Simple and general correlation for heat transfer during flow condensation inside plain pipes

Carlos A. Dorao, Maria Fernandino

Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway

Abstract

This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 µm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.

Keywords: Flow condensation, Heat transfer coefficient, Two-phase flow

1. Introduction

Condensers based on mini/micro-channels are of great relevance and interest in connection with the growing demand of heat exchangers for several applications ranging from condensers of cooling equipment and air conditioning systems, horizontal tubular evaporators of water-desalinating thermal units, heaters of power systems, heat pipes, etc. Furthermore, in some
applications heat exchangers are the main component in cryogenic processes like separation units and liquefaction of natural gas plants, and the design and performance of the unit can affect some other major equipments like compressors and drivers [1].

During the last decades a large number of models of flow condensation inside pipes has been proposed and tested against experimental data bases as reviewed in the literature by several authors, e.g. [2, 3, 4, 5]. In spite of the extensive work, the general characteristics of the heat transfer phenomena and which are the dominant mechanisms remain an elusive question. This fact is observed in the different dimensionless groups considered in the models suggested under different assumptions. In some cases more than 10 dimensionless groups and adjusted parameters are needed for predicting the experimental data.

The goal of this work is to present a condensation heat transfer coefficient model for flow inside plain pipes. The approach is based on identifying the dominant dimensionless groups and their effect on the heat transfer coefficient of experimental data gathered from the literature. In this work, it will be shown that the heat transfer coefficient shows a distinctive behaviour at high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities, fact that is considered for proposing a model for each region.

1.1. Literature review

Extensive reviews of heat transfer models for flow condensation inside pipes can be found in [2, 3, 4, 5]. In this section, the focus will be on highlighting the difference in the selected dimensionless groups considered in some selected models. Table 1 and 2 summarise the models discussed in this section. A common reference for most heat transfer models is the single-phase heat transfer coefficient in pipes. The equation attributed to Dittus-Boelter and McAdams [6], following the equation proposed by Nusselt (1910) based on similarity theory (as cited in [7]), contains only 2 dimensionless groups and 3 adjusted parameters,

\[Nu = \frac{hD}{k} = f_1(Re)f_2(Pr) = CRe^n Pr^m \]

where \(h \) is the heat transfer coefficient, \(D \) the diameter of the pipe, \(k \) the thermal conductivity of the fluid, \(Re = GD/\mu \) the Reynolds number (with \(G \) the mass flux and \(\mu \) the dynamic viscosity), \(Pr = c_P\mu/k \) the Prandtl number.
(with c_p, the specific heat). The exponent m is suggested to be 0.3 and 0.4 for cooling and for heating respectively, $n = 0.8$ and the scaling constant $C = 0.023$. The model is based on two functional forms representing the hydrodynamic and thermodynamic effects or influence of the fluid properties $f_1(.)$ and $f_2(.)$ respectively. Several models were suggested later based on larger experimental data bases for example for taking into account the change of the fluid properties with temperature [8, 9], effect neglected in the discussed model, or the shape of the pipe [10].

One of the first correlations available in the literature regarding flow condensation inside pipes was developed by Crosser [11] assuming that the condensate form an annular ring surrounding a turbulent vapour core. The model considers the vapour velocity and the viscosity of the liquid phase for defining an equivalent superficial vapour Reynolds number. Crosser has pointed out to previous research work identifying the direct effect of the vapour velocity on the heat transfer coefficient, namely Jakob, Erk and Eck (1932), Schmidt (1937) and Carpenter and Colburn (1951) (as cited in [11]). The experimental data show good agreement with the model and the exponent n of the equivalent Reynolds number was 0.2 at low Reynolds number approaching 0.8 at high Reynolds number. Rosson [12] developed a model for semi-stratified and laminar annular flow similar to the model of Crosser. The model considers that the heat transfer coefficient is a function of the thickness of the liquid boundary layer that depends on the temperature difference across the liquid film. Akers, Deans and Crosser (1958) (as cited in [12]) proposed a model based on the idea that the vapour core might be replaced with a liquid flow that produces the same liquid-vapour interfacial shear stress. An equivalent Reynolds number was defined and then replaced in the single phase Sieder-Tate (1937) equation [13]. The local condensation heat transfer coefficient is given as

$$\begin{align*}
Nu &= \frac{hD}{k_L} = CPV^m L \ Re_{eq}^n \quad (2)
\end{align*}$$

with the equivalent Reynolds number defined as

$$\begin{align*}
Re_{eq} &= G \left[(1 - x) + x \left(\frac{\rho_L}{\rho_V} \right)^{0.5} \right] \frac{D}{\mu_L} \quad (3)
\end{align*}$$

with G the mass flux, x the thermodynamic quality, and ρ_L and ρ_V the liquid and vapour density respectively. The model contains 3 adjusted parameters,
\(m = 1/3 \) and \(C = 0.026 \) and \(n = 0.8 \) for \(Re_{eq} > 50000 \), and \(C = 5.03 \) and \(n = 1/3 \) for \(Re_{eq} < 50000 \).

The influence of the vapour flow rate has also been acknowledged by Goodykoontz and Dorsch \([14, 15]\) who studied condensation of steam in vertical tubes. The experimental data was correlated in terms of the product of the quality and the square of the total mass flux, although, a general model was not provided.

Cavallini and Zecchin (1974) \([16]\) proposed a similar model to the one from Akers, Deans and Cresser (1958) but considering another value for the scaling constant \(C \) probably as a consequence of the different fluids studied. The model was suggested for dominant annular flow regime.

It is possible to see that the first available models were considering a direct influence of the vapour flow rate on the heat transfer coefficient. This influence observed in the experiments was implemented in the models by including the product of the total mass flux and the quality, i.e. \(Gx \). Later models have considered alternative descriptions and the dependency on the vapour velocity was introduced in an indirect manner in some cases by multipliers applied to a single phase Dittus-Boelter heat transfer model.

Shah (1979) \([17]\) suggested a dimensionless correlation for predicting heat transfer coefficient during film condensation inside pipes by considering the similarity between the mechanisms of film condensation and boiling without bubble nucleation. The model results in an expression containing 9 adjustable parameters and 5 dimensionless groups. The reduced pressure \(PR = P/PC \) was introduced in the model while the dependency on the liquid-vapour density ratio was removed compared with the previous two discussed models. The model was extended to two regimes in \([18]\). The regime transition is defined in terms of the dimensionless vapour velocity, \(J_G \), and Shah’s correlating parameter, \(Z \), given as

\[
J^T_G = \frac{1}{2.4Z + 0.263} \quad \text{with} \quad Z = \left(\frac{1}{x} - 1 \right)^{0.8} \frac{P}{P_C}^{0.4} \tag{4}
\]

and

\[
J_G = \frac{Gx}{(g D \rho_g (\rho_l - \rho_g))^{0.5}} \tag{5}
\]

Tandon et al. (1995) \([19]\) proposed a modification to the Akers, Deans and Cresser (1958) correlations based on condensation experiments for R12 and R22 acknowledging the direct dependency of the heat transfer coefficient
on the average vapour mass velocity. It is considered that a high vapour mass velocity results in a higher turbulence of the liquid film increasing the heat transfer coefficient. They also observed a change in slope in the heat transfer coefficient versus the equivalent vapour Reynolds number defined in terms of the liquid viscosity, i.e. [11]. The change in the slope is attributed to changes from annular and semi-annular flow to wavy flow. The model introduced the Jakob number defined as \((h_{LV}/C_P\Delta T)\) where \(\Delta T\) is the temperature difference across the condensate film. The model is presented with two branches where the exponent changes from \(n = 0.67\) to \(n = 0.125\) from the defined shear-controlled flow (annular and semi-annular) to the gravity-controlled flow (wavy flow).

Dobson and Chato (1998) [20] suggested a model considering an annular flow and a wavy flow regime. For the annular flow regime, the model is similar to the single-phase flow heat transfer coefficient equation but multiplied by a term including the Martinelli parameter \(X_{tt}\). For the wavy flow regime, the model considers a separate heat transfer contribution by the film condensation in the upper part of the horizontal tube from the forced-convective heat transfer in the bottom pool. The model for film condensation includes the liquid Jacob and the Galileo number. The boundary for the transition from the annular to the wavy flow region is given in terms of \(G > 500 \text{kg/m}^2\text{s}\) or \(Fr_{so} < 20\), where \(Fr_{so}\) is the Soliman’s modified Froude number

\[
Fr_{so} = 0.025Re_L^{1.59}\left(\frac{1 + 1.09X_{tt}^{0.039}}{X_{tt}}\right)^{1.5}\frac{1}{Ga^{0.5}} \quad \text{for} \quad Re_L \leq 1250 \quad (6)
\]

\[
Fr_{so} = 1.26Re_L^{1.04}\left(\frac{1 + 1.09X_{tt}^{0.039}}{X_{tt}}\right)^{1.5}\frac{1}{Ga^{0.5}} \quad \text{for} \quad Re_L > 1250 \quad (7)
\]

The final model for the wavy regime include 7 dimensionless groups and more than 10 adjusted coefficients.

Cavallini et al. (2006) [21] suggested a model considering a \(\Delta T\)-dependent and a \(\Delta T\)-independent flow regimes, where \(\Delta T\) is referred to the temperature difference between the wall and the fluid temperature. The model for the \(\Delta T\)-independent flow regime was based on correcting the liquid phase heat transfer coefficient by a two-phase multiplier containing the liquid-vapour density ratio, liquid-vapour viscosity ratio and the liquid Pr number resulting in 7 dimensionless groups and 9 adjusted parameters. The model for
the ΔT-dependent regime is constructed considering the model for the ΔT-independent regime and a model that includes a progressive transition from wavy-stratified to the smooth stratified flow. The transition boundary for the two regions is given as

$$J_G^T = \left[\left(\frac{7.5}{4.3X_{tt}^{1.111} + 1} \right)^{-3} + C_T^{-3} \right]^{-1/3}$$

(8)

where C_T is 1.6 for hydrocarbons and 2.6 for other refrigerants.

Recently, Dorao and Fernandino [22] studied the heat transfer coefficient during flow condensation inside plain pipes. By studying the dependency of the local heat transfer coefficient in terms of dimensionless groups, it was possible to identify that the sum of the superficial liquid and vapour Reynolds number alone can describe the heat transfer process for high mass fluxes. Although it has been acknowledged in the literature that the magnitude of the shear between the liquid and vapour results in diverse interfacial phenomena that might influence the heat transfer coefficient, the explicit consideration of the sum of the superficial liquid and vapour Reynolds number on the heat transfer coefficient has not been considered in previous models. However, in previous experimental studies of non-boiling two-components two-phase flows, e.g. air-water, the heat transfer coefficient has been correlated by the sum of the liquid and gas Reynolds number [23, 24]. The model suggested by Dorao and Fernandino reflects also the direct effect of the vapour velocity on the heat transfer coefficient observed in previous work. The model is identical to the Dittus-Boelter model but in terms of an equivalent two phase flow Reynolds and Prandtl number and containing only 3 adjusted parameters equals to the ones from the Dittus-Boelter correlations which gives a correct transition to the single phase heat transfer coefficient model.

In summary, several models are available in the literature for predicting flow condensation heat transfer coefficient inside plain pipes. However, there is no common agreement about which dimensionless groups should be considered in the models which is a consequence that the dominant mechanisms controlling heat transfer have not been properly identified. Nevertheless it is possible to observe that most of the models share a similar structure to the single-phase flow heat transfer coefficient equation multiplied by a function of diverse dimensionless groups. In general, the heat transfer coefficient models consider two regions related to high mass fluxes or dominant annular flow regime and to low mass fluxes or wavy or/and stratified flow regime. In
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosser (1955) [11]</td>
<td>[Nu = CP_0^{1/3} \left(\frac{\rho L}{\rho V} \right)^{0.5} \frac{D}{\mu L} \left(\frac{\rho L}{\rho V} \right)^{0.5}]</td>
</tr>
<tr>
<td></td>
<td>[C = 0.0265 \ n = 0.8 \text{ for } \frac{V}{\mu L} > 60000]</td>
</tr>
<tr>
<td></td>
<td>[n = 0.2 \text{ for } \frac{V}{\mu L} < 60000]</td>
</tr>
<tr>
<td>Rosson (1957) [12]</td>
<td>[Nu = CP_0^{1/3} \left(\frac{\rho L - \rho L h_{FL}}{12kL \mu L \Delta T} \right)^{0.5} \left(\frac{\rho L}{\rho V} \right)^{0.5} \frac{D}{\mu L} \left(\frac{\rho L}{\rho V} \right)^{0.5}]</td>
</tr>
<tr>
<td></td>
<td>[C = 0.388 \ n = 0.25 \text{ for } \frac{V}{\mu L} < 60000]</td>
</tr>
<tr>
<td>Akers et al. (1958)</td>
<td>[Nu = CP_0^{1/3} \left(1 + \frac{\rho L}{\rho V} \right)^{0.5} \frac{D}{\mu L} \left(\frac{\rho L}{\rho V} \right)^{0.5}]</td>
</tr>
<tr>
<td>Goodykoontz and Dorsch (1967) [14, 15]</td>
<td>[Nu = G^2 z]</td>
</tr>
<tr>
<td>Cavallini and Zecchin (1974) [16]</td>
<td>[Nu = 0.05 Re_0^{0.8} Pr_0^{0.32} \left[1 + \frac{x}{(1-x)} \left(\frac{\rho L}{\rho V} \right)^{0.8} \right]]</td>
</tr>
<tr>
<td>Shah (1979) [17]</td>
<td>[Nu = 0.023 Re_0^{0.8} Pr_0^{0.4} \left[1 - x \right]^{0.8} + \frac{3.84 \left(1 - x \right)^{0.04}}{Pr_0^{0.38}} \frac{D}{\mu L}]</td>
</tr>
<tr>
<td>Shah (2009) [18]</td>
<td>[Nu = Nu_f] [Nu = Nu_f + Nu_{NL}]</td>
</tr>
<tr>
<td></td>
<td>[J_G \geq 0.98 (1/ \mu L) \left(1 - 10^{0.8} Pr_0^{0.4} + 0.263 \right)^{-0.62}]</td>
</tr>
<tr>
<td></td>
<td>[J_G < 0.98 (1/ \mu L) \left(1 - 10^{0.8} Pr_0^{0.4} + 0.263 \right)^{-0.62}]</td>
</tr>
<tr>
<td></td>
<td>[Nu_f = 0.023 Re_{L0}^{0.8} \left[1 - x \right]^{0.8} + \frac{3.84 \left(1 - x \right)^{0.04}}{Pr_0^{0.38}} \frac{D}{\mu L}]</td>
</tr>
<tr>
<td></td>
<td>[n = 0.0058 + 0.557 Pr_0]</td>
</tr>
<tr>
<td></td>
<td>[Nu_{NL} = 1.32 Re_{L0}^{0.3} \left(\frac{\rho L}{\rho V} \right) \mu L \left(\frac{\rho L}{\rho V} \right)^{1/3}]</td>
</tr>
</tbody>
</table>

Table 1: Some previous flow condensation heat transfer correlations

In the next sections, the model for high mass fluxes presented in [22] will be introduced, then the influence of the low mass fluxes and/or low thermodynamic qualities is discussed that will result in a new model for this region.
Table 2: Cont. Table 1. Some previous flow condensation heat transfer correlations

2. Method

In this study, experimental data from the literature has been gathered covering a large range of fluids and pipe diameters. The experimental data considered is summarised in Table 3. The fluid properties are calculated with the software REFPROP version 9.1 [25] at the saturation conditions of the fluid. The largest individual data set (i.e. for a given fluid and pipe diameter) represents only the 8% of the total number of experimental data points. Figure (1) shows the distribution of the data point in terms of the reduced pressure P_R and pipe diameter.

In the next section the accuracy of the models is evaluated by $\theta \pm 10\%$, $\theta \pm 20\%$.
Figure 1: Distributions of number of data points in terms of reduced pressure, P_R, and pipe diameter, D.

and $\theta \pm 30\%$, the percentage of data points predicted within $\pm 10\%$, $\pm 20\%$ and $\pm 30\%$ respectively, and the average and mean absolute error, defined as

$$AVG = \frac{1}{N} \sum \frac{Nu_{pred} - Nu_{exp}}{Nu_{exp}} \times 100$$

$$MAE = \frac{1}{N} \sum \frac{|Nu_{pred} - Nu_{exp}|}{Nu_{exp}} \times 100$$
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Fluid</th>
<th>Diameter [mm]</th>
<th>shape</th>
<th>G [kg/m2s]</th>
<th>T_{sat} [°C]</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprea et al. (2003) [26]</td>
<td>R22</td>
<td>20.00</td>
<td>circular</td>
<td>44.9-120</td>
<td>37.1-39.6</td>
<td>65</td>
</tr>
<tr>
<td>McDonald (2015) [27]</td>
<td>R407c</td>
<td>20.00</td>
<td>circular</td>
<td>47-115</td>
<td>36.6-38.8</td>
<td>55</td>
</tr>
<tr>
<td>Yu et al. (2017) [29]</td>
<td>C3</td>
<td>10.06</td>
<td>circular</td>
<td>224-394</td>
<td>-19-13.7</td>
<td>46</td>
</tr>
<tr>
<td>Jung et al. (2004) [31]</td>
<td>R22</td>
<td>8.82</td>
<td>circular</td>
<td>100-300</td>
<td>40-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>8.82</td>
<td>circular</td>
<td>100-300</td>
<td>40-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R140a</td>
<td>8.82</td>
<td>circular</td>
<td>100-300</td>
<td>40-26</td>
<td></td>
</tr>
<tr>
<td>Cavallini et al. (2001)</td>
<td>R134a</td>
<td>8.00</td>
<td>circular</td>
<td>100-750</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R32</td>
<td>8.00</td>
<td>circular</td>
<td>100-600</td>
<td>40-21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R410a</td>
<td>8.00</td>
<td>circular</td>
<td>100-750</td>
<td>40-21</td>
<td></td>
</tr>
<tr>
<td>McDonald (2015) [27]</td>
<td>C3</td>
<td>7.75</td>
<td>circular</td>
<td>150-450</td>
<td>30-94</td>
<td>135</td>
</tr>
<tr>
<td>Glum et al. (2017) [33]</td>
<td>R245fa</td>
<td>7.75</td>
<td>circular</td>
<td>150-700</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>Milkie (2014) [28]</td>
<td>C5</td>
<td>7.75</td>
<td>circular</td>
<td>150-600</td>
<td>45-60</td>
<td>74</td>
</tr>
<tr>
<td>Shin et al. (1997) [34]</td>
<td>R22</td>
<td>7.70</td>
<td>circular</td>
<td>244-743</td>
<td>12-25</td>
<td></td>
</tr>
<tr>
<td>Dobson et al. (1998) [20]</td>
<td>R32-R125(0.50-0.50)</td>
<td>7.04</td>
<td>circular</td>
<td>75-650</td>
<td>35</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>R22</td>
<td>7.04</td>
<td>circular</td>
<td>75-650</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>7.04</td>
<td>circular</td>
<td>75-650</td>
<td>35</td>
<td>19</td>
</tr>
<tr>
<td>Konodou et al. (2011) [35]</td>
<td>C32</td>
<td>6.10</td>
<td>circular</td>
<td>100-200</td>
<td>20-20</td>
<td>47</td>
</tr>
<tr>
<td>Agarwal et al. (2015) [36]</td>
<td>R1234ee</td>
<td>6.10</td>
<td>circular</td>
<td>100-300</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>Xiao et al. (2016) [37]</td>
<td>R134a</td>
<td>6.10</td>
<td>circular</td>
<td>50-200</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>Sun (2012) [38]</td>
<td>C02</td>
<td>4.95</td>
<td>circular</td>
<td>400-800</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Xiao et al. (2017) [39]</td>
<td>C1</td>
<td>4.00</td>
<td>circular</td>
<td>99-255</td>
<td>-107-91</td>
<td>231</td>
</tr>
<tr>
<td>Kim et al. (2008) [40]</td>
<td>C02</td>
<td>3.48</td>
<td>circular</td>
<td>200-800</td>
<td>-15</td>
<td>16</td>
</tr>
<tr>
<td>Dobson et al. (1998) [20]</td>
<td>R32-R125(0.40-0.60)</td>
<td>3.14</td>
<td>circular</td>
<td>75-800</td>
<td>35</td>
<td>46</td>
</tr>
<tr>
<td>Bandhauer et al. (2006) [41]</td>
<td>R134a</td>
<td>1.52</td>
<td>circular</td>
<td>150-750</td>
<td>52</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>R1234ee</td>
<td>1.09</td>
<td>circular</td>
<td>200-800</td>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>Marsik (2009) [43]</td>
<td>C1</td>
<td>1.00</td>
<td>circular</td>
<td>160-700</td>
<td>-132.3-85.7</td>
<td>105</td>
</tr>
<tr>
<td>Matkovic (2009) [44]</td>
<td>R134a</td>
<td>0.96</td>
<td>circular</td>
<td>100-1200</td>
<td>40</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>R32</td>
<td>0.96</td>
<td>circular</td>
<td>100-1200</td>
<td>40</td>
<td>73</td>
</tr>
<tr>
<td>Del Col et al. (2012) [45]</td>
<td>C3</td>
<td>0.96</td>
<td>circular</td>
<td>100-800</td>
<td>40</td>
<td>53</td>
</tr>
<tr>
<td>Del Col et al. (2015) [46]</td>
<td>R122</td>
<td>0.96</td>
<td>circular</td>
<td>200-800</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Liu et al. (2016) [42]</td>
<td>R1234ee</td>
<td>1.09</td>
<td>circular</td>
<td>200-800</td>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>Shin et al. (2015) [47]</td>
<td>R134a</td>
<td>0.69</td>
<td>circular</td>
<td>400-600</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>Bandhauer et al. (2006) [41]</td>
<td>R134a</td>
<td>0.51</td>
<td>circular</td>
<td>450-750</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>Marsik (2009) [43]</td>
<td>C1</td>
<td>0.50</td>
<td>circular</td>
<td>275-1360</td>
<td>-131.4-86.3</td>
<td>48</td>
</tr>
<tr>
<td>Shin et al. (2005) [47]</td>
<td>R134a</td>
<td>0.49</td>
<td>circular</td>
<td>200-600</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Marsik (2009) [43]</td>
<td>C1</td>
<td>0.25</td>
<td>circular</td>
<td>1140-1225</td>
<td>-101.7-91.1</td>
<td>94</td>
</tr>
<tr>
<td>Wang et al. (2002) [48]</td>
<td>R134a</td>
<td>1.460</td>
<td>rectangular</td>
<td>250-750</td>
<td>64</td>
<td>299</td>
</tr>
<tr>
<td>Liu et al. (2015) [49]</td>
<td>R32</td>
<td>1.304</td>
<td>square</td>
<td>200-600</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>Del Col et al. (2011) [50]</td>
<td>R134a</td>
<td>1.230</td>
<td>square</td>
<td>392-789</td>
<td>40</td>
<td>219</td>
</tr>
<tr>
<td>Derby et al. (2012) [51]</td>
<td>R134a</td>
<td>1.000</td>
<td>square</td>
<td>150-450</td>
<td>35-45</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>1.000</td>
<td>rectangular</td>
<td>300-750</td>
<td>55</td>
<td>31</td>
</tr>
<tr>
<td>Liu (2015) [40]</td>
<td>R134a</td>
<td>0.952</td>
<td>square</td>
<td>400-600</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>R22</td>
<td>0.952</td>
<td>square</td>
<td>400-600</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>R32</td>
<td>0.952</td>
<td>square</td>
<td>400-600</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>Agarwal (2010) [52]</td>
<td>R134a</td>
<td>0.839</td>
<td>triangular</td>
<td>300-750</td>
<td>55</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>0.799</td>
<td>barrel</td>
<td>300-750</td>
<td>55</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>0.762</td>
<td>square</td>
<td>300-750</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>0.732</td>
<td>W-shape</td>
<td>300-750</td>
<td>55</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>0.536</td>
<td>N-shape</td>
<td>300-750</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>R134a</td>
<td>0.424</td>
<td>rectangular</td>
<td>450-750</td>
<td>55</td>
<td>11</td>
</tr>
<tr>
<td>Zhang et al. (2013) [53]</td>
<td>water</td>
<td>0.133</td>
<td>square</td>
<td>200-300</td>
<td>103-115</td>
<td>261</td>
</tr>
<tr>
<td>Dong et al. (2008) [54]</td>
<td>R141b</td>
<td>0.114</td>
<td>square</td>
<td>200</td>
<td>51</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>R141b</td>
<td>0.092</td>
<td>square</td>
<td>200</td>
<td>51</td>
<td>12</td>
</tr>
</tbody>
</table>

| Total | | | | | | 3937 |

* Helical tube

Table 3: Condensation heat transfer database for mini/micro-channel flows.
2.1. Heat transfer coefficient at high mass fluxes, Nu_I

A new model for the heat transfer coefficient inside tubes for high mass fluxes ($G > 200\, \text{kg/m}^2\text{s}$), Nu_I, has been developed in [22]. The model is given as

$$Nu_I = 0.023Re_2^{0.8}Pr_2^{0.3}$$

with

$$Re_2 = Re_L + Re_V = \frac{GxD}{\mu_V} + \frac{G(1-x)D}{\mu_L}$$

for $0 < x < 1$

an equivalent two-phase flow Reynolds number defined in terms of the sum of the superficial vapour and liquid Reynolds number, and

$$Pr_2 = Pr_L(1-x) + Pr_V x$$

for $0 < x < 1$

an equivalent two-phase flow Prandtl number. The coefficients in the model correspond to the ones from the correlation of Dittus-Boelter for the single phase flow heat transfer coefficient. In this way, the model approaches the all liquid and all vapour single phase flow heat transfer coefficient as the quality approaches 0 and 1 respectively.

The prediction capability of the new model is shown in Figure (2) against the experimental data base of 3006 experimental data points with mass fluxes $G \geq 200\, \text{kg/m}^2\text{s}$. The new model predicts 86.4% of the Nusselt number to within ±30%. Some data points show some deviation (methane in a 0.25mm diameter pipe [43], propane in a 7.75 mm diameter pipe at high saturation temperature [27]) but authors have acknowledged the high uncertainty of the data points due to the challenging conditions of the experiments. It is noted that no influence of the pipe diameter is observed for the experimental data points ranging from 67 μm to 14.45 mm. The similitude of the proposed model to the single phase heat transfer coefficient model might indicate that similar heat transfer mechanisms are dominant in both situations. Experimental and numerical studies of heat transfer in single phase flow inside pipes [55, 56, 57] have shown that the thermal resistance is mainly concentrated in the conductive sublayer and beyond this sublayer a rapid diffusion of the heat into the bulk flow is observed. This assumption was tested in [22, 58] by considering flow condensation inside micro-channels of different shapes, flow condensation of binary mixtures, flow boiling at low heat fluxes, i.e. avoiding bubble nucleation, and non-boiling two phase flows for slug and annular flow regimes. As the suggested model was able to capture the trend of such cases, it is possible to consider that the heat transfer might be controlled at the
conductive sublayer and events occurring far from this sublayer, i.e. different flow patterns, do not have major influence on the heat transfer coefficient. In particular, no effect of the diameter of the channel on the heat transfer coefficient has been observed. This fact can be attributed to the fact that the slope of the variation of the single phase Nusselt number with Reynolds number at high Reynolds number is consistent with the predicted slope from the Dittus-Boelter model [59].

The relationship between the single phase flow heat transfer coefficient and the heat transfer coefficient for flow condensation based on the Dittus-Boelter model should also be valid for other single phase models. As an example, the model of Petukhov & Krillov (1958), cited by [10],

\[\frac{Nu}{f/8RePr} = \frac{12.7(f/8)^{0.5}(Pr_L^{2/3} - 1)}{k_1} \]

(14)

\[k_1 = 1.07 + \frac{900}{Re} \frac{0.63}{1 + 10Pr} \]

(15)

\[f = (0.79\ln(Re) - 1.64)^{−2} \]

(16)

for fully developed flow is considered where the single phase Reynolds and Prandtl numbers are replaced for \(Re_{\phi} \) and \(Pr_{\phi} \), respectively. Figure (3) shows the error in terms of \(Nu_{\text{cal}}/Nu_{\text{exp}} \) versus the thermodynamic quality of experimental data points with \(G \geq 200\text{kg/m}^2\text{s} \). The model predicts 75.2% of the Nusselt number to within \(\pm 30\% \) similar to the result shown in figure (2) based on the Dittus-Boelter model.

The previous result might indicate that for enhanced surfaces the heat transfer coefficient during flow condensation is related to the single phase heat transfer coefficient on the surface. Figure (4) shows experimental data corresponding to flow condensation of R1234yf inside a 3.4mm ID micro-fin pipe [60]. It is possible to see that the flow condensation heat transfer coefficient follows the trend of the single phase heat transfer coefficient for equivalent Reynolds numbers. At high Reynolds number it is expected that heat transfer coefficient approaches the corresponding to the smooth case [61]. However no experimental data set was found presenting experimental heat transfer coefficient measurements for single phase and flow condensation on equivalent Reynolds numbers. The figure also includes a comparison of flow condensation of R22 inside a 4.6mm ID micro-fin pipe [62] where a similar trend is observed. This fact implies that the derived model for the
Re \(\phi = Re_L + Re_V \) [10]

\[\frac{Nu}{Pr} = 0.023 \cdot Re^{0.8} \phi^{0.3} \]

3006 points \((G \geq 200 \text{ kg/m}^2 \text{s})\)

AVG = 1.7 %

\(\theta \pm 10\% = 37.7 \% \)

\(\theta \pm 30\% = 86.4 \% \)

Figure 2: Dependency of \(\frac{Nu}{Pr} \) in terms of \(Re \phi \) for experimental data points with mass fluxes \(G \geq 200 \text{ kg/m}^2 \text{s} \).

The goal of this work is to extend the previous model to cases of low mass fluxes. Figure (5) shows experimental data points for a pipe diameter of 8 mm for 6 different refrigerants and mass fluxes from 65 to 750 kg/m² s [32] in terms of the \(\frac{Nu}{Pr} \) versus \(Re \phi \). The experimental data shows a departure from the \(Re^{0.8} \phi \) curve almost at the same value of \(Re \phi \) (that will be referred to as \(Re_{2\phi,T} \)) independent of the working fluid. This departure can be interpreted as an enhancement of the heat transfer. At low qualities and high mass fluxes, bubbles can improve the mixing and thus the heat transfer, while at low mass fluxes, corresponding to stratified flow regime, film condensation in the upper part of the pipe and/or the waves in the film might enhance the heat transfer. At the same time, experiments in this region

2.2. Heat transfer coefficient at low mass fluxes, \(Nu_{11} \)

The single phase heat transfer coefficient can be applicable for predicting the flow condensation heat transfer coefficient in enhanced surfaces.
Figure 3: Evaluation of the new model in terms of the thermodynamic quality corresponding to model Nu_I considering the single phase heat transfer coefficient model of Petukhov & Krillov (1958).
can be affected by larger uncertainties e.g. due to the segregation of the flow. However, the experimental data does not show a clear distinction between these two possible effects and due to the limited number of experimental data points in this region no further analysis was possible. Nevertheless, it is possible to see that the experimental data follows a different curve called \(\text{Nu}_{II} \) which is expected to depend on the pipe diameter and needs to be determined.

Figure (6) shows the effect of the pipe diameter in the transition value of \(\text{Re}_{20,T} \) for two different pipe diameter of 8mm [32] and 1.52mm [41]. Considering the dependency of \(\text{Re}_{20,T} \) for different pipe diameters, the following expression was obtained

\[
\text{Re}_{20,T} = 10^8 D^{1.5} \quad \text{with } D [m] \text{ the pipe diameter} \quad (17)
\]

For testing the validity of this model, the experimental data can be plotted in terms of the ratio \([\text{Nu}/P_{20}^{0.30}]/[\text{Nu}/P_{20}^{0.30}]_T \) versus the ratio \(\text{Re}_{20}/\text{Re}_{20,T} \), where \([\text{Nu}/P_{20}^{0.30}]_T \) is computed with Eq. (11) at \(\text{Re}_{20,T} \), Figure (7). The experimental data points are well captured independent of the fluid and pipe diameter for both regions i.e. \(\text{Nu}_I \) for \(\text{Re}_{20}/\text{Re}_{20,T} < 1 \) and \(\text{Nu}_{II} \) for \(\text{Re}_{20}/\text{Re}_{20,T} > 1 \).

The new general local heat transfer coefficient model for flow condensation

Figure 4: Dependency of \(\text{Nu}/P_{20}^{0.3} \) in terms of \(\text{Re}_{20} \) for flow condensation of R1234yf inside a 3.4mm ID microfin pipe [60], and flow condensation of R22 inside a 4.6mm ID microfin pipe [62]. For liquid single phase \(\text{Re}_{20} = \text{Re}_{L0} \) and \(\text{Pr}_{20} = \text{Pr}_{L0} \).
Figure 5: Departure from the Nu_I curve for experimental data at low mass fluxes and low qualities.

Figure 6: Departure from the Nu_I curve for experimental data at low mass fluxes and low qualities for two different pipe diameters.
\[\frac{\text{Nu}}{\text{Pr}^{0.30}} = \frac{\text{Nu}}{\text{Pr}^{0.30}} \times \frac{\text{Re}^{2 \phi} \times \text{T}^{-1}}{\text{Re}^{2 \phi} \times \text{T}^{-1}} \]

Figure 7: Experimental data points in terms of \(\text{Re}_{26}/\text{Re}_{26,T} \) for evaluating the model of \(\text{Re}_{26,T} \).
inside plain tubes is given as

\[Nu_I = 0.023 Re_2^{0.80} Pr_2^{0.30} \quad Re_2 > Re_{2,T} \quad (18) \]

\[Nu_{II} = 41.5 D^{0.60} Re_2^{0.40} Pr_2^{0.30} \quad Re_2 < Re_{2,T} \quad (19) \]

For simplicity, both models can be interpolated [63], with the following expression

\[Nu = \left(Nu_I^9 + Nu_{II}^9 \right)^{1/9} \quad (20) \]

which is shown in Figure 5. The exponent 9 was selected for providing a sharp transition between the models.

Figure (8), (9) and (10) show the deviation of the new model in terms of the thermodynamic quality for the Eq.(18), Eq.(19) and Eq.(20) respectively. The models provide a good agreement with the data for both low and high qualities values. It is observed that experimental points related to propane at high pressure in 7.75 mm diameter pipes show a large deviation as mentioned before. The distribution of the errors corresponding to the previous plots are shown in a histogram in Figure (11). The data points for \(Re_2 < Re_{2,T} \), i.e. region II, shows a larger standard deviation from the mean, but these points are also characterised by larger uncertainties.
Figure 8: Evaluation of the new model in terms of the thermodynamic quality corresponding to model Nu_I.

$Nu_I = 0.023 \, \frac{Re_{\phi}^{0.3}}{Pr_{\phi}^{0.2}}$

3177 points ($Re_\phi > Re_\phi^*$)

$AVG = -1.6 \%$

$\theta_{\pm 10\%} = 36.2 \%$

$\theta_{\pm 20\%} = 66.4 \%$

$\theta_{\pm 30\%} = 85.4 \%$

$D=14.45\,mm$ C_3

$D=14.45\,mm$ C_5

$D=10.00\,mm$ C_3

$D=9.40\,mm$ R_410a

$D=8.82\,mm$ R_22

$D=8.82\,mm$ R_134a

$D=8.00\,mm$ R_134a

$D=8.00\,mm$ R_32

$D=8.00\,mm$ R_236ea

$D=8.00\,mm$ R_22

$D=8.00\,mm$ R_125

$D=8.00\,mm$ R_410a

$D=7.75\,mm$ R_245fa

$D=7.75\,mm$ C_3

$D=7.75\,mm$ C_3

$D=7.75\,mm$ C_5

$D=7.75\,mm$ R_245fa

$D=7.04\,mm$ R_22

$D=7.04\,mm$ R_134a

$D=6.20\,mm$ R_410a

$D=6.10\,mm$ C_1

$D=6.10\,mm$ R_134a

$D=4.95\,mm$ C_1

$D=3.48\,mm$ C_1

$D=3.14\,mm$ $R_32-R_125(0.40-0.60)$

$D=1.52\,mm$ R_134a

$D=1.09\,mm$ R_1234ze

$D=1.00\,mm$ C_1

$D=0.96\,mm$ R_134a

$D=0.96\,mm$ R_32

$D=0.96\,mm$ C_3

$D=0.96\,mm$ R_1234ze

$D=1.09\,mm$ R_1234ze

$D=0.69\,mm$ R_134a

$D=0.51\,mm$ R_134a

$D=0.50\,mm$ C_1

$D=0.49\,mm$ R_134a

$D=0.25\,mm$ C_1

$D=1.460\,mm$ R_134a rectangular

$D=1.304\,mm$ R_32 square

$D=1.230\,mm$ R_134a square

$D=1.000\,mm$ R_134a square

$D=1.000\,mm$ R_134a triangular

$D=0.952\,mm$ R_22 square

$D=0.952\,mm$ R_32 square

$D=0.839\,mm$ R_134a triangular

$D=0.799\,mm$ R_134a barrel

$D=0.762\,mm$ R_134a square

$D=0.732\,mm$ R_134a W-shape

$D=0.533\,mm$ R_134a N-shape

$D=0.533\,mm$ R_134a rectangular

$D=0.500\,mm$ R_134a semi-circular

$D=0.424\,mm$ C_1

$D=0.13\,mm$ $water$

$D=0.114\,mm$ R_141b square

$D=0.092\,mm$ R_141b square

$D=0.067\,mm$ R_141b square
Figure 9: Evaluation of the new model in terms of the thermodynamic quality corresponding to model Nu_{II}.

\[
\text{Nu}_{II} = f(D) \frac{R_2^{0.40}}{R_2^{0.30}} \\
\text{AVG} = -13.3 \% \\
\text{MAE} = 25.3 \% \\
\theta \pm 10\% = 29.9 \% \\
\theta \pm 20\% = 50.3 \% \\
\theta \pm 30\% = 69.3 \% \\
\]
Figure 10: Evaluation of the new model in terms of the thermodynamic quality for model Nu.

Figure 11: Histogram of the error corresponding to Figure (8), (9) and (10)
2.3. Effect of the pipe diameter on the transition boundary

The new model suggested in the previous section considers two regions determined by \(Re_{2\phi,T} \). The transition criteria can be visualised in a \(G - x \) map, where \(G_T \) is obtained from \(Re_{2\phi} = Re_{2\phi,T} \), i.e.

\[
\frac{G x}{\mu_V} + \frac{G (1 - x) D}{\mu_L} = 10^8 D^{1.5} \tag{21}
\]

obtaining \(G_T \) at the transition as

\[
G_T = \frac{10^8 D^{1/2}}{x/\mu_V + (1 - x)/\mu_L} \tag{22}
\]

The effect of the pipe diameter on \(G_T \) for R134a at \(T_s = 40^\circ C \) is shown in figure (12). Reducing the diameter of the pipe, the transition occurs at lower qualities and lower mass fluxes. In particular, it is possible to see that as the pipe diameter is reduced \(Nu_I \) becomes the dominant contribution to the heat transfer coefficient.
2.4. Evaluation of previous correlations

The models from Cavallini et al. [21] and from Shah [18] are evaluated against the experimental data base used in this work and shown in Figure (13) and (14) respectively. The plots are showing the error in terms of $Nu_{\text{cal}}/Nu_{\text{exp}}$ versus the thermodynamic quality. The model from Cavallini et al. for the ΔT-independent regime, i.e. $J_G > J_G^T$ Eq.8, shows good agreement with the experimental data points predicting 78.7% of data points to within $\pm 30\%$ but including 9 adjusting parameters in the model. Similarly, the model from Shah (2009) for $J_G > J_G^T$ shows good agreement with the experimental data points predicting 65.6% of data points to within $\pm 30\%$ with a model considering 11 adjusting parameters. As it is possible to see, both models show good prediction capabilities although these two models consider different dimensionless groups. Analysing the hydrodynamic component of both models, it is possible to see that it can be considered as an alternative expression of $Re_{2,5}$ as shown in Figure (15) and (16). In particular, it is noticed that the case corresponding to water shows a major deviation for these two models which also result in a large error. Unfortunately, experiments of flow condensation using water as working fluid are scarce.
Figure 13: Evaluation of the model from Cavallini[21] in terms of the thermodynamic quality.
\[\text{Nu}_{\text{cal}} / \text{Nu}_{\exp} = 0.023 \Re^{0.8} \Pr_{L0}^{0.4} \left(\mu_{L}/14 \mu_{V} \right)^{0.0058+0.557 \Pr_{L0}^{0.38}} \]

3759 points ($J_{G} > J_{GT}$)

AVG = -22.4 \pm 0.7%
$\pm 10\% = 27.0\%$
$\pm 15\% = 36.4\%$
$\pm 30\% = 65.6\%$

Figure 14: Evaluation of the model from Shah (2009) [18] in terms of the thermodynamic quality.
Figure 15: Analysis of the model from Cavallini[21] in terms of $Re_{2\phi}$.
Figure 16: Analysis of the model from Shah [18] in terms of Re_{20}.
Figure 17: Prediction of the heat transfer coefficient by the present model during the condensation of R410a inside a 8 mm diameter pipe [21].

2.5. Prediction of heat transfer coefficients

A comparison between some selected experimental data points and the new model are discussed in this section. Figure (17) and (18) show the case of two different pipe diameters corresponding to 0.96 mm [44] and 8 mm [21] respectively. The calculated heat transfer coefficient is shown as a continuous dash line for region I and a continuous line for region II in figure (17). The new model is able to predict quantitatively the data from low to high qualities. Unfortunately, there are scarce experimental data available on the region close to 0 quality including data points in the all liquid region for further evaluating the model. It is expected that the model related to region II (continuous line) should show a transition to the Dittus-Boelter correlation as the quality approaches 0. In figure (18), the model from Cavallini et al. (2006) is also shown which is also able to predict the experimental data set. On the other hand, figure (19) shows a comparison with experimental data corresponding to water [53]. In this case, it is possible to see that the model from Cavallini et al. (2006) shows a large deviation. Finally, figure (20) shows examples corresponding to the prediction of hydrocarbons in pipe diameters of 14.45, 7.75 and 1.00 mm for pentane and propane [27] and for methane [43].
Figure 18: Prediction of the heat transfer coefficient by the present model and the one from Cavalli et al. (2006) during the condensation of R32 inside a 0.96 mm diameter pipe [44].

Figure 19: Prediction of the heat transfer coefficient by the present model during the condensation of water in a microchannel [53].
Figure 20: Prediction of the heat transfer coefficient by the present model during the condensation of pentane, propane [27] and methane [43].
3. Conclusions

In this work, a simple and general model to determine the flow condensation heat transfer coefficient inside plain pipes is presented. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number play a major role in controlling the heat transfer coefficient. The similitude of the proposed model to the single phase heat transfer coefficient model might indicate that similar heat transfer mechanisms are dominant in both situations. This fact might imply that a derived model for the single phase heat transfer coefficient can be applicable for predicting the flow condensation heat transfer coefficient if the definition of the Reynolds and Prandtl number are replaced for equivalent two phase numbers suggested in this work. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 \(\mu m \) up to pipes with a hydraulic diameter of 20 \(mm \) for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.

4. Acknowledgements

Funding for this work from the Research Council of Norway under the FRINATEK project 231529 is gratefully acknowledged.

5. References

