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Abstract
In this thesis we will study wavelet techniques for image classification in ultra-

sound(US) images. The aim is to develop a method for classifying the degree of
inflammation in finger-joints.

We develop and apply the techniques of the windowed scattering transform.
This is a wavelet-based technique which is proven to be very efficient in image
classification problems. Both theoretical and numerical sides have been consid-
ered. We also discuss other possible techniques for classification of US images, in
particular a method based on the area of inflammation.
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Chapter 1

Introduction

In this thesis we will study methods for classification of ultrasound(US) images of
finger-joints. Medical doctors use these images to see if a patient can be diagnosed
with synovitis. Synovitis is a type of inflammation occurring in finger-joints. The
diagnose is divided into classes depending on the severity of the inflammation. US
images are provided from a research project called Medusa, whose purpose is to
develop a software for recognition and classification of synovitis.

To study these images we suggest the approach related to the windowed scat-
tering transform. This modern technique was first published in 2012 by Stéphane
Mallat and his research group at Ecole Polytechinqe, and has proven to be very
efficient in a broad range of classification problems. Another method for classifi-
cation based on the area of inflammation will also be discussed.

The thesis is structured in the following way: The first part contains a review
of the theory. A background for the project is given in Chapter 2. Here we present
the medical aspects of this project, and problems with existing classification meth-
ods. We give a general introduction to the classification methods studied in this
thesis, and compare the scattering method with a human vision approach. In
Chapter 3 we give a presentation of wavelet theory in one and two dimensions.
This chapter introduces scattering wavelets, which are the building blocks for the
windowed scattering transform. Application to edge-detection will also be dis-
cussed. Edge-detectors will be used as a tool to estimate the area of inflammation
in the images. The windowed scattering transform will be introduced in Chapter 4.
Outline of the construction and a pure analytic analysis will be provided. We will
prove that the windowed scattering transform provides a representation which is
locally translation invariant, stable to additive noise and stable to deformations.
In addition, a proof that the energy is concentrated along frequency-decreasing
paths will be presented.

In the second part we give a formulation of the theory applied to digital images.
This is covered in Chapter 5. We will study the discrete version of the windowed
scattering transform. In the end of this chapter we will show how statistical
methods such as principal component analysis(PCA) may be applied in order to
classify images.

In the final part we present the results from the classification algorithms. This
includes an analysis of optimal parameters and an evaluation of the methods. The

1
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results show that scattering coefficients provides an efficient way to classify US
images based on the degree of inflammation.



Chapter 2

Background

2.1 Synovitis

(a) Illustration of region
where US images are taken.

(b) US image of finger joint. (c) US image of finger joint.
Contour of inflammation is
highlighted.

Figure 2.1: Illustration of region where US images are taken, and a typical
US image of synovitis.

Joint disorders involving inflammation is called arthritis. Examples of such
disorders are osteoarthritis and rheumatoid arthritis. When the inflammation
occurs in the synovial membrane, which is the soft tissue found between the most
movable joints, the inflammation is called synovitis. Synovitis may cause pain,
limit the movement of the joints, and eventually erosion of the joint surface may
cause loss of functioning. According to the US National Library of Medicine, as
much as 6% of the population in the UK suffers from synovitis. The prevalence is
highest among the elderly.

To detect synovits, US images are taken in the region illustrated in Figure
2.1(a). Figure 2.1(b) shows a typical US image of synovitis, and the contour of
the inflammation is highlighted in Figure 2.1(c).

The inflammation is classified into four categories depending on the degree of
inflammation:

0. No/little inflammation

3
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(a) Degree 0: No/little inflammation. (b) Degree 1: Some inflammation.

(c) Degree 2: Inflammation. (d) Degree 3: Severe inflammation.

Figure 2.2: Phantom images of typical development of synovitis from degree
0 to degree 3.

1. Some inflammation

2. Inflammation

3. Severe inflammation

Figure 2.2 illustrates phantom images of the typical development of synovitis from
degree 0 to 3. The black area represents the inflammation. Figure 2.2(a) shows an
image with inflammation degree 0. Here one often sees a tiny vascular region in the
finger-joint. For synovitis of degree 1 (Figure 2.2(b)), the inflammation expands
along the right finger bone, whereas for degree 2 (Figure 2.2(c)) the inflammation
expands along the finger bone in both directions. For degree 3 (Figure 2.2(d))
there is also expansion towards the fat and tendon.

The shape and area of the inflamed region characterize a particular degree of
inflammation. For example, an image with degree 1 should have the same shape
and area as the phantom image in Figure 2.2(b). However, variations should be
expected.

2.1.1 Medical challenges
Rheumatologists, which are medical doctors specialized rheumatic diseases, di-
agnose a patient with synovitis based on an analysis of the US images. These
rheumatologists are well trained to recognize synovitis. However, they are en-
countering the following problems when trying to detect and classify the degree of
inflammation:

• A diagnose given by a medical doctor may not be validated/confirmed.
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• A diagnose given by a medical doctor is highly subjective, meaning that
different doctors may give different diagnoses based on the same image.

It is therefore preferable to develop an independent procedure for validating a
diagnosis, so that medical doctors can minimize medication and treatment errors.

2.1.2 Available images
US images are provided from a research project called Medusa. The goal of this
project is to develop a software which can be used by medical doctors as a tool to
determine the right diagnosis involving synovitis. The total amount of available
images from this project is well over 2000. However, this project is still in an early
phase, so that only a few images have been analyzed. To test our classification
methods, we need information about the inflammation degree in all the images
we are testing, so that we can say whether images are classified correctly by our
algorithm. The total amount of classified images are 296. Moreover, for each image
there is a corresponding image where the inflamed region is annotated, such as in
Figure 2.1(c).

2.2 Recognition based on human vision
To classify images, we need to be able to recognize features in the images which are
specific within each class. A conjecture proposed in [PMA+12] states the following
about object recognition:

The ”main” difficulty of recognition, in the sense of sample complexity,
of object categorization is due to all the transformations that the image
is usually subject to: translation, scale, illumination and rotations.

This conjecture implies that if all images of objects are rectified with respect
to these transformations, then object recognition and classification are easy. In
[PMA+12] they argue that the ventral stream in the human brain is invariant
to these transformations. Hence, by studying how the ventral stream processes
images, we may get a hint on how to develop an efficient algorithm for image
classification.

2.2.1 Visual perception
In this section we will give a brief introduction to how the human brain processes
images, and how it recognizes objects. An illustration of this process is provided
in Figure 2.3. The theory is taken from [KSJS00].

Light emitted by objects is sent through the lenses of the eye, and onto the retina
at the back end of the eye. The retina consists of many receptive fields, which
again consists of many receptors. Each receptive field is connected to one neuron
called a ganglion cell, who’s job is to transmit information from the eye to the
brain. When light hits the retina, it activates these receptors. Each combination
of receptors in the receptive field causes the ganglion cell to fire a unique nerve
impulse which travels along fibres called LGN, all the way to the visual cortex.
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Figure 2.3: Illustration of how the brain process images: Ganglion cells trans-
mit signal from the retina to the primary visual cortex V1, through LGN fibres.
The signal is processed and sent along two pathways, the dorsal pathway and

the ventral pathway.

The visual cortex, which is located in the back of the brain, is the part re-
sponsible for processing visual information. The visual cortex is divided into the
primary visual cortex V1, and the extra-striate visual cortical areas, V2 -V5. The
information sent from the retina is mapped to a grid in the primary visual cortex
consisting of hypercolumns. Each hypercolumn analyzes information from a small
region of the retina, and extracts information about stereopsis(visual depth), color
and orientation of line segments.

The analysis of orientation of line segments is done by simple and complex
cells. Simple cells are highly specialized and will be activated by a particular
orientation in the image. In 1985, John Daugman discovered that simple cells,
could be modelled as two-dimensional Gabor wavelets [Dau85]. Several simple
cells with the same orientation converge together and form complex cells.

After the signal has been analyzed by these hypercolumns, it is sent further
down two ”pathways”. One of these pathways, known as the ventral pathway, or
ventral stream, is the process associated with object recognition and classification.
This path starts in V1, goes through V2 and V4 and ends in the temporal lobe.
This is where for instance the hippocampus is located, and is associated with
visual memories.

The key to understand how the brain is able to recognize specific objects, lies in
the ventral stream. What really happens is still an open question. What they do
know is that some kind of invariant structure is being built. As an example, the
human brain recognizes a specific face, despite changes in viewpoint, illumination
or expression. Change of viewpoint may be formulated as a translation of the
signal, a change in expression is the same as a small deformation of the signal,
and a change in the illumination can be viewed as additive noise. Formally, we
can say that the brain is invariant, or at least stable under these transformations.
This is discussed in more detail in [PMA+12].

Below we formulate the main steps of the image recognition process performed
by the human brain. We also propose a corresponding image recognition algorithm
which could be implemented on a computer.
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Brain Computer

1. Image is captured by the eye and
sent to the retina.

2. Receptors are activated and
transmit the signal to the visual
cortex. The signal is mapped
onto a grid formed by hyper-
colmns.

3. Simple cells extract information
about orientation of line seg-
ments.

4. Information is sent along the
ventral stream, and invariant
structure is built.

1. Consider an image function f .

2. Digitalize image f so that it is
accessible for a computer.

3. Using two-dimensional Gabor
wavelets, calculate the wavelet
transform of the image f .

4. Apply the windowed scattering
transform.

As we will see, this procedure has many similarities with the approach studied
in this thesis. What happens in the ventral stream is not fully understood, however
the windowed scattering transform may provide a partial answer.

2.3 Classification methods
We treat grey images as continuous functions in L2(R2). If f ∈ L2(R2) is an
image, then the value f(x, y) represents the intensity at the spatial coordinate
(x, y). To classify images we need some kind of metric to measure the distance
between them. It should be so that images which belong to the same class are
close, and images which belong to different classes are distant. The idea is to look
at the variability within each class, and try to find a representation of these signals
where this variability is reduced. In order to do so, we construct a Hilbert space
H, and an operator Φ : L2(R2) → H. The operator should be so that if f and g
belong to the same class then the distance ‖Φ(f) − Φ(g)‖H is small, where as if
they belong to different classes, the distance should be large.

2.3.1 Classification based on the area of inflammation
The first method builds on the fact that the area of the inflamed region is depen-
dent on the degree of inflammation, i.e that larger area means higher degree of
inflammation. In this case, one should be able to classify images based on the area



Chapter 2. Background 8

of the inflammation, that is

Φ(f) = area of inflammed region.

As the area is just a positive real number, the Hilbert spaceH will be the Euclidean
space R, with the usual inner product.

An edge-detector is applied to locate the boundary of the inflamed region. Some
problems related to detection of the correct boundary, and how these problems are
solved will be discussed in Section 5.2.1. With information about the boundary, the
area may be calculated by using a discrete version of Greens formula. Predication
intervals are computed for each class, and a new image is classified according to
minimum distances to these intervals.

An edge-detector will be presented in Section 3.2. This edge-detector uses
wavelets to detect sharp transitions in signals. An introduction to wavelets is
given in section 3.1.

2.3.2 Classification based on scattering coefficients
The other method builds on the same principles as how the brain recognizes ob-
jects. Based on visual perception we know that the brain perceives two objects as
the same if one is translated, slightly deformed or illuminated.

This variability can be reduced by considering the scattering coefficients. Scat-
tering coefficients provide a representation of an image which is locally translation
invariant, stable to additive noise and stable to the action of diffeomorphisms.
They are computed by cascading wavelet transforms with a non-linear modulus
along different scales and orientations. The output is then averaged by a low-pass
filter whose support is proportional to the amount of translation invariance. In
Chapter 4 we will present the windowed scattering transform which transforms an
image into its scattering coefficients. The building blocks of this transformation
are scattering wavelets, which will be presented in Section 3.3. The idea behind
the windowed scattering transform is due to Stéphane Mallat and his research
group at Ecole Polytechinqe. The main theory is taken from the article [Mal12]
and the doctoral thesis [Bru12].

The output from the windowed scattering transform is a family of functions in
L2(R2), so that the Hilbert space H will be the product space generated by copies
of L2(R2). When applying the windowed scattering transform to digital images,
the output will be a finite number of discrete functions. In this case the Hilbert
space H becomes RN for some N ∈ N. A survey of how to compute the scattering
coefficients of digital images is presented in Chapter 5.

If each image is represented as a point in the Hilbert space H, each class can be
represented as a regular manifold. To classify images, we will approximate each
regular manifold by an affine space based on principle component analysis(PCA).
This statistical method uses eigenvectors of the variance-covariance matrix to ap-
proximate the scattering coefficients. For each class there will thus be a corre-
sponding affine space.

In Figure 2.4, an illustration of this process with three classes is provided. Each
image is represented by a point in the plane, and images belonging to the same
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(c) Approximation of sub-
spaces through e.g. PCA.

Figure 2.4: Illustration of the steps in image classification.

class have the same color. In Figure 2.4(a), the images are seemingly randomly
distributed. When applying the windowed scattering transform, images belonging
to the same class are clustered together, see Figure 2.4(b). In Figure 2.4(c) we see
the approximation of these clusterings by affine spaces(in this case, lines).

To classify a new image, one classifies it based on projections on these affine
spaces. The class corresponding to the affine space that is closest to the new image
will be the class for which we classify this new image.

Mallat and his research group have developed a toolbox for Matlab called Scat-
Net [ASM+14] which we will use to test this method on US images of finger-joints.

In the next chapter we will present our main tool in the quest of constructing
the operator Φ, namely wavelets.



Chapter 3

Wavelets

This chapter surveys some basic wavelet theory. The first chapter introduces the
wavelet transform in one and two dimensions.

Applications to edge-detection will be covered in Section 3.2, where we present
the Canny edge-detection algorithm [Can86]. The last section introduces scat-
tering wavelets. These wavelets will be the building blocks for the windowed
scattering transform which will be defined in Chapter 4.

The theory for the one-dimensional wavelet transform is mainly taken from
[Mal09]. When constructing the scattering wavelets in Section 3.3, one wavelet
is dilated and translated along different orientations. As this construction is also
applicable to the wavelet used in the Canny edge-detection algorithm, we will
limit ourself to this construction. The main theory for two-dimensional wavelets
is taken from [AMVA04].

3.1 Introduction
We will start with wavelet theory for one-dimensional signals, and thereafter ex-
tend this theory to two dimensions.

3.1.1 Wavelets in one dimension
Definition 3.1. [Mal09, p.102] A one-dimensional wavelet is a function ψ ∈
L1(R) ∩ L2(R) with zero average ∫

R
ψ(x)dx = 0. (3.1)

A dilated and translated wavelet is written

ψu,s(x) = s−1/2ψ
(
x− u
s

)
, (u, s) ∈ R× R+. (3.2)

The factor s−1/2 ensures that ‖ψu,s‖L2 = ‖ψ‖L2 . The one-dimensional wavelet
transform is obtained as the inner product of a signal f with a dilated and trans-
lated wavelet ψ.

10
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Definition 3.2. [Mal09, p.102] The wavelet transform of f ∈ L2(R) at position
u and scale s is

Wf(u, s) = 〈f, ψu,s〉 =
∫
R
f(x)s−1/2ψ∗

(
x− u
s

)
dx, (3.3)

where ψ∗(x) denotes the complex conjugated of ψ(x).

If we define ψ̄s(x) = s−1/2ψ∗
(
−x
s

)
, then we see that the wavelet transform can

be written as a convolution,

Wf(u, s) =
∫
R
f(x)s−1/2ψ∗

(
x− u
s

)
dx =

∫
R
f(x)ψ̄s(u− x)dx = f ∗ ψ̄s(u). (3.4)

The wavelet transform is invertible if the wavelet satisfies the admissibility
condition given in Definition 3.3.
Definition 3.3. [AMVA04, p.6] A one-dimensional wavelet ψ is called admissible
if

Cψ =
∫ ∞
−∞

|ψ̂(ω)|2
|ω|

dω < +∞. (3.5)

Here ψ̂ denotes the Fourier transform of the wavelet ψ. Most authors define a
wavelet as a function which satisfies the admissibility condition. We will however
follow the definition given in [Mal09].
Example 3.1. An important wavelet in edge-detection is the first derivative of
the Gaussian,

ψ(x) = x√
2π
e−

x2
2 . (3.6)

Since

ψ̂(ω) = −iωe−ω
2

2 ,

we see that

Cψ =
∫ ∞
−∞

|ψ̂(ω)|2
|ω|

dω =
∫ ∞
−∞
|ω|e−ω2

dω

= 2
∫ ∞

0
ωe−ω

2
dω =

∫ ∞
0

e−ξdξ = 1 <∞.

Hence ψ is an admissible wavelet.

3.1.2 Wavelets in two dimensions
As in one dimension, a two-dimensional wavelet will be defined as a function in
L2(R2) ∩ L1(R2) with zero average.
Definition 3.4. [AMVA04, p.34] A two-dimensional wavelet is a function ψ ∈
L1(R2) ∩ L2(R2) with zero average∫

R2
ψ(x)dx = 0. (3.7)
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The wavelet transform will be constructed by dilating, rotating and translating
the wavelet. A dilated, rotated and translated wavelet is written

ψu,s,θ(x) = s−1ψ
(
r−1
θ

(
x− u
s

))
, (s, u, rθ) ∈ R+ × R2 × SO(2), (3.8)

where

SO(2) =
{
rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
: θ ∈ [0, 2π)

}
.

The normalization is chosen with respect to the L2-norm, i.e ‖ψu,s,θ‖L2 = ‖ψ‖L2 .

Definition 3.5. [AMVA04, p.36] The wavelet transform of f ∈ L2(R2) at position
u, scale s, and orientation θ is

Wf(u, s, θ) = 〈f, ψu,s,θ〉 =
∫
R2
f(x)s−1ψ∗

(
r−1
θ

(
x− u
s

))
dx. (3.9)

The two dimensional admissibility condition is given in Definition 3.6.

Definition 3.6. [AMVA04, p.34]A two-dimensional wavelet ψ is called admissible
if

Cψ =
∫
R2

|ψ̂(ω)|2
|ω|2

dω < +∞. (3.10)

Translation, dilation and rotation are unitary operations, and will therefore
preserve the admissibility condition. Hence, if ψ is a wavelet then ψu,s,θ is again
a wavelet. Moreover, the linear span of the family {ψu,s,θ : (s, u, rθ) ∈ R+ × R2 ×
SO(2)} is a dense subspace of L2(R2) [AMVA04, p.35].

The admissibility condition (3.10) ensures that one can reconstruct the original
signal from its wavelet transform. For admissible wavelets we have the reconstruc-
tion formula

f(x) = 1
Cψ

∫
R+×R2×SO(2)

ψu,s,θ(x)Wf(u, s, θ)duds
s3 dθ. (3.11)

If one inserts this formula into the wavelet transform (3.9) one gets the reproduc-
tion property

Wf(u0, s0, θ0) =
∫
R+×R2×SO(2)

K(u, u0, s, s0, θ, θ0)Wf(u, s, θ)duds
s3 dθ. (3.12)

The kernel K(u, u0, s, s0, θ, θ0) = C−1
ψ 〈ψu,s,θ, ψu0,s0,θ0〉 is called the reproducing

kernel. This property implies that the wavelet transform is a highly redundant
representation. Indeed, with knowledge about the wavelet transform at a given
point (u, s, θ) one can find the wavelet transform in neighbouring points (u0, s0, θ0),
with K(u, u0, s, s0, θ, θ0) 6= 0. Therefore one can restrict the wavelet transform to
a subset of discrete points without any loss of information.
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First, consider a finite group of rotations, G ⊂ SO(2), e.g for fixed K ∈ N,

G =
{
rk : rk =

(
cos θk − sin θk
sin θk cos θk

)
, θk = 2πk

K
, k = 0, 1 · · ·K − 1

}
, (3.13)

and write

ψu,s,θk(x) = ψku,s(x), and W kf(u, s, θ) = 〈f, ψku,s〉.

Proposition 3.7. [AMVA04, p.66] Let ψ be a two-dimensional wavelet, and K ∈
N. If there exist two constants 0 < A ≤ B <∞ such that

∀ω ∈ R2 − {(0, 0)}, A ≤
K∑
k=1

∞∑
j=−∞

|ψ̂k(2jω)|2 ≤ B, (3.14)

then
A‖f‖2

L2 ≤
∞∑

j=−∞

K∑
k=1

2−2j‖W kf(·, 2j)‖2
L2 ≤ B‖f‖2

L2 . (3.15)

Moreover, define ψ̃k via the relation

∞∑
j=−∞

K∑
k=1

ψ̂k
∗
(2jω) ̂̃ψk(2jω) = 1, ∀ω ∈ R2 − {(0, 0)}. (3.16)

Then the following reconstruction formula holds

f(x) =
∞∑

j=−∞

K∑
k=1

2−2j(W kf(·, 2j) ∗ ψ̃k2j)(x). (3.17)

Proof. First note that if ψ̄ks (x) = ψk∗s (−x), then

W kf(u, s) = 〈f, ψku,s〉 = f ∗ ψ̄ks (u).

Let

φkj (ω) = ̂W kf(·, 2j)(ω) = ̂̄
ψk2j(ω)f̂(ω).

The Fourier transform ̂̄
ψk2j(ω), will be computed in detail,

̂̄
ψk2j(ω) = 2−j

2π

∫
R2
ψ∗(−2−jr−1

θk
x)e−i〈ω,x〉dx.

With the change of variables, y = −2−jr−1
θk
x, the Jacobian matrix is given by

D =
(
−2−j cos θk 2−j sin θk
−2−j sin θk −2−j cos θk

)
, detD = 2−2j.
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Hence

̂̄
ψk2j(ω) = 2j

2π

∫
R2
ψ∗(y)ei〈ω,2jrθky〉dy =

(
2j
2π

∫
R2
ψ(y)e−i〈ω,2jrθky〉dy

)∗
.

The adjoint of a rotation matrix rθk equals its inverse, hence

̂̄
ψk2j(ω) = 2j

( 1
2π

∫
R2
ψ(y)e−i〈2

jr−1
θk
ω,y〉

dy
)∗

= 2jψ̂k
∗
(2jω). (3.18)

Consequently

φkj (ω) = 2jψ̂k
∗
(2jω)f̂(ω).

Applying condition (3.14) shows that

A|f̂(ω)|2 ≤
∞∑

j=−∞

K∑
k=1

2−2j|φkj (ω)|2 ≤ B|f̂(ω)|2.

Integration with respect to ω and applying Parevals equality(A.11) yields (3.15).
Taking the Fourier transform on both sides of (3.17) gives

f̂(ω) =
∞∑

j=−∞

K∑
k=1

f̂(ω)ψ̂k
∗
(2jω) ̂̃ψk(2jω).

Condition (3.16) implies that (3.17) indeed holds.

Condition (3.14) implies that restricting the wavelet transform to dyadic scales
gives possibility to reconstruct the original signal from its wavelet transform.
Moreover, the upper bound B <∞, insures that the map f 7→ {2−jW kf(·, 2j)} is
continuous. The lower bound A > 0, implies that the coefficients {2−jW kf(·, 2j)}
are numerically stable.

One way to interpret condition (3.14) is that the two-dimensional Fourier plane
needs to be covered by dyadic dilations of ψ̂k for k = 1, 2, · · · , K. A two-
dimensional wavelet transform, with a wavelet satisfying condition (3.14) will be
referred to as a stable representation.

The following example will be important in the next section where we will see
how wavelets can be used to detect edges in an image.

Example 3.2. For x = (x1, x2) ∈ R2, let

ψ(x) = 〈x, (1, 0)〉
2π e−

|x|2
2 . (3.19)



Chapter 3. Wavelets 15

As ψ is antisymmetric, it is easy to verify that it has zero average, and hence is a
wavelet. The wavelet will be rotated by 0 and π

2 radians. Let

r1 =
(

cos(0) − sin(0)
sin(0) cos(0)

)
=
(

1 0
0 1

)
, r−1

1 =
(

1 0
0 1

)
,

r2 =
(

cos(π2 ) − sin(π2 )
sin(π2 ) cos(π2 )

)
=
(

0 −1
1 0

)
, r−1

2 =
(

0 1
−1 0

)
,

and define

ψ1(x) = ψ(r−1
1 x) = x1

2πe
− |x|

2
2 (3.20)

ψ2(x) = ψ(r−1
2 x) = x2

2πe
− |x|

2
2 . (3.21)

Since ψ̂k(ω) = −iωke−
|ω|2

2 , the series
∞∑

j=−∞
|ψ̂k(2jω)|2 =

∞∑
j=−∞

|2jωk|2e−22j−1|ω|2 , k = 1, 2

is convergent for all ω ∈ R2. Moreover, since |2jω|2e−22j−1|ω|2 > 0 for all ω ∈
R2 − {(0, 0)}, the series is bounded from below by a positive constant A for any
ω ∈ R2 − {(0, 0)}. Hence we have a stable representation.

3.2 Wavelets in edge detection
The main goal of this thesis is to develop a method for classifying US images of
finger-joints according to the degree of synovits. The degree of this inflammation
depends on the shape and area of the inflamed region. It is therefore interesting to
see if it is possible to classify images based on the area. To find this area we will
use an edge-detection algorithm to detect the boundary of the inflamed region.
The area can the be calculated by using Greens formula.

We will first explain how wavelets are able to detect edges in one-dimensional
signals.

3.2.1 Catching edges
Edge-points are points where the function changes rapidly. We know that rate
of change is characterized by the derivative of the function. In other words, we
will look for local maxima and minima of the derivative. Consider the Heaviside
function

H(x) =

1 if x ≥ 0,
0 if x < 0,

(3.22)

which is plotted in Figure 3.1(a). This function has a sharp transition at the
origin, but as it is discontinuous it is not differentiable everywhere. To overcome
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(a) H(x). (b) (H ∗ θ)(x). (c) d
dx

(H ∗ θ)(x).

Figure 3.1: Plot of the Heaviside function, a smoothed heaviside function
and the derivative of the smoothed function.

this problem, we can exploit a useful property of the convolution operation, namely
if f ∈ L2(R) and g ∈ Cn(R), then their convolution is n times differentiable (A.9).

Let θ be the Gaussian convolution kernel,

θ(x) = 1√
2π
e−

x2
2 . (3.23)

Since θ ∈ C∞(R), the convolution H ∗ θ(x) is differentiable.
In Figure 3.1(b) we see a plot of the function H ∗ θ(x). The derivative d

dx
(H ∗

θ)(x) is illustrated in Figure 3.1(c). From this we see that the derivative has a
maximum at the origin which indicates that we have an edge located there.

Another property of the convolution operation is that (A.9),

d

dx
(f ∗ θ)(x) = f ∗ θ′(x).

We identify the wavelet

ψ(x) = − d

dx
θ(x) = x√

2π
e−

x2
2 . (3.24)

This is the same wavelet as the one defined in Example 3.1. The corresponding
wavelet transform may be written as

Wf(u, s) = f ∗ ψ̄s(u) = s
d

du
(f ∗ θ̄s)(u),

where θ̄s(x) = s−1/2θ
(
−x
s

)
= s−1/2θ

(
x
s

)
.

In Figure 3.2(a) we see the graph of the wavelet ψ. In Figure 3.2(b) we see the
Heaviside function and the wavelet at scale s = 1, translated at position x = 0
and x = 10. At a given point u ∈ R, the convolution can be viewed as the area
under the graph f(x)ψ(x−u). As ψ(x) is concentrated around x = 0, the product
f(x)ψ(x − u) is non-negligible only at an interval around x = u. If f is constant
at that interval, the integral will be approximately zero since the wavelet has zero
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(a) ψ(x) = − d
dx
θ(x). (b) Visualization of how the wavelet can be used to detect edges

in a signal.

Figure 3.2: Figure 3.2(a) shows a plot of the wavelet corresponding to the
first derivative of the Gaussian. Figure 3.2(b) illustrates how this wavelet can

be used for edge-detection.

average. This is the case when u = 10 in Figure 3.2(b). At u = 0, f has a rapid
change. As ψ is odd, the difference between the function f(x)ψ(x−u) at u < 0 and
u > 0 will be large, and maximal at u = 0. The output of the wavelet transform
is thus concentrated near the edge point.

Since the wavelet transform may be negative or complex, edges are detected by
searching for local maxima of the wavelet modulus |Wf(u, s)|.

Definition 3.8. [Mal09, p.231] A wavelet modulus maximum is defined as a point
(u0, s0), where |Wf(u, s0)| has a local maximum at u = u0.

In [Can86], edge points are thus defined in the following way:

Definition 3.9. [Can86] Let f ∈ L2(R) and let θ be the Gaussian convolution
kernel defined in 3.23. A point x0 is said to be an edge point at scale s, if the
derivative | d

dx
(f ∗ θs)(x)| has local maximum at x0.

This implies that the edge-points are the wavelet modulus maxima computed
with the wavelet defined in (3.24).

An advantage of introducing the wavelet concept is that we can vary both the
spatial variable u, and the scale variable s. By varying the scale variable we can
zoom in on the function, and detect finer structure. Let us illustrate this with an
example.

Example 3.3. Consider the signal, illustrated in Figure 3.3(a),

f(x) =


1 if x ≥ 0,
0.2 if − 0.5 ≤ x < 0,
0 if x < −0.5.

(3.25)

This function has an edge point at x = 0 and x = −0.5. At a coarse scale, that is
for large values of s, the wavelet transform detects the main features in the signal.
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(a) f(x). (b) Wf(u, s), for s

large.
(c) Wf(u, s), for s

small.

Figure 3.3: A plot of the function (3.25), and the corresponding wavelet
transform at coarse and fine scale.

Figure 3.3(b) shows that there is an edge close to the origin. However, by zooming
in, i.e decreasing the scale, information about the additional edge is emerging, see
Figure 3.3(c).

In noisy images such as ultrasound images, this zooming property is key to
detect the correct edges.

3.2.2 Edge detection in images
The extension from one-dimensional signals to two-dimensional signals is straight
forward. If f : R× R→ R is a continuously differentiable function, let us denote
the gradient of f as

~∇f =
(
∂f

∂x1
,
∂f

∂x2

)
,

and the directional derivative in the direction ~n = (n1, n2) is

∂f

∂~n
= ~∇f · ~n = ∂f

∂x1
n1 + ∂f

∂x2
n2, |~n| = 1.

At any point (x1, x2), the direction of the maximal change is given by the direction
of the gradient, and hence the directional derivative will be maximal if ~∇f and ~n
are collinear.

To detect edges in a two-dimensional signal, one can use a similar approach
as when detecting singularities in a one-dimensional signal. Let θ be the two-
dimensional Gaussian function

θ(x1, x2) = 1
2πe

−
x2
1+x2

2
2 . (3.26)
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Define two functions ψ1 and ψ2 as the negative of the partial derivatives of this
function, see Example 3.2. If θ̄s = s−1θ(−s−1x), then

ψ̄ks (x) = s−1ψk(−s−1x) = ∂θ

∂xk
(−s−1x) = ∂θ̄

∂xk
(s−1x) = s

∂θ̄s
∂xk

(x).

Hence

Wf(u, s) =
(
W 1f(u, s)
W 2f(u, s)

)
= s

(
∂
∂u1

(f ∗ θ̄s)(u)
∂
∂u2

(f ∗ θ̄s)(u)

)
= s~∇(f ∗ θ̄s)(u). (3.27)

The modulus Mf(u, s) will be the length of this vector

Mf(u, s) =
√
|W 1f(u, s)|2 + |W 2f(u, s)|2, (3.28)

and the direction of the maximal change is given by the angle

Af(u, s) =

α(u) if W 1f(u, s) ≥ 0,
π + α(u) if W 1f(u, s) < 0,

(3.29)

where
α(u) = tan−1

(
W 2f(u, s)
W 1f(u, s)

)
. (3.30)

We define an edge point as a local maximum of Mf in the direction Af .

Definition 3.10. [Can86] Let f ∈ L2(R2) and let θ be the two-dimensional Gaus-
sian kernel defined in 3.26. A point x0 ∈ R2 is said to be an edge point if it is a
local maximum (in the direction ~n) of the function ~n · ~∇(f ∗ θ̄s)(x). This implies
that

∂

∂~n
Wf(u, s) = 0.

The direction ~ns(u) = (cosAf(u, s), sinAf(u, s)) will be the direction in which
we have a modulus maxima. Thus the modulus maxima will be inflection points
of (f ∗ θ̄s)(u).

In 1986 John Canny[Can86] published an article where he presented this edge-
detection algorithm. This algorithm will therefore be referred to as the Canny
edge-detector.

The Canny edge-detector computes modulus maxima on a fixed scale s, and
stores the position u of each modulus maxima together withMf(u, s) andAf(u, s).
Edge points with a low amplitude are usually caused by noise, or small transitions
in the image. To detect significant edges a thresholding of the amplitude of the
modulus maxima is applied.

When doing this kind of thresholding, variations in the amplitude along the
boundary of an object may cause the boundary-line to break. This phenomena is
called streaking. This is improved by introducing two different thresholds, Thigh
and Tlow, with Tlow < Thigh. If the amplitude of the modulus maxima is above
the high threshold Thigh, then it should immediately be marked as an edge. If
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Figure 3.4: Plot images from Example 3.4.

the amplitude of the modulus maxima is above the low threshold Tlow, and in
addition connected to a line segment in which some of the points are above the
high threshold it should also be marked as an edge.

3.2.3 Detecting the boundary of the inflamed region
We want to apply the Canny edge-detector to detect the boundary of the inflam-
mation in US images of finger-joints. US images usually contain a lot of noise due
to the coherent nature of the ultrasound radiation. This noise can be viewed as a
random process which is added to the image.

In the next example we will illustrate the use of the Canny edge-detector with a
simple example, and also show that noise gives rise to some additional difficulties
when trying to detect the correct edges.

Example 3.4. Consider the box illustrated in Figure 3.4(a). The cross-section
in Figure 3.4(b) tells us that there is an edge on each side on the boundary of
the box. In Figure 3.4(c), the same box is illustrated with added Gaussian white
noise.

The Canny edge-detector is first applied at different scales with fixed thresholds,
Thigh = 0.4 and Tlow = 0.1. The output from the edge-detector applied to the noise-
free image is presented in Figure 3.5. This figure shows that increasing the scale
gives a poorer localization of the boundary of the box.

The output from the edge-detector applied to the noisy image is illustrated
in Figure 3.6. Here we see that increasing the scale variable will remove high
frequency oscillations, represented as noise.

Instead of varying the scale, one can fix the scale s and vary the thresholds.
The output with s = 2−1 = 0.5 and different thresholds is illustrated in Figure
3.7.

This example illustrates why the presence of noise makes it more difficult to
detect the correct edges. To predetermine the values of s, Thigh and Tlow when
noise is present may be difficult. Therefore some experimentation with different
values of these parameters is often necessary to obtain a satisfactory result.
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(c) s = 22 = 4.

Figure 3.5: Output from edge-detector applied to the noise-free image, com-
puted with different scales and fixed thresholds, Thigh = 0.4 and Tlow = 0.1.
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Figure 3.6: Output from edge-detector applied to image with Gaussian white
noise, computed with different scales and fixed thresholds, Thigh = 0.4 and

Tlow = 0.1.
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(c) Thigh = 0.6, Tlow = 0.3.

Figure 3.7: Output from edge-detector applied to image with Gaussian white
noise, computed for different thresholds and fixed scale, s = 2−1 = 0.5.
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Figure 3.8: Canny edge-detector with with different values of s, and fixed
thresholds, Tlow = 0.1 and Thigh = 0.25.
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(c) Tlow = 0.15 and Thigh =
0.25.

Figure 3.9: Canny edge-detector for various thresholds, and fixed scale, s = 4.

In Figure 3.8 and 3.9 we see the edge-detector applied to an US image of
synovitis for different values of s, Thigh and Tlow. We see that there are some
difficulties in detection of the correct edges. In Section 5.2.1 we will discuss this
problem, and how this problem is solved in this thesis.

Once the boundary has been identified, we can estimate the area of inflamma-
tion by using Greens formula

Area =
∫
D
dA = 1

2

∫
C
xdy − ydx. (3.31)

HereD denotes the inflamed region, and C the enclosing boundary curve. Formally
we will define the area of inflammation-operator A : L2(R2)→ R, which takes US
images of finger-joints as input, and outputs the area of the inflammed region. In
Chapter 5 we will describe how this can be done numerically.
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3.3 Scattering wavelets
The two-dimensional wavelet transform used in the Canny edge-detector is com-
puted by rotating a single wavelet along two directions. In this section we will
define scattering wavelets which are constructed in the same way. There will how-
ever be a slight change in the notation in order to be consistent with the notation
used in [Mal12].

Let ψ ∈ L2(R2) be a wavelet. The wavelet transform will be constructed by
dilating the wavelet by dyadic scales, 2j with j ∈ Z. The wavelet is also rotated
by r ∈ G, where G is the rotation group given by (3.13). The following notation
will be used for a dilated and rotated wavelet,

ψλ(x) = 2−2jψ(2−jr−1x) = 2−2jψ(λ−1x), λ = 2jr ∈ 2Z ×G. (3.32)

Here the normalization is chosen with respect to the L1-norm, that is ‖ψλ‖L1 =
‖ψ‖L1 . The Fourier transform of a dilated and rotated wavelet is

ψ̂λ(ω) = ψ̂2jr(ω) =
∫
R2
ψ(y)e−i〈2jr−1ω,y〉dy = ψ̂(2jr−1ω). (3.33)

The windowed scattering transform which will be defined in Chapter 4, can be
defined for general wavelets. Complex wavelets that have the following form

ψ(x) = ei〈η,x〉θ(x), (3.34)

will be of particular interest. This family of wavelets is called Gabor wavelets. Here
θ̂(ω) is a real function supported in a neighborhood of ω = 0, and which vanishes
near zero. This means that ψ has a real and imaginary part which oscillates like
a cosine and a sine respectively. Its Fourier transform ψ̂ = θ̂(ω − η), is real and
concentrated near η.

Example 3.5. An example of a complex wavelet is the Morlet wavelet which has
the following form [BM12]

ψ(x) = αe−
|x|2

2σ2
(
ei〈x,ξ〉 − β

)
. (3.35)

Here σ determines the spread of the Gaussian envelope, ξ determines the oscil-
lation, α is a normalization constant, and β � 1 is usually adjusted so that the
wavelet has zero average. The Fourier transform of the Morlet wavelet is

ψ̂(ω) = α

2π

∫
R2
e−
|x|2

2σ2 e−i〈x,ω−ξ〉dx− αβ

2π

∫
R2
e−
|x|2

2σ2 e−i〈x,ω〉dx

= α

(̂
e−
|x|2
2σ2 (ω − ξ)− β

̂
e−
|x|2
2σ2 (ω)

)

= σ2α
(
e−

σ2|ω−ξ|2
2 − βe−

σ2|ω|2
2

)
.
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Figure 3.10: Real and imaginary parts of the Morlet wavelet (3.35).

By choosing β = e−(σ2|ξ|2)/2 we see that

ψ̂(ω) = σ2αe−
σ2(|ω|2+|ξ|2)

2
(
eσ

2〈x,ω〉 − 1
)
,

so that ψ̂(0) =
∫
R2 ψ(x)dx = 0. If β � 1 then

ψ̂(ω) ≈ θ̂(ω − ξ), θ(x) = αe−
|x|2

2σ2 .

In that case, since

‖θ‖2
L2 = α2

∫
R2
e−
|x|2

σ2 dx = α2πσ2,

we see that ‖ψ‖L2 = 1 if we choose α = π−1/2σ−1. The real and imaginary parts
of the Morlet wavelet are illustrated in Figure 3.10(a) and 3.10(b). Here |ξ| = 3
and σ = 0.85 in which case β ≈ 0.02.

The corresponding wavelet transform is written as a convolution with the
wavelet, which is different from the wavelet transform defined in Definition 3.5. In
[Mal12], Mallat refer to this transform as a Littlewood-Paley wavelet transform.

3.3.1 Littlewood-Paley Wavelet Transform
Definition 3.11. [Mal12] Let G be a finite rotation group and let λ = 2jr ∈ 2Z×G.
The Littlewood-Paley wavelet transform at scale 2j and orientation r ∈ G is given
by

W [λ]f(x) = f ∗ ψλ(x) =
∫
f(u)ψλ(x− u)du =

∫
f(u)2−2jψ(2−jr−1(x− u))du.

(3.36)

If f ∈ L2(R2), then ‖W [λ]f‖L2 ≤ ‖f‖L2‖ψλ‖L1 = ‖f‖L2‖ψ‖L1 , so that W [λ]f ∈
L2(R2). Since this wavelet transform is just a convolution, the Fourier transform
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of W [λ]f is just the product of the Fourier transforms of f and ψλ,

Ŵ [λ]f(ω) = f̂(ω)ψ̂λ(ω).

A wavelet transform at a scale |λ| = 2J only uses wavelets with frequencies
2j > 2−J , and hence the information about the signal at low frequencies is lost.
To recover these low frequencies, an averaging is done over a spatial domain pro-
portional to 2J . Let φ be a real, symmetric and positive function which is con-
centrated near zero in both time and frequency. An example is the Gaussian
function. The dilated function φ2J = 2−2Jφ(2−Jx) is then supported on a domain
of size proportional to 2J . We define the averaging operator at scale 2J as

AJf = f ∗ φ2J . (3.37)

Note that ‖AJf‖L2 ≤ ‖f‖L2‖φ2J‖L1 = ‖f‖L2‖φ‖L1 , so that AJf ∈ L2(R2). The
function φ is also known as the scaling function.
Remark 3.12. In the following we will assume that:
• The wavelet ψ satisfies the admissibility condition for a two-dimensional

wavelet given in Definition (3.6). This condition implies that ψ̂(ω) = O(|ω|),
and ψ̂(0) = 0.

• ψ̂(ω) is real.

• φ̂(ω) is real, symmetric, positive and satisfies φ̂(0) = 1.

• φ and its first partial derivatives are in L1(R2). Since

φ̂(ω) = 1
2π

∫ d

dxk

( 1
−iωi

e−i〈x,ω〉
)
φ(x)dx = 1

−2πiωk

∫
e−i〈x,ω〉

d

dxk
(φ(x)) dx,

this implies that |ω||φ̂(ω)| is bounded.

As images are real signals, we will only consider the case when f is real. In
that case it is easy to see that f̂(−ω) = f̂ ∗(ω). Since ψ̂ is real, we see that
W [−λ]f(x) = W [λ]f ∗(x) = W [λ]f(x), hence the two rotations r and −r are
equivalent. Therefore we only need to consider positive rotations. Let G+ denote
the quotient of G with {−1,1}, where the two rotations r and −r are equivalent.
Then we will only consider the case when λ ∈ 2Z ×G+.

Altogether the wavelet transform at scale 2J consists of the following set of
functions:

WJf =
{
AJf, (W [λ]f)λ∈ΛJ

}
, (3.38)

where ΛJ =
{
λ = 2jr : r ∈ G+, 2j < 2J

}
. We will refer to this set of functions as

the filter bank. For J =∞ the filter bank only consists of wavelet transforms and
no averaging, W∞f = {W [λ]f}λ∈Λ∞ with Λ∞ = 2Z × G+. The operator WJ is
thus an operator from L2(R2) to the product space generated by copies of L2(R2),
with norm given by

‖WJf‖2 = ‖AJf‖2
L2 +

∑
λ∈ΛJ
‖W [λ]f‖2

L2 . (3.39)
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If J =∞ then
‖WJf‖2 = ‖W∞f‖2 =

∑
λ∈Λ∞

‖W [λ]f‖2
L2 . (3.40)

In many applications the wavelet is known as a band-pass filter, whereas the
scaling function is referred to as a low-pass filter.

A low-pass filter keeps the low frequencies in the signal and suppresses the
higher frequencies. Filtering an image with a low-pass filter will highlight the
coarse structure in the image.

A band-pass filter only keeps frequencies that are within a certain range or
band. Filtering an image with a band-pass filter will highlight details in the image
depending on the frequency band. By dilating and translating the wavelet one
can highlight the structure in various scales. A summary of the filter operators is
provided in Table 3.1.

Operator Norm

W [λ]f = f ∗ ψλ ‖W [λ]f‖L2 = ‖f ∗ ψλ‖L2

AJf = f ∗ φ2J ‖AJf‖L2 = ‖f ∗ φ2J‖L2

WJf =
{
AJf, (W [λ]f)λ∈ΛJ

}
‖WJf‖2 = ‖AJf‖2

L2 +∑
λ∈ΛJ ‖W [λ]f‖2

L2

Table 3.1: Filter operators used for scattering wavelets, and the corresponding
norm.

The next proposition gives a condition for WJf to be a stable representation.

Proposition 3.13. If there exists ε > 0 such that for almost all ω ∈ R2 and all
J ∈ Z

1− ε ≤ |φ̂(2Jω)|2 +
∑
j<J

∑
r∈G+

|ψ̂(2jrω)|2 ≤ 1, (3.41)

then
(1− ε)‖f‖2

L2 ≤ ‖WJf‖2 ≤ ‖f‖2
L2 , ∀f ∈ L2(R2). (3.42)

Proof. The Plancherel formula implies that

‖WJf‖ = ‖ŴJf‖2 = ‖ÂJf‖2
L2 +

∑
λ∈ΛJ
‖Ŵ [λ]f‖2

L2 .

Using Theorem A.6 we have

‖WJf‖2 =
∫
|f̂(ω)|2

|φ̂(2Jω)|2 +
∑
j<J

∑
r∈G+

|ψ̂(2jrω)|2
 dω.

Inserting the bounds in (3.41) yields (3.42).

If ε < 1, the operator WJ is non-expansive, invertible and has a stable inverse.
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Example 3.6. The Morlet wavelet in Figure 3.10, together with the Gaussian
scaling function

φ(x) = 1
2πσ2 e

− |x|
2

2σ2 , σ = 0.7, (3.43)

satisfies (3.42) with ε = 0.25.

If ε = 0, then WJ preserves the Euclidean norm. In this case WJ is a unitary
operator.

Example 3.7. The Shannon wavelet is an example where WJ is unitary. Define
the one-dimensional wavelet ψ and scaling function φ via its Fourier transform

ψ̂(ω) = eiωχ[−1,−1/2]∪[1/2,1](ω), (3.44)
φ̂(ω) = χ[−1/2,1/2](ω). (3.45)

Here χA denotes the characteristic function of the set A. Next, define the two-
dimensional wavelets Ψk and scaling function Φ as the separable product of ψ̂ and
φ̂,

Ψ̂1(ω1, ω2) =φ̂(ω1)ψ̂(ω2),
Ψ̂2(ω1, ω2) =ψ̂(ω1)φ̂(ω2),
Ψ̂3(ω1, ω2) =ψ̂(ω1)ψ̂(ω2),
Φ̂1(ω1, ω2) =φ̂(ω1)φ̂(ω2).

Then Ψ = (Ψi)i=1,2,3 will be a collection of two-dimensional wavelets and Φ the
two-dimensional scaling function. Let ω ∈ R2 and J ∈ Z. The support of Ψ̂i(2jω)
for j < J and i = 1, 2, 3 together with the support of Φ̂(2Jω) define a partition
of non-overlapping squares in R2. The boundaries of these squares define a set of
measure zero. Therefore almost every ω will be in the support of exactly one of
these squares. Hence

|φ̂(2Jω)|2 +
∑
j<J

3∑
i=1
|Ψ̂i(2jω)|2 = 1,

for almost every ω ∈ R2.

The Shannon wavelet is perfectly localized in the frequency domain, and there-
fore has poor localization in the time domain. Since the Shannon wavelet preserves
the energy of the signal, it will be used when studying energy conservation. For
classification we will use the Morlet wavelet which has good localization in both
time and frequency.

Definition 3.14. A scattering wavelet is said to be admissible if there exist η ∈ R2

and ρ ≥ 0 with |ρ̂(ω)| ≤ |φ̂(2ω)| and ρ̂(0) = 1, such that the function

Ψ̂(ω) = |ρ̂(ω − η)|2 −
∞∑
k=1

k
(
1− |ρ̂(2−k(ω − η))|2

)
, (3.46)
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satisfies
α = inf

1≤|ω|≤2

∞∑
j=−∞

∑
r∈G

Ψ̂(2−jr−1ω)|ψ̂(2−jr−1ω)|2 > 0. (3.47)

This condition may look complicated, but it will ensure that the windowed
scattering transform, which will be construction in the next chapter, is stable to
deformations and noise and is locally translation invariant.



Chapter 4

Scattering

We want to classify images, and need an appropriate metric to measure distances
between them. Within each class there is variability due to translations, small
deformations and noise. This variability needs to be taken into account, when
measuring the distance. Such a metric may be constructed by considering an
operator,

Φ : L2(R2)→ H, (4.1)

for a Hilbert space H. If Φ is invariant to translation, stable to deformations and
stable to additive noise, then the induced metric on the space H,

∀f, g ∈ L2(R2), d(f, g) = ‖Φ(f)− Φ(g)‖H,

will reduce intra-class variability.
The construction of the operator Φ is based on cascading wavelet transforms

with a non-linear modulus operator, and a filtering with a low-pass filter φ. The
result yields a representation which is locally invariant to translation, stable to
deformations and stable to additive noise.

The first section examines translation, deformation and additive noise. We
will see that the Fourier modulus is translation invariant and stable to additive
noise, but fails to be stable to deformations at high frequencies. A transformation
with wider support at high frequencies is needed, which leads us naturally to
wavelets. These wavelets will serve as building blocks for the operator Φ, which
will be referred to as the windowed scattering transform. The construction of the
windowed scattering transform is the content of Section 4.2. In the last section we
present the scattering metric, and prove that it has the desired properties outlined
in Section 4.1.

4.1 Properties of the representation
In Chapter 2, we mentioned that the human brain is able to recognize objects
despite transformations due to translations, noise and small deformations. In this
section we will explore these transformations in more detail.

29



Chapter 4. Scattering 30

(a) Original image. (b) Translated image.

Figure 4.1: Illustration of translation of an image.

4.1.1 Translation invariance
For c ∈ R2, the translation operator Tc : L2(R2) → L2(R2) takes a signal f and
translates it, Tcf(x) = f(x − c). In Figure 4.1 an example of a translation of an
image is provided. An operator Φ : L2(R2)→ H is invariant to translation if

∀c ∈ R2, ‖Φ(Tcf)− Φ(f)‖H = 0. (4.2)

One such operator is the Fourier modulus. The Fourier transform of a translated
signal is

T̂cf(ω) = Mcf̂(ω),

where Mc is the modulation operator, Mcf̂(ω) = e−i〈c,ω〉f̂(ω). Taking the modulus
will remove the complex phase, so that |T̂cf(ω)| = |e−i〈c,ω〉f̂(ω)| = |f̂(ω)|.

Later we will define the windowed scattering transform at a scale 2J . This
transformation will not by fully translation invariant, but locally translation in-
variant. An operator Φ is locally translation invariant at scale 2J if there exists a
constant C > 0 such that for all c ∈ R2,

‖Φ(Tcf)− Φ(f)‖H ≤ C2−J |c|‖f‖. (4.3)

We are mainly interested in the case when f is a compactly supported function.
The amount of translation is therefore limited by the support of f . In this case
one may choose a scale, so that the windowed scattering transform will behave
almost as a fully translation invariant operator.

4.1.2 Stability to additive noise
A common problem in US images is the presence of noise. Additive noise can be
described as a random process that is added to the signal. Let f0(x) denote the
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(a) Noise-free image. (b) Image with added noise.

Figure 4.2: Illustration of an image with and without additive noise.

noise-free image, and let n(x) denote the additive noise. Then

f(x) = f0(x) + n(x) (4.4)

is the image with added noise. Figure 4.2 shows an example of an image with,
and without additive noise.

To ensure stability to additive noise we impose a Lipschitz continuity condition
on Φ. This means that there exists a constant C > 0 such that for all f, f ′ ∈
L2(R2),

‖Φ(f ′)− Φ(f)‖H ≤ C‖f ′ − f‖L2 . (4.5)

This implies that

‖Φ(f)− Φ(f0)‖H ≤ C‖f − f0‖L2 = C‖n‖L2 .

The difference between the representation of the noise-free signal and the repre-
sentation of the signal with noise is thus bounded by the L2-norm of the added
noise.

If Φ is the Fourier modulus, then the Parseval equality implies that Φ is Lips-
chitz continuous with C = 1.

4.1.3 Stability to deformations
By deformations we mean C2 diffeomorphisms on R2. The space of such functions
will be referred to as C2(R2). Let X, Y ⊆ R2. A function τ : X → Y is a
C2 diffeomorphism if it is two times continuously differentiable, bijective, and its
inverse τ−1 : Y → X, is also two times continuously differentiable. An example is
a dilation τ(x) = εx with ε ∈ R2 \{(0, 0)}. Figure 4.3 illustrates two images which
can be obtained from each other via a diffeomorphism.

A representation is stable to deformations if it is Lipschitz continuous to the
action of C2 diffeomorphisms. A deformation of a signal f ∈ L2(R2), supported in
Ω ⊆ R2, may be written as Tτf(x) = f(x− τ(x)). This is similar to a translation,
but the amount of translation is now dependent on the position in the image.
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(a) Original image. (b) Deformed image

Figure 4.3: Illustration of a deformation of an image.

The size of the deformation is determined by the maximum amplitude of the
diffeomorphism, supx∈Ω |τ(x)|, the norm of the gradient, supx∈Ω |∇τ(x)|, and the
Hessian tensor, supx∈Ω |Hτ(x)|. The amount of deformation over a compact set
Ω ⊆ R2 is measured by the norm

‖τ‖∞ = sup
x∈Ω
|τ(x)|+ sup

x∈Ω
|∇τ(x)|+ sup

x∈Ω
|Hτ(x)|.

As mentioned in Section 4.1.1 we will construct an operator which is locally trans-
lation invariant. Our representation Φ(f) is therefore stable to deformations and
locally translation invariant at scale 2J if for any compact set Ω ⊆ R2 there exists
a constant C > 0 such that for all f ∈ L2(R2) supported in Ω and all τ ∈ C2(R2),

‖Φ(f)−Φ(Tτf)‖ ≤ C‖f‖L2

(
2−J sup

x∈Ω
|τ(x)|+ sup

x∈Ω
|∇τ(x)|+ sup

x∈Ω
|Hτ(x)|

)
. (4.6)

By adjusting the scale, one can control the amount of translation invariance so
that the condition (4.6) becomes

‖Φ(f)− Φ(Tτf)‖ ≤ C‖f‖L2

(
sup
x
|∇τ(x)|+ sup

x∈Ω
|Hτ(x)|

)
. (4.7)

Now the following question arises, ”how do we find the operator Φ?”. The
natural thing to do at this stage is to check if the Fourier modulus is stable to
deformations. If it was, then it would serve as an excellent candidate for Φ.
Unfortunately, the next example shows that this is not the case.

Example 4.1. Let f(x) = ei〈ξ,x〉θ(x), where θ is regular, has fast decay, and θ̂(ω)
is concentrated near the origin. Let τ(x) = εx be a dilation. The deformed signal
will then be Tτf(x) = f(x − τ(x)) = f((1 − ε)x). Taking the Fourier transform
gives us

̂f((1− ε)x) =
∫
θ((1− ε)x)eiξ(1−ε)xe−iωxdx = 1

1− ε θ̂
(
ω − (1− ε)ξ

1− ε

)
.
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ω

|T̂τf(ω)| |f̂(ω)|

(1− ε)ξ ξ

Figure 4.4: Showing instability to the action of diffeomorphisms for the
Fourier modulus.

The central frequency has now been shifted from ξ to (1 − ε)ξ. Since f̂(ω) =
θ̂(ω− ξ) we can choose ξ large enough so that when ξ− (1− ε)ξ = εξ is sufficiently
large, the difference ‖|f̂(ω)| − |T̂τf(ω)|‖ is non-negligible, see Figure 4.4. In fact
‖|f̂(ω)| − |T̂τf(ω)|‖ ∼ |ε|‖f‖|ξ|, so that given any constant C there exists ξ ∈ R2

so that ‖|f̂(ω)| − |T̂τf(ω)|‖ > C|ε|‖f‖. Hence the Fourier modulus is not stable
to deformations at high frequencies.

To remedy this problem, a transformation with wider support in the Fourier
domain at high frequencies is needed. This is achieved by a wavelet transform.

4.1.4 Building invariant structure
We want to build a representation Φ which is invariant to translations, stable to
additive noise and stable to deformations. In section 4.1.3 we saw that the Fourier
modulus failed to be stable to deformations. The wavelet transform defined in
(3.36) is stable to deformations, but fails to be translation invariant. In fact, it
is covariant to translations, meaning that translating the signal will also translate
the wavelet transform:

W [λ]Tcf(x) =
∫
Tcf(u)ψλ(x− u)du =

∫
f(u− c)ψλ(x− u)du

=
∫
f(u)ψλ(x− c− u)du = W [λ]f(x− c).

Example 4.2. Let f(x) = δ(x − 2) and let g(x) = δ(x − 4) = f(x − 2) be two
signals which can be obtained from each other by a translation. Figure 4.5(a)
illustrates the two signals. Applying the wavelet transform (3.36) to these signals
will give back the wavelet centred around x = 2 and x = 4, see Figure 4.5(b). This
illustrates the fact that the wavelet transform is not translation invariant.

To get a translation invariant representation one could try to apply the modulus
operator as we did with the Fourier transform. This will remove the complex phase
and return the envelope, see Figure 4.5(c). The envelope is more regular, but not
translation invariant. To obtain a translation invariant representation one may
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0 1 2 3 4 5

(a) f(x) = δ(x − 2)(blue) and g(x) =
δ(x− 4) = f(x− 2)(green).

0 1 2 3 4 5

(b) f ∗ ψλ(x) and g ∗ ψλ(x).

0 1 2 3 4 5

(c) |f ∗ ψλ|(blue) and |g ∗ ψλ|(green).

0 1 2 3 4 5

(d) |f∗ψλ|∗φ(blue) and |g∗ψλ|∗φ(green).

Figure 4.5: A wavelet modulus with averaging applied to f(x) = δ(x − 2)
and g(x) = δ(x− 4) = f(x− 2).

average over the whole domain. This will give you the same constant for both f and
g, hence a translation invariant representation. This representation is visualized
as a red line in Figure 4.5(d). However, one loses a lot of information about the
signals. Instead one can do an averaging over a smaller domain by filtering with a
low-pass filter φ, see the blue and green lines in Figure 4.5(d). This will not give
you a translation invariant representation. However if we only consider a finite
interval, say the interval [1, 5], then the difference between the two functions f and
g will be much smaller than before applying any filtering. Moreover, the difference
between the two functions will be smaller if the translation is smaller. Hence we
have an example of a locally translation invariant representation. This kind of
representation is called a scale-invariant feature transform (SIFT).

From an operator which commutes with the translation operator one can con-
struct a translation invariant operator by taking the average. If M is an operator
such that the commutator [M,Tc] = MTc − TcM = 0, then

∫
Mf(x)dx is trans-

lation invariant. The wavelet transform is indeed commuting with the translation
operator. However, since our wavelets are assumed to have zero average we see
that for any λ ∈ Λ∞,∫

W [λ]f(x)dx =
∫ ∫

f(u)ψλ(x− u)dudx

=
∫
f(u)du

∫
ψλ(x)dx =

∫
f(u)du · 0 = 0,

hence all information is lost. It turns out that if M is any linear operator that
commutes with the translation operator we have

∫
M(W [λ]f)(x)dx = 0 [BM12],

hence M needs to be non-linear. Moreover, we need
∫
M(W [λ]f)(x)dx to preserve

stability to deformations and additive noise.
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This suggests M to be the modulus operator. Hence a translation invariant rep-
resentation can be obtained by first taking the modulus of the wavelet transform,
and then doing the averaging,∫

|f ∗ ψλ(x)|dx = ‖f ∗ ψλ‖L1(R2).

A locally translation invariant representation can be obtained by filtering with
a low-pass filter φ, ∫

|f ∗ ψλ(x)|φ(y − x)dx.

Let us illustrate the use of the wavelet transform and modulus with two exam-
ples.

Example 4.3. Let f(x) = eiξx, and suppose ξ ∈ supp ψ̂λ, then

W [λ]f(x) =
∫
eiξuψλ(x− u)du = −

∫
eiξ(x−v)ψλ(v)dv = −eiξxψ̂λ(ξ),

where we made the substitution v = x − u. If we apply the modulus, we see
that we remove the complex phase and are left with the constant |f ∗ ψλ(x)| =
| − eiξxψ̂λ(ξ)| = |ψ̂λ(ξ)|. If φ is a low-pass filter with φ̂(0) = 1, then∫

|f ∗ ψλ(x)|φ(y − x)dx = |ψ̂λ(ξ)|
∫
φ(x)dx = |ψ̂λ(ξ)|.

As the output is independent of x, this is a translation invariant representation.

Example 4.4. Let f(x) = eiξ1x + aeiξ2x for x ∈ Ω, where Ω ⊂ R is compact. If
ξ1, ξ2 ∈ supp ψ̂λ, then by similar calculation as in Example 4.3 we have

W [λ]f(x) = −
(
eiξ1xψ̂λ(ξ1) + aeiξ2xψ̂λ(ξ2)

)
= −eiξ1x

(
ψ̂λ(ξ1) + aei(ξ2−ξ1)xψ̂λ(ξ2)

)
.

Applying the modulus gives us

|f ∗ ψλ(x)| =
∣∣∣ψ̂λ(ξ1) + aei(ξ2−ξ1)xψ̂λ(ξ2)

∣∣∣ .
An illustration of the real part of the original function, and the real part of the
wavelet transform is provided in Figure 4.6. The wavelet used in this case is the
Morlet wavelet (3.35). To obtain a translation invariant representation we do an
averaging over the domain Ω. Let φ be a low-pass filter whose support is of the
size of Ω. Then∫

Ω
|f ∗ ψλ(x)| ∗ φ(x)dx =

∫
Ω

∣∣∣ψ̂λ(ξ1) + aei(ξ2−ξ1)xψ̂λ(ξ2)
∣∣∣ ∗ φ(x)dx ≈ |ψ̂λ(ξ1)|,

and we see that the averaging removes the high frequency oscillations. To recover
these high frequencies we can compute a new wavelet transform, W [λ′]|f ∗ψλ(x)| =
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x

ψ̂λ(ξ1)

1
|ξ2−ξ1|

aψ̂λ(ξ2)

Re f ∗ ψλ(x)

Re f(x)

Figure 4.6: Showing the real part of the function and wavelet transform in
Example 4.4.

.

|f ∗ ψλ| ∗ ψλ′(x) with (ξ2 − ξ1) ∈ suppψλ′ . This yields

|f ∗ ψλ| ∗ ψλ′(x) =
∫ ∣∣∣ψ̂λ(ξ1) + aei(ξ2−ξ1)uψ̂λ(ξ2)

∣∣∣ψλ′(x− u)du

ψ̂(0)=0= aψ̂λ(ξ2)
∫
ei(ξ2−ξ1)uψλ′(x− u)du

= −aei(ξ2−ξ1)xψ̂λ(ξ2)ψ̂λ′(ξ2 − ξ1).

Applying the modulus gives us the constant

||f ∗ ψλ| ∗ ψλ′(x)| = a|ψ̂λ(ξ2)||ψ̂λ′(ξ2 − ξ1)|.

As in the previous example, filtering a constant with the low-pass filter φ will
output the same constant.

4.2 The windowed scattering transform
Example 4.4 gives an idea on how to construct a representation invariant to trans-
lation, stable to additive noise, and stable to deformations. A translation invariant
representation is obtained by applying the wavelet transform to the signal f , tak-
ing the modulus and doing an averaging. In doing so, information about the high
frequencies are lost. Since the wavelet transform is a redundant representation,
one can (for particular wavelets) recover the phase from the modulus [WdM13].
The loss of information is thus due to the averaging. To recover these high fre-
quencies, a new wavelet transform is applied to the signal before the averaging is
done.

Definition 4.1. [Mal12] A sequence p = (λ1, λ2, · · · , λm) with λk ∈ Λ∞ = 2Z×G+

is called a path. The empty path is denoted p = ∅. For f ∈ L2(R2), and admissible
wavelet ψ (3.47), define

U [λ]f = |f ∗ ψλ| = |W [λ]f |. (4.8)
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A scattering propagator is a path ordered product of non-commutative operators
defined by

U [p] = U [λm] · · ·U [λ2]U [λ1], (4.9)

with U [∅] = Id.

Since ‖U [λ]f‖L2 ≤ ‖ψλ‖L1‖f‖L2 (A.8), the operator U [λ] is well defined and
U [λ]f ∈ L2. It follows by the triangle inequality that for any path p of length m
we have ‖U [p]f‖L2 ≤ ‖ψλ‖mL1‖f‖L2 . Hence U [p] is well defined and U [p]f ∈ L2.

The path variable p can be viewed as a kind of frequency variable. It can
be manipulated in several ways. For example, given two paths p and p′, the
concatenation is written p_p′ = (λ1, · · ·λm, λ′1, · · · , λ′m′), and by definition of the
scattering propagator we have U [p_p′] = U [p′]U [p]. Note that the operation
_ is not commutative, that is p_p′ 6= p′_p. One can also scale and rotate a
path. Let 2lrθ ∈ 2Z × G+ be a scaling by 2l and a rotation by θ. Then 2lrθp =
(2lrθλ1, 2lrθλ2, · · · , 2lrθλm). It should be understood that if 2lrθλk = 2l+lkrθ+θk 6∈
2Z ×G+, one should choose the rotation r−(θ+θk).

In Example 4.4, the scattering propagator was computed along the path p =
(λ, λ′) so that,

U [p]f = U [λ′]U [λ]f = ||f ∗ ψλ| ∗ ψλ′|.

To obtain a translation invariant representation an averaging was applied. In all
practical applications, signals such as audio and images are compactly supported,
that is they vanish outside some bounded region. It is therefore not necessary to
have a representation which is invariant to all translations, as the largest possible
translation is determined by the support of the image. If for example f is an
image supported on the square [0, 2J ] × [0, 2J ], then any translation Tcf(x) =
f(x− c) with |c| > 2J+1/2 will translate the image outside it’s support. In image
and audio recognition it is therefore often better to compute locally translation
invariant representations. This is obtained by applying a low-pass filter φ to
the representation, which is scaled according to a predefined scale 2J , φ2J (x) =
2−2Jφ(2−Jx). This results in a windowed scattering transform.

Definition 4.2. [Mal12] For fixed J ∈ Z let

PJ = {p = (λ1, λ2, · · · , λm) : λk ∈ ΛJ ,m ∈ N ∪ {0}} . (4.10)

For each p ∈ PJ and f ∈ L2(R2) the windowed scattering transform is defined as

SJ [p]f(x) = U [p]f ∗ φ2J (x) =
∫
U [p]f(u)φ2J (x− u)du. (4.11)

Since U [p]f ∈ L2(R2) whenever f ∈ L2(R2), and φ ∈ L1(R2) we see that
SJ [p]f ∈ L2(R2) whenever f ∈ L2(R2), so that SJ [p] : L2(R2) → L2(R2). The
norm of SJ [p]f is given by

‖SJ [p]f‖2
L2 =

∫
R2
|SJ [p]f(x)|2dx =

∫
R2
||||ψλ1 ∗ f(x)| ∗ · · · | ∗ ψλm| ∗ φ2J (x)|2dx.
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To compute the windowed scattering transform we define the one-step propa-
gator

UJf =
{
AJf, (U [λ]f)λ∈ΛJ

}
, (4.12)

where AJf = f ∗ φ2J and U [λ]f = |f ∗ ψλ|. By definition we have AJU [p]f =
SJ [p]f , and the concatenation property of the scattering propagator implies that
U [λ]U [p]f = U [p_λ]f . Hence

UJU [p]f =
{
SJ [p]f, (U [p_λ]f)λ∈ΛJ

}
. (4.13)

Let

Λm
J = {p = (λ1, · · · , λm) : λk ∈ ΛJ , k = 1, 2, · · · ,m} = ΛJ × ΛJ × · · · × ΛJ︸ ︷︷ ︸

m times

.

(4.14)
That is Λm

J is the set of all paths of length m where each coordinate λk belongs to
ΛJ . Then it follows that

UJU [Λm
J ]f =

{
SJ [Λm

J ]f, U [Λm+1
J ]f

}
. (4.15)

The notation U [Λm
J ]f and SJ [Λm

J ]f means that U and SJ are applied to every path
p ∈ Λm

J respectively. The output will thus be a vector of functions in L2(R2) of
length |ΛJ |m. The corresponding norm is given by

‖SJ [Λm
J ]f‖2 =

∑
p∈ΛmJ

‖SJ [p]f‖2
L2 , and

‖U [Λm
J ]f‖2 =

∑
p∈ΛmJ

‖U [p]f‖2
L2 .

At m = 0 we have Λ0
J = {∅}, hence SJ [∅]f = f ∗φJ . By iteratively applying the

one-step propagator UJ to U [Λm
J ]f as in (4.15), the length of each path is extended

by one. We say that a new layer is added. Hence m denotes the number of layers.
Since

PJ =
∞⋃
m=0

Λm
J ,

we see that applying UJ an infinite number of times will give you the windowed
scattering transform computed along all possible paths.

Later we will define the scattering metric where we apply the windowed scat-
tering transform to every path p ∈ PJ . This means that we need to make sense of
SJ [PJ ]f(x). This representation can be viewed as the infinite vector

SJ [PJ ]f(x) =


f ∗ φ2J (x)

|f ∗ ψλ1| ∗ φ2J (x)
||f ∗ ψλ1 | ∗ ψλ2| ∗ φ2J (x)

...


λk∈ΛJ

.
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The corresponding norm is

‖SJ [PJ ]f‖2 =
∑
p∈PJ
‖SJ [p]f‖2

L2

=
∞∑
m=0

∑
(λ1,λ2,··· ,λm)∈ΛmJ

‖|||f ∗ ψλ1| ∗ · · · | ∗ ψλm| ∗ φ2J‖2
L2 .

(4.16)

The Hilbert space H will therefore be the range of this operator. This will be the
product space generated by copies of L2(R2).
Remark 4.3. In practice the windowed scattering transform is computed along
a finite number of layers. The energy in the deep layers will become negligible.
Denote

PMJ =
M⋃
m=0

Λm
J ,

the set of all paths of length smaller than or equal to M . If ΛJ consists of K
elements, then Λm

J will consist of Km paths. The Hilbert space H will thus be the
product of NJ = M ×∑M

m=0K
m copies of L2(R2), i.e

H =
NJ⊗
k=1

L2(R2).

Moreover as digital images have a discrete representation, we can view an image
as an element of MN,K(R), where MN,K(R) denotes the set of all N ×K matrices
over R. Here N and K are the number of pixels in the vertical and horizontal
direction respectively. In this case

H =
NJ⊗
k=1

MN,K(R) ∼= RNJ×N×K ,

where the symbol ∼= means that the two spaces are isomorphic. The distance
between any two images can then be calculated by the usual Euclidean distance.
A more detailed review of the discrete case will be presented in Chapter 5.

In Table 4.1 we summarize the operators used to compute the windowed scat-
tering transform of a function f ∈ L2(R2).

Computing the windowed scattering transform of a signal f ∈ L2(R2) can be
summarized in the following steps:

1. Choose a wavelet ψ and a corresponding low-pass filter φ, which satisfy
the admissibility conditions in Definition 3.14, and the conditions given in
Remark 3.12.

2. Choose a finite rotation-group G, an appropriate scale 2J , and a number of
layers M .

3. For each m = 0, 1, · · · ,M compute UJU [Λm
J ]f . The output of the windowed

scattering transform will be the collection of functions SJ [PMJ ]f . If M =∞,
then the output is SJ [PJ ]f .
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Operator Norm

U [λ]f = |f ∗ ψλ| ‖U [λ]f‖L2 = ‖f ∗ ψλ‖L2

U [p]f = |||f ∗ ψλ1| · · · | ∗ ψλm| ‖U [p]f‖L2 = ‖||f ∗ ψλ1| · · · | ∗ ψλm‖L2

U [Λm
J ]f = (U [p]f)p∈ΛmJ

‖U [Λm
J ]f‖2 = ∑

p∈ΛmJ ‖U [p]f‖2
L2

UJf =
{
AJf, (U [λ]f)λ∈ΛJ

}
‖UJf‖2 = ‖AJf‖2

L2 +∑
λ∈ΛJ ‖U [λ]f‖2

L2

SJ [p]f = U [p]f ∗ φ2J ‖SJ [p]f‖L2 = ‖U [p]f ∗ φ2J‖L2

SJ [Λm
J ]f = (SJ [p]f)p∈ΛmJ

‖SJ [Λm
J ]f‖2 = ∑

p∈ΛmJ ‖SJ [p]f‖2
L2

SJ [PJ ]f = (SJ [p]f)p∈PJ ‖SJ [PJ ]f‖2 = ∑
p∈PJ ‖SJ [p]f‖2

L2

Table 4.1: Scattering operators, and their corresponding norm.

Figure 4.7: The scattering propagator UJ applied to each layer.

In Figure 4.71 a visualization of scattering propagator applied to the two first
layers is provided. In the first iteration the output is simply SJ [∅]f . Furthermore,
the operator U is applied along all scales and rotations. In this figure, the number
of rotations and scales are 4, meaning that there will be 16 different paths to the
second layer, and 43 = 64 different paths to the third layer. However, numerical
experiments show that for appropriate wavelets, the energy in the signal is mostly
concentrated along frequency-decreasing paths [Mal12].

4.2.1 Frequency-decreasing paths
Definition 4.4. A frequency-decreasing path, is a path p = (λ1, λ2, · · · , λm) such
that |λk+1|−1 < |λk|−1. The set of all frequency-decreasing paths of length m

1This Figure is taken from [Mal12]. The notation φJ means φ2J .
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will be denoted Λm
J↓, and the set of all frequency-decreasing paths will be denoted

PJ↓ = ⋃∞
m=0 Λm

J↓.

If ψ is a one-dimensional wavelet such that its Fourier transform is supported
in the interval [1/2, 1], then ψ̂(2jω) is supported in the interval [2−(j+1), 2−j]. It
follows that ψ̂(2j+1ω) is supported in [2−(j+2), 2−(j+1)]. Hence, when increasing
the scale, the support of the Fourier transform of the dilated wavelet will be
concentrated at lower frequencies. This explains why a path p = (λ1, λ2, · · · , λm)
with |λk+1|−1 < |λk|−1 is called frequency-decreasing. If |λk+1|−1 > |λk|−1, the
path is called frequency-increasing.

We will prove that for real signals, no energy is captured by frequency-increasing
paths when using the Shannon wavelet. Hence it suffices to compute the windowed
scattering transform along frequency-decreasing paths. As we are mainly inter-
ested in showing that the energy is captured by these paths, we will consider the
one-dimensional case.

Proposition 4.5. Let ψ be the Shannon wavelet given in (3.45). If f ∈ L2(R) is
a real valued signal, then ‖|f ∗ ψλ| ∗ ψλ′‖L‘2 is non-zero only if |λ′|−1 < |λ|−1.

Proof. The wavelet ψ is given by

ψ̂(ω) = eiωχ[−1,−1/2]∪[1/2,1](ω) = eiωχ[−1,−1/2](ω) + eiωχ[1/2,1](ω).

If λ = 2j, then

ψ̂λ(ω) = ψ̂(2jω) = ei2
jωχ[−2−j ,−2−(j+1)](ω) + ei2

jωχ[2−(j+1),2−j ](ω).

Let f ∈ L2(R), then

Ŵ [λ]f(ω) = f̂ ∗ ψλ(ω) = f̂(ω)
(
ei2

jωχ[−2−(j),−2−(j+1)](ω) + ei2
jωχ[2−(j+1),2−j ](ω)

)
=
(
f̂(−ω)e−i2jω + f̂(ω)ei2jω

)
χ[2−(j+1),2−j ](ω)

If f is real-valued then f̂(−ω) = f̂(ω)∗. Hence

Ŵ [λ]f(ω) = f̂ ∗ ψ(ω) =
((
f̂(ω)ei2jω

)∗
+ f̂(ω)ei2jω

)
χ[2−(j+1),2−j ](ω)

= 2 Re f̂(ω)ei2jωχ[2−(j+1),2−j ](ω) = 2 Re T̂2jf(ω)χ[2−(j+1),2−j ](ω)

where T2jf(x) = f(x−2j). Thus Ŵ [λ]f(ω) is supported in the interval [2−(j+1), 2−j].
When applying the modulus operator, high frequencies will be mapped to lower
frequencies. To see this, note that

(U [λ]f)2 = |W [λ]f |2 = W [λ]f (W [λ]f)∗ .

Taking the Fourier transform yields

̂(U [λ]f)2(ω) = 1
2π

∫
W [λ]f(x) (W [λ]f(x))∗ e−iωxdx

= 1
2π

∫
W [λ]f(x)

(
W [λ]f(x)eiωx

)∗
dx.
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The Plancherel equality(A.10) implies that

̂(U [λ]f)2(ω) = 1
2π

∫
Ŵ [λ]f(ξ) ̂(W [λ]feiωx)∗(ξ)dξ

= 1
2π

∫
Ŵ [λ]f(ξ)Ŵ [λ]f

∗
(ξ − ω)dξ.

As Ŵ [λ]f(ξ) is non-zero for ξ ∈ [2−(j+1), 2−j], the product Ŵ [λ]f(ξ)Ŵ [λ]f
∗
(ξ−

ω) is non-zero only when ω ∈ [−2−(j+1), 2−(j+1)]. Hence the modulus of the wavelet
transform has frequencies located in the interval [−2−(j+1), 2−(j+1)].

Let λ′ = 2k. We want to show that ‖W [λ′]U [λ]f‖L2 is non-zero only when
|λ′|−1 < |λ|−1 ⇐⇒ 2−k < 2−j. By Parsevals equality(A.11) we have

‖W [λ′]U [λ]f‖2
L2 =

∫
||f ∗ ψλ|ψλ′(x)|2dx

=
∫
|Û [λ]f(ω)ψ̂λ′(ω)|2dω.

Since supp ̂(U [λ]f)2 ⊆ [−2−(j+1), 2−(j+1)] and supp ψ̂λ′(ω) ⊆ [−2−k,−2−(k+1)] ∪
[2−(k+1), 2−k], the two functions have overlapping support only if 2−(k+1) < 2−(j+1) ⇐⇒
2−k < 2−j.

If ψ is the Morlet wavelet given in (3.35), then ψ is not compactly supported.
However, the Gaussian envelope ensures that the energy is concentrated around
the frequency ξ. A similar argument as in the proof above, shows that most of
the energy is concentrated along frequency-decreasing paths. In Figure 4.8 this
is illustrated with the signal f(x) = δ(x). The red graphs show the real and
imaginary parts of f ∗ ψλ, with |λ| = 20. The black graph is the corresponding
envelope obtained by applying the modulus operation. In Figure 4.8(a) and 4.8(b),
the blue graphs are the real and imaginary parts of |f ∗ ψλ| ∗ ψλ′ , with |λ′| = 2−1.
The green graph is the corresponding envelope. In Figure 4.8(c) the same situation
is illustrated but now with λ′ = 21, i.e along a frequency-decreasing path. It is
easy to see that the energy contained in the coefficients along the path (λ, λ′) is
much smaller when |λ′| = 2 compared to the energy along the path (λ, λ′) when
|λ′| = 1/2.

When we compute the windowed scattering transform numerically, we will take
advantage of this observation. In other words, we will compute scattering coeffi-
cients only along frequency-decreasing paths. However in this chapter where we
cover the theoretical part, we will include all paths if not otherwise specified.

4.3 The scattering metric
The goal is to construct an operator Φ : L2(R2) → H which reduces intraclass
variability, so that the induced metric on the Hilbert space H can be used to
measure distances between images. The distance between images belonging to the
same class should be small compared to the distance between images belonging to
different classes.
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(a) Illustration of the size
of the coefficients along a
frequency-increasing path.

(b) Zooming in on Figure
4.8(a).

(c) Illustration of the size
of the coefficients along a
frequency-decreasing path.

Figure 4.8: Illustration of the size of the coefficients along frequency-increasing
and frequency-decreasing paths.

So far, we have defined the windowed scattering transform of signals belonging
to L2(R2). When comparing two signals f and g, we compute the windowed
scattering transform along every path p ∈ PJ . The output of the windowed
scattering transform belongs to the product space generated by copies of L2(R2),
with norm defined in (4.16).

Let f, g ∈ L2(R2) be two images and define the scattering metric as

dJ(f, g) = ‖SJ [PJ ]f − SJ [PJ ]g‖. (4.17)

For admissible wavelets, the scattering metric possesses the following properties:

• Stability to additive noise. If f(x) = f0(x) + n(x), where n represents the
noise in the image, then

dJ(f, f0) = ‖SJ [PJ ]f − SJ [PJ ]f0‖ ≤ ‖f − f0‖L2 = ‖n‖L2 .

• Locally translation invariance. As J → ∞ the scattering metric converges
to a translation invariant metric,

lim
J→∞

dJ(f, Tcf) = 0. (4.18)

• Stability with respect to the action of C2 diffeomorphisms. Let τ ∈ C2(R2),
and consider the set of paths in PJ of length strictly smaller then m, then

dJ(f, Tτf) ≤ Cm‖f‖L2

(
sup
x
|∇τ(x)|+ sup

x
|Hτ(x)|

)
, (4.19)

for all f ∈ L2(R2) with compact support.

In the following we will assume that the wavelet transform WJ satisfies the con-
dition given in Proposition 3.13 with ε = 0, that is ‖WJf‖ = ‖f‖L2 .
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We will start to show stability to additive noise. The first lemma shows that
the one-step propagator is non-expansive.

Lemma 4.6. The one-step propagator UJ is non-expansive and preserves the
norm.

Proof. Let f, g ∈ L2(R2). The modulus operator is non-expansive in the sense
that for any a, b ∈ C we have ||a| − |b|| ≤ |a− b|. Consequently,

‖UJf − UJg‖2 = ‖AJf − AJg‖2 +
∑
λ∈ΛJ
‖U [λ]f − U [λ]g‖2

= ‖AJf − AJg‖2 +
∑
λ∈ΛJ
‖|W [λ]f | − |W [λ]g|‖2

≤ ‖AJf − AJg‖2 +
∑
λ∈ΛJ
‖W [λ]f −W [λ]g‖2

= ‖WJf −WJg‖2 = ‖WJ(f − g)‖2 = ‖f − g‖2
L2 .

The last equality follows from the fact that WJ is assumed to be unitary. If g = 0
we see that ‖UJf‖ = ‖f‖L2 , hence UJ is preserves the norm.

Since the windowed scattering transform is obtained by iteratively applying UJ
it follows that SJ is also non-expansive.

Theorem 4.7. Let J ∈ Z, then for all f, g ∈ L2(R2)

‖SJ [PJ ]f − SJ [PJ ]g‖ ≤ ‖f − g‖L2 , (4.20)

that is, the windowed scattering transform is non-expansive.

Proof. By Lemma 4.6, ‖f − g‖2
L2 ≥ ‖UJf −UJg‖2. Since UJf = {AJf, U [Λ1

J ]f} =
{SJ [Λ0

J ]f, U [Λ1
J ]f},

‖f − g‖2
L2 ≥ ‖UJf − UJg‖2

= ‖SJ [Λ0
J ]f − SJ [Λ0

J ]g‖2 + ‖U [Λ1
J ]f − U [Λ1

J ]g‖2

≥ ‖SJ [Λ0
J ]f − SJ [Λ0

J ]g‖2 + ‖UJU [Λ1
J ]f − UJU [Λ1

J ]g‖2

= ‖SJ [Λ0
J ]f − SJ [Λ0

J ]g‖2 + ‖SJ [Λ1
J ]f − SJ [Λ1

J ]g‖2 + ‖U [Λ2
J ]f − U [Λ2

J ]g‖2

≥ · · · ≥
m−1∑
k=0
‖SJ [Λk

J ]f − SJ [Λk
J ]g‖2 + ‖U [Λm

J ]f − U [Λm
J ]g‖2

≥
m−1∑
k=0
‖SJ [Λk

J ]f − SJ [Λk
J ]g‖2 + ‖UJU [Λm

J ]f − UJU [Λm
J ]g‖2

=
m∑
k=0
‖SJ [Λk

J ]f − SJ [Λk
J ]g‖2 + ‖U [Λm+1

J ]f − U [Λm+1
J ]g‖2.

The inequality
m∑
k=0
‖SJ [Λk

J ]f − SJ [Λk
J ]g‖2 ≤

m∑
k=0
‖SJ [Λk

J ]f − SJ [Λk
J ]g‖2 + ‖U [Λm+1

J ]f − U [Λm+1
J ]g‖2

≤ ‖f − g‖2
L2
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is true for any m ∈ N. Letting m→∞, we see that

‖SJ [PJ ]f − SJ [PJ ]g‖2 =
∞∑
k=0
‖SJ [Λk

J ]f − SJ [Λk
J ]g‖2 ≤ ‖f − g‖2

L2 .

Theorem 4.7 implies that the windowed scattering transform is Lipschitz con-
tinuous, and thus stable to additive noise. In fact, one can prove that if WJ is
unitary, then the windowed scattering transform also preserves the energy in the
signal, ‖SJ [PJ ]f‖ = ‖f‖L2 . Since UJ preserves the norm, similar calculations as
in the proof in Theorem 4.7 show that for any m ∈ N,

‖f‖2
L2 =

m∑
k=0
‖SJ [Λk

J ]f‖2 + ‖U [Λm+1
J ]f‖2.

If m→∞, then

‖f‖2
L2 = ‖SJ [PJ ]f‖2 + lim

m→∞
‖U [Λm+1

J ]f‖2.

Hence SJ preserves the energy if the energy vanishes along increasing paths, that
is limm→∞ ‖U [Λm+1

J ]f‖2 = 0. To show that limm→∞ ‖U [Λm+1
J ]f‖2 = 0 we need the

following lemma:

Lemma 4.8. Suppose f ∈ L2(R2). If ψ is an admissible scattering wavelet and

‖f‖2
w =

∞∑
j=0

∑
r∈G+

j‖W [2−jr]f‖2 <∞, (4.21)

then
α

2 ‖U [PJ ]f‖2 ≤ max(J + 1, 1)‖f‖2
L2 + ‖f‖2

w, (4.22)

where α is given by (3.47). Moreover, there exists a sequence fn, with ‖fn‖w <∞
and limn→∞ ‖f − fn‖L2 = 0.

Proof. We will prove the last part of this lemma, i.e that the space of functions
for which ‖f‖w < ∞ is a dense subspace in L2(R2). Proof of the first part can
found in [Mal12].

If φ is the scaling function from the averaging operator, let φ2−n(x) = 22nφ(2nx)
and define

fn(x) = f ∗ φ2−n(x).

Since φ ∈ L1(R2), φ̂(0) = 1 and φ ≥ 0, the sequence φ2−n is an approximate
identity, and hence we have limn→∞ ‖f − fn‖L2 = 0. To show that ‖fn‖w < ∞,
note that from Remark 3.12 we have |ψ(ω)| = O(|ω|) and |ω||φ(ω)| < ∞. Let C
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be a generic constant that may change value from one line to the next, then

‖W [2−jr]fn‖2 =
∫
R2
|fn ∗ ψ2−jr(x)|2dx

=
∫
R2
| ̂f ∗ φ2−n(ω)|2|ψ̂2−jr(ω)|2dω

=
∫
R2
|f̂(ω)|2|φ̂(2−nω)|2|ψ̂(2−jr−1ω)|2dω

≤ C
∫
R2
|f̂(ω)|2|φ̂(2−nω)|2|2−2jω|2dω

= C22n−2j
∫
R2
|f̂(ω)|2|φ̂(2−nω)|2|2−nω|2dω

≤ C22n−2j
∫
R2
|f̂(ω)|2dω = C22n−2j.

The series ∑∞j=0 j2−2j is convergent, hence ‖fn‖w <∞ by comparison test.

Theorem 4.9. If ψ is an admissible scattering wavelet, and WJ satisfies (3.13)
with ε = 0, then for any f ∈ L2(R2),

lim
m→∞

‖U [Λm
J ]f‖2 = lim

m→∞

∞∑
n=m
‖SJ [Λn

J ]f‖2 = 0, (4.23)

and
‖SJ [PJ ]f‖ = ‖f‖L2 . (4.24)

Proof. We will show that limm→∞ ‖U [Λm
J ]f‖2 = 0. If ‖f‖w < ∞ then by Lemma

4.8

‖U [PJ ]f‖2 =
∞∑
m=0
‖U [Λm

J ]f‖2 ≤ 2
α

max(J + 1, 1)‖f‖2
L2 + ‖f‖2

w <∞,

and hence limm→∞ ‖U [Λm
J ]f‖2 = 0.

If ‖f‖w = ∞, we can find a sequence fn, with ‖fn‖w < ∞ and limn→∞ ‖f −
fn‖L2 = 0. By the triangle inequality

‖U [Λm
J ]f‖ ≤ ‖U [Λm

J ]f − U [Λm
J ]fn‖+ ‖U [Λm

J ]fn‖,

and since U [Λm
J ] is non-expansive, we have

‖U [Λm
J ]f‖ ≤ ‖U [Λm

J ]f − U [Λm
J ]fn‖+ ‖U [Λm

J ]fn‖ ≤ ‖f − fn‖L2 + ‖U [Λm
J ]fn‖.

Let ε > 0 be given. Then we can find N ∈ N so that ‖f − fn‖L2 < ε/2 whenever
n ≥ N . By the first part we can find M ∈ N so that if m ≥ M we have
‖U [Λm

J ]fN‖ < ε/2. Consequently, if m ≥M we have

‖U [Λm
J ]f‖ ≤ ‖f − fN‖+ ‖U [Λm

J ]fN‖ < ε/2 + ε/2 = ε,

hence limm→∞ ‖U [Λm
J ]f‖ = 0.
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In practical applications to image processing, numerical evidence shows (see
Table 5.1) that the convergence of ‖U [Λm

J ]f‖ is exponential as a function of m.
Therefore, limiting computations to only a finite number of layers will give a small
loss of information.

We will now see that the scattering metric is a locally translation invariant
metric (4.3), and converges to a fully translation invariant metric as J →∞. The
next lemma implies that the scattering distance between two signals is decreasing
as J is increasing.

Lemma 4.10. For all f, g ∈ L2(R2) and any J ∈ Z,

‖SJ+1[PJ+1]f − SJ+1[PJ+1]g‖ ≤ ‖SJ [PJ ]f − SJ [PJ ]g‖. (4.25)

Proof. See [Mal12]

This result shows that the sequence ‖SJ [PJ ]f − SJ [PJ ]g‖ is monotonically de-
creasing, and hence the convergence is guaranteed by the monotone convergence
theorem, whenever ‖SJ [PJ ]f − SJ [PJ ]g‖ ≤ ‖f − g‖L2 <∞.

The scattering operator SJ commutes with the translation operator, SJ [PJ ]Tc =
TcSJ [PJ ]. To see this note that

SJ [PJ ]Tcf(x) = AJU [PJ ]Tcf(x) =
∫
U [PJ ]f(u− c)φJ(x− u)du

=
∫
U [PJ ]f(u)φJ(x− c− u)du = SJ [PJ ]f(x− c)

= TcSJ [PJ ]f(x).

Therefore,

‖SJ [PJ ]Tcf − SJ [PJ ]f‖ = ‖TcSJ [PJ ]f − SJ [PJ ]f‖
= ‖TcAJU [PJ ]f − AJU [PJ ]f‖
≤ ‖TcAJ − AJ‖op‖U [PJ ]f‖.

The operator norm ‖TcAJ − AJ‖op is given by

‖TcAJ − AJ‖op = sup {‖(TcAJ − AJ)U [PJ ]f‖ : ‖U [PJ ]f‖ = 1} .

Moreover, we have the following result:

Lemma 4.11. Suppose τ ∈ C2(R2), with supx |∇τ(x)| < 1/2. Then there exists
a constant C > 0 such that

‖TτAJ − AJ‖op ≤ C2−J sup
x
|τ(x)|. (4.26)

Proof. First note that

TτAJf(x)− AJf(x) =
∫
f(y) (φ2J (x− τ(x)− y)− φ2J (x− y)) dy.
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The result follows by applying Schur test (A.1) to the kernel

K(x, y) = φ2J (x− τ(x)− y)− φ2J (x− y),

that is, if

sup
x∈R

∫
|K(x, y)|dy ≤ K1, and sup

y∈R

∫
|K(x, y)|dx ≤ K2, (4.27)

then TτAJ − AJ satisfies

‖TτAJ − AJ‖op ≤
√
K1K2. (4.28)

By Taylor expansion we see that

|K(x, y)| ≤ sup
x
|τ(x)|

∫ 1

0
|∇φ2J (x− y − tτ(x))|dt.

Since ∇φ2J (x) = 2−2J−J∇φ(2−Jx),∫
|K(x, y)|dy ≤ sup

x
|τ(x)|

∫ ∫ 1

0
|∇φ2J (x− y − tτ(x))|dtdy

= sup
x
|τ(x)|

∫ 1

0

∫
|∇φ2J (x− y − tτ(x))|dydt

= sup
x
|τ(x)|2−2J−J

∫
|∇φ(2−Ju)|du

= sup
x
|τ(x)|2−J‖∇φ‖L1 = K1.

The interchanging of integrals is justified by Tonelli’s theorem (A.2). Note that
by the assumptions in Remark 3.12 we have ∇φ ∈ L1. Similarly,∫

|K(x, y)|dx ≤ sup
x
|τ(x)|

∫ ∫ 1

0
|∇φ2J (x− y − tτ(x))|dtdx.

The change of variables u = x − y − tτ(x), gives the Jacobian matrix D = I −
t∇τ(x), where I denotes the identity matrix. By assumption sup |∇τ | < 1/2,
which implies detD ≥ (1− sup |∇τ |)2 ≥ 2−2. Hence∫

|K(x, y)|dx ≤ (detD)−1 sup
x
|τ(x)|

∫ ∫ 1

0
|∇φ2J (x− y − tτ(x))|dtdx

= sup
x
|τ(x)|2−J‖∇φ‖L122 = K2.

The Schur test implies that

‖TτAJ − AJ‖op ≤
√
K1K2 =

√
sup
x
|τ(x)|22−2J+2‖∇φ‖2

1

= sup
x
|τ(x)|2−J+1‖∇φ‖L1 = C2−J sup

x
|τ(x)|.



Chapter 4. Scattering 49

With τ(x) = c we see that

‖SJ [PJ ]Tcf − SJ [PJ ]f‖ ≤ C|c|2−J‖U [PJ ]f‖.

Theorem 4.12. If ψ is an admissible wavelet, then for any f ∈ L2(R2)

lim
J→∞

‖SJ [PJ ]Tcf − SJ [PJ ]f‖ = 0.

Proof. If J > 1, then by Lemma 4.8,

‖U [PJ ]‖2 ≤ 2
α

(
(J + 1)‖f‖2

L2 + ‖f‖2
w

)
.

If ‖f‖w <∞ then

lim
J→∞

‖SJ [PJ ]Tcf − SJ [PJ ]f‖ ≤ lim
J→∞

C2|c|22−2J 2
α

(
(J + 1)‖f‖2

L2 + ‖f‖2
w

)
= 0.

If ‖f‖w =∞, there exists a sequence (fn) with ‖fn‖w <∞ such that limn→∞ ‖f−
fn‖L2 = 0. Hence

‖TcSJ [PJ ]f − SJ [PJ ]f‖ ≤ ‖TcSJ [PJ ]f − TcSJ [PJ ]fn‖+ ‖SJ [PJ ]fn − SJ [PJ ]f‖
+ ‖TcSJ [PJ ]fn − SJ [PJ ]fn‖
≤ (‖Tc‖op + 1) ‖SJ [PJ ]f − SJ [PJ ]fn‖
+ ‖TcSJ [PJ ]fn − SJ [PJ ]fn‖
= 2‖SJ [PJ ]f − SJ [PJ ]fn‖+ ‖TcSJ [PJ ]fn − SJ [PJ ]fn‖
≤ 2‖f − fn‖L2 + ‖TcSJ [PJ ]fn − SJ [PJ ]fn‖.

Let ε > 0 be given. Then there exists N ∈ N so that for n ≥ N we have
‖f − fn‖L2 < ε/4. Since ‖fN‖w <∞, the first part implies that there exists J̃ so
that for J ≥ J̃ we have ‖TcSJ [PJ ]fN − SJ [PJ ]fN‖ < ε/2. Hence for J ≥ J̃ ,

‖TcSJ [PJ ]f − SJ [PJ ]f‖ ≤ 2‖f − fN‖L2 + ‖TcSJ [PJ ]fN − SJ [PJ ]fN‖

< 2 ε4 + ε

2 = ε.

Thus

lim
J→∞

‖TcSJ [PJ ]f − SJ [PJ ]f‖ = 0.

This shows that as J → ∞, the scattering metric converges to a translation
invariant metric.

Remark 4.13. In practice, signals are compactly supported, and therefore one
need not choose J very large to obtain a translation invariant metric. If f is an
image with N ×N pixels, then choosing J so that N < 2J will give a translation
invariant metric. However, for classification purposes we see, in view of Lemma
4.10, that choosing J too large will shorten the distance between all signals, which
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may cause misclassification. The scale J should therefore be chosen with respect
to the largest translation in the database.

We have now shown that the scattering metric is stable to additive noise and
converges to a translation invariant operator. It remains to show that it is also
stable to the action of diffeomorphisms. As we are interested in application to
images which are real and compactly supported signals, we only consider this
special case. We will state the result and refer to [Mal12] for details of the proof.

Theorem 4.14. Let
‖U [PJ ]f‖1 =

∞∑
m=0
‖U [Λm

J ]f‖, (4.29)

and denote Pm−1
J the subset of PJ of paths of length strictly smaller than m.

Then for any compact set Ω ⊆ R2 there exists C > 0, such that for all f ∈ L2(R2)
supported in Ω with ‖U [PJ ]f‖1 <∞, and for all τ ∈ C2(R2) with supx∈Ω |∇τ(x)| ≤
1/2,

‖SJ [Pm−1
J ]Tτf−SJ [Pm−1

J ]f‖ ≤ Cm‖f‖L2

(
2−J sup

x∈Ω
|τ(x)|+ sup

x∈Ω
|∇τ(x)|+ sup

x∈Ω
|Hτ(x)|

)
.

(4.30)

The term 2−J supx∈Ω |τ(x)| corresponds to the local translation invariance. If
J is chosen so that 2−J supx∈Ω |τ(x)| ≤ supx∈Ω |∇τ(x)|+ supx∈Ω |Hτ(x)|, then for
a possible different constant C, we have

‖SJ [Pm−1
J ]Tτf − SJ [Pm−1

J ]f‖ ≤ Cm‖f‖L2

(
sup
x∈Ω
|∇τ(x)|+ sup

x∈Ω
|Hτ(x)|

)
. (4.31)

For application to image processing, numerical evidence shows that the scat-
tering energy becomes negligible over paths of length larger than m = 3, see e.g
Table 5.1 in Chapter 5. Therefore, for all practical purposes we can apply (4.31)
with m = 4.

The scattering metric will reduce variability within each class, if the variabil-
ity is primarily due to translation, additive noise, and deformations. In the next
chapter we will see how to compute the windowed scattering transform numeri-
cally. Eventually we will see how we can classify images based on their scattering
coefficients and the area of inflammation.
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Application to digital images

At this point, we have build up the theory behind the windowed scattering trans-
form and edge-detection. In order to apply this theory to digital images, we need
a discrete formulation.

The first section gives a short introduction to digital image processing, and we
will see how images can be represented digitally. Thereafter, a review of how to
compute the area of inflammation and the scattering coefficients numerically will
be conducted. In the last section we will present the classification algorithms.

5.1 Digital image processing
A grayscale image f is a continuous function with finite energy, f : Ω→ R where
Ω ⊂ R2 is compact. The value f(x, y) is called the intensity at the point (x, y).
To represent, and store an image digitally on a computer, we need to convert
the continuous signal into a digital signal. This involves two processes called
sampling and quantization [GW08, p.74]. Sampling is the process of digitalizing
the coordinate values, while quantization is about digitalizing the intensity.

In Figure 5.1, the process of digitalizing an image is illustrated. The image
function is sampled along every row and column at evenly spaced coordinates.
Figure 5.1(a) shows a continuous image, and in Figure 5.1(d) we see the resulting
digital image. The digital image is arranged in a N×K matrix where each element
in this matrix is called a pixel. Each pixel is assigned a value corresponding to the
quantized intensity. This means that we can view the digitalizing of the image f
as a mapping

L2(R2) −−−−−−→
digitalizing

MN,K(R),

where MN,K(R) denotes the set of all N ×K matrices over R. In fact, due to the
quantization, the range of the digitalized image f is a finite subset of R, but this
is not important for us.

51
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(a) Continuous image. (b) A scan of the red line in Figure
5.1(a).

(c) Sampling and quantization of the
signal in Figure 5.1(b).

(d) Digitalized image, sampled along ev-
ery row and colum.

Figure 5.1: Digitalizing a continuous image.

5.2 Area of inflammation
In this section we will briefly review how to calculate the area of inflammation
numerically.

5.2.1 Problems with finding the correct edges
To calculate the area, we will apply the Canny edge-detector to find the boundary
of the inflamed region, and use Greens formula to estimate the area. As this
method is highly dependent on finding the correct edges, we would like to address
some issues relating to detection of the correct edges. Thereafter, we will present
the solution used in this thesis.
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(a) Original image. (b) Annotated image. (c) Edge-detector applied to
image in Figure 5.2(a).

Figure 5.2: Example of an annotated image, and illustration of edges found
by the Canny edge-detector.
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Figure 5.3: Canny edge-detector applied to an annotated image. Parameters
used are Tlow = 0.09, Thigh = 0.68, and s = 1.8.

Consider the US image shown in Figure 5.2(a). The correct boundary of the
synovitis is shown in the annotated image in Figure 5.2(b). By testing the edge-
detector for different values of Thigh, Tlow and scale s, we find that the edges high-
lighted in Figure 5.2(c) give an indication of where the boundary of the synovitis
is located. The problem is however, that the curve defining the boundary is not
connected. Moreover, additional edges make it difficult for an algorithm to deter-
mine which edges that should be selected as the boundary-edges. The reason for
this problem is because there are other objects, such as bones, tendons and fat
present in the image. In addition, noise makes the transition between the different
objects blurry, so that boundary-lines are broken.

As we are mainly interested in investigating whether the area defines an efficient
classifier we will apply the edge-detection algorithm to annotated images. An
example of the edge-detector applied to an annotated image is shown in Figure 5.3.
Here the yellow curve is the annotated curve, while the red curve is the output from
the edge detector. The parameters used in this case is Thigh = 0.68, Tlow = 0.09
and s = 1.8. In this way we are able to detect the annotated boundary, and thus
find the correct area.
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5.2.2 Calculating the area
We will calculate the area using Greens formula,

Area =
∫
D
dA = 1

2

∫
C
xdy − ydx. (5.1)

The first step is to apply the Canny edge-detector. A built-in function in
Matlab called edge() is used in this thesis. This will, for appropriate values for
the thresholds Thigh, Tlow and scale s, detect the annotated boundary. The output
will be a sequence of N points (xi, yi), which approximates the enclosing boundary
curve C in (5.1) as a piecewise linear, simple, closed curve. To ensure that the
curve is closed we set (x1, y1) = (xN , yN). The area can then be computed by the
following formula

Area = 1
2

∫
C
xdy − ydx = 1

2

N−1∑
i=1

∫ (xi+1,yi+1)

(xi,yi)
xdy − ydx (5.2)

= 1
2

N−1∑
i=1

[
xi + xi+1

2 (yi+1 − yi)−
yi + yi+1

2 (xi+1 − xi)
]
. (5.3)

Here the integral
∫ yi+1
yi

xdy is approximated by xi+xi+1
2 (yi+1 − yi), which is also

known as the trapezoidal rule. Since the curve C is piecewise linear, the approxi-
mation is exact. Hence, any error in calculating the area is due to the annotation
and the edge-detector.

5.3 The windowed scattering transform
In this section we will see how to compute the scattering coefficients of a dig-
ital image. The software used is called ScatNet and can be downloaded from
[ASM+14].

5.3.1 Filter bank
We will use the Morlet wavelet, with a Gaussian low-pass filter φ. For x ∈ R2, the
low pass filter is given by

φ(x) = 1
2πσ2

φ

e
− |x|

2

2σ2
φ . (5.4)

The Morlet wavelet, rotated by an angle θ is implemented in the following way

ψθ(x) = exp

−
xT r−θ

(
1 0
0 s2

)
rθx

2σ2
ψ


[
exp

(
i〈
(
ξ 0

)
, rθx〉

)
− exp

(
−
σ2
ψξ

2

2

)]
.

(5.5)
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Note that the wavelet is not normalized. Here rθ is a rotation matrix

rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

The parameter s controls the eccentricity in the elliptical gaussian envelope, and
is usually adapted to the number of orientations by s = L/4. If s = 1, we see that

ψθ(x) = exp
{
−|x|

2

2σ2
ψ

}[
exp

(
i〈
(
ξ 0

)
, rθx〉

)
− exp

(
−
σ2
ψξ

2

2

)]
. (5.6)

The parameter ξ ∈ R controls the frequency of the oscillatory exponential. The
spread of the gaussian envelopes for φ and ψ is controlled by σφ and σψ respectively.

The gaussian low-pass filter is dilated corresponding to a predefined scale 2J ,

φ2J (x) = 2−2Jφ(2−Jx) = 1
2π(2Jσφ)2 e

− |x|2

2(2Jσφ)2 . (5.7)

The wavelet is both dilated and rotated

ψλ = ψj,θ(x) = 2−2jψθ(2−jx), λ = 2jrθ, (5.8)

with θ = πl
R

, for

l ∈ [0, R− 1].

Note that we only consider positive rotations. In the numerical part we will dilate
the wavelet with the scales

j ∈ [0, J − 1],

so that J is the number of scales and R is the number of rotations. We will refer
to the collection of dilated and rotated wavelets together with the dilated low-pass
filter as the filter bank.

Example 5.1. If R = 2, the set of positive rotations G+ contains two elements r0
and r1, where r0 is a rotation by 0 radians and r1 a rotation by π/2 radians. If in
addition J = 2 we have four different combinations of scales and rotations. Hence

ΛJ = {λ1, λ2, λ3, λ4} = {20r0, 20r1, 21r0, 21r1}.

In Figure 5.4 we see the corresponding filter bank with the dilated low-pass filter,
and dilated and rotated wavelets.

5.3.2 Scattering coefficients
The scattering coefficients are the output from the windowed scattering transform
applied to an image f . In Remark 4.3 in Section 4.2 we saw that if we choose
M number of layers, and if the set ΛJ contains K elements, then the output of
the windowed scattering transform of an image f ∈ L2(R2), will be a vector of
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(d) Imψ0,π/2.
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(i) φ2J .

Figure 5.4: Displaying the filterbank, φ2J and ψj,θ for j = 0, 1 and θ = 0, π/2.
Here we have used the following parameters: J = R = 2, σφ = σψ = 5, ξ =

0.2, s = 2
.

N ′J = M ×∑M
m=0K

m functions in L2(R2). However as noted in the end of Section
4.2, the energy in the signal is mostly concentrated along frequency-decreasing
paths. Therefore our algorithm only computes the scattering coefficients along
these paths. We will refer to PMJ↓ as the set of all frequency-decreasing paths of
length smaller than or equal to M . The number of such paths will be denoted by
N ′J↓.

Example 5.2. Let ΛJ be the same set as in Example 5.1. The paths of length
m = 2 will be the set

Λ2
J = ΛJ × ΛJ = {(λm, λn) : m,n = 1, 2, 3, 4},
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hence N ′J = 16. To find the frequency-decreasing paths of length m = 2, we note
that |λ1| = |λ2| = 1 and |λ3| = |λ4| = 2, so that the set of frequency-decreasing
paths of length m = 2 is

Λ2
J↓ = {(λ1, λ3), (λ1, λ4), (λ2, λ3), (λ2, λ4)} .

Hence

P2
J↓ = Λ0

J ∪ Λ1
J ∪ Λ2

J↓ = {∅, λ1, λ2, λ3, λ4, (λ1, λ3), (λ1, λ4), (λ2, λ3), (λ2, λ4)} ,

and N ′J↓ = 8.

If R is the number of rotations, and J the number of scales in ΛJ , then we can
find the number of frequency-decreasing paths by noticing the following:

• For m = 0, the output will be only one path, namely SJ [∅]f .

• For m = 1, every path is frequency-decreasing. Therefore the number of
paths are J ×R.

• For m = 2 there are
(
J
2

)
possible ways to combine frequency-decreasing

paths. In addition we have all possible combinations of rotations, that is R2

ways. In total there are R2 ×
(
J
2

)
different frequency-decreasing paths for

m = 2.

• At the k’th layer we see by similar reasoning that the number of frequency-
decreasing paths are Rk ×

(
J
k

)
.

The total number of frequency-decreasing paths of length smaller than or equal to
M is therefore given by

N ′J↓ =
M∑
m=0

Rm ×
(
J

m

)
. (5.9)

Unlike Section 4.2, we now consider digital images. We saw in the introduction
of this chapter, that we can view a digitalized image f as an element of MN,K(R).

When filtering a digital image, the filter is converted into a matrix called the
mask. An example of a Gaussian maks of size 3× 3 is

1
16

1 2 1
2 4 2
1 2 1

 .
A convolution is obtained by sliding the mask over the image, and multiplying.
In our case, the mask is chosen to be of the size of the input image. However
the values in the mask are determined by the scale J . If J is large, the spread
of the Gaussian filter is wide, so that the averaging captures more pixels than
if J is small. The resulting convolution will therefore have neighbouring pixels
of approximately the same size. It is therefore redundant to store all pixels in
the convolved image. Instead the resulting image obtained from the convolution
is sampled uniformly at intervals of size 2J . The resulting N ′J↓ output images
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will therefore be images of size 2−JN × 2−JK, and can be viewed as elements of
M2−JN,2−JK(R).

If we consider the isomorphism of the two spaces M2−JN,2−JK(R) ∼= R2−2JN×K ,
each output-function can be viewed as a column vector of length 2−2JNK. Thus
the number of scattering coefficients, computed along frequency-decreasing paths
of length smaller than or equal to M will be

NJ = 2−2JNK
M∑
m=0

Rm ×
(
J

m

)
. (5.10)

Suppose the set ΛJ , and the number of layers M are fixed, and let us denote
SJf = SJ [PMJ↓]f . Then SJ can be viewed as a mapping from MN,K(R) to RNJ :

f =


a1,1 a1,2 · · · a1,K

... ... · ...
aN,1 aN,2 · · · aN,K

 SJ−−−→


y1
y2
...
yNJ

 = SJf,

with yk ∈ R. Note that the windowed scattering transform computes scatter-
ing coefficients along frequency-decreasing paths p, at different positions x. This
means that yk = SJ [p]f(x) for a particular value of p and x.

The distance between any to images f and g, computed with the scattering
metric can therefore be found by calculating the usual Euclidean distance

dJ(f, g) =
(∑
p,x

(SJ [p]f(x)− SJ [p]g(x))2
)1/2

=

√√√√NJ∑
k=1

(
yfk − y

g
k

)2
.

Here yfk and ygk are the scattering coefficients of f and g respectively.

Example 5.3. If f is an image of N × K = 256 × 256 pixels, and J = R = 2,
then N ′ = K ′ = 2−2 · 256 = 64. Moreover, if M = 2, the number of scattering
coefficients would be

NJ = 2−4 · 256 · 256
2∑

m=0
2m ×

(
2
m

)

= 2−4 · 256 · 256
(

1×
(

2
0

)
+ 21 ×

(
2
1

)
+ 22 ×

(
2
2

))
= 36, 864.

5.3.3 Energy propagation
We are interested in finding out how many layers we need to include in order not
to lose too much information about the images. This can be done by investigating
how the energy in the signals propagates through the layers. We can compute
the percentage of the scattering energy, ‖SJ [ΛM

J↓]f‖/‖f‖, captured by frequency-
decreasing paths of length m as a function of J . To do this we will use the
Shannon wavelet defined in Example 3.7, which preserves the energy in the signal.
In Table 5.1 we have computed the energy for different scales at different layers
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J m = 0 m = 1 m = 2 m = 3 m = 4 m ≤ 3
1 99.0785 0.9039 - - - 99.9824
2 96.8725 2.5773 0.0320 - - 99.4818
3 92.9176 6.2447 0.2464 0.0027 - 99.4114
4 87.5740 10.9963 0.7400 0.0237 0.0003 99.3340
5 82.4112 15.2211 1.5352 0.0836 0.0024 99.2510
6 77.9784 18.2728 2.7210 0.1969 0.0088 99.1691
7 74.2455 20.8642 3.6274 0.3384 0.0202 99.0756
8 52.0543 38.5836 7.4342 0.9494 0.0711 99.0216

Table 5.1: Percentage of scattering energy ‖SJ [ΛMJ↓]f‖/‖f‖ captured by
frequency-decreasing paths of length m as a function of J . The values are

computed on US images with Shannon wavelets.

J m = 0 m = 1 m = 2 m = 3 m = 4 m ≤ 3
1 96.686 0.208 - - - 96.894
2 93.155 0.382 0.005 - - 93.542
3 88.285 0.592 0.010 8.76·10−5 - 88.887
4 83.463 0.788 0.017 2.16·10−4 1.34·10−6 84.268
5 79.403 0.980 0.024 3.92·10−4 3.81·10−6 80.407
6 75.718 1.185 0.031 6.05·10−4 8.11·10−6 76.934
7 72.953 1.409 0.037 8.21·10−4 1.42·10−5 74.399
8 65.900 1.498 0.042 1.01·10−3 2.06·10−5 67.440

Table 5.2: Percentage of scattering energy ‖SJ [ΛMJ↓]f‖/‖f‖ captured by
frequency-decreasing paths of length m as a function of J . The values are

computed on US images with Morlet wavelets, with R = 4.

using the Shannon wavelet. We see that for J ≤ 8, more than 99% of the energy
is contained in the three first layers. The results from Table 5.1 tell us three
things. First, limiting the computation to frequency-decreasing paths is a good
approximation, since we only lose under one percent of the energy. Second, if we
want to compute the windowed scattering transform of images of size 28× 28 then
choosing three layers will give a loss of information by under 1%. Finally we see
that when the scale J increases, more of the energy propagates towards deeper
layers. Hence, if we choose a large scale J , we might need to include more layers
in order not to lose vital information.

The percentage of the scattering energy computed with the Morlet wavelet is
provided in Table 5.2. This table clearly indicates that energy is not conserved by
the windowed scattering transform when using this wavelet. For m = 0, that is
after filtering the image with the scaling function φ, the amount of energy is about
the same for both the Shannon wavelet and the Morlet wavelet. When m = 1,
we have applied the wavelet transform, the modulus operator, and a filtering. In
this column, there is a huge difference in the two tables. The reason is that the
operator WJ is not unitary in the case when ψ is the Morlet wavelet. Hence,
energy is lost when the wavelet transform is applied.



Chapter 5. Application to digital images 60

5.3.4 Visualization of the scattering coefficients
To compute the windowed scattering transform we will iteratively apply the wavelet
transform and modulus operator. The output is then filtered with a low-pass filter.
The first iterations of this procedure applied to the image in Figure 5.5(a), with ΛJ

as in Example 5.1, are shown in Figure 5.5(b)-5.5(f). Here we see the convolution
with the real and imaginary parts of the wavelet ψ, dilated and rotated according
to λ1 = 20r0.

The scattering coefficients from the first layer, that is paths of length 1, are
displayed in Figure 5.6.

The scattering coeffcients in the second layer, computed along the frequency-
decreasing paths are illustrated in Figure 5.7. These are the same paths as we
found in Example 5.2.

We can also display the scattering coefficients for a fixed position x in the
image. Let {Ω[p]}p∈ΛmJ be a partition of R2, so that for each ω ∈ R2 we associate
a path p(ω). In other words, each ω ∈ R2 belongs to exactly one of the sets Ω[p].
This partition is illustrated in Figure 5.8 for J = R = 6, and m = 1 and m = 2.
Each annular sector corresponds to the value of SJ [p]f(x) for some path p, so that
SJ [p(ω)]f(x) is a piecewise constant function of ω. In Figure 5.8(a) the partition
is shown for m = 1. The annular sector highlighted in blue corresponds to the
path p = λ = 2j4r5. This annular sector approximates the frequency support of
ψ̂2j4r5 , and the size of this annular sector is proportional to ‖ψ2j4r5‖2.

In Figure 5.8(b) we have applied an additional layer, where the boundaries
from the first layer is highlighted in red. Each annular sector Ω[2jr] is subdivided
along the radial axis, and along the angular axis. Since we only consider frequency
decreasing paths the angular sectors furthest away from the origin is subdivided
more in the radial direction, than the angular sectors closer to the origin. In Figure
5.8(b) we have marked the domain Ω[2j1r2, 2j2r1], whose size is proportional to
‖|ψ2j1r2 | ∗ ψ2j2r1‖2.

The scattering coefficients of the image in Figure 5.5(a), with 256× 256 pixels,
computed with J = 6 will be images of 4×4 pixels. In Figure 5.9 we display these
scattering coefficients, where each subdivided disc corresponds to a pixel.
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(b) f ∗ φJ = SJ [∅]f .
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Figure 5.5: Illustrates the first iterations of the windowed scattering trans-
form.
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(c) SJ [λ3]f .
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(d) SJ [λ4]f .

Figure 5.6: Illustrates the scattering coefficients from the first layer.

5.4 Classification
In this section we will explain how we can classify images based on the scattering
coefficients and the area of inflammation. We will assume that all images have a
discrete representation, i.e that if f is an image, then f can be represented as a
matrix of size N ×K.

A typical problem when dealing with classification is the following: Given T
classes, C1, C2, · · · , CT , and the training set

X =
{
{f 1

1 , f
2
1 , · · · fL1

1 }, {f 1
2 , f

2
2 , · · · fL2

2 }, · · · , {f 1
T , f

2
T , · · · f

LT
T }

}
,

with f li ∈ Ci, use this training set to find a method, so that given a new signal g we
are able to determine which class it belongs to. The function which assigns a new
signal to a class based on a certain method, will be referred to as the classifier.
Our signals f li are US images of finger-joints, where four classes represent different
degrees of inflammation. We will first present some basic statistical theory which
will be needed later in this section.
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(c) SJ [λ1, λ4]f .
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(d) SJ [λ2, λ4]f .

Figure 5.7: Illustrates the scattering coefficients from the second layer.

5.4.1 Statistical background
We shall represent each class Ci by a stochastic process Fi. A stochastic process
Fi is a family {Fi(x) : x ∈ I}, where I is some index set. In our case I =
{(1, 1), (1, 2), · · · , (N,K)}, where each element in I corresponds to a pixel in an
image. From each class we will have a collection of training images f li ∈ Ci. We
say that these images are realizations or observations of the process Fi. If there
are Li realizations of Fi, then for a given point x, an estimate for the expected
value E[Fi(x)] = µi,x may be found from the empirical average

µ̃i,x = 1
Li

Li∑
l=1

f li (x).

Similarly an estimate for the variance Var(Fi(x)) = Σi,x is given by the empirical
variance

Σ̃i,x = 1
Li − 1

Li∑
l=1

(f li (x)− µ̃i,x)2.
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Figure 5.8: Partition of R2 in angular sectors, with each angular sector cor-
responding to a path p ∈ ΛmJ .

(a) m = 1. (b) m = 2.

Figure 5.9: The scattering coefficients of the image in Figure 5.5(a) with
J = R = 6. The left figure shows the coefficients with m = 1 and the right for

m = 2.
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Here ·̃ means that the parameter is an unbiased estimator. If f li is arranged in a
column vector

f li =


f li (1, 1)
f li (1, 2)

...
f li (N,K)

 ,

with each coordinate corresponding to a point x ∈ I, then the empirical average
of Fi may be written as

µ̃i = 1
Li

Li∑
l=1

f li =


1
Li

∑Li
l=1 f

l
i (1, 1)

1
Li

∑Li
l=1 f

l
i (1, 2)

...
1
Li

∑Li
l=1 f

l
i (N,K).

 .

Accordingly, the empirical variance-covariance matrix is

Σ̃i = 1
Li − 1

Li∑
l=1

(f li − µ̃i)(f li − µ̃i)T .

Operators, like the scattering operator SJ can also be applied to this process. An
estimate for the expected scattering coefficients can then be found by first applying
the operator SJ to all realizations, and then carrying out the procedure described
above.

5.4.2 Classification from area of inflammation
We want to classify images based on the area of inflammation. For each image
f li ∈ Ci there is a corresponding area Ali. That is, if f li ∈ Ci and A is an oper-
ator A : L2(R2) → R+ which takes US-images as input, and output the area of
inflammation, then Ali = Af li .

The process Fi will have an expected area of inflammation E[AFi] = µAi . The
expected area can be estimated by the empirical average

µ̃Ai = 1
Li

Li∑
l=1
Af li = 1

Li

Li∑
l=1

Ali. (5.11)

The variance Var(AFi) = ΣAi , can be estimated by

Σ̃Ai = 1
Li − 1

Li∑
l=1

(Ali − µ̃Ai )2. (5.12)

From these estimates we can build a prediction interval associated with each
class. A prediction interval is an interval (ai, bi) centred around the empirical
average µAi , and is used to predict future observations. Before constructing a
prediction interval a parameter α needs to be chosen. This parameter controls the
probability for a future observation to be in the prediction interval. We assume
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that the process AFi is normal distributed with mean µAi and variance ΣAi . In
that case a (1− α) prediction interval is given by [EC12, p.136]

(ai, bi) =
(
µ̃Ai − T1−α/2

√
ΣAi

(
1 + 1

Li

)
, µ̃Ai + T1−α/2

√
ΣAi

(
1 + 1

Li

))
,

where T1−α/2 is the 100
(
1− α

2

)
th percentile of Student’s t-distribution with Li−1

degrees of freedom. If f is a future observation then Prob(f ∈ (ai, bi)) = 1− α.

5.4.2.1 Classifier

Let {(ai, bi)}i=0,1,2,3 denote the prediction intervals for the classes Ci, i ∈ {0, 1, 2, 3}.
The index i corresponds to the class of US images with degree of inflammation i.
A new image f , with corresponding area of inflammation A, is classified according
to the shortest distance to the prediction intervals. In other words, f is classified
as class Cι, where ι is given by

ι = argmin
i∈{0,1,2,3}

min{|A− ai|, |A− bi|}. (5.13)

As each class will be associated with a prediction interval, it is important that
all intervals are mutually disjoint. If two intervals have a non-empty intersection
we will have problems when classifying an image which lies in the intersection.
The size of the intervals can therefore be controlled by the parameter α so that
the intervals are mutually disjoint. This parameter must however be the same for
all intervals, otherwise we will favor intervals with a smaller value of α.

5.4.3 Classification from scattering coefficients
We want to classify images based on their scattering coefficients. From the re-
alizations of the stochastic process Fi, we can estimate the expected scattering
coefficients E[SJFi] = µi and the variance-covariance matrix Var(SJFi) = Σi. For
a given realization f li of the process Fi, we saw in Section 5.3.2 that the coefficients
SJf

l
i belong to the space RNJ . After computing the scattering coefficients of all the

realizations of a given class, we look for lower dimensional approximations which
best describe the signals in each class. This is achieved by performing a principal
component analysis(PCA). The output will be an affine space, approximating the
scattering coefficients of each stochastic process Fi. A new signal will be classified
according to the closest affine space. Since each class Ci is processed individually
we will fix a class C and the corresponding stochastic process F .

5.4.3.1 Choice of scale

It is important that an appropriate value for the scale variable J is chosen. Accord-
ing to Lemma 4.10, the scattering distance decreases as J increases. Increasing
J will increase the translation invariance, but there is a loss of information that
causes different signals to be closer together. This may cause misclassifications.
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The optimal scale J should therefore be determined by the maximum pixel dis-
placement due to translation. In some cases the optimal scale J is chosen so that
2J equals the image width. In our case an analysis of the optimal scale will be
carried out in Section 6.3.2.3, after we have presented the results.

5.4.3.2 PCA

Although the theory behind PCA is covered in any introductory book on multi-
variate statistics we will outline the main idea in view of the scattering coefficients.
The theory is taken from [EC12].

Let Y = {SJf1, SJf2, · · · , SJfL} denote the training set of scattering coefficients
of L realizations of the process F . This means that SJfl =

(
yl1, y

l
2, · · · , ylNJ

)
for

some signal fl belonging to the class C. Here yli denotes scattering coefficient
number i for signal number l. These coefficients can be arranged in an L × NJ

matrix which we denote by Y:

Y =


y1

1 y1
2 · · · y1

NJ

y2
1 y2

2 · · · y2
NJ... ... · · · ...

yL1 yL2 · · · yLNJ

 =


Y T

1
...
Y T
L

 =
(
SJF1 · · · SJFNJ

)
. (5.14)

Here Yl is a column vector of length NJ corresponding to the l′th row in Y,
and SJFn is a column vector of length L corresponding to the n′th column in
Y. Note that each SJFn is a vector of L observations of the same coefficient. If
E[SJFn] = µn is the expected value for the n′th coefficient of the stochastic process
F , then it can be estimated by the empirical average

µ̃n = 1
L

L∑
l=1

yln.

Let E[SJF ] = E[{SJ [p]F (x)}p,x] be the collection of all expected scattering
coefficients of the stochastic process F . Then an unbiased estimator for these
coefficients is

µ̃ =


µ̃1
µ̃2
...

µ̃NJ

 .

To perform a PCA we need an estimate for the variance-covariance matrix Σ. This
is given by the empirical variance-covariance matrix:

Σ̃ = 1
L

L∑
n=l

(Yl − µ̃)(Yl − µ̃)T . (5.15)

This will be an NJ × NJ matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λNJ be the eigenvalues
of Σ̃ arranged in a descending order, and let p1, · · · , pNJ be the corresponding
eigenvectors. We will refer to the i’th principal axis of Y as the direction of
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Figure 5.10: Principal component analysis for two-dimensional scattering
coefficients.

the eigenvector pi corresponding to the i’th largest eigenvalue. The i’th principal
component of Y is the projection of Y onto the i’th principal axis. The matrix Y
can be represented in terms of its principal components by a change of basis from
the canonical basis vectors to the eigenvectors of the variance covariance matrix.
If the eigenvectors pi are arranged as columns in a matrix P, then this change of
basis is YP = PTY.

Example 5.4. Let us for simplicity assume that NJ = 2, so that the scattering
coefficients of each realization SJf , can be viewed as a vector in R2. Let p1 and
p2 denote the eigenvectors of the variance-covariance matrix. The projection of
a signal SJf onto the principal axes, is illustrated in Figure 5.10. The ellipse
given by the equation xTΣ−1x = 1, contains all realizations in its interior, and has
its main axes along the principal axes. The first principal axis corresponding to
the largest eigenvalue, lies along the major axis, while the second principal axis
corresponding to the smallest eigenvalue, lies along the minor axis.

This also generalizes to higher dimensions, that is the major axes of the ellipsoid
which contains all realizations of the process SJF are the first principal axes. For
scatterings coefficients belonging to RNJ we may choose the linear space spanned
by the d first principal axes to approximate these coefficients.

Example 5.4 illustrates why projections on the principal axes will give a good
description of the signals in the training set. Among all linear spaces of dimension
d, the space spanned by the first d eigenvectors of the variance-covariance matrix,



Chapter 5. Application to digital images 69

N 1 2 3 5 10 20
Class 0 0.3617 0.5234 0.6721 0.8432 0.9461 0.9990
Class 1 0.4763 0.7145 0.7810 0.8747 0.9495 0.9879
Class 2 0.4931 0.7353 0.8094 0.8944 0.9633 0.9931
Class 3 0.4895 0.6464 0.7549 0.8521 0.9553 0.9936

Table 5.3: Size of the first eigenvalues in Σ compared to all the eigenvalues,∑N
k=1 λk/

∑NJ
k=1 λk. The eigenvalues are computed from the scattering coeffi-

cients of 296 images with J = 8 and R = 2.
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Figure 5.11: Illustrates the scattering coefficients computed with J = 8 and
R = 2, projected onto the first, second and third principal axes.

will minimize the expected quadratic error [Bru12]. If the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λNJ are arranged in a descending order, then the variation in the coefficients
explained by the m’th principal component is given by the fraction λm/

∑NJ
k=1 λk

[EC12, p.291]. Hence, if the eigenvalues become small very fast, then only a
few components are necessary to get a good approximation. However if all the
eigenvalues are of the same size, then we may have to include almost every principal
component to get a descent approximation. In Table 5.3 we have computed the
fraction ∑N

k=1 λk/
∑NJ
k=1 λk for different values of N . The scattering coefficients are

computed with J = 8, R = 2 and M = 3, which means that NJ = 577 for each
class.

This table shows that projecting the coefficients onto the first three principal
axes will explain 67− 80% of the total variation in the coefficients, depending on
the class. The 20 first principal axes will explain about 99% of the variation.

In Figure 5.11 we see these coefficients projected onto their first, second and
third principal axes. The different colors represent the different classes of images.
These figures show that there is a clustering of images which belong to the same
class.

5.4.3.3 Affine space from PCA

From the PCA one can build an affine space which approximates the scattering
coefficients in each class.

Consider a class C, and let E[SJF ] denote the expected scattering coefficients
of the stochastic process F . Let further Vd be the linear space spanned by the d
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A2 = E[SJF ] + V2

SJf − PA2(SJf)

V⊥2SJf

PA2(SJf)

PV⊥2
(SJf − E[SJF ])

Figure 5.12: Two-dimensional scattering coefficients projected onto an affine
space A2 = E[SJF ] + V2, and its orthogonal complement.

first principal axes. Then the affine space

Ad = E[SJF ] + Vd,

will be used as an approximation of the scattering coefficients of signals belonging
to this class. We will have four classes Ci for i = 0, 1, 2, 3, each representing a
different degree of inflammation. Each such class arises from a separate stochastic
process Fi, and its scattering coefficients will be approximated by the affine spaces

Ad,i = E[SJFi] + Vd,i, k = 0, 1, 2, 3.

5.4.3.4 Classifier

Once we have build an affine space for each class we can define the classifier. For
an image f ∈ L2(R2), let PAd,i(SJf) be the projection of the scattering coefficients
SJf onto the affine space Ad,i. The signal f will be classified according to the
smallest distance from the coefficients SJf to the affine space Ad,i. In other words,
f will be classified as class Cι, where ι is given by

ι = argmin
i∈{0,1,2,3}

‖SJf − PAd,i(SJf)‖. (5.16)

It is easily verified by elementary linear algebra that

‖SJf − PAd,i(SJf)‖ = ‖PV⊥
d,i

(SJf − E[SJFi]) ‖,

where V⊥d,i is the orthogonal complement of Vd,i, see Figure 5.12. Thus finding the
minimal distances to the affine spaces is equivalent to finding the closest centroid
centred at E[SJFi], without taking the first d principal directions into account.
As a result, the classifier therefore keeps the eigenvectors corresponding to the
smallest eigenvalues.
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5.4.3.5 Overfitting and underfitting

The affine space approximation is a good approximation if most of the variability
within each class is described by the d first principal components. In this case
SJFi − E[SJFi] is well approximated by a projection on a low-dimensional space.
If d is chosen too small then much of the variability will not be captured by
the affine space approximation, and may cause misclassification. This is called
underfitting.

If d is chosen too large, random error will be prominent in the model, and we
have overfitting. This will typically happen if d > Li, where Li is the number
of training images for the class Ci. This corresponds to the general overfitting
dichotomy which appears in the process of image classification. By increasing the
number of parameters you may lose robustness of the method.

To find the optimal value for d, a cross-validation procedure can be used. This
procedure divides the training set into two separate sets, where one set is used to
build the model, and the second is used to test the model for different values for
d.



Chapter 6

Results

In this chapter we will present the results from the classification methods described
in the previous chapter. An analysis of the results will also be carried out. First we
will present the database of images which are available for us to test the different
methods.

6.1 Database of images

6.1.1 Data
The images are provided from a research project called Medusa. Medusa is a
research project whose aim is to develop a software for identifying and classifying
synovitis. The total dataset contains 296 US images of finger joints, where each
image has been analyzed and classified by a medical doctor. Images are classified
according to the degree of inflammation. A higher degree of inflammation, means
that the inflammation is more severe. The distribution of images based on the
degree of inflammation is provided in Table 6.1.

All images have also been annotated manually by different persons, so that
for each image there is a corresponding image with annotation. These annotated
images will be used when calculating the area. The scattering coefficients will be
computed from the original images, without annotation.

The provided images are of size 500 × 840 pixels. To reduce complexity and
memory usage, we have reduced the size of the images to 256 × 256 pixels when
computing the scattering coefficients. This has been done by using a bicubic
interpolation, where each pixel value is a weighted average of pixels in the nearest
4-by-4 neighborhood. The area is calculated on images with the original size.

Degree 0 Degree 1 Degree 2 Degree 3 Total number of images
29 78 92 97 296

Table 6.1: Number of images with different degree of inflammation.

72
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6.1.2 Sources of error
All images are classified by the same medical doctor, which rules out any error
concerning different doctors subjective opinion. However, there exist border cases
for which the classification given by a medical doctor may differ from that given
by the algorithm. Such discrepancies do not really influence the efficiency of the
algorithm. These border cases are illustrated in Figure 6.2.

There is a high uncertainty related to the manual annotation of the inflamed
region. As two persons may have different opinions on where the inflammation is
located, there may be huge differences in the annotation of two similar images.
Also the annotation is not verified by the medical doctor who classified the images.
Therefore there may be a mismatch between what is recognized as inflammation
between the people who have annotated the images, and the medical doctor who
has classified them.

Another source of error related to the calculation of the area, is that the images
are taken of different patients. The scale of all images are the same, but the finger-
size may vary from patient to patient. A patient may in reality have low degree of
inflammation, but due to a large finger-size, the area is proportionally large. As
a result, the patient will be classified with a higher degree of inflammation if the
classification is only based the area.

6.1.3 General setup
The database is divided into a training set and a test set. A model is built out of
images from the training set. This model is tested with the classifier on images
from the test. This will output an error which is given by

Error = Number of misclassifications
Total number of images in the test set .

A diagram of this general procedure is provided in Figure 6.1.

6.2 Classification from area
In this section we will present the results from the classification using the area of
inflammation.

6.2.1 Setup
The area is calculated from annotated images. This annotation is detected by the
Canny edge-detection algorithm. This algorithm is a built-in function in Matlab,
and Matlab also has a routine for finding the optimal values for Thigh, Tlow and s
(see Section 3.2 for definitions of these parameters). The area is then calculated
by using Greens formula (5.3). Each pixel represents a unit area. A normalization
of the area is done by dividing by the total area of the images. The total area of
each image is 500× 840 = 420.000 .

For each class we build a prediction interval from the calculated areas in the
training set. The paramter α is chosen so that the intervals are mutually disjoint.



Chapter 6. Results 74

Database

Training set Test set

Error

Partition of database into
training and test sets

Model

Build model

Test model

Apply classifier

Figure 6.1: Diagram of the general setup.

Parameter Degree 0 Degree 1 Degree 2 Degree 3
µ̃A 0.014127 0.026763 0.053453 0.080391
Σ̃A 3.37× 10−5 1.74× 10−4 5.19× 10−4 1.40× 10−3

Table 6.2: Estimated mean and variance from the area of inflammation.

An image in the test set is then classified according to the shortest distance to
these intervals. The collection of these intervals together with the classifier will be
referred to as the model.

6.2.2 Results from area classifier
We will first see the results, when all images are in both the training set and
the test set. These results will be used to highlight weaknesses in the model.
Thereafter, the database is partitioned into a training set and a test set, with
different ratios between the sizes. At the end we will see the results when the test
size is kept fixed, and we vary the training size.

6.2.2.1 Results when using all images

The calculated area for each image is visualized in Figure 6.2(a). The different
colors represent the different classes. In Figure 6.2(b) we see a histogram of the
estimated area of images within each class. These histograms are fitted with a
density function of a normal distribution. These distribution functions are plotted
independently in Figure 6.2(c).

The average area µ̃A, and the empirical variance Σ̃A for each class are provided
in Table 6.2. This table shows that a higher degree of inflammation has a larger
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Figure 6.2: Illustration of the area of all images corresponding to each class.
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all images.

Figure 6.3: Predication intervals estimated from all images in the database.

average area, which confirms the hypothesis that the area of the inflamed region
is dependent on the degree of inflammation.

From these values one can build a prediction interval for each class. The re-
sulting prediction intervals are illustrated in Figure 6.3(a). These intervals are
chosen as large as possible so that they are non-overlapping and have the same
probability to contain a future observation. The probability is controlled by the
parameter α which in this case happens to be 0.6592. This means that for each
interval, the probability for a future observation to lie in the correct interval is
34.08%. A higher value for α would give a non-empty intersection for the intervals
for class 3 and 2. An illustration of the predication intervals, drawn as vertical
lines, together with the area for each class is provided in Figure 6.3(b). From this
figure it is clear that there are already images which are misclassified. This is due
to the high variance within each class. Figure 6.4 shows the amount of correct
and wrong classifications within each class. In total 61.5% of all the images are
classified correctly, and 31.5% are misclassified.

Table 6.3 shows that most errors are done between neighbouring classes. The
highest error is due to misclassifications between class 2 and 3.
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Figure 6.4: Classification results for when all images are in both the test set
and the training set.

Belongs Classified as class
to class 0 1 2 3

0 22 7 0 0
1 21 46 10 1
2 0 18 53 21
3 7 2 27 61

Table 6.3: Overview of misclassifications.

6.2.2.2 Results for different partitions

The database is now partitioned into a training and a test set. As all images
are used, increasing the training size will lower the size of the test set. The
classification results for different partitions are shown in Table 6.4. These results
are found by testing the classifier 100 times for each partition, and then taking
the average error.

Training size Test size Error
59 237 40.90%
90 206 39.84%
119 177 40.34%
149 147 40.14%
177 119 38.26%
206 90 39.78%
237 59 40.56%

Table 6.4: Classification errors for different partitions of images based on the
area of inflammation.

These results show that the classification error is close to 40% in all cases. In
addition, there is no effect of increasing the training size.

6.2.2.3 Results for fixed test size

The test size will now be fixed to 100 images. We will test the model as the
training size is increased from 25 to 170 images. The error for different training
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Figure 6.5: Classification errors for increasing training size and fixed test size.

sizes is plotted in Figure 6.5. Also here, the error is about 40% in all cases. There
is also no effect in increasing the training size. Detailed results may be found in
Appendix C.

6.2.3 Comments on the results
Although an error close to 40% is high, the results look rather promising.

Some of the error may be explained by the different sources of error discussed
in section 6.1.2. However, even if all these sources were removed, we would still
experience misclassifications. There are in general two reasons for this.

First, when an image is classified by a medical doctor, there are only four
options. In reality there are many intermediate cases. It might happen that an
image should be classified as both degree 1 and 2, because the inflammation is
somewhere in between. The medical doctor is however forced to classify it either
as degree 1 or degree 2. As we saw in Table 6.3 most errors are done between
neighbouring classes which could indicate that there are many intermediate cases.

The second reason is that the class is not only dependent of the area, but also
on the shape of the inflamed region. Although it is clear from Figure 6.2(a) that
there is a correspondence between the area and the degree of inflammation, the
area alone does not seem to tell the whole story. This is also verified by participants
in the Medusa project.

The obtained result shows that the area of the inflamed region within each
class is normally distributed with roughly the same variance. This can be used as
a starting point for developing algorithms by using parameters related for example
to the shape of the inflamed region.

6.3 Classification from scattering coefficients
In this section we will present the results from the classification using the scattering
coefficients.

6.3.1 Setup
The scattering coefficients may be computed for different values of the parameters
J,R and M , which denotes the scale, number of rotations and number of layers
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respectively. A dimension d of the affine spaces which approximates the coefficients
from the training set must be chosen. As there are four classes, representing
different degrees of inflammation, there are in total four affine spaces. These
four affine spaces together with the classifier will be referred to as the model. A
particular model is thus dependent on the parameters J,R,M, d and the number
of images in the training set. To test a model, the scattering coefficients from the
test set are used.

A diagram of this procedure is provided in Figure 6.6. The green nodes means
there is a parameter which needs to be specified. For instance, how many images
should be in the training/test set, and what is the dimension of the affine spaces.
As we see, there are a lot of combinations to be investigated.

DatabaseChoose J,R
and M

Training set Test setAll coefficients

Coefficients from
training set

Coefficients
from test sets

Choose di-
mension d

Model Test model Error

Compute
coefficients

Partition of database into
training and test sets

Collcet coefficients from the training and test set

Build model

Figure 6.6: Diagram of classification algorithm from scattering coefficients.
Nodes with green color means that there is a choice to be made.

The scattering coefficients are computed at scales J = 3, 4, · · · , 8 with M = 3.
As the images are of size 256×256 = 28×28, the largest possible pixel displacement
is of the order 28. It is therefore not necessary to include scales with J > 8. For
each scale the wavelet is rotated by R = 2, 3, · · · , 8 number of rotations. Hence
there are in total 42 different sets of coefficients. Further, we will test each model
with d = 0, 1, 2, · · · , 30. Since the smallest class of images contains 29 images,
we would expect overfitting if the dimension is further increased. Hence for each
partition of training and test sets there are 42× 30 = 1260 different outputs.
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Degree 0 Degree 1 Degree 2 Degree 3 Total
Train/Test 12/17 31/47 37/55 39/58 119/177
Train/Test 15/14 39/39 46/46 49/48 149/147
Train/Test 17/12 47/31 55/37 58/39 177/119
Train/Test 20/9 55/23 64/28 68/29 207/89

Table 6.5: Number of images with different degree of inflammation in each
partition of training and test sets.

6.3.2 Results from scattering classifier
The results from the classification based on the scattering coefficients will now be
presented. Error plots for different partitions of the database and a discussion of
optimal parameters will be given. Detailed results may be found in Appendix B.

6.3.2.1 Results for different partitions of the database

The whole database is partitioned into a training set, and a test set. The different
partitions are found in Table 6.5.

For each partition the error is computed for all possible combination of J,R
and d. A plot of the error as function of the dimension d for each partition is
illustrated in Figure 6.7. For each dimension d there are in total 42 different
outputs, corresponding to the different combinations of J and R. The red line is
the minimum error of all these combinations, the blue line is the average error and
the green line is the maximum error. All these plots have a similar shape. For low
dimensions (d < 8), the error is large since much of the variability is not captured
by the affine space approximation, i.e underfitting. As the dimension increases
from d = 0 to d = 8 there is a drop in the error from about 45% to 20% in the
average case. Increasing the dimension further will give about the same error as in
the case when d = 8. At a particular point, which is dependent on the partition,
there is a rapid increase in the error. This is the effect of overfitting, which means
that random error becomes prominent in the model. Overfitting will happen if
the dimension d exceeds the number of training images in the smallest class. In
Table 6.5 we see the number of training images within each class for the different
partitions. The smallest class corresponds to images with inflammation degree 0.
We would therefore expect overfitting for the partition with 119 training images
when d exceeds 12. This can be seen from Figure 6.7(a). After this increase, the
error appears to remain approximately constant for higher dimensions.

It is also interesting to investigate which errors that are made by our classifier.
In Table 6.6 to 6.9, we present the percentage of all classifications for each class.
As we can see, most misclassifications are due to images of degree 0 which are
classified as degree 1. The reason for this is because images with degree 0 have
the smallest number of training images. From a medical point of view, this is not
a crucial error. It would for instance be much worse if many images of degree 3
were classified as degree 0.

The minimum error achieved, and the corresponding dimension of the affine
spaces is provided in Table 6.10. These errors are also seen as the minimum values
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(a) 119 training images and 177 test images.
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(b) 149 training images and 147 test images.
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(c) 177 training images and 119 test images.
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(d) 206 training images and 90 test images

Figure 6.7: Classification error as a function of the dimension of the affine
spaces.

Class Classified as class
0 1 2 3

0 71.01 24.23 2.66 2.10
1 7.6494 84.3972 5.6738 2.28
2 0.95 6.49 80.95 11.61
3 0.21 1.52 9.77 88.51

Table 6.6: Percentage of classifications
for each class with 119 training images

and 177 test images.

Class Classified as class
0 1 2 3

0 79.08 15.99 3.23 1.70
1 7.63 85.90 4.52 1.95
2 0.47 4.71 85.51 9.32
3 0.05 0.84 9.97 89.14

Table 6.7: Percentage of classifications
for each class with 149 training images

and 147 test images.

in Figure 6.7. This shows that by increasing the training size, and at the same
time decreasing the test size, one will obtain a lower minimum error. This is not
surprising. Next, we will see the results when the test size is fixed, and the training
size is varied.
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Class Classified as class
0 1 2 3

0 79.56 17.66 2.18 0.60
1 8.30 86.18 3.76 1.77
2 0.90 4.89 87.00 7.21
3 0.31 0.86 8.85 89.99

Table 6.8: Percentage of classifications
for each class with 177 training images

and 119 test images.

Class Classified as class
0 1 2 3

0 80.76 15.45 2.44 1.36
1 7.85 87.91 2.65 1.59
2 1.13 4.18 88.42 6.27
3 0.00 0.93 7.99 91.09

Table 6.9: Percentage of classifications
for each class with 206 training images

and 90 test images.

Training / Test size Minimum error Optimal dimension
119 / 177 10.73 % 11
149 / 147 10.2 % 10
177 / 119 7.56 % 16
206 / 90 6.74 % 11

Table 6.10: Minimum errors and the corresponding dimension for different
partitions of training and test sets.
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Figure 6.8: Classification error as a function of training size. The error is com-
puted with the optimal dimension of the affine spaces. The different lines shows
the maximum, average and minimum error achieved with different combinations

of J and R.

6.3.2.2 Results for fixed test size

We would like to see the effect of increasing the training size, when the test size is
kept fixed. Hence the test size will now be fixed to 100 images. In Figure 6.8 the
error is plotted as a function of the training size. For each training size there is a
choice for the parameters d, J and R. In this plot, the dimension d which produces
the minimum error is chosen. Hence, the minimum, average and maximum error
lines, are computed over different combinations of J and R. It is clear from this
figure that increasing the test size will decrease the classification error.

In Figure 6.9 the dimension with the smallest error for each training size is
plotted. This dimension is also the dimension used to calculate the error in Fig-
ure 6.8. This indicates that when the training size is increasing, then so is the
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Figure 6.9: Dimension for which minimum error is achieved for different
training sizes.
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Figure 6.10: Training size against dimension.

dimension of the affine spaces which yields the minimum error.
The error for different combinations of training sizes and dimensions of the

affine spaces is visualized in Figure 6.10(a). This figure illustrates an important
observation. Notice the increase in the error across the lines plotted in Figure
6.10(b). The dimension plotted against the training size for each class, is visualized
in Figure 6.11. The red line shows where the training size, and the dimension
coincide. As the dimension increases it will exceed the number of training images
in the different classes. When it does, there is an increase in the error due to
overfitting.

The error is plotted against the dimension of the affine spaces in Figure 6.12.
The minimum error for each dimension follows about the same curve as the error
for the maximum training size tested. In the average case, the minimum error is
attained when the dimension is close to 8. For smaller dimensions, the model will
suffer from underfitting. Higher dimensions will give a lower error if the training
size is properly adjusted, but in the average case the error is affected by overfitting
from the sets with small training sizes.
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(c) Class 2.
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(d) Class 3.

Figure 6.11: Training size for each class against dimension.
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Figure 6.13: Error plots for the scale J .

6.3.2.3 Optimal scale and number of rotations

We would like to find the optimal scale and number of rotations, on the base of
the above numerical results. By optimal we mean the value of these parameters
which gives the smallest classification error.

We will first look at the scale. In Figure 6.13, the error is plotted for the
different choices of the scale variable. Figure 6.13(a) shows a histogram of the
average and minimum error attained for different scales. The error is computed
with the optimal dimension, and the average is taken over different combinations
of training sizes and number of rotations. There are only minor differences between
the different choices. Therefore, one may wonder if there is a dependence between
the scale and the other parameters.

In Figure 6.13(b) and 6.13(c) the minimum error is plotted for different scales
against the training size and dimension of the affine spaces respectively. These
figures seem to indicate that small scales (J = 3, 4, 5) produce the smallest classi-
fication error. However, the results are not significant.
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Figure 6.14: Error plots for the number of rotations R.

We will now consider the number of rotations. In Figure 6.14 the error is
illustrated for different choices of number of rotations. A few number of rotations
(R ≤ 5) seem to give the smallest error, but also here the differences are small.

It might happen that it is the combination of the scale and number of rotations
which is important. In Figure 6.15, the minimum and average error is visualized
for different combinations of scales and number of rotations. The average is taken
over all training sets where the optimal dimension is chosen for each set.

There are some combinations which produce a smaller error than others. The
minimum error of 6% is attained for the combinations (J,R) = (4, 5), (5, 3), (8, 4).
The minimum average error of 19.3% is attained for (J,R) = (4, 8).

The average minimum error is about 9%, whilst the overall average error is
about 20.5%. In Figure 6.16(a), the combinations which give a minimum error
smaller than the average minimum error is displayed as red. Similarly, the com-
binations which give an average error smaller than the overall average error is
displayed in Figure 6.16(b). The intersection of these two figures is illustrated in
Figure 6.16(c).
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Figure 6.15: Error for different combinations of scales and number of rota-
tions.
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Figure 6.16: Illustrates which combinations of J and R which gives the
smallest error.

From these Figures we see that with J = 4, a small error is attained in both the
average and minimum case when the number of rotations is even. In addition J = 8
seems to give a small error when the number of rotations are less than 7. Still these
results are not significant enough to conclude that some combinations are more
optimal than others. The recommendation is therefore to choose the combination
which gives the minimum computational cost. In this case, this would be the
combination (J,R) = (8, 2).

6.4 Summary of the results

6.4.1 Area of inflammation
The results show that there is a classification error of 40%, and increasing the
training size does not seem to lower the error. The high error is partly explained
by the sources of error, but even with all these sources removed we would still
experience a high number of misclassifications. Most misclassifications are done
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between neighbouring classes. This indicates that there are many intermediate
cases, for which a more thorough examination should be conducted. A class is not
alone determined by the area, but also on the shape of the inflamed region.

6.4.2 Scattering coefficients
The average error obtained from the classification algorithm using the scattering
coefficients is about 20%. In the best cases the error is close to 6%.

Increasing the training size shows in general a decrease in the error. The di-
mension of the affine spaces should however be adjusted to the number of images
in the class with the least amount of images. If the dimension exceeds the amount
of images in this class, one will experience overfitting, and thus an increase in the
number of misclassifications. The optimal dimension of these affine spaces should
therefore be chosen as high as possible, but smaller than the number of training
images in the smallest class.

The scale variable J controls the amount of translation invariance. A higher
value for J implies that the coefficients are more translation invariant, but also
that the scattering distance between any two images is smaller. The results show
small differences in the choice of J . This could indicate that the variability within
each class is not primarily due to translation, but to deformations and additive
noise.

The same goes to the number of rotations R. No particular choice of this
parameter shows a significant decrease in the error.

The recommendation is therefore to choose a high scale and a small number of
rotations so that the computational expenses, and memory usage are minimal.



Chapter 7

Conclusion

In this thesis we have studied and applied the theory and techniques of the win-
dowed scattering transform to the problem of image classification. As a model case
we considered US images of finger-joints. This database of images is a part of a
Norwegian-Polish research project called Medusa. The goal of the Medusa project
is to develop a software for classification and recognition of synovitis. Synovitis is
a type of inflammation occurring in finger-joints.

The method proved to be rather efficient. The results show that the amount of
training images are important, and that the dimension of the affine space approx-
imation should be adjusted to the training size.

A pure analytic analysis of this method has been conducted. We have proved
that the scattering metric is locally translation invariant, stable to additive noise
and stable to the action of diffeomorphisms. In order to apply the theory we have
analyzed the general pattern and adjusted it to our concrete setting. In particu-
lar error estimates for specific choice of wavelets, and a new proof showing that
the energy is captured by frequency-decreasing paths is given. The corresponding
numerical algorithms have been developed in order to obtain the scattering coef-
ficients. The latter have been classified by considering projections of affine spaces
which are constructed using principal component analysis. This is a statistical
method used for dimensionality reduction.

Other methods for classification have also been studied, in particular a method
based on the area of inflammation. The results from this method show that it is
not very effective. This is due to the high variation in the area within each class,
and that the degree of inflammation is not only determined by the area but also
by the shape of the inflamed region.
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Figure 7.1: Typical US
image of synovitis.
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Figure 7.2: Classification er-
ror for different dimensions.

A typical US image of synovitis is shown in Figure 7.1. Scattering coefficients
are computed by convolving the image with a rotated and dilated wavelet of the
form

ψ(x) = e−
|x|2

2σ2
(
ei〈x,ξ〉 − e−(σ2|ξ|2)/2

)
.

Thereafter, a non-linear modulus operator is applied. The wavelet may be rotated
by two rotations, corresponding to 0 and π

2 radians. Further it may be dilated
by three dilations, corresponding to the scales 20, 21 and 22. This convolution-
and modulus procedure is then repeated with different combinations of dilations
and rotations, typically three times. The number of such repetitions is referred
to as the number of layers. The results after cascading wavelet transforms with a
non-linear modulus are filtered with a low-pass filter of the form

φ(x) = 1
2πσe

− |x|
2

2σ ,

scaled according to the coarsest scale. With this choice of scales for the wavelet,
the coarsest scale would be 23. The output for a particular image, will be a vector
of scattering coefficients corresponding to the different combinations of scales and
rotations. In addition to scales, rotations and number of layers, the length of
this vector depends on the size of the input image, and the coarsest scale. The
images considered in this thesis are of size 256 × 256 pixels. This procedure is
then applied to all images in the available database, which in our case contains
296 images. All images belong to one of four classes depending on the degree
of inflammation. To classify images, the database is divided into a training set
and a test set. Images from the training set are used to build affine spaces, which
approximate the scattering coefficients for each class. These spaces are constructed
using principal component analysis. A dimension of these affine spaces must also
be chosen. Images from the test set are then classified according to projections
on these affine spaces. The error is measured by the ratio between number of
misclassifications and the number of images in the test set. In Figure 7.2 we see
the error plotted against the dimension of the affine spaces, for the case with two
rotations, three scales and three layers. Here the database has been divided evenly
between the training set and the test set.
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7.1 Suggestions for further work
Imposing more invariant structure on the scattering coefficients. The
scattering coefficients used in this thesis are proven to be invariant to translations.
There exists however an extension of these coefficients which are invariant under
the action of any compact Lie group. Examples are coefficients which are both
rotation and translation invariant. Classification based on these coefficients has
proven to be very efficient in texture classification, and it would be interesting to
see the results for classification of synovitis.

Combined scattering and edge-detection. We saw in section 5.2.1 that find-
ing the correct edges which defines the boundary of the synovitis is difficult. The
degree of the inflammation is determined by the area as well as the shape of the
inflammation. With prior knowledge of the degree of inflammation, one can search
for specific shapes of the inflammation. This may be done by first classifying im-
ages based on their scattering coefficients, and then adjusting the edge-detector by
favouring edges which define shapes corresponding to the classification result. In
this way, one can develop a method which both classifies, and locates the boundary
of the inflammation.

Apply techniques to other types of US images. In this thesis we study
a very special class of images. After appropriate adjustments, the method can
be applied to much more general classes. The work done in this thesis should
therefore serve as a model case for a wider class of images. Today US images are
used in a broad range of medical disciplines. It would therefore be interesting to
see these techniques applied to other types of US images.

Contribution to the Medusa project. The work done in this thesis is a direct
contribution to the Medusa project. With proper adjustments, the classification
method based on the scattering coefficients may easily be implemented as a part
of a more extensive algorithm for classification and recognition of synovitis.



Appendix A

Some results from Mathematical
Analysis

Theorem A.1. ( Schur Test, see e.g [Grö01, p.106]) Let K(x, y) be a measurable
function on R2 that satisfies the conditions

sup
x∈R

∫
R
|K(x, y)|dy ≤ K1, and sup

y∈R

∫
R
|K(x, y)|dx ≤ K2. (A.1)

Then the integral operator A defined by Af(x) =
∫
RK(x, y)f(y)dy is bounded from

L2(R) to L2(R) and
‖A‖L2→L2 ≤

√
K1K2. (A.2)

Theorem A.2. (Tonelli’s Theorem see e.g [MW13, p.212]) Suppose (Γ,S, µ)
and (Λ, T , ν) are σ-finite measure spaces. Let f be a nonnegative extended real-
valued S × T -measurable function on Γ× Λ. Then∫

Γ×Λ
f(x, y)d(µ× ν)(x, y) =

∫
Γ

[∫
Λ
f(x, y)dν(y)

]
dµ(x) (A.3)

=
∫

Λ

[∫
Γ
f(x, y)dµ(x)

]
dν(y). (A.4)

Definition A.3. (1D Fourier Transform) For a function f ∈ L2(R) the
Fourier transform is

f̂(ω) = 1√
2π

∫ ∞
−∞

f(t)e−iωtdt. (A.5)

Definition A.4. (2D Fourier Transform) For a function f ∈ L2(R2) the
Fourier transform is

f̂(ω) = 1
2π

∫
R2
f(t)e−i〈ω,t〉dt. (A.6)

Here t = (t1, t2) and ω = (ω1, ω2).
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Definition A.5. (Convolution) Let f, g ∈ L2(R2). The convolution is defined
almost everywhere as

f ∗ g(x) =
∫
R2
f(y)g(x− y)dy. (A.7)

Theorem A.6. ([GW99, Prop 23.2.1] ) If f, g ∈ L2(R2), then

f̂ ∗ g(ω) = f̂(ω) · ĝ(ω) (A.8)

for all ω ∈ R2.

Proposition A.7. ([GW99, Prop 20.2.1]) If f, g ∈ L1(Rn), then f ∗ g exists
almost everywhere and f ∗ g belongs to L1(Rn). Moreover

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 . (A.9)

Proposition A.8. ([GW99, Prop 20.3.2] ) If f ∈ L1(Rn) and g ∈ L2(Rn), then
the following hold:

• f ∗ g exists almost everywhere.

• f ∗ g belongs to L2(Rn) and

‖f ∗ g‖L2 ≤ ‖f‖L1‖g‖L2 . (A.10)

Proposition A.9. ([GW99, Prop 21.2.1]) Let f be in L1(R) and let g be in Cn(R).
Assume that g(k) is bounded for k = 0, 1, · · · , n. Then

• f ∗ g ∈ Cn(R), and

• (f ∗ g)(k) = f ∗ g(k) for k = 0, 1, · · · , n.

Theorem A.10. (The Plancherel equality see e.g [GW99, Thm 22.1.2])For
all f, g ∈ L2(R), ∫

R
f(x)g∗(x)dx =

∫
R
f̂(ω)ĝ∗(ω)dω. (A.11)

Theorem A.11. (The Parseval equality see e.g [GW99, Thm 22.1.2])For all
f ∈ L2(R), ∫

R
|f(x)|2dx =

∫
R
|f̂(ω)|2dω. (A.12)
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Classification results from
scattering coefficients
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Training size Error(%) Scale J Rotation R Dimension d

25 25 2 7 3
30 27 8 5 8
35 18 3 6 5
40 22 7 3 5
45 18 4 4 8
50 16 4 6 5
55 17 5 4 8
60 14 5 7 4
65 15 11 4 2
70 10 6 7 8
75 14 6 8 4
80 14 5 7 3
85 11 8 8 4
90 13 9 7 3
95 11 6 7 6
105 11 7 8 2
110 10 10 8 2
115 11 9 5 8
120 10 8 5 5
125 8 9 8 5
130 6 10 8 4
135 8 8 4 2
140 6 8 4 5
145 8 7 4 8
150 8 8 3 6
155 7 13 4 4
160 7 14 5 3
165 7 13 5 3
170 6 9 5 3

Table B.7: Minimum error for different training sizes, and the corresponding
optimal parameters.
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Training size Min error(%) Mean error(%) Max error(%) Mean dimension
25 25 35.5238 48 2.7143
30 27 34.6667 48 3
35 18 32.9286 48 3.7857
40 22 30 41 4.4048
45 18 27.9762 39 4.4048
50 16 26.5238 36 5
55 17 25.381 33 4.9048
60 14 23.5952 32 5.119
65 15 23.7381 32 5.8095
70 10 22.5476 30 5.9048
75 14 22.5476 34 5.881
80 14 20.9048 28 6.3333
85 11 19.5238 28 6.5238
90 13 20.0476 28 6.9048
95 11 18.8571 28 6.6667
105 11 18.4048 29 8.6429
110 10 17.7619 24 7.5476
115 11 16.5952 24 8.2857
120 10 16.119 21 8.1429
125 8 16.2381 25 8.6667
130 6 14.7143 22 9.0952
135 8 15.119 23 8.5238
140 6 14.4524 24 8.9762
145 8 15.0238 21 9.2381
150 8 14.3571 22 9.2619
155 7 13.5238 22 9.8095
160 7 14.0714 19 9.6667
165 7 12.5952 18 9.881
170 6 13.619 19 10.4286

Table B.8: Minimum and average error for increasing training sizes, and the
average optimal dimension.
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Training size Error(%)
25 44.0
30 46.2
35 40.2
40 39.8
45 40.8
50 46.4
55 48.2
60 40.6
65 40.0
70 42.4
75 42.2
80 40.8
85 40.0
90 38.0
95 38.8
105 38.8
110 41.6
115 40.4
120 36.6
125 38.8
130 40.4
135 37.6
140 43.2
145 41.0
150 38.0
155 42.2
160 39.4
165 39.2
170 40.0

Table C.1: Error as the function of training size for fixed test size.
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Phase recovery, maxcut and complex semidefinite programming. July
2013.


	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Synovitis
	2.1.1 Medical challenges
	2.1.2 Available images

	2.2 Recognition based on human vision
	2.2.1 Visual perception

	2.3 Classification methods
	2.3.1 Classification based on the area of inflammation
	2.3.2 Classification based on scattering coefficients


	3 Wavelets
	3.1 Introduction
	3.1.1 Wavelets in one dimension
	3.1.2 Wavelets in two dimensions

	3.2 Wavelets in edge detection
	3.2.1 Catching edges
	3.2.2 Edge detection in images
	3.2.3 Detecting the boundary of the inflamed region

	3.3 Scattering wavelets
	3.3.1 Littlewood-Paley Wavelet Transform


	4 Scattering
	4.1 Properties of the representation
	4.1.1 Translation invariance
	4.1.2 Stability to additive noise
	4.1.3 Stability to deformations 
	4.1.4 Building invariant structure

	4.2 The windowed scattering transform
	4.2.1 Frequency-decreasing paths

	4.3 The scattering metric

	5 Application to digital images
	5.1 Digital image processing
	5.2 Area of inflammation
	5.2.1 Problems with finding the correct edges
	5.2.2 Calculating the area

	5.3 The windowed scattering transform
	5.3.1 Filter bank
	5.3.2 Scattering coefficients
	5.3.3 Energy propagation
	5.3.4 Visualization of the scattering coefficients

	5.4 Classification
	5.4.1 Statistical background
	5.4.2 Classification from area of inflammation
	5.4.2.1 Classifier

	5.4.3 Classification from scattering coefficients
	5.4.3.1 Choice of scale 
	5.4.3.2 PCA
	5.4.3.3 Affine space from PCA
	5.4.3.4 Classifier
	5.4.3.5 Overfitting and underfitting



	6 Results
	6.1 Database of images
	6.1.1 Data
	6.1.2 Sources of error
	6.1.3 General setup

	6.2 Classification from area
	6.2.1 Setup
	6.2.2 Results from area classifier
	6.2.2.1 Results when using all images
	6.2.2.2 Results for different partitions
	6.2.2.3 Results for fixed test size

	6.2.3 Comments on the results

	6.3 Classification from scattering coefficients
	6.3.1 Setup
	6.3.2 Results from scattering classifier
	6.3.2.1 Results for different partitions of the database
	6.3.2.2 Results for fixed test size
	6.3.2.3 Optimal scale and number of rotations


	6.4 Summary of the results
	6.4.1 Area of inflammation
	6.4.2 Scattering coefficients


	7 Conclusion
	7.1 Suggestions for further work

	A  Some results from Mathematical Analysis 
	B Classification results from scattering coefficients
	C Classification results from area of inflammation
	Bibliography

