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Abstract

Real-time optimization (RTO) is an established technology, where the process economics are optimized using rigourous
steady-state models. However, a fundamental limiting factor of current static RTO implementation is the steady-state
wait time. We propose a “hybrid” approach where the model adaptation is done using dynamic models and transient
measurements and the optimization is performed using static models. Using an oil production network optimization
as case study, we show that the Hybrid RTO can provide similar performance to dynamic optimization in terms of
convergence rate to the optimal point, at computation times similar to static RTO. The paper also provides some
discussions on static versus dynamic optimization problem formulations.
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1. Introduction

Industrial processes usually consist of many operations
and various components that have their own objectives and
complex interconnections with other components. The
safe and optimal operation of such large and complex pro-5

cesses requires meeting goals and objectives in different
time scales ranging from planning and scheduling to fast
corrective actions for regulatory control. Realizing all the
goals and constraints as a whole can be a very challenging
and unrealistic task. Thus the operation of any process10

is typically decomposed into various decision making lay-
ers [1, Ch.10], [2]. Such a hierarchical implementation is a
widely accepted industry standard [3] and is also well stud-
ied in academic literature under the context of plantwide
control, see for e.g. [4], [5],[6] and [7] to name a few. A15

typical control system hierarchy is shown in Fig.1, where
the time horizon for the decisions are clearly shown for
each layer. The information flow in this control hierarchy
is such that the upper layers provide setpoints to the layer
below, which reports back any problems in achieving this20

[4]. The upper three layers in Fig.1 explicitly deals with
the optimal economic operation of the process. Generally,
there is also more multivariable coordination as we move
upwards in the hierarchy [1].

The long term decisions involve selecting an investment25

strategy, operation model, infrastructure etc, which is typ-
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ically known as Asset management. Then there are deci-
sions taken on a horizon of days such as plantwide schedul-
ing. This is followed by decisions that have to be taken on
decision horizon in the timescale of hours known as Real-30

time Optimization (RTO). This decision making step is
the focus of this paper. It aims to maximize the revenue
and minimize the operational costs of hour-by-hour oper-
ations, thereby optimizing the economics of the process.
This is followed by a faster control and automation layer35

that accounts for fast corrective actions. The control layer
could be broadly divided into supervisory and regulatory
layers, where the objective of the supervisory layer (such
as MPC) is to track the reference trajectory provided by
the RTO layer and to look after other variables and con-40

straints. On the other hand, the primary objective of the
regulatory layer is to stabilize and avoid drift in the vari-
ables.

The economic optimization of any process performance
is becoming more crucial in the face of growing competi-45

tion. Process optimization directly enables safe operation,
cost reduction, improving product quality and meeting en-
vironmental regulations and this is the main focus of the
RTO layer.

A widely accepted definition of real-time optimization50

is that it is a work flow where the decision variables are op-
timized using the system model and the economic model
along with the process constraints by solving some kind
of mathematical optimization [8]. In order to account
for process disturbances and plant-model mismatch, there55

has been advancements in measurement-based optimiza-
tion that adjust the optimal inputs in real time, hence
defining RTO as a workflow that optimizes process perfor-
mance by iteratively adjusting the decision variables using
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Figure 1: Typical control hierarchy in process control

measurement data [9]. A good overview and classification60

of the different RTO methods can be found in [9] and [10].
In many process control application, the real-time op-

timization uses nonlinear steady state process models to
compute the optimal setpoint at steady state operation
[11]. The justification for using static models is twofold;65

1) the economic operation of the plant often occurs at
steady state operation, 2) the computed optimal decision
variables (control inputs) needs to be simply kept at con-
stant values (provided as setpoints) over long time-periods,
hence making the implementation easier [11]. RTO is70

also provided with constraints such as process and equip-
ment constraints, storage and capacity constraints, prod-
uct quality constraints etc. In addition, RTO uses an eco-
nomic model that constitutes the cost of raw material,
value of the products, operational costs, environmental75

regulations etc. to evaluate the economics of operation.
Although there have been recent developments in dif-

ferent approaches to RTO [9], the most common approach
to commercial RTO implementation is the so-called two-
step model-adaptation approach [12], [13] as shown in Fig.2.80

The static model used in the RTO is parameterized by a set
of unknown or uncertain parameters, which are updated
using measurement data in the first step. In the second
step, the updated model is used to compute the optimal
set of decision variables by solving a numerical optimiza-85

tion problem. The repeated identification and optimiza-
tion scheme using static models is used in many commer-
cial RTO software packages [14].

However traditional static RTO faces some challenges
which limits its industrial use, including (in expected order90

of importance):

1. Cost of developing and updating the model structure
(offline update of the model),

2. Model uncertainty, including uncertain values of dis-
turbances and parameters and structural uncertainty95

(online update of the model),

3. Frequent grade changes, which makes steady-state
optimization less relevant,

4. Dynamic limitations, including infeasibility due to
(dynamic) constraint violation.100

It may seem that reasons 2, 3, and 4 suggest towards
dynamic optimization. However, except for processes with
frequent grade changes (reason 3), static optimization may
be close to the economic optimum, at a much lower com-
putational cost. In a recent review paper on current prac-105

tices of RTO [3], the authors conclude that a fundamental
limiting factor of RTO implementation is the steady state
wait-time associated with the online update of the model
(reason 2). Since only static models are used, the model
adaptation step must be carried out using measurements110

that corresponds to steady-state operation. If the process
is frequently subject to disturbances or if the settling times
are rather long, this can lead to the plant being operated
in transients for significant periods of time. With the in-
adequacy of steady-state measurements, the model is not115

updated frequently. Consequently the plant is operated
sub-optimally for long periods of time.

The authors in [3] briefly suggest the approach of using
dynamic terms that would impact only the model adapta-
tion step as a potential research direction to address this120

issue. In this paper, we therefore analyze the approach of
using dynamic model adaptation and transient measure-
ments. We show that by using a hybrid approach with dy-
namic models for estimation together with static models
for optimization, the problems with steady-state detection125

(SSD) and model adaptation can be handled more effi-
ciently, hence leading to an efficient RTO implementation.

The dynamic limitations (reason 4) can in most cases
be handled efficiently by a setpoint tracking layer below,
for example, using MPC. Therefore in many applications,130

the economic gain by using a dynamic RTO may be neg-
ligible compared to the proposed hybrid RTO structure.
With the recent surge of interest in dynamic optimization
and the so-called economic MPC, where the RTO layer
and control layers are tightly integrated, there is a lack of135

consensus in the literature on the use of static versus dy-
namic optimization. Therefore, we also discuss the use of
static versus dynamic optimization, namely, when static
optimization is sufficient and when the use of dynamic op-
timization may be required.140

The main contribution of this paper is the hybrid RTO
approach (i.e. static optimization with dynamic model
adaptation) that directly addresses the issue of steady
state wait-time.

The rest of the paper is structured as follows: A brief145

review of traditional RTO structures and the implementa-
tion issues are provided in section 2. Modifications to the
traditional RTO approach are proposed in section 3 which
are illustrated using an application example in section 4.
Discussions on the use of static versus dynamic problem150

formulation is provided in section 5 before concluding the
paper in section 6.
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Figure 2: Traditional RTO with static model adaptation and static
optimization.

2. Traditional RTO

2.1. Static RTO (SRTO)

The traditional static RTO implementation in Fig.2,155

based on the two-step approach, is briefly summarized be-
low:

• Steady state detection and data pre-processing - This
initial step detects if the plant is operating close
enough to steady state, to start the RTO sequence.160

• Static parameter estimation (Step 1) - The model pa-
rameters are adjusted to match the current data, us-
ing regression techniques. The parameter estimation
step usually consists of data reconciliation and model
adaptation. The measurement data is screened for165

unreasonable data such as gross errors, for exam-
ple based on material and energy balances. Suitable
actions are taken to rectify or eliminate any erro-
neous data before it is used to update the model.
Considerable process knowledge may be required to170

decide which model parameters needs to be updated
as noted in [11, Ch.19] and [15].

• Static Optimization (Step 2) - Given an objective
function, process constraints and an updated model,
the optimum setpoints are computed using mathe-175

matical optimization methods.

The setpoints computed by the RTO are then provided
to the lower layer supervisory control, where a dynamic
optimization problem may be solved online, typically using
simplified linear models with constraints (in the framework180

of MPC) to minimise the deviation of the measurements
from the setpoint over a period of time. Fig.2 shows a
typical RTO structure, where the steady state process data
is used for adapting the static model which is used in the
Static RTO.185

Consider a process described by a discrete-time non-
linear model,

xk+1 = f(xk, uk, θk) (1)

yk = h(xk, uk)

where xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny are the states,
process inputs and process measurements at time step
k respectively. The model is parameterized by a set of
time-varying parameters and disturbances jointly repre-
sented by θk = [pTk , d

T
k ]T ∈ Rnθ . The model equations190

are represented by f : Rnx × Rnu × Rnθ → Rnx and
h : Rnx × Rnu → Rny .

Let the static counterpart for this model be described
by,

y = fss(u, θ) (2)

where fss : Rnu × Rnθ → Rny describes the static input-
output equilibrium map.

Once the plant is operating at steady-state, the model195

parameters are updated using the steady state measure-
ments (step 1 of 2). The model parameter adaptation
scheme is based on minimizing the error between the model
predicted value and the measurement data.

The updated parameter vector θ̂k is then used in the200

optimization problem (step 2 of 2). The optimization
problem then computes the optimal decision variables u∗

that optimizes the process performance, while satisfying
process and operating constraints. The static optimiza-
tion problem using the two-step approach for this system205

can thus be stated mathematically as follows,

Step 1: Static Estimation

θ̂k = arg min
θ
‖ymeas − fss(uk, θ)‖22 (3)

Step 2: Static Optimization

u∗k+1 = arg min
u

J(y, u) (4)

s.t. y = fss(u, θ̂k)

g(y, u) ≤ 0

where ymeas ∈ Rny denotes the measurements from the
plant, J : Rnu × Rny → R describes the objective func-
tion, g : Rnu × Rny → Rnc describes vector of nonlinear
constraints that may be imposed such as process and op-210

erating constraints including bounds on the the process
inputs and outputs. Note that J and g are not directly
dependent on the parameters θ, but implicitly via the pro-
cess outputs y governed by the model (2).

Challenges with steady-state detection. Many commercial215

RTO softwares uses either statistical methods or heuristic
methods or a combination of both to verify the stationar-
ity of the data for a fixed window length in the past. A
detailed description of the different steady-state detection
routines used in commercial RTO systems can be found in220

[14]. Tolerances are specified by the user to determine if
the process is “close enough” to steady state and the pro-
cess is said to have reached steady state when all the mea-
surements are within the specified tolerances [16]. If the
tolerances are specified without proper evaluation of the225

data window length, then the steady-state detection might
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Figure 3: Dynamic RTO with dynamic model adaptation and dy-
namic optimization.

erroneously accept transient data as stationary data. Us-
ing transient data to update static models results in esti-
mation errors which are then propagated to the optimiza-
tion routine. The authors in [14] demonstrate this issue230

using data from a real industrial application.
Another challenge in many processes is that it may be

frequently subject to disturbances. This results in the pro-
cess being operated mostly at transients, thus hindering
model adaptation. This is further worsened if the pro-235

cess has long settling times. In such processes, the model
parameters are not updated frequently due to inadequate
availability of steady state measurements. Consequently
the process may be operated sub-optimally for long peri-
ods of time, until the model parameters are updated again.240

2.2. Dynamic RTO (DRTO)

In the recent past, there has also been many develop-
ments in the use of Dynamic RTO (DRTO) and the closely
related economic model predictive control (EMPC), that
provides an optimal input trajectory using a dynamic model
instead of a static model. Consider the dynamic system
(1), the two-step approach to dynamic RTO at each time
step k can be given by,

Step 1: Dynamic Estimation

θ̂k = arg min
θ
‖ymeas,k − h(xk, uk)‖ (5)

s.t. xk = f(xk−1, uk−1, θ)

Step 2: Dynamic Optimization

u∗t = arg min
ut

k+T∑
t=k

J(yt, ut) (6)

s.t. xt+1 = f(xt, ut, θ̂k)

yt = h(xt, ut)

g(yt, ut) ≤ 0

xk = x̂k ∀t ∈ {k, . . . , k + T}

where the subscript ∗t represents each sample in the opti-
mization horizon of length T .

Although the use of dynamic models for model adap-
tation and optimization may eliminate the requirements245

of steady state detection, solving a dynamic nonlinear op-
timization problem for large-scale systems may be chal-
lenging, even with today’s computing power. The authors

in [17] point that many numerical issues associated with
DRTO must be addressed before it can be widely imple-250

mented in industrial applications. In addition, the dy-
namic model requires additional parameters including a
model of the lower-layer control system. Static RTO is
therefore still more prevalent in many industrial applica-
tions.255

Static RTO uses the same static model in both the
steps of the two-step approach. Similarly, dynamic RTO
uses the same dynamic model in both the steps of the two-
step approach. To address the computational challenges
in dynamic optimization and to address the steady-state260

wait-time issue in static RTO, a “hybrid RTO” structure
can be considered, where dynamic models are used in the
model adaptation step and static models are used in the
optimization step.

3. Hybrid RTO (HRTO)265

If the primary objective is to optimize the steady-state
performance of the process, then dynamic terms in the
model need only be introduced in the model adaptation
step. When dynamic models are used in the model adap-
tation, transient data can be used to update the model,
without the need to discard big chunks of data. The up-
dated model parameters can then be used in the static
model used in the optimizer as shown in Fig.4. To illus-
trate this, consider the discrete dynamic model (1) and the
corresponding steady-state model (2). The model adapta-
tion via the two step approach would then be given by,

Step 1: Dynamic Estimation

θ̂k = arg min
θ
‖ymeas,k − h(xk, uk)‖ (7)

s.t. xk = f(xk−1, uk−1, θ)

Step 2: Static Optimization

u∗k+1 = arg min
u

J(y, u) (8)

s.t. y = fss(u, θ̂k)

g(y, u) ≤ 0

At every time step k, the the dynamic model estimator
provides the estimate of the uncertain variables θ̂k and
the static optimization problem is solved with the up-
dated model to find the new optimal steady-state operat-
ing point. Therefore, as opposed to the traditional static270

RTO, the static optimization problem in the hybrid RTO
approach is solved at each time step k and the resulting op-
timal setpoints are provided to the setpoint tracking con-
trol.

Development of model based control design around 1960,275

together with seminal works such as the Kalman filter [18]
led to the development of identification theory in the con-
trol literature. Different methods exists today that can
be used to estimate the unknown variables in a dynamic
model. Some of the methods that are commonly used in-280

clude, but are not restricted to, recursive least squares
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Figure 4: Hybrid RTO with dynamic model adaptation and static
optimization.

estimation, nonlinear Kalman filter variants such as ex-
tended Kalman filter (EKF) and unscented Kalman Filter
(UKF), optimization-based methods such as the moving
horizon estimator (MHE) etc. In the reminder of the pa-285

per, we consider the Hybrid RTO approach using an ex-
tended Kalman filter for online parameter estimation. The
use of EKF where parameter estimation is the focus can
be found in several examples in literature [19]. The frame-
work of using an extended Kalman filter for combined state290

and parameter estimation can be found in Appendix A.

Modelling Effort. - In most chemical processes, the so-
called first principle models used in RTO applications are
based on the conservation of mass, energy and momentum
which naturally gives rise to ordinary differential equa-295

tions (ODE). Additional algebraic equations may be spec-
ified to model unknown variables, such as flow through an
orifice, hydrostatic and frictional pressure losses, reaction
stoichiometry, equation of state etc. Once the mathemat-
ical models have been defined for a single control volume,300

multi-staged models such as distillation columns or mod-
els with many control volumes can be easily modelled by
joining up the same number of mathematical models. A
good overview of mathematical modeling for many typical
chemical processes can be found in [20].305

Often, a chemical engineer starts out the modelling
task using dynamic equations. The dynamic models devel-
oped using physical principles are converted to the static
models by setting all the derivative terms to zero, [20]. In
many cases, the development of models for dynamic esti-310

mation may require little extra modelling effort. However,
dynamic models require additional parameters including
mass and energy holdups. In addition, the dynamic model
used for dynamic optimization (DRTO) needs a model of
the lower-layer control system. In the hybrid RTO case315

(HRTO), where the dynamic model is only used for pa-
rameter estimation, a simpler representation of the lower
level control system may be sufficient, for example, by
not including the control system or assuming perfect con-
trol. Developing and maintaining a dynamic model for320

the model adaptation step can be justified if the perfor-
mance improvement is significant when using the hybrid
RTO approach, since this enables better implementation
of the RTO.
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Figure 5: Oil production network with 2 gas lifted wells producing
to a common riser manifold.

4. Illustrative example325

In this paper we study the problem of production opti-
mization in an oil and gas production network to demon-
strate the use of the hybrid RTO (HRTO) approach and
compare it to traditional static RTO (SRTO) and dynamic
RTO (DRTO). We consider a gas lifted well network con-330

sisting of nw gas lifted wells connected to a common riser
manifold as shown in Fig.5 for a case with two wells. In
oil production wells, when the reservoir pressure is not
sufficient to lift the fluids to the surface economically, ar-
tificial lift methods are used to boost the production from335

the wells. Gas lift is one such widely used artificial lift
method where compressed gas is injected at the bottom
of the well to reduce the density of the fluid column in-
side the well, thus reducing the pressure drop in the well
tubing. The fluids from the reservoir enters the well tub-340

ing and mixes with the lift gas. The mixture then flows
through the common riser manifold and finally enters the
topside processing facility such as a separator where the
oil and gas phases are separated. The production network
may be constrained by total gas processing capacity or the345

total gas that is available for gas lift injection. The objec-
tive of the production optimization problem is to compute
the gas lift injection rate for each well such that the total
oil production is maximized while satisfying operational
constraints.350

A single gas lifted well model is based on the model
presented in [21]. We use this as a base to build a gas
lifted well network model. Production from a cluster of
N = {1, · · · , nw} gas lifted wells was modelled using mass
balances for each phase. The system is described as semi-
explicit index-1 DAE system of the form.

ẋ = Fc(x, z, u, θ) (9)

G(x, z, u, θ) = 0 (10)

where x ∈ Rnx and z ∈ Rnz represent the differential and
algebraic states respectively, u ∈ Rnu represents the de-
grees of freedom which are the gas lift injection rates for
each well wgli . θ ∈ Rnp represents the vector of uncer-
tain variables. In this work, we consider the gas-oil ratio355

5



(GOR) from the reservoir for each well to be the uncer-
tain parameter (disturbances). See Appendix B for more
detailed description of the models used .

The static optimization problem for such a system can
be written as

max
wgli

J =

(
$o
∑
i∈N

wpoi − $gl
∑
i∈N

wgli

)
(11a)

s.t.

Fc(x, z, u, θ) = 0 (11b)

G(x, z, u, θ) = 0 (11c)∑
i∈N

wpgi ≤ wgmax (11d)

where $o and $gl prices are the value of oil and cost of gas
compression respectively. wpoi and wpgi are the produced360

oil and gas rates from each well i. The static process model
is enforced as equality constraint in (11b)-(11c). wgmax is
the total capacity constraint which is enforced in (11d).
Hence from a process control point of view, this is equiv-
alent to real-time optimization. For each of the RTO case365

shown in this paper (SRTO, DRTO and HRTO) a setpoint
tracking MPC layer was used below to track the setpoints
of the gas lift injection rates provided by the RTO layer
above. In this paper, we use a nonlinear MPC, but sim-
ilar results would be achievable with a more traditional370

linear MPC. The sampling time of the setpoint tracking
controller was set to 5 min and a prediction horizon of 24
samples. A sufficiently long prediction horizon of 2 hours
was chosen to ensure stability [22].

Any produced gas rate that exceeds the maximum ca-
pacity of wgmax in (11d) is flared to avoid pressure build-up
in the topside processes. Gas flaring is often very expensive
due to environmental costs in the form of carbon tax. The
gas capacity constraint (11d) was therefore implemented
as soft constraints using exact penalty functions and slack
variables, where the slack variables are penalized in the
cost function [23] as shown below,

max
wgli

J ′ =

(
$o
∑
i∈N

wpoi − $gl
∑
i∈N

wgli

)
− $fl‖wfl‖

s.t.
∑
i∈N

wpgi ≤ wgmax + wfl (12)

(11b)− (11c)

where the flared gas rate wfl ≥ 0 is the slack variable and375

$fl is the cost associated with gas flaring that is penalized
in the cost function. Note that, the exact penalty func-
tion for soft constraint would typically not have any phys-
ical meaning. However, in this example, the slack variable
is the flared gas and the corresponding penalty function380

would be the cost of gas flaring. An alternate equivalent
formulation would be to compute the flared gas as a part
of the system model and minimize the gas flaring in the
cost function.

Figure 6: True GOR parameters used in the simulator (solid lines)
and the estimated GOR using steady-state measurements used in
SRTO (dashed lines). The steady-state wait time varies from about
30 mintues to several hours.

The NLP problem (12) was developed in CasADi v3.0.1385

[24] using the MATLAB R2017a programming environment
and solved using IPOPT version 3.12.2 [25] running with
mumps linear solver on a 2.6GHz workstation with 16GB
memory. The plant (simulator) was implemented using
IDAS integrator [26].390

In case of Dynamic RTO and for setpoint tracking
NMPC, the system (9) is discretized using a third order di-
rect collocation scheme. The dynamic optimization prob-
lem is similar to (11) with the static model (11b)-(11c)
replaced with the discretized dynamic process model. The395

resulting NLP was solved using IPOPT as described above.
In all the simulations shown in this paper, the param-

eter GOR varies in the simulator as shown in Fig.6 (solid
lines). We simulate the system for a total simulation time
of 12 hours. The gas processing capacity is assumed to be400

constrained at wgmax = 10kg/s. The optimal steady state
gas lift injection rates for the different GOR combinations
simulated in Fig.6 are summarised in Table.1. It is evi-
dent that the optimal gas lift injection rates are sensitive
to changes in GOR. If the GOR used in the optimizer is not405

updated, then the plant will be operated sub-optimally.

4.1. Static RTO (SRTO)

We consider the traditional static RTO approach in
Fig.2, where the Static RTO provides the optimal setpoints
to the lower setpoint tracking layer. In the fully static410

RTO case, the steady state detection was based on the
comparison of total variance of a signal in the recent data
window of fixed length as described in [14]. When steady-
state operation is detected, GOR is estimated from the
measurement data. Fig.6 compares the true value of the415

GOR used in the simulator (solid lines) and the estimated
GOR value used by the RTO (dashed lines). There is a
significant delay before the models are updated and re-
optimized due to the steady-state wait-time. This results
in suboptimal operation for significant periods of time. In420

this simulation, the static RTO updated the setpoints 10
times. The performance of this fully static RTO approach
are compared with dynamic RTO and the proposed hybrid
RTO approach in Section 4.4

6



Table 1: The optimal gas lift injection rates for different GOR combinations used in the simulations.

GOR well 1 [kg/kg] 0.1 0.1033 0.0817 0.1198 0.0757 0.0864 0.1104 0.0854
GOR well 2 [kg/kg] 0.12 0.115 0.1127 0.1278 0.1197 0.1176 0.1176 0.1295

w∗gl1 [kg/s] 1.6062 1.497 2.217 0.9437 2.414 2.06 1.26 2.091

w∗gl2 [kg/s] 0.7812 0.9557 1.042 0.5013 0.799 0.8694 0.8626 0.4516

Figure 7: True GOR parameters used in the simulator (solid lines)
and the almost identical estimated GOR using EKF used in HRTO
and DRTO (dashed lines).

4.2. Hybrid RTO (HRTO)425

With the proposed hybrid RTO as shown in Fig.4, we
estimate the uncertain parameters and disturbances using
the dynamic model and optimize using the static model.
For the dynamic model adaptation, we use a discrete time
extended Kalman filter to estimate the uncertain param-430

eters (GOR of each well) as shown in Appendix A. The
annulus pressure, wellhead pressure and bottomhole pres-
sure for each well, manifold pressure, riser-head pressure,
total oil and gas flow rates at the separator are commonly
available measurements in an oil production network and435

are here used for state and parameter estimation in the
EKF.

The EKF updates the GOR estimate with the same
sampling time as the optimizer, which is every 5 minutes.
The estimated GOR using the EKF is shown in Fig.7. The440

optimizer uses the updated GOR to compute the steady
state optimal gas lift rates which are given as setpoints
to the lower level setpoint-tracking NMPC layer. Some
measurements such as bottom hole pressure and wellhead
pressure measurements are plotted in the Fig.8. It can445

be clearly seen that the system is in a transient phase for
significant amount of time due to the frequent changes in
GOR. Nevertheless, with dynamic estimation, the GOR is
constantly adapted, as opposed to the steady-state wait
time in the SRTO case. As a result, the hybrid RTO is450

able to compute the new optimal steady state gas lift rates
as the GOR changes without having to wait for the system
to settle to steady state.

4.3. Dynamic RTO (DRTO)

Here, we use a dynamic RTO approach as shown in455

Fig.3 instead of a static optimizer. But otherwise the setup

Figure 8: Plot showing some of the measurements used in EKF to
estimate GOR.

was the same as for the hybrid RTO in Section 4.2. The
simulation results are compared with SRTO and HRTO in
the next subsection.

4.4. Comparison of SRTO, HRTO and DRTO460

The objective function (12) along with the oil and gas
production rates obtained with the SRTO, HRTO and
DRTO are compared in Fig.9a, Fig.9b and Fig.9c respec-
tively. As expected, SRTO (shown in thin blue lines) leads
to suboptimal operation and the total produced gas also465

violates the capacity constraint of 10kg/s in (11d) for sig-

Table 2: Comparison of average computation time, maximum com-
putation time and the total integrated oil production over a simula-
tion time of 12 hours for the different RTO approaches.

avg. max Integrated Total Flared
time time Profit oil gas
[s] [s] [×106$] [ton] [ton]

SRTO 0.0184 0.0223 1.8256 2969.5 10.93
HRTO 0.0199 0.0282 2.7019 2980.2 2.25
DRTO 0.9025 3.3631 2.7509 2980.9 1.77
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Figure 9: Comparison of (a) objective function (11), (b) oil produc-
tion rate and (c) gas production rate. SRTO is shown in thin blue
lines, HRTO is shown in solid red lines and DRTO is shown in black
dashed lines.

nificant periods of time. The hybrid RTO (red solid lines)
and dynamic RTO (black dashed lines) have similar per-
formance in terms of optimality. We see that the pro-
cess is maintained at optimal operation and disturbances470

are swiftly counteracted. The integrated profit (12), oil
production and the total gas flared over a period of 12
hours obtained with the three methods are summarised in
Table.2.

The average computation times for the static RTO,475

hybrid RTO and dynamic RTO are also shown in Table 2.
From the simulation results and the computation times,
it can be seen that the Hybrid RTO provides a similar
performance to the dynamic RTO in terms of convergence
to the optimal point, but the computation time of the480

hybrid approach is about 100 times less than DRTO and
about the same as SRTO. Additionally, for the HRTO and
DRTO case, the average computation time for the EKF is
0.0026s, which is small compared to the computation time
for the optimization problems.485

The decision variables (setpoints) provided by the HRTO
and DRTO are shown in Fig.10 whereas the gas lift rates
actually implemented by the respective setpoint tracking
controller are shown in Fig.11. It can be seen that, when
the disturbance causes the total gas rate to exceed its limit,490

the dynamic RTO manipulates the setpoints to quickly
come out of constraint violations, whereas the hybrid RTO
simply provides the steady-state optimal setpoints. How-
ever, since the gas rate constraint of 10kg/s is included in
the control layer below as a dynamic constraint, the actual495

gas lift rates provided by the setpoint tracking controllers
are more similar. For example, consider the time between
4 and 5 hours in Fig.10 and Fig.11. This shows that dy-
namic limitations in many cases can be handled by the
control layer below, which partly explains why the hybrid500

RTO scheme works well.

5. Discussion

5.1. On static versus dynamic optimization

In the previous section, we discussed the Hybrid RTO
structure, where both dynamic and static models are used.505

One question that naturally arises is that when dynamic
models are used for model adaptation, why not use the
dynamic models also in the optimizer. Indeed, there is a
clear trend and extensive research towards dynamic RTO
and the closely related economic NMPC, see for example510

[27], [28] and [29]. In the face of this current trend, there
is a lack of clear understanding on when static optimiza-
tion is sufficient or under what conditions the use of dy-
namic optimization may be justified. Recently, some good
discussions using case examples on appropriate problem515

formulations were provided in [30] for the petroleum pro-
duction optimization problem, where the authors conclude
that most production optimization problems can be solved
using static optimization. On the other hand, batch pro-
cesses, cyclic operations, operations that involves frequent520
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Figure 10: Optimal gas lift rate setpoint computed by SRTO (blue
lines), HRTO (solid red lines) and DRTO (black dashed lines). These
are the manipulated variables (decision variables) computed by the
optimizers.

Figure 11: Optimal gas lift rates provided by respective setpoint
tracking controllers for HRTO (solid red lines) and DRTO (black
dashed lines). These are the implemented manipulated variables.

grade changes, start-up and shut-down etc. that involves
transient operation would benefit from the use of dynamic
optimization.

One of the main challenges with dynamic RTO, how-
ever, is computing power [17]. RTO often involves opti-525

mization of large-scale systems with large number of vari-
ables. This results in large nonlinear programming (NLP)
problems. Additionally in dynamic optimization prob-
lems, the size of the problem increases significantly due
to the additional dimension of time. As a result, dynamic530

optimization problems may be significantly more computa-
tionally demanding to solve than their static counterpart.
For example, in our case study, the dynamic RTO had
3056 optimization variables as opposed to 22 optimization
variables in SRTO and HRTO. The computational delay535

may impose limitations on how often the optimal setpoints
can be updated. In some cases, the computational delay
may even lead to performance degradation or closed loop
instabilities [31].

The challenges with computational power is even more540

pronounced in the case where RTO has discrete integer de-
cision variables. Mixed integer problems may be required if
1)the problem has discrete integer variables such as on-off
switching, binary logics etc. or 2) if the nonlinear process
model is modelled using piecewise-affine (PWA) models545

or surrogate models or 3) if the problem has non-convex
cost or constraints. Such problem are often reformulated
and solved efficiently using the mixed-integer framework.
Mixed integer solvers employ methods such as branch-and-
bound and cutting-plane methods combined with some550

heuristics and there are no solvers that guarantee solv-
ing dynamic mixed-integer problems in polynomial time.
Formulating a RTO problem as mixed-integer problems
is rather common in many industrial applications, see for
example [32], [33], [34], [35] and the references therein.555

Hence static RTO remains the preferred formulation in
many industrial applications.

In such cases, the proposed hybrid RTO approach can
help tackle the steady-state wait-time issue, which is one of
the fundamental limiting factor in traditional static RTO560

and at the same time circumvent the computational issues
of dynamic RTO.

5.2. Advantages of static optimization (SRTO and HRTO)

However, computation cost is not the only reason static
optimization is prevalent in industrial applications. A fun-565

damental advantage of static optimization (in SRTO and
HRTO) is that it does not have time as a variable. This
avoids the causality issue, and allows for optimizing on
decision variables other than the manipulated variables
(MVs). For example, these decision variables may be pres-570

sure, level, composition and temperature. Consequently,
this can 1) simplify the optimization and 2) allow the op-
timization to run on a much slower time scale because
we can choose slow-varying variables as decision variables.
This is also the principle behind self-optimizing control,575

where the goal is to choose the right decision variables ysp
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in Fig.2, which when kept constant leads to near optimal
operation (i.e. acceptable loss) [4].

This advantage is not seen in our example because in
all simulation cases, the decision variables are the gas lift580

injection rates (MVs). However, as a simple example, con-
sider a small tank with one inflow (disturbance) and one
outflow (MV). The setpoint for the level is assumed fixed.
A dynamic RTO or economic NMPC would have the out-
flow as the decision variable, and it would need to be up-585

dated with the same frequency as the inflow disturbance.
Essentially, the DRTO (or economic NMPC) is doing the
job of the base layer PID controller, and needs to run at
the speed of the base layer control system. However, with
a static RTO, the decision variable could be the level set-590

point, which would remain constant, irrespective of the
disturbance.

Of course, optimizing on other decision variables as-
sumes that we have a lower layer level controller, which
takes care of disturbances on a fast time scale. In static595

RTO, the decision variables are setpoints to CVs of the
lower-layer control system and the only assumption one
needs to make about the control system is that it has in-
tegral action.

5.3. Dynamic estimation methods600

As mentioned earlier, in the hybrid RTO approach, the
model adaptation step is performed using dynamic models.
Although we used an extended Kalman filter in this paper,
we now provide a very brief discussion on the different dy-
namic estimation methods that can be used. Very simple605

methods such as filtered bias update or Implicit Dynamic
Feedback (IDF) method may be used for simple parameter
estimation problems. Implicit dynamic feedback is anal-
ogous to a PI controller as explained in [36] and may be
used when a one-to-one pairing of measurements to the610

parameter is known.
For more complex multivariable systems, weighted least

squares estimation or family of Kalman filters such as the
extended Kalman filter (EKF) or unscented Kalman filter
(UKF) may be used. Other recently developed Kalman615

filter based methods include sequential Monte Carlo meth-
ods and expectation maximization methods for parameter
estimation [37]. It was noted in [38] that extended Kalman
filter is the most widely used tool for nonlinear weighted
least square estimation in chemical engineering. In the620

presence of uncorrelated gaussian white noise, this also
corresponds to the maximum likelihood estimator (MLE)
[38]. In terms of computational requirements, EKF for
parameter estimation is known to be simple to implement
and computationally fast compared to other methods [37].625

The solution provided by EKF is accomplished through
matrix multiplications and does not need to solve nonlin-
ear optimization problems online. Additionally, there has
also been some research in faster implementation of EKF
for some applications, see for example [39], where the au-630

thors analyze the EKF matrices and reduce the number
of computations by exploiting the sparsity and structure

of the EKF matrices. The confidence interval provided by
the covariance estimates may also be useful. One of the
challenges with practical implementation of Kalman filter635

is the tuning which include the measurement and process
noise covariance matrix elements and a forgetting factor,
if included in the formulation [38]. Often these tuning pa-
rameters are chosen arbitrarily. Recent works introduced
a computationally efficient approach to identify the noise640

covariance for nonlinear systems [40].
Optimization-based statistical methods such as the mov-

ing horizon estimation (MHE) has been receiving more at-
tention recently, where a numerical optimization problem
is solved to reduce the error between the estimates and645

the measurement. MHE is especially favourable in the
case of constrained estimation. However, this method is
more computationally intensive due to the dynamic opti-
mization problem that has to be solved at each sampling
instant. This may not be favourable if one of the mo-650

tivations of using static optimization is to avoid solving
dynamic optimization problems. MHE also often require
additional observers in parallel such as EKF for estimat-
ing the arrival cost. For more detailed review of dynamic
estimation methods the reader is referred to [36], [38] and655

the references therein.

5.4. Challenges with structural uncertainty

The model adaptation step mostly works under the as-
sumption that any plant-model mismatch observed in the
measurements arises from the set of uncertain parameters660

θ. Although this may reduce the error between the model
predictions and the plant observations, this may not result
in optimal operation if the model has the wrong structure.
This is clearly demonstrated using a case example in [9],
where the model parameters alone do not provide suffi-665

cient flexibility, because the assumed model structure was
wrong.

The models may be structurally wrong either due to
model simplification or lack of knowledge. Any unmod-
elled disturbance that enters the plant also results in struc-
tural uncertainty. A simple way to partly handle unmod-
elled disturbances is to add a bias term ∆ and adapt the
bias term online that describes the observations better.

xk+1 = f(xk, uk, θk) + ∆k (13)

This is similar to how process noise is added in a Kalman
filter [19]. Integrated white noise models for ∆k can be
used in the adaptation step to account for the unmod-670

elled effects that influences the steady-state predictions.
For example, this can be achieved by modifying the EKF
presented in (A.3) to include integrated white noise distur-
bance models. Using integrated white noise models to ac-
count for unmodelled effects is common and has also been675

used in offset-free model predictive control as described
in [41]. Integrated disturbances can be modelled to enter
either through the inputs or outputs or partially through
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both as shown in [41]. The extended Kalman filter frame-
work to estimate the bias using integrating white noise680

models is also shown in Appendix A. The estimated bias
terms ∆k are then brought onto the optimization models
to account for the unmodelled effects.

It is important to note that, although one may be able
to match the measurements by using the bias term ∆, this685

may not eradicate the structural mismatch and does not
guarantee that the optimization problem converges to the
optimum. This is partly due to the fact that the optimiza-
tion objective (4) is unrelated to the parameter estimation
objective in (3) as explained and demonstrated in [9].690

In the recent literature, different approaches to real-
time optimization have been proposed other than the stan-
dard two-step model adaptation method. The so-called
modifier adaptation method introduced in [42] is a gen-
eral way to handle structural mismatch. In this method,695

cost measurements are used by a slower model-free upper
layer to compute the so-called modifier terms to adjust
the computed gradient of the cost and constraint functions
predicted by the optimization model [9]. However, it re-
quires the cost to be measured directly in order to evaluate700

the plant gradient, which may not be readily available in
many applications. The modifier adaptation method also
uses a static optimization method and is plagued by the
same issue of having to wait for steady-state before using
the cost measurements. The possibility of using transient705

measurements in modifier adaptation has been recently
explored in [43] and [44].

Related model-free RTO approaches such as extremum
seeking control [45] and NCO (Necessary Condition of Op-
timiality) tracking control [46] were developed to avoid de-710

veloping and updating a model1. In contrast to traditional
RTO schemes, these methods rely solely on the process
measurements to drive the system to its optimum. This is
done by estimating the steady-state gradient from the cost
to the inputs using the process measurements [47]. The715

estimated gradients are then driven to zero. Due to the
estimation of steady-state gradient, these methods cannot
use transient measurements directly. Using transient mea-
surements may result in erroneous gradient estimation,
resulting in undesired control actions. As a result, the720

convergence to the optimum may be prohibitively slow,
which is the main disadvantage of such methods. Addi-
tionally, such purely data-based methods are also affected
by abrupt disturbances, which may cause unnecessary de-
viations in the control inputs, as motivated in [48].725

Modifier adaptation and model-free methods are cur-
rently an active area of research and although many ap-
plication examples can be found in literature, these meth-
ods are far from real-industrial implementation in large-
scale chemical plants [14]. The proposed hybrid RTO ap-730

proach can therefore enable efficient implementation of the
two-step model-adaptation based RTO approach in many

1Reason 1 for limited industrial use of RTO described in Section
1

industrial applications today. Static optimization solvers
as well as dynamic estimation methods such as extended
Kalman filters are commercially available tools that can735

be easily implemented using today’s computing power.

6. Conclusion

By using a hybrid RTO with dynamic models for model
adaptation, we are able to efficiently use transient data
for updating the models. Hence the optimization does not740

need to wait for the process to settle before the model pa-
rameters are updated. Additionally, by adopting a Hybrid
RTO structure, with static models for optimization, nu-
merical and computational issues associated with dynamic
optimization can be avoided. This may lead to better uti-745

lization of the potential of RTO in many industrial appli-
cations. The use of hybrid RTO was demonstrated using
an oil production network as case study, where similar per-
formance to dynamic RTO was achieved at computation
times similar to the traditional static RTO.750
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[31] R. Findeisen, F. Allgöwer, Computational delay in nonlinear
model predictive control, IFAC Proceedings Volumes 37 (1)
(2004) 427–432.

[32] V. Gunnerud, B. Foss, Oil production optimizationa piecewise
linear model, solved with two decomposition strategies, Com-850

puters & Chemical Engineering 34 (11) (2010) 1803–1812.
[33] E. O. Hülse, E. Camponogara, Robust formulations for produc-

tion optimization of satellite oil wells, Engineering Optimization
(2016) 1–18.

[34] J. Kallrath, Mixed integer optimization in the chemical process855

industry: Experience, potential and future perspectives, Chem-
ical Engineering Research and Design 78 (6) (2000) 809–822.

[35] F. Trespalacios, I. E. Grossmann, Review of mixed-integer
nonlinear and generalized disjunctive programming methods,
Chemie Ingenieur Technik 86 (7) (2014) 991–1012.860

[36] J. D. Hedengren, A. N. Eaton, Overview of estimation methods
for industrial dynamic systems, Optimization and Engineering
18 (1) (2017) 155–178.

[37] X. Sun, L. Jin, M. Xiong, Extended Kalman filter for estimation
of parameters in nonlinear state-space models of biochemical865

networks, PloS one 3 (11) (2008) e3758.
[38] M. Leibman, T. Edgar, L. Lasdon, Efficient data reconciliation

and estimation for dynamic processes using nonlinear program-
ming techniques, Computers & chemical engineering 16 (10-11)
(1992) 963–986.870

[39] K. D. Rao, J. L. Narayana, An approach for a faster gps tracking
extended Kalman filter, Navigation 42 (4) (1995) 619–630.

[40] M. Ge, E. C. Kerrigan, Noise covariance identification for time-
varying and nonlinear systems, International Journal of Control
90 (9) (2017) 1903–1915.875

[41] M. R. Rajamani, J. B. Rawlings, S. J. Qin, Achieving state
estimation equivalence for misassigned disturbances in offset-
free model predictive control, AIChE Journal 55 (2) (2009) 396–
407.

[42] A. Marchetti, B. Chachuat, D. Bonvin, Modifier-adaptation880

methodology for real-time optimization, Industrial & engineer-
ing chemistry research 48 (13) (2009) 6022–6033.

[43] G. François, D. Bonvin, Use of transient measurements for the
optimization of steady-state performance via modifier adap-
tation, Industrial & Engineering Chemistry Research 53 (13)885

(2014) 5148–5159.
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Appendix A. Dynamic model adaptation using ex-
tended Kalman filter

Extended Kalman filter for parameter estimation uses
an augmented state vector x′ = [xT , θT ]T ∈ Rnx+nθ con-
structed using the states and the uncertain variables.915

The set of uncertain variables θ is modelled using an
integrated noise term θk+1 = θk + wθ,k where, wθ,k ∼
N (0, Qθ) is a small artificial noise with zero mean and
covariance Qθ term that allows the Kalman filter to adjust
the estimate the of the parameter [19]. The augmented
system is then given by

x′k+1 =

[
xk+1

θk+1

]
= f ′(xk, uk, θk) + w′k (A.1)

ymeas,k =
[
h(xk, uk) 0

] [xk
θk

]
+ vk
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where vk ∼ N (0, R) is the normally distributed measure-
ment noise with zero mean and covariances R and the
augmented system model f ′(xk, uk, θk) is constructed as
shown,

f ′(xk, uk, θk) =

[
f(xk, uk, θk) + wk

θk + wθ,k

]
(A.2)

where wk ∼ N (0, Q) is the normally distributed process
noise with zero mean and covariances Q

The discrete-time extended Kalman filter for the aug-
mented system is then given by [19],

x̂′k|k−1 = f ′(x̂k−1|k−1, uk−1, θ̂k−1|k−1) (A.3a)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Q′k−1 (A.3b)

Kk = Pk|k−1H
T
k (HkPk|k−1Hk +Rk)−1 (A.3c)

x̂′k|k = x̂′k|k−1 +Kk(ymeas,k − h(x̂k|k−1, uk)) (A.3d)

Pk|k = (I −KkHk)Pk|k−1 (A.3e)

where P is the covariance of the state and parameter es-
timates, K is the Kalman gain, F and H depicts the lin-
earized system around the current estimate, given by

F =
∂f ′(x, u, θ)

∂x′

∣∣∣∣∣
x′=x̂′

H =
∂h(x, u)

∂x′

∣∣∣∣∣
x′=x̂′

(A.4)

and the augmented covariance Q′ is given by,

Q′ =

[
Q 0
0 Qθ

]
(A.5)

The estimated parameter θ̂k is then used in the static
optimizer as shown in (8).

Appendix A.1. Augmenting unmodelled effects920

Let the unmodelled disturbances be represented as ad-
ditive disturbance to (1) as shown,

xk+1 = f(xk, uk, θk) + ∆k (A.6)

and the corresponding static counterpart is expressed as

y = f ′ss(u, θ,∆) (A.7)

The additive disturbance ∆k ∈ Rnx is expressed as in-
tegrating disturbance ∆k+1 = ∆k + ξk with some small
unknown covariance Qξ for ξk ∼ N (0, Qξ). The new aug-
mented state is x̃ = [xT , θT ,∆T ]T and the new augmented
system is,

f̃(xk, uk, θk,∆k) =

f(xk, uk, θk) + wk
θk + wθ,k
∆k + ξk

 (A.8)

and the augmented covariance matrix Q̃ is,

Q̃ =

Q 0 0
0 Qθ 0
0 0 Qξ

 (A.9)

The combined state, parameter and the unmodelled
disturbances (x̃) are estimated using an extended Kalman
filter by replacing (A.2) and (A.5) with (A.8) and (A.9) in
(A.3).

Appendix B. Gas Lift Network model925

Production from a cluster of N = {1, · · · , nw} gas
lifted well can be described using differential and algebraic
equations [49],[50]. The dynamics are include in the model
due to the mass balances in each well which are described
by the following differential equations.

ṁgai =wgli − wivi (B.1a)

ṁgti =wivi − wpgi + wrgi (B.1b)

ṁoti =wroi − wpoi ∀i ∈ N (B.1c)

where, mgai is the mass of gas in the annulus, mgti is the
mass of gas in the well tubing, moti is the mass of oil in
the well tubing, wgli is the gas lift injection rate, wivi is
the gas flow from the annulus into the tubing, wpgi and
wpoi are the produced gas and oil flow rates respectively
and, wrgi and wroi are the gas and oil flow rates from the
reservoir for each well i. The mass balance in the riser for
oil and gas phase is given by,

ṁgr =

nw∑
i=1

wpgi − wtg (B.2a)

ṁor =

nw∑
i=1

wpoi − wto (B.2b)

where, mgr is the mass of gas in the riser and mor is the
mass of oil in the riser and wtg and wto are the total gas
and oil flow rates respectively. The densities ρai (density
of gas in the annulus in each well) and ρmi (fluid mixture
density in the tubing for each well) and ρr (fluid mixture
density in the riser) are given by,

ρai =
Mwpai
TaiR

(B.3a)

ρwi =
mgti +moti − ρoLbhiAbhi

LwiAwi
(B.3b)

ρr =
mgr +mor

LrAr
∀i ∈ N (B.3c)

where Mw is the molecular weight of the gas, R is the gas
constant, Tai is the temperature in the annulus in each
well, ρo is the density of oil in the reservoir, Lbhi and Lwi
are the lengths of each well above and below the injection
point respectively and Abhi and Awi are the cross-sectional
area of each well above and below the injection point re-
spectively. Lr and Ar are the length and the cross sectional
area of the riser manifold. The annulus pressure pai , well-
head pressure pwhi , well injection point pressure pivi and
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the bottom hole pressure pbhi for each well are given by,

pai =

(
TaiR

VaiMw
+

gLai
LaiAai

)
mgai (B.4a)

pwhi =
TwiR

Mw

(
mgti

LwiAwi + LbhiAbhi −
moti
ρo

)

− 1

2

(
mgt +mot

LwAw
gHw

)
(B.4b)

pwii = pwhi +
g

LwiAwi
(moti +mgti − ρoLbhiAbhi)Hwi

+ ∆ptfric (B.4c)

pbhi = pwii + ρwigHbhi + ∆pbhfric ∀i ∈ N (B.4d)

where Lai and Aai are the length and cross sectional area
of each annulus, Twi is the temperature in each well tubing,
Hri and Hwi are the vertical height of each well tubing
below and above the injection point respectively and g is
the acceleration of gravity constant. ∆ptfric and ∆pbhfric
represents the frictional pressure drop in the well tubing
above and below the gas injection point respectively. The
manifold pressure pm and the riser head pressure prh are
given by,

prh =
TrR

Mw

(
mgr

LrAr

)
(B.5a)

pm = prh + ρrgHr + ∆prfric (B.5b)

where Tr is the average temperature in the riser, Hr is
the vertical height of the riser and ∆prfric is the frictional
pressure drop in the riser. The flow through the downhole
gas lift injection valve wivi , total flow through the produc-
tion choke wpci , produced gas and oil flow rate, and the
reservoir oil and gas flow rates are given by,

wivi = Civi
√
max(0, ρai(pai − pwii)) (B.6a)

wpci = Cpci
√
max(0, ρwi(pwhi − pm)) (B.6b)

wpgi =
mgti

mgti +moti

wpci (B.6c)

wpoi =
moti

mgti +moti

wpci (B.6d)

wroi = PIi(pri − pbhi) (B.6e)

wrgi = GORi · wroi ∀i ∈ N (B.6f)

where, Civi and Cpci are the valve flow coefficients for the
downhole injection valve and the the production choke for
each well respectively, PIi is the reservoir productivity in-
dex, pri is the reservoir pressure and GORi is the gas-oil
ratio for each well. The two wells produce to a common
manifold, where the manifold pressure is denoted by pm
and the flow rates from the two well mixes together. The
total flow through the riser head choke wrh, the total pro-

Table B.3: List of well parameters and their corresponding values
used in the results.

Parameter units Well 1 Well 2
Lw [m] 1500 1500
Hw [m] 1000 1000
Dw [m] 0.121 0.121
Lbh [m] 500 500
Hbh [m] 500 500
Dbh [m] 0.121 0.121
La [m] 1500 1500
Ha [m] 1000 1000
Da [m] 0.189 0.189
ρo [kg m−3] 800 800
Civ [m2] 0.1E-3 0.1E-3
Cpc [m2] 2E-3 2E-3
pr [bar] 150 155
PI [kg s−1 bar−1] 0.7 0.7
Ta [◦C] 28 28
Tw [◦C] 32 32
GOR [kg/kg] 0.1±0.05 0.12±0.02

duced oil and gas rates are then given by,

wrh = Crh
√
ρr(prh − ps) (B.7a)

wtg =
mgr

mgr +mor
wrh (B.7b)

wto =
mor

mgr +mor
wrh (B.7c)

where Crh is the valve flow coefficient for the riser head
valve and ps is the separator pressure, which is assumed
to be held at a constant value.

As seen from (B.1a) - (B.7c), the gas lifted well is mod-
elled as a semi-explicit index-1 DAE system of the form

ẋ = Fc(x, z, u, θ) (B.8a)

G(x, z, u, θ) = 0 (B.8b)

where Fc(x, z, u, θ) is the set of differential equations (B.1a)
- (B.2b) and G(x, z, u, θ) is the set of algebraic equations930

(B.3a) - (B.7c), x ∈ R8 are the set of differential variables,
z ∈ R30 are the set of algebraic variables, u ∈ R2 are the
set of control inputs and θ ∈ R2 are the set of uncertain
parameters.
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Table B.4: List of riser parameters and their corresponding values
used in the results.

Parameter units Riser
Lr [m] 500
Hr [m] 500
Dr [m] 0.121
Crh [m2] 10E-3
ps [bar] 20
Tr [◦C] 30
Mw [g mol−1] 20
R [J mol−1 K−1] 8.314
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