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Abstract

Ionic liquids (ILs) have seen increasing use as environmentally friendly solvents
in a wide array of applications from energy to pharmaceuticals. Among the
many properties of interest, the refractive index, is of considerable importance
since several related properties can be estimated once the refractive index of
a material is known. Furthermore, high refractive index ILs are also used as
reference solutions to determine properties of optical materials. However, with
a large collection of cation-anion combinations to choose from, the task of find-
ing suitable ionic liquids is far from trivial. In this article, machine learning
models have been used to estimate the temperature-dependent refractive index
over 450 diverse ILs using cheap to compute semi-empirically derived structure
descriptors. In addition to using independent test sets for evaluating the pre-
dictive ability of the models, the efficacy of the models was further evaluated
using 14 new ionic liquids that were synthesized. Overall, ensemble decision
tree-based approaches gave the best results with mean absolute errors < 0.01
and squared correlations > 0.85 across both calibration and test data.

1. Introduction

In recent years, ionic liquids (ILs) have garnered a lot of attention with nu-
merous application areas such as energy storage[1], corrosion inhibitors[2], food
and bioproducts[3], recovery of rare earth elements[4], pharmaceuticals[5, 6] and
CO2 capture[7]. Furthermore, given their utility as green solvents (non-volatile,
non-flammable and recyclable) and the fact that the cations and anions consti-
tuting them can be tailored to application requirements, they have emerged as
promising alternatives to traditional molecular solvents[8].
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The number of potential ILs is estimated to be around 1018[9], of which only
a small fraction have been realized. With ILs being seen as designer solvents,
the task of screening such a large collection is indeed formidable. Compu-
tational approaches based on density functional theory[10–12] and molecular
dynamics[13, 14] have generally been used to provide a mechanistic under-
standing of the working of ILs but are restricted by the time complexity of
the modelling. Faster alternatives have relied on quantitative structure prop-
erty relationship (QSPR) models wherein physicochemical descriptors derived
from the molecular structure are correlated with the property of interest using
chemometric and machine learning tools. These methods have been applied to
the prediction of a number of IL properties such as melting points[15], thermal
decomposition temperatures[16], gas solubility[17], viscosity[18] etc.

Among the many properties investigated, the refractive index, an optical
property has received recent interest with applications in the quality control
and characterization of ionic liquids[19], and immersion fluids in the optical mi-
croscopy studies of minerals[20, 21]. With a view to understanding how the
structure of the cation-anion pair influences the refractive index of the IL, sev-
eral studies have used quantum chemistry, chemometrics or a combination of
both to establish predictive models. Since the refractive index is related to the
molar polarisability, Bica et al[22] deconstructed the polarisabilities and molar
volumes into their individual atomic contributions that are then used to pre-
dict the refractive index. Group contribution[23–25] (GC) methods have been
quite effective with coefficients of determination ranging between 0.95-0.99 for
data sets containing 200-2150 experimental data points. Other efforts have
made use of non-linear approaches such as genetic function approximation[26]
and artificial neural networks[27–29]. While GC methods make use of group or
atom properties, other approaches rely on a range of descriptors that include
topological indices, connectivity indices, atom-centered fragments and 3D con-
formational descriptors. In some studies, quantum chemistry based descriptors
derived from the surface-charge distribution such as σ-profiles[29, 30] have also
been used. However, the computational cost associated with the descriptor
calculation is quite high and may limit large scale application.

In this article, we investigate the utility of descriptors derived from semi-
empirical quantum chemistry methods to model temperature-dependent refract-
ive indices of a large and diverse set of ionic liquids. A number of machine learn-
ing algorithms for predicting ionic liquid refractive indices have been evaluated
using independent calibration and test sets. As further validation of the predict-
ive ability of the created models, 14 new ionic liquids were synthesized and the
predicted values were compared with the experimental refractive indices. Over-
all, decision tree based approaches were found to yield the best performance.
We believe the obtained models can be effectively used for high-throughput,
predictive screening of application oriented ionic liquids.
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2. Methods and Materials

2.1. Data Curation

The refractive indices of 467 ionic liquids at the sodium D line, nD = 1.355
to 1.659 covering T = 283.15 to 571.15 K were extracted from the ILThermo
database[31, 32] and other articles in the literature. After the removal of du-
plicates, a total of 3147 experimental data points were obtained. The ILs are
composed of 240 cations with major classes such as imidazolium, ammonium,
pyrrolidinium and pyridinium, and 86 anions that are dominated by carboxylates,
halides and sulfates. The structures of the cations and anions, the experimental
nD values and associated references are listed in Tables S1 and S2 in the sup-
plementary material. A summary of the collected data is presented in Table
1.

Table 1: Summary of the experimental data with respect to the popular cation classes found
in the data.

Cation nD Temperature (K) #Data points
Imidazolium 1.355-1.659 283-362 1379
Pyridinium 1.405-1.577 283-353 550

Pyrrolidinium 1.395-1.498 283-353 146
Piperidinium 1.412-1.514 288-353 81
Ammonium 1.362-1.545 283-571 572

2.2. Descriptor Calculation

Data extracted from the ILThermo database was parsed and the chemical
names of the ionic liquids were converted to 2D format using the chemical name
to structure software, OPSIN[33]. A conformational search for both cations and
anions was carried out using using OpenBabel[34] (based on the Universal Force
Field[35]). The structures were further optimized using the PM6 Hamiltonian
in MOPAC[36] with the keywords: ”PM6 XYZ PRECISE STATIC POLAR
MMOK SUPER ENPART LARGE”. The HOMO/LUMO energies, polarizab-
ilities, superdelocalizabilities, charge partial surface areas (CPSA) and geomet-
rical indices were used as descriptors that were calculated using the software
KRAKENX[37]. For each ion, 113 descriptors are computed yielding a total
of 226 indices for each cation-anion pair while ion-ion interactions are ignored.
The temperature at which the refractive index was recorded was included as an
additional variable in the data matrix.

2.3. Machine Learning

With a view to reducing the dimensionality of the original descriptor matrix,
low variance columns and those containing missing values were excluded. In ad-
dition, a pairwise correlation of the descriptor columns was performed and only
one among the highly correlated pair of variables (R2 > 0.95) was retained[38].
The remaining variables were then autoscaled to zero mean and unit variance.
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The data set was further split randomly (50:50) into independent calibration
and test sets containing 1646 and 1501 data points respectively while ensur-
ing that no cation-anion pair was common to both sets. Analysis of the splits
showed that 98 cations and 23 anions were unique to the test set which provides
for a more robust test of the ML methods.

Prediction of ionic liquid properties using non-linear methods has been found
to be quite successful and have therefore been employed to carry out the re-
gression analysis. Available routines implemented in the statistical software
R[39] have been used and include ensemble methods such as generalized boos-
ted regression[40] (GBM), random forests[41] (RF) and Cubist [42]. Ensemble
learning methods aggregate the results from individual trees/rules. For both
GBM and RF routines, the number of trees was set to 500. For the Cubist
approach, wherein iterative model trees (with adjusted weights) are created in
sequence, the number of optimal committees was identified using a grid search.
For the Cubist model, the final prediction is then calculated as the average
of predictions from all committee members. The linear partial least-squares
regression[43] (PLSR) was also included for comparison. In all cases, the data
were mean-centered and scaled before modelling. For the models created using
the calibration data, 5-fold cross-validation (repeated three times to account
for the randomness of the data splits) was carried out to assess the predictive
ability. Further, in order to establish the reliability of the model predictions,
bootstrap-estimated uncertainties[44] were calculated for the test set. Given
a set of N objects/samples, a random sample of N members is drawn (with
replacement) from the collection. In this study, a total of 100 ML models (for
computational expediency) were built using the different bootstrap samples.
For a given IL, the uncertainty was then computed as the standard deviation of
predictions obtained from the 100 models where small values typically indicate
more reliable predictions. All calculations were carried out on a desktop PC
with Intel i5-2400 Quad-Core 3.10GHz CPU and 8GB RAM.

2.4. Experimental Details

The refractive indices for ionic liquids: 3-(2-diethylaminoethyl)-1-methylim-
idazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-3-methylimidazolium 1,2,4-
triazolate, 1-butyl-3-methylimidazolium 1,2,3-triazolate and 1-butyl-1-methyl-
pyrrolidinium 1,2,4-triazolate, were measured at 276.5±0.5 K using a PAL-RI
refractometer from Atago, with an uncertainty of ±0.0003 (water at 273 K).
These ILs were prepared based on previously reported methods[45–47]. Re-
fractive indexes of 1-(2-cyanoethyl)-3-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)im-
idazolium bis(trifluoromethanesulfonyl)amide, 1-(2-cyanoethyl)-3-(2-ethoxyethyl)-
imidazolium, 1-ethyl-3-(2-methoxycarbonyl-ethyl)-3-imidazolium dicyanamide,
1-propyl-3-(2-methoxycarbonyl-ethyl)-3-imidazolium dicyanamide, 1-butyl-3-(2-
methoxycarbonyl-ethyl)-3-imidazolium dicyanamide, 1-pentyl-3-(2-methoxycar-
bonyl-ethyl)-3-imidazolium dicyanamide, 1-hexyl-3-(2-methoxycarbonyl-ethyl)-
3-imidazolium dicyanamide were measured using a refractometer (Mettler Toledo,
RM40) with a temperature scan ranging from 20◦C - 60◦C. The apparatus was
calibrated by measuring the refractive index of Millipore quality water before
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measurements. The uncertainty of the refractometer was 0.01. Triplicate meas-
urements were taken for each sample at each temperature to ensure the effect-
iveness of the measurement. These ionic liquids were synthesized according to
the previously reported procedures[48–50].

3. Results and Discussion
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Figure 1: Visual summary of the data based on PCA: (A) Explained variances for the first 10
PCs. (B) Score plot with respect to the first two PCs, shows the locations of the prominent
cation families (imidazolium, pyridinium, ammonium, phosphanium), (C) and (D) show the
variable contributions with respect to PC1 and PC2. For brevity, only the top 25 variables
are shown.

As an initial step, principal component analysis (PCA) was carried out
on the autoscaled descriptor matrix. Figure 1 shows a graphical summary of
the analysis. The first 10 principal components (PCs) explain almost 90% of
the variance with the a little more than 50% concentrated in the first 2 PCs.
While, the dominant groups of imidazolium and ammonium cations are some-
what scattered, the other families such as pyrazoliums, pyridiniums and to some
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extent, phosphaniums are clustered around the center. The loading contribu-
tions for the first 2 PCs suggest that the first PC is significantly influenced by
the cation-based descriptors while the second is largely dominated by the anion
related variables. In both cases, the top ranking descriptors highlight the charge
distribution that implicitly account for the interactions between the functional
moieties. Interestingly, temperature is seen as a less influential descriptor with
respect to the PCs (see the loadings plot in Figure F1 in the Supplementary
material).

The model performances are summarised in terms of standard metrics: the
squared coefficient of correlation (R2), root mean square error (RMSE) and the
mean absolute error (MAE). Following the removal of near-constant columns
and highly correlated descriptors, each model was built with a descriptor mat-
rix containing 103 variables. Table 2 summarises the results for the differ-
ent machine learning models. For PLSR, a 10-component model was obtained
which performs well for both training and test sets with R2 of 0.80 and 0.73
respectively. Non-linear methods however show much improved statistics with
R2

cv > 0.95 and R2 > 0.80 with only marginal differences in the calculated met-
rics. A single regression tree based model was also evaluated. However, while the
performance for this model on the training data was found to be comparable with
the rest of the methods, the test set prediction (R2 = 0.65, RMSE = 0.025)
were less impressive. Overall, the Cubist approach was seen to produce the
best performance followed by the GBM and RF methods. For all models,
Y−randomization tests[16] repeated 500 times, yielded p-values < 0.001 that
suggest that the possibility of overfitting is low.

Table 2: Table summarises the machine learning performances for different regression methods
applied to independent calibration and test sets. R2

cv is the 5-fold cross-validated squared
correlation coefficient. Numbers in brackets in the RMSE column are the corresponding mean
absolute errors.

Method
Training Testing

RMSE (MAE) R2
cv RMSE (MAE) R2

PLSR 0.018 (0.012) 0.80 0.021 (0.015) 0.74
GBM 0.006 (0.002) 0.97 0.017 (0.011) 0.82

CUBIST 0.006 (0.0004) 0.97 0.016 (0.010) 0.84
RF 0.009 (0.004) 0.96 0.018 (0.013) 0.82

CART 0.009 (0.005) 0.95 0.025 (0.017) 0.65

The results were further analysed with respect to the prominent cation
classes present in the data set, a summary of which is provided in Table 3. Al-
though small fluctuations in performance are seen for the different models, the
Cubist approach consistently performs well across all classes withR2 > 0.85. For
the imidazoliums which are the dominant cation group, all models yield fairly
consistent predictions with R2 > 0.90 with a slightly lower performance for the
PLSR model. Good performance trends are also observed for the piperidinium
based ILs.

In an attempt to improve the results where possible using variable selec-
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Table 3: Table summarises the predictive performances for different regression methods ap-
plied to the different cation groups across the entire data.

Cation Method RMSE MAE R2

Imidazolium

PLSR 0.019 0.013 0.83
GBM 0.011 0.005 0.94

CUBIST 0.01 0.005 0.95
RF 0.012 0.008 0.93

Pyridinium

PLSR 0.016 0.012 0.77
GBM 0.013 0.004 0.83

CUBIST 0.011 0.004 0.87
RF 0.011 0.006 0.88

Pyrrolidinium

PLSR 0.014 0.009 0.70
GBM 0.01 0.006 0.87

CUBIST 0.009 0.004 0.86
RF 0.012 0.008 0.82

Piperidinium

PLSR 0.01 0.008 0.99
GBM 0.007 0.006 0.98

CUBIST 0.006 0.005 0.98
RF 0.006 0.005 0.98

Ammonium

PLSR 0.023 0.018 0.73
GBM 0.013 0.008 0.92

CUBIST 0.015 0.008 0.88
RF 0.017 0.011 0.87

tion, the recursive feature elimination algorithm (implemented in the caret[51]
package in R) was applied to the RF, GBM and Cubist models. The algorithm
selects features by recursively considering smaller and smaller sets of features.
For PLSR, the variable importance in projection (VIP)[52] was used. The VIP
score is useful in analysing the predictor variables that best explain the vari-
ance in the response. However, despite using variable selection no discernible
improvement in the model performance was observed. Variable importance plots
highlighting the top 20 influential descriptors in each model are shown in Fig-
ure 2. Additional figures showing the rankings for more variables are shown in
Figures F2 and F3 in the Supplementary material. While the VIP score is used
to highlight prominent variables for PLSR, in the case of RF, GBM and Cubist
approaches, the importance was calculated with respect to the reduction in er-
ror when the predictor of interest is permuted. For the PLSR model, the top
ranking variables are dominated by anion-specific descriptors, while for the RF
model, cation-specific predictors are ranked at the top. Examination of other
lower ranked descriptors extends these trends to a large extent, although some
cationic (such as the HOMO energy for PLSR) and anionic (such as the heat of
formation) variables start to become relevant. In comparison, both Cubist and
GBM models exhibit a mixture of cationic and anionic variables. Many of the
top ranking descriptors are also seen to be crucial in determining the refractive
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Figure 2: For each model, the 20 most prominent variables influencing the nD predictions are
shown (A) PLSR, (B) GBM (C) Cubist and (D) RF.

index of polymers[53, 54]. The refractive index is considered as a response to
electronic polarization with large ions typically having large polarizabilities[55].
A descriptor that expresses the polarization of the molecule is given by the local
dipole index [56] which is the average of the charge differences over all bonded
atom pairs. The charged partial surface area descriptors that summarize the
charge distribution in the ion, are related to the molecular size. Another indic-
ator of size is the inertial shape factor calculated for the cation is based on the
principal moments of inertia[57]. The self polarisabilities are dynamic reactiv-
ity indices and reflect the interactions between the cation and anion[58]. Other
variables such as the HOMO-LUMO energy gap, are also related to the polar-
isability where a small value can indicate that the structure is easily polarised.
The molecular weight of the anion is also seen to impact the refractive index
where an increase in weight leads to a decrease in nD[59]. The heat of formation
(HOF) can be taken as a measure of the thermodynamic stability of the IL[58].
While temperature features as a low ranking variable (based on the VIP scores)
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for PLSR (not seen in the top 20 variables), both Cubist and random forests
attach a high importance to the same.
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Figure 3: For each model, absolute errors (absolute value of each error) vs the corresponding
bootstrap uncertainties are shown as a 2D histogram. The counts reflect the number of
instances where the two values/bins overlap.

Model predictions and their corresponding bootstrap uncertainties (stand-
ard deviation of the bootstrap model predictions) are listed in Table S2 in the
Supplementary material. Analysis of the uncertainties calculated for the differ-
ent ML model predictions, shows that for both the Cubist and random forests
approaches, nearly 67% of the absolute value of the prediction errors (calculated
for the entire data) fall within one standard deviation. In comparison, for the
GBM and PLSR models, only 50% and 17% of the cases have prediction errors
within one standard deviation. Figure 3 shows the 2D histogram of the abso-
lute prediction errors against the corresponding uncertainties which enables the
analysis of the relationship between the two numerical variables. Within the
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2D histogram, the number of data points at a certain value of the error and
uncertainty are counted and shown as a colour map, where grey represents low
counts and red represent high counts. Assuming a uncertainty cutoff of 0.01
(predictions with greater uncertainties should be treated with caution), it was
seen that for the non-linear methods (GBM, Cubist and RF), more than 70%
of the predictions with associated uncertainties below the cutoff value have a
corresponding absolute error less than 0.01. For the linear PLSR method, how-
ever, this number falls to 46%. For uncertainties greater than the cutoff value,
less than 1% of the predictions are seen to have absolute errors less than 0.01.
The results suggest that predictions with low uncertainties do in general have
high accuracies. For uncertainties greater than 0.01, the size of the prediction
errors are not consistently captured, and thus poor predictions are not always
easily identified (see Figure F4 in the Supplementary material).

Experimental validation

In order to further evaluate the predictive ability of the ML models, a new set
of 14 ionic liquids were synthesized and their refractive indices recorded (see Ex-
perimental Details). The refractive indices for the newly synthesized ILs range
between 1.44 and 1.54. The new ILs include imidazoliums and piperidiniums
combined with anions such as bis(trifluoromethylsulfonyl)imide, thiocyanate,
hydrogen sulphate, dicyanamide and triazolides. The structures of the cations
and anions, their experimental and ML predicted refractive indices are listed in
Table 4.

Table 4: Table lists the model predictions for new ILs synthesized. nD is the experimental
refractive index measured at temperature T (K) and n̂D the ML predicted values along with
the bootstrap uncertainties.

Ionic Liquid T nD
n̂D

PLSR GBM CUBIST RF

O
N N N S

O
O

O
O

293 1.522 1.485±0.007 1.478±0.007 1.502±0.011 1.487±0.007
303 1.518 1.483±0.007 1.476±0.007 1.501±0.011 1.487±0.007
313 1.513 1.481±0.007 1.473±0.007 1.499±0.011 1.486±0.007
323 1.508 1.480±0.007 1.470±0.007 1.497±0.011 1.486±0.007
333 1.504 1.478±0.007 1.467±0.007 1.496±0.011 1.486±0.007

O
N N N

FS

O

O
N

S

O

O

F

F

F
F
F

293 1.441 1.447±0.006 1.439±0.005 1.445±0.007 1.435±0.008
303 1.427 1.445±0.006 1.436±0.005 1.442±0.007 1.435±0.008
313 1.424 1.443±0.006 1.433±0.005 1.439±0.008 1.435±0.008
323 1.420 1.441±0.006 1.430±0.005 1.436±0.008 1.434±0.008
333 1.415 1.439±0.006 1.426±0.005 1.434±0.008 1.434±0.008

O O
N N N

FS

O

O
N

S

O

O

F

F

F
F
F

293 1.446 1.447±0.006 1.458±0.010 1.458±0.010 1.443±0.006
303 1.442 1.445±0.006 1.453±0.010 1.455±0.010 1.443±0.006
313 1.438 1.443±0.006 1.449±0.011 1.452±0.010 1.442±0.006
323 1.433 1.441±0.006 1.447±0.011 1.449±0.010 1.442±0.006
333 1.429 1.439±0.006 1.443±0.011 1.446±0.010 1.442±0.006

O

O O
N N N

FS

O

O
N

S

O

O

F

F

F
F
F

293 1.448 1.440±0.007 1.484±0.013 1.449±0.012 1.445±0.007
303 1.445 1.438±0.007 1.479±0.013 1.447±0.013 1.444±0.007
313 1.441 1.436±0.007 1.475±0.013 1.444±0.013 1.444±0.007
323 1.438 1.434±0.008 1.473±0.013 1.442±0.014 1.444±0.007
333 1.434 1.432±0.008 1.469±0.013 1.440±0.014 1.444±0.007

N N

O

O

N

N

N

293 1.509 1.507±0.005 1.507±0.005 1.500±0.009 1.509±0.007
303 1.505 1.505±0.005 1.503±0.005 1.496±0.010 1.509±0.007
313 1.501 1.503±0.005 1.501±0.005 1.494±0.010 1.509±0.007
323 1.498 1.501±0.005 1.496±0.005 1.491±0.010 1.509±0.008
333 1.494 1.499±0.005 1.490±0.005 1.488±0.010 1.508±0.008
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N N

O

O

N

N

N

293 1.514 1.509±0.006 1.511±0.007 1.504±0.011 1.510±0.006
303 1.510 1.507±0.006 1.505±0.007 1.499±0.011 1.510±0.007
313 1.507 1.505±0.006 1.501±0.007 1.497±0.011 1.510±0.007
323 1.503 1.503±0.006 1.497±0.007 1.493±0.011 1.509±0.007
333 1.500 1.501±0.006 1.491±0.007 1.490±0.011 1.509±0.006

N N

O

O

N

N

N

293 1.518 1.504±0.005 1.506±0.005 1.505±0.009 1.509±0.008
303 1.515 1.502±0.005 1.502±0.005 1.500±0.010 1.509±0.008
313 1.511 1.500±0.005 1.499±0.005 1.497±0.010 1.508±0.008
323 1.508 1.499±0.005 1.496±0.006 1.494±0.009 1.508±0.008
333 1.505 1.497±0.005 1.489±0.005 1.491±0.009 1.508±0.008

N N

O

O

N

N

N

293 1.522 1.503±0.005 1.511±0.005 1.504±0.009 1.509±0.008
303 1.518 1.501±0.005 1.507±0.005 1.500±0.009 1.509±0.008
313 1.513 1.499±0.005 1.504±0.005 1.497±0.009 1.508±0.008
323 1.507 1.497±0.005 1.501±0.005 1.494±0.009 1.508±0.008
333 1.504 1.496±0.005 1.495±0.005 1.491±0.009 1.508±0.008

N N

O

O

N

N

N

293 1.528 1.505±0.005 1.507±0.006 1.504±0.010 1.509±0.008
303 1.524 1.503±0.005 1.503±0.006 1.499±0.010 1.509±0.008
313 1.521 1.502±0.005 1.501±0.006 1.497±0.010 1.508±0.008
323 1.518 1.500±0.005 1.497±0.006 1.493±0.010 1.508±0.008
333 1.514 1.498±0.005 1.491±0.006 1.490±0.010 1.508±0.008

N
N

N

N

N 297 1.521 1.499±0.005 1.514±0.014 1.498±0.024 1.486±0.007

N
N

N

N

N

296 1.521 1.509±0.006 1.532±0.011 1.520±0.014 1.491±0.006

N

N

N

N 296 1.506 1.479±0.005 1.489±0.013 1.494±0.022 1.474±0.017

N
N N

FS

O

O
N

S

O

O

F

F

F
F
F

297 1.436 1.452±0.004 1.446±0.004 1.443±0.013 1.441±0.012

N
N

N

FS

O

O
N

S

O

O

F

F

F
F
F

296 1.449 1.451±0.004 1.475±0.009 1.455±0.015 1.442±0.007

Table 5 provides a statistical summary of the ML predictions for the ex-
perimental data. The correlation trends seen for the independent test set is to
a large extent reproduced for the second set of test data. While the Cubist,
random forests and PLSR models show good predictive power, the GBM model
shows a small decrease in performance. Refractive index values for the triazolide
anion-based ILs which present a completely unseen chemistry for the models are
in general well predicted by the Cubist model.

Table 5: Table summarises the machine learning performances for different regression methods
applied to experimentally synthesized ILs.

PLSR GBM CUBIST RF
R2 0.89 0.74 0.97 0.87

RMSE 0.016 0.020 0.014 0.014
MAE 0.012 0.016 0.013 0.010
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4. Conclusions

In this article, we have investigated the efficacy of various machine learn-
ing models in predicting temperature dependent refractive indices for a large
number of ionic liquids. Predictive ability of the models was evaluated using
and independent test set and an additional set containing 14 novel ILs obtained
from experiments. Non-linear ensemble approaches are seen to produce signi-
ficantly better results compared with single tree and linear partial least squares
regression methods. The models obtained have broad applicability and should
be particularly useful for fast screening of IL compounds.
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