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Abstract

The current master thesis was written during the academic year 2013 − 2014 at
the Norwegian University of Science and Technology (NTNU). It concerns the im-
plementation of the case-crossover design in a combination with the lasso method,
for investigating potential effects of a set of drugs on myocardial infarction. The
datasets that were used in the analysis were generated based on information about
the usage frequencies of the drugs in the period from 2008 to 2012. The reason
for using generated datasets was because the actual dataset would not be available
before the deadline for delivering this thesis. Furthermore, the thesis provides a
brief explanation of how the lasso method can be used in the case of generalized
linear models, as well as the case-crossover design. The main analysis was based
on two datasets such that probably weak aspects of the lasso could be discovered.
Another aspect of the current thesis was the implementation of the relatively new
inference method for the lasso, as well as the implementation of two forms of the
lasso method: simple lasso and bootstrap lasso. Finally, the current thesis shows,
with numerical results, that the bootstrap form of lasso is an effective variable
selection method, and that the lasso inference is not yet sufficiently developed.
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Sammendrag

Masteroppgaven ble skrevet ved NTNU i løpet av det akademiske året 2013−2014.
Oppgaven omhandler implementeringen av case-crossover designet i en kombina-
sjon med lasso metoden for å undersøke potentialle effekter av et sett av medisiner
på myocardial infarction. Det virkelige datasettet var ikke tilgjengelig før innleve-
ringsfristen, derfor ble genererte datasett brukt i analysen. Datasettene som ble
brukt i analysen var generert basert på forbruksfrekvensene til medisinene i peri-
oden mellom 2008 − 20012. Videre gir oppgaven en forklaring på hvordan lasso
metoden kan bli brukt både i generaliserte lineære modeller og i case-crossover
design. Analysen var basert på to datasett sånn at de svake aspektene til lasso me-
toden ble funnet. I tillegg omhandler oppgaven implementeringen av den nye lasso
inferensen og to forkjellige lasso-typer, enkel lasso og bootstrap lasso. Til slutt vi-
ser oppgaven, ved bruk av numeriske resultater, at bootstrap lasso er en effektiv
variabel utvalgsmetode, og at lasso inferens ikke er tilstrekkelig utviklet.
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Chapter 1

Introduction to the Problem

1.1 Chapter Description
The current master thesis consists of six chapters and four appendices. Chapter
1 gives an introduction to the problem that the current thesis concerns, as well
as a brief description of how the datasets were generated. Chapter 2 concerns
the case-crossover design and presents the basic mathematical formulas for this
design. In chapter 3 an introduction to the generalized linear models is given, as
well as the presentation of the main algorithms that were used in the analysis.
Moreover in the same chapter, the lasso method is concerned, which was the main
estimation method that was used in the current analysis. Furthermore, chapter 4
gives an adaptation of the theory to the problem under research. The results of
the theory are presented in chapter 5. Furthermore, chapter 6 discusses the results
of the analysis, as well as the probabilities of potential improvements. Moreover,
appendix A concerns difficulties and challenges that occurred during the analysis
and provides a presentation of the algorithms. Finally, appendices B and C concern
a proof of an equation and the tables of the results from the analysis, and appendix
D contains some Quantile-Quantile plots. References of the appendices are given
throughout the chapters.

1.2 The Problem
1.2.1 Myocardial Infarction
Myocardial infarction (MI) is a heart disease [1]. It occurs when a coronary artery1

is blocked [18], which disables the blood supply from the artery to the myocardial
tissue and eventually results to the death of the myocardial cells [1]. The event
of myocardial infarction can either be with mild or disastrous results, which could
lead to the death of the patient [27].

1Definitions of some terms that are in Italic can be found in the glossaries section.
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2 CHAPTER 1. INTRODUCTION TO THE PROBLEM

1.2.2 Purpose of the Analysis
The current master thesis had three purposes. The first one was to investigate if
any of the drugs from the NRD dataset (will be presented in the next subsection)
could have caused MI to a set of patients, by estimating their risk ratios. For that
reason, the case-crossover design was used as the main layout of the analysis, as
proposed by Professor Imre Janszky. The second purpose was the investigation
and the understanding of the bootstrap lasso behaviour on two different datasets.
The lasso method was proposed by Professor Bo Henry Lindqvist and it was the
main estimation method for the log risk ratios. Finally, the third purpose was
the implementation of the newly proposed covariance test statistic. Emphasis is
given on the second and third purposes. This is because we were more interested
in how the lasso method works and because the datasets were not real. However,
the results from the first purpose are interpreted as they should be interpreted for
real datasets.

1.3 The Datasets
1.3.1 Overview
Two generated datasets were used for the analysis. The reason for generating
the datasets was that the actual data couldn’t be available soon enough and the
deadline for delivering this thesis would have passed. Each dataset was a set of
information for each patient’s drug intake history in the time period from 2008 to
2012. Those information were (1) the year, the month and the day of birth for each
patient, (2) the year, the month and the day of MI and (3) the year, the month
and the day for each drug prescription for each patient. The difference between
the two datasets is that the one dataset is randomly generated, meaning that the
MI event was generated independently from the drug intakes of each patient, while
the other dataset had some weights placed on 100 of the 775 drugs, making those
drugs having a probability of causing MI. Those 100 drugs were randomly chosen by
the algorithm and were therefore unknown. The reason for including a completely
random dataset is for understanding how the lasso method behaves on two different
datasets. It would be reasonable to expect that the completely random dataset will
give us no significant results, although non-randomness might have been caused
when generating this dataset, but it should not be of big significance. For the rest
of the thesis we will call the random dataset RD and the non-random dataset NRD.
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1.3.2 Generation
This subsection describes how the two datasets were generated. First of all, the
only available data that could be used for generating the whole datasets was:

1. A list of 775 drug names that were used in real life.

2. A list of 775 numbers scaling from 1 to 1.000. Each number corresponded
to how many people per thousand took each drug in the interval of years
between 2008− 2012, i.e. the observation period.

3. A list of 775 numbers scaling from 1 to 52. Each number corresponded to
the mean number of weeks per year that the corresponding drug was used by
each patient.

The above information were given by Imre Janszky MD PhD. The rough estim-
ation of the frequencies was based on the frequencies of the general population
provided by the Norwegian Prescription Database http://www.norpd.no. Those
information were used for creating the datasets, each of 75.000 people which would
consist of the following outputs:

• ID ranging from 1 to 75.000 and sex of each patient.

• The year, month and day of birth for each patient.

• The year, month and day on which the MI event occurred for each patient.

• The year, month and day on which each patient took a specific drug.

• Drug names (which were already given as input).

As we will see in chapter 2, only the date for the MI event and the drug intakes
were needed for the analysis (personal characteristics like age and sex are being
removed from the model). For the MI event and the drug intakes it seemed easier
to generate the events according to the days between 1 and 1827 which was the
total number of days in the period of five years between 2008 and 2012, taking
the leap years into account. Then according to those days, the exact dates could
be calculated using the lubridate R-package. However, for the analysis part, only
those variables were needed. Therefore the rest of the variables (sex, date of birth
etc.) were generated only for illustration purposes for showing how the actual
data would look like. Furthermore, each patient who took the same drug several
times, had to have taken the drug with at least seven days2 difference. This was
actually very time consuming to achieve in R, if not impossible, because there is
no straightforward way to generate numbers within a given distance. Therefore,
without loss of generality, the generation of the days was made in a sequence from
1 to 1827 by 7 (every seventh day). That would not cause any problems in the

2Every seventh day for reasons based on the case-crossover design which will be discussed in
subsection 4.2.1.
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actual analysis anyway. Of course, a patient might have taken two or more different
drugs at the same time.

The difficult parts were that of simulating the age of each patient when the MI
event occurred (only for illustration purposes), and the total number of weeks that
each patient took a specific drug, given the mean number of weeks for each drug.
Those simulations, although, should be done under some assumptions:

• The age of each patient when he/she experienced the MI event, was let to
vary between 30 and 105 with increasing rate from 30 to 65 ∼ 70 and then
it decreases down to 105. This information was again given by Imre Janszky
MD PhD.

• For both variables of ages and weeks a Chi-squared distribution was used
for generating identically independent values and then round them down to
the nearest integer. Ages were assumed to be Chi-squared distributed with
mean 65. Furthermore, the values that were generated were in the interval
[30, 105]. This was done by simply rejecting those who weren’t. Weeks were
assumed to be Chi-squared distributed with mean given from the total weeks
input set. Again, their generated values were in the interval [1, 52].

The choice of Chi-squared distribution was made after working with the Normal
distribution without getting the desired results. The problem with the Normal
distribution was that it had to be skewed since, especially for weeks, the mean could
be much smaller or larger than the median. However, it was impossible to generate
random skewed Normally distributed numbers without further information but the
mean. Chi-squared distribution worked perfectly, on the other hand, as we can see
from the simulated examples in figure 1.1.

Figure 1.1: Plot of 50.000 simulations from the Chi-squared distribution for Ages (left) and Weeks
(right). For the right figure, the variables are ”Average weeks 15”, ”Average weeks 35”, ”Average weeks
5” and ”Average weeks 50”, from top to bottom of the right panel. Note that, this is just an example
of a simulation and therefore, the blue density has edges. However this is not of any concern.
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The two datasets were generated by almost the same way. The only difference
between them was that the one dataset was completely random, meaning that
the drug intakes and the MI event were generated independently. That is, the
MI event could have occurred on any of the 1827 days with the same probability
1/1827. While the other one was not so random, meaning that the drug days
were first generated, then 100 drugs were randomly chosen, for whom weights were
assigned such that not all days would have equal probability of 1/1827 for getting
MI. The reason for doing that will be discussed afterwards.

In table 1.1, one can see an example of how a part of the datasets looks like for
one patient. The table consists of the patient’s ID, the ID of each drug that this
patient took, the day of the drug intake (ranging from 1 to 1827), and the MI event
day (ranging again from 1 to 1827). The rest of the variables, as well as the patient’s
ID, are actually irrelevant for the analysis. Finally we can see from the table, that
the patient took the same drug more than two times, namely ”C10AA01” (red),
on days 281, 323 and 29. Clearly those days have more than 7 days distance in-
between them. On the other hand, drugs ”B01AC06” and ”R05CB01” (blue) were
taken on the same day, this is considered as a potential interaction. Note that the
two drugs were taken on exactly the same day because the generation was every
seventh day, as said before. In a real dataset, drugs with intake date distance less
than seven days should be considered as potential interactions. The two generated
datasets were further modified for the analysis purposes. We shall come back to
this after the presentation of the theory in the following chapters.

Table 1.1: An Excerpt From a Patient’s Data.

Patient ID Drug ID Drug Day MI Day Day of Birth Moth of Birth Year of Birth Sex
16543 N02BE01 617 638 22 5 1974 F
16543 R05CB01 442 638 22 5 1974 F
16543 C09AA05 288 638 22 5 1974 F
16543 R05CB01 407 638 22 5 1974 F
16543 C10AA01 281 638 22 5 1974 F
16543 N05BA04 260 638 22 5 1974 F
16543 B01AC06 575 638 22 5 1974 F
16543 R05CB01 575 638 22 5 1974 F
16543 B01AC06 638 638 22 5 1974 F
16543 C09AA05 533 638 22 5 1974 F
16543 C10AA01 323 638 22 5 1974 F
16543 C09AA05 29 638 22 5 1974 F
16543 A10AD05 428 638 22 5 1974 F
16543 B01AC06 106 638 22 5 1974 F
16543 D08AC02 505 638 22 5 1974 F
16543 R05CB01 106 638 22 5 1974 F
16543 N02BE01 624 638 22 5 1974 F
16543 N05BA04 477 638 22 5 1974 F
16543 N06AX11 372 638 22 5 1974 F
16543 C10AA01 29 638 22 5 1974 F

Finally, algorithm 1 gives a pseudo-code for how the datasets were gener-
ated. The initialization step creates an empty data matrix of 75.000 rows and
775 columns, for the total drugs. On that step we can also generate the sex and
age of each patient, or any other internal characteristic (like region etc.), and in-
sert it as a column of the matrix. However those internal characteristics will be
removed afterwards and will therefore not be treated as factors at all. On step
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one, we first use the people frequencies for assigning drugs to each patient (namely
information number 2 from the total 3 informations named previously). This is
done by simply multiplying the frequencies by 75, since they correspond to 1000
people for those 5 years, and then round them to the nearest integer. Then for
each frequency, which corresponds to a drug, we randomly choose IDs, for assign-
ing them the drug. Note that the total randomly chosen patient IDs for each drug,
will be equal to the corresponding drug frequency. By that time we know exactly
by how many patients a drug was taken, and we also know which patient took a
specific drug. Then for each patient and each drug that the patient took, we use
the chi-square distribution for the week frequencies of the drugs, and we generate
the weeks/times that a drug was taken by that patient. Thus, by that time, we
should have a complete image of how many times a drug was taken by each patient.
Then for each patient and for each time that the patient took a drug, we generate
the date of the drug intake by simply generating numbers in the interval (1, 1827),
by 7. The initialization step and the step one are common to both datasets.

Step two differs between the datasets. This step generates the date of the
MI event for each patient. For the RD dataset we generate the dates using the
”sample(1 : 1827, 1, prob)” command in R, which randomly chooses integers in the
interval (1, 1827). There prob is a vector of length 1827 which contains the element
1/1827. That is, all the days are equally chosen and independent from the drug
intakes. Note that each element of the vector corresponds to each day from 1 to
1827. For the NRD dataset, we first randomly choose 100 drugs and we assign to
them probabilities in the interval (2/1827, 1), that is, greater than 1/1827. Then for
each patient, if he or she took one or more of those drugs, we find the date of those
drug intakes. Then the corresponding positions on the prob vector, are assigned
the probabilities chosen before (those greater than 1/1827 for the corresponding
drug). Then the MI event is generated according to that new vector. Note that,
the sum of the elements of the vector does not need to be equal to 1 in R− studio;

Data: The initial drug frequencies.
Result: Generated dataset.
Initialization: Create the 75.000 matrix rows with the IDs.
Step 1: Generate the total drug uses for each patient.
Step 2: Generate the MI event for each patient according to the
command: sample(1 : 1827, 1, prob)

Algorithm 1: Data Generation Algorithm



Chapter 2

Case-Crossover Studies

A case-control study is a study for which the case and the control subjects are
different subjects from the same population. For example, two different people,
one deceased (case) and one not (control) [6]. Although case-control studies serve
well for many kinds of analysis, they do not provide a way of studying the time
it takes for an exposure, trigger, to have an effect. Because case-control stud-
ies gather exposures over time. Moreover, another problem with the case-control
studies is that the subjects who serve as cases are more likely to remember ”what
they did” before the event, than the control subjects1. This can lead to misclas-
sified studies. Furthermore, internal characteristics of the subjects (like sex, age,
geographic region etc.) can not be eliminated. Finally, one of the most difficult
aspects of case-control studies is that the control group should be representative
of the population where the case group comes from. And this is very difficult to
achieve [25].

2.1 The Case-crossover Design
The case-crossover design was purposed by Maclure [18], and is able to solve the
problems that under a case-control study would remain unsolved. They are most
commonly used in studies where the effect of exposures on acute health events need
to be measured [14]. The key aspect with the case-crossover studies is that the case
and the control is the same subject but on different time periods. In case-control
studies we have a group of subjects which serve as cases at a given time and a group
of other subjects, different than the first ones, which serve as controls on the same
time. On the other hand, in case-crossover studies we have a group of subjects
which serve as cases at a given time, and the same group of subjects which serve as
controls for themselves at a different time [19], thus characteristics of the subject
like sex and age, are eliminated [14]. By doing that, it becomes easier to research
a cause of an event, the frequency of that cause and how common that cause was

1Note that this problem does not apply to drug registries, because each patient’s information
is probably stored.

7
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among the subjects. Moreover, case-crossover studies work perfectly on exposures
that are sporadic over time [19], and they assume that the event happened a short
time after an exposure [16]. Finally, the name of the case-crossover studies comes
from the fact that the analysis crosses over times of exposure and non-exposure
for each subject [18]. That is, in contradiction with the case-control studies, where
the subject has to be always at risk, in case-crossover studies the subject’s history
includes both risky and non-risky periods [16]. Figure 2.1 shows the difference
between a case-crossover and a case-control study.

Although case-crossover studies provide big advantages to the researcher wish-
ing to study a rare event, their advisability can be threatened by some factors. One
of those factors is the uncertainty about the effect period of a potential trigger.
In such studies, the researcher has no control over the sequence of the exposures
nor the exact occurrence of the event under study. Those characteristics might
completely be controlled by the subject itself and thus, they might lead to within-
individual confounding. Finally, because the subjects are usually interviewed be-
fore the research, such that the exposures’ sequences are recorded, false or forgotten
information might lead to selection or information bias2 [18].

Figure 2.1: This figure is a simplified version of the figure given by Maclure and Mittleman [19], and it
shows the difference between a Case-crossover and a Case-control design. For the former, the subject is
the case and the control of itself on different time periods. For the latter, the case is the subject itself,
but the control is another subject on the same time period. Here, the number of case and control boxes
is only an example.

2.1.1 Windows and Triggers
A case-crossover study is mainly based on windows and triggers. The triggers are
the potential causes of the event, while the windows are time frames that construct
the case-crossover design. There exist various designs both for the kind of windows
and the effect periods of the triggers [13, 16]. In this section we present the main
background theory for constructing such windows, as well as the effect that the
triggers have on them.

2This again does not apply to cases where the information is registered.
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2.1.1.1 Definition and Characteristics of Windows

A specific time frame is called a window. It is the time unit under observation,
where we expect to see a trigger [19]. Windows are of two kinds: control windows
and case windows. A case window is a time frame in which we assume that a
trigger caused the event. The case window can be a time frame that includes the
event time, or it can be a time frame prior to the event time. The relationship
of the case window and the event time depends on the induction time and effect
period of the trigger, as we will see in subsection 2.1.1.3. A control window is
also a time frame, where we expect to see a trigger but not the event [14], and
it is placed before the case window [25]. We can have single or multiple control
windows in the study [25], but only as many case windows as the total events
occurred for each subject [12,16]. At least one control window should be provided
for each subject, such that confounding from constant characteristics are minimized
as much as possible [19].

Case and control windows can be either exposed or unexposed. If a window is
exposed, it means that on that specific time frame a trigger occurred. In a case-
crossover study, pairs of case and control windows that are both unexposed or both
exposed, do not contribute anything in the analysis and they should not be taken
into account [25]. Therefore in a case-crossover study, each subject should have at
least one exposure event [19]. According to Schneeweiss et al. [25], Hernández-Díaz
et al. [12] and Maclure and Mittleman [19], if we have a study which consists of
more than one control window, then subjects that have all their control windows
and all their case windows exposed (or all the control and case windows unexposed)
at the same time, should not be included in the study.

The control and case windows should not overlap with each other. Furthermore,
a gap can exist between a control and a case window, or between a case window
and the actual event. Those gaps are specified by the effect period [12,18], as well
as the washout period [18] of the trigger. We shall revisit this in subsection 2.1.1.3.
Finally, defining the length of the time frame for a window is something that needs
to be done carefully and depends on information about the time it takes for a
trigger to put the subject in the effect period [19]. Note however, that the smaller
the length of the windows is, the smaller becomes the risk for seasonal bias [16].

Each subject in the study has its own ”referent” window, which is the set of
control and case windows that correspond to that subject. The time on which the
referent window is placed differs among the subjects, because the corresponding
set of case and control windows depends on the event time of each subject [14].

2.1.1.2 The Main Categories of Referent Windows

Considering an observation period from {1, ..., T}, there exist two main categories
for the designs of the referent windows. The one category corresponds to localizable
designs. Those designs, divide the time period into disjoint strata3 whose placement
on the timeline does not depend on the event itself. That is, the strata are localized
a priori. Then according to which stratum the event occurs, those designs choose

3Strata are defined as relatively big time periods, such as months or years [13,16].
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all or some of the time points4 in that specific stratum as control windows. For
example, if we define strata as months and the event for a subject is on a Friday,
then this Friday is the case and some or all the previous Fridays on that month
are the controls. The previous example is an example of a time stratified design
whose strata are months [13]. Another example of localizable design is the Navidi’s
design [16], or as called by Janes et al. [13] bidirectional design, which is a time
stratified design with only one stratum, corresponding to the whole time period [13].

The other category corresponds to non-localizable designs [13], or according to
Lumley and Levy [16], Referent window designs. Those designs choose a fixed
number of time points before and/or after the event, as control times [16]. The
reason for doing that is mainly for reducing potential seasonal bias. Moreover for
those designs, the time of the event completely determines the placement of the
windows (both case’s and control’s). Thus the windows are not localized a priori,
but they are random variables which depend on the event itself [13]. There exist
various designs which belong to that category, such as the unidirectional design,
which first finds the event time and treats it as a case window and the whole
previous time (from the beginning up until the event time) as one control window,
the unidirectional-”numbers” designs5 which treat the event time as case window
and some fixed time points, previous to the time event, as control windows. Finally,
there also exist symmetric bidirectional designs, which have as control windows,
fixed time points both before and after the event time [13].

Choosing the appropriate design depends mainly on the kind of the event, as
well as the available data. For events that can occur only once (such as death), one
cannot choose designs which will sample control windows after the event. Moreover,
some events may cause changes to some model factors when they occur (such as
changes on drug intakes after the event), therefore control windows after the event
are again not suitable. Furthermore, another reason that there exist many different
designs is that some of the designs cause bias to the estimates. This is the main
difference in the estimates obtained by a localizable design and a non-localizable
design. According to Lumley and Levy [16] and Janes et al. [13], localizable designs
result to unbiased estimators, while non-localizable designs result to bias estimat-
ors. However, the bias for the non-localizable designs is not big.

In general, there does not exist an ideal design. The two main categories are
the localizable designs and the non-localizable designs, each one having its own
subcategories according to the placement of the control windows. The difference
between the two designs is that the localizable designs compare control windows
within a stratum, which is placed a priori and independently of the event time, and
this results to unbiased estimates. On the other hand, the non-localizable designs
compare control windows that do not belong to a pre-specified stratum, and are
placed according to the event time. That is, the windows are random variables
that are placed according to the event time and thus, the event time is completely
determined by them [13]. The reason for at those designs result to biased estimators

4By time points we mean time measurements, like days, hours etc., that the study is based
on [16].

5Those designs are of the form: unidirectional 7, 14, 21, or unidirectional 3, 4, 5, or any
numbers we want. The numbers indicate which windows are chosen as controls [13].
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will be discussed later.

2.1.1.3 Triggers

By triggers we mean a potential cause of the event under study. The subjects
are exposed to triggers and we wish to investigate their immediate6 effect on the
event, by studying their exposure frequencies. That is, we want to study if that
trigger had anything to do with the caused event. A trigger for example, can be
a drug intake, the event can be a disease and we want to find out if the drug
could have caused the disease. Moreover, some factors affect the subject in the
opposite way than the triggers do, by preventing the event from happening. Then
the interruption of those factors can be treated as a trigger. Defining the triggers
depends on what we think that a cause of an event could be. The induction time,
the effect (or hazard), and washout period are units of observation that divide the
exposure (trigger) in different time intervals, each giving a different point of view
of the exposure’s effect [19].

The induction time becomes more easily understood by dividing it in min-
imum and maximum induction times. Minimum induction time is the time interval
between the time when the trigger occurred and the time when the trigger begins
to affect the subject [18]. For example, a drug intake might take some hours be-
fore it actually begins to affect the person. Maximum induction time is the time
interval after the effect period and is analogous to the washout period [19]. If an
event occurred within the minimum or the maximum induction times of a trigger,
then that event cannot be associated with that trigger, because the minimum and
maximum times are not hazardous periods [18].

The effect period is the time period in the interval between the minimum and
maximum induction times [19]. This is the hazard period of the subject and it can
be divided into periods of higher and lower risk. The effect period of a trigger is
the period that actually affects the subject. If an event occurred during the effect
period of a trigger, then that trigger could be the cause of that event [18].

The minimum and maximum induction times specify the times where the win-
dows should be placed, while the effect period decides the length of the windows,
both case’s and control’s [12]. If the trigger has a minimum induction time dif-
ferent than zero, meaning that the trigger starts to affect the subject after that
minimum induction time, then the case window should be placed at a time point
before the event such that the time distance between the time on which the trigger
occurred and the time of the event, has minimum value equal to the induction time
and maximum value equal to the minimum induction time plus the effect period.
The length of the interval between the minimum and maximum times is specified
by the effect period. Accordingly we place the control windows [12, 14, 19]. The
time interval between two windows is specified by the maximum induction time
of the previous window, because this corresponds to the washout period and we

6Note that, a trigger has to have an immediate effect on the event. For example, smoking
for many years cannot be considered as a trigger under a case-crossover design. Case-crossover
designs consider only triggers with an immediate effect, such as drug intake before a health event,
or a telephone call before a car accident [19].
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don’t want the windows to overlap. Finally, the times where the windows are being
placed, differ among the subjects. Because they depend on the time of the event,
which is probably different for each subject. On the other hand, the length of
those windows is the same for each subject, since it depends on the effect time of
a specific trigger, which is common to all subjects [14].

The theory discussed in subsection 2.1.1 constructs the design of the referent
window for each subject. In the next section we shall develop the conditional
likelihood for the case-crossover design. This likelihood model will, among others,
depend on the construction of the referent window.

2.2 Designing the Study
In this section the risk ratio and the conditional likelihood for a case-crossover
study are presented. The models developed here are mainly based on the articles
by Lumley and Levy [16] and Janes et al. [13], although, some modifications on
the notations had to be done for giving better explanations.

2.2.1 The Risk Ratio
Assume that we have a total of N individuals who have experienced the event
somewhere in the time interval (1, ..., T ), where T is the observation period. Let
t ∈ {1, ..., T} be the discrete time points where each case was checked (followed
up). The hazard function for the i-th subject at time t is defined by [16]:

λi(t; Xit) = λ0ite
Xitβ

If we let Yit be the risk occurrence indicator for subject i at time t, that is Yit = 1
if ”event” at time t and Yit = 0 if not. Then according to Janes et al. [13], we
can use that hazard function as the likelihood at time t for the i-th subject, if we
assume that the events are rare. More specifically, we can assume that:

P (Yit = 1|Xit) = λ0ite
Xitβ (2.1)

there Xit = (Xit1, ..., Xitp) is the p dimensional exposure time series vector, and p is
the total number of log risk ratio coefficients β = (β1, ...βp)′. The baseline function
λ0it is assumed to vary only among subjects, carrying characteristics associated to
that subject [13].
This is the probability that the i-th subject will experience the event exactly at
time t, given its exposure series. The conditional likelihood model developed in the
next section is based on equation (2.1).

2.2.2 The Conditional Logistic Regression Likelihood
In this subsection the conditional logistic regression likelihood is obtained as pro-
posed by Janes et al. [13] and Lumley and Levy [16]. We shall furthermore restrict
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ourselves to one event in the time interval (1, ..., T ) and thus, we will have one case
window.

To start with, let ti ∈ {1, ...T} be the event time for the i-th subject and Wi

be the corresponding referent window for the i-th subject, either localizable or not,
as defined in subsection 2.1.1.2. Define furthermore W = (length of Wi)7, which
should be common to all subjects, since they all have the same length of referent
window. As said in the previous section, for the i-th subject at time t we have the
exposures vector Xit = (Xit1, ..., Xitp). Since t runs in the referent window, we
define for the i-th subject the exposure matrix for its referent window as follows:

Xi =



Xi1
Xi2

...
Xit

...


where each Xit is of dimensions 1× p and Xi is of dimensions W × p. Finally, let
the total exposures matrix that consists of all subjects be:

X =


X1
X2
...

XN


which is of dimensions (N ·W )× p. Therefore, an arbitrary row from that matrix
corresponds to a subject at a given time t. According to Lumley and Levy [16] and
Janes et al. [13], the score function of the conditional logistic regression likelihood
for the i-th subject is:

Ui(β) = Xiti −
∑

t∈Wi

Xit
eXitβ∑

s∈Wi

eXisβ

That is, the score function for each subject is the exposure of the subject on the
event time, minus a weighted average of exposures among all windows. Those
equations, however, do not have necessarily zero mean. For those equations to
have a zero mean, need the windows Wi to be created with respect to a localizable
design. Because under that design, the event is not determined by the windows
and thus the following likelihood function:

7By length of the referent window we mean the total number of windows that it consists of.
One should think of it as the total number of rows in a data matrix that correspond to the same
subject but at different time points.
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Lloc(β) =
N∏

i=1
P

(
Ti = ti|X, Wi,

T∑
s=1

Yis = 1

)
=

=
N∏

i=1

P

(
Ti = ti,

T∑
s=1

Yis = 1|X, Wi

)
T∑

t=1
P

(
Ti = t,

T∑
s=1

Yis = 1|X, Wi

) =

=
N∏

i=1

λ0itie
Xiti

β∑
t∈Wi

λ0iteXitβ
=

N∏
i=1

eXiti
β∑

t∈Wi

eXitβ

has meaning. There we condition on the total exposures matrix, the referent win-
dows and on the fact that only one event could have been occurred in the interval
(1, ..., T ). According to Lumley and Levy [16] and Janes et al. [13], the baseline
function λ0it can be considered constant within small intervals and therefore, it
is being cancelled out. Replacing the sum of the denominator of the third equal-
ity (sum of the whole period) to that of the forth (sum over the control and case
windows), has only meaning under a localizable design. Under a non-localizable
design, the previous likelihood will result to the value of one and thus, it will be
non-informative. The reason for that, is that conditioning on the referent windows,
we know where the event occurred, since the windows are placed according to that
event. If for example we use an unidirectional design, we know that the event will
be on the last window. If we use a symmetric bidirectional design, the event will
be in the middle window. According to Lumley and Levy [16] and Janes et al. [13],
the random variables under a non-localizable design are the referent windows and
thus, the appropriate likelihood for that design would be:

Lnonloc(β) =
N∏

i=1
P

(
Wi = wi|X,

T∑
s=1

Yis = 1

)
=

=
N∏

i=1

P

(
Wi = wi,

T∑
s=1

Yis = 1|X
)

N∑
t=1

P

(
Wi = w,

T∑
s=1

Yis = 1|X
) =

=
N∏

i=1

λ0itie
Xiti

β

T∑
t=1

λ0iteXitβ

=
N∏

i=1

eXiti
β

T∑
t=1

eXitβ

(2.2)

with corresponding scoring functions:

Ui(β) = Xiti −
T∑

t=1
Xit

eXitβ

T∑
s=1

eXisβ
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That is, the sum is taken among the whole period and not only among the windows.
This however, might not be desirable for a study. The reason for that, is that not all
kinds of events can give desirable data after their occurrence. As said before, events
such as death or events that alter crucial factors of the study after their occurrence,
can not be measured on the whole time period. According to Lumley and Levy [16]
however, one can actually change the sum of the likelihood in equation (2.2), to a
sum over the control and case windows, such that:

Lnonloc(β) =
N∏

i=1

eXiti
β∑

t∈Wi

eXitβ
(2.3)

This however, is not an actual likelihood and thus, it will result to biased estimates.
This bias is called overlap bias, as said before, and according to Lumley and Levy
[16], it will be small. We however, will use the likelihood in equation (2.3) for our
analysis.
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Chapter 3

Iterative Methods and The
Lasso Method

This chapter concerns the mathematical models that are going to be used in the
later analysis. The models here are first presented in general and in the next
chapter we will adapt the models in our case-crossover design. It is important to
understand that a case-crossover design can be analysed in many different ways,
depending on many factors like for example the total number of windows or how
we wish to estimate a tuning parameter, as we will see in this chapter.

This chapter begins with a short presentation of theory for generalized linear
models, which is given in section 3.1. Then it continues in section 3.2 with an
introduction to iterative methods which were used for constructing the algorithms
of this thesis and were the main methods for estimating the parameters of the
models. Finally, the main focus of this chapter is placed in section 3.3 where the
lasso method is presented. Although there are many versions of the lasso method,
we will focus on those needed in the analysis of this thesis.

3.1 Generalized Linear Models
The term ”linear models” comes from the fact that the response and the covariates
have a linear relationship. However, especially for binary or count responses, this
is not always applicable. Moreover the normality assumptions of a model are not
always easy to achieve. Under those cases, the covariates have to be transformed
through a linear function in such a way that the support of the response is feasible.
Those models are called generalized linear models (GLM), because they generalize-
extend the linear regression models through that linear function [20].

3.1.1 The Link Function
The linear function that connects the response and the covariates, under a gener-
alized linear model, is called the link function and it plays the most important role

17
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on such models [20]. Assume that we have a response of the form:

y|X, β ∼ f(y|Xβ)

where the f distribution is a linear combination of X, given that the response
and the explanatory variables have a linear dependence. Furthermore, let y =
(y1, y2, ..., yn) be the response, β = (β1, ..., βp)′ be the coefficients and

X = [x1, x2, ..., xp] =


x11 x12 ... x1p

x21 x22 ... x2p

...
... ...

...
xn1 xn2 ... xnp


be the n × p matrix of the explanatory variables. For a GLM to be valid needs
the conditional density of y, given X, to belong to the exponential family and it
also needs to be parametrized by µ = µ(X) = E[y|X], the expectation parameter.
Furthermore, essential is the existence of the link function g because it connects
the mean response µ with the covariate vector such that, g(µ) = Xβ = η, where
η is called the linear predictor of the model [20, 24]. The link function has to be
one-to-one function such that its inverse exist. If those criteria are satisfied, the
generalized linear model is valid and we can write:

µ = E[y|X] = g−1(Xβ) = g−1(η)

For a distribution to belong to the exponential family, it needs to be shown that
the density function can be transformed to the form:

f(yi) = e
yiθi−b(θi)

αi(ϕ) +c(yi,ϕ) ⇔ log(f(yi)) = yiθi − b(θi)
αi(ϕ)

+ c(yi, ϕ)

there αi(ϕ) = ϕ
ρi

, where pi is a weight usually set equal to one and ϕ is a dispersion
parameter [24]. Furthermore, for a model that belongs to the exponential family
we have the following facts:

• E(Yi) = µi = b′(θi)

• V ar(Yi) = σ2
i = b′′(θi)αi(ϕ)

Those equations are very important for some of the iterative methods when applied
to the lasso method.
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3.2 Iterative Methods
This section focuses on some iterative methods that are widely used for estimating
unknown parameters of a given function f(β). For every method, a summary of
its usage is given as well as the algorithm itself.

3.2.1 Coordinate Algorithms
Iterative methods like Newton-Rapshon [24], who estimate the coefficients β of a
function f(β) by using scoring techniques, are not always easy to apply because the
inverse of the Hessian or the observed information matrix is needed and for a model
with many parameters this is extremely time costly [32]. Coordinate algorithms on
the other hand, update one parameter at a time and thus, no Hessian is needed,
but only the gradient vector. This makes those algorithms very fast and they are
commonly used in models of high dimensions. As for the other scoring algorithms,
so for the coordinate algorithms, their use is essential when we need to estimate
the coefficients of a function [32].

Coordinate algorithms are very useful when we need to estimate the parameters
of a function which is non-differentiable but it has directional derivatives along its
forward and backward direction. Consider a non-differentiable objective function
f(β), where β = (β1, ...βp)′ is the vector of parameters, and let uj and −uj be
the forward and backward coordinates, respectively, along which the βj parameter
varies. Then according to Wu et al. [32], if the directional derivatives exist, then
they are given by:

Forward Derivative

duj f(β) = lim
t→0

f(β + tuj)− f(β)
t

Backward Derivative

d−uj f(β) = lim
t→0

f(β − tuj)− f(β)
t

Coordinate algorithms use one directional scoring for updating one of the para-
meters at a time. They compute the directional derivatives and choose the coordin-
ate which maximizes (if f(β) is concave [32]), or minimizes (if f(β) is convex [11])
the f(β) function [11, 32]. As we will see later, the directional derivatives can be
found by soft thresholding [10,11].

There are two basic models of coordinate algorithms according to the way they
update the parameters. The one is called cyclic coordinate and the other is called
greedy coordinate. Cyclic coordinate updates one parameter at each loop, while
greedy coordinate updates the parameter which gives the biggest desired change
in the function. We shall consider only cyclic coordinate algorithms here because
they are faster in the logistic regression problems [32].

Coordinate algorithms can be further divided into two kinds according to the
path they follow until convergence. If the goal of the algorithm is to compute the
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parameters of a convex function that we want to minimize, then the coordinate
algorithm is called descent, because it goes down the path of the function [11].
If the algorithm computes the parameters of a concave function that we need to
maximize, then the algorithm is called ascent because it goes up the path of the
function [32].

Given an objective function f(β), the general idea of the cyclic coordinate
algorithm is to update a parameter through its partial derivative, when the rest of
the parameters are kept fixed on their last update. That is, if we have p parameters
in the model, we start with some initial values and then for each parameter from
1, .., p we compute the first order derivative, then we solve with respect to that
parameter and then we update. This is done in circles until convergence has been
reached. Note that each time we update a parameter, we use the updated value of
the parameter when we update the next one [4]. In algorithm 2 we see an overview
of the cyclic coordinate algorithm.

Data: Forward and backward partial derivatives, initial values for β.
Result: Parameter estimation via Cyclic Coordinate Descent/Ascent.
Initialization;
while ∥βnew − βold∥ > 1e− 06(tol.)) do

for j ← 1 to length(β) do
Update βj by the coordinate which gives the greatest
reduction/growth of the objective function f(β);
Update the vector of parameters β (Important);

end
end
Algorithm 2: Cyclic Coordinate Descent/Ascent Algorithm

3.2.2 Bootstrap
Bootstrap is a technique which uses the observed data for making inferences for the
parameters of a model. Bootstrap is actually easy to implement and very useful
for big scale data. Having a data matrix which consists of N rows, a bootstrap
sample is constructed by creating another matrix of the same size as the initial data
matrix. This is done by sampling rows from the initial matrix with replacement.
The bootstrap then, simply takes B bootstrap samples from the dataset and it
computes the desired statistic s for each bootstrap sample. Those statistics are
called bootstrap replicates. Finally, the mean of the bootstrap replicates is an
estimate for the statistic s, and the standard deviation of the bootstrap replicates
is an estimate for the standard error of the statistic s. More specifically, for a
statistic s, its standard error can be estimated by [7]:

ŜEbootstrap = ŜD =


B∑

b=1

(
s(x∗b)− s(·)

)2

B − 1


1/2

(3.1)
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there s(·) =
B∑

b=1
s(x∗b)/B is the estimate for the statistic, and x∗b is the b-th boot-

strap sample. Furthermore, 95% confidence intervals (for α = 0.05) can be com-
puted either by sorting the B summary statistic and then take all observation that
lay between the B(α/2) and the B(1−α/2) observations, or one can rely on the cent-
ral limit theorem where for large sample N we expect that x̄ ∼ N(s(·), ŜE

2
bootstrap)

and therefore the 95% confidence interval becomes (s(·) − 2ŜEbootstrap, s(·) +
2ŜEbootstrap). Algorithm 3 illustrates the bootstrap algorithm [7].

Data: Dataset, number of bootstrap samples B.
Result: Estimated statistics and its standard error.
for b← 1 to B do

Take a sample of the same size as the data, with replacement, and
compute the desired statistic ;

end
Compute the standard error;

Algorithm 3: Bootstrap Algorithm

3.2.3 Cross Validation
Cross validation is a method used for estimating the error of a fitted model. The
error of a fitted model is defined by E(y− ŷ)2 where y is the observed response and
ŷ is the fitted response. This error is called prediction error (PE) and it expresses
the ability of a fitted model to predict the observed response. Of course, low values
of the prediction error are preferred, since the lower the error, the better the fit [7].

According to Efron and Tibshirani [7], the ideal way to compute the prediction
error of a model would be to have an extra data that is not used for estimating
the parameters but is used for computing the fitted response. By doing that, we
can tell how well the fitted model can respond to a new data, like for example
future observations. The problem with this approach is that usually, new data is
not available. If this is the case, cross validation is an easy and stable approach
which is commonly used for estimating the prediction error. Cross validation breaks
the data into K roughly equal parts, sub datasets, and uses the i-th part as the
”testing” dataset on the other K − 1 parts which were used for fitting the model,
the ”training” dataset. In other words, we estimate the model with the training
set and we fit it with the testing set, then we compute the prediction error and
the process is repeated K times. Finally a combination of the estimated prediction
errors will give the final result, usually we take the mean of all prediction errors.

The number of K sub datasets depends on the size of the initial dataset. For
large datasets a number of K = 2 datasets is satisfactory. However, for smaller
datasets K-fold cross validation is needed and some times ”leave-one-out” cross
validation is the best method to use, where we choose K = n. For a K-fold cross
validation the estimator of the prediction error is:
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CV = 1
K

k∑
i=1

(yi − y
−k(i)
i )2

where y
−k(i)
i is the fitted response of the model when the k(i) part was removed [7].

In algorithm 4, a pseudo-code of the cross validation procedure is given.

Data: Dataset, regression model, the number K of the folds.
Result: Cross Validation Prediction Error.
Initialization: Break the data into K roughly equal disjointed parts;
for i← 1 to K do

Create the training set from the rest of the K − 1 parts and compute
the coefficients of the model;
Create the testing set from the i-th part and use it to fit the model
whose coefficients were computed by the training set;
Calculate the Prediction error;

end
Take the average of the Prediction errors.;

Algorithm 4: Cross Validation Algorithm
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3.3 The Lasso Method
This section concerns the lasso method, which is the most important part of this
thesis. A brief presentation of the lasso method is given, as well as its advantages
and disadvantages. The iterative methods that were presented in the previous
sections are useful methods that are being used for estimating the coefficients of
a model and assessing its significance. Those methods are also applicable under
a lasso design. Furthermore, in subsection 3.4.1 is given a brief presentation of
the most important algorithm of this thesis. Finally, the lasso inference is being
concerned in subsection 3.4.2.

3.3.1 Introduction
The least absolute shrinkage and selection operator method (lasso) was first pro-
posed by Tibshirani [28] on his article ”Regression Shrinkage and Selection via
Lasso”. It is a shrinkage method which was initially proposed for estimating the
coefficients of linear models [28], although it can also be applied to generalized
linear models [4, 11,28].

The lasso minimizes the residual sum of squares given that the sum of the
absolute values of the coefficients is less than a constant λ ≥ 0. One of the most
important abilities of the lasso method is that it tends to set some coefficients
exactly equal to zero, thus it is an estimation and a model selection method at
the same time [28]. This can become more clear by looking at figure 3.1 which is
an iconic representation of how the lasso method estimates the coefficients in the
2D case. The rhombus in the figure is the lasso penalty and the elliptical lines are
changes that the lasso applies to some initial estimates β̂ throughout the estimation
process. The first place that one of the elliptical lines touches the rhombus is the
lasso estimate of β̂. According to the figure, it is possible that the contact can be
achieved at one of the corners of the rhombus, which would result to an estimated
value of zero for the corresponding coefficient [28].

Figure 3.1: This figure is taken from Tibshirani [28] and shows how the lasso method estimates the
coefficients, in a 2D case. The lasso estimates are where the circles touch the rhombus while the dot is
the initial estimates. Clearly the lasso can set some coefficients exactly equal to zero.
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The lasso method is very convenient when the model consists of many paramet-
ers and, not only estimation, but also selection of the parameters that should be
in the model has to be done [2,28,32]. Usually, when testing many coefficients one
should implement multiple correction techniques for assessing their significance.
Lasso, however, lacks in the ability of multiple correction (some of the reasons will
be discussed afterwards) and significance testing under the lasso method is still
under research [2, 32]. However, a recently published paper, raises the issue of
significance testing under the lasso method. The methods discussed in that paper
are proven for the usual linear regression model cases, but they are not proven for
the generalized linear model cases, yet [15]. However, Lockhart et al. [15] state
that simulation results seem to substantiate the GLM cases also. Finally, there
are a variety of different assumptions for the data matrix X, that can be made
under the lasso method [28] and its inference [15]. We, however, did not make any
assumptions about the data matrices (like orthogonality, standardisation etc.), but
we rather used the rough generated matrices as they were.

3.3.2 Penalizing the Likelihood
The article by Tibshirani [28] was focused in the application of the lasso method
on linear models. Tibshirani [28] states in the article that the lasso method can
be applied in generalized linear models. Other authors like Breheny and Huang [4]
and Friedman et al. [11] have applied the lasso method in generalized linear models
with more details. We shall focus on the generalized version of the lasso method,
where we assume a link function g to exist and that the model is well defined
according to the criteria discussed in subsection 3.1.1.

Suppose that we have a generalized linear model with n observations, p pre-
dictors, response y = (y1, ..., yn), link function g and the following data matrix:

X = [x1, x2, ..., xp] =


x11 x12 ... x1p

x21 x22 ... x2p

...
... ...

...
xn1 xn2 ... xnp


Where the data matrix X can be either orthogonal or non-orthogonal. Further-
more, we can either assume independence between the observations or conditional
independence for the response given the explanatory variables [28].

According to Wu et al. [32], Friedman et al. [11] and Avalos et al. [2], one can
maximize the penalized log-likelihood function, for obtaining the lasso estimates.
More specifically one can maximize:

β̂(λ) = argmaxβ

ℓ(β)− λ
∑

j

|βj |

 (3.2)

For the rest of the thesis we will use the lasso penalty form given in equation (3.2).
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3.3.3 Estimating the Coefficients
Consider the objective function:

f(β, λ) = ℓ(β)− λ
∑

j

|βj | (3.3)

where ℓ(β) is the log-likelihood of the model and λ is the lasso penalty. Both ℓ(β)
and −λ

∑
j

|βj | are concave functions, thus the objective function is also a concave

function. Unfortunately, the objective function is not differentiable but it possesses
directional derivatives on its forward and backward coordinate directions [32].

As we saw in subsection 3.2.1 the directional derivatives of the objective function
are:

Forward Derivative:

duj f(β, λ) = duj ℓ(β) +
{
−λ if βj ≥ 0
+λ if βj < 0

Backward Derivative:

d−uj f(β, λ) = d−uj ℓ(β) +
{

+λ if βj > 0
−λ if βj ≤ 0

If the log-likelihood function is differentiable, then its directional derivatives along
the forward and backward directions are the same as the usual partial derivative
with positive and negative signs, respectively [32]. For a differentiable log-likelihood
function, the objective function is differentiable only for βj ̸= 0 [11]. This can
be easily seen by setting the directional derivatives equal to zero, when we have
differentiated the objective function with respect to βj [11, 32]:

Forward Derivative:

duj f(β, λ) = 0⇔ ∂ℓ(β)
∂βj

+
{
−λ if βj ≥ 0
+λ if βj < 0 = 0

Backward Derivative:

d−uj f(β, λ) = 0⇔ −∂ℓ(β)
∂βj

+
{

+λ if βj > 0
−λ if βj ≤ 0 = 0⇔

⇔ ∂ℓ(β)
∂βj

+
{
−λ if βj > 0
+λ if βj ≤ 0 = 0

As we can see, the forward directional derivative will give us −λ for βj = 0, while
the backward directional derivative will give us +λ for βj = 0. Since the rest of
the results are the same, the partial derivative of the objective function exists only
for βj ̸= 0 [10, 11,32].
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For estimating the coefficients of the objective function, one can either maximize
the concave function f(β, λ) using coordinate ascent algorithms [32], or minimize
the convex function −f(β, λ) using coordinate descent algorithms [11]. Whichever
way we choose to do the estimation, the updating equation of βj will be of the
form1,2 [10, 11]:

β̂j ←
S(A, λ)

B
(3.4)

where A is a function of the explanatory variables xij and the coefficients βl ̸=j ,
B is a function of the explanatory variables xij and S(A, λ) is the soft threshold
function given by [10,11]:

S(A, λ) = sign(A)(|A| − λ)+ =

 A− λ if A > 0 and λ < |A|
A + λ if A < 0 and λ < |A|
0 if λ ≥ |A|

(3.5)

Thus, given initial values β̃, one can either use the cyclic coordinate descent [11],
or the cyclic coordinate ascent algorithm [32], for updating the coefficients through
the functions given in equation (3.4), until convergence has been reached [11,28,32].

3.3.4 Likelihood Approximation
The case of generalized linear models is more complicated because a cyclic co-
ordinate update step like that in subsection 3.2.1 cannot be easily achieved. This
problem arises from the fact that we cannot always solve the partial derivative
with respect to βj because we do not have linearity in the coefficients. Friedman
et al. [11] suggested a quadratic Taylor series approximation of the log-likelihood,
around some current estimates β̃, and an implementation of a Newton-Raphson
step in the cyclic coordinate algorithm. Thus we create a hybrid of cyclic coordin-
ate algorithm and iteratively re-weighted least squares.

The iteratively re-weighted least squares method is based on iteratively updat-
ing the current estimates until convergence is reached. Starting with initial values
of the estimates, the algorithm uses a working response zi that is based on the
current value of the estimate and iterative weights wi which are proportional to
the variance of the working response, and then it updates the estimates [24].

1See Appendix B for the proof of the equation.
2Although the soft threshold function will be revisited afterwards, an example is given here for

avoiding potential confusions. Consider minimizing, with respect to the coefficients, the penalized
linear regression model f(β, λ) = 1/2

∑
i

(yi − Xiβ)2 + λ
∑

j

|βj |. Differentiating f(β, λ) with

respect to a positive βj and setting the derivative equal to zero, we get: −
∑

i

(yi − Xiβ)xij + λ =

0 ⇒ βj =

∑
i

xij (yi−
∑
l̸=j

xilβl)+λ∑
i

x2
ij

. There A =
∑

i

xij(yi −
∑
l̸=j

xilβl) and B =
∑

i

x2
ij . We treat

βj < 0 and βj = 0 accordingly [11].
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Consider a current estimate β̂ and the linear predictor ηi = Xiβ of the gener-
alized linear model, which can be estimated by η̂i = Xiβ̂. Furthermore, it is trail
to compute the fitted values of the generalized linear model by µ̂i = g−1(η̂i). The
working response of the algorithm is computed by the following formula [24]:

zi = η̂i + (yi − µ̂i)
dηi

dµi
(3.6)

And the iterative weights are given by [24]:

wi = pi

b′′(θi)( dηi

dµi
)2

(3.7)

where pi is usually set to 1, as said before. Thus, according to Friedman et al. [11],
the updated version of the log-likelihood function ℓ(β) becomes:

ℓQ(β) = 1
2N

N∑
i=1

wi (zi − xiβ)2 + C(β̃)2 (3.8)

where zi and wi are evaluated on the current estimate β̃ and C(β̃) is a constant.
Note that, the term 1/N in equation (3.8) is a weight that can be simply absorbed
by the weights wi. Finally, Friedman et al. [11] suggested that it would be wise,
when using this approximation in an algorithm, to set the fitted probabilities to
1 or 0 if they lay in the interval (1 − 10−5, 1) or (0, 10−5), respectively, and the
weights to 10−5. This is done for ensuring that the fitted probabilities will be either
1 or 0 and they will not diverge.

3.3.5 Estimating λ

The tuning parameter λ defines the strength of the lasso penalty. As the tuning
parameter increases, the number of non-zero coefficients decreases [3, 11, 28, 32].
Selecting the right λ is very crucial for the analysis as the number of coefficients
who enter the model strongly depends on it [2, 3, 28]. Cross validation is usually
applied for the estimation of the optimal λ [2, 3, 28], although there exist other
techniques such as the use a constant λ [28], or a coefficient estimation through a
sequence of λ values (path-wise coordinate algorithm), instead of using only one
estimated value [11,26].

According to Efron and Tibshirani [7], a cross validation estimate for a given
value of λ would be:

CV (λ) = 1
K

k∑
i=1

(yi − y
−k(i)
i )2

There yi is the observed response and y
−k(i)
i is the cross validated response com-

puted on the testing set (k-th fold) and whose coefficients were estimated by the
training set ((k-1)-th folds).

Furthermore, Tibshirani and Tibshirani [29] suggested that a good method for
finding the optimal λ is to compute the cross validation estimate for each λ in a
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sequence of λ values and then choose the λ which gives the lowest cross validation
error. According to Friedman et al. [11] we can compute λmax, where none of the
coefficients enter the model and thus β̂ = 0 (the null model [3]), by noticing that
in the soft threshold in equation (3.5), a coefficient will stay at zero if λ ≥ |A|.
Thus λmax = maxl|A|, where l is the coefficient index. Then, it is easy to compute
a sequence from λmax down to a minimum and then perform a cross validation to
each λ for finding the one which minimizes the prediction error [3, 11,29].

Moreover, Simon et al. [26], suggest a formula for computing the λ sequence
when we have found λmax. The formula is the following:

λj = λmax

(
λmin

λmax

)j/m

∀j = 1, ...m

where m is the length of the desired sequence, λmin = ϵλmax and ϵ is chosen
according to the size of the data. For big datasets ϵ = 0.0001 should be enough [26].
Note that one does not need to compute the sequence all the way down to zero and
thus, potential over-fitting might be avoided.

Finally, computing a λ sequence leads to path-wise solution. Simon et al. [26]
also suggest that when the coefficients have been estimated for the current λj in the
sequence, we can use those estimates as ”warm starts” in the coordinate algorithm,
for estimating the coefficients for the immediate next λj+1. This leads to more
stable coefficients, as well as a faster coordinate algorithm.

3.3.6 Uncertainties of the Lasso Method
A serious side effect of the Lasso method is that when a group of variables is
highly correlated, the lasso might choose only a subgroup of the whole correlated
group [2]. Moreover, lasso sometimes allows a few irrelevant variables to enter the
model [3]. Finally, according to Tibshirani [28] the standard errors for the lasso
estimates are difficult to acquire, because the lasso estimates are non-differentiable
functions with respect to the response.

Those problems can be reduced by bootstrap. Tibshirani [28], Avalos et al. [3]
and Avalos et al. [2] suggested a bootstrap version of lasso which is called bolasso
and it reduces the uncertainties of the lasso estimates. Bolasso runs a bootstrap
on many samples and on each sample it estimates the parameters using the lasso
approach. Then the parameters frequently selected by the lasso are taken into
account, while the others are set to zero [3]. Furthermore, the tuning parameter λ
can be chosen by cross validation in each bootstrap sample [3,28], or it can be set
equal to a constant, common in each bootstrap sample [28].

Avalos et al. [3] suggested using the Akaike’s information criterion (AIC) for
estimating the frequency threshold of bolasso. Which corresponds to an estimation
of the allowed number of times that a coefficient could have been set to zero among
the bootstraps. AIC is a model selection criterion which is based on the following
formula [21]:

AIC = −2ℓ(β̂) + 2k (3.9)
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where ℓ(β̂) is the log-likelihood function applied on the estimated coefficients from
each model under selection, and k is the length of the β vector. According to
Pan [21], if we have a number of M models, we compute the AIC according to
each model and then we choose the model which gives the lowest AIC value.

Finally, according to everything that has been discussed in that chapter, a
complete algorithm for estimating the regression coefficients of a generalized linear
model using the bolasso approach would be the one presented in the next subsec-
tion.

3.3.7 The Final Algorithm
In this subsection we present the final algorithm of the bolasso. The data matrix
X, the response vector Y , the objective function and, in general, all the functions
discussed previously, are assumed to have been theoretically found. Such that they
can be used in the algorithm.

The initialization step of the algorithm is done by creating the total B bootstrap
samples from the data matrix X. This is done by sampling rows from the data
matrix with replacement. The statistic that we want to estimate here is the vector
of the estimates of the objective function. Furthermore, for each bootstrap sample
we need to compute the bootstrap replicate of the statistic. That is, for each
bootstrap sample we need to estimate the vector of the coefficients of the objective
function.

For doing that, we first need to find the optimal λ by which the likelihood
will be penalized. This is done by choosing the λ which gives the minimum cross
validation error, from a sequence of λ values (the generation of the λ sequence
will be discussed in the next section). For each λ in that sequence, we define
the training and testing sets. Furthermore, we use the training set with that λ,
in the cyclic coordinate algorithm for estimating the parameters of the objective
function. Then we fit the model with the estimated parameters on the testing set.
The prediction error for that fold is the norm of the difference between the fitted
values and the response vector Y . We repeat the procedure on the other sets, with
the same λ, and we take the average of the errors. This is done for each λ in the
sequence and then the one which gives the lowest error is chosen as optimal.

When we have the optimal λ, we estimate the coefficients via the cyclic co-
ordinate algorithm. Note that, this is also done in each cross validation step for
each λ, but for that case we use the training sets, and not the whole data matrix.
Therefore, after finding the optimal λ, we have to re-estimate the coefficients using
the whole data matrix X. First we initialize the coordinate algorithm by giving
initial values for the coefficients. Usually a vector of zeros is given. Then, for the βj

coefficient, we estimate its value using the weights, the working response, the soft
threshold and the optimal λ. This is done in circles starting from β1 and finishing
one circle at βp. Each time a circle is done, we check if the norm of the difference
between the newly estimated vector and the one from the previous circle, or the
initial one, is smaller than a tolerance. If it is, then we are done with the cyclic
coordinate algorithm and with that bootstrap sample. If it isn’t, then we have to
run more circles until the tolerance is reached.
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After all the bootstrap replicates have been computed, we use the AIC for
finding the optimal threshold. The output from the bootstrap should be a matrix
of dimensions p × B. Each column of the matrix corresponds to one bootstrap
replicate, that is, the estimated vector of coefficients from that bootstrap sample.
Each row of the matrix corresponds to the values that the specific coefficient took
among the bootstrap samples. For each row in the matrix, we compute the total
number of zeros. From those numbers we create a frequencies vector of length p.
Those are the frequency thresholds and AIC will choose the optimal. For each
value in the frequencies vector we create a model. This is done by checking which
of the coefficients had been set to zero less times that the chosen threshold. For
those, their mean among the bootstraps is taken as an estimate, while the others
are simply set to zero. Then the AIC is computed by the equation (3.9), where
k is the number of non-zero estimates in the newly computed β vector. Finally,
this is done for all thresholds in the sequence and the one which gives the lowest
AIC is chosen as optimal. For that optimal threshold we again check which of the
coefficients have been set to zero less times that the optimal threshold and we take
their mean (for each coefficient respectively), among the bootstrap values. The
others are set to zero. This vector of coefficients is the bolasso estimation of the
coefficients for the objective function. The complete form of the algorithm is given
in algorithm 5.
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Data: Data matrix X, response vector Y , link function g, formulas for
working response zi and iterative weights wi, the number K of the
folds for the cross validation, the number B of bootstrap samples.

Result: Estimated generalized linear regression coefficients using the
bolasso method.

Initialization: Sample B bootstrap samples from the data matrix, with
replacement.
for Each bootstrap sample b do

Compute λmax and set a value to λmin ≥ 0, or compute the λ
sequence.
Compute the optimal λoptimal via cross validation (using the proper
cyclic coordinate algorithm on each fold, with or without warm
starts).
Cyclic coordinate step (used also in each cross validation):
Initialization: Give initial values for β and compute the initial
working responses z and weights w
while ∥βnew − βold∥ > 1e− 06(tol.) do

for j ← 1 to length(β) do
Update βj by the coordinate which gives the greatest
reduction/growth of the objective function;
Update the vector of parameters β;

end
Update the z and w with the new β;

end
end
AIC step: Select the optimal model threshold by using the AIC
criterion, based on all the bootstraps;
Find the ”allowed” number of times a coefficient could be zero in each
bootstrap. Here, k in the AIC criterion is the number of non-zero
coefficients for that model.

Algorithm 5: Bolasso Algorithm
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3.4 Inference of Lasso
The lasso method is relatively new and therefore, there is only a little literature for
the lasso inference. Confidence intervals, false discovery rates and p-values for the
lasso estimates do not exist yet. Because research around that subject was not of
great concern until recently [15]. However, as said before, a paper which discusses
the significance of the lasso estimates has been recently published. Lockhart et
al. [15] proposed a significance test for lasso in their paper ”A significance test for
the lasso”, which tests the significance of a coefficient as it enters the lasso model.
They referred to this significance test as Covariance test statistic. The challenge,
though, with the covariance test statistic is that the test is made between nested3

models and thus, one have to find a λ value where the increase (or decrease) of the
total coefficients in the model is only one at a time. That is, one have to find a
λ sequence for which the total coefficients which are in the model will change by
one at a time, as we move through the λ sequence from λmax to λmin. Those λ
values are called λ-knots and, especially for high dimensional data and generalized
linear models, are very hard to find [15,22]. Lockhart et al. [15] refer to an article
from Park and Hastie [22], which develops an efficient algorithm for approximating
those λ-knots for a generalized linear model.

In the next subsection, we shall develop all the needed tools for the covariance
test statistics and give a brief explanation of the algorithm which approximates
the λ-knots. Finally, in the final subsection we shall develop the covariance test
statistics for a generalized linear model.

3.4.1 λ-knots
Park and Hastie [22] developed an efficient algorithm for approximating the λ-knots
for a generalized linear model with the lasso penalty. The algorithm is based on
an algorithmic method which is called the predictor-corrector method and it can be
implemented on any convex likelihood function. The main idea of the algorithm is
to ”predict” the next λ-knot on which the next coefficient will enter the model (or
someone exits the model), based on the current coefficients that are in the model.
In other words, the algorithm computes the step by which we have to jump in a
given λ sequence for finding the next λ-knot.

Consider the objective function given in equation (3.3). That objective func-
tion is a concave function. On the other hand, the predictor-corrector algorithm
works only on convex functions [22]. Therefore, we consider the problem of min-
imizing the negative objective function −f(β, λ), which is convex with respect to
the coefficients. That is we consider the following problem [22]:

β̂(λ) = argminβ (−f(β, λ)) = argminβ

−ℓ(β) + λ
∑

j

|βj |

 (3.10)

3By nested models in the lasso case, we mean a model on a λk-knot which gives an active
set of total j parameters, and the immediate next model on the λk+1-knot which gives an extra
coefficient and thus, the active set is of size j + 1 [15].
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The minimization of that objective function can be done by any algorithm which
minimizes convex functions (like cyclic coordinate descent), for a given λ-knot. The
problem here is to find λ-knots, not to estimate the coefficients itself, although the
estimation is a by-product of the process.

Let Ω be the active set of coefficients (the ones that are already in the model)
for the current λ-knot. The algorithm finds all the λ-knots as we move from λmax
4 down to zero and, each time it finds a knot, it updates the Ω set. Note that, a
coefficient in Ωc may enter a model in a given knot and thus, the corresponding
coefficient moves into Ω, or a coefficient in Ω may exit the model and move into Ωc.
In general, a λ-knot corresponds to a value of λ for which the active set Ω changes
(increases or decreases), and we wish to find all those knots [22].

There exists various algorithms in the literature for computing the exact λ
paths, like LARS algorithm and the Support vector machine path procedure, but
they are not applicable in the case of GLM. Because of the luck of linearity of a
GLM, the Ω set could be the same for different values of λ, but the coefficients could
have been estimated slightly differently. Finding the exact estimated coefficients
for a given λ is very crucial when we need to find the next λ-knot in the path.
The predictor-corrector algorithm computes the exact values of λ-knots and the
corresponding coefficients, leading to a better and more accurate λ path, where
for each value in the path the active set Ω changes. The algorithm consists of
four steps, the step length, the predictor step, the corrector step and the active set
step [22]. Algorithm 6 gives an overview of the predictor-corrector algorithm. Each
step is briefly presented in the next subsections.

4By this time we will let λmax be the first λ value for which the first coefficient has entered the
model, not to be confused with the λmax value presented previously, for which all the coefficients
are zero. The reason for that, is that we take into account an intercept term, and it will be
the first coefficient who enters the model. So for λmax we will already have the intercept in the
model [22].
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Data: Main: Dataset, regression model, λmax. Additional: The number
K of the folds, if the CV error might need to be computed for
each knot.

Result: Main: The exact λ-knots path. Additional: The estimated
coefficient for each knot, the CV error of the corresponding
knot.

Initialization: Compute the coefficients for the given λmax and create the
active set Ω, which by that time will only contain the intercept.;
while Active set Ω not full do

Step 1: Step Length: Given the λi-knot, approximate the next
knot λi+1;
Step 2: Predictor: Find an approximate of the coefficients vector β
(βi+);
Step 3: Corrector: Using βi+, find the exact solution of βi at λi+1;
Step 4: Active Set: Test if any coefficient moves from Ω to Ωc, or
the other way around. If Ω doesn’t change, the step is too small,
reduce λi more. If Ω changes by more than one value, the step is too
big, increase λi. ;

end
Algorithm 6: Predictor-Corrector Algorithm

3.4.1.1 Step 1: Step Length

Consider a likelihood function that belongs to the exponential family, as discussed
in subsection 3.1.1. By penalizing that likelihood and then derivating it with
respect to the β coefficients, we get the following equation [22]:

H(β, λ) = −∂f(β, λ)
∂β

= −X ′W (y − µ) ∂η

∂µ
+ λsgn

(
0
β

)
(3.11)

where f(β, λ) is the objective function5, β is the vector of the coefficients, X is the
data matrix, W is the diagonal matrix of weights given by equations (3.7), y is the
response vector, µ is the vector of the fitted values and η is the linear predictor.
Furthermore, λ is the lasso penalty and sgn

(0
β

)
is the sign function, which will

return −1 if the corresponding β is negative, +1 if it is positive, and zero if it is
zero [22].

For a model with an intercept, one can find λmax by finding the λ value which
satisfies H((β0, 0, 0..., 0), λ) = 0. This value can be found by:

λmax = maxj |X ′
jŴ (y − ȳI)g′(ȳ)|

where g is the link function. This λ can be used as an initialization step for the
algorithm. Therefore the active set Ω contains only the intercept term on the
beginning [22].

5Remember that f(β, λ) is a concave function, thus the negative is convex.
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After the initialization step, or after the k-th step in general, we wish to find
the next λ-knot at which the active set changes, namely λk+1. By that time, we
should have computed β̂(λk), the estimates on the previous knot. If we let µ̂ be
the fitted values from the β̂(λk) estimates, the corresponding weighted correlations
are given by [22]:

ĉ = X ′Ŵ (y − µ̂) ∂η

∂µ
(3.12)

One should expect that |ĉj | = λk ∀ j ∈ Ω, except for the intercept term, and
|ĉj | < λk ∀ j ∈ Ωc. According to Park and Hastie [22], for a reduction step h > 0
on the current λk, the reduction in the absolute correlations can be found by:

c(h) = ĉ− hX ′ŴXΩ(X ′
ΩŴXΩ)−1sgn

(
0

β̂(λk)

)
(3.13)

where XΩ is the data matrix consisting only of the columns of the coefficients which
are in the active set Ω by that time. For finding h for which any of the coefficients in
Ωc gets the same absolute correlation as those in Ω, one have to find the minimum
positive h, for every j ∈ Ωc which satisfies the following equations [22]:

cj(h) = |ĉj − hαj | = λk − h (3.14)
where αj = X ′

jŴXΩ(X ′
ΩŴXΩ)−1sgn

( 0
β̂(λk)

)
. Accordingly, equations (3.14) are

equivalent with [22]:

h = min+
j∈Ωc

(
λk − ĉj

1− αj
,

λk + ĉj

1 + αj

)
(3.15)

Once the next λ-knot has been found, one can continue to the predictor step.
However, estimating λk+1 does not necessarily mean that this value is the right
knot. This value can be smaller than it should be, leading to a greater increase
in the Ω set than it should, or it can be greater than it should be, leading to the
same Ω set. If the new λ is greater than it should be, it means that the h step
was not big enough, therefore, one should repeat the length step estimation, but
with the new λ in equations (3.14) and (3.15). Finally, if the new λ is smaller than
expected, meaning that h is too big, one should estimate an increase in the new
computed λ, that is, increase the λ this time [22].

3.4.1.2 Step 2: Predictor Step

When the λk+1-knot has been found, β̂(λk+1) can be linearly approximated by
βk+. This can be easily done by solving the equation βk+ = β̂(λk)+(λk+1−λk) ∂β

∂λ .
Furthermore, ∂β

∂λ can be found by solving ∂H(β,λ)
∂λ = ∂H

∂λ + ∂H
∂β

∂β
∂λ = 0 with respect

to the current active set Ω and the current estimates β̂(λk) [22].
However, Park and Hastie [22] state that this step is not always necessary for

problems with big data. This is because in such problems, the active set Ω changes
with small decreases in λ and thus, no approximation is needed. On the other
hand, the predictor step could still be used in the cases were the h step is big.
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3.4.1.3 Step 3: Corrector Step

The corrector step computes the exact value of β̂(λk+1). Given the value of the
linear approximation βk+ (or β̂(λk) if the predictor step is skipped) as warm starts,
one can minimize the objective function −f(β, λ) by means of any algorithm which
minimizes a convex function. According to Park and Hastie [22], the time that
the algorithm would need to compute the exact value β̂(λk+1) won’t take took
long, because βk+ (or β̂(λk)), would lay near the true value of β̂(λk+1). After each
corrector step the algorithm should check if the active set Ω should change, this is
done in the fourth step of the algorithm.

3.4.1.4 Step 4: Active Set Step

Every time the algorithm exits the corrector step, a check should be done for any
potential update of the active set Ω. According to Park and Hastie [22], this can
be done by checking the absolute correlations given in equation (3.12). This time,
the weights Ŵ and the fitted values µ̂ are computed by β̂(λk+1), the estimate from
the corrector step.

One should check if |ĉj | > λk+1 for every j ∈ Ωc. Every time this inequality is
satisfied, the corresponding j predictor should be moved from the non-active set Ωc

into the active set Ω. After each active set step, a corrector step should be again
applied, then again an active set step. This circle should be done as many times
as needed such that the active set Ω is no longer changing. Finally, any coefficient
that has a value of zero should be removed from the active set. Then we go again
to step one for finding the next λ-knot [22].

The algorithm provides also a step for checking if any coefficient should be set
to zero before moving down to the next knot. That is, if we have a reduction in
the active set Ω [22]. However, this step was not needed in our analysis, but if one
wishes to know more about it, the article by Park and Hastie [22] is the best way
to do it.

The predictor-corrector algorithm is an efficient algorithm that approximates
the λ-knots in the case of GLM. It might not be of great importance if one wishes
to run bootstrap and for each bootstrap sample find the exact λ-knot, but it is of
great importance if one wishes to assess the significance of the lasso estimates.

3.4.2 Assessing the Significance
This subsection concerns the significance test for the lasso estimates, which was
proposed by Lockhart et al. [15]. We will however, consider only the case of the
generalized linear models, although its efficiency has not yet been proven by the
authors. The covariance statistic tests the significance of a coefficient which enters
the model, in a sequence of nested lasso models. Therefore, the use of the predictor-
corrector algorithm is essential for finding the correct λ-knots which will give nested
models.

The null hypothesis which is being tested here is that ”the current active coeffi-
cients in the lasso model are the ones which should be in the model”. The covariance
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statistic tests the significance of a coefficient that is going to enter the model, given
the ones that already are in the active set by that time. In other words, we test H0:
”βj = 0 given the other coefficients in the model” (note that the hypothesis is con-
ditional; we come back to this later in this section), for the j-th predictor to enter
the model. Although the interpretation is actually not so straightforward [15];

The lasso method estimates the coefficients with an adaptive and greedy way.
For that reason, the residual sum of squares under the null hypothesis becomes
much larger than the X2

1 distribution and thus, the usual chi-squared test is no
longer applicable. Lockhart et al. [15] however, state that the covariance test stat-
istic accounts for the adaptive sequence of the lasso estimates and that it balances
between the shrinkage and the adaptivity of the lasso. They have shown, that un-
der the null hypothesis, the covariance statistics follows asymptotically the Exp(1)
distribution, for any linear model. Based on simulation results they argue that this
assumption also holds for the generalized linear model cases.

We consider estimates from the equation (3.10), where all the requirements
about the exponentiality of the likelihood function, discussed in section 3.1, apply
also here. Let Ω be the active set of parameters just before the effect of the λk-knot
(that is, the non-zero coefficients from the λk−1-knot;) and let βj be the predictor
which is going to enter the model when estimation is done on the λk-knot. That
is, when we estimate on the λk-knot the active set will become Ω ∪ {j}. We wish
to test the significance of the j-th predictor. Then Lockhart et al. [15] define the
covariance statistic for a generalized linear model under the lasso penalty to be:

Tk = ⟨I
−1/2S, Xβ̂(λk+1)⟩ − ⟨I−1/2S, XΩβ̃Ω(λk+1)⟩

2
(3.16)

where I = ▽2(ℓ(β)), S = ▽(ℓ(β)) calculated on the active set Ω. Those equations
can be found by the weighted procedure z = η +I−1S of a generalized linear model
(although previously we used another formula for the weights.). Furthermore,
λk+1 is the value of the next knot for which the active set Ω changes (becomes
Ω∪ {j} ∪ {j + 1}), β̂(λk+1) are the estimated coefficients penalized by λk+1 under
the Ω ∪ {j} active set of predictors, and β̃Ω(λk+1) are the estimated coefficients
penalized by λk+1 under the Ω active set of predictors. Finally, the symbols ⟨, ⟩
indicate the inner product of those matrices [15].

Note that, for testing the significance og the j-th predictor (inserted in the
model by the λk-knot), we use the next λk+1-knot. This is done because if we had
computed Tk on the λk-knot we should have gotten Tk = 0 because β̂Ω(λk) =
β̃Ω(λk), since the solution of the full problem for λk-knot restricted on the Ω
set(β̂(λk) under the active set Ω and not Ω∪{j};), is the same as the solution of the
reduced problem (β̃Ω(λk) under Ω). Therefore Xβ̂(λk) = XΩβ̂Ω(λk) = XΩβ̃Ω(λk).
Moreover, the new predictor will have gained its full power on λk+1-knot [15].

For each covariance statistic Tk we can compute the corresponding p-value. Big
values of Tk mean that the current coefficient has a big impact on the model. This
will result to a small p-value, which means that the current coefficient is significant,
and the null hypothesis will be rejected. In simpler words, this means that the Ω
set (the set of active coefficients without the one being tested), does not contain
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all the truly active coefficients, therefore, the new one has to enter the set. Finally,
Lockhart et al. [15] show that the degrees of a freedom for a model with k predictors
are simply k under the lasso model. Therefore the degrees of freedom for the Tk

statistic are k + 1− k = 1.
Discussions have been made around the paper of Lockhart et al. [15] which

concern the lasso inference and whether the covariance test statistic can be trusted
or not, see Bühlmann et al. [23], Cai and Yuan [5], Fan and Ke [9] and Lv and
Zheng [17]. Those articles mainly concern the occurrence of the p-values from
the covariance test, as well as their interpretation. For example Bühlmann et
al. [23], argue against the interpretation of the p-values by stating that the p-
values from the covariance statistic are based on a conditional test (given the other
active coefficients in the model) and therefore, cannot be interpreted by the same
way as the usual p-values. However, all those discussion-papers congratulate the
authors of ”A significance test for the lasso”. For our case, since there is not other
publications around the significance of the lasso estimates, we shall consider the
paper by Lockhart et al. [15] for assessing the significance of our estimates.

All those methods that were presented in this chapter, will be combined with
the case-crossover design for our problem. The next chapter will adapt the methods
discussed here to our model. Furthermore, some algorithmic modifications will also
be presented, which were mainly applied because of time efficiency problems.



Chapter 4

Adaptation to the Theory

The purpose of this chapter is to adapt the theory discussed so far to our problem.
Section 4.1 discusses the way by which the datasets were modified. Furthermore,
in sections 4.2 and 4.3, an adaptation of the theory given on chapters 2 and 3 is
presented.

4.1 Drug Frequencies and Information Flow
In this section, we give an overview of how the two datasets were evolved during the
stages of the analysis. In figure 4.1 the initial frequencies of the 775 drugs are given.
Drugs with total intakes less than 100 (below the red line) were excluded from the
analysis because the information of those drugs was too little in conjunction with
the total 75.000 patients. Those drugs would probably not give any important
results but they could significantly reduce the running time of the algorithms,
which was a major issue even for the rest of the drugs1. On the right up corner
of the figure, a zoomed version of the figure is printed so that the red line can be
more easily seen.

Figure 4.2 shows how the total number of patients were reduced during the
analysis. The reason for that reduction was because not all patients could contrib-
ute any information on the analysis. After defining the windows of our analysis,
which will be discussed in subsection 4.2.1.1, some patients had the same exposure
frequencies on both case and control windows. Thus, according to subsection 2.1.1,
they could not contribute anything on the analysis so they were removed.

1See appendix A for the challenges of Big Data.

39
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Figure 4.1: This figure shows the initial frequencies multiplied by 75.000 which is the initial total
number of patients for both datasets. Drugs below the red line were excluded by the analysis. The red
line is placed on y − axis = 100. Note that because the two datasets were generated separately, the
total drugs included in the analysis are not the same for both datasets, because the intakes depend on
random number generations. This can also be seen in stage 3 in figure 4.2. But the line is approximately
the same for both datasets.

Figure 4.2: This figure shows the changes in the two datasets throughout the analysis. Stage 1 is the
initial stage where the two datasets were generated and it represents the two complete datasets. Stage
2 is where the contribution check took place. On that stage only the patients that could contribute in
the analysis were taken into account, the rest were excluded. Stage 3 is the reduction stage, were only
drugs with total intakes more than 100 were taken into account. Note that on stage 3 we also have
a reduction in the total number of patients. This happened because, by removing some drugs, some
patients ended up with same exposures on both windows and they should therefore be excluded, again.
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4.2 Basic Model Design
This section forms the basic model of the analysis to follow. It starts with sub-
section 4.2.1 where we develop the case-crossover layout for our problem. It then
continues to subsection 4.2.2 where the conditional logistic regression likelihood is
being adapted to the current case-crossover design. Finally, subsections 4.2.3, 4.2.4
and 4.2.5 concern some mathematical models, that were used in the analysis.

4.2.1 The Case-Crossover Layout
The analysis was based on the case-crossover design described in chapter 2. The
subjects were the patients and each patient was both the case and the control of
itself, but of course on different time periods. Therefore, for reasons discussed in
chapter 2, personal characteristics like age or sex were excluded from the model.
The analysis was based on the time period between 2008 to 2012, where all the drug
intakes for each patient were recorded. The follow up time period for each patient
stopped when he or she experienced the first MI event. Thus, the observation
periods varied among the patients since each one of them experienced the MI event
at times independent from the other patients.

4.2.1.1 Windows and Triggers

For the whole analysis we used a referent window for each patient which consisted
of one case and one control window. Those referent windows were placed after
observing the event for each patient and were therefore not placed a priori with
respect to disjoint strata. Thus, our design is a non-localizable design and, more
specifically, a unidirectional design [13]. Furthermore, the fact that only one2 MI
event occurred for each patient in the period of the analysis, constricted the total
number of case windows to one. Moreover, we used only one control window such
that seasonal3 bias would be reduced as much as possible. The way that the control
and case windows were placed will be discussed in the next subsection.

The potential triggers of the analysis were of course the drugs. The analysis
began with the generated datasets at stage 3 in figure 4.2, thus the total drugs for
the NRD dataset were 249, while the total drugs for the RD dataset were 289. The
estimation and the significance was made only for the main effects of each drug,
that is, no interactions were modelled. The reasons for not testing interactions will
be discussed later. However we briefly discuss how potential interactions can be
tested.

2For a real dataset, the total number of MI events in the observation period for each patient,
might not be equal to one. However, the drug intakes might change after the first occurrence
of the event and therefore, we stopped the study for each patient when he or she experienced
the first MI event. Therefore here, we consider only one MI event happening in the observation
period.

3Some drugs are taken more often on specific seasons or days of the year.
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4.2.1.2 Induction Time and Effect Period

The drugs were assumed to have minimum induction time zero and an effect and
washout period of seven days each. The fact that the drugs were assumed to have
a minimum induction time equal to zero means that each drug began affecting the
patient immediately after the first intake. Moreover, the effect period of seven days
means that each drug was setting the patient at a risk period which varied in seven
days and therefore, if that drug could have caused the event, the event should have
occurred in that period of seven days. For that reason, the case window was placed
seven days before the MI event for each patient. That is, if a patient for example
experienced the MI event at the day number ten, then the case window is from day
four to day ten. The effect period was also assumed to have equal risky periods.
This means that each of the seven days could only give the same amount of risk
to the patient. Finally, the washout period of seven days let us put the control
window twenty one days before the MI event for each patient. For summing up,
the design was seven days for the effect period of the control window, seven days
for the washout period of the control window and seven days for the effect period
of the case window. By doing that we ensured that the control and case windows
did not overlap, which is very important for a case-crossover analysis. Finally, each
case and control window was placed according to the MI event of each patient and
therefore, the dates on which the referent windows were placed differed among the
patients. In figure 4.4 an illustration of the hazard period is given.

The case and the control windows could be exposed or unexposed. For testing
the main effects of the drugs, a window was considered exposed if the date of
the drug intake was within the time interval of the corresponding window. Each
patient could take the same drug more than two times4, only if the interval between
the corresponding drug intakes was at least of seven days length. On the other
hand, each patient could have taken two or more different drugs within overlapping
periods. Thus, the investigation of interaction effects was possible. Two or more
drugs were considered to potentially interact if their effect periods overlapped.
Therefore, for investigating interactions, a window was considered exposed if an
interaction took place within the period of the window and the interaction interval
crossed over the end of the time period for that window.

Figure 4.3 gives an example of how the windows could have been placed for three
patients and two drugs. Consider the first patient. The control window of that
patient is completely unexposed, while the case window is exposed. Note that the
case window is only exposed on the second drug, not the first nor their interaction.
The control window of the second patient is exposed on the second drug and its
case window is exposed both on the first drug, on the second drug and on their
interaction. Finally, the control window of the third patient is only exposed on the
first drug, while the case window of the same patient is exposed on both the first
drug, the second drug as well as their interaction. On the description of the figure
one can find more information about how a window is considered exposed.

4By more than two times we mean that more than two prescriptions could have been given to
a patient. A drug could have been taken on a daily basis or not, but this is not of our interest,
we define the intakes as the number of prescriptions given.
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Figure 4.3: This figure gives an example of how the control and case windows could have been placed.
For each patient the red X is where the MI event occurred, then according to the time of the event, the
windows are placed. Each window is of seven days length and between the control and case windows,
there is a washout period which is also of seven days length. Each arrow corresponds to the effect
period of the drug. The beginning of each arrow is the time of the intake, the end of each arrow is the
end of its effect period and the length of each arrow is seven days. Arrows in the same row correspond
to the same drug, but for different intakes. That is, one can take the same drug more than one times,
as long as the effect periods do not overlap. Furthermore, the black lined boxes correspond to the
”captures” of each window. If such a box contains the beginning of an arrow, followed by the whole
arrow or a part of it, then the window is considered exposed to the corresponding drug. Finally, the red
lined boxes correspond to potential interactions between the drugs. If an interaction box is inside or
partially inside a window box and it crosses over the right end of the window box, then the window is
considered exposed to that interaction. From the figure, it can be easily seen that the maximum length
of an interaction is of seven days, while the minimum length is of one day (since we count days).

Figure 4.4: This figure is an illustration of the hazard period of each drug for the current model and
it is made according to the illustration given by Maclure [18]. The drug intake is at point ”x”, there
the effect period immediately begins. The effect period Ex has a length of seven days and then it is
followed by the washout period Ixmax , which is also of seven days length.
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4.2.2 The Conditional Logistic Regression Likelihood
In this subsection, we develop the conditional likelihood for our case-crossover
design. The likelihood is a modified version of the likelihood discussed in subsection
2.2.2. According to subsection 2.2.2, the conditional logistic likelihood for one case
and one control window, under a non-localizable design, would be the following:

Lnonloc (β) = L (β) =
N∏

i=1

eXiti
β∑

t∈Wi

eXitβ
=

N∏
i=1

eXiti
β

eXiti
β + eXisi

β

where N is the total number of patients and p is the total number of coefficients in
the model, ti corresponds to the case window of the i-th patient and si corresponds
to the control window of the i-th patient. Furthermore, Xiti is a vector of length
p corresponding to the exposure of each drug on the case window, and Xisi is a
vector of the same length corresponding to the exposures on the control window.
Both vectors contain the values 0 and 1 for non-exposure and exposure respectively.

This likelihood can be modified in a simpler form. Consider two X matrices:
Xcases, which contains all the case vectors, and Xcontrols, which contains all the
control vectors, both of dimensions N × p, where the i-th row of both matrices
corresponds to the i-th patient. Thus, we have the following matrices:

Xcases = [x1case , x2case , ..., xpcase ] =

=


x11case x12case ... x1pcase

x21case x22case ... x2pcase

...
... ...

...
xn1case xn2case ... xnpcase


Xcontrols = [x1control

, x2control
, ..., xpcontrol

] =

=


x11control

x12control
... x1pcontrol

x21control
x22control

... x2pcontrol

...
... ...

...
xn1control

xn2control
... xnpcontrol


Consider also two response vectors Ycases and Ycontrols, both of dimensions N × 1,
where the response vector for the cases contains only the element 1 and the response
vector for the controls contains only the element 0. This comes from the fact that
we have conditioned on that only one event can happen for each patient and that
event should be in the case window. Then the previous likelihood can be written
in the form:

L (β) =
N∏

i=1

eXiti
β

eXiti
β + eXisi

β
=

N∏
i=1

1
1 + e−Xiβ

(4.1)

where −Xi = −(Xi case − Xi control) = −(Xiti − Xisi), that is, we subtract the
control vector from the case vector for each patient. Avalos et al. [3] suggested that
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for a case-crossover design with one case and one control window, the likelihood
can be written in the form of the unconditional likelihood for the binary logistic
regression with no intercept and constant response which is equal to one. The fact
that the response is constant equal to one, becomes more clear when we subtract the
Ycontrols from Ycases response vector. According to Avalos et al. [2] a case-crossover
design with more than one control windows, can be model as a Cox model, however
this is not our case. Note, however, that now the data matrix X consists of values
−1, 0, 1.

For the rest of the analysis the likelihood given in equation (4.1) was used. The
data matrix X was of dimensions N × p, where the i-th row corresponded to the
substruction of the control vector from the case vector of the i-th individual, and
a constant response Y of dimensions N × 1 which contained only the element one.

4.2.3 Generalized Linear Model
In this section, we shall develop some modifications of the likelihood, based on the
theory discussed in section 3.1. Those modifications were not only used for creating
the final form of the lasso equations, but they were also used in the algorithms of
this analysis.

The first step is to rewrite the likelihood given in equation (4.1) in a convenient
form for showing that we are dealing with a generalized linear model. Thus, if we
let pi be the contribution of the i-th individual to the likelihood in equation (4.1),
that is pi = 1

1+e−Xiβ = eXiβ

1+eXiβ , then the likelihood can be written in the following
form:

L (β) =
N∏

i=1

1
1 + e−Xiβ

=
N∏

i=1
pi =

N∏
i=1

(pi)yi(1− pi)1−yi (4.2)

Note that since yi = 1 ∀ i, 1 − yi = 0 ∀ i, the second term always vanishes. The
log-likelihood is of the form:

ℓ (β) = log(L (β)) =
N∑

i=1
log
(
(pi)yi(1− pi)1−yi

)
=

=
N∑

i=1
(yilog(pi) + (1− yi)log(1− pi)) =

=
N∑

i=1
(yilogit(pi) + log(1− pi)) (4.3)

Thus, it is obvious that the log-likelihood, and therefore the likelihood, belongs to
the exponential family with:

•
θi = logit(pi) = Xiβ = ηi

•
b(θi) = −log(1− pi)
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•
c(yi, ϕ) = 0

•
αi(ϕ) = ϕ/1 = ϕ

•
ϕ = 1

Therefore the link function is:

g(x) = ex

1 + ex

And the linear predictor is:

ηi = g(pi)−1 = logit(pi)

Finally, we can compute the expected response E (Yi) and the variance V ar (Yi):

E(Yi) = µi = b′(θi) =
(
−log( 1

1 + eθi
)
)′

=

= 1 + eθi

(1 + eθi)2 eθi = eθi

1 + eθi
= pi = Xiβ

V ar(Yi) = σ2 = b′′(θi)αi(ϕ) = eθi

(1 + eθi)2 · 1 =

= pi(1− pi)

Based on the above results we can continue to the next subsection for finding the
equations for the working response and the weights.

4.2.4 Weights and Working Response
According to subsection 3.3.4, we can compute the working response zi and the
weights wi of a generalized linear model from equations (3.6) and (3.7). Thus, for
the equations described in subsection 4.2.3, we get the following results for the
working response and the weights respectively:

zi = ηi + (yi − µi)
dηi

dµi
= Xiβ + (yi − µi)

logit(pi)
dµi

=

= Xiβ + (yi − µi)
logit(µi)

dµi
=

= Xiβ + (yi − µi)
1

µi(1− µi)
= Xiβ + yi − pi

pi(1− pi)
(4.4)
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wi = ρi

b′′(θi)( dηi

dµi
)2

= 1(
eθi

(1+eθi )2

)(
1

pi(1−pi)

)2 =

= 1

(pi(1− pi))
(

1
pi(1−pi)

)2 = pi(1− pi) (4.5)

Because, µi = pi, as said in subsection 4.2.3.

4.2.5 Concavity of the log-likelihood
The final step before developing the penalized lasso likelihood is to identify the kind
of curvature that the log-likelihood function given in equation (4.3) has. This is also
an important step because the kind of curvature of the log-likelihood determines
the kind of coordinate algorithm that can be used.

The log-likelihood function given in equation (4.3) is a concave function with
respect to the β coefficients. This can be easily seen by rewriting the function in
the following form:

ℓ (β) =
N∑

i=1
(yilog(pi) + (1− yi)log(1− pi)) =

=
N∑

i=1
(yilogit(pi) + log(1− pi)) =

=
N∑

i=1

(
yiXiβ + log

(
1

1 + eXiβ

))
=

=
N∑

i=1

(
yiXiβ − log

(
1 + eXiβ

))
and since ex and log(x) are convex functions, then log(1 + ex) is also a convex
function. That makes −log(1 + ex) a concave function.

The results that were developed in section 4.2 are very important for the further
analysis. Those results form the basic model where the lasso method on the next
section is going to be based on. Not all of the above results are necessary if
one wishes to use the lasso method, but they are of great importance for the
implementations of the algorithms.
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4.3 The Lasso Design
In this section we adapt the lasso method to our case-crossover layout. Subsections
4.3.1 and 4.3.2 concern the objective function, the partial derivatives as well as the
soft threshold for our model. Moreover, subsection 4.3.3 gives a brief description
of how the optimal λ was found in our analysis. This was also the most difficult
and time consuming part of the whole analysis. Furthermore, subsections 4.3.4
and 4.3.5 concern the Akaike’s information criterion and discuss the reason for
not testing interactions, respectively. Finally, in subsection 4.3.6 we adapt the
covariance test statistic to our problem.

4.3.1 The Objective Function
As has been showed in the previous section, the conditional log-likelihood is a
concave function. Concavity is also carried in the penalty of the lasso [3]. Therefore
we can either maximize the concave function f(β, λ) = ℓ (β) − λ

p∑
j=1
|βj | using

the cyclic coordinate ascent algorithm, or we can minimize the convex function
−f(β, λ) = −ℓ (β) + λ

p∑
j=1
|βj | using the cyclic coordinate descent algorithm, as

have been said in subsection 3.3.3.
For the log-likelihood given in equation (4.3) one can derivate it with respect to

one of the coefficients, but cannot solve the derivative with respect to that coeffi-
cient. This happens because the coefficient will stay in the exponential part of the
log-likelihood even after the derivation. Therefore, a quadratic Taylor approxima-
tion of the log-likelihood around a given value β̃ of the coefficients vector would be
useful. Friedman et al. [11] suggested to use an approximation of this log-likelihood
by expanding it using Taylor series around a current estimate β̃ and then use the
hybrid form of cyclic coordinate descent algorithm and iteratively reweighed least
squares.

The Taylor expansion around a current estimate β̃ of the log-likelihood given
in equation (4.3) is:

ℓQ (β) = −1
2

N∑
i=1

wi(zi −Xiβ)2 + C(β)2 (4.6)

where zi and wi are the working response and the iterative weights, respectively,
given in subsection 4.2.4 and applied on the current estimate β̃, and C(β)2 is a
constant. Therefore, we let the objective function be the following:

R(β, λ) = −f(β, λ) = −ℓQ (β) + λ

p∑
j=1
|βj | (4.7)

which is a convex function, and we minimize this with respect to the β coefficients.
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4.3.2 Partial Derivatives and the Soft Threshold
The partial derivatives of the objective function with respect to βj are:

For βj > 0:

∂R(β, λ)
∂βj

=
N∑

i=1

wi(zi − xijβj −
∑
l ̸=j

xilβl)(−xij)

+ λ =

= −
N∑

i=1

wi(zi − xijβj −
∑
l ̸=j

xilβl)xij

+ λ

For βj < 0:

∂R(β, λ)
∂βj

=
N∑

i=1

wi(zi − xijβj −
∑
l ̸=j

xilβl)(−xij)

− λ =

= −
N∑

i=1

wi(zi − xijβj −
∑
l ̸=j

xilβl)xij

− λ

For βj = 0: It does not exist.

Let us consider the first case where βj > 0. Setting this equation equal to zero and
solving with respect to βj we get the following:

−
N∑

i=1
wixij(zi −

∑
l ̸=j

xilβl) + βj

N∑
i=1

wix
2
ij + λ = 0⇒

⇒ βj =

N∑
i=1

wixij(zi −
∑
l ̸=j

xilβl)− λ

N∑
i=1

wix2
ij

Respectively we get for βj < 0 that:

−
N∑

i=1
wixij(zi −

∑
l ̸=j

xilβl) + βj

N∑
i=1

wix
2
ij − λ = 0⇒

⇒ βj =

N∑
i=1

wixij(zi −
∑
l ̸=j

xilβl) + λ

N∑
i=1

wix2
ij
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Therefore we can define the estimating equation for βj to be the following:

β̂j(λ)←
S

(
N∑

i=1
xijwi(zi −

∑
l ̸=j

xilβl), λ

)
N∑

i=1
wix2

ij

(4.8)

With the soft threshold function being:

S(A, λ) = sign(A)(|A| − λ)+ =

 A− λ if A > 0 and λ < |A|
A + λ if A < 0 and λ < |A|
0 if λ ≥ |A|

where A =
N∑

i=1
xijwi(zi −

∑
l ̸=j

xilβl).

4.3.3 Estimation of λ

This was the most important and most difficult part of the whole analysis. It was
difficult both for computational reasons and for the complexity of the algorithms.
It was important because the choice of the right λ value was crucial, as it has been
discussed in subsection 3.3.5. However, we discuss those problems in subsection
4.3.3.4 that follows. In this subsection we first comment on the three methods
that were initially implemented for finding the optimal λ, but they didn’t work.
Then we develop the main steps for the predictor-corrector algorithm discussed in
subsection 3.4.1 and we adapt the algorithm to our problem. The reader should
have in mind that bootstrap was also implemented (we will discuss this afterwards),
and for each bootstrap sample we had to find the optimal λ.

4.3.3.1 The First Three Methods

The first method that was used was a constant λ value. This λ was constant
and common to all bootstraps, as proposed by Tibshirani [28]. Many different λ
values were chosen arbitrary for finding the one which gives the best results. A
modified version of the constant λ was also used. This modification was that we
first found the optimal λ from a sequence of λ values, using cross validation on
the initial data matrix. Then we used this value as a constant in each bootstrap.
Both approaches were time efficient and 1000 bootstrap samples were generated in
less than 20 minutes. However, the results were not satisfactory. For both datasets
only one coefficient was set different than zero and with an extremely big standard
deviation. This could be the right result for the RD dataset, but not for NRD,
since we know that in this dataset we have surely more than one coefficient that
caused the MI event. Therefore, those approaches were completely non-informative
and were skipped.

The second method was to compute a sequence of λ values ranging from λmax

to λmin and choose the value of λ that gave us the minimum cross validation error.
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Friedman et al. [11] suggested to use a minimum λ value of λmin = ϵλmax, where
ϵ = 0.0001 and then compute a sequence of length K = 100. This however did not
give good results in our analysis. The reason was that the λ values did not give
a piecewise increase in the active set of coefficients Ω, but they rather gave many
gaps in the in-between values. An example can be seen in figure 4.5. According
to Park and Hastie [22] and Lockhart et al. [15], this should be expected for a
generalized linear model. Therefore, we could not choose that kind of sequence for
the λ values, since they would not give us right results. Although, not choosing
the exact optimal λ at each bootstrap, could be of not so great importance, but as
we discussed in subsection 3.4.2, finding the right λ values (λ-knots), is indeed of
great importance for assessing the significance of a model after the estimation of
the parameters.

Finally, the third method was similar to the second, but this time we used a λ
sequence which was generated according to the formula given by Simon et al. [26].
After we had found λmax, we computed the sequence of λj from λmin = ϵλmax

according to the following formula: λj = λmax (λmin/λmax)j/m for j = 1, ..., m,
where m was the length of the sequence. Different values of m were used and
the best ”approximate” was m ∼ 1000, which gave smaller differences to the λ
values since the m value was big enough to result to a more ”detailed” sequence.
This resulted to smaller gaps, but not small enough for finding the exact optimal5
value of λ. Therefore this method was also skipped and we ended up with the
predictor-corrector algorithm which is presented in the next subsection.

5By saying the exact optimal λ we argue with the following: Let us suppose that a value in the
λ sequence, say λj , gives us a fairly low cross validation error and a number of k active coefficients,
and the immediate next value, say λj+1, gives us also a fairly low cross validation error, but a
number of k + 5 active coefficients. Because of that gap of 4 values in the active coefficients, we
know that there has to be four more λ values in the interval (λj , λj+1) that would give us active
sets of k + 1, k + 2, k + 3 and k + 4, respectively. But how do we know that one of those λ will
not give a better minimization of the cross validation error than λj and λj+1 do?
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Figure 4.5: This figure is an example of the ideal λ sequence (top) and the λ sequence that we got from
generating the λ sequences as discussed in the text (bottom). The ideal sequence sets one coefficient in
the model, on each step, as we move from the λmax to the λmin. On the other hand, the sequence that
we generated gives some gaps. For example, λmax gives us 0 coefficients in the model (as expected)
while λ1 gives us 3 instead of 1. Since the λ sequence is in descenting order, there has to be two more
λ values in the interval (λmax, λ1) which will give us 1 and 2 coefficients in the model.

4.3.3.2 The Predictor-Corrector Algorithm

In contradiction with the other three methods previously discussed, the predictor
corrector algorithm seemed to give the most appropriate results, both for the es-
timation of the parameters and for assessing their significance. However, some
modifications of the algorithm had to be done for adapting it to our model. In
this subsection, we briefly develop all the equations needed for implementing the
predictor corrector algorithm.

The first step is to find the value of λmax. Based in subsection 3.3.5, the max-
imum value of λ can be found by the soft threshold function. In our case, we have

that λ ≥ |
N∑

i=1
xijwi(zi−

∑
l ̸=j

xilβl)|. Therefore, if we set λmax = maxl(|
N∑

i=1
xijwi(zi−∑

l ̸=j

xilβl)|) will all the β coefficients be equal to zero, and as we move from λmax

to λmin, we would expect more and more coefficients to enter the model. If in the
coordinate descent algorithm we give zero values for the initial coefficients, then
for the first loop we will get: pi = 1/(1 + e−0) = 1/2, wi = 1/2(1− 1/2) = 1/4 and
zi = 0 + (1− 1/2)/wi = (1/2)/(1/4) = 2 ∀ i. This leads to the maximum value of
λ at:

λmax = maxj(|
N∑

i=1
xij

1
4

(2− 0)|) = maxj(|1
2

N∑
i=1

xij |)

Thus, finding the maximum value of λ is equivalent to finding the maximum ab-
solute column sum of the data matrix and divide it by 2. By the time λmax

is computed, we can use the predictor-corrector algorithm for computing all the
λ-knots, as discussed in subsection 3.4.1. The only difference with the predictor-
corrector algorithm and our model is that the predictor-corrector algorithm defines
λmax as the maximum λ value for which only the intercept is in the active set
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Ω. Our model, on the other hand, has no intercept term. Moreover, our λmax is
defined as the minimum λ value for which none of the coefficients is in the model
and thus, Ω is empty. Note that, since λmax is the minimum value for which Ω is
empty, any value below it should let one or more coefficients to enter the model
and give an increase in Ω. By testing this, we found out that even if we abstract
.Machine$double.eps (the smallest possible value of a computer) from λmax we get
one coefficient in the model immediately. This lead to the following modification
of the predictor-corrector algorithm:

Since our model has no intercept and, since we need an initialization
step for the predictor-corrector algorithm, it should be fair enough to
treat the first entering coefficient as an ”intercept”, only for initializing
the algorithm. Since we need a λmax that gives an active set Ω which
contains only one active coefficient, but we, on the other hand, have a
λmax which gives an empty set, we give this λmax as an initialization
to the algorithm, with an empty set Ω and a vector of zero coefficients.
But before starting the estimation procedure, we immediately compute
the first h step and thus, we jump to the first λ-knot and the Ω set
gets one coefficient. Then, we restart the algorithm with the first λ-
knot as λmax and the coefficient who entered the model in the previous
step takes the place of the ”intercept” in the real predictor-corrector
algorithm. Then the algorithm continues as usual.

The first coefficient who enters the model is not, of course, an intercept. The
only reason for doing this small modification is for giving as input to the algorithm
a λmax for which the Ω set contains only one coefficient. If this hadn’t be done
and λmax was the usual minimum value for which Ω is completely empty, then the
algorithm would have stuck in the estimation procedure. However, this modific-
ation gives a ”not so accurate” estimate for the first coefficient, but this is not a
problem since the algorithm will run many circles after that and thus, the wrong
estimation of the coefficient will be corrected (usually on the immediate next step).
Furthermore, if the algorithm should start at a value smaller than λmax, that is,
somewhere in the sequence and not the beginning, then the same modification can
be applied. The reason for not starting the algorithm at λmax will be discussed
later.

Next we develop the equations that were used in the algorithm, based on the
equations in subsection 3.4.1 and on our model. A pseudo-code of the algorithm
is also given. Finally, timing issues are discussed as well as a modification of the
predictor-corrector algorithm. This modification is made mainly because of timing
issues.

4.3.3.3 Equations for the Steps

Here we develop the equations that were used in the length step, the predictor
step, the corrector step, as well as the active set step, that were discussed in
subsection 3.4.1. Although the theory in subsection 3.4.1 is based on generalized
linear models like ours, we used the Taylor approximation in the log-likelihood,
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therefore the equations are slightly different. First of all, considering the objective
function for our model, given by equation (4.7), we can find the corresponding H
function given in equation (3.11), which is the following:

H(β, λ) = ∂R(β, λ)
∂β

= −∂f(β, λ)
∂β

= −X ′W (Z −Xβ) + λsgn

(
0
β

)
(4.9)

Step Length

For the step-length part of the algorithm, we need the weighted correlations c.
According to equation (3.12) and our model, the Taylor approximations of the
weighted correlations are:

ĉj = X ′
jW (Z −X−jβ−j) (4.10)

where Xj is the j-th column of the data matrix, Z and W are the working response
vector given in equations (4.4) and the diagonal matrix of the weights given in
equations (4.5), respectively. Moreover, X−j is the data matrix with the j-th
column removed and β−j is the coefficients vector with the j-th entry removed.
Note that the working response, the weights and the β coefficients are computed
on the current λ-knot (λk when we are going to find the λk+1-knot).

As we can see from equation (4.10), the weighted correlations for our model
are the A variable in the soft threshold given in equation (4.8). Which is actually
reasonable, since our soft threshold in matrix form is S(X ′

jW (Z −X−jβ−j), λ) =
S(ĉj , λ) = S(A, λ) and, as have previously said, any coefficient with λ ≥ |A| ⇒ λ ≥
|X ′

jW (Z−X−jβ−j)| ⇒ λ ≥ |ĉj | will be set to zero. In other words, it will belong to
the Ωc set6. This is something that joins together the theory in subsection 3.4.1.1
and the soft threshold function in equation (3.5).

For finding the h step which will give us the λk+1-knot, we need to compute
the equations given by (3.14), that is:

cj(h) = |ĉj − hαj | = λk − h

where, also for our model, αj = X ′
jŴXΩ(X ′

ΩŴXΩ)−1sgn
( 0

β̂(λk)
)
. Since the above

equations can be written in the form given by equations (3.15), we can simply use
those, that is:

h = min+
j∈Ωc

(
λk − ĉj

1− αj
,

λk + ĉj

1 + αj

)
By the time we have found the λk-knot and its estimated β̂(λk) coefficients, we

can compute the ĉ vector and thus, find the h step and approximate the next λk+1-
knot. When the λk+1-knot is approximated, one would expect that the coefficients

6Note that here we write λ ≥ |A| and not λ = |A| as written in the theory part. This is because
by simulation results we found out that the equality is not accurate. This probably happened
because of numerical aspects which should be taken into account, when one applies any form of
algorithms.
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which give |ĉ| ≥ λk+1 (the absolute correlations computed from the β on λk,
against the new λk+1-knot) are going to be set in the active set Ω on the next
round (after step 4: Active set)7. Therefore, ĉ could be used as an indicator of
what is probably going to happen next. If for example the coefficients that satisfy
|ĉ| ≥ λk+1 are exactly the same as those already in the active set, there is no
need to use λk+1 as a knot and estimate the parameters based on that, because
probably we will result to the same active set and what we will have done would
be to use unnecessary time. So if this was the case, we use the λk+1 to re-estimate
the h step on the same weights and coefficients and we repeat the procedure until
the coefficients that satisfy |ĉ| ≥ λi (for i > k + 1) have changed. Furthermore,
corrector steps were used in all of those ”internal” iterations for approximating
better the current parameters on the current h step. Note however, that using the
old absolute correlations ĉ for checking if any extra coefficient is going to enter
the model is not accurate, but rather an ”approximation” that can save as time.
This is because for actually checking which coefficient has an absolute value greater
or equal to the new λk+1-knot, one has to compute the new absolute correlations
cj(h)∀j = 1, ..., p from the estimated coefficients on the new λk+1-knot, and must
not use the old ĉ; This implies the estimation of the new β, which is what we try
to avoid if necessary. However, we did this small modification only for saving time.

By the time we got a signal that the active set might change, we jumped to
the third step, the corrector step, and not the second. According to Park and
Hastie [22], predictor steps for small h changes are not crucial for big data problems.
Therefore, when we were going to estimate the parameters on the next knot, we
did not use a predictor step. On the other hand, as said on the previous paragraph,
predictor steps were used on the internal iterations. This is because, according to
Park and Hastie [22], when the differences between two knots are big, it should be
wise to use a predictor step. By simulation results, we saw that when the internal
loop was used, the changes between the knots were bigger than when we were going
to test the active set on the steps three and four. Therefore, the predictor step was
used in the internal loop.

The internal loop could sometimes be used and sometimes not. Whichever the
case was, after the internal loop we move to step three, the corrector step, where
we estimated the parameters based on the given λ-knot. If the resulting coefficients
had given us the same active set Ω, it meant that nothing changed and that the h
step was not big enough, therefore we returned to step one for re-computing the
next step. If the resulting coefficients had given us one change in the active set
(one coefficient had entered the model or had left it), then we moved to step four.
Finally, if the resulting coefficients had given us a bigger increase in the active set
than expected, it meant that the step was too big and we had to go back.

Park and Hastie [22] do not give any details of how the back step, an increase
in the current λ, is done. However, based on the theory so far and the modified

7We actually know that the coefficients that will surely satisfy this inequality will allays be the
ones that are already in the active set, and we need to reduce λk+1 in such a way that at least
one more from the elements in the ĉ vector will satisfy the inequality. We know from the theory
that the coefficients that are currently active will satisfy |ĉ| ≥ λk, so they will also satisfy it for
λk+1 < λk. The question is which additional element of ĉ will satisfy it.
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algorithm, we used the following idea. Let λk and β̂(λk) be the previous knot and
its estimates, respectively. Moreover, let λk+1 and β̂(λk+1) be the current knot
and its estimates. If the current knot gives us a bigger increase (or decrease) in
the active set than expected, we have to go back. Since we have the estimates for
both knots, we can find the hback step by using a corresponding procedure as we
used for the h step (the forward one). Since the weighted correlations decrease as
we go towards λmin, they should increase as we go towards λmax. That is, since
we should have:

ĉ(λk+1) = ĉ(λk)− hX ′ŴXΩ(X ′
ΩŴXΩ)−1sgn

(
0

β̂(λk)

)
⇒

ĉ(λk) = ĉ(λk+1) + hX ′ŴXΩ(X ′
ΩŴXΩ)−1sgn

(
0

β̂(λk)

)
⇒

ĉ(λk) = ĉ(λk+1) + hbackX ′ŴXΩ(X ′
ΩŴXΩ)−1sgn

(
0

β̂(λk)

)
where ĉ(λk) and ĉ(λk+1) are the weighted correlations on the corresponding λ-
knots. Therefore, the hback could be used as an approximation for the back step.
This can be found by:

ĉj(λk) = |ĉj(λk+1) + hbackαj | = λk+1 + hback ⇒

hback = min+
(
−λk + ĉj(λk+1)

1 + αj
,

λk − ĉj(λk+1)
αj − 1

)
where ĉj(λk+1) is, of course, calculated on the new knot, the new weights and
working response from the β̂(λk+1) estimates, but α is calculated on the previous
knot. Thus, we can get an estimate of the hback if needed. Then we add this
estimate on the current λk+1-knot and we move again to step one. Note that, the
minimum is taken among all positive values and that the hback step does not need
to be smaller than the previous h step. The reason for that is that the algorithm
could have jumped many times for many h steps in a row, say h1, h2, h3, and then
realize that the last step was too big, but that we have to go in the middle of h2
and h3, so the hback will be bigger than the last step, which is h3 here.

Predictor Step

As has been already said, the predictor step was not often used in the algorithm.
However, since it might have been used some times, we should provide the necessary
equations. In subsection 3.4.1.2, we saw that the predictor βk+ can be found
by the equation βk+ = β̂(λk) + (λk+1 − λk) ∂β

∂λ , where ∂β
∂λ is found by solving

∂H(β,λ)
∂λ = ∂H

∂λ + ∂H
∂β

∂β
∂λ = 0. For our model, we have that for the j-th coefficient in

the active set:

∂H(β, λ)
∂βj

=
N∑

i=1
wix

2
ij + 0
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which in matrix form is ∂H(β,λ)
∂β = X ′

ΩWXΩ, and the weights are computed with
respect to the coefficients from λk. Furthermore we have that:

∂H(β, λ)
∂λ

= 0 + sgn(λ) = sgn

(
0
β

)
Therefore, one can compute:

∂β

∂λ
= −

(
∂H(β, λ)

∂β

)−1
H(β, λ)

∂λ
= − (X ′

ΩWXΩ)−1
sgn

(
0
β

)
and thus, the predictor step can be found by:

βk+ = β̂(λk) + (λk+1 + λk) (X ′
ΩWXΩ)−1

sgn

(
0
β

)
Corrector Step

After step one is done we can move to the corrector step. This step will use the co-
ordinate descent algorithm discussed in subsection 3.2.1 for minimizing the convex
objective function R(β, λk+1) with respect to the β coefficients. Here, according to
Park and Hastie [22], one can either use βk+ if the predictor step has been done,
or β̂(λk) if not, as warm starts for the coordinate descent algorithm (instead of
initializing with a vector of zeros). This should lead to better estimates and it will
also use less time. Note that Friedman et al. [11] also suggest a path-wise coordin-
ate descent algorithm which uses warm starts of the previous estimates. After the
corrector step is done, one should check if the active set should be updated or not.
This is done in the next step.

Active set Step

This step should be done after each corrector step. According to Park and Hastie
[22], the corrector and the active set step should run in a loop until the active
set is no longer changing. After the corrector step, one should have the estimates
β̂(λk+1) on the λk+1-knot. We then simply calculate the weighted correlations
ĉ(λk+1) based on the current estimates and we test which of the estimates in Ωc

give an absolute weighted correlation value greater than the current knot. Those
coefficients are then added to the active set Ω. If the Ω is changed we run again a
corrector step, if not, we first remove any zero coefficient that might have entered
the active set and then, we move either to step one, if the active set has been
increased by one or has remained the same, or we compute hback if the active set
has been increased by more than one. There is also an option on the algorithm
suggested by Park and Hastie [22] were one can check if any of the current active
coefficients reaches zero (goes into Ωc) before another enters the active set. This
however, was not seen in any of our simulations and therefore this step was skipped.
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4.3.3.4 Time Issues and Bootstrap

For reducing the uncertainties of the lasso estimates, bootstrap was used. A total
number of 1000 bootstrap samples of the same size as the total population were
chosen. at each bootstrap, the optimal λ-knot had to be found via cross validation
and the predictor-corrector algorithm. The time was a really big problem for both
cross validation and the predictor-corrector algorithms. It would be completely
time inefficient to first find all the λ-knots, estimate the coefficients, compute all
the prediction errors for each knot and then find the optimal λ-knot which gives
the minimum cross validation error. Even the use of parallel programming was
not fast enough. Therefore, another algorithm was used, which combined cross
validation, predictor-corrector and cyclic coordinate descent algorithm in a faster
way, by skipping unnecessary λ values.

The algorithm is based on the whole theory discussed previously. It consists
of the following four parts: (1) The first part creates a sequence of m = 1000 λj

values, ranging from λmax to λmin = ϵλmax, where λj = λmax (λmin/λmax)j/m for
j = 1, ..., m and ϵ = 0.00001. (2) The second part computes the cross validation
error for 20 of the λ values along the initial sequence. Those λ values have a
distance of approximately 50 other values in-between them (it depends on the
initial λmax). That is, it computes λ1, λ50, λ100, ..., λ1000. The algorithm then finds
the λ value which gives the minimum cross validation error among those 20 and it
takes the right and left λ. If for example, the λ value which gives the minimum cross
validation error is the 10-th, then the algorithm chooses the 9-th and 11-th. (3) The
third step takes the right and left λ, which will have a distance of approximately
100 values in-between, and it again chooses 20 more values in that interval for
computing their cross validation error. After that step, it finds again the λ which
gives the minimum cross validation error and it takes the right and left values. (4)
The fourth and final step of the algorithm, takes the right and left λ values found
from the third step and it implements the predictor-corrector algorithm for finding
the true optimal λ-knot in the interval between those two values. By this time,
the same modification of the predictor-corrector algorithm was used, as discussed
before. That is, since the λ value which will enter the predictor-corrector algorithm,
do not correspond to λmax (since it is skipped), before running the algorithm one
have to compute the first h step.

A final modification of the algorithm was the early stops. For each step, we
expect that as we compute the cross validation errors from a bigger value of λ to
a smaller, the cross validation errors should become smaller and then finally start
to increase again. By the time a cross validation error becomes greater than the
previously computed one, the algorithm stops, because we know that the errors
are going to increase after that step. Note that, the risk of getting stuck in a local
minimum is not so big, because the λ values are not exactly next to each other;

There are many things that need to be commented here. First of all, in steps
(2-3), the reason for choosing the right and left values of λ which gave us the
minimum cross validation at the current step is because the initial λ sequence is
not a λ-knots sequence but rather an approximate. As stated earlier, this kind of
λ sequence gives us gaps. So by taking the right and left values we reduce the λ
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sequence and at the same time we ensure that the true minimum lays somewhere
in-between. Note that, percussions have to be taken if the λ value which gives
the minimum cross validation at a given step is on the borders of the current λ
sequence8. Furthermore, the way the reduction in the λ sequence is done, reduces
the probability of getting stuck to a local minimum, although it does not eliminates
it. By simulation results we did not stuck to any local minimum, but if the cross
validation curve is not smooth, the probability becomes bigger.

This algorithm reduces the time it takes for finding the optimal λ-knot from
seven hours to twenty minutes. However, twenty minutes for a bootstrap sample is
still a long time when one needs to run 1000 bootstrap samples, but we had to be
patient (it took ∼ 7 days for each dataset). In figure 4.6, a visual example of how
the algorithm works is given, and in algorithm 7 a pseudo-code of the algorithm is
given.

Figure 4.6: This figure is an example of how the modified bootstrap algorithm works in our problem.
Each line corresponds to a stage of the algorithm. The coloured boxes are the values of λ for which the
cross validation error is computed, the others are skipped. The red arrows correspond to the value of
λ which gave the minimum cross validation error at the given stage. On stage 1 the sequence of the λ
values is created, as described in the text. Those λ values are not actually knots, but it can be used as
an initialization for finding the actual knots in a faster way. From those values, twenty values are chosen,
with in-between distance ∼ 53, and their cross validation error is computed on stage 2 (the light green
boxes). Furthermore, the λ value which gives the minimum cross validation error on stage 2 is found and
the two neighbour λ values are chosen to continue to stage 3. Note that, the two neighbour values are
values for which the cross validation has been calculated, that is, they belong to the light green boxes
and they are not the exact right and left neighbours. On stage 3 another reduction is taken place by the
same way as on stage 2, but this time the interval between the λ values on the right and left corners, is
smaller than before. Therefore, the algorithm aims with more precision this time. Finally, on stage 4
the right λ value (λ174) is given as an initialization step in the predictor corrector algorithm, where the
actual λ-knots are computed and the optimal λ-knot which gives the minimum cross validation error
will be found. Note that since we choose neighbours of the cross validation minima, we ensure that the
minimum cross validation error will be somewhere in the middle of the interval.

8If the minimum is on the last value, then take the last value and the previous one. If it is the
first, then take the first and the second.
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Data: Bootstrapped data matrix X.
Result: The estimated coefficients on the optimal λ-knot, as well as the

cross validation error.
Initialization (Stage 1): Create the λ sequence from λmax to λmin;
Stage 2: Compute CV error for 20 of the values in the sequence, find
minimum and take the right and left values;
Stage 3: Compute CV error for another 20 values in the interval
between the right and left values chosen on stage 2. Find the one which
gives the minimum error and take the right and left values again ;
Stage 4: Implement the predictor-corrector algorithm in the interval
between the right and left values chosen on stage 3;

Algorithm 7: Modified Bootstrap Algorithm

4.3.4 AIC Criterion and the Estimates
After the bootstrap estimates had been generated, the AIC criterion was applied for
finding the optimal frequency threshold. The reason for using the AIC criterion is
that lasso tends to choose a slightly different set of coefficients to set equal to zero,
at each bootstrap. By applying the AIC criterion we answer the question ”What is
the allowed number of times that a coefficient could have been set to zero, among
the bootstrap samples”. This was done by first counting the zero counts for each
coefficient among the bootstraps. Those counts constructed a sequence of frequency
thresholds that would create a various number of candidate models. Let us, for
example, consider an arbitrary threshold somewhere in the threshold sequence, and
say that it is 400. This means that some of the coefficients among the bootstraps,
were set to zero 400 times. Using this threshold we find all the coefficients that were
set to zero ≤ 400 times among the bootstraps. Those coefficients are allowed to
enter the model by taking their mean among the bootstraps (for each coefficient),
while the others that were set to zero > 400 times (that is, their frequency was
above the current threshold), are simply set to zero. Then the AIC is computed
for that model, where β is the vector of the current model coefficients and k is the
number of non-zero coefficients in that vector. This is done for all the thresholds in
the sequence and the one that minimizes equation (3.9) is chosen as optimal. When
the optimal frequency threshold has been found, all the coefficients that were set
different than zero less times than the threshold, are simply set to zero.

After that step, the final estimates were computed. The final estimates were
computed by taking the mean among the bootstrap samples, for each coefficient. Of
course, those who were above the optimal threshold were set to zero. Furthermore,
the standard deviation for each coefficient was computed as proposed in subsection
3.2.2, although this was not the optimal way according to Lockhart et al. [15].
We shall revisit this issue afterwards. Finally, the non-zero estimated coefficients
chosen by the bolasso were taken to the last part of the analysis, where their
significance was tested.
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4.3.5 Analysis of Interaction Effects
As has been previously mentioned, interaction effects were not tested. There were
two reasons for that. The first and most important reason was time issues. Cor-
recting and finalizing the algorithms for testing the main effects took really long
time, because of the size of the datasets. Furthermore, running the algorithms for
estimating the main effects for both datasets could take up to seven days. The
second and final reason for not testing potential interactions was that the datasets
were generated. Although weights had been placed in the NRD dataset for cre-
ating main effects, we could not be sure that interaction effects could have been
occurred.

However, testing potential interactions can be done by exactly the same way
as testing main effects for the lasso model. The only difference is how to define
a window as exposed or unexposed and then treat those interacting drugs as one.
The way by which we define a window as exposed or unexposed for the case of
interactions is also described in figure 4.3.

4.3.6 Significance
In section 3.4 we referred to the paper by Lockhart et al. [15] about the significance
testing of the lasso estimates. We implemented the covariance test statistic after
we made some modification for adapting it to our problem. Furthermore, we imple-
mented the covariance test statistic both on the bolasso estimates and on the lasso
estimates (we revisit this afterwards). In this subsection we develop the covariance
statistic of our generalized linear model and we discuss how the implementation
was done.

4.3.6.1 Modified Covariance Statistic

When we tried to implement the covariance statistic (3.16), we noticed that the
inner product of I−1S ×Xβ̂(λ) (consider arbitrary λ) is not feasible; The reason
for that is that for a generalized linear model, the information matrix is Ip×p =
X ′

p×N WN×N XN×p, and the score vector S is of dimensions p × 1. Moreover,
XN×pβ̂p×1(λ) is of dimensions N × 1 [24]. Since I−1S is of dimensions p× 1 while
XN×pβ̂p×1(λ) is of dimensions N×1, the inner product is not feasible. We consider
this as a writing error of the paper.

Assuming that by z = η+I−1S, Lockhart et al. [15] actually mean the equation
of the working response, we develop the covariate statistic for our model. The
working response for our model was given in equation (4.4). This equation can be
written in matrix form as:

z = η + W (Y − µ) (4.11)
where η = Xβ, Y is the response vector, µ is the vector of the fitted values
and W is the diagonal matrix of the weights, which its (i, i) element is dηi/dµi.
Furthermore, W (Y − µ) is of dimensions 1 × N which makes the inner product
with Xβ̂(λ) feasible. Therefore, the covariance statistic becomes:
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Tk = ⟨W (Y − µ), Xβ̂(λk+1)⟩ − ⟨W (Y − µ), XΩβ̃Ω(λk+1)⟩
2

(4.12)

where W (Y − µ) are computed with respect to the active set Ω. We used this
statistic to assess the lasso significance.

4.3.6.2 Border Specifications

Lockhart et al. [15] do not specify the covariance statistic for the first and last
coefficient to enter the model, at least for the GLM case. We however, will test
the first and last coefficients based on results from the whole theory so far and on
what seems like a reasonable modification.

For testing the first coefficient who enters the model, one needs the Ω set at the
previous value of λ1. Since the Ω set is the active set of coefficients generated from
λk−1, then for λ1 (which gives the first coefficient to enter the model) the active
set right before this value will be empty. That is, Ω = ∅. Therefore, the covariate
statistic becomes:

T1 = ⟨W (Y − µ), Xβ̂(λ2)⟩ − 0
2

(4.13)

where X is a one column matrix corresponding to the Ω∪ {first to enter}, and the
weights are computed accordingly.

For testing the last coefficient that enters the model, we are missing an extra
λ-knot. Since the covariate statistic uses the next λk+1 for computing Tk, then for
testing the last coefficient, which corresponds to λp (where p is the total number
of coefficients), we need an extra λ value. By that time, however, we have that the
active set Ω has length p − 1 and the active set Ω ∪ {last to enter} has length p.
Since the final λp-knot is bounded by λmin = ϵλmax > 0, we can use any λ < ϵλmax

as the next knot for computing Tp. Note that, for λ = 0 there is no penalty at the
lasso and, therefore, the corresponding estimates are the usual maximum likelihood
estimates. The covariance statistic for the last coefficient becomes:

Tp = ⟨W (Y − µ), Xβ̂(λ)⟩ − ⟨W (Y − µ), XΩβ̃Ω(λ)⟩
2

(4.14)

where λ is chosen by us, such that 0 ≤ λ < λmin.

4.3.6.3 Implementation of the Covariance Statistic

We implemented the covariance statistic in two ways. The first way was to im-
plement the statistic on the output of the bolasso algorithm. That is, on the
coefficients that the bolasso estimated as non-zeros (after implementing AIC etc.).
The second way was to use the initial datasets and run the significance test on it,
that is, simple lasso on the initial data matrices. For both methods, the λ-knots
sequence was computed by the predictor-corrector algorithm.

The reason for implementing the significance with two different ways, was for
investigating how the covariance statistics works, and for investigating if the bolasso
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and the simple lasso will give the same significant coefficients. On the one hand,
the covariance statistics is a new method and the resulting p-values are not easy to
interpret. On the other hand, according to Lockhart et al. [15], the usual p-values
and confidence intervals for the lasso do not exist, therefore any confidence interval
obtained by the bolasso would not be accurate. This is actually reasonable if we
consider the way the intervals from a bootstrap are obtained. That is, by computing
the standard deviation with respect to the bootstrapped estimates for each estimate
(or by taking the 5-th and 95-th sorted value of the bootstrapped estimate for a 95%
confidence interval). This is not so accurate for the lasso, because at each bootstrap
sample the algorithm will choose the optimal λ-knot, via cross validation, and thus,
the resulting λ-knot will not be the same at each bootstrap. Therefore, applying
a different penalty to the same estimate throughout the bootstrap process will not
result to an accurate confidence interval. Furthermore, if we do compute confidence
intervals from the bootstraps, the usual standard deviation method for doing this,
could be worse than just taking the 5-th and 95-th values (in a sorted sequence).
Since lasso is a greedy way of estimating parameters, any normality assumptions
needed for computing the standard deviation might have been violated.

We focus more on the output of the covariance test, rather than the actual
interpretation of the p-values. For the bolasso estimates, we expect that all the
estimates which are chosen not to be zero, will get a rather low p-value from
the covariance test. Meaning that they are significant and correctly chosen by the
bolasso. For the estimates from the complete dataset we expect that the covariance
statistic will choose the same coefficients to be significant, as those chosen by the
bolasso to be non-zero.
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Chapter 5

Results of the Analysis

In this chapter we present the results of the analysis. The main analysis was
based on the NRD dataset, but the results from the RD dataset are also given for
comparison. The estimation methods and the significance assessing were the same
for both datasets.

Both datasets were treated with two different ways. The first way was the
bolasso estimating method. For this method, bootstrap was used for estimating
the coefficients of the model. For each bootstrap, the optimal λ-knot was found via
cross validation and the modified predictor corrector algorithm that we discussed
in subsection 4.3.3.2. After the bootstrap, the optimal threshold was found using
the Akaike’s information criterion. The estimates and their confidence intervals
were computed by the bootstrap samples. Furthermore, the estimates that were
chosen as non-zero from the bolasso were used for significance testing.

The other method concerns a simple lasso application. For this method, the
complete matrices from both datasets were used without any bootstrap process.
Then the complete predictor corrector algorithm was used for finding the λ-knots.
Furthermore, the significance of the coefficients was assessed by the covariance
statistics, using all the coefficients this time.

This chapter begins with chapter 5.1 where the results from the bolasso are
given. It then continues to chapter 5.2 where the results from the covariance
statistic are presented. Chapter 5.3 discusses the results from the estimated log risk
ratios. Furthermore chapter 5.4, gives the results from the replication of the bolasso
for the NRD dataset. The asymptotic distribution of the covariance statistic is
concerned in chapter 5.5. Finally, chapter 5.6 discusses the general results of the
analysis.

65
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5.1 Bolasso Results
In this section a presentation of the bolasso results is given. The results from both
datasets are presented and commented. This section focuses on the comparison
of the results between the two different datasets, as well as the investigation of
characteristics of the bolasso method that significantly differ between the datasets.

5.1.1 Cross Validation and Lasso Paths
This section gives an illustration of the λ-knots lasso paths, as well as the cross
validation error, for one bootstrap sample. One bootstrap sample was taken from
the NRD dataset and one from the RD dataset. The entire λ-knots paths were
computed for both datasets, using the predictor-corrector algorithm and warm
starts when estimating the coefficients. Furthermore, the entire cross validation
error curve was computed for both datasets. For reasons described in subsection
4.3.3.4, a modified version of the algorithms was used and therefore, we place
the results of the optimal λ-knot chosen by our algorithm with the results of the
complete predictor corrector algorithm together for comparison.

In figure 5.1 we see the complete lasso paths for the datasets. The two plots
on the top corners correspond to the NRD dataset, while the two plots on the
bottom corners correspond to the RD dataset (the left figures are the full scales,
while the right are zoomed scales). The coloured lines in the plots correspond to
the ”ongoing” estimated coefficients, while the x-axis consists of the true λ-knots
approximated by the predictor-corrector algorithm. For both datasets, we can see
that for each λ-knot, we get a new coefficient in the model, as we move from λmax

to λmin, although it is difficult to see this at the end.
For both NRD and RD datasets, it is clearly visible that we have gotten a rather

”strange” first coefficient at the beginning. This is because, as said before, we do not
have an intercept in the model and we therefore implemented the modified version
of the algorithm. But this is not a problem since the coefficient clearly gains its
true value later. Furthermore, the black vertical lines in each plot, correspond
to the value of λ-knot which gives the minimum cross validation error, that is,
the optimal λ-knot. The estimates at this λ-knot are those that would have been
chosen for that bootstrap sample. Finally, we see that for both plots a big amount
of coefficients tend to enter the model at the end. However, this should not be
confused with the way that the lasso model works. Although more coefficients will
enter the model as we move from λmax to λmin, which is what we expect from the
lasso design, the way that the coefficients here enter so rapidly at the end is only
because of the structure of the datasets.

By comparing the lasso plots for the two datasets we see some significant differ-
ences. Two things have to be commented here. The first, and most important one,
is that for the NRD plots we see a motif in the way that the coloured lines of the
estimates behave. Here, we are not interested in where the coefficients go (positive
or negative direction), but rather on the fact that for the NRD dataset they tend
to follow a motif to one direction, while for the RD dataset the lines are more
uniformly placed. By that, it seems that the lasso has captured the differences
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between the two datasets. And while in the NRD dataset some coefficients have a
different behaviour than the rest, in the RD dataset they all seem to have a rather
random behaviour. The second thing is the place where the black line is placed.
For the NRD dataset, the line is placed more far to the right side, than for the
RD dataset. This means that the lasso will set more estimates in the model for the
NRD dataset and less for the RD dataset. Which is completely reasonable since
the RD is random, while NRD is not. However, the total number of coefficients
that are being set in the model is not common for each bootstrap. We shall discuss
this later on.

Figure 5.1: Those four plots are an illustration of how the lasso paths look like. The top plots are from
the NRD dataset, while the bottom plots are from the RD dataset. The left plots are in full scale, while
the right plots are on zoomed scale. Each coloured line in the plot corresponds to one coefficient. The
y-axis is the value of the estimated coefficient and the x-axis consists of the λ-knots, computed by the
predictor-corrector algorithm and placed in descenting order. The numbers on the top and bottom of
the plots correspond to the total number of active coefficients on the specific λ-knot (they are given
only for a few knots, not for all). It is obvious that the number increases as we go from λmax to λmin.
Finally, the vertical black line in each plot corresponds to the optimal λ-knot which gives the minimum
cross validation error. Comments on the plots can be found in the text.

In figure 5.2 we see an illustration of the cross validation error curves for the two
datasets, computed on the same bootstrap samples as the ones in figure 5.1. First
of all, we have to comment of the differences between the algorithm which computes
the whole paths and the modified one. In all plots, the black curve corresponds
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to the actual cross validation curve and the blue vertical line corresponds to the
optimal λ-knot which gives the minimum error. As said before, computing the
whole sequence via the predictor corrector algorithm is not time efficient.

Our algorithm is the blue dotted line. This is the path that our algorithm would
have chosen and it clearly skips a lot of λ values. The dots correspond to each stage
as they are coloured in figure 4.6. We can see that the algorithm skips a big portion
of the λ sequence but it efficiently approximates the true optimal by taking into
account more values as it gets closer to it. The vertical red line corresponds to the
optimal value of λ that our algorithm would have chosen. Although the algorithm
is based on a rather ”fake” initial sequence, the final stage which is the predictor-
corrector stage will compute the exact λ-knots.

The blue and the red lines do not overlap. This does not mean that our al-
gorithm doesn’t choose the same value as the initial algorithm. The reason is that
the algorithms had to run separately and, since the predictor-corrector algorithm
numerically approximates the λ-knots, the smallest modification could give slightly
different results. The true predictor-corrector algorithm starts from the first λ-knot
in the sequence of λ (the first to the left), while our modified version starts the
predictor-corrector algorithm somewhere in the neighbourhood of the true min-
imum cross validation error (the dark-red dots). Because of the fact that the
predictor-corrector algorithm uses warm starts for finding the next knot and es-
timating its coefficients, the initial λ value given in the algorithm would affect the
estimates. This is the reason that the two vertical lines do not overlap. However,
this effect is negligible and the total number of active coefficients is the same for
both vertical lines. If the curves were to be computed at the same time and under
the exact same conditions, the vertical lines would surely overlap. However, in the
worst case scenario, where they don’t overlap, they are very close to each other so
we would not have any problem.
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Figure 5.2: This figure is an illustration of the complete cross validation curve for the two datasets, as
well as the the ”path” that our algorithm follows for finding the optimal λ-knot. Those plots correspond
to the same bootstrap samples that were used for plotting the lasso paths in the previous figure. The
top corners of the figure correspond to the NRD dataset, while the bottom corners correspond to the
RD dataset. Again, the left side plots are the full scales and the right side plots are the zoomed scales.
The black line for both plots corresponds to the actual cross validation curve, while the blue dotted
line corresponds to the path that our algorithm follows. Sometimes the lines overlap, sometimes not.
The light green dots correspond to the second stage of the algorithm, the dark green dots correspond
to the third, the dark red dots corresponds to the forth stage (the predictor-corrector stage) and the
light red dot correspond to the optimal λ. Furthermore, the blue vertical line is where the true optimal
is, while the red vertical line is the optimal λ that our algorithm would have chosen. More details can
be found in the text.

By comparing the cross validation plots between the two datasets we see some
differences. First of all, we see that the range of the cross validation errors for
the RD dataset is much higher (the x-axis ranges from ∼ 9160 to ∼ 9210), than
that for the NRD dataset (the x-axis ranges from ∼ 8200 to ∼ 8650). In general,
the values of the cross validation errors depend on the dataset itself, therefore the
comparison between the datasets would not be so accurate. Here however, we will
give a rough comparison only for the matter of investigating the differences. The
cross validation error is a measure of how well the model predicts for the specific
value of λ-knot. For that reason we see that the NRD dataset is being better
predicted from the lasso method, than the RD dataset, since it gives lower cross
validation values. Secondly, we see that the optimal λ-knot from the NRD dataset
is closer to zero, than the optimal λ-knot from the RD dataset. This means that
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the total number of active coefficients for that bootstrap sample will be higher for
the NRD dataset, than for the RD dataset. Which is something that coincides
with the lasso plots commented previously. Note, however, that the λ values of
the x-axis are also different between the datasets, but one cannot compare them.
This is because λmax depends on the maximum absolute column sum of the current
matrix and therefore, it will clearly be different not only between NRD and RD,
but also among the bootstrap samples of the same dataset.

Finally, we see that the cross validation curves for both datasets are smooth.
One can hardly find a local minimum and therefore the concept of ”divide and
conquer” that our algorithm implements, works quite well. This however, will not
necessarily be the case for other datasets. Other datasets might not have a smooth
cross validation curve, but they could rather be full of local minima. In those cases,
the version of the predictor-corrector algorithm that we implemented will probably
stuck to a local minimum and is therefore not recommended.

5.1.2 Bolasso Behaviour on the Datasets
In this section we shall discuss the behaviour of the bolasso method on the two
datasets. Since the one dataset is completely random, while the other one is not,
we expect to see some differences on some of the bolasso characteristics. We chose
to compare three characteristics of the bolasso procedure. The first one was the
total number of non-zero coefficients which were chosen at each bootstrap. That is,
the ones that were in the Ω active set for each bootstrap sample. The second one
was the optimal λ-knots which were chosen at each bootstrap. Finally, the third
one was the cross validation error on those optimal λ-knots. That is, the minimum
cross validation error for each bootstrap.

Consider the left sub-figure in figure 5.3. This figure shows the total number of
active coefficients included in the Ω set, for each bootstrap sample. The red points
are from the NRD dataset, while the black are from the RD dataset. Clearly, the
difference between the datasets is big. We can see that for the NRD dataset, the
total number of active coefficients chosen in each bootstrap does not differ among
the bootstraps, in a such big scale as the total number of active coefficients from
the RD dataset. In other words, the red points tend to be more gathered and thus,
giving smaller deviation than the black ones, which are more spread, resulting to
bigger deviation of the total number of active coefficients among the bootstraps.
This simply means that for the NRD dataset, the bolasso method seems to be
more ”determined” on the total number of coefficients that it will choose to enter
the model, than for the RD dataset where the bolasso method cannot decide the
total number of coefficients that should actually enter the model.
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Figure 5.3: The three figures give an illustration of the different behaviour that the bolasso method had
on the two datasets. For all three sub-figures, the x-axis is the number of the bootstrap ranging from 1
to 1000. Furthermore, the red points correspond to the NRD dataset and the black points correspond
to the RD dataset. Three bolasso characteristics are shown in this figure. The left sub-figure shows
the total number of non-zero coefficients chosen for each bootstrap. In other words, those numbers are
the size of the active set Ω for each bootstrap. The middle sub-figure shows the optimal λ-knot chosen
for each bootstrap. Finally, the right sub-figure shows the cross validation error of the chosen optimal
λ-knot for each bootstrap.

A similar behaviour can be seen in the middle sub-figure of figure 5.3. In this
figure we can see the values of the optimal λ-knots for each bootstrap. The red
points correspond to the NRD dataset, while the black points correspond to the
RD dataset. As we can see, the deviation of the black points is bigger than that
of the red ones. This means again that the bolasso method acts more determined
for the NRD dataset than for the RD dataset. As said previously, the values of
the λ-knots are not be compared between the datasets nor between the bootstraps,
because they depend on the columns of each bootstrap sample. However, here
we are more interested in their behaviour rather their values. Note also, that the
values of the λ-knots are connected with the first sub-figure for the total number
of active coefficients. The higher the λ value in the middle figure, the lower the
value in the left figure, since for high values of λ less coefficients enter the model.

Consider the right sub-figure of the figure 5.3. This figure shows the cross
validation errors for the optimal λ-knots chosen at each bootstrap. That is, the
λ-knots in the middle sub-figure. Again, the red points are from the NRD dataset,
while the black points are from the RD dataset. Clearly the cross validation
errors from the RD dataset are much higher than those from the NRD dataset.
Something that coincides with figure 5.2. From that, it seems that the models
chosen from the bolasso, are being better fitted for the NRD than for the RD
dataset. However, as said before, since the cross validation error depends on the
dataset, any direct comparison between the two datasets would not be accurate.
We would rather consider the characteristic of the thickness of the values among
the bootstraps. For the cross validation errors from the NRD dataset, there is
no much to say. The fact that the red line, constructed by the points, is thicker
than that for the RD dataset, does not give us any important information. Except
from the fact that for different values of λ we get different values of cross validation
error, which is something natural and expected. The important information from
this figure is given from the black points of the RD dataset. It seems that even if
the bolasso chooses optimal λ-knots in a big range, all of those knots give almost
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the same high cross validation error. That is, all the optimal λ-knots are equally
bad options. Bolasso, however, does the best it can for choosing the right λ-knot.
The problem is only because of the RD dataset.

In conclusion, it seems that the bolasso gives important information for the
structure of the datasets. Bolasso has captured the differences of the two datasets.
Moreover, it seems to have captured the non-randomness of the NRD dataset and
therefore, it acts more determined on the choice of the active coefficients that should
enter the model. On the other hand, bolasso cannot determine the optimal λ-knots
nor the total number of active coefficients for the RD dataset. The randomness
of this dataset is easily seen from the left sub-figure. Because bolasso cannot
easily determine the correct number of active coefficients for the RD dataset, the
estimates from this dataset might not be trustworthy; Finally, it should be noted
that we do not expect that the bolasso will choose the same number of active
coefficients at each bootstrap, as has been previously said, lasso tends to forget
some coefficients or take into account irrelevant ones and this is the actual reason
for running bootstrap. However, the deviation of those numbers discussed in figure
5.3 is a way of understanding the bolasso behaviour.

5.1.3 Estimation of Log Risk Ratio
This section considers the results from the bolasso method. The estimation of the
log risk ratios for the coefficients is given, as well as the AIC curves which chose
the optimal threshold. Furthermore, the lasso paths for the non-zero coefficients
are also presented, which correspond to a ”reduction” of figure 5.1.

In figure 5.4 one can see the AIC curves for each dataset. The right sub-figure
corresponds to the NRD dataset and the left corresponds to the RD dataset. The
vertical red lines on both figures give the minimum Akaike’s information criterion,
which corresponds to the optimal threshold. From the figures one can see that
the optimal threshold chosen for the NRD dataset is bigger (∼ 920), than that
of the RD dataset (∼ 800). This means that the allowed number of times that
each coefficient could have been set to zero among the bootstraps, is higher for the
NRD dataset than that for the RD dataset. Remember that the coefficients which
had been set to zero more times than the threshold will be simply set to zero for
all bootstraps, while for the others that are below the threshold, their mean will
be taken as an estimate. Since the threshold for the NRD dataset is bigger than
that for the RD, the coefficients of the NRD are not so ”restricted” as those from
the RD. That is, they are allowed to have been set to zero more times than those
from the RD dataset. Therefore, more coefficients from the RD will be set exactly
to zero. Which means that for the model of the NRD dataset more coefficients are
needed, than for the RD dataset.
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Figure 5.4: This figure shows the AIC curve for the two datasets (NRD left, RD right), which was used
for finding the optimal threshold. The y-axis is the AIC criterion and the x-axis is the thresholds. By
thresholds we mean the maximum total number that each coefficient could have been set to zero under
the bolasso procedure. Finally, the red line corresponds to the minimum AIC, which corresponds to the
optimal threshold.

In figure 5.5 one can see the estimated coefficients for each dataset. The left
sub-figure is from the NRD dataset, while the right is from the RD dataset. The
red dots are the estimates from the bolasso. Those are the coefficients that have
successfully passed the Akaike’s information criterion, and are estimated by tak-
ing their mean among all bootstrap samples. The red line on the plots is a line
constructed by red dots. Those dots correspond to the coefficients that have not
passed the Akaike’s information criterion and thus, were set to zero. It is clear
that the bolasso method set some coefficients exactly to zero and removes them
immediately from the model.

The black lines which correspond to each estimate are their confidence interval.
Those are computed on a 0.05 level of significance, by taking the 5-th and 95-
th value of their sorted values. Obviously, some intervals include the zero value.
Someone would reasonably wonder why those coefficients have not been set to zero
by the bolasso. Well first of all, remember that according to Lockhart et al. [15],
there is no inference for the lasso estimates. Therefore, those intervals are not
accurate. They should not be interpreted as the usual confidence intervals because
each value in the interval is computed by a different λ-knot (at each bootstrap).
Thus a different penalty is applied to the same estimate. This procedure is greedy
and leads to non-accurate inference. Secondly, the Akaike’s information will allow
some of the coefficients to take the zero value at least once, and this is what we
see here. However, the reason for including the confidence intervals here, is only
for showing the values that each coefficients took among the bootstraps.

Considering the same figure of the estimates, we see some differences between
the datasets. First of all, the total number of estimates that are not exactly zero
is higher for the NRD dataset, than for the RD dataset. This is something that
coincides with the AIC plots commented before. It is also reasonable because the
NRD is not random. However, since the RD dataset is indeed random, why does
it have some coefficients that are not exactly zero? This might have happened
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because even if the RD dataset is randomly generated, non-randomness could have
been occurred. However, the confidence intervals for the RD estimates are much
bigger than those for the NRD dataset. Which means that the estimates are not so
accurate. Note that, this coincides with the results from the previous subsection,
where we saw that the bolasso characteristics on the RD dataset varied in big scale
among the bootstraps. That is, if the value of the optimal λ-knot is very different
among the bootstraps, it will result to big variances for the estimates. Finally,
most of those intervals include the zero value. One the other hand, the majority of
the intervals for the NRD dataset do not include the zero at all.

Figure 5.5: This figure shows the bolasso estimates of the log risk ratios for the two datasets (NRD
left, RD right). The red points are the estimated coefficients from the bolasso, computed by taking
the mean among the bootstrap samples. The black lines correspond to 95% confidence intervals of each
estimate, which were obtained from the bolasso. That is, they are not optimal.

After that the estimates were computed, the non-zero estimates were only taken
into account. With respect to those estimates, the lasso paths were again computed
with the usual way of the predictor-corrector algorithm and the λ-knots. Those
paths are given in figure 5.6. The top plot is for the NRD dataset, while the
bottom plot is from the RD dataset. One can see that the total number of lines for
the NRD plot is higher than that for the RD. This were also seen from the figures
of the estimates. The remarkable thing here is that the two plots seem to have an
approximately same structure! This is another success of the bolasso. Remember
that even if NRD is not random while RD is, their background frequencies are
indeed the same. Meaning that the datasets were generated by the same initial
frequencies, as discussed in subsection 1.3.2. This is what we see here. Bolasso is
an estimation method and not an inference method. One should expect that even if
we see the same structure here, caused by the initial frequencies, the total number
of significant estimates should be less for the RD dataset. In the next section we
shall seek the significance of those estimates.
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Figure 5.6: This figure can be considered as a reduced version of figure 5.1. It corresponds to the lasso
paths of the coefficients chosen as non-zero from the bolasso method. The top figure corresponds to
the NRD dataset while the bottom figure corresponds to the RD dataset. Each coloured line in the
plot corresponds to one coefficient. The y-axis is the value of the estimated coefficient and the x-axis
consists of the λ-knots, computed by the predictor-corrector algorithm and placed in descenting order.
The numbers on the top and bottom of the plots correspond to the total number of active coefficients
on the specific λ-knot (they are given only for a few knots, not for all).

5.2 Significance Testing
This section concerns the implementation of the covariance test statistics. The test
was implemented both on the bolasso estimates and on the simple lasso estimates
from the initial data matrices for both datasets. In subsections 5.2.1 and 5.2.2 we
discuss and compare the results from the two datasets for their bolasso and simple
lasso estimates, respectively. In the last subsection 5.2.3 we compare the results
from the two methods for the same dataset. The last subsection is the subsection
were the results of the significant coefficients are presented.

5.2.1 Significance of the Bolasso Estimates
The test was first implemented on the estimates from the bolasso method discussed
in section 5.1. Those estimates that were assigned a value different than zero from
the bolasso were the ones that their significance was assessed by the covariance test.
Therefore for this step, the data matrices for each dataset included only the columns
which corresponded to the non-zero estimates from the bolasso. Before applying
the covariance test, the true λ-knots had to be computed again for those estimates,
with respect to the new data matrices. This was again done by the predictor-
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corrector algorithm. This time however, we did not need to run bootstrap and
the data matrices were of smaller size. Therefore, the complete predictor-corrector
algorithm was used and not the modified one.

The p-values from the covariance test are shown in figure 5.7. Considering a
0.05 significance level, the red line is placed on that value for the y-axis. Moreover,
the order by which the p-values are given (according to x-axis), corresponds to
the order by which the coefficients enter the model. That is, the first value is for
the first coefficient which enters the model, etc. According to Lockhart et al. [15],
the coefficients that have a p-value bigger than the given significance level, are
considered non-significant given the others in the model. As we previously stated,
there is a big ongoing discussion around the interpretation of those p-values. We
however, shall consider them under the usual interpretation, by now.

Those coefficients that have a p-value smaller than 0.05 are considered to be
significant. That is, they have to be in the model, while the others don’t. Obvi-
ously, the total number of significant coefficients for the NRD dataset is higher
than that for the RD dataset, which is completely reasonable. Finally, the reason
that the RD dataset has two significant coefficients can be connected with possible
non-randomness that were accidentally generated. This however, can not be in-
vestigated any further. The true outcome from the figure is that the NRD dataset
has more significant coefficients and bolasso has indeed found them.

Figure 5.7: This figure shows the p-values from the covariance test, for the bolasso estimates. The right
figure is from the NRD dataset, while the left is from the RD dataset. The red line in both figures is
placed on y = 0.05, assuming an α = 0.05 significance level. For the NRD dataset, the total number
of coefficients chosen as non-zero from the bolasso is 64, while from those, 19 are considered significant
from the covariance test. For the RD dataset, the total number of coefficients chosen as non-zero from
the bolasso is 33, while only 2 are considered significant from the covariance test.

Taking into account only the significant coefficients, the lasso paths were again
computed. In figure 5.8 we see the lasso paths from the significant coefficients of
the bolasso. The left one is from the NRD and the right is from the RD dataset.
Clearly, we now see some differences with the figure 5.6 and the background fre-
quencies which were common to each dataset have gone. This was expected. Even
if the background frequencies were the same for the two datasets, the coefficients
from NRD had weights for causing the MI event and thus, they are significant.
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Figure 5.8: This figure gives a further reduction of the figures 5.1 and 5.6, where only the significant
coefficients are taken into account. Again, the left figure is from the NRD dataset while the right is
from the RD. Each coloured line in the plot corresponds to one coefficient. The y-axis is the value of
the estimated coefficient and the x-axis consists of the λ-knots, computed by the predictor-corrector
algorithm and placed in descenting order.

Figure 5.9 shows only the significant estimates of the bolasso method. The
noteworthy here, is that none of the leftover coefficients has a confidence interval
which includes the zero value. That is, all the estimates from the bolasso, which
had taken the zero value at least once among the bootstraps, are not considered
as significant at all. This applies to both datasets. Note however, that as said in
section 4.1, 100 drugs were given weights for the NRD dataset. Here, not only
the significant ones but also the ones from the bolasso output, are clearly less than
100. This has probably happened because of the reduction step in figure 4.2. On
that step, we couldn’t ensure that some of the 100 drugs will not leave the NRD
dataset.

Figure 5.9: This figure is a reduced version of figure 5.5, where the non-significant estimates have been
removed. The left figure corresponds to the NRD dataset, while the right figure corresponds to the RD
dataset. The red points are the estimated coefficients from the bolasso, computed by taking the mean
among the bootstrap samples. The black lines correspond to 95% confidence intervals of each estimate,
which were obtained from the bolasso.
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So far, it seems that the covariance test works quite well. Any confusion that
could have been caused by the intervals which included the zero value, is now gone.
Furthermore, it is quite remarkable the fact that not all of the bolasso estimates
are significant. Since the lasso method, in general, sets some coefficients exactly to
zero, one should expect that using bolasso, all the non-significant estimates will be
set to zero. This however, seems not to be the case.

Finally, the significant estimates were chosen for each datasets and were re-
estimated. The re-estimation was done using cyclic coordinate descent on the
matrices which contained only the columns of the significant coefficients. Further-
more, the estimation was done using λ = 0 this time, which corresponds to the
usual maximum likelihood [15]. Those estimates are the final estimates for the two
datasets from the bolasso method and will be presented in section 5.2.3.

5.2.2 Significance of the Lasso Estimates
In this section we present the results from the covariance test, when applied to the
complete data matrices without using bootstrap. That is, the lasso method was
applied only once for each dataset and then the significance of the estimates was
assessed by the covariance test. For that, we neither used bootstrap for estimating
the coefficients, nor cross validation for finding the optimal λ-knot. The whole
data matrices, for NRD and RD, were used in the predictor corrector algorithm
for finding a sequence of true λ-knots, and the estimation of the coefficients was
done on those knots by the cyclic coordinate descent algorithm. Based on the
λ-knots sequence, the covariance statistics was implemented.

In figure 5.10 we can see the p-values calculated from the covariance test. We can
see the same behaviour as before. The total number of significant coefficients for the
NRD dataset is again higher than that for the RD dataset. Here however, the total
number of p-values is greater than before because we used all the coefficients for
the covariance test. Moreover, the p-values for the NRD dataset are not increasing
so rapidly as they do for the other dataset. It seems that the covariance test tends
to reject the coefficients of RD faster than those from the other dataset.
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Figure 5.10: P -values from the covariance test, for the lasso estimates of the initial matrices. The right
figure is from the NRD dataset, while the left is from the RD dataset. The red line in both figures
is placed on y = 0.05, assuming an α = 0.05 significance level. Finally, the points are the p-values.
From the total number of 249 coefficients from the NRD dataset, 20 are considered significant from
the covariance test. From the total number of 289 coefficients from the RD dataset, 2 are considered
significant from the covariance test.

For a constant value of λ = 0, bootstrap with 1000 bootstrap samples was
implemented for both datasets, only with the significant estimates in the model.
Thus, confidence intervals could be again obtained. In figure 5.11 one can see the
resulting estimates. Clearly none of them has a confidence interval which includes
zero. Furthermore, in figure 5.12 one can see the lasso paths computed again by
the usual way of the predictor-corrector algorithm. Their behaviour is the same as
for the bolasso plots, as expected. Finally, those estimates will be considered as
the final estimates from the lasso and will be presented in the next section. There,
a comparison between bolasso and lasso will be given.

Figure 5.11: This figure shows the estimated coefficients that were considered significant, for the two
datasets (NRD left, RD right). The red points are the estimated coefficients and the black lines
are their standard deviation. Both the coefficients and their standard deviation were obtained using
bootstrap of 1000 samples only on the coefficients considered significant by the covariance test. For the
bootstraps, the estimation was done using no penalty, that is λ = 0. Note that, for the right figure,
the lines are big because of scaling. Finally, the purple confidence interval in the left figure, will be
discussed in the next subsection.
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Figure 5.12: This figure shows the lasso paths for the two datasets (left NRD, right RD), for the
estimates that were considered significant. The x-axis corresponds to the λ-knots. Each coloured line
in the plot corresponds to one coefficient. The y-axis is the value of the estimated coefficient and the
x-axis consists of the λ-knots, computed by the predictor-corrector algorithm and placed in descenting
order.

5.2.3 Comparison of the Two Methods
This subsection concerns the comparison of the bolasso and the simple lasso meth-
ods for the two datasets, after the significance testing. Therefore, we consider only
the figures given in subsections 5.2.2 and 5.2.1. This section is connected with ap-
pendix C, where the tables of the estimates are given. We shall consider the results
from one dataset at a time and will compare the potential differences between the
two methods that were previously implemented. Note that, the actual comparison
here is between the results of the bolasso and simple lasso, after the covariance
test. In other words, this section will help us understand the covariance test by
comparing its different results from the same dataset.

Results from RD

Consider first the right sub-figure of figure 5.7, which corresponds to the p-values
of the RD dataset from the bolasso method. This looks fairly the same as the right
sub-figure of figure 5.10 for the p-values from the simple lasso method. Moreover,
the same similarity can be seen in the right sub-figure of figures 5.8 and 5.12, and
5.9 and 5.11. It therefore seems like bolasso and simple lasso provided the same
results after the significance test.

Consider table C.2 of the estimates given in appendix C. This table shows the
significant estimates from the bolasso and the lasso method, as well as their names,
their confidence intervals (CI) and their p-values. The simple lasso method gives
bigger estimates and bigger confidence intervals, however the differences are not
large. Furthermore, we see that the p-values from the covariance test are exactly
the same for the two methods;

It seems like the simple lasso method is enough for this dataset. Taking into
account the fact that the covariance test gave exactly the same results for the
two methods, and that the bolasso confidence intervals are not the optimal ones,
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the simple lasso method combined with the covariance test, should be the optimal
method to use.

This is also a big computational advantage. The bolasso method took almost
seven days to run, while the simple lasso took only three hours. Since the results are
the same after the implementation of the covariance test, and the bolasso confidence
intervals are not trustworthy, the simple lasso method seems to be enough if one
wishes to assess the significance of the estimates via the covariance test. The
current dataset, however, is completely random. Therefore, one should not trust it
without taking the results from the other dataset into account.

Results from NRD

The differences are quite significant, considering the results from the bolasso and
simple lasso for the NRD dataset, after implementing the covariance test. Al-
though the left sub-figure of figures 5.7 and 5.10, 5.8 and 5.12, and 5.9 and 5.11
look fairly the same, they are not;

By comparing the left sub-figure of figures1 5.9 and 5.11 we can see that the
simple lasso method has inserted one extra coefficient in the model (the purple one),
while the bolasso has not. That is, the covariance test chose one extra coefficient
as significant for the simple lasso. This can be reasonable since the simple lasso
method tends to set some irrelevant coefficients in the model, and this is the reason
for running the bolasso method: for excluding the irrelevant coefficients as much
as possible.

Consider table C.1 in appendix C. This is the table of the estimates and all
their information. We can see that all the results, except for the last line, are
almost the same (sometimes exactly the same) from the two methods. According
to those results, it seems again that for testing the significance and estimating the
coefficients, the simple lasso is indeed enough. Therefore, we could skip running
bolasso which takes too long time. Here however, the simple lasso gave us one extra
coefficient, namely ”S03CA04”. Therefore, even if the estimates, the confidence
intervals and the p-values are the same for both methods, the fact that one extra
coefficient is in the model makes it difficult to choose the best method. This is
because we don’t actually know which method was right. That is, we don’t know
if this extra coefficient should be in the model or not.

There is one bigger problem here. If we assume that the simple lasso method
is wrong and that it accidentally chose one extra coefficient, we should naturally
expect that this extra coefficient has a rather high p-value. However, this is not
the case. The p-value of this coefficient is not only low, but it is almost zero.
This indicates that the coefficient is very important for the model; For that, we
did a check for seeing where the bolasso ”missed” this coefficient. The results
were surprising. The bolasso method excluded this coefficient at the Akaike’s
information criterion. This coefficient did not pass this criterion and therefore
its significance hadn’t been tested at all. Akaike’s information criterion is a form
of model significance. Therefore, it is very strange that this coefficient is not

1We shall compare only those two figures, because in the figures for the p-values and the lasso
paths is not easy to see the differences.
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significant at all according to bolasso, but it is one of the most significant ones
according to lasso.

This was an important difference between the methods. For investigating this
further, we run the bolasso again. This time we used 1500 bootstrap samples. The
results of the replicated bootstrap should give an insight of which method is the
best one. Note that the simple lasso method does not need to be replicated. This
method is not based on simulations of datasets like the bolasso, therefore its results
would be the same. In section 5.4 we present the results of the replication and we
comment on them.

5.3 Interpretation of the Results
This section concerns the interpretation of the estimated coefficients, by the way
they should be interpreted under a real analysis. Only the results from the bolasso
for the NRD dataset are considered here, given in table C.1 in appendix C.

For our likelihood under the case-crossover design, the estimates are the log risk
ratio of the coefficients [14]. Let log( β

1−β ) be the output of a coefficient from the
bolasso method, then elog( β

1−β ) = β
1−β is the estimated risk ratio for that coefficient.

By exponentiating the confidence interval we can also find the confidence interval
for the risk ratio of a coefficient.

We are more interested in the the risk ratios rather than the values of the
true coefficients. The risk ratio of each coefficient shows the risk of taking the
corresponding drug. If the risk ratio is greater than one, then the drug has an
influence on the MI event. If the risk ratio is less than one then the drug has
prevented the MI even. However this cannot happen in our case-crossover design.
As said in subsection 2.1.1, if we think that a trigger might have prevented the
event, we treat the interruption of that drug as a trigger in the model. Something
that we did not do for any of the drugs here. Finally if the risk ratio is one, no
information is obtained about the effect of the drug.

Table C.3 in appendix C shows the transformed version of the estimates. That
is, the risk ratios and their confidence intervals, as well as the initial frequencies
of those drugs. As we can see, all the drugs have a risk ratio greater than one,
with drug ”C10AA05” (red) giving the highest and ”B01AC06” (blue) giving the
lowest. This means that all those drugs have an effect of causing MI. Moreover,
”C10AA05” and ”B01AC06” have the biggest and smallest effect, respectively, of
causing MI among the patients who took them.

By checking again the corresponding p-values and the drug frequencies we see
that the results are contradicted. The p-values should be associated with the
risk ratios and the frequencies. High risk ratio in combination with high frequency
should result to a lower p-value, than a drug having low risk ratio and low frequency.
However, by checking the drugs ”R01AD05” (green) and ”C10AA05” (red), we see
that this seems not to be the case. ”R01AD05” has lower p-value than ”C10AA05”,
even if its risk ratio and frequency are lower than those for ”C10AA05”. Considering
also the problems discussed in subsection 5.2.3, it seems like the covariance test
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is not preferable, but rather misleading; For drugs with low risk ratio and high
frequency (or the other way around), like the drug ”B01AC06”, we cannot decide
if the resulting p-values seem to be right.

In general, for investigating which drug is the most risky one, does not neces-
sarily need any significance testing. However, bolasso can be used without the
significance testing of the covariance test. Having that in mind, we decided to
check the coefficients from the bolasso that were not considered as significant from
the covariance test. Ten of those estimates with the highest risk ratios are given
in table C.4.

The three first coefficients in table C.4 have risk ratio higher than two. This
value might be considered significant, meaning that those drugs do indeed affect the
MI event. However, their p-values assigned by the covariance test are big enough
for rejecting them as significant. Taking also this result into account it seems that
the covariance test has a weakness in identifying the true significant coefficients.
We shall discuss this further after the replication.

5.4 Replication for NRD

This section considers the replication of the bolasso for the NRD dataset. A total
number of 1500 bootstrap samples was run this time. Akaike’s information criterion
was again implemented for finding the optimal threshold. Finally, the covariance
test was implemented on the non-zero bootstrapped estimates. Just like before.

Figure 5.13 shows the results from the replication. The top left figure is the
Akaike’s information criterion which gives an optimal threshold of ∼ 1377 (re-
member that we have 1500 bootstraps this time). The right top figure shows the
bolasso estimated coefficients as well as their confidence intervals. Moreover, the
left bottom figure shows the p-values for the bolasso estimates, computed again
by the covariance test. Finally, the right bottom figure shows only the significant
estimates of the bolasso. All figures are the same as the ones for the bolasso with
1000 bootstrap samples, except from the right top figure of the estimates.
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Figure 5.13: This figure shows the outputs from the replication of the NRD dataset. The figure on
the top left corner is the Akaike’s information criterion for the bootstrap samples. The figure on the
top right corner is the estimates of the bolasso. The left bottom figure is the p-values of the bolasso
estimates and finally, the right bottom figure shows the significant estimates for the bolasso after the
covariance test was applied.

Consider first the differences between the estimates of NRD for the 1000 and
1500 bootstrap samples. The top right figure of figure 5.13 (the replicated estim-
ates) and the left figure of figure 5.5 (the initial estimates), are not exactly the
same. Because it is difficult to observe the differences from the plots, and because
it is tiring to compare 64 estimated values and drug IDs, we plotted the estim-
ates in figure 5.14. In that figure, the black dots correspond to the estimates that
were chosen as non-zero both from the 1000 and the 1500 bootstrap samples of
the NRD. Each black dot is actually double (one dot for the initial estimates
of the bolasso and one for the replicated bolasso). Clearly the estimates of those
dots are overlapping (with extremely small deviation some times). Moreover, the
red triangle corresponds to an estimate from the replicated bootstrap, while the
green triangle corresponds to an estimate from the initial bootstrap. Although
the triangles are close to each other, they belong to different drugs. That is, the
initial bolasso and the replicated one did not choose exactly the same coefficients
to be in the model. This means, that the uncertainties of the lasso method are not
completely eliminated by running bootstrap. However, both of those estimates are
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very close to zero, which means that their risk ratios will be almost one and thus,
non-informative. Finally, it is remarkable the fact that the significant coefficients,
chosen by the covariance test, are exactly the same for both the initial bolasso
and the replicated one. This can be seen be the right bottom figure of figure 5.13
and the left figure of figure 5.9, as well as the table which we discuss in the next
paragraph.

Figure 5.14: This figure shows the estimated coefficients that the initial bolasso and its replication
chose to enter the model. The y-axis contains the values of the estimates and the x-axis corresponds
to drug IDs. The black dots are estimates that were in common for both procedures. Furthermore, the
red triangle corresponds to an estimate that the replicated bolasso chose to enter the mode, while the
initial bolasso did not. Finally, the green triangle corresponds to an estimate that the initial bolasso
chose to enter the model, while the replicated bolasso did not.

Consider now only the results from the replicated bolasso, and the p-values from
the simple lasso. Table C.5 in appendix C shows the replicated bolasso estimates
that were considered significant by the covariance test, placed again side by side
with the simple lasso estimates. As we can see, we got exactly the same results
as before. The replicated bolasso did not choose the extra coefficient to be in the
model. The rest of the results are the same as those in table C.1.

The last thing that one could do is to investigate the behaviour of the ”S03CA04”
coefficient, with respect to the others. Therefore, we computed the correlations of
that coefficient against all the others. This should explain if the coefficient be-
longs to a correlated group, or if it is truly irrelevant. Figure 5.15 shows those
correlations. The red point on the top right corner is the correlation of ”S03CA04”
against itself, which is of course one. The rest of the points are the correlations of
”S03CA04” against the other coefficients. Clearly, all those correlations lay around
zero. None of those correlations is significant enough, for explaining the strange
behaviour of ”S03CA04”. Thus, this coefficient is indeed irrelevant and does not
belong to a group of correlated coefficients. This proves that the bolasso method
has correctly excluded this coefficient from the model. On the other hand, the
reason that the covariance test chooses the coefficient, will remain a mystery.
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Figure 5.15: Correlations plot for the ”S03CA04” drug vs the rest of the drugs. The red point on the
top right corner is the correlation of the drug with itself. The black points are the correlations with the
other drugs.

For the covariance statistic we were more interested in the total number of
significant coefficients. That is, we would like to investigate if we could get the
same significant coefficients when using simple lasso combined with the covariance
statistic and when using bolasso. The fact that the estimated coefficients, shown in
the tables, are almost the same, is only because on every method we re-estimated
them without penalty. Finally, the results from this section question the validity
of the covariance test, but also show the importance of the replication procedure.
The replication did not give exactly the same results as the the initial bolasso.
However, the difference is negligible.

5.5 The Asymptotic Distribution of Tk

This section considers the asymptotic distribution of the covariance statistics Tk.
According to Lockhart et al. [15], Tk follows asymptotically the Exp(1) distribu-
tion under the null hypothesis. Lockhart et al. [15] however, have not proven this
assumption for the case of generalized linear models, but they support this conclu-
sion on simulation results. We however, did not see any straightforward results in
our analysis.

For some values of Tk the quantile-quantile plots were created. In appendix
D one can see four figures with the Q-Q plots. Figure D.1 shows the Q-Q plots
from the bolasso estimates for the NRD dataset, figure D.2 shows the Q-Q plots
from the bolasso estimates for the RD dataset, figure D.3 shows the Q-Q plots
from the simple lasso estimates for the NRD dataset and figure D.4 shows the
Q-Q plots from the simple lasso estimates for the RD dataset. The top row in
each figure shows the Q-Q plots for some of the covariance statistics that resulted
to a p-value< 0.05 for the corresponding coefficient. That is the null hypothesis
was rejected for them and thus, Tk should not asymptotically follow the Exp(1)
distribution. Moreover for each figure, the bottom row contains the Q-Q plots
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for some of the covariance statistics which resulted to a p-value> 0.05 therefore,
the null hypothesis could not be rejected and thus, their asymptotic distribution
should be Exp(1). The way by which the plots were created was by simulating 100
values from the Exp(Tk) distribution (each plot has a different Tk), and then plot
the quantiles against the theoretical quantiles of the Exp(1) distribution.

For all plots the results are similar, so we comment the results in general. The
distribution of Tk seems in many cases to be similar to Exp(1), since the points
are on the line, but one cannot tell if the results are from the null hypothesis or
not. Most of the plots seem to have an Exp(1) distribution, irrespective of whether
the null hypothesis is rejected (top plots), or not (bottom plots). For the top plots
of each figure, the points should not be on the line, but as we can see, this is not
always the case. The points of some plots show that the corresponding statistic
gives a good fit. On the other hand, the points for the bottom plots should always
be on the line, or at least most of them. But this is again not the case for all
plots. Some plots show a rather bad fit and thus they do not follow the Exp(1)
distribution, even if they should.

The conclusion from the Q-Q plots is that the distribution of Tk is indeed
Exp(1) most of the time, but the result seems to hold for both the null and the
alternative hypothesis. In the paper of Lockhart et al. [15], they also apply the
covariance statistic to the case of the elastic net2 and they state that for that
model, the covariance statistic under the null hypothesis, multiplied by a factor,
follows by distribution the Exp(1) distribution. They specifically state that for an
orthogonal data matrix [15]:

(1 + γ) Tk
d→ Exp (1)

As we can see for the case of the elastic net, the covariance statistic multiplied by a
factor which contains the penalty, follows an Exp(1) distribution under the null. A
such modification maybe also should have been applied to the case of generalized
linear models, and one maybe should not use just the usual TK → Exp (1). If this
should be the case, then the results from the covariance statistic might have been
different.

2The Elastic net can be considered as another form of the lasso. The only difference is that
the Elastic net, except from the λ penalty, penalizes the likelihood also by γ

2 ||β||22. There γ ≥ 0
is a constant [15].
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5.6 Conclusion of the Analysis
The current analysis was an implementation of bolasso and simple lasso methods
as well as the newly proposed covariance test statistic. According to the theory
discussed in this thesis, simple lasso tends to forget some coefficients, which in our
case were the log risk ratios, or take into account some irrelevant ones. Moreover,
a reduction of those uncertainties can be done via bolasso in combination with
the Akaike’s information criterion. The reason for running both simple lasso and
bolasso was mainly for applying the covariance test on both methods and then
compare the results. As a bi-product of the analysis, replication need to be run for
the NRD dataset for confirming the results of the initial bolasso. In this section
we shall discuss the main founding of the analysis.

Bolasso seems to be an efficient estimation and variable selection method with
only small uncertainties. First of all, we saw in subsection 5.1.2, that bolasso has
the ability of capturing the characteristics of a dataset. Since each bootstrap sample
corresponds to a single lasso, bolasso does indeed reduce the uncertainties that the
simple lasso could have caused. This can be seen by the fact that if we take two
bootstrap samples into account, we should have gotten a different set of coefficients.
Bolasso on the other hand ”averages” the active sets and with the help of Akaike’s
information criterion, effectively chooses the correct coefficients to be in the model,
taking always into account all the other observations from the bootstrap samples.
Although the replication did not give exactly the same results as the initial bolasso,
most of the coefficients were the same. Only two coefficients were not in common
from the two procedures but the differences were not significant since their log risk
ratios were almost zero. This shows that bolasso does not completely eliminate the
uncertainties of the lasso but it significantly reduces them.

Bolasso has two negative aspects. First of all, it is extremely time consuming.
Although bolasso has indeed proven its efficiency in reducing the set of coefficients,
it cannot easily be implemented to high dimensional problems. This however, be-
comes even worse for the case of generalized linear models. The main problem is
not the bootstrap itself, but the combination of cyclic coordinate descent, cross
validation and the predictor-corrector algorithm which should be used for finding
the exact optimal λ-knot. The current case of GLM combined with high dimen-
sionality, lead to the fact that the true λ-knots were extremely close to each other,
especially at the end of the λ sequence, as we saw from the lasso-paths plots. This
had as a result that finding the optimal λ-knot could take up to 20 ∼ 30 minutes
for each bootstrap sample. However, this was also the result of inefficiency in the
predictor-corrector algorithm. By simulated observations we saw that the step of
absolute correlations in the algorithm, would not necessary predict the next true
active set correctly, probably because of the high dimensionality of the data. This
had as a result that the algorithm would run unnecessary steps many times. Those
problems however, concern the time that the bolasso method needs. Its efficiency
remains unaffected. Secondly, the fact that bolasso cannot provide trustworthy
confidence intervals is an important problem, directly connected to the lack of in-
ference for the lasso. Although one could use bolasso for finding the most relevant
coefficients and then use only those in a simple bootstrap without penalty, for



5.6. CONCLUSION OF THE ANALYSIS 89

finding confidence intervals, those intervals might not be correct because the initial
choice of the coefficients would have been done by the lasso.

The covariance test statistic is not so straightforward, yet promising. The
results from the covariance test statistic of bolasso and simple lasso, when applied
to the RD dataset, were exactly the same. This was our first indication that the
covariance statistic does indeed a good job. We thus concluded that no bolasso
needs to be run. This was a naive conclusion according to the results from the NRD
dataset. This dataset was not random and thus its results were more important.
As we saw from those results, the covariance statistic was misleading on this case.

We found three differences of the covariance test when applied to bolasso and
simple lasso, for the NRD dataset. The first one was the fact of one extra coefficient
in the model of simple lasso. Although we know that simple lasso tends to select
some irrelevant coefficients, the fact that the coefficient’s p-value was almost zero
was very misleading. Moreover, this extra coefficient was indeed irrelevant and not
correlated with any other coefficient. The second one was the fact that not all the
bolasso non-zero coefficients were significant (which actually happened also for the
RD dataset, but by that time it seemed that bolasso chose wrong.). Since bolasso
used Akaike’s information criterion and since, according to the theory, the reason
for using bolasso is for reducing the uncertainties of simple lasso, one would expect
that most of the non-zero coefficients from the bolasso are significant. However,
this was not the case according to the covariance statistic. When the covariance
statistic was applied to the bolasso estimates, a further reduction of the total
number of significant coefficients took place. More specifically, bolasso chose a
total number of 64 coefficients to be in the model and if we remove the one that
was not in common with the replication, we can say that bolasso chose 63. The
covariance test reduced this number to 19 coefficients in the model, which is a big
difference, and 18 of those coefficients were in common with the bolasso. The third
and final one was the fact that the coefficients of the bolasso that were rejected
by the covariance statistic, had indeed high risk ratios. That contradicts with the
interpretation of the risk ratios. Risk ratios that are significantly higher or lower
from the value of one, might be considered as significant, or at least have p-values
that could explain their results (bigger p-values for those risk ratios close to one,
lower for those far from one.).

Furthermore, we showed in section 5.5 that the asymptotic distribution of Tk

is Exp(1), but not always under the correct hypothesis. We specifically saw that
sometimes the distribution under the null hypothesis is indeed Exp(1), but some-
times it isn’t. Respectively we saw that for the alternative hypothesis, most of the
TK followed an Exp(1) distribution, but they shouldn’t.

Moreover, two positive aspects of the covariance test were found, but their
results are still difficult to understand. We saw that even if the initial bolasso for
the NRD and the replicated one gave slightly different results, the covariance test
chose exactly the same coefficients as significant for both procedures. Moreover,
we saw that the covariance test removed all the coefficients that were set to zero
at least once among the bootstraps. From those results we see that the covariance
statistic captures something about the estimates, but those results are not easy to
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interpret.
The article by Lockhart et al. [15] is very inspiring but it lacks precision at some

places. First of all, the article states that the case of generalized linear models is not
yet proven. Therefore, the authors have not written any detailed analysis for that
case. Furthermore, the authors do not make clear if the covariance statistic should
take into account the non-significant coefficients, when testing for others. That
is, when we test one coefficient by one, in a sequence of λ-knots, should we stop
when one coefficient is not significant, exclude the coefficient and then continue,
or should we just continue until the end, using the non-significant coefficient in
the estimations? For our analysis, we just continued without excluding any non-
significant coefficient. Furthermore, if we should have excluded the non-significant,
then the λ-knots sequence should be re-approximated again, and again, each time
we exclude a non-significant coefficient. This is because this sequence is directly
connected with the coefficients in the model (the columns of X matrix). Doing that,
would have resulted to a great increase of time that the covariance test would use.
Moreover, the interpretation of the p-values is not straightforward at all. Lockhart
et al. [15] do not comment on the interpretation of the p-values and Bühlmann et
al. [23] warn the users to not naively interpret those p-values as they would usually
be interpreted for any other test. The reason for that, is that the hypothesis being
tested from the covariance statistic is conditional, given the other coefficients in
the active set Ω.

The final conclusion of the analysis is that the bolasso method is still the optimal
method to use. Although it is time consuming, its results are more accurate and
more easy to interpret. However, its confidence intervals are not trustworthy and
probably other methods have to be applied for reducing that problem. On the other
hand, work has to be done for the covariance test statistic. The interpretation of
the resulting p-values is not easy and we cannot be sure about the asymptotic
distribution of Tk for the GLM case. Probably therefore we got strange results
about the significance of the risk ratios. Because clearly, the bolasso is based on a
non-conditional testing (by using AIC), while the covariance statistic is based on
a conditional one. However, the use of covariance test statistic shows that in the
future, avoiding bolasso and its time inefficiency, might be achieved by a proper
use of this statistic. That would be a great computational advantage;



Chapter 6

Discussion and Further
Analysis

6.1 Discussion
The current thesis concerned the investigation of different aspects of the lasso
method and its characteristics. Moreover, of secondary priority was the investiga-
tion of probable triggers that could have caused myocardial infarction to a set of
patients. The whole analysis was based on the case-crossover design. Finally, the
implementation of the newly proposed covariance statistic has also concerned.

The analysis concerned two different datasets generated from a small amount
of data. The data given for generating the datasets was constituted by a set of 775
drug names and their usage frequencies in a period between 2008 − 2012. Both
datasets included a total number of 75.000 patients IDs and were generated based
on the usage frequencies. The generated information that was used in the analysis
were the date of the myocardial infarction event for each patient and their drug
intakes. Furthermore, the one dataset was completely random, whereas the other
dataset had some weights on 100 randomly chosen drugs, such that the myocardial
infarction event had a bigger probability for occurring right after an intake of one
of those drugs. The investigation of which drug could have caused myocardial
infarction was of secondary priority. The reason for that was that both datasets
were not real. However, those datasets were used for investigating the lasso method
and its strong and weak sides.

The layout of the analysis was based on the case-crossover design. The reason
for that was mainly for eliminating internal characteristics of the corresponding
likelihood. The case-crossover design has the ability of removing internal charac-
teristics of the subjects, such as age and sex, by allowing each subject to be the
case and the control of itself on different time periods. The potential triggers of
the study were the drugs. Moreover, one case and one control window were used,
both of seven days length and placed seven days apart from each other. The reason
for using only one case window was because each patient’s follow up period was
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assumed to have stopped by the time of the first myocardial infarction event. The
reason for using only one control window was for reducing possible seasonal bias.
Moreover, the windows were placed using a unidirectional non-localizable design,
which resulted in biased estimates. However, the magnitude of the bias was not
investigated, but it should be small, according to Lumley and Levy [16]. A simple
design was applied for the hazard period of the drugs by allowing no place for
minimum induction time and a constant effect period of seven days. Furthermore,
the reason for using seven days distance between the case and control windows
was because a washout period of seven days was assumed for each drug intake.
Based on that layout the likelihood function was created and modified to a form
of generalized linear model for estimating the log risk ratios of the coefficients.

The estimation of the log risk ratios was done by the lasso method and the cyclic
coordinate descent algorithm. The reason for using the lasso method was because
of its ability of setting some of the coefficients exactly to zero by penalizing the
likelihood model with a λ factor. This was a great advantage for our case because
the total number of coefficients was very big and thus, finding the best model with
means of forward or backward selection would be time inefficient. Moreover, the
usage of cyclic coordinate descent to the model’s convex objective function reduced
the total time of the coefficient estimation by estimating the coefficients in a cyclic
way, avoiding the inversion of the Hessian.

The lasso method has the disadvantage of selecting irrelevant coefficients to
enter the model or selecting a part of a group of correlated coefficients. Those
uncertainties were reduced by the use of bolasso, a bootstrap version of lasso.
For each bootstrap sample, the estimation of the coefficients was done with the
lasso method. Furthermore, coefficients that were frequently set to zero among the
bootstraps, were excluded from the model. Finally, the frequency threshold for the
allowed number of zero occurrences for each coefficient was found with the Akaike’s
information criterion.

The most important and most difficult part of the bolasso method was finding
the optimal λ for each bootstrap sample. It was the most important part because
the λ penalty plays a crucial role on the estimation of the coefficients. This is be-
cause the value of λ decides how much each coefficient will be shrunk and probably
set to zero. Choosing the wrong λ would result to wrong number of coefficients in
the model. The choice of the optimal λ was done by cross validation at each boot-
strap sample. A sequence of λ values was generated and the value that gave the
lower cross validation error was chosen for estimating the coefficients. However, for
the case of generalized linear models finding the optimal λ was not straightforward.
The reason for that was that gaps between the total number active coefficients were
created with the use of an arbitrary λ sequence. Therefore, the predictor-corrector
algorithm was used, before applying cross validation, for approximating a sequence
of λ-knots which gave an increase of one, of the total number of active coefficients,
for each λ value in it. This however, was very time inefficient and therefore, a
modified version of that algorithm was used at each bootstrap, which provided a
faster way of choosing the optimal λ at each bootstrap.

Both datasets were used for investigating the characteristics of the bolasso
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method. The characteristics that were investigated were the total number of act-
ive coefficients, the value of the optimal λ and the cross validation error on that
λ. Those characteristics were observed for each bootstrap and were then com-
pared between the datasets. The conclusion from that part of the analysis was
that the bolasso method identified the differences of the datasets. The total num-
ber of active coefficients and the optimal λ-knot, for the NRD dataset, that were
chosen from bolasso, did not differ a lot among the bootstraps. This resulted to
more stable estimates with small variance. On the other hand, bolasso gave big
variation for both the optimal λ-knot and the total number of active coefficients
among the bootstraps, for the RD dataset. Therefore, the confidence intervals of
the estimates from that dataset were big.

The second part of the analysis was the implementation of the covariance stat-
istic both on the bolasso estimates and on the simple lasso estimates. Although the
covariance statistic is a new test for the lasso inference, and is not satisfactorily de-
veloped for the case of generalized linear models, no other inference method exists
for the lasso. Therefore, this statistic was used for assessing the significance of the
coefficients. However, the results of the statistic turned out to be misleading, under
the usual interpretations of significance testing. The results from the statistic when
applied to the bolasso estimates were not as expected. The non-zero coefficients of
the bolasso method should be significant, assuming that the bolasso should have
removed all the non-significant coefficients. However the implementation of the
statistic on those estimates gave a further reduction of the significant estimates.
Furthermore, the p-values of the coefficients and their estimated risk ratios were
contradictory. If the p-values were to be interpreted in the usual way, low p-values
should have resulted in risk ratios much higher or lower than the value of one, if
the corresponding drug frequencies were also high. However, this was not the case.
Moreover, the covariance statistic did not seem to have the ability of correcting the
irrelevant choices of the simple lasso method. The conclusion from that result was
not that the p-values are incorrect, but they rather test different hypotheses than
the bolasso and the Akaike’s information criterion do. In general, the conditional
hypothesis that the covariance statistic tests seems not to be easy to interpret.

Finally, the distribution of the covariance statistic is Exp(1), but not only under
the null hypothesis as expected. It seemed to be difficult to separate the null form
the alternative hypothesis by only looking at the plotted quantiles. This means that
regardless the true hypothesis, the covariance statistic Tk can asymptotically follow
the Exp(1) distribution. This is a major problem because the resulting p-values
might not be correct. One cannot reject the null hypothesis since the alternative
might have the same distribution, or the other way around;

The final conclusion from the analysis was that bolasso is still the safest way
to use. The fact that both the initial bootstrap and the replicated one gave fairly
close results, tells us that the bolasso method is stable and trustworthy. Although
its confidence intervals are not trustworthy because of the different penalties ap-
plied to each bootstrap, the bolasso method effectively chooses the total number
of coefficients that should be in the model. On the other hand, the covariance
statistic is not well developed for the case of the generalized linear models, but it
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is very promising.

6.2 Further Analysis
6.2.1 Use of the Current Thesis
The results of the current thesis will be used on a real and more accurate dataset.
This thesis served as a ”background” analysis for finding the best method that one
should use under the case-crossover design. When the real dataset is available, the
bolasso method will be used for estimating the risk ratios of the coefficients. For
that case, we will be interested in the risk ratios and the confidence intervals of
the estimates. However, finding trustworthy confidence intervals for the bolasso is
a research that needs to be done.

Researchers are often concerned about the adverse effects of drugs. This concern
is not only about drugs under development, but also about drugs that are already
in the market. Ensuring that a drug in a market will not cause any adverse effect
is, of course, of great importance. However, for ensuring that a drug can be safely
taken, tests have to be done in population samples. This is not always enough
though, because every one of us is different and thus, different problems can arise
to each one of us when taking a drug. The problem becomes even bigger when two
or more drugs react together.

There are known examples for cardiovascular side effects which were discovered
after the drugs came to market. One example is rofecoxib (Vioxx), a non-steroidal
anti-inflammatory drug used mainly against acute pain conditions, which was with-
drawn from the market in 2004 after over 80 million people were using it. It was
estimated that between 88.000 ∼ 144.000 heart attacks as side effects were at-
tributed to this drug. Another example is sibutramine (Reductil), an anti-obesity
medication, which was withdrawn from the market in 2010 due to the higher risk
of stroke and myocardial infarction as side-effects of the drug. By systematically
analysing all drugs needing prescription in Norway, we might expect similar but
yet unknown adverse side effects for some drugs, but we may also find yet unknown
protective effects as well.

By applying methods that allow systematic examination of all potentially exist-
ing associations between drugs, their combinations and possible health outcomes,
we might reveal potentially important side effects and drug-drug interactions that
otherwise might go undetected by classical hypothesis-driven approach. Therefore,
no specific hypothesis will be used in the real analysis, but only a global one: drugs
have adverse or positive side effects on cardiovascular outcomes.

6.2.2 Modifications for the Methods Used in the Thesis
It would be interesting to use different control or case window’s length for each
patient. In the current analysis we used a simple hazard model for the effect of
the drugs. We assumed that all drugs have minimum induction time equal to zero
and seven days effect period. This might be a rather naive assumption. Not all
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drugs might have an equal minimum induction time or effect period. This might
also be the case for the washout period. Taking those information into account,
the windows might be of different length for each drug. None of the articles that
the current thesis was based on, raised the issue of windows with different length.

One of the main challenges of the current thesis was the implementation of the
algorithms. The bolasso method is extremely time inefficient for high dimensional
data. The problem arises when one wishes to approximate the λ-knots by the
predictor-corrector algorithm and then use cross validation for finding the optimal
one. This could take up to 7 hours for each bootstrap sample and even parallel
programming was not efficient enough. Therefore, effective algorithms should be
created or the currently used ones should be modified. A small modification was
created in the current thesis which reducted the time for each bootstrap to 30
minutes, however the algorithm is greedy and not encouraged to use. Moreover, 30
minutes for each bootstrap sample is still a long time.

Finally, corrections and modifications can be done on the covariance statistic.
This statistic is indeed promising and maybe in the future might be used for avoid-
ing bolasso. This however seems not to be an easy task.
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Glossary

C | M

C

Coronary artery
The left and right coronary arteries are the only ways by which the heart
tissues are being supplied with blood [31]. 35

M

Myocardial tissue
or myocardium, is the thick muscle layer of the heart [31]. 35
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Appendix A

Programming and Big Data
Challenges

This appendix concerns personal experiences and programming difficulties along
the way of the analysis of the current thesis, as well as references of the created
algorithms and in-built packages that were used.

A.1 Big Data Challenges
A.1.1 Definition of Big Data
Technology has been developed efficiently in the last years, providing useful and
more accurate tools which are used in many research areas. Moreover, the more
developed technology becomes, the cheaper the research methods become, giving
researchers the opportunity of creating more and more data with easier ways. This
leads to a massive amount of data (Big Data), which is rapidly increasing. On the
one hand, sciences, engineering and social science are positively affected by this
significant technological development. Lagging, exchanging and comparing data
have become easier and faster, leading to more accurate results. On the other
hand, this big amount of data yields many challenges that a researcher has to take
into account in order to run a research which will provide efficient results [8].

Big Data is a globally used term, which describes the massive amount1 and
high dimensionality2 data. Although Big Data gives an extremely helpful privilege
to all kinds of science, it has some major difficulties, which can be real challenges
for a researcher willing to use some sort of Big Data. Some of those challenges are
noise accumulation, spurious correlation and identical endogeneity, computational
and algorithmic issues, and homogeneity [8].

Hypothesis testing and decision-making depend on the high dimensionality of
Big Data. Thus, a large number of parameters have to be simultaneously estimated

1The massive amount of data comes from the big sample sizes used on researches [8].
2High dimensionality means that a big number of sub-populations are used for researches [8].

103



104 APPENDIX A. PROGRAMMING AND BIG DATA CHALLENGES

and tested. Errors can occur because of the large number of those parameters. This
is called noise accumulation effect and is highly common in high dimensional data.
This effect has to be handled with great caution because it can result to wrong
parameter estimation and thus misleading hypothesis judgement. Moreover, spuri-
ous correlation can be caused by the high dimensionality, meaning that random
variables, which are in fact uncorrelated, may have high sample correlation. This
can also lead to false decision-making and, therefore, has to be treated carefully.
Finally, another issue of high dimensionality is the identical endogeneity. Consider,
for example, that we have a regression model of the form Y =

∑d
j=1 βjXj + ϵ. En-

dogeneity means that some of the regression predictors are correlated with the error
term. Regression models assume that the error term and the regression predictors
are uncorrelated with each other. This assumption is crucial for various statistical
procedures that are going to take place in the later analysis (variable or model
selection for example) [8].

Furthermore, the huge amount of data combined with the high dimensionality
makes not only the analysis but also the transferring and lagging of data extremely
difficult and time costly [8], [30]. The most used approach for solving those prob-
lems is to divide the problem into many sub-problems (smaller datasets). Then
store them as different-smaller units and run separate analyses to those sub-units.
At the end, the results from those analyses in the sub-units are combined to form
a global result for the main problem [8].

Finally, homogeneity is another challenge of Big Data. Homogeneity comes from
the fact that Big Data is created from many resources and sub-populations. Each
of those has their unique characteristics that are not in common to the rest of the
sub-populations. Those characteristics can serve as outliers and careful attention
should be placed on their analysis. However, due to the big amount of data in the
case of Big Data, there are more effective ways for identifying and understanding
those outliers, than in small sample data sets [8].

Likely, according to Fan [8] there are some statistical techniques that can be
implemented to Big Data and help researchers analyse the data sets with a more
effective way, which can actually result to trustworthy results. Finally, according to
Tretyakov et al. [30] there are also many algorithmic databases and programs that
solve adequate a big part of the computational and data-transferring problems.

A.1.2 Challenges During this Thesis
Because of the massive data that is being daily collected, all kinds of science get
more accurate results in every kind of research. For example, in statistical science,
more accurate estimates can be obtained, which lead to more accurate predictions.
However, in my personal experience from the current analysis, it was extremely
difficult to access both datasets, because each of them contained more than ∼
67.500.000 rows. The challenge was not only a matter of time, but also a matter
of space; As a master student in statistics I had never encountered so massive
datasets in any of the obligatory projects, as those used here. Many different
algorithms, packages and methods (including parallel programming) were used for
trying not to reduce the datasets. I didn’t want to reduce the datasets because I



A.2. PROGRAMMING 105

know that in the future I will most probably work with datasets of that size, and I
wanted to have an experience. However, what I gained from this, was the fact that
not all currently used statistical algorithms (like cross validation) are the optimal
choices if one works with massive datasets. Therefore, mathematical modifications
should be done to some of the commonly used algorithms and new methods for
faster programming would be really helpful (which might already exist and I don’t
know.).

Finally, the other thing that I gained from this work, was that is not easy to
extract data from the sources. What I mean is that, the reason that I didn’t get
the real dataset in time, was because it takes time to get data and at the same time
ensure that the any patient’s personal information will remain unknown. This is
something that I completely understand, but I had never thought about.

A.2 Programming
A.2.1 Created Algorithms for the Thesis
In this subsection an overview of the created algorithms is given. Those algorithms
consist both of main modules and functions. Moreover, many of them can be found
in slightly different forms which were modified for satisfying different needs (like
plots, estimation etc.). Here only the names and function of those algorithms is
given, more details can be found in the algorithms.

Main Modules

• NRD_generator_part1, NRD_generator_part2,
RD_generator_part1, RD_generator_part2:
Modules for generating the datasets.

• Exposures_matrices_I: Module for counting the exposures.

• Lasso_CV_Step_plots: Module for plotting the lasso paths and the CV error.

• Bolasso_main, Bolasso_Part_1, Bolasso_Part_2: Modules for running the
bolasso in parallel.

• Bolasso_plots: Module for plotting the results from the bolasso, like the
active set, the λ-knots and the CV errors.

• Significance, Significance_lasso: Modules for the significance testing for the
bolasso and the lasso respectively.

Functions

• Chi_squared_generator: Function used for generating information for the
datasets.
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• Matrix_creation_I,data_manipulation, Model_matrix: Functions for modi-
fying the datasets and creating the data matrices X.

• Bootstrap_simple: Function for running bolasso with constant λ.

• ST, CCD: Functions for the soft threshold and the cyclic coordinate descent,
respectively.

• P_E, P_E_gap: Different forms of the cross validation function.

• Activated, Pathwise, Pathwise_gap, Find_optimal, First_step: Functions for
finding the optimal λ-knot via the predictor-corrector algorithm.

A.2.2 Packages for Latex and R-studio
This subsection serves as a reference section for the packages used on this thesis.
The reason is that the creators of the those packages wish that any user will refer
to them, and we have to respect that.

Packages used for the LaTeX: amsmath, algorithm2e, graphicx, adjustbox, cap-
tion, enumitem, subcaption, float, ifthen, xkeyval, xfor, amsgen, etoolbox, longt-
able, supertabular, array, multicol, glossaries, geometry, cite, multirow, url, font-
spec, lmodern, afterpage, xcolor, comment, tocbibind, babel, datatool.

Packages used for R-studio: Matrix, doParallel, doSNOW, ggplot2, plyr.
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Proof of Equation (3.4)

In subsection 3.3.3 we showed that if the log-likelihood function ℓ(β) is differ-
entiable, then the forward and backward directional derivatives of the objective
function f(β, λ) = ℓ(β)− λ

∑
j

|βj | are equal for every β, except for β = 0 where it

does not exist. In this appendix we will show that the concave function f and the
convex function −f(β, λ) will give the same soft threshold function.

Consider first the concave function f(β, λ) = ℓ(β)−λ
∑
j

|βj |. When we derivate

with respect to βj and then set the derivative equal to zero we get accordingly:

If βj > 0:
∂ℓ(β)
∂βj

− λ = 0⇔ β̂j = −A− λ

−B
= A + λ

B

If βj < 0:
∂ℓ(β)
∂βj

+ λ = 0⇔ β̂j = −A + λ

−B
= A− λ

B

where A is a function of the explanatory variables xij and the coefficients βl ̸=j ,
and B is a function of the explanatory variables xij . If we now consider the convex
function −f(β, λ) = −ℓ(β) + λ

∑
j

|βj |, we get accordingly:

If βj > 0:

−∂ℓ(β)
∂βj

+ λ = 0⇔ β̂j = −A + λ

−B
= A− λ

B

If βj < 0:

−∂ℓ(β)
∂βj

− λ = 0⇔ β̂j = −A− λ

−B
= A + λ

B

As we can see, for the concave function with βj > 0 we get the same result as
for the convex function with βj < 0, and respectively for the other option. This
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however still lead us to the same soft threshold function because it also depends
both on the way the λ penalty is used (+λ or −λ), and on the minimization or
maximization of the convex or concave function, respectively.
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p-values and Estimates

Table C.1: Estimates for the NRD Dataset.

Drug ID Bolasso Estimates Simple Lasso Estimates
Estimates CI p-value Estimates CI p-value

N02AA59 0.8974 (0.8694, 0.9308) 0 0.8982 (0.8675, 0.9294) 0
J01CA08 0.8531 (0.7856, 0.9123) 0 0.8556 (0.7905, 0.9186) 0
R06AE07 0.3611 (0.3231, 0.4019) 0 0.3591 (0.3183, 0.4) 0
G03CA03 0.7834 (0.7168, 0.8531) 0 0.787 (0.7149, 0.8583) 0
N07BA03 0.4187 (0.3559, 0.4788) 4.1e − 10 0.4214 (0.359, 0.4853) 4.051e − 10
C01DA02 0.515 (0.4334, 0.5752) 0 0.5169 (0.4419, 0.5896) 0
D07AC13 0.7264 (0.6126, 0.8155) 0.01007 0.7288 (0.6348, 0.8294) 0.01007
S01GX02 0.552 (0.4593, 0.627) 2.887e − 15 0.5527 (0.469, 0.6391) 2.887e − 15
C10AA01 0.3565 (0.2052, 0.3819) 0.002219 0.3555 (0.2694, 0.4393) 0.002219
R06AX27 0.7366 (0.616, 0.8385) 0.01143 0.7421 (0.6297, 0.8594) 0.01146
B01AC06 0.2423 (0.1058, 0.2646) 0.01892 0.2439 (0.1636, 0.3233) 0.01904
R01AD05 0.6082 (0.487, 0.6945) 0 0.6135 (0.5116, 0.7195) 3.523e − 09
C10AA05 1.19 (0.8738, 1.279) 0.0001212 1.191 (0.9839, 1.407) 0.0001159
R05CB01 0.7583 (0.5483, 0.8414) 1.687e − 05 0.7577 (0.6113, 0.905) 3.943e − 05
R06AX26 0.6558 (0.4879, 0.7637) 1.048e − 10 0.6522 (0.521, 0.7906) 2.029e − 10
J01FA09 0.5746 (0.4218, 0.7007) 0.01491 0.5828 (0.4489, 0.727) 0.01235
S01EE01 0.5217 (0.3341, 0.6396) 3.354e − 05 0.5193 (0.3751, 0.6665) 4.814e − 05
J01EE01 0.4138 (0.2463, 0.5301) 0.01586 0.4191 (0.2743, 0.565) 0.01426
G04BE03 1.106 (0.6968, 1.237) 0.00871 1.106 (0.8462, 1.387) 0.004698
S03CA04 X X X 0.863 (0.7292, 0.9972) 1.11e − 16

This table contains the bolasso estimates (left), that were considered significant from the cova-
riance test, as well as the significant estimates from the simple lasso (right). CI stands for the
confidence intervals of the estimates. The estimates of this table are the log risk ratios of the βj

coefficients from the likelihood. The red X on the last line is a missing coefficient for the bolasso
that was considered as significant for the simple lasso.

Table C.2: Estimates for the RD Dataset.

Drug ID Bolasso Estimates Simple Lasso Estimates
Estimates CI p-value Estimates CI p-value

B01AC06 0.09755 (0.06088, 0.1339) 3.04e − 06 0.1121 (0.07548, 0.146) 3.04e − 06
C10AA01 0.06577 (0.02741, 0.1037) 0.0128 0.08213 (0.04003, 0.1229) 0.0128

Table for the significant coefficients from the bolasso (left), and simple lasso (right), after the
implementation of the covariance test. The estimates of this table are the log risk ratios of the
βj coefficients from the likelihood.
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Table C.3: Risk Ratio Estimates for the NRD Dataset.

Drug ID Bolasso Estimates Frequencies
Risk Ratio CI p-value

N02AA59 2.453 (2.386, 2.537) 0 546.65
J01CA08 2.347 (2.194, 2.49) 0 230.21
R06AE07 1.435 (1.381, 1.495) 0 214.95
G03CA03 2.189 (2.048, 2.347) 0 137.98
N07BA03 1.52 (1.427, 1.614) 4.1e-10 87.28
C01DA02 1.674 (1.543, 1.777) 0 113.85
D07AC13 2.068 (1.845, 2.26) 0.01007 48.92
S01GX02 1.737 (1.583, 1.872) 2.887e-15 46.40
C10AA01 1.428 (1.228, 1.465) 0.002219 689.44
R06AX27 2.089 (1.851, 2.313) 0.01143 34.13
B01AC06 1.274 (1.112, 1.303) 0.01892 809.36
R01AD05 1.837 (1.627, 2.003) 0 45.08
C10AA05 3.288 (2.396, 3.593) 0.0001212 262.42
R05CB01 2.135 (1.73, 2.32) 1.687e-05 172.88
R06AX26 1.927 (1.629, 2.146) 1.048e-10 21.18
J01FA09 1.776 (1.525, 2.015) 0.01491 52.99
S01EE01 1.685 (1.397, 1.896) 3.354e-05 21.76
J01EE01 1.513 (1.279, 1.699) 0.01586 49.92
G04BE03 3.024 (2.007, 3.445) 0.00871 70.50

Transformed risk ratio estimates from the C.1 table, for
the bolasso estimates. The estimates of this table are
the risk ratios of the βj coefficients from the likelihood.
The frequencies column is the initial frequencies per 1000
people in the period of five years (2008-2012).

Table C.4: Part of Non-significant
Risk Ratios for the NRD Dataset.

Drug ID Bolasso Estimates
Risk Ratio CI p-value

S02BA07 2.134 (1.591, 2.898) 0.4134
D10AD01 2.118 (1.585, 2.779) 0.1886
J01MA02 2.003 (1.828, 2.201) 0.2338
N02CC01 1.993 (1.785, 2.222) 0.1211
A03FA01 1.904 (1.726, 2.107) 0.4445
N03AF01 1.883 (1.386, 2.535) 0.3367
M01AC06 1.774 (1.255, 2.597) 0.1392
A10BB12 1.732 (1.241, 2.408) 0.5251
D07BC01 1.662 (1.356, 2.009) 0.09434
C09DA03 1.61 (1.121, 2.302) 0.06482

Ten risk ratios from coefficients of
the bolasso, that were considered as
non-significant from the covariance
test. The estimates of this table are
the risk ratios of the βj coefficients
from the likelihood.

Table C.5: Replicated Estimates for the NRD Dataset.

Drug ID Bolasso Estimates Simple Lasso Estimates
Estimates CI p-value Estimates CI p-value

N02AA59 0.9008 (0.8698, 0.9312) 0 0.8982 (0.8675, 0.9294) 0
J01CA08 0.85 (0.7865, 0.9126) 0 0.8556 (0.7905, 0.9186) 0
R06AE07 0.3629 (0.3233, 0.4015) 0 0.3591 (0.3183, 0.4) 0
G03CA03 0.7842 (0.714, 0.8583) 0 0.787 (0.7149, 0.8583) 0
N07BA03 0.4176 (0.3525, 0.4786) 4.094e − 10 0.4214 (0.359, 0.4853) 4.051e − 10
C01DA02 0.506 (0.4347, 0.5757) 0 0.5169 (0.4419, 0.5896) 0
D07AC13 0.7111 (0.6132, 0.8116) 0.01007 0.7288 (0.6348, 0.8294) 0.01007
S01GX02 0.545 (0.4607, 0.625) 2.887e − 15 0.5527 (0.469, 0.6391) 2.887e − 15
C10AA01 0.291 (0.2028, 0.3795) 0.002219 0.3555 (0.2694, 0.4393) 0.002219
R06AX27 0.7294 (0.6168, 0.8398) 0.01146 0.7421 (0.6297, 0.8594) 0.01146
B01AC06 0.1856 (0.1083, 0.2653) 0.01902 0.2439 (0.1636, 0.3233) 0.01904
R01AD05 0.5902 (0.4871, 0.6968) 0 0.6135 (0.5116, 0.7195) 3.523e − 09
C10AA05 1.083 (0.8817, 1.286) 0.0001216 1.191 (0.9839, 1.407) 0.0001159
R05CB01 0.6904 (0.5447, 0.8396) 1.541e − 05 0.7577 (0.6113, 0.905) 3.943e − 05
R06AX26 0.6258 (0.4911, 0.7618) 1.048e − 10 0.6522 (0.521, 0.7906) 2.029e − 10
J01FA09 0.5613 (0.4242, 0.7019) 0.01527 0.5828 (0.4489, 0.727) 0.01235
S01EE01 0.483 (0.329, 0.6416) 3.354e − 05 0.5193 (0.3751, 0.6665) 4.814e − 05
J01EE01 0.3919 (0.2468, 0.5306) 0.01582 0.4191 (0.2743, 0.565) 0.01426
G04BE03 0.9755 (0.7074, 1.242) 0.008043 1.106 (0.8462, 1.387) 0.004698
S03CA04 X X X 0.863 (0.7292, 0.9972) 1.11e − 16

The significant estimates from the replicated bolasso (left), after the implementation of the cova-
riance test. The right panel is the same as for the C.1 table. The estimates of this table are the
log risk ratios of the βj coefficients from the likelihood.
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Q-Q Plots

Figure D.1: Quantile-Quantile plots for the covariance statistic Tk against the quantiles of exp(1)
distribution, for some of the bolasso coefficients of the NRD dataset. The top row belongs to coefficients
with p-value< 0.05, while the bottom row belongs to coefficients with p-value> 0.05.
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Figure D.2: Quantile-Quantile plots for the covariance statistic Tk against the quantiles of exp(1)
distribution, for some of the bolasso coefficients of the RD dataset. The top row belongs to coefficients
with p-value< 0.05, while the bottom row belongs to coefficients with p-value> 0.05. Note that we had
only two significant coefficients on that case.

Figure D.3: Quantile-Quantile plots for the covariance statistic Tk against the quantiles of exp(1)
distribution, for some of the simple lasso coefficients of the NRD dataset. The top row belongs to
coefficients with p-value< 0.05, while the bottom row belongs to coefficients with p-value> 0.05.
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Figure D.4: Quantile-Quantile plots for the covariance statistic Tk against the quantiles of exp(1)
distribution, for some of the simple lasso coefficients of the RD dataset. The top row belongs to
coefficients with p-value< 0.05, while the bottom row belongs to coefficients with p-value> 0.05. Note
that we had only two significant coefficients on that case.


