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ABSTRACT 

Bearing in mind recent experimental and theoretical results 
showing that the viscous damping can qualitatively affect the 
resonant sloshing in clean tanks, the Narimanov-Moiseev 
multimodal sloshing theory for an upright circular container is 
revised to analytically construct and analyze the steady-state 
surface waves when the container performs a small-amplitude 
sway/roll/pitch/surge prescribed periodic motion with the 
forcing frequency close to the lowest natural sloshing 
frequency. The revised theory is applicable for the radius-
scaled mean liquid depths    h >1  providing the secondary 
resonance phenomena do not occur at the primary resonance 
zone. A focus is on how the damping influences the phase lag as 
well as on the amplitude response curves versus the forcing 
type, which can in the lowest-order approximation be treated 
as if the container translatory moves along an elliptic orbit in 
the horizontal plane. The analytical results are compared with 
existing experiments for longitudinal and circular orbital tank 
excitations. Whereas a good agreement is found for the 
longitudinal excitation, a discrepancy is detected for the 
circular orbital forcing. The discrepancy may, most probably, 
be explained by the wave breaking and the steady rotational 
flow (Ludwig Prandtl, 1949) phenomena. Occurrence of the 
Prandtl flow makes inapplicable the existing analytical inviscid 
sloshing theories, even if they are modified to account for the 
damping. New ideas on how to construct an appropriate 
analytical viscous sloshing theory are required.  

INTRODUCTION 
Resonant nonlinear sloshing and associated hydrodynamic 

loads occurring due to three-dimensional excitations of a clean 
(no submerged structures) cylindrical tanks is of concern for 
ship and offshore storage applications. Typically, the liquid 
sloshing dynamics is either analytically studied to classify the 

steady-state waves (the frequency domain problem) or 
numerically simulated by adopting a CFD solver to describe 
wave transients with different initial scenarios (the time domain 
problem). Whereas the modern solvers most often adopt the 
viscous hydrodynamic model with either no-slip or Navier’s or 
frictionless boundary conditions on the wetted tank surface, the 
analytical studies suggest an inviscid incompressible liquid 
with irrorational flows. This means that the existing analytical 
approaches neglect viscous and vortex phenomena in clean 
tanks. Even being so, they provide a rather accurate (chaps. 8-9 
of [1]) steady-state prediction, at least, for the finite liquid 
depth and resonant excitations of the lowest natural sloshing 
frequency. A satisfactory agreement with experiments was 
established for wave elevations, resulting hydrodynamic force 
and moment when tank is exposed to the prescribed harmonic 
forcing in a symmetry plane (along the parallel tank walls or 
diagonally for the square base basin or in the meridional plane 
for the circular base tank). A qualitative discrepancy was only 
found out for the phase lag (relative to the input harmonic 
signal) which is, according to the inviscid theories, constant 
(discrete) values but measurements in [2] do not confirm that 
fact. The discrepancy was clarified by the viscous damping.  

The recent experimental studies of the steady-state resonant 
sloshing in a square base tank [3] showed that the viscous 
damping, even when being relatively small, may cause 
nonlinear surface wave phenomena, which are qualitatively not 
clarified within the framework of the inviscid hydrodynamic 
model. In particular, the viscous damping prevents the standing 
resonant wave to exist for the oblique horizontal tank forcing 
and it breaks symmetry of the swirling (rotary) wave for the 
diagonal forcing so that the maximum wave elevations at the 
two perpendicular walls become non-equal values. Equipping 
the corresponding Narimanov-Moiseev multimodal equations 
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(chap. 9 in [1]) with the damping terms, [4] analytically 
described the surface wave phenomena.  
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Figure 1. Experimental [3] (symbols) and theoretical [4] (solid 
lines) normalized maximum wave elevations at two wave probes 
for the longitudinal harmonic tank forcing of a square base tank. 
The nondimensional forcing amplitude is equal to 0.00727 and 
the mean nondimensional liquid depth is    h = 0.6  (scaled by the 
tank breadth). The damping rate is taken from the experimental 
measurements [3]. The empty circles correspond to the 
experimental planar standing waves. The filled circles imply 
swirling (both angular wave propagation directions are 
possible). 

    Figs. 1-3 present comparisons of experimental measurements 
[3] and theoretical predictions [4] for three harmonic tank 
excitation types. The most interesting case  (the diagonal 
forcing) is presented in Fig. 3. Here, the branches    V1

′S
0

 and 

   V2
′′S
0

 correspond to the steady-state swirling propagating in the 
two opposite angular directions. These two branches coincide 
within the framework of the inviscid potential flow theories 

(the amplitudes are independent of the wave propagation 
directions) but [4] mathematically proves that the damping 
yields the two different branches.  
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Figure 2. The same as in Fig. 1, but for the oblique harmonic 
tank excitation with the angle  300  relative to  Ox -axis. The half-
circles (solid) denote the experimentally-detected swirling waves 
of the corresponding angular direction.  

     In the spite of a theoretical success in describing the 
aforementioned nonlinear wave phenomena by accounting for 
the viscous damping, [4] states a series of open problems. 
Shortly, these can be formulated as: What are the actual 
damping rates, which account for a cumulative effect of diverse 
energy dissipation phenomena (boundary layer, bulk viscosity, 
wave breaking, etc.)? What does happen for more complicated 
three-dimensional forcing types? Can a vortex flow component, 
if exists, significantly affect the resonant sloshing?  
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Figure 3. The same as in Fig. 1 but for the diagonal tank 
forcing. Diagonal standing waves and swirling are possible. The 
experimental diagonal steady-state waves are marked by the 
empty circles. In contrast to the undamped case, the steady-
state swirling is characterised by an asymmetric amplitude 
response so that the maximum wave elevations at the two 
perpendicular tank walls depend on the angular wave-
prapagation directions.  

   Indeed, computations in Figs. 1-3 used the experimentally 
established damping rates which were 2.56 times larger than 
their theoretical estimate within the framework of the 
boundary-layer theory (chap. 6 in [1]). The authors referred to 
the dynamic contact line effect, which was earlier discussed by 
Keulegan, to explain this relatively large discrepancy for the 
experimental tank in [3]. Observations in [2] reported, in 
addition, a strong wave breaking with free-surface 
fragmentations as well as the Prandtl steady rotational (vortex) 
flow [5,6], which occurred during the swirling wave mode. The 

latter two phenomena can increase the total energy dissipation 
making it dependent on the resonant wave type and the wave 
amplitude. Suggesting such an (unknown) dependence helps to 
explain why agreement between the multimodal theory results 
[4] and the experimental measurements [3] may significantly be 
improved by the speculatively-varying damping rates along the 
response curves. 
    A special research interest is associated with the resonant 
sloshing due to the three-dimensional forcing. Pioneering 
theoretical studies on that are reported in [7], where a 
Narimanov-Moiseev multimodal theory is derived and applied 
to study the resonant steady-state waves caused by an orbital 
elliptic motion of an upright annular cylindrical container. 
Being interested in what happens in bioreactors and, of course, 
bearing in mind the Prandtl phenomenon [5], the dedicated 
model tests were made in [8,9] for the circular base tank. These 
works reported on the strong wave breaking as well as 
measured and classified the Prandtl steady vortical flow.  
     The present paper continues [4,7] to gain an insight into the 
joint effect of the viscous damping and the three-dimensional 
forcing on the steady-state sloshing in an upright circular 
cylindical container. The damping terms are introduced in the 
Narimanov-Moiseev multimodal equations [7] to analytically 
describe the damped steady-state waves for an arbitrary 
prescribed periodic sway/surge/pitch/roll tank excitation. The 
damping rates are not limited to the boundary layer effect [10] 
but allowed to imply a cumulative dissipation in the mechanical 
system. We show that the periodic sway/surge/pitch/roll forcing 
reduces, in the lowest-order approximation, to a horizontal 
orbital (elliptic) tank excitation. As a consequence, the 
resonance sloshing types and the response curves may be 
classified versus the ellipse semi-axes ratio (that characterises 
the focing type) and the damping rates (dissipation).   
    Existing experiments were done for longitudinal [2] and 
circular orbital [8,9] tank excitations. These experimental 
measurements are used to validate and analyse the joint 
damping-and-the-forcing-type effects. The damping weakly 
affects the amplitude response for the longitudinal forcing [2] 
but comparing our analytical theory and the experimental data 
on the phase lag shows that the damping rate must increase 
with the wave amplitude to fit the experimental data. An 
explanation is the wave-breaking related damping. On the other 
hand, this damping kind is not able to clarify the discrepancy 
for the orbital forcing [8,9]. The latter means that the forcing 
type matters. Most probably, the orbital forcing requires to 
account for the Prandtl phenomenon [5], whose mathematical 
description needs another hydrodynamic model.  

NARIMANOV-MOISEEV MODAL THEORY 
Sloshing in an upright circular tank of the radius   r0

 is 
considered  in the tank-fixed cylindrical coordinate system. The 
tank performs a small-amplitude prescribed periodic sway/ 
surge/roll/pitch motion, which is furthermore described by the 

  r0
-scaled generalised coordinates      ηi(t) =O(ε)≪ 1,i = 1,2, 4,5  

shown in Fig. 4. The problem is studied in the nondimensional 
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statement;   r0
 is the characteristic dimension and   1/ σ  ( σ  is 

the forcing frequency) is the characteristic time.  
z
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Figure 4. The liquid domain ( )Q t  is confined by the free 

surface    Σ(t)  (   Σ0
(z = 0)  is the mean liquid plane) and the 

wetted tank surface ( )S t . Sloshing is considered in the tank-
fixed coordinate system.  

The multimodal method [7] employs the natural sloshing 
modes   ϕMi

 arising from the spectral boundary problem  

 

    

∇2ϕ
Mi

= 0  in Q
0
;   
∂ϕ

Mi

∂n
= 0  on S

0
, 

∂ϕ
Mi

∂n
= κ

Mi
ϕ

Mi
 on Σ

0
;   ϕ

Mi
dS = 0

Σ0
∫ ,

 (1) 

where   κMi
 are the eigenvalues,   Σ0

 is the mean (unperturbed) 

free surface, 
0Q  is the mean liquid domain, and 

0S  is the mean 
wetted tank surface. For the circular cylindrical tank, the 
problem (1) has the analytical solution in the cylindrical 
coordinate system 

    

ϕ
Mi

(r,θ,z) = α
Mi

J
M
(k

Mi
r)Z

Mi
(z) sin

cos

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥(Mθ);  M ≥ 0,i >1

Z
Mi

(z) =
cosh(k

Mi
(z +h))

cosh(k
Mi

h)
;   κ

Mi
= k

Mi
tanh(k

Mi
h),

 (2) 

where    
′J
M
(k

Mi
) = 0 ,  h  is the nondimensional mean liquid 

depth, and   αMi
 are the normalizing coefficients [7]. The 

dimensional natural sloshing frequencies are computed as   

 
    
σ

Mi
= κ

Mi
g ;    g = g / r

0
;     σ

Mi
= σ

Mi
/ σ,   (3) 

where  g  is the gravity acceleration.  
    The natural sloshing modes constitute a complete set of 
harmonic functions in the mean liquid domain so that the 
velocity potential can be presented in the form  

     

Φ(r,θ,z,t) = !η
1
(t)r cosθ+ !η

2
(t)r sin θ

             + F(r,z) − !η
4
(t)sin θ+ !η

5
(t)cosθ⎡

⎣⎢
⎤
⎦⎥

    + α
Mi

J
M
(k
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z) P
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(t)sin(mθ)⎡

⎣⎢
⎤
⎦⎥
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∑ ,

 (4) 

where ( )
Mi
P t  and ( )

mi
R t  are the generalized velocities but the 

free-surface elevations are posed as  

    

z = ζ(r,θ,t)

     = α
Mi

J
M
(k

Mi
r) p

Mi
(t)cos(Mθ)+ r

mi
(t)sin(mθ)( )

Mi
∑ ,  (5) 

where ( )
Mi
p t  and ( )

mi
r t  are the sloshing-related generalized 

coordinates;   F(r,z)  comes from the analytically-found (chap. 
5 in [1]) Stokes-Joukowski potentials,  

 

   

F(r,z) = rz −
2P

n

k
1n

J
1
(k

1n
r)

sinh(k
1n
(z + 1

2 h))
cosh(1

2 k1n
h)

,
n=1

∞

∑

P
n

= r 2J
1
(k

1n
r)dr

0

1

∫ .

  (6) 

Assuming the forcing frequency  σ  is close to the lowest 
natural sloshing frequency    σ1

= σ
11

,    σ1
≈ 1  in (3), and there 

are no secondary resonances, the Narimanov-Moiseev 
multimodal theory [7] implies that the resonant sloshing 
response is of the order    O(ε1/3) and the dominant contribution 
is associated with the lowest natural sloshing modes (the 
generalized coordinates 

11p  and 
11r ). Due to the trigonometric 

formulas by the angular coordinate, the Narimanov-Moiseev 
theory requires [7] 

 
     

p
11
∼ r

11
=O(ε1/3);   p

0 j
∼ p

2j
∼ r

2j
=O(ε2/3),

r
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∼ p
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∼ p
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=O(ε),  j ≥1;

 (7) 

the remaining generalized coordinates are of the order    o(ε) . By 
neglecting the    o(ε) - terms, the paper [7] derived the following 

modal system with respect to 
Mi
p  and 

mir : 
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which, within to the    o(ε)  quantities, describes the resonant 
nonlinear sloshing. The hydrodynamic coefficients at the 
nonlinear quantities were found explicitly and computed as 
functions of h  [7].  
    A novelty is the framed damping terms, which were absent in 
the original work [7]. We assume that the damping rates   ξMi

 
express a cumulative effect of different dissipative factors 
whose lower bound is associated with the linear boundary layer 
and bulk damping effects. This means that    ξMi
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low , where, 

according to [10],  
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2(k

Mi
r)dr + M 2 J

M
2 (k

Mi
r)

r0

1

∫0

1

∫ dr,  

 
    
µ

Mi
(2) = M 2 tanh(k

Mi
h)

k
Mi

+
h

cosh2(k
Mi

h)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
,   

 
    
µ

Mi
(3) = k

Mi
2 tanh(k

Mi
h)

k
Mi

−
h

cosh2(k
Mi

h)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
,   

 
     
δ = Ga−1/4 = ν /(g1/2R

0
3/2)≪ 1   (18) 

(Ga is the Galilei number,  δ  implies the nondimensional 
boundary layer thickness at the wetted tank surface).  
     Inserting the linear damping terms into the modal equations 
(8)-(16), which was derived from the inviscid potential flow 
hydrodynamic model, implicitly assumes that the actual 
damping coefficients are small values on the   ε

1/3 -scale.  

STEADY-STATE ASYMPTOTIC SOLUTION 
The third-order generalized coordinates, which are governed 

by (13)-(16), are `driven’ so that, as long as we know a steady-
state (periodic) solution of (8)-(12), in which only the first two 
equations have inhomogeneous right-hand sides, one can 
analytically get the third-order contribution by (13)-(16). 
Substituting the time-periodic Fourier representation of    ηi(t)  
into the first two equations of (8), (9) and gathering the main 
harmonics lead to 

    
ε

x
cost + ε

x
sin t + higher harmonics⎡

⎣⎢
⎤
⎦⎥  and 

    
ε

y
cost + ε

y
sin t + higher harmonics⎡

⎣⎢
⎤
⎦⎥  in the right-hand sides 

of (8) and (9), respectively. The same lowest-order Fourier 
harmonics appear for the horizontal elliptical tank motions. The 
elliptic trajectory reduces to its canonic form and, therefore, 
without loss of generality, focusing on the counterclockwise 
forcing direction and superposing the major semi-axis of the 
ellipse with  Ox  lead to  

 
    
ε

x
> 0,   0≤ ε

y
= γε

x
≤ ε

x
,   ε

x
= ε

y
= 0.   (19) 

     Henceforth, we restrict ourselves to (19) and treat the 
sway/roll/pitch/surge tank excitation types by the single 
nondimensional parameter    0≤ γ ≤1  (the ellipse semi-axes 
ratio), where the limit cases    γ = 0  and 1 imply longitudinal 
and rotary (circular) tank excitations, respectively.   
     To find an asymptotic periodic solution of (8)-(16), we pose 
the lowest-order quantities as  

 
    

p
11

= a cos(σt)+a sin(σt)+O(ε),

r
11

= b cos(σt)+b sin(σt)+O(ε),
 (20) 
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where   a,a ,b , and  b  are the nondimensional amplitude 
parameters of the order    O(ε1/3) . Inserting (20) into (10)-(12) 
makes it possible to find explicit asymptotic expressions for the 

   O(ε2/3) -generalized coordinates 
0 2, ,
k k
p p  and 

2kr . Obviously, 
the damping terms in the corresponding modal equations can be 
neglected as giving a small contribution for the non-resonant 
behavior by 

0 2, ,
k k
p p  and 

2kr . Substituting (20), 
0 2, ,
k k
p p 2kr  

into (8), (9) and gathering the first Fourier harmonics lead to 
the secular system of nonlinear algebraic equations  

    

a Λ+m
1

a2 +a 2 +b 2( )+m
3
b2⎡

⎣⎢
⎤
⎦⎥
+a(m

2
bb + ξ) = ε

x
,

a Λ+m
1

a2 +a 2 +b2( )+m
3
b 2⎡

⎣⎢
⎤
⎦⎥
+a(m

2
bb − ξ) = 0,

b Λ+m
1

a2 +b2 +b 2( )+m
3
a 2⎡

⎣⎢
⎤
⎦⎥
+b(m

2
aa + ξ) = ε

y
,

b Λ+m
1

b2 +a 2 +b 2( )+m
3
a2⎡

⎣⎢
⎤
⎦⎥
+b (m

2
aa− ξ) = 0,

 (21) 

where    Λ = σ
11
2 −1 ,     m2

= m
1
−m

3
,  ξ = 2ξ

11
, and 

im  are the 
analytically-known functions of the hydrodynamic coefficients. 
Having known the lowest-order amplitude parameters from 
(21) makes it possible to study the stability of the steady-state 
solution by using the multi-timing scheme and the linear 
Lyapunov method [4].  

Following [7] shows that the constructed asymptotic solution 
predicts, by neglecting the higher-order terms, either standing 
or swirling wave modes. Indeed, according to (20), the steady-
state sloshing is approximated by  

 

    

ζ(r,θ,t) = J
1
(k

11
r) (a cosθ+b sin θ)cost⎡
⎣⎢

            + (a cosθ+b sin θ)sin t ⎤⎦⎥+o(ε1/3),
  (22) 

which always determines swirling unless   ab = ab  when a 
standing wave is expected.  
     For the undamped case with    ξ = 0 , [7] mathematically 
proved that    a = b = 0  as    0≤ γ <1 . This is not true for the 
damped case, physically, due to the non-constant phase lags. 
We introduce the integral amplitudes and the phase lags  

     a = Acosψ,  a = Asinψ,  b = B cosϕ,  b = B sinϕ   (23) 
and re-write (21) in the form  

 

    

A Λ+m
1
A2 + (m

3
−F)B2⎡

⎣⎢
⎤
⎦⎥ = εx cosψ,

B Λ+m
1
B2 + (m

3
−F)A2⎡

⎣⎢
⎤
⎦⎥ = εy sinϕ,

A DB2 + ξ⎡
⎣⎢

⎤
⎦⎥ = εx sinψ,   B DA2− ξ⎡

⎣⎢
⎤
⎦⎥ = εy cosϕ,

  (24) 

where  
     F =−m

2
cos2 α =−m

2
/(1+C 2),  α = ϕ−ψ   

     D =−m
2
sinαcosα =−m

2
C /(1+C 2),  C = tanα.   (25)  

LONGITUDINAL FORCING 
For the longitudinal forcing along the  Ox -axis (   γ = 0 ), the 
undamped sloshing implies either planar standing waves 

    A > 0,  B = 0,  sinψ = 0  (the phase lag  ϕ  has no meaning) or 
swirling with     AB > 0,  sin ψ=cos ϕ=0, (C = ±∞) . The 
swirling wave mode corresponds to the two physically identical 
angularly propagating waves, where the counterclockwise 
direction corresponds to   C = +∞  and the clockwise one to 
  C =−∞ .  
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Figure 5. Theoretical (solid and dashed lines) and experimental 
(symbols) nondimensional maximum wave elevations at the 
wave probe   (0.75R

0
,0)  for the longitudinal forcing amplitudes 

    ηa1
= 0.0033  and  0.0066 ; computations adopted    ξ = 0.0128  

in (24). The empty symbols imply the experimental planar 
standing waves but the filled symbols correspond to the swirling 
wave mode. 

     When the viscous damping matters (   ξ > 0 ), (24) 
determines, physically, the same solution types. For the planar 
wave, the non-zero amplitude  A  and phase lag  ψ  come from  

 

    

A2 Λ+m
1
A2( )2

+ ξ2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ε

x
2,   0 < A≤ ε

x
/ ξ,

ψ = arccos A Λ+m
1
A2( )/ ε

x( ).
  (26) 

To describe swirling, one should solve the cubic equation 

   q3
C 3 +q

2
C 2 +q

1
C +q

0
= 0 , where     q3

= ξ2(m
1

+m
3
)2 > 0 , 

    q2
= 2ξ2Λ(m

3
2−m

1
2) , 

    
q

1
= ξ 4ξ2m

1
2 +Λ2m

2
2⎡

⎣⎢
⎤
⎦⎥ ,     q0

= ε
x
2m

1
2m

2
, 

whose roots, being substituted into  

 

    

A2 =
ξ(1+C 2)

(m
3
−m

1
)C

> 0,  

B2 =−
1

m
1

Λ+
m

1
+m

3
C 2

1+C 2
A2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
> 0

  (27) 

return the wave amplitudes but, continuing with  
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cosψ =
A
ε

x

Λ+m
1
A2 +

m
1

+m
3
C 2

1+C 2
B2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

sinψ =
A
ε

x

ξ+
(m

3
−m

1
)C

1+C 2
B2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (28) 

give the phase lag  ψ ; another phase lag  ϕ  is determined by  

     ϕ1
= ψ+ arctanC,   ϕ

2
= ϕ

1
± π,   (29) 

( ±  means the two physically-identical angular progressive 
waves occurring in the two opposite angular directions).  
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Figure 6. Theoretical amplitude parameters   A,B  (top) and the 

phase lag  ψ  (bottom) versus the forcing frequency   σ / σ
1
. The 

case is associated with one experimental series in [2] when the 
longitudinal forcing amplitude was equal to     η1a = 0.0066  

(   h = 1.5 ). The computations adopted the damping coefficient 

   ξ = 0.0128 .  

     Using the derived steady-state solution and formulas in 
appendix of [7], theoretical predictions of the maximum wave 
elevations at the walls can be computed and compared with the 
experimental measurements in [2] done with the relatively 
small forcing amplitude. Fig. 5 shows that the results are in a 
satisfactory agreement and the only difference from analogous 
comparison for the undamped sloshing in [7] is a new point  S , 

which determines the upper limit for the swirling wave mode. 
The theoretical value of     ξ = 2ξ

11
low  by (17)-(18) is 0.005. 

However, computations in Fig. 5 adopted    ξ = 0.0128  
  = 0.005 ⋅2.56  . Why this larger value is used will be explained 
below. Generally speaking, our numerical tests with 

   0.005≤ ξ ≤ 0.0128  showed that these values of the damping 
coefficient weakly affect the maximum wave elevations in Fig. 
5 but it significantly influences position of the point  S . 
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Figure 7. The same as in Fig. 5 but for     ηa1
= 0.023  and 

 0.045 . 

     The steady-state response curves, the lowest-order 
amplitude parameters   A,B  and the phase lag  ψ  versus the 
forcing frequency, are presented in Fig. 6 for the second 
experimental case in Fig. 5 (    η1a = 0.0066  and    ξ = 0.0128  in 
computations). The solid lines mark the stable steady-state 
solution but the dashed lines imply the hydrodynamic 
instability. The end points of the stable branches adopt 
notations from Fig. 5. A focus is on the second panel in Fig. 6, 
where we demonstrate the phase lag  ψ  versus   σ / σ

1
. As we 

mentioned above, the undamped sloshing is characterized by 
discrete values of  ψ  but this panel shows that the phase lag  ψ  
continuously changes between  0  and  π .  
     The calculations in Figs. 5-6 were done with    ξ = 0.0128 . 
The damping coefficient is much larger than the lower bound 

    ξ = 2ξ
11
low = 0.005  by (17)-(18). Because the wave amplitudes 

weakly depend on  ξ , the actual values of  ξ  should be 
estimated from the experimental data by using either the  S  
position or, even better, the phase lag  ψ  behavior. The latter 
behavior was measured and reported in [2] for the forcing 
amplitude     η1a = 0.045 . Figs. 7 and 8 compare the theoretical 
and experimental maximum wave elevations and the phase lag, 
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respectively, for this experimental case. One can see a 
satisfactory agreement with our theory in Fig. 7 for the 
maximum wave elevation where a discrepancy increases only 
nearby of  S , which should be theoretically located far away 
from the experimentally detected values of   σ / σ

1
 (experiments 

do not confirm that).  
     The experimental data for  ψ  are presented in Fig. 8, where 
the theoretical curves were also drawn being computed with 
different values of  ξ . One can see that the theoretical  ξ  should 
increase with increasing the wave amplitude response (from  V  
to  S ) to fit the measured phase lag. This increase may be 
explained by the strong wave breaking, which is reported in [2]. 
The minimum experimental value of    ξ = 0.0128  is 

extrapolated in Fig. 8 at the primary resonance    σ / σ
1

= 1 . This 
minimum value was therefore adopted in our calculations for 
the experimental tank in [2]. 
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Figure 8. Experimental values of the phase lag  ψ  (circles) for 
the stable swirling (subbranch  VS  in Figs. 6 and 7) are 
compared with their theoretical estimates for different  ξ (dashed 

lines are marked by the  ξ  values);    h = 1.5  and the horizontal 

longitudinal harmonic forcing amplitude is     η1a = 0.045 . The 
solid line demonstrates the mean-square approximation curve of 
the experimental data. The comparison shows that the damping 
coefficient must increase with increasing the wave amplitude.   

ELLIPTIC TANK EXCITATIONS 
According to [7], the undamped steady-state sloshing is 

characterized by    a = b = 0  in (21), which automatically 
implies that the phase lags hold discrete values satisfying 

   sinψ = cosϕ = 0  and    cosα = 0,  sinα = ±1 . In contrast to 
that, if    ξ > 0 , the phase lags become complicated functions of 
the input parameters to be found from (24). Following [4] 
rewrites (24) in the form   

    

A2 Λ+m
1
A2 + (m

3
−F)B2( )2

+ DB2 + ξ( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ε

x
2,

B2 Λ+m
1
B2 + (m

3
−F)A2( )2

+ DA2− ξ( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ε

y
2,

ξ A2−B2( )D +
F ξ2 + Λ+m

1
(A2 + B2( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

m
2

=−D2A2B2,

  (30) 

where  F  and  D  are functions of  C  by (25).  
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Figure 9. The amplitude response curves in the    (σ / σ

1
,A,B) -

space for three different values of  γ , which illustrate a passage 
from the longitudinal (   γ = 0 , Fig. 6) forcing to the circular 
orbital forcing (   γ = 1 , Fig. 10). The solid lines denote the 
stability but the dashed ones mark the unstable sloshing. All 
points on these branches imply the swirling wave mode. The 
branch with   T,V

1
,S

1
,W corresponds to the co-directed (with the 

elliptic forcing) swirling but   V2
S

2
 implies the counter-directed 

one.    
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    Fig. 9 shows the amplitude response curves in the 

   (σ / σ
1
,A,B)  space for three different values of  γ  when 

   h = 1.5 ,    ξ = 0.0128 , and     η1a = 0.0066 . Comparing the top 
pictures in Figs. 5 and 9 shows that passaging from the 
longitudinal (   γ = 0 ) to elliptic excitations with a relatively-
small minor semi-axis (   γ = 0.10 ) splits the   TE(V ,S)W branch 
in Fig. 5 into two non-connected branches: the first branch 

  TV
1
S

1
W  implies the co-directed (with the elliptic forcing) 

swirling but the second one,   V2
S

2
, (has a loop-like shape) 

corresponds to the counter-directed swirling. For small  γ , 

there exists the frequency range between  T  and   V1
 where 

irregular waves (chaos) are expected. This is the same as for the 
longitudinal forcing (between  T  and  V ) in Fig. 5.    
     Increasing  γ  (a passage to the rotary tank forcing) makes 

the branch   V2
S

2
 and the chaos disappearing so that the counter-

directed swirling becomes impossible starting from a certain 
value of  γ  and the stable co-directed swirling wave always 
exists in the primary resonance zone. Furthermore, when  γ  
tends to 1 (see, the bottom picture in Fig. 9 with    γ = 0.80 ), the 
two amplitude parameters become nearly equal,   A≈B .  

ROTARY TANK EXCITATION 
For the undamped sloshing [7], the rotary orbital forcing may 

cause the steady-state swirling to propagate in both angular 
directions. As we showed above, this does not happen when 

   ξ ≠ 0 . To study this case, 
   
ε = ε

x
= ε

y
, we recall that    C ≠ 0  

but the limit case    C = +∞,  A = B  is possible. The last 
equation of (30) becomes then an identity but the remaining 
equations reduce to (   F = D = 0 ) 

 
    
A2 Λ+ (m

1
+m

3
)A2( )2

+ ξ2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ε2;   A = B > 0,   (31) 

   ϕ = ψ+ π / 2 , where  ψ  comes from 

 
    
A Λ+ (m

1
+m

3
)A2⎡

⎣⎢
⎤
⎦⎥ = εcosψ;   Aξ = ε sinψ.   (32) 

     Calculations show that the parameters   m1
 and   m3

 satisfy 

the inequalities    m1
< 0,m

3
> 0  and    m1

+m
3

> 0  as    h >1  so 
that the response curves following from (31) should possess the 
hard-spring type behavior. The typical response curve is 
illustrated in Fig. 10. The frequency ratio 

   
σ / σ

1( )
*
 of the point 

  S*
 (located between  W  and   S1

) is determined by the 
inequality  

 
    
1 < σ / σ

1( )
*
≤ 1−(m

1
+m

3
) ε / ξ( )2⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−1/2

.   (33) 
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Figure 10. Typical theoretical response curves for the rotary 
orbital tank excitation. The solid lines imply the stability but the 
dashed lines mark the unstable steady-state sloshing. There is 
a hysteresis between  W  and   S1

 where two steady-state 

solutions co-exist. Position of   S1
 is fully determined by the 

damping coefficient  ξ . The calculations were made with 

    η1a = η
2a

= 0.0066 ,    h = 1.5  and    ξ = 0.0128 .    
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Figure 11. Theoretical (lines) and experimental (symbols) 
nondimensional wave magnitude    (ζmax

−ζ
min

)/ 2  for the rotary 
orbital tank forcing. The experiments [8,9] were done with a 
stepwise increase of  σ  providing a path-following along the 
upper branch in Fig. 10. The theoretical curves are marked by 
the nondimensional forcing amplitudes     η1a = η

2a
=  0.01, 0.02, 

and 0.04; the computations adopt    ξ = 0.034 . The filled 
symbols mark the experimental observations detecting both the 
strong wave breaking phenomenon and the steady liquid 
rotation (the Prandtl phenomenon [5,6]).  
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The upper limit in (33) increases with   ε / ξ  so that having 

known  ξ  makes it possible to evaluate   S1
, where a jump from 

the upper to lower branch must occur with increasing the 
forcing frequency  σ . Using a stepwise procedure by  σ , which 
provides a path-following along   R1

S
1

 in Fig. 10, [8,9] 
conducted model tests with two different tanks of the radii 72 
and 287 mm filled with the nondimensional liquid depth 1.04. 
Various forcing amplitudes and frequencies were tested. Our 
asymptotic theory requires relatively small forcing amplitude 
and  σ  should be in a neighborhood of the primary resonance 

  σ1
. Three model test runs in [8,9] were done with 

    η1a = η
2a

= 0.01 , 0.02 and 0.04, for which the constructed 
theory should, generally, be applicable.  

The formulas (17)-(18) estimate the lower bound 

    ξ ≥ ξ11
low = 0.031  for the experimental tank filled with a tap 

water. Using the experimentally established frequencies where 
a jump from the upper to lower branch occurs (associated with 
the point   S1

 in Fig. 10) and the formula (33) estimates the 
upper bound for the damping coefficient    ξ ≤ 0.034  (for the 

lower forcing amplitudes 0.01 and  0.02,     (σ / σ
1
)
*

= 1.27  and 
1.45, respectively). This means that the viscous damping in 
[8,9] was relatively small and it is basically associated with the 
boundary layer at the wetted tank surface.  

Using    ξ = 0.034  in our formulas makes it possible to 
compare our theoretical estimates with the experimental results 
[8,9]. Fig. 11 demonstrates a good agreement in the frequency 
ranges where the experimental observations did not detect the 
wave breaking. However, a significant discrepancy is detected 
for the filled symbols (the wave breaking occurs). Even though 
the wave breaking effect may in many cases be modeled by 
including a larger damping coefficient (as for the longitudinal 
forcing in [2]), since    ξ ≤ 0.034 , getting a better agreement by 
increasing  ξ  is theoretically impossible for the cases in Fig. 11. 
Dedicated numerical tests confirmed that point. Most probably, 
the discrepancy is due to the steady Prandtl liquid rotation, 
which was also observed and measured in [8,9].   

CONCLUSIONS 
Recent experimental studies showed that the viscous damping 

may qualitatively affect resonant sloshing in clean tanks, which 
are exposed to a prescribed periodic motion with the forcing 
frequency close to the lowest natural sloshing frequency. Some 
of the corresponding surface-wave phenomena [3] were 
successfully described in [4] for an obliquely forced square 
base tank. A modified Narimanov-Moiseev multimodal theory 
was used.  

Adopting analogous modifications in the modal theory for an 
upright circular tank [7] and using experimental results [2,8,9], 
we study effect of both the viscous damping and the three-
dimensional forcing type (after showing that any small-

amplitude sway/roll/pitch/surge periodic motion reduces in the 
lowest approximation to an elliptic orbital forcing) on the 
steady-state resonant sloshing.  

We show that that the damping significantly influences the 
phase lag and the cumulative damping in the mechanical 
system may depend on the steady-state wave amplitude caused 
by various free-surface phenomena. Furthermore, we prove that 
the damping, even being small, makes impossible the counter-
directed (to the forcing direction) swirling wave for the orbital 
circular tank forcing. The latter forcing was used in 
experiments [8,9]. The constructed analytical predictions are 
supported by these experiments when there is no wave breaking 
observed in [8,9]. Whereas the wave breaking effect can be 
accounted for by an increase of the damping rate for the 
longitudinal forcing [2], this is not possible for the orbital tank 
excitations. To clarify the appearing discrepancy for this 
forcing type, one should most probably account for the steady 
vortex liquid rotation (Prandtl’s phenomenon [5]) extensively 
measured and discussed in [8,9]. An analytical approach to 
handle the phenomenon is a challenge.  
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