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Abstract

This article is concerned with the state estimation problem for linear systems with linear state equality constraints. We re-
examine constrained Kalman filter variations and propose an alternative derivation of the optimal constrained Kalman filter
for time variant systems. This results in an oblique state projection that gives the smallest error covariance. A simple example
illustrates the performance of the different Kalman filters.

1 Introduction

The inclusion of the constraint information should result
in an improved estimate and a smaller error-covariance
matrix (Marzetta, 1993). One way to include the addi-
tional information is to reduce the system model, and
use the reduced state and the conventional KF (Si-
mon, 2010). However, this approach may be difficult to
implement, and may hinder insights into the original
unconstrained problem (Stoica and Ng, 1998).
For a conventional time-invariant linear stochastic
model with additive white process noise and linear
equality constraints the process noise must have a sin-
gular covariance matrix in order to be consistent with
the linear constraints on the state (Ko and Bitmead,
2007). This realization leads to a modification of the
initial estimation error covariance and the process noise
covariance. Thereafter, the conventional KF can be
used. This approach is called the system projection ap-
proach (spKF) (Simon, 2010) 2 .
Another way to include equality constraints into the
state estimate was presented by Simon and Chia (2002).
They use the unconstrained KF and project the results
onto the constraints subspace. This approach is called

1 This work was supported by Statoil ASA, and in part
by Centre for Autonomous Marine Operations and Systems
(CoE AMOS, RCN project no. 223254)
2 In the original paper by Ko and Bitmead (2007) it is called
constrained Kalman filter. We, however, will call it system
projection Kalman filter as in Simon (2010) to avoid con-
fusion with the equality constrained Kalman filter presented
later.

estimate projection KF (epKF) (Simon, 2010).
A generalization of the epKF was presented by Teixeira
et al. (2009), where they used, in contrast to Simon and
Chia (2002), the projected state and error covariance
estimates in the recursion. They called this equality
constrained KF (ecKF).
It was proven that the state error covariance of these
projection approaches is smaller than that of the uncon-
strained estimate (Simon and Chia, 2002; Ko and Bit-
mead, 2007). Teixeira et al. (2009) compared all three
constrained KF numerically. All equality constrained
methods produced similar results in their examples
concerning their performance measures. However, the
epKF produces less accurate and informative forecasts.
The main reason that the epKF is outperformed by the
two others is that the projected state and covariance
matrix are not fed back into the recursion.
The contribution of this article is to show that the
Cramér-Rao lower bound for the whole state history of
a constrained systems can be calculated based on an
oblique projection. In fact, the smallest error covari-
ance can be calculated recursively in the same way as
proposed by Teixeira et al. (2009) also for time-variant
systems showing that the ecKF is optimal considering
the whole state history. This results in an alternative
derivation of the ecKF.

2 Four Kalman filter variants

Consider the discrete time-variant system given by

xk+1 = Akxk + Bkuk + wk, (1a)
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yk = Ckxk + vk, (1b)

where k is the time index, and xk ∈ R
n and yk ∈ R

p rep-
resent the state and measurement vectors, respectively.
The state xk is known to be constrained such that

Dkxk+1 = 0. (2)

The vectors wk ∈ R
n and vk ∈ R

p are mutually indepen-
dent white processes with the covariances Qe

k
∈ IRn×n

and Rk ∈ IRp×p. Furthermore, it is assumed that the ini-
tial state x0 has a known pdf p(x0).
The matrix Dk ∈ IRc×n (with c < n) is assumed to have
full row rank. Moreover, it is assumed without loss of
generality that the rows of Dk are unit vectors. The con-
straint (2) implies that xk+1 = Akxk+Bkuk+wk ∈ N (Dk )
(Ko and Bitmead, 2007). It is assumed that the noise wk

is uncorrelated with the input or state and

(Akxk + Bkuk, wk ) ∈ N (Dk ). (3)

Hence, the model is suitable for modeling either physical
or design constraints (Ko and Bitmead, 2005). In the
latter the system cannot maintain the state constraints
without corrective action of the input as briefly discussed
in the numerical example in section 4.
In sections 2.1 – 2.3 we re-examine constrained Kalman
filter variations from the literature, for time-invariant
systems as in the sources. In Section 2.4 we provide a
new derivation of the ecKF, also valid for time-variant
systems.

2.1 The unconstrained Kalman filter

For completeness, the equations of the unconstrained
Kalman predictor (KF), where V

u,p,c,e
k

= (CkΣ
u,p,c,e
k

CT
k
+

R)−1, are 3

Ku
k = Σu

kCT
k Vu

k ,

x̂u
k+1 = Ak (I −Ku

kCk )x̂u
k + Bkuk +AkKu

kyk

Σu
k+1 = AkΣu

kAT
k −AkΣu

kCT
k Vu

kCkΣu
kAT

k +Qu
k,

(4)

where Qu
k

is the unconstrained process noise covariance
matrix.

2.2 The estimate projection Kalman filter

The epKF approach to the constrained filtering problem
of linear time-invariant systems is to project the uncon-
strained estimate x̂u

k
of the KF onto the constraint sub-

space (Simon and Chia, 2002). The constrained estimate

3 The superscripts denote the unconstrained (u), estimate
projection (p), system projection (c) and equality con-
strained Kalman filter (e).

can be found by solving

min
x̃
p
k

(x̃p
k
− x̂u

k )W(x̃p
k
− x̂u

k )T subject to Dx̃
p
k
= 0,

where x̃
p
k

and W are the constrained estimate and a
positive-definite matrix, respectively. The solution to
this problem is

x̃
p
k
= PW

N (D)x̂
u
k,

where PW
N (D) ≡ I−W−1DT (DW−1DT )−1D, which in gen-

eral is an oblique projection. The smallest projected er-
ror covariance Σ

p
k
= PW

k
Σu
k

(PW
k

)T = PW
k

Σu
k

is obtained

if we set W = (Σu
k

)−1 where Σu
k

is the error covariance
matrix of the unconstrained KF (Simon and Chia, 2002;
Simon, 2010).
The complete epKF is therefore (4) combined with the
projections

x̃
p
k+1
= PW

N (D)x̂
u
k,

Σ
p
k+1
= PW

N (D)Σ
u
k .

(5)

Remark 1 The epKF does neither use the projected er-
ror covariance nor the projected state in the recursion.

2.3 The system projection Kalman filter

The spKF approach was also derived for linear time-
invariant systems and is based on the observation that
the system can be projected onto the null space of D. Let
us denote the orthogonal basis of D by U, which satisfies

DU = 0, UTU = I. (6)

The projected system is (Ko and Bitmead, 2007):

xk+1 = PN (D) (Axk + Buk + wk ),

where PN (D) ≡ UUT is the orthogonal projector onto the
null space of D.
The authors considered the case of a system with physi-
cal constraints where each component of the state equa-
tion is constrained in N (D). An important consequence
is that the system matrix A satisfies the following prop-
erties

Axk = PAxk = APxk,

where P is any projection matrix onto the null space of
D. Moreover, by taking a conditional expectation for any
given measurement Yk = [yT0 , y

T
1 , . . . , y

T
k

]T the following
can be obtained (Ko and Bitmead, 2007)

PA E {xk |Yk } = AP E {xk |Yk } .

It follows that

APΣ = PAΣ = AΣ, (7a)

APΣPTAT = PAΣATPT = AΣAT , (7b)
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where Σ is the error covariance matrix.
The spKF is given by (Ko and Bitmead, 2007)

Kc
k =Σc

kCTVc
k, (8a)

x̃ck+1 =PN (D)A(I −Kc
kC)x̃ck + PN (D)Buk + PN (D)AKc

kyk

=A(I −Kc
kC)x̃ck + Buk +AKc

kyk (8b)

Σc
k+1 =PN (D)AΣc

kAPN (D) + PN (D)Q
uPN (D)

− PN (D)AΣc
kCTVc

kCΣc
kATPN (D)

=AΣc
kAT +Qc −AΣc

kCTVc
kCΣc

kAT , (8c)

where Qc = PN (D)Q
uPN (D), which is singular. We see

that it is only necessary to modify the initial estimation
error covariance and the process noise covariance. If Qc

is the true process noise covariance it follows that this
method gives the optimal state estimate (Simon, 2010).

Remark 2 It was shown in Ko and Bitmead (2007) that
the error covariance matrix of the spKF is less than or
equal to that obtained by the epKF. The main reason for
this is that in the epKF the projected covariance is not
used in the recursion. Consequently, only information
about the constraints in the most recent step of the epKF
is used.

Remark 3 In Chen (2010) a missing necessary as-
sumption of Theorem 2 of Ko and Bitmead (2007) was
pointed out. It was shown that the orthogonal projection
PN (D) ≡ UUT has to be replaced by the oblique projection

P(Qu )−1

N (D) ≡ I − QuDT (DQuDT )−1D derived by Simon and

Chia (2002).

2.4 The equality constrained Kalman Filter

In this section we provide a derivation of the optimal
constrained Kalman filter for linear time-systems based
on the constrained Cramér-Rao bound of the whole state
history (Andersson et al., 2017). The proofs of the fol-
lowing Lemmas can be found in Andersson et al. (2017);
Stoica and Ng (1998) and Khatri (1966).

Lemma 4 Considering the complete state history Xk =
[xT0 , x

T
1 , . . . , x

T
k

]T and the inverse of the error covariance

matrix Σ̃−1 = [diag(Σ0,Σ1, . . . ,Σk )]−1 of the state his-

tory with Ũ = [diag(U0,U1, . . . ,Uk )] as defined in (6).

If ŨT Σ̃−1Ũ is non-singular, the constrained Cramér-Rao
Bound is

E
{
(X − X̂)(X − X̂)T

}
≥ Ũ(ŨT Σ̃−1Ũ)−1ŨT . (9)

Remark 5 Lemma 4 was derived in Stoica and Ng
(1998) for the estimation of non-random parameters. In
Andersson et al. (2017) it was extended to estimation
of random parameters. The right-hand side of (9) is
the greatest lower bound, which was obtained by solving
a maximization problem. Interestingly, Lemma 4 also
holds for nonlinear systems subject to linear equality
constraints.

Lemma 6 If Σ̃ is positive definite (9) becomes

Ũ(ŨT Σ̃−1Ũ)−1ŨT = PΣ̃−1

N (D̃)
Σ̃, (10)

where PΣ̃−1

N (D̃)
= I − Σ̃D̃T (D̃Σ̃D̃T )−1D̃.

The projection of the unconstrained error covariance in
(10) is exactly the same as in the estimate projection ap-
proach using W = (Σu

k
)−1, but considers the whole state

history.
In a recursion the information matrix Σ−1 can be com-
puted by (Simon, 2010)

Σ−1
k+1 |k = Q−1

k −Q−1
k Ak

(
Fk +Kk + Σ−1

k |k

)−1
AT

k Q−1
k , (11)

where Kk = CT
k

R−1
k

Ck and Fk = AT
k

Q−1
k

Ak .

Theorem 7 The error covariance of the ecKF can be
computed by

Σ̄e
k+1 = AkΣe

kAT
k −AkΣe

kCT
k Ve

kCkΣe
kAT +Qu

k, (12a)

Σe
k+1 = P

(Σ̄e
k+1)−1

N (Dk) Σ̄e
k+1. (12b)

PROOF. Since the constraints D̃ = diag(D0,D1, . . . ,Dk )
are decoupled in time, the matrix Ũ ∈ IRkn×k(n−c) is
block-diagonal with Uk on the diagonal. The inverse of
the unconstrained error covariance matrix of the whole
state history (9) is given by (Andersson et al., 2017)

Σ̃−1
k+1|k

=



J1,1
k+1|k

J1,2
k+1|k

J2,1
k+1|k

J2,2
k+1|k



=



K0+F0+Σ−1
0|0
−AT

0 (Qu
0 )−1

−(Qu
0 )−1A0

. . .
. . .

. . . Kk+Fk+(Qu
k−1

)−1 −AT
k

(Qu
k

)−1

−(Qu
k

)−1Ak (Qu
k

)−1



.

(13)
We proceed by showing equivalence between (12) and
the right-hand side of (9) for x1, which by the structure

of Σ̃−1
k+1 |k

and Ũ implies that it also hold for xk .

If we compute (9) for x1 using the matrix inversion
lemma we obtain

Σe
1=U1

[
L1−G0,1

{
U0

[
UT

0 J1,1
1|0

U0

]−1
UT

0

}
GT

0,1

]−1
UT

1 (14)

where L1 = UT
1 (Qu

1 )−1U1, G0,1 = UT
1 (Qu

0 )−1A0 and J1,1
1 |0
=

K0 + F0 +Σ−1
0 |0

. Using the binomial inverse theorem this

expression can be transformed to

Σe
1=U1

[
L0−G0,1

{( [
Σe

0

]−1
+F0

)−1}
GT

0,1

]−1
UT

1 , (15)
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where Σe
0 = U0

(
UT

0 [Σ−1
0 |0
+ K0]U0

)−1
UT

0 . This is exactly

the expression obtained using in (12) the left-hand side of
(10) with the information matrix (11) as projection. �

The recursion (12) is the same as obtained for the ecKF
by Teixeira et al. (2009). The proof establishes a di-
rect connection between the error covariance matrix to
the Fisher Information matrix and Cramér-Rao lower
bound. It shows that, in fact, the ecKF is optimal also
considering the whole state trajectory for time-variant
systems. Moreover, the necessity to guarantee numeri-
cally positive definiteness of (12) is avoided in the deriva-
tion.

Remark 8 For a time-invariant system only the process
noise covariance matrix is projected. Consequently, the
projection can be performed a priori.

Remark 9 In a similar fashion as in the proof of The-
orem 7 it can be shown that (9) can be computed re-
cursively for nonlinear systems subject to linear equality
constraints.

The ecKF is given by

Ke
k =Σe

kCT
k Ve

k,

x̄e
k+1 =Ak (I −Ke

kCk )x̃e
k + Bkuk +AkKe

kyk,

Σ̄e
k+1 =AkΣe

kAT
k +Qu

k −AkΣe
kCT

k Ve
kCkΣe

kAT
k ,

x̃e
k+1 =P

(Σ̄e
k+1

)−1

N (Dk ) x̄e
k+1,

Σe
k+1 =P

(Σ̄e
k+1

)−1

N (Dk ) Σ̄e
k+1,

(16)

where the last two steps are the projection steps due
to the time-variant constraints. In the next section, we
show that this results in a smaller covariance.

3 Comparison of constrained Kalman filters

None of the constrained Kalman filters violate the con-
straints for a time-invariant system (Simon, 2010; Ko
and Bitmead, 2007; Teixeira et al., 2009). In fact, for
time-invariant systems the spKF with the correction by
Chen (2010) and the ecKF are identical. The reduction
of the constrained error covariance in comparison to the
unconstrained one can be established easily as well as
the error covariance sequence of the different constrained
KF.

Lemma 10 The constrained error covariance Σe is less
than or equal to the unconstrained one.

PROOF. Σ and PΣ−1

N (Dk)Σ are symmetric and PΣ−1

N (Dk)

and I −PΣ−1

N (Dk) are idempotent. Therefore, the following

holds (Gorman and Hero, 1990):

PΣ−1

N (Dk)Σ = Σ − (I − PΣ−1

N (Dk))Σ

= Σ − (I − PΣ−1

N (Dk))(I − PΣ−1

N (Dk))Σ

= Σ − (I − PΣ−1

N (Dk))Σ(I − PΣ−1

N (Dk)) ≤ Σ �

Theorem 11 For the constrained time-invariant sys-
tem the error covariance sequence is

Σu
k ≥ Σ

p
k
≥ Σc

k ≥ Σe
k .

PROOF. The first inequality was shown in Simon and
Chia (2002) and by Lemma 10. The second inequality
was shown in Ko and Bitmead (2007) and is true with
the correction proposed by Chen (2010). The third in-
equality was also shown by Chen (2010) since his cor-
rection results in the ecKF for time-invariant systems.
Moreover, the third inequality can also be derived fol-
lowing the argumentation in Simon and Chia (2002).

4 Numerical example

A simple numerical example is presented to illustrate
the performance differences of the four estimators. The
following benchmark model (Simon and Chia, 2002; Ko
and Bitmead, 2007; Simon, 2010) is used but slightly
changed here to make it time-variant. It is a navigation
problem with the following linear system and measure-
ment equation

xk+1 =

(
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

)
xk +

( 0
0

T sin θk
T cos θk

)
uk + wk,

yk =
(

1 0 0 0
0 1 0 0

)
xk + vk,

where T is the discretization step size and uk is the ac-
celeration input. The states are the positions and veloci-
ties in north and east direction, respectively. The uncon-
strained covariances of process and measurement noise
are

Qu = diag(4, 4, 2, 1), R = diag(900, 900)

and the initial estimation error covariance is

P+0 = diag(900, 900, 4, 4).

It is known that the vehicle is on a road with a head-
ing angle θk which can be described by the constraint
equation

Dkxk+1 =
[
1 + tan2 θk

]−1/2 (
0 0 1 − tan θk

)
xk+1 = 0

At time point k = n the road angle θk changes. The pro-
cess has to fulfill (3) at time point k = n − 1 and k = n.
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Fig. 1. Estimation error variance for the position of the system. At k = 15 the system constraint changes. The time-invariant
spKF and epKF do not change their projections while the ecKF adapts to the new constraint.

This means that the process must be capable to reach the
new null space N (Dk ) from the old null space N (Dk−1)
in one time step.
Assuming that the system matrix A does not change, the
input matrix Bk or the input uk have to change at least
twice. First, to transfer the process to the new null space
and, secondly, to keep the process in the new null space.
Considering that the process can only control the veloc-
ity directly, constraints on the position as, for example,
used in Simon (2010) for a time-invariant system, will
violate (3) at the moment of change for a time-variant
system.
The ecKF does not violate the constraints at any time
and adjusts the error covariance matrix according to the
information change (Fig. 1). At first the change decreases
the uncertainty in all state estimates.
The time-invariant constrained KF obviously violates
the constraints at all times k ≥ n since the estimate
is projected onto the wrong subspace. As important as
the constraint violation and larger state estimation er-
ror is the wrong estimate of the error covariance which
is not adjusted and indicates an incorrect confidence in
the state estimate (Fig. 1).

5 Conclusion

In this paper linear state estimation with linear equal-
ity constraints is revisited. A simple derivation based on
stochastic arguments of the covariance of the constrained
Kalman filter for time-variant systems was presented. It
was shown that the optimal oblique projection of the
whole state history can be computed recursively result-
ing in the ecKF. A numerical example discussed briefly
the implications that a change of constraints may have
and compares the different Kalman filters.
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