
1

Combined Optimal Control and Combinatorial
Optimization for Searching and Tracking using an

Unmanned Aerial Vehicle
Anders Albert∗, Lars Imsland ∗

∗Department of Engineering Cybernetics
Norwegian University of Science and Technology, Trondheim, Norway

Email: {anders.albert, lars.imsland}@ntnu.no

Abstract—Combined searching and tracking of objects using
Unmanned Aerial Vehicles (UAVs) is an important task with
many applications. One way to approach this task is to formulate
path-planning as a continuous optimal control problem. However,
such formulations will, in general, be complex and difficult to
solve with global optimality. Therefore, we propose a two-layer
framework, in which the first layer uses a Traveling-Salesman-
type formulation implemented using combinatorial optimization
to find a near-globally-optimal path. This path is refined in the
second layer using a continuous optimal control formulation
that takes UAV dynamics and constraints into consideration.
Searching and tracking problems usually trade-off, often in a
manual or ad-hoc manner, between searching unexplored areas
and keeping track of already known objects. Instead, we derive a
result that enables prioritization between searching and tracking
based on the probability of finding a new object weighted against
the probability of losing tracked objects. Based on this result,
we construct a new algorithm for searching and tracking. This
algorithm is validated in simulation, where it is compared to
multiple base cases as well as a case utilizing perfect knowledge
of the positions of the objects. The simulations demonstrate
that the algorithm performs significantly better than the base
cases, with an improvement of approximately 5-15%, while it is
approximately 20-25% worse than the perfect case.

Index Terms—UAV, Motion Planning, Mathematical Opti-
mization, Combinatorial Optimization, Path Planning, Target
Tracking

I. INTRODUCTION

SEARCHING and tracking moving objects using, for ex-
ample, an Unmanned Aerial Vehicle (UAV), has a broad

range of applications. For arctic areas, ice management is
crucial for safe operations, in which detecting and tracking
icebergs is a key feature [1, 2]. Another potential marine
application is search and rescue [3, 4]. After a shipwreck,
one or multiple UAVs can be used to search for and, once
found, track people or lifeboats floating in the water. In
addition to civilian purposes, there are both police and military
applications, for example, combat scenarios [5, 6, 7] and
border patrol [8, 9].

There are multiple approaches spanning across several
fields that deal with the problem of searching and tracking
moving objects. In this paper, we combine two well-known
approaches; combinatorial optimization and optimal control.

Combinatorial optimization arose from several practical
problems until they were unified in the 1950s by linear

programming [10]. One of the most studied problems and the
most relevant to this application is the traveling salesperson
problem (TSP). TSP can be formulated as Given a list of
n-cities with an appurtenant matrix containing the distances
between the cities, find the shortest tour visiting each exactly
once. The origin of TSP is hard pinpoint out, but the first
breakthrough came in 1954 when Dantzig et al. [11] managed
to solve a 49-cities problem. Today, instances of 85,900
cities have been solved, see Applegate et al. [12] for more
information about TSP.

In this paper, we use an alternative version of a TSP
formulation, namely the prize collection TSP (PCTSP), which
we use without penalties. PCTSP was first formulated by Balas
[13]. Using PCTSP, we desire to find a subcycle of cities
amounting to at least a prescribed prize amount, where the
salesperson gets a prize for each city that is visited. He pays
a penalty for those cities not visited, and the objective is to
minimize the travel and penalty cost while fulfilling the given
prize amount. Gutin and Punnen [14] is a good starting point
for the literature on PCTSP.

Optimal control is the study of finding a control law given
some objective criteria for a system described by a set of
differential equations. It was developed simultaneously in the
U.S. and Soviet Union after WWII by mathematicians such
as Bellman and Pontryagin [15]. A common way to solve
continuous optimal control problems is to first discretize and
then transform the equations into a large nonlinear program-
ming problem (NLP). This is called the direct approach. In this
paper, we use collocation for discretization, see Betts [16] and
Biegler [17] for details.

Search and Track (SaT) problems consist of two parts, each
of which have been studied individually. We will discuss both
here for their relevance to the two parts of our algorithm.
Searching gained attention from the military with the increased
use of German submarines during WWII [18]. Koopman laid
the foundation for search theory with his work [19, 20, 21],
and today search problems are usually formulated as optimal
control problems which are trying to maximize the probability
of detection, and they are solved by transformation to large
NLP problems, such as in Walton et al. [22]. For more details
about optimal search see Stone et al. [23].

Tracking can be considered task allocation, since the posi-
tion of each target is assumed to be known or an a priori

2

estimate is available. The simplest version of this is the
aforementioned TSP problem. A generalization of TSP to
multiple salespersons is the vehicle routing problem (VRP)
[24], which has also been applied to UAVs [25]. For more on
task allocation for UAVs see Smith [26].

For a successful application of a SaT problem, multiple
tasks must be considered. For example, the trade-off between
searching and tracking, decentralized vs centralized, com-
munication constraints, data association problem (matching
measurements to filter), safety of the environment, and so on.
Here, we will focus on the trade-off between searching and
tracking.

An approach to balancing searching and tracking is to
separate the two objectives. The traditional way to do this
is to use an objective function in which the operator manually
weights the different objectives [7, 27]. Another way is to
separate searching and tracking into two different modes,
and then use heuristic rules to switch between the modes
[28, 29, 30]. A third option for separating the objectives is
to perform the optimization in layers, in which, for example,
the security of the vehicle is satisfied first before secondary
objectives are considered [31].

In this paper, we combine the two objectives into a single
objective function. This can, for example, be done by defining
both objectives in terms of information gain, which is then
maximized [32, 33, 34, 35, 36]. These approaches use a grid
to divide the surveillance area. Mavrommati et al. [37] develop
an approach based on hybrid systems theory, in which they
use a receding-horizon ergodic controller. A third approach
is to define the problem as a Markov Decision Process [38,
39]. We introduce a novel approach in which we calculate the
probability of losing the tracked objects and treat it equally
with the probability of finding a new object.

Finally, we develop our algorithm based on a theoretical
bound for the quality of the filter estimate for each target
position. The problem of developing such bounds has been
studied to some extent. The most common performance bound
is the Posterior Cramér-Rao Lower Bound [40] due to of its
low computational complexity [41]. It has been applied to
target tracking by UAVs [42, 43]

A. Contribution

The contributions of this paper are twofold. First, it is an
extension of the results from Albert and Imsland [44] due
to removing some of their restricting assumptions. Second,
it presents a new search and track (SaT) algorithm, which
combines integer linear programming (ILP) with numerical
optimization utilizing nonlinear programming (NLP). This
has the advantage of obtaining a global optimum from the
ILP, while considering the movement constraints of the UAV
through the NLP. The resulting SaT algorithm has been
validated in simulations, in which it has been compared to
multiple base cases and a case utilizing perfect information
about the movement of the objects. The simulations show that
the new SaT algorithm outperforms the base cases.

B. Organization

We introduce the problem and the control architecture we
use for the UAV and objects in Section II. The control archi-
tecture consists of two types of observers and a path planning
algorithm. We present the first type of observer, Kalman filters
to estimate the state of each object, in Section III. The second
type of observer, a probability map to track the movement of
the UAV, is found in Section IV. To quantify the deterioration
of each tracked object, we derive a result in Section V
which relates the covariance matrix of a Kalman filter to a
probability. We call this result the necessary visitation period
(NVP). Using the observers and NVP, we suggest a search and
track algorithm, which combines combinatorial and optimal
control in Section VI. To validate the new algorithm, we
introduce a simulation framework with multiple base cases
and an approximately best case for comparison. Then, we
compare our algorithm to this set of approaches in Monte
Carlo simulations in Section VII and discuss the results in
Section VIII. Finally, we conclude and discuss further work
in Section IX.

C. Notation

Throughout this paper the notation I and 0 will mean the
2×2 identity and zero matrices. We distinguish between differ-
ent variables as follows: scalars are represented by lowercase
letters, vectors be bold lowercase letters, and matrices by bold
uppercase letters. Bold upper case letters are also used for sets,
and the meaning will be clear from the context.

II. PROBLEM FORMULATION AND CONTROL
ARCHITECTURE

We consider an open area defined by a 2D Cartesian
coordinate system containing an unknown number of moving
objects. Our task is to find and, once found, track the location
of each object. We have a mobile sensor, for example, a UAV,
with a limited sensing capability available. Figure 1 illustrates
the problem. We will make some simplifying assumption to
this problem in the next Section to focus our scope of this
paper to the path planning algorithm for the UAV.

Out strategy to solve this problem is illustrated in Figure 2.
It consists for two observers combined with a path planning
algorithm. In general, an observer is an algorithm that esti-
mates the internal states of a system given measurements and,
sometimes, input to the system. The first observer estimates
the states of the objects. Here, we use Kalman filters to
fuse observations of objects with simple velocity models. The
second observer estimate the state of the open area. We will
use a probability map to store the UAV’s movement in the
open area and calculate where new objects most likely are
located. To design the path planning algorithm for the UAV,
we assume that an auto-pilot is available such that we can
output a path instead of considering actuator inputs directly.

3

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1

2

3

4

5

Figure 1: Problem illustration. One UAV (yellow polygon)
with limited field of view (circle with green border and light-
yellow area) monitoring an area of size 2000 x 2000 m2 with
5 moving objects (blue X’s numbered one through five).

Path Planner
(Section VI)

UAV Autopilot
UAV

w/ sensor

Kalman filters
(Section III)

Probability Map
(Section IV)

Path Actuation

Object observations

UAV path

Cells

Filters

Figure 2: Control architecture. Notice that the probability map
and the Kalman filters are constructed independently from
each other and then combined in the path planner.

III. KALMAN FILTERS FOR MOVING OBJECTS

To model the objects, we use a general near-constant
velocity model

ξ̇i =

[
ṡi
v̇i

]
=

[
0 I
0 0

]
ξi +wi(t) ∀i ∈ [1, . . . , nobject] (1)

where the state of an object, ξi, contains the position, si,
and velocity, vi. Both are given in 2D Cartesian coordinates.
The subscript i denotes object number i. The objects are
moving with a constant velocity with the exception of a small
process noise, wi(t), assumed to be Gaussian distributed and
characterized as wi(t) ∼ N (

[
0 0 0 0

]T
,Q).

We use a set of nobject discrete Kalman filters to estimate
object positions and velocities based on measurements from
the sensor onboard the UAV. A Kalman filter is the optimal
estimator for linear systems with Gaussian noise [45]. Ex-
amples of sensors are a camera, radar, and spectral camera
[1]. The sensor will have a limited detecting range, referred
to as the field of view (FOV). An advantage of a Kalman
filter is that, in addition to the state estimate, it has an
associated covariance matrix to a measure the error of its

estimate. The Kalman filter algorithm has two steps. First, the
state estimate and covariance matrix are propagated. Then,
the newest measurement is used to update the state estimate
while considering the certainty of it. The certainty of the
measurement is also used to update the covariance matrix.

We will modify the Kalman equations to account for the
limited FOV, but first we will make some assumptions.

• Each object has a unique characteristic. This means that
we ignore the data association problem, which is the task
of linking observation with filter for tracked objects. In
the case of iceberg tracking, this is not unrealistic. Each
iceberg has a unique geometrical shape that can be used
for association using image processing.

• We know the number of objects in the search area. This,
together with the above assumption, simplifies and limits
the scope of this article to the search and track algorithm.
In practice, an estimate of the number of objects would
be often sufficient.

• The sensor is capable of detecting multiple objects simul-
taneously. If the sensors equipment is a camera, there are
many algorithms that are able to detect multiple objects
simultaneously from an image [46].

• Perfect sensing. This means that, when an object is within
the FOV of the UAV, it has a 100% chance of detecting it,
and there are no false positive measurements. In the case
of detecting objects on the ocean surface with a camera,
the author of Leira et al. [46] reports a 99.6% accuracy for
detecting objects making this assumption not unrealistic.

When modifying the Kalman equation, we use a similar
approach to Sinopoli et al. [47]. The measurement equation
for a single object is

yi,k =
[
I 0

]
ξi,k + vi,k (2)

where yi,k and ξi,k are the position measurement and time
discretized state of object i at timestep k, respectively. The
measurement noise, vi,k, is independent of object and time
and modeled as

p(vi,k|µi,k) =

{
N ([0 0]T ,R), µi,k = 1

N ([0 0]T , σ2I), µi,k = 0
(3)

where µi,k is a binary variable equal to 1 if object, i, is within
FOV of the UAV at timestep k, and 0 if it is not. As in Sinopoli
et al. [47], we use a “dummy” observation for the absence
of an observation. This is accomplished by noting that the
absence of an observation can be modeled by letting σ →∞,
which means that there is no information in the measurement,
and it will, therefore, not be used to update the state estimate.

We follow the derivation from Sinopoli et al. [47]. The a
priori step becomes (here we drop the subscript i for notational
simplicity)

4

ξ̂priori
k+1 = Aξ̂k, ξ̂0 =

[
y0 0 0

]T
, (4a)

P priori
k+1 = APkA

T + ∆tQ, P0 =

[
R vR∆tR

vR∆tR vRI

]
,

(4b)
where

A =

[
I ∆tI
0 I

]
, vR =

1

2
(vmax − vmin),

where ξ̂k = ξ̂post
k is the discretized state estimate of an object

with discretization timestep ∆t. It is equal to the previous
posteriori step state estimate. The superscript priori denotes
the prediction step, with the subscripts k and k + 1 used for
the current and next state, respectively. The state estimate is
initialized with the first measurement, y0, and zero velocity.
Associated with the state estimate is a covariance matrix P .

The a posteriori step of the Kalman filter for each object is

K = P priori
k+1 C

T (CP priori
k+1 C

T +R)−1 (5a)

ξ̂post
k+1 = ξ̂priori

k+1 + µkK(yk −Cξ̂priori
k+1) (5b)

P post
k+1 = P priori

k+1 − µkKCP
priori
k+1 (5c)

where

C =
[
I 0

]
,

and K is the Kalman gain used to weight the new measure-
ment. The variable µk is the same as in equation (3). Notice
that, if µk is zero, i.e. the objects are not within the FOV, the
update step does not change the state and covariance matrix.

IV. PROBABILITY MAP

To keep track of the movements of the UAV in the open
area, we use a probability map. This enable us to calculate
the most likely location of undiscovered objects. As with the
Kalman filters, we assume the number of objects in the area
is known.

First, we divide the open area into a grid, and the cell size
is selected to be of a comparable size to the FOV of the UAV
(in Section VII, we use a circular FOV and a cell side length
equal to the FOV radius). The setup is illustrated in Figure 3.

We use probability to describe the most likely location of
objects in the area. We define pi(t) to be the probability
of finding at least one unknown object within cell i. This
probability will be conditional to the UAV’s location, which
makes it time-varying as the UAV navigates.

The probability pi(t) will not only depend on the UAV’s
proximity, but also on its absence. We introduce a new function
called the default probability, p0(t), that models the probability
of finding an unknown object in a cell in the absence of any
observation. Letting ncell be the number of cells and nunknown
be the number of unknown objects, we propose to model the
default probability as

p0(t) = 1−
(
ncell − 1

ncell

)nunknown(t)

(6)

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

200

400

600

800

1,000

1,200

1,400

1,600

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 3: Illustration of area divided into a grid. The cells are
numbered one to twenty and marked with a red square.

Notice that we use the assumption that we know the number
of unknown objects. In practice, we can either guess or use
an estimate for this number. We can, for example, apply this
to the area in Figure 3, in which there are 20 cells. If we
assume that there are five unknown objects in the area, then
p0 = 1 − (19

20)5 = 22.62%. As objects are found, the default
probability will decrease stepwise. If two of the five objects
are found, p0 = 14.26%.

When the UAV is absent from a cell, pi(t) is not only
affected by p0(t), but also by its adjacent cells’ probabilities.
This is best illustrated through an example. When considering
Figure 3, say that the UAV has made observations in cells 1-
15 in such a way that their probabilities are 1%, and let the
default probabilities in cells 16-20 all be p0(t) = 14.26%. If
the UAV stops observing, then, after some time, all cells will
have a probability equal to p0(t). However, the cells adjacent
to cells 16-20 should approach this probability faster.

We suggest the following function to model the probability
of each cell

ṗi(t) = −e−k0d
2
i pi(t) + qgi(t) (7)

where

gi(t) =

{
p0(t)− pi(t) if pavg,i < pi

p0(t) + pavg,i(t)− 2pi(t) else

di = |uavpos − cellpos,i|, pi(0) = p0, ∀i ∈ [1, ncell]

The distance between cell i and the UAV is denoted di.
The positive constants k0 and q are tunable, and we suggest
appropriate values in Section VI-F. Finally, pavg,i is the average
probability value of the cells adjacent to cell i. Notice that
this differential equation makes pi(t) always stay within the
range (0, 1). When the UAV is observing cell i, the first
term dominates and gives fast convergence to zero probability,
while, when the UAV is absent, the second term dominates,
giving slow convergence to p0(t), where the convergence rate
is influenced by its neighbors.

5

V. NECESSARY VISITATION PERIOD

When a new object is detected, the accuracy of its position
estimate will be determined by the process and measurement
noise quantified by the matrices Q and R. Given that the
sensor and model are reasonably accurate, the estimation
error will rapidly converge to a small number if the object
is observed by the UAV. However, if the UAV continues to
follow the newly discovered object, it will be unable to track
previous objects and discover new ones. The state estimates
will deteriorate without new measurements, and it is desirable
to quantify this deterioration, such that we can select the
timespan before the next revisit based on a probability for
re-detection of the new object by the UAV.

Given a tracked object and assuming that we want a 90%
probability that the estimation position error is less the UAV’s
FOV, we will (with high probability) re-detect the object if we
measure the object’s estimated position. This 90% detection
probability corresponds to a specific time. If we measure the
object’s estimated position before this time, it will have a
higher detection probability. The aim of this section is to
calculate the time-period of high probability of detection,
which we call the necessary visitation period:

Definition 1 (Necessary Visitation Period, NVP). Given a
probability measure, an object, and a sensor, the necessary
visitation period (NVP) is the maximal amount of time be-
tween two position measurements of the object such that the
estimation error in probability is less than detection the range
of the sensor.

The derivation of the NVP has two main steps. First, we
propagate the covariance matrix in the absence of observation,
see equation (4b). Then, we note that the estimation error dis-
tance is the sum of two normally distributed random variables,
giving it a second-order chi-squared distribution.

Let the true state of an object at timestep k be ξk. Then,
we can define the estimation error

ξ̃k = ξk − ξ̂k (8)

The state consists of the position and velocity such that ξ̃k =[
s̃k ṽk

]
. The position error at n timesteps into the future is

s̃n. We can then write the NVP, tNVP, as:

tNVP = max
n

(n∆t) (9)

s.t.
p(|s̃n| ≤ FOVradius) ≤ pFOV

where ∆t is the timestep used in the discretization of the object
equations. The detection range of the sensor is FOVradius.
The probability pFOV can be set to any value in the interval
pFOV ∈ (0, 1).

The covariance matrix at timestep k and the process noise,

Q, are both 4× 4 matrices, which we write

Pk =

σ2

11,k σ12,k σ13,k σ14,k

σ12,k σ2
22,k σ23,k σ24,k

σ13,k σ23,k σ2
33,k σ34,k

σ14,k σ24,k σ34,k σ2
44,k

 (10)

Qk = ∆t

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

q14 q24 q34 q44

 (11)

where Qk is the discretized version of the Q matrix from
equation (1). Notice that both matrices are symmetric.

We can now derive the following result (which is an
extension of Theorem 1 from Albert and Imsland [44]).

Theorem 1 (Necessary Visitation Period). Given an object
characterized by equation (1) and a Kalman filter for estimat-
ing the state of the object given by equations (4) and (5). Let
∆t be the timestep of the filter and FOVradius be the range of
the sensor. If χ2

2 is the p-value for a chi-squared distribution
with two degrees of freedom, then the two equations

ϕ(n;λa) = 0 (12a)
ϕ(n;λb) = 0 (12b)

where:

ϕ(n;λ) =
1

3
λ1∆2

tn
3 +

[
(−1

2
λ1 + λ4)∆2

t + λ2∆t

]
n2

+

[
1

6
λ1∆2

t + (−λ2 + 2λ5)∆t + λ3

]
n+ (λ6 −

FOV2
radius

χ2
2

)

λa = [q33, q13, q11, σ
2
33,k, σ13,k, σ11,k]

λb = [q44, q24, q22, σ
2
44,k, σ24,k, σ22,k]

will each have exactly one real solution, which we denote
n1 and n2, respectively. The parameters in the set λa,b comes
from the covariance matrix, Pk, and the process noise, Qk, of
equations (10) and (11) with initial condition given by (4b).

Then, if the sensor takes a measurement at the estimated
position of the object given by equation (4a) at the time

tnvp = min (n1, n2)∆t, (13)

it will at least have a probability of measuring the real position
of the object within the confidence interval given by the p-value
of the χ2

2 distribution.

As an example of the use of this result, consider a Kalman
filter estimating the state of an object with the covariance
matrices of the estimate, Pk, and the process noise, Qk,
and timestep ∆t. Then, if we which to have a 95% chance
of measuring the object at the estimated position after tnvp
seconds, we must select χ2

2 = 5.99.

Proof. Let the covariance matrix of a state estimate of an
object using a Kalman filter be Pk. Consider the timestep from
k to k+n in which we do not receive any measurements, i.e.
µi,k = µi,k+1 = · · · = µi,k+n = 0. Here, n is the number
of timesteps into the future from k. Then, the covariance

6

is completely determined by equation (4b), which we apply
recursively to arrive at

Pk+n = AnPk(An)T +

n−1∑
i=0

AiQ(Ai)T (14)

where

An =

[
I n∆tI
0 I

]
.

Furthermore, following the notation from equation (10), we
calculate the upper corner of the matrix Pk+n

σ2
11,k+n = σ2

11,k + 2n∆tσ13,k + (n∆t)σ33,k

+

n−1∑
i=0

[q11 + 2i∆tq13 + (i∆t)
2q33] (15)

We can now apply summation formulas to remove the sum
from the second part of this equation.

σ2
11,k+n = σ2

11,k + 2n∆tσ13,k + (n∆t)
2σ33,k

+
1

3
q33∆2

tn
3 + (−1

2
q33∆2

t + q13∆t)n
2

+ (
1

6
q33∆2

t − q13∆t + q11)n (16)

Next, we can follow the same approach to calculate the
variance in the y-direction.

σ22,k+n = f(σ22,k, σ24,k, σ44,k, q44, q24, q22,∆t) (17)

The detection range for the sensor onboard the UAV is
FOVradius. We need to keep the position estimate, s̃k+n, less
than the range of the sensor

|FOVradius| ≥ |s̃k+n| (18)

FOV2
radius ≥ x̃2

k+n + ỹ2
k+n. (19)

The variance of error in both directions is given by (16). If we
let σ2

pos,k+n = max (σ2
11,k+n, σ

2
22,k+n) and divide both sides

of equation (19) by it, we get

FOV2
radius

σ2
pos,k+n

≥
x̃2
k+n

σ2
pos,k+n

+
ỹ2
k+n

σ2
pos,k+n

(20)

Now, we have two normally distributed random variables
squared, one with variance value one and the other with
variance value less than one. This will be less than a chi-
squared distribution of second order. Let χ2

2 be the p-value
of a given confidence interval for a chi-squared distribution.
Then, we obtain

χ2
2 ≥

x̃2
k+n

σ2
pos,k+n

+
ỹ2
k+n

σ2
pos,k+n

(21)

Finally, we can combine this equation with (20) to get an
expression for the maximum variance

σ2
pos,k+n =

FOVradius

χ2
2

(22)

Combine equations (16) and (17) with (22) to arrive at (12).
If we use the minimum of the solutions to the two equations,
we are guaranteed that equation (21) will hold.

Furthermore, both equations (12) are cubic functions in n.
If we let α, β, γ and δ be the constants defining each of these
functions, then αn3+βn2+γn+δ = 0. Thus, the discriminant
is given by

∆ = 18αβγδ − 4β3δ + β2γ2 − 4αγ3 − 27α2δ2 (23)

When the discriminant is negative, the cubic function will
have only one real and two complex conjugated solutions [48].
Since we must choose all elements of Qk > 0 and ∆t > 0,
and we use initial conditions given by equation (4b), the
discriminant is always negative, and thus the cubic functions
in equation (12) will each have only one real solution, n1 and
n2, respectively.

VI. SEARCH AND TRACK ALGORITHM

In this section, we present the path planning algorithm from
Figure 2, which is a Search and Track (SaT) algorithm for
the UAV. First, it utilizes Theorem 1 to select positions for
the tracked objects. Then, it uses combinatorial optimization
to find a globally optimal visitation sequence. This solution
is then used as an initial condition for an optimal control
problem, which produces a continuous path that is feasible
w.r.t. UAV dynamics and constraints.

Input: Map and
Kalman filters

Tracking Object
Position Selection

mPCTSP

Cycle Traversal

Trail Simulation

Optimal Control

Output: Path

Nodes

Cycle

Trail

Path

Figure 4: Flowchart for the search and track algorithm.

Figure 4 illustrates the main components of this algorithm.
As input, we have the Kalman filters and probability map. In
the first step, we use the Kalman filters to select a position for
each tracked object by applying Theorem 1. We call this set of
positions for objects nodes, and the cells from the probability
map cell nodes. Both sets of nodes are used as input for the
modified prize collection TSP (mPCTSP) algorithm, which
produces a cycle. Here, we define a cycle as an ordered set of
nodes starting and stopping at the same node. The mPCTSP

7

produces a cycle, instead of a trail, to enable it to run an
optimization of the UAV’s traversal of the cycle, such that the
traversal closest to fulfilling the assumed object node positions
is chosen. A trail is an ordered set of nodes starting from
the UAV. The Runge-Kutta method uses the trail to simulate
the differential equations from Sections III and IV. Finally,
the Runge-Kutta simulation is used as an initial state for an
optimal control problem (OCP). Both the Runge-Kutta method
and OCP produce a path for the UAV. We define a path as
an ordered set of positions, which takes the nonholnomoic
constraint of the UAV into account. In other words, a path is
a flyable set of waypoints for the UAV. Figure 5 shows an
example of the different algorithm steps.

A. Tracking Objects Position Selection

The mPCTSP algorithm will calculate an optimal visitation
sequence, assuming that the tracked objects are stationary. For
this, we need to assign positions to the objects. Theorem 1
enable us to calculate the timespan, tnvp, that each object can
be absent measurements given a probability for re-detection.
We select a probability pideal (see Section VI-F) and use
Theorem 1 to calculate tnvp for each tracked object. The results
are stored in the vector tideal ∈ Rnobject , such that tnvp for object
i is tideal(i). The number of tracked objects is nobject. When
running the mPCTSP algorithm, we assume that we will find a
solution such that the UAV can measure each object’s position
at time tideal. This assumption will not be feasible, in general,
since it requires the UAV to visit each tracked object at a
specific time. However, when doing the cycle traversal step
(Section VI-C), we adjust tideal to suit the UAV’s traversal.
To illustrate, if the estimated position and velocity of object
i are (400, 500)m and [1, 1]m/s, respectively, at the time we
run the SaT algorithm, and we selected pideal = 85% and
apply Theorem 1 to get tideal(i) = 100, then, the tracked
object position is (400, 500) × 100[1, 1] = (500, 600)m for
the mPCTSP algorithm. If, after selecting a cycle in the cycle
traversal step, the UAV is estimated to visit object i at 90s, then
the position is adjusted to (400, 500)×90[1, 1] = (490, 590)m
for the trail simulation and OCP problem. Note that this also
leads to an increase in the probability of re-detection for object
i, since the UAV is visiting it earlier than planned.

B. Modified Prize Collection TSP (mPCTSP)

The modified Prize Collection TSP (mPCTSP) is a combi-
natorial optimization problem, in which we use the following

formulation (modified from Chen et al. [49]).

max

n∑
i=nobject+1

x(i)p(i) (24a)

s.t.
n∑
i=1

n∑
j=1

y(i, j)d(i, j) ≤ dmax (24b)

n∑
j=1

y(j, i) = 2,

n∑
j=1

y(i, j) = 2 i ∈ [1, nobject] (24c)

n∑
j=1

y(j, i) = 2x(i),

n∑
j=1

y(i, j) = 2x(i)

i ∈ [nobject + 1, n] (24d)∑
i,j∈Es

y(i, j) = |S| − 1 ∀ |S| = 2, 3, ..., ncycle − 2

(24e)

where n = nobject + ncell is the number of nodes. The
optimization variables are the binary vector x ∈ R1×ncell and
the binary matrix Y ∈ Rn×n. The vector, x, represents the
cell nodes. Element x(i) is one if the node is included in the
cycle and zero if it is not. The matrix Y represents the arcs
between the nodes. An arc is included between node i and j if
element y(i, j) is one and not included if y(i, j) is zero. The
vector, p, contains the most recent values for the probability
of detection of each cell node with the probability of each
element given as p(i) = pi(t) from equation (7). The matrix
D contains the distances between the nodes, with a single
element given as d(i, j). The maximum distance the UAV can
travel is set by the constant dmax (see Section VI-F for details
on how to select this constant). Finally, Es is the set of all
proper subsets, S is a proper subset, and ncycle is the length
of the cycle.

The objective function, (24a), maximizes the probability of
detection of objects from the open area. The constraint, (24b),
makes sure the cycle is less than dmax. In a standard PCTSP
problem, all nodes would be optional to visit. Our modification
is that the object nodes are not. We do this by requiring that
these nodes are visited exactly once (24c), while cell nodes
must be visited only if they are in the cycle (24d). The last
constraint, (24e), is a subcycle elimination. See Chen et al.
[49], Chapter 6.5, for details.

A special case is made when we have only one object
available. Then, instead of finding a cycle, which does not
consider the UAV’s starting position, the mPCTSP finds a
trail from the UAV’s position to the object’s position. This
is achieved by replacing constraint (24c) with

n∑
j=1

y(j, 1) = 0,

n∑
j=1

y(1, j) = 1 (25a)

n∑
j=1

y(j, n) = 1,

n∑
j=1

y(n, j) = 0 (25b)

where we assume that node number 1 is the UAV starting
position and node number n is the object position.

8

When we have only one object, we skip the cycle traversal
optimization, and go straight to the trail simulation.

C. Cycle Traversal

The cycle for the mPCTSP algorithm does not take the
UAV’s position into consideration. We formulate an optimiza-
tion problem to decide with which direction and node to
start traversal. A cycle traversal is a trail (see introduction of
Section VI). If the cycle has length ncycle, there are 2ncycle trails
(depending on which node is visited first and the direction in
which the UAV traverses the cycle). For example, given the
map illustrated in Figure 3, and thay the mPCTSP produces a
cycle of node [2, 8, 12]. The possible trails are then [2, 8, 12],
[2, 12, 8], [8, 12, 2], [8, 2, 12], [12, 2, 8], and [12, 8, 2].

Let each traversal be numbered j ∈ [1, 2ncycle] and use the
notation trailj() with subscript t and p to note the time, t ∈ R,
and position, p ∈ R2, for trail number j. For example, the visit
time for node i on trail j is noted as trailjt (i) with position
trailjp(i).

Cell nodes have a stationary position, which will, therefore,
be the same for each traversal. The object nodes are moving,
and thus their position will depend on when they are visited.
To calculate the time and position of the object nodes, we let
trailjt (0) = 0 and trailjp(0) = UAVpos and apply the following
iterative formula

a(trailjt (i+ 1))2 + btrailjt (i+ 1) + c = 0 (26a)
where

a = |U |2 − |ξ̂v(i)|2

b = −2(
[
1 1

]
ξ̂p(i)− trailjp(i)ξ̂

v(i))

c = −|ξ̂p(i)− trailjp(i)|2

trailjp(i+ 1)T = ξ̂p(i) + trailjt (i)ξ̂
v(i) (26b)

∀i = [1, . . . , ntrail]

where U is the UAV’s velocity. The velocity and position of
node i are ξ̂p(i) and ξ̂v(i). Notice that we ignore the dynamics
of the UAV, i.e. equation (29b). The iterative formula is derived
by considering the UAV and object to be two moving points
where we control the UAV without movement restriction and
calculate their intersection.

Furthermore, let trailj∆ψ1
and trailj∆ψ2

be the difference
between the UAV’s heading and the angle between the UAV
and the first and second nodes of trail j.

This enables us to formulate the following optimization
problem, which we use to select the trail.

c1 = min
j

max(0, (|trailj∆ψ1
| − π

2
)2) (27a)

c2 = min
j

max(0, (|trailj∆ψ2
| − π

2
)2) (27b)

c3 = min
j

ntrail∑
i=1

(
tideal(i)− trailjt (i)

)2

(27c)

where tideal is a vector containing the desired time at which the
UAV should visit each node. The object nodes have this value
set in Section VI-D, while cell nodes are not assigned a desired
time for visiting. Therefore, they are set to tideal(i) = trailjt (i).

This is a multi-layered optimization. The first two layers
c1 and c2 typically have multiple non-unique solutions. These
two layers are included to make sure the UAV does not change
direction. The SaT algorithm is run often, and these layers
ensure continuity of the solution. The final layer c3 typically
has a unique solution.

D. Trail Simulation

To simulate a trail, we need an autopilot for the UAV. We use
a P-controller, which calculates the desired heading towards
the next node and adjusts the current heading appropriately.
Let the next node have the position (xdesired, ydesired) and the
UAV model be equation (29b), then

ψdesired = atan2(ydesired − y, xdesired − x)

u = ψdesired − ψ (28)

where atan2 is a four-quadrant arctangent function.
We use a Runge-Kutta method [50] for the simulation in

which we simulate the UAV equation, (29b), and all the cell
equations, (7).

E. Optimal Control Problem

In the last step of the SaT algorithm, we formulate an
optimal control problem (OCP) to take the UAV’s dynamics
into account. In contrast to the trail simulation, the OCP
considers not only the next node, but all nodes when creating
the UAV path. This leads to a path better suited to the UAV
than the trail simulation produced. The difference is best
illustrated by comparing Figures 5c and 5d.

To limit the size of the problem, we include only the nodes
used by the trail simulation in Section VI-D. In addition, all
nodes are treated as simplified cell nodes, meaning that we
use equation (7) with q = 0 and initialize them with p0 =
1. The positions of the object nodes are adjusted to the trail
simulation. This gives us the following formulation

min
u(·)

∫ tend

0

µ

nnode,ocp∑
i=1

p2
i (t) + u2(t)dt (29a)

s.t.
(7) with q = 0 and p0 = 1

ż =

ẋẏ
ψ̇

 =

U cos(ψ)
U sin(ψ)

u

 (29b)

− ulim ≤ u ≤ ulim (29c)
− η ≤ x ≤ X + η (29d)
− η ≤ y ≤ Y + η (29e)

Here, pi(t) is used to attract the UAV to cell i instead of
representing any probability of detecting an object. It is limited
in value to between 0 and 1. The time horizon is given by tend
and µ is a tunable constant used to weigh between the two
objectives (see Section VI-F for how to select an appropriate
value). The number of nodes used by the OCP is nnode,ocp.
Note that this is not necessarily the same number of nodes

9

used in the mPCTSP problem in Section VI-B. The UAV state
is z, which consists of Cartesian coordinates, (x, y)T , and
heading, ψ. The velocity, U , is constant, while the turn rate,
u, is bounded. The constraints (29d) and (29e) make sure that
the UAV stays within the open area. Here, we assume the area
to be a rectangle given by the coordinates X and Y, and η is
a threshold which allows the UAV to move a slightly outside
the area.

F. Tunable parameters

One of the strengths of our algorithm is that an operator
does not have to weight some constant between searching and
tracking. However, it is necessary to set some parameters.
Fortunately, most of these can be set in relation to other
parameters or suggested values work in most cases.

In terms of the the area model, there are two parameters
that need to be set, k0 and q. First, k0’s primarily function is
within the optimal control problem. It should attract the UAV
to the center of each cell, but avoid being set so large such
that the UAV does not have to reach the center to reduce the
cell value. A value that works in most cases is

k0 = 5× 10−4 (30)

The other parameter, q, decides the rate at which any cell
reaches the default probability in the absence of observation.
It can be set in relation to the expected velocity of the moving
objects. We use the following value

q = 0.01 (31)

In preparing the Kalman filters for the mPCTSP algorithm,
we need to select a probability of redetection for an object
at its estimate position, which we will denote pideal. This
probability must be set so that we do not visit the objects too
often, which would lead to less searching, but not too high so
as we would only search instead of also tracking the known
objects. Given the performance measure in Section VII-A, we
weight it equally between finding a new object and reducing
the estimated error of a known object that is just about to get
lost (estimated position error larger than the UAV’s FOV). We
use a heuristic to try to reflect this

pideal = min

(
0.85, 1− 1

ncell

ncell∑
i=0

p(i)

)
(32)

where p(i) is cell i’s probability of finding an object, and
ncell is the number of cells. Notice here that we use an upper
threshold of 0.85 to avoid no searching at all in the case where
most of the area is well-explored.

The distance limit for the mPCTSP is dmax. We would like
this constant to be as large as possible, while still making it
possible for the resulting cycle to be successfully completed
within tideal (see Section VI-A). We use the following heuristic
to set it

dmax =

{
max(Utideal(1), |UAVpos − ξ̂p(1)|) if nobject = 1

dtsp + 1.5× U max(0, c3,avg(TSP)) else
(33)

where U is the velocity of the UAV, and its position is UAVpos

The position of object 1 at time tideal(1) is ξ̂p(1). The TSP
solution distance for the tracked objects using their position
at timestamp tideal is dtsp. Finally, c3,avg(TSP) is the traverse
cost from equation (27c) for the TSP solution of the objects
divided by the number of objects. Notice that this heuristic for
the setting dmax always make the mPCTSP feasible.

The last tuning constant is µ which is used to weight
between attracting the UAV to each cell and actuator use in
the optimal control problem from Section VI-E. Our main
objective is to reduce the probability of all the cells, but it
is necessary to limit actuator use to obtain a practical solution
for the UAV. The following heuristic works well

µ =
6

ncell
(34)

G. Implementation

The algorithm is implemented in a receding horizon fashion.
That is, an objective function over a finite horizon produces
a sequence of actuator inputs. Then, we apply the first part
of the sequence before rerunning the optimization. There are
two ways to decide when to rerun the optimization. The first
is sample-based. In this case, the SaT algorithm is rerun at
regular intervals that are less than the time horizon of the
optimal control problem. The second is event-based. An event
can be when a new object is discovered or has just moved
outside the FOV. Even with an event-based approach, it is
necessary to decide a maximum time length before rerunning
the optimization, which, again, must be less than the time
horizon of the optimal control problem. In the simulation, we
use the sample-based approach.

The software used to implement the algorithm and simu-
lation was Matlab R2015a. The mPCTSP formulation from
Section VI-B was written using YALMIP [51] and solved us-
ing IBM’s CPLEX [52]. To simulate the differential equations
from section VI-D, we used the Matlab integrated method
ode45 [53]. For the optimal control problem from Section
VI-E, we wrote the formulation using CasADi [54] and solved
it using interior point solver IPOPT [55] with the linear solver
mumps.

VII. SIMULATION

To validate the algorithm from Section VI, we compare it
to multiple base cases and an omniscient case which utilizes
the actual position and velocity of each object.

A. Simulation Scenario

To compare the new algorithm to the other algorithms, we
run Monte Carlo simulations of the following scenario: We
have an open area defined by its X- and Y- coordinates (a
rectangle with corners (0,0), (X,0), (X,Y), (0,Y)), a given
number of objects moving according to equation (1), and an
available UAV with a limited FOV to search and track the
objects. This is illustrated in Figure 1.

In the simulation, there are two parameters we vary: the
number of objects and size of the area. To simplify size

10

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

200

400

600

800

1,000

1,200

1,400

1,600

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

(a) Input to algorithm

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

200

400

600

800

1,000

1,200

1,400

1,600

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

(b) Modified Prize Collection Traveling Salesperson Problem
(mPCTSP)

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

200

400

600

800

1,000

1,200

1,400

1,600

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

(c) Trail simulation for mPCTSP

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

200

400

600

800

1,000

1,200

1,400

1,600

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

(d) Optimal Control

Figure 5: The main steps of the search and track algorithm. Each cell is drawn as a red square with an appurtenant number.
The estimated position of objects are red circles. The UAV is indicated by a yellow polygon, and its FOV is illustrated by a
light yellow circle and green border. The mPCTSP solution is drawn with a solid red line, the Runge-Kutta simulation with a
dotted black line, and the optimal control problem as a solid blue line with circles for each segment.

change, we keep the y-dimension fixed and only vary the x-
dimension.

A practical problem with simulating this scenario is that the
moving objects will not stay within the defined area throughout
the simulation, which lead to no objects for the UAV to
monitor. To adjust for this, we let the objects behave as the
snake from the popular arcade game [56], meaning that when
an object leaves the area on one side, it reappears on the other
side. This lead to another practical problem for the UAV. If a
Kalman filter estimates an object to be close to the edge of
the area, but the object is on the other side, the UAV will miss
detection of object, even if the estimate is only slightly off.
To compensate for this, we let the UAV’s FOV go across the
edge of the area. Both the snake property of the objects and
the UAV sensing capabilities are illustrated in Figure 6.

Finally, we need a performance measure to compare the
different algorithms. We suggest a simple binary measure

in which each object is either observed or not. Observed is
defined as the object estimated position error being less than
the FOV detection range of the UAV. Then, we discretize the
simulation and, for each step, count the number of observed
objects. This lead to the following performance measure

H =
1

nobjectnsim

nobject∑
i=1

nsim∑
k=1

hi(k) (35a)

where

hi(k) =

{
1 s̃i(k) ∈ FOV
0 else

(35b)

where hi(k) is a binary function returning 1 if object i’s
position error is within the FOV range at timestep k, and 0 if it
is not. The number of simulation steps is nsim = T

∆t
, where T

is the simulation length. The estimation error of the position of
object i at timestep k is s̃i(k). Notice that we do not include

11

Figure 6: Monitoring a 1600 x 1600 m2 area. The UAV is
currently sensing object number 2 across the edge of the area.
The estimated position of object 4, red circle, has moved
across from one side of the area to the other.

any specific tracking or searching performance measure since
our concern is having an estimate for each object within FOV
detection range. The lack of an estimate and an estimate
outside the FOV are considered equal. Furthermore, notice that
this score is always between zero and 1, H ∈ [0, 1], where 0
indicates no objects found and 1 indicates all objects have a
position estimate within FOV detection range for the entire
simulation.

B. Base Cases

The first base case sets the UAV to follow a simple straight
line patrol, as illustrated in Figure 7. This does not take into
consideration any of the estimates of the object positions. To
allow the turns to be flyable for the UAV, we utilize the optimal
control algorithm from Section VI-E.

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

Figure 7: Base case 1. Straight line patrol of an example area
of size 2600× 1600 m2.

In the second base case, we have the UAV following a
looping pattern, which is shown in Figure 8. This performs
slightly better than the straight line patrol.

Finally, we use a case in which the UAV uses random
behavior. This is implemented by setting the UAV to fly
towards a random waypoint within the search area. The UAV
changes the waypoint either when it reaches it or has attempted

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

200

400

600

800

1,000

1,200

1,400

1,600

Figure 8: Base case 2. Looping patrol of an example area of
size 2000× 1600 m2.

to reach it for 50 seconds. The value of 50 seconds was
obtained experimentally by comparing multiple values and
selecting the one with the best performance.

C. Best Case
To have a best case for comparison, we introduce an

algorithm that utilizes knowledge of the actual positions of
the objects. The algorithm is not optimal since it does not
consider the nonholonomic constraint of the UAV.

Let tlast ∈ R1×nobject be a vector containing the timepoint
when an object’s error in estimate exceeds the FOV of the
UAV. If an object does not have an estimate, it is simply set to
zero. Then, the algorithm minimizes the following two layered
optimization functions

A) min
j

ntrail∑
i=1

(tlast(i)− trailjt (i))
2 (36a)

B) min
trail(·)

Tour Length (36b)

The algorithm works by trying all possible permutations of
the object visitation sequence calculated using equation (26).
If more than one sequence has the same value for objective
A, the shortest trail is selected (objective B).

D. Results
The parameters used in the simulation are given in Table I.

The SaT algorithm and perfect information algorithm were im-
plemented using sample-based optimization, in which horizon
tend = 100s and the optimization was rerun every dtsim = 40s.
For the autopilot, we used a-line-of sight algorithm from
Chapter 10 of Fossen [57].

Figure 9 shows the results of running 50 simulations for
seven different map sizes and five moving objects. The search
and track algorithm scored, on average, about 5-10 % better
than the base cases for the larger area. Figure 10 illustrates
the results of 30 simulations for a constant map size (2000m
× 1600m) while varying the number of objects from two to
ten. Depending on the number of objects, the SaT algorithm
score was between 5 - 15% better than the base cases.

12

Table I: Simulation Parameters

Parameter Value [unit]

UAV 1 unit
(x0,y0,heading) (150,200,0)[(m,m,rad)]
Minimum turning radius 105.8 [m]
FOVradius 200 [m]
Velocity 22 [m/s]

Objects 5 units
vx [-3,3] [m/s]
vy [-3,3] [m/s]

Observer
Measurement period, ∆T 0.1 [s]

Process noise variance, Q 10−4 ×

10 1 1 1
1 10 1 1
1 1 50 1
1 1 1 50

 [m/s2]

Measurement noise variance, R
[

5 2.5
2.5 5

]
[m2]

Simulations 50
Simulation length, T 1800 [s]
Area width, Y 1600 [m]
Area length, X [1000,2200] [m]

Algorithms
k0 5 × 10−4 [-]
q 0.01 [-]
η 150 [m]
tend 100 [s]
dtsim 40 [s]

1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200
0

10

20

30

40

50

60

70

80

90

100

Side length [m]

A
ve
ra
ge

p
er
fo
rm

an
ce

[%
]

Average performance

Perfect Information
SaT
Straight Line Patrol
Looping Patrol
Random Patrol

Figure 9: Comparison of SaT algorithm to base cases and the
case of utilizing perfect information for areas of varying size
using 5 objects.

VIII. DISCUSSION

A strength of the proposed SaT algorithm is that little
tuning is necessary for the operator. There is no objective
function in which the weight of an artificial constant decides
the trade-off between searching and tracking. Instead, we have
a more intuitive constant pideal which enable us to weight the
probability between losing an object and finding a new one.
The suggested heuristic in equation (32) from Section VI-F
makes it unnecessarily to do this trade-off manually.

Notice that we have assumed that the number of objects
in the search area is known. This is utilized both when we

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Number of objects []

A
ve
ra
ge

p
er
fo
rm

an
ce

[%
]

Average performance

Perfect Information
SaT
Straight Line Patrol
Looping Patrol
Random Patrol

Figure 10: Comparison of SaT algorithm to base cases and
utilizing perfect information for varying numbers of objects
using an area of size 2000 × 1600 m2.

know the number of necessary Kalman filters as well as in
the probability map, see Section IV. This is to simplify and
limit the scope of this article. In practice, this assumption is
not crucial. It is not difficult to add/remove Kalman filters as
objects are discovered or move out of the region, and with
regards to the probability map, a reasonable estimate works
well. For example, an estimate can be formulated based on
historical data for iceberg searching or in a rescue operation
where it is not unlikely that we know the number of people
missing.

Another strength with the suggested SaT algorithm is its
ability to combine combinatorial optimization and OCP. A
weakness with OCP is the lack of global properties. The
solution will always depend on the chosen time horizon.
However, combinatorial optimization has global properties,
but is unable to account for the nonlinear dynamic of the
UAV. By using a combinatorial optimization to initialize the
OCP problem, we achieve a globally optimal solution while
considering the nonholonomic constraints of the UAV. Some
might argue, based on Figure 5, that the OCP does not improve
the solution much. However, it always improves the solution,
and the computational time to run it is short compared to the
time needed to run the combinatorial portion.

The performance of the SaT algorithm is not much better
than that of the base cases for a small area. However, as the
area grows, its benefits increase. The reason for this is that
the base cases perform close to the perfect information case
for small areas, meaning that they are close to optimal and
there is not much room for improvement. Therefore, for small
areas, the added complexity of the SaT algorithm does not pay
off and either the straight line or looping patrol are considered
sufficient.

When varying the area size and the number of objects,
there are two observable trends. Generally, a larger area and
more objects lowers the performance score of all algorithms.
However, the area size has a larger effect than the number

13

of objects. Furthermore, the difference between the SaT al-
gorithm and the base cases increases with the area size. The
number of objects decreases the difference, but the effect is
less than that of the area size.

IX. CONCLUSION

In this paper, we have studied the problem of tracking
moving objects in an open area using a UAV with a limited
FOV. We suggested a control architecture with two types of
observers. First, we used Kalman filters for estimating the state
of each moving objects. Second, we used a probability map to
track the movement of the UAV and calculate the most likely
part of the area containing undiscovered objects. To help select
positions for the tracked objects to use in the search and track
(SaT) algorithm, we developed a theoretical result called the
necessary visitation period (NVP) which relates the covariance
of each Kalman object to a probability. Then, we introduced
a SaT algorithm, which combines combinatorial optimization
and optimal control. This addressed the weakness of each indi-
vidual approach. Optimal control problems are implemented in
a receding horizon fashion, and can get stuck in local optima.
The initialization using a combinatorial solution gave us a
global optimum. It is difficult to incorporate UAV dynamics in
a combinatorial formulation, but this is easily incorporated in
an optimal control formulation. To validate the SaT algorithm
we introduced a scenario consisting of an open area and a set
number of objects. To make the objects stay within the given
area, they were set to behave as a snake from the arcade game.
The SaT algorithm was compared to several base cases and a
best case, which utilized perfect information. The scenario was
used in Monte Carlo simulations, which demonstrated that the
SaT algorithm performed better than the base cases for larger
areas with minor differences for smaller areas. The number
of objects in the area had less of an effect on the difference,
but an increased number of objects decreased the difference
between the SaT-algorithm and the base cases.

Future Work

Future work will include:
1) Expanding the SaT algorithm to include multiple UAVs.
2) Performing full-size experiments to validate the results.

REFERENCES

[1] K. Eik, “Review of experiences within ice and iceberg
management,” Journal of Navigation, vol. 61, no. 4, pp.
557–572, 2008.

[2] I. Lešinskis and A. Pavlovičs, “The aspects of imple-
mentation of unmanned aerial vehicles for ice situa-
tion awareness in maritime traffic,” Transport Means -
Proceedings of the International Conference, pp. 65–68,
2011.

[3] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker,
E. Mair, I. L. Grixa, F. Ruess, M. Suppa, and
D. Burschka, “Toward a fully autonomous UAV: Re-
search platform for indoor and outdoor urban search and
rescue,” IEEE Robotics & Automation Magazine, vol. 19,
no. 3, pp. 46–56, 2012.

[4] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper,
M. Quigley, J. A. Adams, and C. Humphrey, “Supporting
wilderness search and rescue using a camera-equipped
mini uav,” Journal of Field Robotics, vol. 25, no. 1-2,
pp. 89–110, 2008.

[5] D. Glade, “Unmanned aerial vehicles: Implications for
military operations,” DTIC Document, Tech. Rep., 2000.

[6] J. Eggers and M. H. Draper, “Multi-UAV control for
tactical reconnaissance and close air support missions:
Operator perspectives and design challenges,” in Proc.
NATO RTO Human Factors and Medicine Symp. HFM-
135. NATO TRO, Neuilly-sur-Siene, CEDEX, Biarritz,
France, 2006.

[7] J. T. DeSena, S. R. Martin, J. C. Clarke, D. A. Dutrow,
B. C. Kohan, and I. Kadar, “Decentralized closed-loop
collaborative surveillance and tracking performance sen-
sitivity to communications connectivity,” in Proc. of SPIE
Vol, vol. 8745, 2013, pp. 874 507–1.

[8] A. R. Girard, A. S. Howell, and J. K. Hedrick, “Bor-
der patrol and surveillance missions using multiple un-
manned air vehicles,” in Decision and Control, 2004.
CDC. 43rd IEEE Conference on, vol. 1. IEEE, 2004,
pp. 620–625.

[9] A. W. Isenor, Y. Allardb, A.-L. S. Lapinskia, H. Demersb,
and D. Radulescub, Coordinating UAV information for
executing national security-oriented collaboration, 2014,
vol. 9248.

[10] A. Schrijver, “On the history of combinatorial optimiza-
tion (till 1960),” Handbooks in Operations Research and
Management Science, vol. 12, pp. 1–68, 2005.

[11] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of
a large-scale traveling-salesman problem,” Journal of the
Operations Research Society of America, vol. 2, no. 4,
pp. 393–410, 1954.

[12] D. Applegate, R. Bixby, V. Chvátal, and W. Cook,
The traveling salesman problem: A computational study,
2011.

[13] E. Balas, “The prize collecting traveling salesman prob-
lem,” Networks, vol. 19, no. 6, pp. 621–636, 1989.

[14] G. Gutin and A. P. Punnen, “The traveling salesman
problem and its variations,” 2006.

[15] H. J. Pesch, M. Plail, and D. Munich, “The maximum
principle of optimal control: A history of ingenious
ideas and missed opportunities,” Control and Cybernet-
ics, vol. 38, no. 4A, pp. 973–995, 2009.

[16] J. T. Betts, Practical methods for optimal control and
estimation using nonlinear programming. SIAM, 2010.

[17] L. T. Biegler, Nonlinear programming: concepts, algo-
rithms, and applications to chemical processes. SIAM,
2010.

[18] L. D. Stone, “Or forum—what’s happened in search
theory since the 1975 Lanchester prize?” Operations
Research, vol. 37, no. 3, pp. 501–506, 1989.

[19] B. O. Koopman, “The theory of search. i. kinematic
bases,” Operations Research, vol. 4, no. 3, pp. 324–346,
1956.

[20] ——, “The theory of search. ii. target detection,” Oper-
ations Research, vol. 4, no. 5, pp. 503–531, 1956.

14

[21] ——, “The theory of search: Iii. the optimum distribution
of searching effort,” Operations Research, vol. 5, no. 5,
pp. 613–626, 1957.

[22] C. L. Walton, Q. Gong, I. Kaminer, and J. O. Royset,
“Optimal motion planning for searching for uncertain
targets,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.
8977–8982, 2014.

[23] L. D. Stone, J. O. Royset, and A. R. Washburn, Optimal
Search for Moving Targets. Springer, 2016.

[24] B. L. Golden, S. Raghavan, and E. A. Wasil, The vehicle
routing problem: latest advances and new challenges.
Springer Science & Business Media, 2008.

[25] P. Oberlin, S. Rathinam, and S. Darbha, “Today’s trav-
eling salesman problem,” IEEE Robotics & Automation
Magazine, vol. 17, no. 4, pp. 70–77, 2010.

[26] S. L. Smith, Task allocation and vehicle routing in
dynamic environments. University of California, Santa
Barbara, 2009.

[27] M. Yao and M. Zhao, “Unmanned aerial vehicle dynamic
path planning in an uncertain environment,” Robotica,
vol. 33, no. 3, pp. 611–621, 2015.

[28] W. Meng, Z. He, R. Su, P. K. Yadav, R. Teo, and L. Xie,
“Decentralized multi-UAV flight autonomy for moving
convoys search and track,” IEEE Transactions on Control
Systems Technology, vol. 25, no. 4, pp. 1480–1487, 2017.

[29] C. Zhao, M. Zhu, H. Liang, and Z. Wu, “The sustainable
tracking strategy of moving target by UAV in an uncer-
tain environment,” Control Conference (CCC), 2016 35th
Chinese, pp. 5641–5647, 2016.

[30] T. Furukawa, F. Bourgault, B. Lavis, and H. F. Durrant-
Whyte, “Recursive Bayesian search-and-tracking using
coordinated UAVs for lost targets,” IEEE International
Conference on Robotics and Automation (ICRA), pp.
2521–2526, 2006.

[31] X. Tian, Y. Bar-Shalom, and K. R. Pattipati, “Multi-step
look-ahead policy for autonomous cooperative surveil-
lance by UAVs in hostile environments,” Decision and
Control, 2008. CDC 2008. 47th IEEE Conference on,
pp. 2438–2443, 2008.

[32] Z. M. Kassas, A. Arapostathis, and T. E. Humphreys,
“Greedy motion planning for simultaneous signal land-
scape mapping and receiver localization,” IEEE Journal
of Selected Topics in Signal Processing, vol. 9, no. 2, pp.
247–258, 2015.

[33] C. K. Peterson, A. J. Newman, and J. C. Spall,
“Simulation-based examination of the limits of perfor-
mance for decentralized multi-agent surveillance and
tracking of undersea targets,” SPIE Defense+ Security,
pp. 90 910F–90 910F, 2014.

[34] R. R. Pitre, X. R. Li, and R. Delbalzo, “UAV route plan-
ning for joint search and track missions—an information-
value approach,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 48, no. 3, pp. 2551–2565, 2012.

[35] A. Sinha, T. Kirubarajan, and Y. Bar-Shalom, “Au-
tonomous ground target tracking by multiple cooperative
UAVs,” 2005 IEEE Aerospace Conference, pp. 1–9, 2005.

[36] ——, “Autonomous surveillance by multiple cooperative
UAVs,” Proc. of SPIE Vol, vol. 5913, pp. 59 131V–1,

2005.
[37] A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and

T. D. Murphey, “Real-time area coverage and target
localization using receding-horizon ergodic exploration,”
arXiv preprint arXiv:1708.08416, 2017.

[38] M. Oispuu, M. Sciotti, and A. Charlish, “Air route se-
lection for improved air-to-ground situation assessment,”
SPIE Defense, Security, and Sensing, pp. 87 420M–
87 420M, 2013.

[39] F. Vanegas Alvarez, “Uncertainty based online planning
for UAV missions in GPS-denied and cluttered envi-
ronments,” Ph.D. dissertation, Queensland University of
Technology, 2017.

[40] P. Tichavsky, C. H. Muravchik, and A. Nehorai, “Poste-
rior Cramér-Rao bounds for discrete-time nonlinear fil-
tering,” IEEE Transactions on Signal Processing, vol. 46,
no. 5, pp. 1386–1396, 1998.

[41] M. Hernandez, “Performance bounds for target tracking:
computationally efficient formulations and associated
applications,” Integrated Tracking, Classification, and
Sensor Management: Theory and Applications, pp. 255–
310, 2012.

[42] S. M. Esmailifar and F. Saghafi, “Cooperative localiza-
tion of marine targets by UAVs,” Mechanical Systems
and Signal Processing, vol. 87, pp. 23–42, 2017.

[43] F. Koohifar, A. Kumbhar, and I. Guvenc, “Receding
horizon multi-UAV cooperative tracking of moving rf
source,” IEEE Communications Letters, vol. 21, no. 6,
pp. 1433–1436, 2017.

[44] A. Albert and L. Imsland, “Performance bounds for
tracking multiple objects using a single UAV,” 2017, pp.
1539–1546.

[45] A. Gelb, Applied optimal estimation. MIT press, 1974.
[46] F. Leira, T. A. Johansen, and T. I. Fossen, “Automatic

detection, classification and tracking of objects in the
ocean surface from uavs using a thermal camera,” 2015.

[47] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla,
M. I. Jordan, and S. S. Sastry, “Kalman filtering with
intermittent observations,” IEEE Transactions on Auto-
matic Control, vol. 49, no. 9, pp. 1453–1464, 2004.

[48] R. S. Irving, Integers, polynomials, and rings: A course
in algebra. Springer Science & Business Media, 2003.

[49] D.-S. Chen, R. G. Batson, and Y. Dang, Applied integer
programming: Modeling and solution. John Wiley &
Sons, 2010.

[50] J. R. Dormand and P. J. Prince, “A family of embedded
Runge-Kutta formulae,” Journal of Computational and
Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980.

[51] J. Löfberg, “YALMIP : A toolbox for modeling and op-
timization in MATLAB,” in Proceedings of the CACSD
Conference, 2004.

[52] “IBM Ilog CPLEX optimization studio CPLEX user’s
manual,” http://www.ibm.com, 2015, accessed: 2015-09-
12.

[53] L. F. Shampine and M. W. Reichelt, “The matlab ODE
suite,” SIAM Journal on Scientific Computing, vol. 18,
no. 1, pp. 1–22, 1997.

[54] J. Andersson, “A General-Purpose Software Framework

15

for Dynamic Optimization,” PhD thesis, Arenberg Doc-
toral School, KU Leuven, Department of Electrical En-
gineering (ESAT/SCD) and Optimization in Engineering
Center, Kasteelpark Arenberg 10, 3001-Heverlee, Bel-
gium, October 2013.

[55] A. Wächter and L. T. Biegler, “On the implementation
of an interior-point filter line-search algorithm for large-
scale nonlinear programming,” Mathematical Program-
ming, vol. 106, no. 1, pp. 25–57, 2006.

[56] A. Punyawee, C. Panumate, and H. Iida, “Finding com-
fortable settings of snake game using game refinement
measurement,” International Conference on Computer
Science and its Applications, pp. 66–73, 2016.

[57] T. I. Fossen, Handbook of marine craft hydrodynamics
and motion control. John Wiley & Sons, 2011.

