure 2 illustrates the effects of joint
motion and reaction forces on fixed-base and floating-
base manipulators.

2) Hydrostatic forces: Gravity “pulls” the center of
mass (COM) down, and buoyancy “pushes” the center
of buoyancy (COB) up. The COM and COB of an
underwater manipulator are not necessarily aligned, and
this causes rotational hydrostatic restoring forces [7,
Ch. 4]. Because the COM and COB locations depend
on the joint configuration, the resulting restoring forces
also depend on the joint configuration.
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Fig. 2. Differences between fixed-base and floating-base manipulation: (a)
shows the initial configuration, and (b) and (c) shows approximate final
configurations after identical joint motion. In (b), the base is fixed, and this
causes the total COM to move. In (c), the base is floating, and reaction
forces on the base cause it to move, while the location of the COM remains
the same.

3) Hydrodynamic forces: The manipulator moves through
water, and is subject to hydrodynamic effects such as
drag forces and increased apparent inertia due to added
mass [8, Ch. 10].

The effects of the forces listed above are present for all
underwater manipulators, but not to the same extent. Typical
UVMSs that consist of a large base, or “body”, with a
smaller manipulator attached to it, will not be strongly affected
by reaction forces and hydrostatic forces, due to the large
inertia of this base, compared to the manipulator. ROVs and
AUVs designed for intervention are typical examples. Snake-
like underwater vehicles such as USRs and USMs are more
strongly affected. These robots have a base link that is only
a small fraction of the total vehicle’s inertia and size. As
a result, reaction forces and hydrostatic forces will affect
them much more strongly than typical ROVs and AUVs. It
is therefore vital to compensate for these effects when using
USRs and USMs for manipulation tasks.

Today’s control schemes often use inverse kinematics based
on the fixed-base Jacobian matrix, with the consequence
that manipulation is only accurate if the base of the vehicle
is held stationary. A stationkeeping algorithm for the base
is thus required, as well as thrusters to actuate its control
inputs. Conversely, this paper examines control based on the
generalized Jacobian matrix (GJM), which avoids the need
for base stationkeeping.

The GJM was originally developed for manipulators
mounted on free-floating vehicles in the near-vacuum of
space, which experience negligible external forces [6], [9]–
[11]. Conservation of momentum applies to these systems.
Underwater vehicles are subject hydrodynamic effects, and
the assumption of no external forces does not hold. The aim
of this paper, however, is to investigate whether GJM-based
control is feasible, which depends on the significance of the
hydrodynamic effects.

This paper will investigate how to achieve accurate and
flexible underwater manipulation for underwater manipulators,
such as USRs and USMs. Previous UVMS and USM control

has used thrusters for stationkeeping during manipulation
[12]. This paper contrasts earlier approaches by presenting a
solution that does not rely on thruster actuation. Avoiding or
reducing thruster usage will save power and extend possible
mission duration for battery-powered vehicles. The control
system presented can be applied to any UVMSs.

The paper is organized as follows: In Section II, the
GJM-based control scheme is introduced. In Section III the
simulation environment is presented, and followed by the
results of the simulations of the control scheme. Section IV
draws conclusions based on the simulation results.

II. INVERSE KINEMATIC CONTROL

A. The generalized Jacobian matrix

The GJM provides a map between the joint velocities
q̇ ∈ Rn and the velocity twist ν = (vT,ωT)T ∈ R6 of the
end-effector in the inertial frame,

ν = Ĵ(q,R) q̇, (1)

where n is the number of joints, Ĵ ∈ R6×n is the GJM,
q ∈ Rn are the joint positions, and R ∈ SO(3) is the
rotation from the inertial frame to the base link. The symbols
v and ω denote respectively the linear and angular velocity
components of the velocity twist vector. Equation (1) contrasts
the fixed-base manipulator Jacobian, which maps from joint
velocities to end-effector velocity twist, expressed in a vehicle-
fixed frame. By expressing the velocities in the inertial frame,
the GJM takes into account the rotation and displacement
of the end-effector that occurs due to the conservation of
momentum.

A complete derivation of the GJM is given in [10]. The
kinematic parameters of the vehicle, its link masses and inertia
matrices, the joint configuration, and the orientation of the
base frame, are required to define the GJM. For implementa-
tion, rotary encoders can measure the joint configuration, and
the base orientation can be estimated based on measurements
from an inertial measurement unit (IMU).

B. Singularities of the generalized Jacobian matrix

A manipulator is said to be in a singular configuration when
its Jacobian is singular, or rank deficient. When the Jacobian
is singular, some of its task-space velocities are impossible
to reach, and its inverse mapping is not well-defined. In the
neighborhood of a singularity, very large joint velocities may
be required to reach the desired task space velocities. Large
joint velocities can cause spurious and unpredictable motion
and may exceed the physical ability of the joint actuators.

Nearly all manipulators have kinematic singularities, which
are singularities due to its kinematic structure. They can occur
at the workspace boundary, and at points where joint axes
align. The GJM also exhibits dynamic singularities, which
depend on the dynamic properties of the vehicle. Kinematic
and dynamic singularities reflect physical limitations and are
only avoidable by physically staying away from such singular
configurations.



USMs and USRs are subject to more significant reaction
forces than typical free-floating manipulators, such as space-
craft manipulators and ROVs. This is because the base link
of a snake robot is small—roughly the same size and mass
as the other links. On the other hand, ROVs and satellite
manipulators have base links that are usually much heavier
than the entire manipulator. An example is the “Engineering
Test Satellite VII”, which is a 140 kg arm mounted on
a 2550 kg base, which has been used for in-orbit GJM
experiments [11].

The small relative inertia of the base makes the workspace
of a free-floating snake robot small in comparison to its
kinematic dimensions, when stationkeeping is not applied.
Singularities at workspace boundary and inside the workspace
are rarely far away, and to assure precise manipulation, it is
necessary to avoid them in a way that minimizes the resulting
tracking errors. The next section discusses inverse kinematic
methods that take this into account.

C. Inverse kinematics

As we have discussed, (1) maps from joint velocities to end-
effector velocities. To control the manipulator end-effector, it
is necessary to define the inverse mapping: calculating the joint
velocities needed to achieve the desired end-effector velocity.
Because Ĵ is not generally invertible, this is a nontrivial
problem, and its various solutions are termed inverse kinematic
methods. In this section, we discuss a singularity robust
inverse kinematic control method [13]–[15]. The singularity
robustness makes this method suitable for UVMS control.
The inverse of (1) can be written

q̇ = f(Ĵ)ν. (2)

Damped least-squares inverse kinematics [14] is a solution
of (2) that attempts to avoid singularities by damping the joint
velocities in near-singular configurations. It is the solution
that minimizes ∥∥∥ν − Ĵ q̇

∥∥∥2 + λ2∥q̇∥2 (3)

with respect to the joint velocities q̇. The solution is

q̇ =
(
ĴTĴ + λ2I

)−1

ĴTν, (4)

or equivalently [16],

q̇ = ĴT
(
Ĵ ĴT + λ2I

)−1

ν. (5)

Equation (4) is preferable as it requires fewer operations to
compute, assuming n > 6 [16].

The damping term λ2∥q̇∥2 in (3) is added to damp
down joint motion when the manipulator is near a singular
configuration. A good choice for the damping factor λ2,
according to [17], is

λ2 =

0 when σmin ≥ ϵ[
1−

(
σmin

ϵ

)2]
λ2
max otherwise,

(6)

where σmin is the smallest singular value of Ĵ , ϵ is the
singular value threshold below which the damping becomes

active, and λmax is the maximum damping factor. With (6),
the solution is a pure task velocity error minimization when
the manipulator is sufficiently far away from any singularities.
As it approaches a singular configuration, the joint velocity
damping term will dominate.

D. Position feedback

Various methods exist for direct position measurements
underwater. Global navigation satellite systems (GNSSs)
are unavailable underwater, but long baseline (LBL), a
similar method based on triangulation with distances to
acoustic transponders, is possible. Another alternative is ultra-
short baseline (USBL), using a sonar array for position
measurements [18]. The drawback of acoustic underwater
position measurement methods is that they require externally
installed sensor equipment. This drawback does not apply to
camera-based simultaneous localization and mapping (SLAM)
methods, which is a viable approach in situations with good
visibility [19].

For ocean operations without position measuring equipment,
accurate estimates of the end-effector position may be hard
to obtain. Using an IMU, one can estimate the position by
dead-reckoning, which combines and integrates velocity and
acceleration level measurements, but the estimate will drift. If
only acceleration measurements are available, the drift error
will be quadratic in time, and with velocity measurements,
it will be linear in time [20]. Estimators based on double
integration are usually not sufficiently accurate over time to
be used for precision tasks. For this reason, Doppler velocity
log (DVL) measurements are often used in inertial navigation
systems (INSs) [18]. These indirect estimation methods are
not perfect but are often the only available methods for ocean
operations away from man-made structures.

A simple method for incorporating position measurements
into the manipulator control scheme is to use closed-loop
inverse kinematics (CLIK) [21]. CLIK was developed to
remove the accumulated integration error from joint trajectory
reconstruction [16], but is here used to also account for
position errors that occur during underwater GJM-based
manipulation. A first-order CLIK algorithm, adapted from
[16] to give position but not orientation feedback, is

q̇ = Ĵ†
(
v +K(p− p̂)

ω

)
+

(
I− Ĵ†Ĵ

)
q̇0, (7)

where Ĵ† is the pseudoinverse of the GJM, K is a constant,
positive definite gain matrix, p is the end-effector position in
the inertial frame according to the reference trajectory, and
p̂ is a measurement or estimate of p. The second term can
optionally be used to exploit the redundancy of a redundant
manipulator. To allow us to use the CLIK algorithm with
any inverse kinematic method, we extract the velocity twist
command

νc =

(
v +K(p− p̂)

ω

)
. (8)

We can then combine it with e.g. (4) by inserting νc for ν.
A diagram of the closed-loop system, combining position
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Fig. 3. Diagram of the closed-loop inverse kinematics control system, using position feedback.

Fig. 4. The USM simulation model, as seen in Vortex

feedback (8) with damped least-square inverse kinematics (4),
is displayed in Figure 3.

One aim of this paper is to illustrate the performance
differences between open-loop and closed-loop GJM control.
This allows us to discuss the capabilities of the open-loop
system, and how much it will benefit from position feedback.
A thorough investigation of different feedback algorithms is
suggested as future work.

III. SIMULATIONS

This section illustrates the potential of GJM based control.
We compare two simulation scenarios: Open-loop inverse
kinematics, and closed-loop inverse kinematics with position
feedback. In the open-loop case, inverse kinematic control is
done without correction based on measurements, using (4).
In the closed-loop case, position measurements are used to
correct the trajectory, by substituting νc from (8) for ν in
(4).

Both scenarios simulate 3 degree of freedom (DOF) linear
motion control of the end-effector in inertial space, which is
relevant for many use cases, such as positioning a camera
gimbal, and light intervention with a multi-DOF end-effector
tool. Any combination of the 6 spatial DOFs is possible to
control when using the GJM, by extracting the appropriate sub-
matrix. The reference trajectories are given as linear velocities

vd ≡ (ud, vd, wd)
T, (9)

and as linear positions

pd ≡ (xd, yd, zd)
T, (10)

where the positions references are calculated by integrating
the velocity references over time,

pd(t) ≡
∫ t

0

vd(t) dt. (11)

The reference velocity and position trajectories are identical
in both simulation scenarios, to allow fair comparison. The
trajectory corresponds to pulling the end-effector backwards,
to the right, and up, starting from a nearly outstretched
configuration.

A. Simulation environment

The simulations are run in MATLAB/Simulink [22] and
Vortex Studio [23]. The control system is implemented in
Simulink, while the dynamics are simulated in Vortex. Vortex
performs hydrodynamic simulation and visualization, based
on a link-by-link model of a USM, where the kinematic and
dynamic properties are specified for each link. The Vortex
model developed for these simulations is a continuation of
the model presented in [5]. In particular, the model presented
in [5] has been extended for links of varying masses and
lengths. The number of thrusters has also been increased. The
model used in this paper is shown in Figure 4.

B. Open-loop inverse kinematics

This section investigates inverse kinematic GJM-based
control in open-loop, using the scheme in (4). Figure 5
compares the desired and measured end-effector velocity of an
example trajectory, along with a comparison of the measured
position versus the integrals of the velocity references. The
reference trajectory is as described earlier in this section,
and Figure 6 shows snapshots of the vehicle configurations
throughout the maneuver.

This simulation scenario investigates the extent to which
the GJM is applicable for underwater manipulator control,
despite the hydrodynamic effects that are not accounted for.

The end-effector velocities follow the trajectory with only
small deviations, no larger than approximately 0.02 cm/s. The
errors are mostly found in the sway and heave velocities during
the steady-state segment of the trajectory. This is presumably
due to the hydrodynamics, in particular, the tendency of the
vehicle to “swim” when moving its joints. A small component
of the transient error can also be attributed to the joint motor
dynamics, which are modeled as a first-order system with a
100ms time constant.
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Fig. 5. End-effector velocity (above) and position trajectories (below) for
the open-loop maneuver. Dashed lines represent the reference trajectory,
and solid lines the simulation output. The lower sub-figure compares the
integrated velocity trajectory to the measured end-effector positions.

Figure 5 reveals that the surge velocity um follows its
reference ud more closely than the sway and heave velocities.
The negative surge velocity corresponds to moving the end-
effector backward. Under GJM control, the tail must move
in the opposite direction to cancel the reaction forces of the
end-effector’s motion. The hydrodynamic forces caused by
the motion of the end-effector and the tail will, therefore, be
roughly symmetric and opposite. This gives a small total
hydrodynamic disturbance, providing greater precision in
the surge direction. On the other hand, the sway and heave
velocities of the end-effector do not create a symmetric motion
with canceling hydrodynamic effects.

The particular application dictates the level of precision
needed for underwater manipulation. If the vehicle is piloted
by a human, using a joystick or other device to give end-
effector velocity commands, the primary concern is that the
resulting end-effector velocities must be proportional to the
velocity references. The pilot can easily account for errors in
magnitude: If they notice that the end-effector moves too fast
or slow, they can adjust the joystick position accordingly. A
human pilot will also typically have access to a live camera
feed, which allows the pilot to perform manual position
feedback, by monitoring the position of the end-effector on
the video.

The norm of the position deviation after the maneuver (at
t = 8 s) is 2.2 cm, an accuracy that is sufficient for teleopera-
tion and autonomous operation. However, the position error
in open-loop is not corrected and will accumulate over time,
so the applicability for autonomous tasks depends on the
required time horizon. For teleoperation, the operator will be
able to manually correct for position errors over time.

C. Closed-loop inverse kinematics

The closed-loop simulation uses CLIK by combining (4)
and (8), with K = 3·I3×3. As shown in Figure 7, the position
tracking is very accurate throughout the entire maneuver. The

(a) t ≈ 1

(b) t ≈ 3

(c) t ≈ 5

(d) t ≈ 7

Fig. 6. Snapshots of the vehicle configurations throughout the open-loop
maneuver, at even intervals of the simulation time t.

velocities are also close to their reference trajectories, but
with some deviation, particularly some transients visible at the
beginnings and ends of the velocity ramps. This behavior is
expected, as changes in velocity are used to fulfill the position
tracking objective, through the position error term in (8).

In order for the system to navigate with full autonomy,
the requirements on control accuracy are much stricter than
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Fig. 7. End-effector velocity (above) and position trajectories (below) for
the closed-loop maneuver. Dashed lines represent the reference trajectory,
and solid lines the simulation output. The upper sub-figure compares the
derivative of the position trajectory to the measured end-effector velocity.

for teleoperation, as no human is present to detect and
correct unexpected errors. For intervention tasks, such as
valve turning, the end-effector position accuracy needs to be
on the order of centimeters (compare for instance the valves
used in [24]). The closed-loop simulation shows that the
position tracking accuracy is significantly improved compared
to the open-loop case. The norm of the position error at the
end of the simulation is on the order of millimeters, visible
in Figure 7. This accuracy shows the potential for using the
proposed controller to perform teleoperation and autonomous
tasks, without restriction on the time horizon.

IV. CONCLUSIONS

We have proposed a control system for free-floating
underwater manipulators. The control system differs from
earlier approaches in that it uses the GJM for inverse kinematic
control, which allows us to leave the base of the manipulator
unactuated. A result of the unactuated base is that the power
normally used to carry out stationkeeping with thrusters
can be reduced or eliminated. The system has been shown
through simulations to have good performance, illustrated
with simulations of an example maneuver.

Inverse kinematics with the GJM without feedback is
sufficient for teleoperation. Expanding the control system
with position feedback increases accuracy and therefore eases
the operator’s workload. For autonomous operation, position
feedback is preferable, as it accounts for the errors that
occur due to the unmodeled hydrodynamic effects, and allows
centimeter precision.

The simulations demonstrate that GJM based end-effector
control of underwater manipulators is feasible, and that
centimeter level accuracy is possible when position estimates
are available.
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