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Abstract

With the advent of cheap smart sensors installed on board marine vehicles

and the increasing computational power of small embedded processors there is

tremendous potential for the implementation of new strategies to control ma-

rine systems on the basis of input-output plant data. The emerging field of

smart sensors affords a unique opportunity to have access to on-line measure-

ment of dynamical systems’ variables seamlessly, at a low price. By applying a

data-driven control algorithm to a marine vehicle, the paper introduces a new

perspective on how data can be used in the control loop in marine systems.

Classical control methodologies start by developing a model of the plant to

be controlled, after which a number of control design techniques can be used.

Recent advances in so-called model-free data-driven control methodologies, in

particular unfalsified control, hold promise to merge the identification and con-

trol phases. Unfalsified control techniques build on the construction of a bank

of controllers for a given plant, in which there exists at least one controller that

meets the desired performance specification and a falsification unit. The latter

is implemented using a cost function that directly evaluates the performance of
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the controllers (in and out of the feedback loop) using measured input and out-

put data. At each sampling time, the performance of the controllers is assessed

and the controllers that do not meet the pre-defined performance specification

criteria will be falsified and removed from the bank of the controllers, after which

an active controller will be selected among the unfalsified ones. In this paper, by

presenting the results of the application of unfalsified control to the problem of

Dynamic Positioning (DP) of marine vessels subjected to environmental forces,

we aim to attract the attention of researchers in the field of marine control to

the new perspective of using data to directly control marine system.

1. Introduction

Seamless access to the states of a marine vehicle, thanks to the availability

of cheap smart sensors installed on board, affords unique opportunities to de-

vise new strategies for the control of dynamical systems on the basis of plant

input-output data only. In general, controlling a dynamical system using classi-5

cal control theory starts with the derivation of the general model equations that

govern its behaviour from first physics principles, followed by model parameter

identification based on collected input/outputa data. Many different control

techniques have been developed to try and merge the identification and control

phases in a single step. To this end, adaptive control theory has been able to de-10

liver promising performance in the control of uncertain systems by adapting the

plant model/controller according to the collected input/output data. Among

different adaptation algorithms, adaptive switching control (ASC), as an alter-

native to conventional continuous adaptation, has proven to have a faster rate

of convergence [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In ASC, the adaptation algo-15

rithm using the measured input/output data selects a controller from a family

of candidate controllers, and inserts it into the feedback loop. The measured

input/output data are used to evaluate the performance of the controller in

the loop, and if necessary replace the active controller with another candidate

controller from the bank of controllers. While most ASC methodologies use a20
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dynamic model of the plant in their adaptation and controller selection phases,

the control technique exploited in this paper, entitled unfalsified control, relies

solely on the measured input/output data for evaluating the performance of the

controllers, even for the candidate controllers that have not been activated in

the feedback loop. See [9, 10, 11, 12] and the references therein for a fast paced25

introduction to this control technique and a number of applications.

The main contribution of the current paper is the application of a data-

driven model-free unfalsified control methodology to the dynamic positioning

and control of marine systems subject to environmental forces, such as wind

and waves. The efficacy and the potential of this technique for real-life ap-30

plications are assessed in a simulation environment. From a theoretical and

practical standpoint, the work is ongoing, and important issues remain as work-

in-progress. However, we believe that with the increase in computational power

and the seamless access to the states of a marine vehicle, there is tremendous

potential for the development of new effective strategies to control marine sys-35

tems. Accordingly, in this article we aim to direct the attention of researchers

in the field of marine control to the potential benefits of model-free data driven

control. We show how, with some minor modifications, unfalsified control the-

ory, as a true performance based design approach, can be applied in the field of

marine control systems.40

The structure of the paper is as follows: Section 2 presents a brief introduc-

tion to dynamic position; Section 3 gives an introduction to unfalsified control

theory; Section 4 describes the simulation model that is used for numerical sim-

ulation of the proposed DP controller; Section 5 presents the simulation results;

finally, the conclusions and suggestions for future research are summarized in45

Section 6.

2. Brief Introduction to Dynamic Positioning

The first generation of dynamic positioning (DP) systems came into existence

in the 1960’s [12]. Cuss I and Eureka were among the first ships equipped
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with DP capabilities. A DP system maintains a vessel’s position and heading50

automatically by using its own propellers and thrusters. The control algorithm

in a DP system computes appropriate thruster commands for a vessel based

on measurements of the ship’s position so as to maintain a desired position, or

move along a predefined route at sea. A DP system utilizes the ship propulsion

and manoeuvring system to provide the necessary actuation to achieve its goal.55

The very first attempt to dynamically control the position of a surface ship was

through manual control, with the operator observing the information provided

by the vessel’s radar and sonar systems. Even so, it significantly increased the

performance of the manually controlled Cuss I. Manual control of Cuss I took

place before satellite navigation systems were widely available, at a time when60

positioning relied on taut wire mechanisms. The latter are conceptually simple

mechanically based positioning-reference systems used to dynamically position

a vessel by measuring its position relative to a weight clump on the seafloor in

water depths up to 500 metres. Their main limiting factors are: the wire sag

effect (or catenary effect) due to the weight of the wire, sea currents, and the65

ability to maintain a constant tension in the wires.

Eureka, the first “true” DP capable surface ship, utilized singe-input single-

output (SISO) analogue controllers to control each of the actuated motions.

While DP systems were originally developed as a response to the need for deeper

offshore drilling applications, nowadays DP systems are used in a vast range of70

vessel types, and in different marine operations, such as hydrographic surveying,

marine construction, wreck investigation, underwater recovery, site surveying,

underwater cable and pipe laying, and inspection and maintenance.

Early DP systems were implemented using PID controllers. To remove the

wave-induced motion components from the feedback loop, notch filters in cas-75

cade with low pass filters were used with these controllers. Later, the applica-

tion of advanced control techniques based on optimal control and Kalman filter

theory to DP systems led to performance improvement; see [13, 14]. In the

1990s, more advanced nonlinear control techniques such as feedback lineariza-

tion and backstepping [15] were proposed. Further contributions to observer80
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design followed in [16] and [17], where passivity in combination with adaptive

wave filtering were used to reduce the complexity of the implemented control

system. Further developments in recent years have led to the use of robust con-

trol [18, 19, 20] adaptive control [21, 22, 23, 24, 25] and hybrid control [26] in

the design of DP systems. The literature on ship DP is vast and defies a simple85

summary. See for example [27, 28, 29] and the references therein for extensive

summaries of the subject and its historical evolution.

To the best of our knowledge, virtually all DP controllers reported in the

literature are based on model based design techniques, though there are excep-

tions, such as [30]. However, in recent years data-driven control has emerged90

as an alternative to model based design techniques. This approach makes no

assumptions on the structure of the controlled plant, thus avoiding model-

mismatch between a design model and the real plant that could lead to perfor-

mance deterioration, and in the worst case, instability. Unfalsified control theory

is a data-driven, model-free, adaptive control methodology that allows for con-95

troller adaptation by using physical data (input and output measurements of

the system) via a process of elimination, much like the candidate elimination

algorithm in [31]. Unfalsified control theory may be applied when the plant is

either unknown or is only partially known. It consists of two main components:

a rich bank of candidate controllers and a falsification technique which uses in-100

formation from measurements to eliminate the candidate controllers which do

not meet the design performance criteria; see [9], [32], [33], [34], [35], [36], [37],

[38] and [39] for details on unfalsified control theory.

Following a brief introduction to the foundations of a model-free data-driven

control methodology, we propose a dynamic positioning controller that identi-105

fies control laws that are consistent with the designer’s predefined performance

objective and past experimental data. We will further study how we can assess

the potential performance of a controller without it being inserted into the feed-

back loop, based only on plant input-output experimental data. This approach

provides a unique opportunity to devise a new strategy for controlling a ship110

in DP operation, solely on the basis of plant input-output data. The proposed
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Figure 1: A simple feedback system.

adaptive structure of the controller enables the DP system to operate under dif-

ferent environmental conditions by automatically falsifying controllers that do

not meet the performance criteria, and eventually selecting the controller that

provides the required performance, removing the human element from all but115

the top level of the hierarchical DP control structure. Numerical simulations

show how a destabilizing controller is detected and replaced by one that is able

to meet the designed performance specification.

3. Data Driven Control methodology

In the search for an all-year-round DP system, it is necessary for the system120

to adapt to changes in working conditions. As the system changes, it might

be hard to find a plant model that truly reflects all important aspects of the

system; this is in particular true for DP systems in extreme sea conditions

where a model-free data-driven unfalsified control can be applied for higher

performance.125

In this section we briefly review the main aspects of unfalsified control the-

ory. The reader is referred to [39] for further details. The unfalsified control

methodology is a direct adaptive switching concept where only measured data

are used to assess the performance of a controllers in and out of the feedback

loop; for the controllers out of the feedback loop, this is achieved by simultane-130

ously evaluating the performance of all candidate controllers in real time as if

they were inserted in the loop thanks to the use of the virtual reference concept.

Consider the simple SISO closed loop system of Fig. 1. The system consists

of a linear controller C, and a linear plant P with an input reference r(t), control
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signal u(t), and process output y(t). Assume that without having access to a

model of the plant we wish to assign a performance index to the controller that

captures how well it performs using the known and measurable signals u, y and

r. Consider the 3-tuples of signals (r(·), u(·), y(·)) as a relation in R × U × Y.

Further define the plant and controller as operators such that if P : U → Y and

C : E → U then

P = {(u, y) | y = Pu} (1)

C = {(e, u) | u = Ce}, (2)

where e = r − y. Furthermore, let J(r, u, y) be a cost-function that evaluates

the performance of the controller in the loop; see [39] for a description how such

a cost function can be found. Then, a performance specification Pspec can be

defined in terms of the set

Pspec = {(r, u, y) | J(r, u, y) ≤ ρ}, (3)

where ρ is some constant threshold. Consider the simple system presented in

Fig. 1 and assume that we have measured the signals (r(·), u(·), y(·)) over the

time interval [0 τ ] for a given time τ . Using the time truncation operator

uτ (t) = f(u(·), τ) =

u(t) t ≤ τ

0 t > τ

(4)

we say the measured data set is consistent (or the consistency of data is pre-

served) when the controller in the loop produces the output

uτ = C(rτ − yτ ), (5)

which in turn produces the system response

yτ = P uτ . (6)

One can simply assess the performance of the controller C by evaluating the

value of the cost function J(rτ , uτ , yτ ).
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At this stage, we would like to take the discussion one step further and ask

the question whether it is possible to use the measured data (uτ , yτ ) to assess

the performance of some other controller Ci (Ci 6= C). Before answering this

question, let us emphasize that the unfalsified control methodology includes a

rich set of controllers. The bank of controllers admits a set of candidate con-

trollers, K, available for the closed loop system. It is necessary that at least one

controller in the bank should be able to meet the desired performance specifi-

cation in (3).

The consistency of measured data set (rτ , uτ , yτ ) is preserved only when the

data set is measured during the time interval in which the controller C ∈ K

was the active controller in the feedback loop. Any controller in K other than

the currently active (in the feed-back loop) controller would have produced a

different input-output pair for the same reference signal rτ ; that is the data set

(rτ , uτ , yτ ) would not be consistent. In what follows, in order to build a con-

sistent data set from a measured input-output pair (uτ , yτ ), for each controller

Ci ∈ K, a fictitious reference signal r̃i is introduced. Let the data (uτ , yτ ) be the

input and output measurements of plant P in Fig. 1 over the time interval [0 τ ]

(when the controller C was the active controller in the feedback loop). Then,

we define the fictitious reference signal r̃i associated with the controller Ci as

an imaginary reference signal that would produce the same data (uτ , yτ ) if Ci

were the active controller in the feedback loop during the data measurement.

If the controller Ci is stably causally left invertible (SCLI), then the fictitious

reference is realized as

r̃i = C−1i uτ + yτ . (7)

Consider now an imaginary scenario where Ci is in the feedback loop and we135

apply the r̃i in (7) as the reference signal; it is easy to verify that this imaginary

scenario will lead to the same data (uτ , yτ ) over the time interval [0 τ ], and

hence, the data set (r̃i, uτ , yτ ) is consistent with controller Ci and plant P . In

order to assess the performance of the controller Ci using the data set (uτ , yτ )

that was collected when controller C was in the loop, it is sufficient to evaluate140
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the value of J(r̃i, uτ , yτ ).

The restrictive SCLI condition for the candidate controllers is lifted in [40]

using matrix fraction description method. This extension allows wider class of

candidate controllers be used in the unfalsified control framework.

Using the aforementioned circle of ideas, we can answer the question above145

and conclude that under certain conditions, it is possible to use the measured

data (uτ , yτ ) (which was measured when the controller C was in the loop) to as-

sess the performance of some other controller Ci (Ci 6= C). For LTI controllers,

causal left invertibility means these controllers should be both minimum phase

and biproper.150

The fictitious reference signal is generated for all controllers at each time

step such that a consistent data set Zi = (r̃i, uτ , yτ ) exists for all candidate

controllers. Zi is used to calculate the associated cost J(Zi) with all controllers

on-line.

At each sampling time, the measured input and output signals are used155

to evaluate the performance of the active controller in the loop as well as all

the unfalsified controllers in the bank. As soon as any controller violates the

design performance requirement, it is falsified and removed from the bank. If

the active controller is falsified, then it will be switched off the feedback loop

and one of the unfalsified controllers (for example, the one with the lowest cost160

value) is inserted in the feedback loop. Using this procedure, the bank of the

candidate unfalsified controllers diminished over time and eventually a controller

that meets the performance criteria is selected.

Switching among controllers happens at discrete time instances when the

cost of the currently active controller exceeds a predefined limit, known as the

falsification limit ρ. Whenever a controller cost exceeds this limit, the controller

is said to be falsified by the previous data and no longer meets the predefined

performance specification. When a controller in the bank of controllers K is

falsified, it is removed from set of candidate controllers in K. If an active

controller in the feedback loop is falsified, it will be switched off and the new

controller Ĉ, at switching time t? is found to be one that minimizes the cost
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among the as of yet unfalsified controllers, that is,

Ĉ = arg min
Ci∈Kunf

J(Zi) (8)

where Kunf is the set of unfalsified controllers at time t? and (Zi) is the cost

associated with controller Ci at time t? using r̃i.165

In what follows, the falsification algorithm is presented for a fixed time step

of ∆t and a counting variable k.

Initialization:

1. Initialize the finite sets Kunf = K = {C1, C2, ..., Cn}, k = 0, and τ = k∆t.

2. For each controller Ci ∈ Kunf , initialize J(Zi) = 0.170

3. Select the initial active controller from Kunf by means of any algorithm

(can be random).

Real-Time:

1. Let k ← k + 1, τ ← k∆t.

2. Measure u(t) and y(t) and calculate r̃i for each controller in Kunf and175

form Zi = (r̃i, uτ , yτ ).

3. Calculate J(Zi) for each controller Ci ∈ Kunf .

4. For each controller Ci ∈ Kunf , if J(Zi) > ρ, then falsify the controller Ci

and remove it from the Kunf .

5. For active controller Ĉ evaluate J(Z). If J(Z) > ρ, then falsify the active

controller and select the new active controller from the controllers in Kunf
such that

Ĉ = arg min
Ci∈Kunf

J(Zi).

Otherwise, keep the active controller unchanged.180

6. Wait for ∆t, and return to step 1.

To summarize, the unfalsified control methodology provides a systematic

way to falsify the candidate controllers by computing an intersection of certain

sets. A noteworthy feature in this technique is that a controller does not need

to be in the loop to be falsified and candidate controllers can even be falsified185
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using data acquired while other controllers were in the loop or even open-loop

plant data.

4. Simulation model

In this section, we will present the simulation model for a surface ship in DP

operation, Cybership II [20, 41], subjected to changing environmental condi-190

tions. The bank of controllers consists of PID controllers with different possible

gains for proportional, derivative, and integral terms. At this point, we would

like to emphasize that the model presented here is only used for simulation of

the presented unfalsified control technique and the plant model is not used in

any way for building the bank of controllers. The data driven adaptive control195

should be able to find appropriate gains (self-tuning) for the current sea state

and change the gains to higher performance controller when the environmental

load changes. All simulations are carried out using MatLab and Simulink. The

basis for the simulation model is adopted from the self-tuning PID controller

presented in [33] and available through [42]. However, the methodology pre-200

sented in [42] is further updated for the purpose of tuning the DP system with

varying environmental conditions.

4.1. Ship model

To assess the performance of unfalsified control techniques in station keeping

maneuvers we use a three Degree of Freedom (DOF) model for a representative

vessel in surge, sway and yaw [43]. These motions are all assumed to be actuated

by the ship’s thrusters. The ship’s model adopted in the simulations has the

realization

ξ̇ = Aωξ + Ew1 (9)

ηw = Cωξ (10)

η̇lf = R(ψ)ν (11)

Mν̇ +Dν = τ (12)

η = ηw + ηlf (13)

11



Eqns. (9) and (10) capture the 1st order wave induced motions of the ship, i.e.

wave frequency motions. Vector ηw ∈ R3 represents the wave frequency position

vector of the ship, where

Aω =

 03x3 I3x3

−Ω3x3 −Λ3x3

 , E =

03x1

I3x1


Cω =

[
03x3 I3x3

]
.

with

Ω3x3 = diag(ω01, ω02, ω03)

Λ3x3 = diag(2ζ1ω01, 2ζ2ω02, 2ζ3ω03)

as the dominating wave frequencies and damping ratios in the earth-fixed frame.

Eqns. (11) and (12) capture the low-frequency motions of the ship and Eqn.205

(13) gives the total motion of the ship that consists of both wave frequency

and low frequency motions. In the above realization, η ∈ R3 is defined as the

extended position vector η = [N,E,ψ] where N and E are north-east position

in a earth-fixed coordinate frame and ψ, known as heading of the ship, is the

angle in the horizontal plane between north-axis and the x-axis of the ship.210

ν ∈ R3 is the ship velocity vector in a body-fixed coordinate frame and R(ψ)

is the orthogonal yaw rotation matrix that relates the earth- and body-fixed

frames. In Eqn. (12) M ∈ R3×3 and D ∈ R3×3 are the generalized mass and

linear damping matrices respectively and τ ∈ R3 is the combined forces and

moment acting on the model. The extended force vector τ is decomposed into215

the control vector and forces from wind excitation, i.e. τ = τcontrol + τwind.

Both Coriolis and centripetal accelerations are omitted from the model as the

velocities are assumed to be small in DP operations.

4.2. Control and adaptive algorithm

For simplicity, in the current paper three SISO PID controllers are used

to control surge, sway, and yaw. Each PID controller is both biproper and
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minimum phase. The controllers admit the realization in the frequency domain

e(s) = r(s)− y(s),

u(s) = Kpe(s) +
Ki

s
e(s)− sKd

εs+ 1
y(s), (14)

where s is the Laplace operator, Kp, Ki, and Kd are proportional, integral,

and derivative gains, respectively, and ε > 0 is the low pass filter parameter.

Reordering the proportional, integral, and derivative terms, according to their

input signals, we rearrange the linear PID controller as

Ci(s) = [Kp +
Ki

s
,
sKd

εs+ 1
] =:

[
C1,i(s), C2,i(s)

]
, (15)

so that

u(s) = C1,i(s)e(s)− C2,i(s)y(s). (16)

Furthermore, each controller Ci is parameterized by the gains Kp, Ki and Kd.220

The total candidate controller set is defined as K : Kp×Ki×Kd, where Kp ∈ Kp,

Ki ∈ Ki, and Kd ∈ Kd.

With the PID structure introduced in (15) and (16), the fictitious reference

signal for the i-th controller is given by

r̃i(s) = C1,i(s)
−1(u(s) + C2,i(s)y(s)) + y(s). (17)

Each candidate controller is associated with a cost value that is continuously

compared to the falsification limit ρ. The cost function is selected as

J(Zi) = −ρ+

∫ τ

0

e−α(t−τ)µ(Zi)dt, (18)

where ρ is a constant used to compensate non zero initial conditions, α is a

forgetting factor, and the performance index µ(Zi) is a function of time defined

as

µ(Zi) = |w1 ∗ (r̃i − yτ )|2 + |w2 ∗ uτ |2 − σ2 − |r̃i|2. (19)

In the above equation ∗ denotes the convolution operator, σ is a constant used

to compensate for the root mean square effects of disturbances, and w1 and w2

13



are shaping filters selected as1

w1 =
s+ 20

2s+ 6
, and w2 =

0.01

1.2(s3 + 3s2 + 3s+ 1)
. (20)

A controller Ci meets the performance specification (and hence, is unfalsi-

fied) if

J(Zi) ≤ ρ. (21)

The selection of the cost function in the presented data driven adaptive

control structure is of extreme importance. The cost function should not only

capture the performance of the controllers, but also rapidly show the effect of225

any destabilizing controllers. The reader is referred to [39] for detailed properties

of the cost function.

Switching among the controllers takes place whenever the current active

controller gets falsified. Whenever switching happens, a new controller is chosen

from the set of controllers that are as of yet not falsified (i.e. unfalsified),230

Ĉ ∈ Kunf . Note that unfalsified controllers in the bank of controllers can be

falsified at any time without the need for replacing the active controller in the

closed-loop. If a controller that is not the active controller is no longer consistent

with the performance specification, then the set of unfalsified controllers will be

updated, and the number of remaining controllers in the bank will be reduced.235

In fact, as all controllers are evaluated on-line using the fictitious reference

signal, this is expected to happen more often than controller switching.

4.3. Environmental loads

Environmental forces and torques included in the model are due to wind

and waves. In our simulations, we considered is composed of contact mean and

a slowly varying components. Furthermore, the direction of the wind is slowly

varying. The contribution of the wind to the total force and torque acting on

1See [39] for how to select shaping filters.
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Figure 2: Data-Driven Dynamic positioning Simulator for Cybership II

the ship is computed as

τwind =
1

2
ρa


−CXcos(γw)AFw

CY sin(γw)ALw

CNsin(2γw)ALwLoa

V 2
w (22)

where ρa is the air density, Loa is length overall, and AFw and ALw are the

frontal and lateral projected areas, respectively. The angle of attack γw = is240

given by γw = ψ − βw + π, where ψ is the heading of the ship and βw is the

wind direction. Finally, CX , CY , and CN are the simplified longitudinal force

coefficient, lateral force coefficient, and yaw moment coefficient, respectively

[44].

5. Numerical Simulations245

Fig. 2 shows the structure of the proposed data-driven model-free DP con-

troller. The results presented here are from a station keeping simulation and an

initial condition set of η = [0.1, 0, 0]. The controller sets were chosen to demon-

strate how a destabilizing behavior is detected in both surge and sway and how

performance is improved in heading control. The set of candidate controllers250

used in the simulation are

• Surge

Kp = {10, 100}, Ki = {5, 20}, Kd = {15, 20}. (23)
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• Sway

Kp = {10, 150}, Ki = {5, 10}, Kd = {5, 10}. (24)

• Yaw

Kp = {5, 10, 20}, Ki = {1, 8}, Kd = {5, 10}. (25)

The performance specification from Eqn. (19) is used for all three motions with

the same filters, defined in Eqn. (20). The constant ρ is chosen to be 0.1, 0.5

and 0.2 for surge, sway and yaw, respectively.

During the simulation, the vessel is excited by waves and wind. The waves255

are applied to the vessel from the beginning of the simulation while mean wind

and a slowly varying component of wind are applied after 50 and 70 seconds,

respectively; see Fig. 4. As can be seen in Fig. 5, before the wind is introduced,

all three falsification algorithms have changed the controllers at least once to

what is considered a stabilizing DP controller.260

Fig. 3 shows the vessel’s response and the control effort in surge, sway, and

yaw. Fig. 4 shows how the environmental forces evolve with time and finally,

Fig. 5 shows how and when all three gains of each individual controller change.

The simulation presented in Fig. 3, 4 and 5 illustrate how the proposed

data-driven model-free adaptive algorithm is capable of detecting a destabilizing265

controller during a DP operation without prior knowledge of the plant model

and adapting the controllers to provide good performance as the environmental

condition changes.

In our opinion, it is important that research in the field marine control sys-

tems will take advantage of and exploit increasingly easier access to onboard to270

onboard measurements, thanks to both smart sensor technology and increasing

computation powered installed onboard marine systems. We hope that this brief

incursion in the area of data-driven control, supported by numerical simulations,

will be beneficial in highlighting the benefits of exploring new perspectives on

how data and computational power can improve the performance of marine275

control systems.
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Figure 3: Vessel response in surge, sway and yaw in DP-operation

0 50 100 150 200 250 300
-6

-5

-4

-3

-2

-1

0

1

2

Figure 4: External environmental forces acting on the ship
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6. Conclusions and suggestions for future work

We presented the application of a data-driven model-free adaptive control

techniques to the problem of dynamic positioning. The control methodol-

ogy adopted builds upon unfalsified control techniques. Numerical simulations280

showed that the proposed control structure holds promise for the implementa-

tion of Dynamic Positioning Systems for marine vessels subjected to changing

environmental forces. The result presented in this article is far from comprehen-

sive. However, we expect that this work will contribute to bring the attention

of researchers in the field of marine control to the potential benefits of using285

data to directly control marine systems without a need to develop a full scale

dynamic model. The study aimed to present a new perspective and share some

preliminary thoughts on how easy access to measured data in marine systems

could change the controller design procedures.

Future reserach will include the extension of the work to multivariate PID con-290

trol structure and experiments in model scale tests to further document the

potential benefits of model-free data based control.
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