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Abstract—In this paper, we consider an OFDM radio link
corrupted by oscillator phase noise in the receiver, namelythe
problem of estimating and compensating for the impairment.
To lessen the computational burden and delay incurred onto
the receiver, we estimate phase noise using only scatteredaqgb
subcarriers, i.e., no tentative symbol decisions are usedni
obtaining and improving the phase noise estimate. In partialar,
the phase noise estimation problem is posed as an unconsmad
optimization problem whose minimizer suffers from the so-alled
amplitude and phase estimation error. These errors arise due to
receiver noise, estimation from limited scattered pilot sbcarriers
and estimation using a dimensionality reduction model. It §
empirically shown that, at high signal-to-noise-ratios, he phase
estimation error is small. To reduce the amplitude estimatn
error, we restrict the minimizer to be drawn from the so-called
phase noise geometry set when minimizing the cost function.
The resulting optimization problem is a non-convex program
However, using theS-procedure for quadratic equalities, we show
that the optimal solution can be obtained by solving the conex
dual problem. We also consider a less complex heuristic scime
that achieves the same objective of restricting the minimier to
the phase noise geometry set. Through simulations, we demon
strate improved coded bit-error-rate and phase noise esti@tion
error performance when enforcing the phase noise geometrfor
example, at high signal-to-noise-ratios, the probabilitydensity
function of the phase noise estimation error exhibitghinner tails
which results in lower bit-error-rate.

I. INTRODUCTION
N this paper, we focus on the phase noise problem

orthogonal frequency division multiplexing (OFDM) which

falls in the category of RF-impairments. It is well known tth

the OFDM waveform is sensitive to RF-impairments whic

also include power amplifier non-linearities, 1Q-imbalarand

In the area of performance analysis, plethora of studies
demonstrate a performance drop for an OFDM system cor-
rupted by phase noise [3]-[8]. The performance metrics typi
cally used are: signal-to-noise-plus-interferencesré&INR),
bit-error-rate (BER) and channel capacity. The trade-sff i
typically between the OFDM subcarrier spacing adwdiB
bandwidth of oscillator power spectral density (PSD) which
in turn can be related to the oscillator topology and circuit
parameters [9]. A small ratio of subcarrier spacing a&ad
dB PSD bandwidth results in lower SINR, lower capacity
and higher BER. These performance studies were indeed
extended to include other kinds of RF-impairments which are
mainly 1Q-imbalance, power amplifier non-linearities aitiy
noise [10]. Numerous algorithms are available that remove
phase noise from the received OFDM signal. These methods
typically require knowledge of the channel. Some of theestat
of-the-art methods on channel estimation in the presence of
phase noise can be found in [11]-[16].

The phase noise estimation algorithms can be broadly
classified into three types: decision-feedback-basednsete
also known as decision-directed algorithms [14], [16]421
pilot-based schemes that use the scattered pilot structure
provided in LTE [12], [22], [23]; and, finally, blind estimanh
schemes [24], [25]. Decision-feedback schemes estimatseph
noise using tentative decisions on the transmitted symbols
Using the obtained estimate, phase noise is removed and new

cisions on the transmitted symbols are taken which are
again used to refine the phase noise estimate. The process
is iterated over a certain number of times, thus, resultng i

feedback loop. Because of this iteration procedure, these
schemes can impose a significant computational burden onto

jitter noise [1]. Phase noise refers to random fluctuations the receiver. The primary goal in blind estimation schenses i

the phase of the carrier signal that is used for transmissioh
reception of the baseband information-bearing signakisea
due to imperfections in the local oscillators that genethée
carrier signals. These imperfections exist, simply, du¢hto

inherent physical nature of these devices but, howevearit ¢

be controlled by judicious choice of oscillator design [2].
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to jointly estimate phase noise and transmitted symboles&h
approaches typically use Bayesian filtering methods taljoin
estimate the desired parameters [26]. For example, in [25],
variational-inferenceds used, whileMonte-Carlomethods are
used in [24]. These methods, although statistically optiara
computationally intensive and may not be suitable in delay-
sensitive wireless systems.

Pilot-based schemes that utilize scattered pilot subcarri
ers are a computationally attractive alternative to denisi
feedback and blind estimation schemes. There exists pketho
of work where, using scattered pilot subcarriers, only the
common phase erriICPE) is estimated while the higher-order
frequency components of phase noise, also knowrintsr-
carrier-interferencg(ICl), are assumed to be small and, hence,
not estimated [27]-[29]. It is well known that, for satisfawy
performance, the ICI must also be estimated. To the bestrof ou
knowledge, [12], [22] and [23] are the only available works



that, using only scattered pilot subcarriers, estimaté KRE optimal scheme while the second scheme is heuristic in @atur
and ICI terms. One of the goals of this paper is to contributewever, with reduced computational complexity. In Settio
towards scattered pilot-based phase noise estimatioomazheV, we present numerical results of these schemes.
that estimate both CPE and ICI with high degree of accuracy.

In this paper, for phase noise estimation, we use two new Il. SYSTEM MODEL
aspects of phase noise that have been recently discovere
the first is the so-callegphase noise spectral geometgnd
second is a new dimensionality reduction model that preser
this geometry when moving from lower to higher dimension
spaces. These two aspects of phase noise were origin
proposed in [17], however, used in developing a decisio

?h an OFDM system, an information symbol vector, denoted
\py s={sp $1.- .sNC_l]T, is transmitted usingV.. orthogonal
&ubcarriers [30]. These subcarriers pass through a freguen
ﬁzlective channel whose discrete-time impulse response is
g—%oted bya[n]. At the receiver side, the signal gets corrupted

feedback phase noise estimation scheme which has high ¢ %f-f.th.e recever additive noise and phage noise. Assuming
plexity. We build upon these ideas to develop a novel sadter” !C|ent timing synchronization, the received symbolteec
pilot-based estimation scheme without any decision feekdbd> 9"VE" by

loop. We show in this work that utilizing the phase noise r = VHs + n, (1)
spectral geometry in conjunction with this new dimensidpal

reduction model improves the estimation performance andhere H is a diagonal matrix composed of elements

hence, the BER. {Hk}fcvggl which are the discrete Fourier transform (DFT)
The main contributions of this paper are as follows: of hln], i.e.,
« As our starting point, we use the least-squares (LS) ap- Ne1 B
proach of [23] to estimate the desired phase noise spectral Hx = Z hn)e ?Gmm/Ne | =0,1,... Ne—1.  (2)
vector using scattered pilot subcarriers. We show that n=0

the minimizer of the resulting unconstrained optimizatomhe vectorn denotes the additive receiver noise which is
problem suffers fromamplitude and phase estimationGaussian with diagonal covariance matrix whose diagonal
errors which arises due to receiver noise, estimation fromalues are equal te?. The effect of phase noise is represented
limited scattered pilot subcarriers and estimation usirgy the unitary matrixV' which is row-wise circulant with the
a dimensionality reduction model. We empirically shovirst row vector beingd’ which denotes Hermitian transpose
that, at high SNRs, the phase estimation error is small the column vectod. The elements od are given by
and the critical factor is the amplitude estimation error. No—1
o To eliminate the amplitude estimation error, we impose 5 — Z
the phase noise geometry as constraints when minimizing
our cost function. The resulting optimization problem is a ) ) ) )
non-convex program, and we show using the so-caled whered[n] is the receiver phase noise. In this paper, we refer
procedurethat the optimization problem can be solved® ¢ as thephase noise spectral vector
equivalently using the convex dual problem. We also 'deally, in the absence of phase noise (i.e., whn = 0)
present a heuristic scheme with reduced computatiordld after using (3), we havé = [1,0,. --vQ]T and, hence,
complexity that achieves the same objective of enforcing = Iy., wherely, denotes theN. x N. identity matrix.
the estimate to satisfy the phase noise geometry. quation (1), thus, reduc_:esﬂfo: Hs+n Wr_uch is the stgndard
« We provide conditions for the S-procedure to be lossle§¥ DM system model with no phase noise. In practice, phase
for generic quadratic equalities. In [17], the author80iSe is always present which rend&fgo constitute non-zero
present the S-procedure for quadratic equalities speciifi-diagonal elements.
to their problem. In this paper, we build upon the ideas
presented in [17] and generalize the S-procedure fdtl. BACKGROUND: PHASE NOISE SPECTRAL GEOMETRY,
generic quadratic equalities. We use the S-procedure to DIMENSIONALITY REDUCTION AND S-PROCEDURE
prove optimality of our proposed optimization problem.

—6[n]
S emmm/Ne }o 01 .. N,—1, (3)

n=0 ¢

In this section, we dwell on three particular topics which

The paper is structured as follows: In Section II, we preseshall be used in later sections to develop phase noise esti-
the OFDM system model impaired by phase noise. This shalation schemes. In Section IlI-A, we present the geometry
serve as the foundation for the rest of the paper. Section &l §, while in Section IlI-B, we present a new dimensionality
covers two particular aspects: The first aspect summarizes teduction model that takes into account this geometriqagets
findings of [17] which are the phase noise spectral geomew§d. Finally in Section 11I-C, we present the S-procedure for
and the phase noise geometry-based dimensionality reductijuadratic equalities which shall be used to prove optimalit
model. The second aspect dwells on the topic of S-procedwfeone of our phase noise estimation schemes. The results in
for generic quadratic equalities. We use the S-procedure Sections IlI-A and 11I-B were originally derived in [17] and
later sections to prove optimality of the proposed phas$ence, we summarize the main points. The S-procedure for
noise optimization problem. Section IV presents the predosquadratic equalities in Section 11I-C is a generalizatidrine
scattered pilot-based phase noise estimation schemesif-Spapproach used in [17] which was limited to quadratic equmstio
ically, two new schemes are proposed with the first being tispecific to their application.



A. Geometry ob and practical especially when the phase noise processws slo
From (3), we see thady, is the DFT of e—]ifem which varying. Unfortunately, the model of (5) does not guarantee

- : - that  obtained from (5) will satisfy (4).
hasconstant-magnitudéme-domain samples. Intuitively, we ]
could expect this time-domain property to manifest in the IZ)t' Thg Ge(;)me_try-preser\gngrrl:(loqeh_[17], a r]:e:/lv mo.d_?L
frequency domain in some equivalent form. This is indeed ghg'ding 0 andy IS proposed. This IS given as Joflows. The

case which is easy to show and derived in [17]. Specificall (re]ctoré gcquwestltslproperiltﬁszrorr:_ ?. snlzgird(ﬁmen.smn?l
it is shown thatd always satisfies ase noise spectral vectgrthat satisfies -dimensiona

equivalent of (4), i.e.,
T _ _ - -
(SPl(s—Al,l—O,l...,Nc—l, (4) 'YTPI'Y:Alyl:O,L

N1, (6)

where A; is the Kronecker delta function, i.eAg = 1 and \yhereP, andA, are theN-dimensional equivalents @; and

. 1 .
Ay =0, 1=1,2...,N.— 1. The matrixP;, = (P1)" is @ A, respectively. The vectod and~ are linearly related as
permutation matrix defined by th€. x N, matrix P;. The first

column ofP; is given by theN, x 1 vector|0, 1,0, ...,0]" and 6 =Tv, (7)
the j-th column is obtained by circularly shifting the vectot, hare theN. x N matrix T
j — 1 times to the bottom. Fol = 0, we get the unit-norm ¢ .
property, whereP, = Iy.. T = FTF, (8)

Equation (1) provides the relation betweenand s for _where the respective andF are theN x N and N, x N.

any OFDM symbol. For different OFDM symbols, we obtalerT matrices and the columris of the N, x N matrix T
different realizations of the channel matiik, V andn. Thus, . ¢
must satisfy, for all = 1,2,..., N, — 1,

although'V or § vary from one OFDM symbol to another,

from (4), we see thad is always drawn from a particular set. cis s p o = R
This is useful from an estimation point of view because we T T =1, t;Dit; =0 for i # j, Z t;Dit; =0, (9)
now knowwhereto look for §. =0

is of the form

where the diagonaD; = FP;F. In comparison with the
conventional model of (5), the geometrical model imposes
restrictions ony and the transformation matrik. The role of

The effect of phase noise can bempensatedtraightfor- T is to preserve the phase noise geometry when moving from
wardly if we have knowledge 0d. We can then form the lower to higher dimensional spaces. Because of the geometry
matrix V and performVir = Hs + V'n to remove phase preserving nature oI', we shall refer to it as thphase noise
noise (we use the fact thafTV = I ). Thus, the critical geometry preserving transformatiar PPT. In reality, many
task ofestimationis to obtain this knowledge as accurately apossible choices of PPT exists and in the following paragrap
possible using which phase noise can be compensated. we provide one such example that we shall later use.

1) The Conventional ModelfFrom the point of view of a) Piecewise constant PPT (PC-PPTJhe transforma-
estimation, estimating the entire vectbmay not be feasible tion § = FTFi~ can be interpreted as follow#'~ is a
since the dimensionality of, equal toN,, can be large. For N-dimensional time-domain vector which is interpolated (by
example, in LTE, N, > 100, and it can be as large @848. In T) to a higher dimensional vector and then transformed to
practice, system specifications enforce stringent reméres the Fourier domain. Such an interpretation is valid for ghas
on oscillator performance which effectively result in talble noise since, in general, it is a low-pass process. One of the
and slow-varying phase noise processes. This has the effecsimplest interpolators is to simply repeat the elementshef t
larger concentration of power in the low frequency compasertime-domain vector, i.e.,

B. Dimensionality Reduction

represented by the top and bottom component afhile the 1. 0 ... 0O
high frequency terms represented by the middle components ~
of § constitute only a small fraction of total power. We can, - N.| 0 1, . :
thus,modeld as follows: Tpe = ~ | . o R E (10)
L Okxk 0 ... 0 1x
0= ONC—(m-Hc)Xm ONC—(m+k)><k Y= LPY? (5) R
Okxm | FAOSS wherel n, is an% x 1 vector of ones an@ is the vector with

. . . . __elements equal to zero. We assume without loss of generality
where 0 is the matrix of zeros of appropriate dlmensmn% N. . o - -

) . . ; hat ¢ is even. It can be easily verified tha,. satisfies the
The matrixL is of dimensionN. x N, N = m + k, and~y conditions of (9) and, hence,. — FT. ¥t is a PPT
comprises of theV low-frequency components. Thus, rather ' pe 7 = Tpe '
than estimatingd, we estimate the smalleN-dimensional . N
vector v and then use (5) to finally obtain our estimate of- S-Procedure for Quadratic Equalities
4. Note that from (5), we set the high-frequency componentsThe S-procedure is a method of replacing a set of quadratic
to zero. The model in (5) is commonly used in the literatur@equalities or equalities withlanear matrix inequality(LMI).
related to phase noise estimation. We shall also refek tolt is typically used when solving primal and dual optimipeti
as low frequency transformation matrix or LFT. It is usefuproblems [31]. In this paper, we concern ourselves with



only quadratic equalities. A good overview of the topic foRemark 1. The regularity condition implies that there does

guadratic inequalities can be found in [32]. not exist any hyperplane passing through the origin such tha
Consider the following quadratic forms: all points {q(x;)}}, lie on one side of the hyperplane. This
A, d, is seen as follows: For any non-ze@ < RY~!, taking
q(x) =x' (dlf ) 0=0,1,....,L—1, (11) the inner product w.rta on both sides of(21), we have

. M pi@Ta(x;)) = 0 which implies thata”q(x;) > 0
wherex € CV . Define the sets: or alq(x;) < 0 for all i« = 1,2,..., M is not possible
T i M i T —
B ) N1 since {p;};2,; > 0. The special case af" q(x;) = 0 for all
Q= {(QO(X)’ql(X)’ o ’QL’l(X)) ixec }’ (12) Z 1,2,..., M impliesrank (Q) < L — 1 which contradicts
N = {(97 OE_l)T st g< 0}7 (13) With (20). Hence, for any non-zera, we must have

where0;_; is aL — 1 x 1 vector of zeros. Now consider the a'q(x;) <0, a'q(x;) > 0 for some i and j,i # j. (22)
following two statements: Remark 2. The regularity condition also implies that the conic
e S1:go(x) > 0 wheneverg(x) = 0 for all { > 0. Thisis hull of Q is equal toRX~1. This follows from Remark 1.
equivalent toQ N A = (), wheren denotes intersection
and () denotes the empty set.
o S2: There exists constantg,l = 1,2,...,L — 1 such
that Theorem 1. AssumeQ satisfies the regularity condition. Let
) < Ao+ A do+ 3 pzdz> cov (Q) denote the convex hull a@. If Q NN = () implies
A=\(qy+ ZlL:—ll pd)t co+ ZlL:—11 e ) 70 cov (Q) NN = 0 then the S-procedure is lossless.

We now have the following theorem on the losslessness of
the S-procedure.

Proof: First, we note tha NN = ) implies the sets are

(14) disjoint. Also, the setsV arecov (Q) are convex sets. Thus,

We say that the S-procedure is lossless if the statementsiSD N A" = () implies cov (Q) NN = () then there exists a
and S2 are equivalent, i.e., S1 implies S2 and S2 implies $]%/.perp|anq)assing through the origirthat Separategov(g)

We now have the following Lemma: and ' [31], [33], i.e., there exists constanis such that
Lemma 1. S2 always implies S1. aly <0, y e N, (23)
Proof: S2 implies that, for alik € CV+!, xTAx > 0 and aly >0, y € cov(Q), (24)
after using the expression d, wherea = [ag, a1, ... ,aL,l]T. From (23) and definition of
ey >0 15 N, we must haveig > 0. Now ag = 0 is impossible because
q(x) + Y pan(x) > (15)  of the regularity condition assumption. This is seen as fol-
. =1 lows: First, define the vectdt with components aga, }-—".
p'y=0foryeQ, (16)  Assumeag = 0 is true. Then at pointsgo(x;) a(x;)T]T €
wherep = [1, p1, p2. - .., pr_1]". For such ap, we also have cov(Q) with {x;}M, as defined in the regularity condition,

(24) becomes

ply=g<0,foryeN, (17)
aTq(x;) > 0,for all i =1,2,..., M. (25)

which results from the definition of/. Thus, from (17) and

(16), we see tha® N A = () which is equivalent to S1. m Equation (25) contradicts with (22) of Remark 1 which is sat-
Unfortunately, S1 does not necessarily imply S2, and oni§fied because of the regularity condition assumption. léenc

depending upon the type of the s@tit may imply S2. By ao > 0 is necessary. Hencéyr all x € CV*1, (24) implies

imposing a certain type of structure @, the implication of L1

S1 to S2 can be achieved. The followiregularity condition qo(x) + Z 2 >0. (26)

imposes such a structure @ First, define the set =1

T Writing p; = Z—é and after substituting the expressions of
Q= {q(x) = (‘h (%), g2(x), .- "QLfl(x)) PX e CNH}' q1(x) we obtain (14), i.e., S1 implies S2. After using Lemma
(18) 1, we have S1 equivalent to S2. [ ]

We form a matrix
IV. PHASE NOISE ESTIMATION SCHEMES

Q = [a(x1) a(x2) a(xs)...a(xwm)], (19) In this section, we present scattered pilot-based phase noi
for some{x;},. estimation schemes that take into account the phase noise
spectral geometry. In [23], the authors estimaté?(”! from
scattered pilots using the LS approach. We can equivalently
apply the same approach in the frequency domain for estima-
rank (Q) =L-1, (20) tion of 6. Through error analysis, we show that the derived LS

estimator suffers from amplitude and phase estimatiorr&rro
We improve the scheme by enforcing the phase noise geometry
as constraints when minimizing the LS cost function.

Regularity condition 1. There exists vector§x;}, # 0,
where M > L — 1, and constantgp;}*£, > 0 such that

M
Y pia(xi) = 0. (21)
i=1



A. Unconstrained LS (ULS) Estimation of [23] of T. For example, for slow-varying phase noise processes,

From (1), the desired quantity is the tedis, whereH is MOSt qf the power 05 is in its top and bottom components
the true channel matrix. What we know are the following: ayhich is captured using the basis set of the malriof (5).
estimate ofH denoted byH; and a subset of elements sf Thus, settingl’ = L of (5) ensures that most of the power
which are the scattered pilot-subcarriers denoted byithe1  Of 9 is in the first term of (31). Another example is setting
vectors,. The channel estimal = H + E,, whereE,, is T = T, of (10) which also spans a subspace that captures

the channel estimation error. Thus, we have knowledge of Slow-varying signals.
Substituting (30) in (29), we have

| " ) | T () = |[KRTY - wy[3 (32)
where theK x K qllagonal matanA{p = KHK' -contams _ ﬁTM'S/ _ 'S/Tb _ bTﬁ +bib, (33)
as elements the diagonal values Hf corresponding to the

pilot-subcarrier indices. This selection of diagonal esirom where M = TTRIK'KRT and b = T'RIK'w,. The
H is performed using thek x N. matrix K, where its Minimizer to the above cost function is given by

wp = ﬂpsp, (27)

rows are orthogona! and given by the unit—ve_ct@g“é = 5 =M b, (34)
[0,...,0,1,0,...,0],57 € {1,2,...,N.}. The choice ofe, . _ _
determines the pilot-subcarrier indices used. and, after using (30), the LS estimate &fs given by

Let V denote our estimate of th®¥ in (1). SinceV is 6. = TM ™ 'b. (35)

unitary circulant with row vectod’, we also assum¥ to be

4 denotes our estimate @ Then the value (or estimate) oférror on the LS phase noise estimate. Using (21) end the
w,, that is observed frome of (1) is given by expressions foH, andH, (35) is expanded as

w, = KVir = KRS, (28) d1s = O1sp + €ch, (36)

whereR is column-wise circulant with first column vector Where di, = TM™'T'R'K'KHK's, represents the LS
The j-th column ofR is obtained by circularly shifting j—1 Phase noise estimate Wlth1 perfect channel knowledge, while
times to the bottom. In the above equation, we have rewritté} second terna, = TM ™ TTRTKTKEch_KTSp represents
Vir asRé since VT is unitary circulant withd. The vector the error arising due to the channel estimation error. Thus,

& can now be estimated by minimizing the LS error betweee See that an accurate LS phase noise estimate requires an

W, and the knownw,, of (27) which is given by accurate channel estimate. Numerous and efficient channel
) . estimation algorithms are available in the general liteeat
J(6) = |[KRS — wy|3. (29)  which ensure thas,, is small. We refer the reader to [11]-[16]

The minimizer to (29) is not unique since the number fPrsome of the state-of-the-art methods on channel esbmat
q Qn this paper, we use the channel estimator of [12]. To see how

unknowns equal tov. is greater than the number of equatlonale" the channel estimator of [12] performs, in Fig. 1, wetplo

equal toK. A unique solution can be obtained by reducin{gne average ratio of the power of;, and power of,... as a
the dimensionality ob. To do so, we use the dirr)ensionalityfunCtion O?SNR As can Ee seen f};om thg p ﬂfp ‘
reduction model of Section IlI-B, where we modelas . ‘ - gure, theé powero
eqn is very small compared 8., even at low SNRs, thereby,
5 =T47, (30) ensuring thad, is very close to its ideal value @k,.

) ) . 1) Error Analysis: In this subsection, we shall see the
where T is aNF x N knowrj 'Fransformauon matrix withiv how the LS estimate of (35) is affected by: dimensionality
or_thogonal basis vectors angis th_e unknownV x 1 vector reduction represented lF; limited scattered-pilot knowledge
W'th_ N < Nc. To see the _relat|0n b_etween (30) and Ourrepresented b¥; and by receiver noise which is embedded in
desiredd, let us represent using a basis sdB as follows g “The gyerall effect is introduction of amplitude and phase

6 =Ba =T~ + Ug, (31) estimation errors in the LS estimate.

First, we observe that the circulant mati is given by
whereN. x N, matrixB = [T U] with U of dimensionN,. x

N.— N andT , as defined below (30), are disjoint subsgaces R = F diag (F'r) F' (37)
with respect to each other. THé. x 1 vectora = |y* ﬁT} = F diag (E¢F'w + F'n) F' (38)
with 4 and3 of dimensionN x 1 andN. — N x 1, respectively. =F (E¢Ey + E,) F! (39)
The first term in (31) represents that partdthat lies in the — FE4E, (I, + E,'E;'E,) F' (40)

subspace spanned by the columndlpfwhile U3 represents
the part that lies in the subspace spanned by columrs.of
Comparing (31) with (30), we see that using (30), we onhyhere diag (x) is a diagonal matrix with elements of the

estimate the first term in (31), wheferepresents our estimatevector x as diagonal values. In (37), we substitute (1) and
of 4. The second term in (31) is not estimated using the modee V. = FE,F' to arrive at (38). The diagonal values

in (30). The estimator in (30) is a good estimate when most of the diagonal matrixEy are ¢l i = 1,... N, — 1.

the power ofé is in the subspace spanned by the basis vectake denote ast,, = diag (F'w), E, = diag (F'n) and

= FE¢EEu. F, (41)



25 imposes the inequalityv. < K < N.. This results in

rank (C) = N.

N The non-identity nature o introduces amplitude and phase
307

estimation errors which is seen as follows: kgt denote the
_ (i,7)th element ofC andx;, = F'é,;. We then have
[as]
=]
—35f —00i] [ Ne=1 .
~ P 0li]—0[j KlE] ot —wli
%% %1.]i] = N Z Cijej( -0l | — Fce 26l —wli])
Il i=0
~—— 40" (46)
° = 0=0.1
& - 90 = 0.06 . Ne—1 101 ,
g e iy where k[i] = |(sz0 ¢/l 0bl>)| and wfi] =
— -4 0 = 0.006 _ . . . . .

450 2 arg gz;v_“o ' ¢;;e2@l1-0lD)) is the phase estimation error. The
amplitude estimation error is given yji] = 1 — k[i] since
ideally x[i] = 1. The total estimation error is given by

_50 L L L L L L L L L I}

10 12 14 16 18 20 22 24 26 28 30 Nc—1 e—.79[i] 1 Nc—1
SNR ) > fxalil = 1 = | D2 (elil)? + 2201 = cos(wi]))
i=0 ¢ ¢ =0
Fig. 1. Effect of channel estimation error on LS estimate3@)( The channel Ne—1
estimator of [12] is used, as an example, for channel estmathe quantity _ : }
0= @, where f3qp is the phase noisg8-dB bandwidth andfg,, is the +2 (NC 2 COS(WM)) ’ (47)
i—

OFDM 'Subcarrier spacing. Low and large valuesgoidicate, respectively,
slow-varying and fast-varying processes with respect & @fDM symbol From (47), we see that the estimation error is more sensitive

duration. to £[i] thanwli]. This is because it varies quadratically with
e[i] and, hence, can grow unbounded, while the variation
i1 ) ) with w[i] is bounded because of the limited range of the
Eo = Ly, + E, E,,"E, which captures in some sense thegjne function. The estimation error is minimum at the galu
SNR. Using (41) in the expressions fof andb while making 2[i] = 0 (implies x[i] = 1) andwl[i] = 0. Thus, assuming|i]
use of the representation df in (8), we can re-write (35) as 5 'he gmall, one way of improving the estimation error is
to ensurex[i] = 1 which results inc[i] = 0. For example,
P’ we can normalize the samples €f;[i] which ensures that
(42) k[i] = 1. However, this is not the only approach and in the

where the projection matri¥, = E(EFTKTKFEe. Writing ne>.(t section, we p_resent _an optimal _Way. of ensurfiy = 1.
asE, = diag(F'K'w,) in (42) and using the fact that theTh'S approach of improving the estimation error works well

diagonal values oF, take the forme—7°lil, we finally obtain ON!Y Whenw[i] is small. We show empirically that, at high
a9 vl o we tindlly ! SNRs, this is indeed the case. Figure 2 shows the empirical

61s = FCF14, (43) probability density funtion (PDF) of at SNR values 080-
dB, 20-dB and 10-dB. At 30-dB SNR, we see that, for any
choice ofT, the PDF is highly concentrated around the value
of zero. However, as the SNR value is lowered, the PDF of
w is broadened and spread towards higher values, thereby,
In the ideal case, we would lik€ = Iy, which would increasing the overall estimation error. In conclusionhage
render complete knowledge af. However, the following noise estimation strategy that ensuk$ = 1, while assuming
reasons preven® from being the identity matrix: a smallwli], will be effective mainly at high SNRs.
. Effect of dimensionality reduction: WheV < N. we  2) Computational ComplexityWVe now briefly discuss the
have, in generalrank (T) = rank(z — N. Thus, complexity in implementing (35). The major effort is the
0

when N < K and for anv choice "B, andE.,,, matrix inversiqn operation Qf (34) which, in general, reqai
we have thatank (C) = ]\)7/ O(N?) operations, wherd/ is of size N x N. Thus, the total

. Effect of receiver noise: This is captured W,,. For complexity isN? + N.N, where the matrix multiplication in
example, in the case wheN = N, andK = Iy_, we (35) requiresN. N operations.
haveP, = Iy_, E, = E,, and (43) reduces to

ois = FELFT4. (45)

snr

N ~ [/~ N\ —1 -
b = FT (TT EiVEngrESMEWT) T'EL Bl E/F Kiw

where theN, x N. matrix C is given by

A
f PrEsmEWT) TIEIEl E,. (44)

snr snr

c=T (TTE‘TVE

B. Geometry-Constrained LS (GLS) Estimation

In this section, we present an estimation scheme that
From the expression oEg,, we observe that in the eliminates the amplitude estimation error introduced by th
presence of receiver noise, in genefdf,! # Ly,. matrix C. To do so, we utilize the geometrical model of

o Effect of scattered-pilots: The quantiti(’ denotes the Section III-B2. We first require that we choo%eto be a PPT.
number of scattered-pilot subcarriers. The LS estimatidie then enforce (6) as constraints when minimizifi¢y).
of the N x 1 vector4 using K scattered-pilot subcarriersAfter obtaining an optimal estimate ef, our estimate o,



6 ‘ ) reader that only half the number of constraints are enforced
—*T setas PPT . -
—Tsetas LFT in (48). This is because

- - T -
4T3 = 0 implies (’yTPfy) — 0 implies 4T Py_14 = 0,

S
T

7 where we used the fact thﬁtlT =Pxy_;. The implication also

>

@ B« a8 snr works in the opposite direction. In (48), we assume tNais

%3 , odd without any loss in generality.

£ The optimization probleniP) is typically referred to as the

§ primal problem From (48), we observe that the constraints are
22 non-convexn nature. For example, the unit-norm constraint

414 = 1 describes, mathematically, @tdimensional sphere,
and such an object is a non-convex set. The remaining con-
straints are also non-convex because the matrices in (48) co
stitute both positive and negative eigenvalues. The erjaps
of P, are{e?*~ }¥-! and, hence, the eigenvalues®f and
P! are {cos(2Z2)} ' and {sin(%Z2)}) "), respectively.
This non-convexity of the constraints rend€f) to be anon-
Fig. 2. Empirical PDF of phase estimation ertorat SNR equal t0, 20  CONvex programMost algorithms used in solving non-convex
and 10-dB. The PPT and LFT matrix used &, of (10) andL of (5). programs yield local optimal solutions.

1) The Convex Dual ProblemA suboptimalsolution can
be obtained by solving the so-calleldial problemto (P). It

i.e., & = T4 also satisfies (4) (sinc& is a PPT), thereby can be easily derived and is given by [31]
eliminating the amplitude estimation error. The optimizat (D): Maximize 7

problem in terms ofy is given by .
B (M ISLAED v g R B P

(P): Minimize J (%)

)

~ - b —T=X]
st 419 =1, 4"Pf9 =0, 4Pl =0, (51)
N -1 . L
1=1,2,..., —5 (48) wherer, A\, oy and3; are the variables to optimize. In general,
the dual problem yields an optimal value different from that
Wheref’lR and f’} are given by of the primal problem (in fact, it is never greater). The dual

problem is always @onvex progranwhich have the property
that every local optimal solution is also a global solution.
This property eases the search process for algorithms and,
fact, numerous and efficient algorithms exist that solve

P, + P - P/ -P
PPl g MPLZRD )

In (48), we have imposed (6) as constraints, however, O}
I > 0, we have elaborated the equations in terms of i onvex programs in polynomial time. In certain situations,

real and imaginary parts, ie., imposifg Py — 0, ﬁe dual problem can yield the same optimal value as the
. . . _ 5 ) primal problem, i.e., a difficult non-convex program can be
[> 0, is equivalent to imposing botReal { PW) =0and o ivalently solved using an easier convex dual program.
Imag ('?/Tf’mﬁ 0, where Real (z) and Imag () denote  Let 7°,A\° «af and; be the minimizer toD). We obtain
real and |mag|nary _parts of the complex numberThis is Our suboptlmal estimate of by solving the Karhush-Kuhn-
done so becaus§'P;4, for I > 0, is a complex function Tucker (KKT) necessary condition for local optimality (P)
since the eigenvalues dP, are complex valued and takewhich is given by
the form {e?*%¥ }N=!. Thus, the constrainy'P;4 = 0 can N1

Pl =

equivalently be expressed by imposing its real and imaginar o N =R ol | 2
parts to be zero. The real and imaginary partsybP;4 are M+ A1y + ; P+ P Ygs =D (52)
obtained by noting thaP;, = P} + P}, whereP! and P} =1 N
are defined in (49). Thus, =l )
e P implies 4, = | M+ A°Iy + Z PR+ BPL | b
APy = 4P + (3 PIA). (50) =
(53)

To avoid confusion, let us point out th®&}* and P} are
actually not the real and imaginary parts @; but, rather, where X* denotes pseudo-inverse &. The minimizers
it is their quadratic forms that are the real and imaginamnyspar°, A°, o andg; are obtained by solvingD) which is asemi-
of the quadratic form ofP; as seen in (50). The matricesdefiniteprogram (SDP) [31]. SDPs are convex programs and
f’R and f’I are Hermitian with respective eigenvalues oéfficiently solved using interior point algorithms [34].a®dard
{cos(z’j\?l) fj;ol and {sin(2Z2)} "1, We also point to the solvers are available that solve for such programs, for @@m



in this paper, we use CVX, a package for solving convehence, the optimization problem in (62) is nothing but thaldu
programs [35], [36]. problem of (51). Thus, we see that solving the original ptima
Denote the respective optimal values(®f) and(D) by p* problem is the same as solving the dual problem and, hence,
andd*. We say the dual problem yieldssaboptimalsolution d* = p* implying strong duality. In the following proposition,
whenever* < p*. Such a situation is referred a®ak duality we show@ indeed satisfies the conditions in Theorem 1.
When d* = p*, also known by the ternstrong duality the

optimal solution is equivalently achieved by solving theadu Proposition 1. Q satisfies the conditions of Theorem 1.

problem. In the next paragraph, we dwell on whin= p* and Proof: See Appendix A. [ ]
show that strong duality holds for the optimization probéem 3) Computational ComplexityWe now discuss the com-
(P) and (D). plexity in obtaining 4, of (53). The estimator requires

2) Strong Duality Betwee?) and (D): In this section, 7°,A° a5 and;y which are obtained by solving the SDP of
we shall use the S-procedure described in Section IlI-C f@1). SDPs are typically solved using interior-point algons,
proving strong duality between the primal and dual problemand in [34, Chapter 11], the complexity of such methods are
For our application, we set the matrices in (11) as follows: discussed. Applying the complexity analysis to the SDP in

51), the resulting complexity i®)(N*?). Thus, the overall
Ao d M b\ (A d Iv 0 ( : o W)
(dTO 0) = ( ) , (dT1 1) = ( o ) complexity to obtaindgs = T4, is N*5 + N.N.

0 1

Co B bT —T 5] B OT —1
(54)
C. Normalization-based LS (NLS) Estimation
A d; W, 0 . . . .
d ¢/ Lo o 1=2,3,...,N (55) One drawback with the GLS scheme is that its complexity
! 5 of O(N*®) can be high depending upon the valueéf A
where W, = P} .1 = 23,... % and W, = computationally attractive alternative to the GLS scherae ¢

f’%_w,l = T+1+1, Nng +2,...,N. Comparing with (11), be obtained by choosin@ to be a PPT and exploiting the

we have tha. = N + 1. Define the respective quadratic formdime-domain equivalent of (6).

and the set as We require thaty satisfy (6) whose equivalent time-domain
. . manifestation is given b
(4 t /A, d 4 - i ion is giv y
si(y) = 1 P 1 ,A0=0,1,...,L —1, 1
- d a)\~ x[i]|= —,i=0,1,...,N — 1, (63)
(56) N

T wherex = F'~ and|c| denotes absolute value of the complex
_ A 5 5 A N
= {(80(7)’ 19),- SL’l(’Y)) yec } (57) numbere. Thus, given an estimate of, for example, the LS
Remark 3. Letx € CN+1. Sincey € CV, we havell C Q estimate in (34), we normalize its time-domain samples to
where the se@ is defined in(12). The matrices that compriseha"e constant magnitude and transform back to the frequency

the quadratic formsy, are given in(54) and (55). domain to obtain a refined gstimate of The overall esti-_
mation procedure is shown in Table I, where two possible

We are now ready to see how the primal and dual problegproaches are used depending updh it chosen as a PPT
can yield the same optimal values. We re-wiife) as or not. The normalization is performed by the diagaNak N
Minimize J (%) s.t (%) =0, {=1,...,L—1 (58) matr!x Xy whenT is chosen as a PP_T and dla_goﬂalx N,
matrix X 5, whenT is chosen otherwise. The diagonal values

which equivalently is expressed as of the normalization matrices are
o 1
klalelzeT XN['L,'L]:N~7,Z:O,1,,N—1, (64)
st J(4) > 7, for all 4 satisfying s;(¥) = 0, |i{ls ]
(59) Xy li,i] = ———,i=0,1,..., N, — 1. 65

s.t so(%) > 0, for all 4 satisfying s;(%) =0,
(60) In Step 1 of Table I, we obtain the LS estimate which, in
stTINN =0 61) general, required’* number of operations. We then transform
’ the LS estimate to the time-domain and normalize the samples
wherel = 1,..., L—1 and the constrainf (%) > 7 in (59) is to have constant-magnitude. Whéhis chosen as a PPT, it
equivalent toso () > 0 in (60). We obtain the final constraintsuffices to only perform normalization in th€-dimensional
after observing that the condition (%) > 0,s,(%) = 0,/ = space. This is because after normalizatién;, (Step 3)
1,...,L—1is equivalent to (61), wherd/ is defined in (13). satisfies (63) and, hencé; . (Step 4) satisfies (6). Thus,
From Remark 3, we have thét is a subset oD. Thus,0 N 6, = T¥,,, also satisfies the phase noise geometry in the
N = 0 is a sufficient condition foll " N = (. We, thus, N.-dimensional space whel is a PPT. The added number
replace the constraint in (61) to obtain of computations is mainly2N log(/N) which correspond to
. ) - the two N-point DFT operations for moving between time
Maximize 7, 5.t QON =0. (62) and frequency domain. However, whéhis not a PPT, even
If conditions in Theorem 1 are satisfied then, after using (54fter normalization, there is no guarantee that will satisfy
and (55),Q NN = 0 is equivalent to the LMI in (51) and, the phase noise geometry. To ensure that it does satisfy when



TABLE | TABLE Il

NORMALIZATION -BASEDLS ESTIMATION. COMPARISON OFCOMPUTATIONAL COMPLEXITY
| WhenT is a PPT | WhenT is not a PPT | Method | Complexity Order
| Steps | Function | Steps | Function | uLs | N3 + N.N
| 1 | 4 =M~1b | 1 | 41s =M~ 1b | GLS | N*5 + N.N
| 2 | %1 = FT4,, | 2 | b5 = T, | NLS | N3+ 2Nlog(N)+ NeN
| 3 | Rue=Xn%e | 3 | x1. = F1éy, | cis | K + Nc + Nep
| 4 | Frts = FRni | 4 | Xnls = XN Xls |
| 5 | Futs = T, | 5 | Futs = Fuis | current and next OFDM symbol is then obtained by taking the
‘ Operationsx~ N3 ++2]\J[V]1\<;g(N) | Operations~ N3 4 2N, log(N.) ‘ angle of the obtained CPE estimates. The mean phase noise
¢

values are then interpolated to obtain the entire phases nois
realization between the mid-points of the current and next
) o ) OFDM symbols. A linear interpolator is used in both [12] and
T is not a PPT, the normalization must be done in e 159] | fact, it is shown in [12] that for slow-varying phase
dimensional space as shown in right half of Table I. Thigsise processes, the optimal interpolator, in terms of mmimn
comes at the cost of higher complexity which is tWo-point  mean square error, is the linear interpolator. However, for
DFT operations. moderate or fast-varying processes, we can expect inferior
performance which is verified by the numerical results.
V. NUMERICAL RESULTS The CIS schemes are simple and computationally very
We now present numerical results of the proposed phag#active. For example, from [12], we see that the number
noise estimation schemes and compare them with someopfoperations required is approximately of the ordér+
the state-of-the-art scattered pilot-based phase ndiseag®n N + Ncp, WhereK is the number of scattered-pilot symbols
schemes. In particular, we compare our proposed GLS aaad N, is the cyclic prefix length. Table Il compares the
NLS scheme with the ULS scheme of [23] and the CPE-basedmplexity of the CIS scheme with the proposed phase noise
interpolation schemes of [12] and [22]. estimation schemes. As seen from the table, CIS is the most
The system parameters set for the simulations are as fepmputationally simplest scheme, however, as we shallisee,
lows: The number of subcarrieé. = 512; subcarrier spacing has very poor performance.
fsub = 15 kHz; bandwidth is7.7 MHz. The percentage
of scattered pilot subcarriers is set % and symbol con- g piscussion
stellation is16-QAM. The channel is Rayleigh fading with

four exponentially decaying taps, and coherence bandwidtn':Igure 3 shO\;\_/s th.)ded I?]ER penja:mg;cel of t?e propostehdt
is set to800 kHz. We use al/2-rate convolutional encoder PN3s€ NOISE estimation schemes. 1he ideal performance tha

[133,171] with constraint length of. For decoding, we use g can be achieved is shown by the triangle-marker dashed curve

soft-decision Viterbi decoder of decoding depth equal te fi\yvhICh gorreskponds to the cas?[ Otfh Zero pha;e n0|s|e. (TZETE
times the constraint length. Phase noise process used in Ygared-marker curve represents the case where only

simulations is the Wiener process which models well freé_ompensanon is performed. This method works well only

running oscillators. We denotgqp as the phase noisedB for exttrr]emf(_aly sIO\;\;—vaLyln? ph?se noise _procerfses.dAbs st(;en

bandwidth, and the quantity = C}—dﬁ is a measure of how r<l)_ns1 ﬁ |gure,d € les riert(%rm%ncelz IS ?C leve IE[/ Ie
. . sub |

fast or slow phase noise varies within an OFDM symbol. scheme and 1S close 10 ne ldeal performance. it aiso

low value of p indicates a slow-varying process and a larg utperforms the CIS schgmes of [12] Qnd [22] as expected.
value implies a fast-varying one. he GLS scheme constraints the LS estimator to adhere to the

The phase noise estimation schemes of this paper reqLﬂr@S‘e noise geometry. As seen in the figure, the ULS scheme,

knowledge of the channel. This knowledge is acquired B’g)-uch is the unconstrained LS estimator, has an inferior
estimating the channel. In this paper, we use the chan Irformance compared to its constrained GLS counterplagt. T

estimator of [12] which is computationally attractive c | S scheme is a suboptimal solution that also achieves the

to other schemes and at the same time takes into accountstﬁg]e objective of delivering an estimate that satisfies tiasg
effect of phase noise during the estimation process. noise geometry. As expected, the NLS scheme has a better

performance compared to ULS.
) The BER performance of the phase noise estimation
A. CPE-based Interpolation Scheme (CIS) of [12] and [22]schemes can be explained by examining the PDJFSof &2,

We now briefly summarize the interpolation schemes afhered is our estimate of the true value &t In Figs. 4a
[12] and [22]. The goal is to develop a non-iterative schenand 4b, we plot the empirical PDF (ﬂﬁ — &||? for SNR of
for phase noise estimation for data OFDM symbols. Such3a-dB and10-dB, respectively. From Fig. 4a, we see that the
phase noise estimate is obtained as follows: The CPE of &S scheme exhibits thinner tails in the PDF compared to all
current and next OFDM symbol are estimated using scattereither schemes. The thicker tails seen, for example, in th® UL
pilot subcarriers. The average value of phase noise in theheme results in a higher BER as verified in Fig. 3 at SNR




10

equal to30-dB. In Fig. 4b, at the lower SNR af0-dB, for all 10°

-e-ULS
schemes, we see that the PDF of the phase noise estim =+NLS
error is spread over a large range of values, thereby, negu " :GLS

cis

in a much higher BER.

A moderate value op = 0.02 was used in the simulatiol
results shown in Figs. 3 and 4. It is of practical interestde 10
how well the proposed algorithms perform over the practi
range of values op. This is demonstrated in Fig. 5, whe! %10'3*
we plot the BER as a function of. A small value ofp o
indicates a slow-varying phase noise process in compat
with the OFDM symbol duration and vice-versa. As expec 10%F
and verified in the figure, the BER, in general, increases \
o. The best performance is obtained by the GLS sche
however, for low values of, the CIS scheme is as goc
as the GLS scheme. However, as the valuepdhcreases,
CIS performs the poorest. This is easily seen since the 10° ‘ ‘ ‘ ‘

i . ) o : 10 12 14 16 18 20 22 24 26 28 30
scheme obtains the entire phase noise realization usit SNR [dB]
linear interpolator. As the value o increases, the phasc
noise realization is more fast-varying in nature, and a BMpxig 3. comparison of average coded BER vs. SNR for the przpeshemes
linear interpolator does a poor job of approximation. A &&mi with N =8 and ¢ = 0.02. The transformation matrix used By of (10).
behavior is seen in Fig. 6, where we plot the mean-squaog-err
(MSE) of 4, i.e.,E [||¥ — ~||?] as a function ofo.

We now compare the effect of the transformation matrig 3 linear approximation of the true phase noise realimatio
T on the proposed phase noise estimation schemes. Figuigs/seen in the figure, for the set value @f= 0.02 which

shows the average coded-BER for the ULS and NLS schemgsyits in a moderately-varying phase noise process, ki

the figure we see that féF equal to PPT, the ULS and NLS
schemes yield a lower average BER compared to the case
whenT is set as LFT, especially at high SNRs. We can again
explain this behavior by examining the PDF|@— || which This paper presents scattered pilot-based phase noise es-
is shown in Fig. 8a, where SNR is set 30-dB. From the timation schemes for an OFDM radio link corrupted by
figure, we see that whe is equal to the LFT of (5), the phase noise. Pilot-based estimation schemes are atérdotiv
empirical PDF, of both ULS and NLS, exhibits thicker tailglelay sensitive wireless systems when compared to deeision
compared to the curve® equal to PPT. Also plotted in the feedback schemes which can incur significant computational
figure is the GLS scheme. Note that for GOSis set toT,,. load and, hence, delay onto the receiver. This paper builds
of (10). These thicker tails eventually cause higher BER &pon earlier work wherein, using the least-squares priecip
observed in Fig. 7 at SNR equal 89-dB. Figure 8b shows phase noise is estimated from scattered pilot subcartieiss.
the empirical PDF at SNR equal 10-dB. As can be seen, for shown that such an estimator suffers from amplitude andgphas
any choice ofT, the ULS and NLS exhibit similar behaviorestimation errors which arises due to receiver noise, astim
especially at the tails of the PDF. Thus, we can expect similiom limited scattered pilot subcarriers and estimatiomgis
BER as evidenced in Fig. 7 at SNR of-dB. a dimensionality reduction model. We empirically show that
The effect of the transformation matrif can also be the phase estimation error is small and the critical factor i
visualized by looking at the estimated phase noise re@izat the amplitude estimation error. To eliminate the amplitude
We illustrate this effect, for example, using the ULS schemestimation error, the least-squares estimate is enforoed t
Figures 9a and 9b show, respectively, the estimated phasésfy the so-called phase noise spectral geometry. Naaher
noise realization wherl is set as a LFT and a PPT. Forresults demonstrate superior bit-error-rate and phaseenoi
comparison, we also plot the estimated phase noise réafizatestimation error performance for the estimator that abes
using the CIS scheme. From Fig. 9a, we observe that tliés geometry.
LFT matrix L of (5) allows only for smooth approximation
of the true phase noise realization. This is because the Imode APPENDIXA
in (5) estimatesV low-frequency components. For example, PROOF OFPROPOSITION1
Lnor:]hpeorl:grl]{[rseéjr\é estiiavtv:;%:qnlﬁgezthe;?T]ta:]c:jvj/ ifr:elgi:ég%f g he proof follows on similar Iipes as in [17]. From Theorem
observe that whefl" is set to the PPT of (10), a piece—wiseiv’ we need EO prove the following:
approximation of the phase noise realization is obtainéis T P1. The sef) satisfies the regularity conditions, i.e., its conic
effect arises because the interpolation matrix in (10) ikagp hull spans the entir@” "', whereL = N + 1.
wise constant interpolator. In both the figures, we obsdrag t P2. Q NN = 0 implies cov (Q) NN = 0.
using the CIS scheme, the estimated phase noise realizakiés begin with P1.

=& Only CPE compensation
== Perfect v Knowledge
-A No Phase Noise
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Fig. 5. Comparison of coded BER vsg. for the proposed schemes with Fig. 6. Comparison of MSE of vs. o for the proposed schemes with = 8.
N = 8. The transformation matrix used By of (10). The SNR is30-dB.  The transformation matrix used B of (10).

A. Proof of P1

The setQ is described by the quadratic forms of (54) and
(55), i.e.,

I 0 W, 0
a =x (3 °)xato =< (31 0)x

where W, = PRI = 23,... % and W,
15}7¥,l = NEL L NEL 9 N. Let {£;}Y, denote
column vectors of theN x N DFT matrix F. First, we T

note that the permutation matrR; is circulant and, hence, |07 VN| , i.e., we choosé/ = N +1 points. We note that
diagonalizable byF. The eigenvalues oP; are given by > L —1 sinceL = N + 1. Making use of the eigenvalues
{e”®}N_! and, thus, the eigenvalues #f? and P/ are of P/ andP/, the pointsq(x;) and, hence, the matri) of

n=0

(66) {cos(Zr)IN- ! and {sin(Z)} N, respectively. We are

now ready to prove the regularity condition.

~ T
Choosex; = [flT 0} i o= 1,2,...,N and xy41 =
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First, we observe tha® C con(Q). Secondly,con (Q) is
a convex set since it is defined in terms of the convex set
cov (Qn). We, thus, have

104 —TequaltoLFT| 1
-—-T equal to PPT cov (Q) g con (Q) , (72)
20 Only CPE compensation|
10 sincecov (Q) is the convex hull 0of@ and by definition is the
v smallest convex set enclosirgg With these facts in place, we
Wig?p have the following relation:
RL QNN =0=QnyNN =0.
- R2. cov(Qn) NN =0 = con(Q NN =0 =
cov(Q)NN =10,
where= denotes equivalence and=- denotes implication.
10°F The equivalence in R1 follows from (69) and (70). The
implication in R2 follows from (71). We, thus, see that if
10° S S — ON NN =0 = cov(Qn)NN =0 then, after combining

0 12 14 16 18 ZﬁR dI232 24 26 28 30 R1 and R2, we have the required result. We now show that
SNR{[dB] this is indeed the case.
Fig. 7. Effe_ct of T on average coded-BER wheél = Tpc of (10) is Remark 4. For unit-norm X, q1 (x) = 0 onIy at x =
compared withT' = L of (5). The value ofN = 8 and o = 0.02. [\/ﬁ~T\/ﬁ ]T whereH B H 1 and | | 1
.0X RV X||2 = z| = 1.

Proposition 2. For unit-normx, ¢;(x) =0 for all [ > 1 at
(19) is given by T
x = {\/ascT bz} X=Fyv,vIv=11]z/=1, (73)

1 1 1 1 —N
1 cos(2E) cos(43) cos(2xUV=1) ) 0
wherev,; = \/—% a>0,b>0,a+b=1andX can be any
unitary-diagonal matrix.
Q = |1 cos(ZmNZL)  oo(AmN_D)y | oo 2N DN, . T
. . H _ ST i
. n(3E) PPES (221 : _ Proof: Write x = Vaxt+/bz| . Sincex should be of
, unit-norm, we have|x|s =1, a > 0,b >0, a+b =1 and
o 2m(N—1) Cam(N—1) am(NS1)(N-1) ] |z| = 1. Using (66), the conditior;(x) = 0,1 > 1 results in
sin(gp—2)  sin(gy—2) sin( A TN T o) 0

(67)

From (67), we note thatank (Q) = N since the rows form R
an orthogonal basis. Choose constafits}., = 1. Then Wwherey = Fx with components denoted hy; and v =

Wix=0 = x'FDFix=0 = y'Diy=dfv=0,

ZiAiTNJrlpiq(xi) = 0 since the elements of each row sunjlyo|? |y1]%... |yN_1|2]T. In the above equation, we used the
to a value of zero. This completes the proof. fact that W, is diagonalizable with the DFT matrix whose

eigenvalues are contained in the diagonal mabixand in

the vectord;. Combining above equation for dll> 2, we get
B. Proof of P2

. . . . /1 cos(2T) cos(47) cos(w#l)
The setQ is defined in (12) and described by the quadrati ,
forms ¢;(x),l = 0,1,...N, whereg(x),l > 0 is given in : : : :
- cos m(N—1) cos m(N—1) cos(ZL DN -
(66). The quadratic forng(x) takes the form ! (2 (2:&)1 ) cos(* (%)1 ) (R (:T(z;wj))l '|\v =0,
sin(23 sin(43 sin( 27V =1)
M b : : : : :
qo(x) = x! <bT —T> X. (68) o sin(zw(é\;m) sin(47r('2z\17\71)) Sin(2w(N;211V)gN—1))
(74)
Consider the set where we require that > 0 and||v||; = 1 becausd|x|, = 1.
T . .
On = {(qo(X), 01(x), ... ,qN(X)) x|l = 1,x € eNHLL, It can be easily seen that the above matrix has a non-zero null
69 space of rank equal to one. The vector describing this space
(69) (and satisfyingv = 0, ||v||; = 1) is given by
It is related toQ by [37], [38] 1
vV = Nl, (75)
Q={ty‘t20,y€QN}- (70)
wherel denotes N-dimensional vector of ones. Definas the
Let cov (Qn) denote the convex hull of . We define vector with elements; = /v;. Thus, atx = FXv, whereX

can be any unitary-diagonal matrix{ W;x = 0, for all [ > 2.
con (Q) = {ty ‘ t>0,y¢€ COV(QN)}- (71) -
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(a) SNR equal t30-dB. Observe that the PDF has thicker tails whEns (b) SNR equal to10-dB. Observe that for ULS and NLS, there is no
set to LFT, thus, exhibiting higher BER in Fig. 7 3®-dB SNR. dependence of the PDF tails on the choiceTafthus, exhibiting similar
BER values in Fig. 7 at0-dB SNR.

Fig. 8. Effect of T on the empirical PDF of|d — /|2 for the proposed scheme®,. of (10) is used as the PPT adidof (5) is the LFT. The number of
estimated components i§ = 8. The value ofp = 0.02. The GLS is also plotted for comparison. It is always implated with T set to a PPT.
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-1.5
Samples

Samples
(b) T set to PPT of (10).

(a) T set to LFT of (5).
Fig. 9. Comparison of the estimated phase noise realizatitinthe actual phase noise realization. The valueVof= 8 and o = 0.02 with 30-dB SNR.

Proposition 3. For anya > 0 andb > 0, such thatz > b and components of the row vectéi' X' take the form%, where
¢’? are the diagonal values of diagondl matrix. SinceX

a+b=1, we have
. _ . . _ NT _
infimum (iT A% + 2Real (iTc)) < can be any unitary-diagonal matrix, s@t 4(F c) T,
where Zz denotes angle of the complex numher Thus,

infimum | x'Ax + \/E2Real (x'c) ] , (76) Real (GTZTf‘Tc) = —||Ffe|1 < 0. Thus, we have
a
. . _ infimum (X' Ax + 2Real (x'c)) =71 — ¢
where A >~ 0, c is any complex vector and the infimum is - ;
taken over allx satisfying(73). infimum | %' A% + \/j oReal (x1c) | = 1 \/j . 79
a a

Proof: First, we note there exists at satisfying (73)
such thatReal (iTc) < 0. For example, from (73), the wheree > 0 andn is the minimum eigenvalue oA. The

(77)
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result now follows sincer > b. [ | Taneli Riihonen (S'06-M'14) received the D.Sc.
Let Con(QN) denote the conic hull 08,. We now have degree in eIe_ctncgl engineering (with distinction)

. s from Aalto University, Finland, in August 2014. He
the followmg proposition: has held various research positions at the Department
of Signal Processing and Acoustics, Aalto University
School of Electrical Engineering since September
2005, being currently appointed as a Research Fel-
low. He was a Visiting Associate Research Scientist

Proof: If [0,1,0...0]" € con (Qy) then there must exist and an Adjunct Assistant Professor at Columbia
University in the City of New York, USA, from

T C W
[0,£,0...0] € Qn for somet > 0 [37]. We show that this is (AN November 2014 through December 2015 He has

impossible. From Proposition 2, we haygx) = 0,1 > 1 for  been praised nine times as a distinguished reviewer foowaiEEE journals
x of (73). At such anx, ¢1(x) = a — b and, since we require gﬂd ibS S%fﬂg :S an EdiaorhforFl_EIE_Eth/IMrl]JNIC/IATIONSléiw;ERﬁsigce

T : ctober . He received the Finnish technical sectoraréufor the best
[O’t’ 0. 0] € (QN) forz >0, we requirea > b. Now, the doctoral dissertation of the year in Finland within all er@gring sciences.
quadratic formgy(x) of (68), forx of (73), takes the form  His research activity is focused on physical-layer OFDM(Aultiantenna,
relaying and full-duplex wireless techniques with currénterest in the
evolution of 5G systems.

Proposition 4. Let 7 < infimum (X'MX% + 2Real (x'bz)).
The point[0,1,0...0]" ¢ con (Qx).

go(x) = a |xTMx + \/E2Real (x'bz)| —br >0, (79)
a

where the inequality results after applying Propositionn@ a
the assumption that < infimum (X'Mx + 2Real (x'bz)).
Using (79), we see thd0,¢,0...0]" ¢ Qu for ¢ > 0. [ |
The proof of P2 is now complete with the following
proposition and after combining the relations R1 and R2.

Proposition 5. Qv NN =0 = cov(Qn) NN = 0.

Proof: The conditionQ y NN = () impliesqo(x) > 0 and
qi(x) = 0,1 > 1. From Remark 4 and Proposition 2, we have

~ T ~
q(x) = 0 for I > 1 only atx = [V0.5%"y 052] » wherex Stefan Werner (SM'07) received the M.Sc. degree
and z satisfy (73). At such ax, go(x) > 0 implies in electrical engineering from the Royal Institute
of Technology (KTH), Stockholm, Sweden, in 1998
0.5 [iTMf{ + 2Real (chbZ) -7 >0 (80) and the D.Sc. degree with honors in electrical en-
s 4 gineering from the Signal Processing Laboratory,
= 7 < x'Mx + 2Real (X bZ) ) (81) Helsinki University of Technology (TKK), Espoo,

Finland, in 2002. He is currently Professor at the
Department of Electronic Systems at the Norwegian

. . - University of Science and Technology (NTNU). He
where the infimum is taken over all values &f and z is also an Adjunct Professor with Aalto University

satisfying (73). Thus, after using Proposition 4, we have in Finland, and an Adjunct Senior Research Fellow
that [O, 1,0.. .O]T ¢ Con(QN). This implies that theorigin with tr?e Institute ErIdTeIecommuEications Reser;’:lrchl,I UN%:‘; t?ourt]h

. . L . Australia. He was holding an Academy Research Fellowshi y the
IS bop_ndary po_m_tof con (QN)' A ”ecess_arl( and_ suﬂ'ClemAcademy of Finland from 2009 to 2014. His research intergstside adap-
condition for origin to be a boundary point is existence of e and statistical signal processing, signal proces$imgcommunications,
point that does not belong ton (QN) [37]_ Thus,On NN = and smart electric power grids. Dr. Werner is a member of tial board

for the EURASIP journal of Signal Processing.
) = con(Qn)NN =0 = cov(Qn)NN =0. [

= 7 < infimum (X'Mx + 2Real (x'bz)),  (82)
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