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ABSTRACT

Despite recent advances in subjective image quality research,
this topic still calls for many fundamental questions. Though
we understand several early vision mechanisms fairly well,
little is known about late vision and how the two interact
with each other. Here, we look at one particular limitation
of our visual system that stems from failures of that interac-
tion: high-level visual masking, best illustrated by the change
blindness paradigm. We carried out a user study designed
specifically to measure the influence of high-level masking by
priming. Results suggest a significant influence of high-level
masking in image fidelity assessment at the 95% confidence
level for half of the participants, with an average magnitude
over three times that of intra-observer variability.

Index Terms— Image Quality Assessment, Perception,
Visual Memory, Change Blindness.

1. INTRODUCTION

With the number of digital pictures taken every year running
into the trillions [1], the question of image quality has also
grown in importance. The last two decades of research have
substantially advanced our understanding of what makes the
difference between ”good” and ”bad” image quality, with pre-
dictive models boasting linear correlations with average hu-
man assessments above 90%. Yet, a number of fundamental
questions still need answers, in particular due to the topic’s
inherent subjectivity. Despite our fairly advanced comprehen-
sion of early vision mechanisms such as contrast sensitivity,
salience, luminance masking, chromatic adaptation and oth-
ers, the role played by our brain is still quite unclear. In fact, it
is often the subject of rather crude assumptions made for the
sake of simplicity. Even though some of these assumptions
hold when testing on large databases such as TID [2], the lack
of content variety in these benchmarks makes it difficult to
draw solid conclusions [3]. Furthermore, the traditional mean
opinion scores (MOS) cannot realistically convey the diver-
sity of perceptual abilities from a pool of several hundreds
of participants [4]. Factors such as age, gender, cultural back-
ground, familiarity with image content, emotion, fatigue, abil-
ity to concentrate, and memory, can all affect significantly our

response to visual stimuli. Also, with technology constantly
evolving towards more pixels, colours, dynamic range, frames
per seconds and so on, our perception of quality is changing
as well. What we considered to be a good image quality ten
years ago would probably be considered unacceptable today.

It is now clear that the keys to understanding image qual-
ity lie beyond early vision. In this paper, we propose to focus
on the communication channel between early and late vision
and how it affects our judgment. Research in cognitive sci-
ence and psychology have highlighted numerous flaws in that
channel [5] and even though the nature and origin of these
flaws are still a source of debate, it is clear that the channel is
noisy and has a limited bandwidth. In other words, only part
of what our eyes can sense is conveyed to the decision-making
parts of our brain. A perceptual failure known as change
blindness [6] illustrates this phenomenon in the most strik-
ing way. It basically prevents us from consciously perceiving
substantial and often salient differences in image pairs, such
as an object re-positioned or re-coloured. Change blindness is
the essence of the famous game ”Spot the difference”. It can
affect virtually all types of subjective pair-comparison tasks
such as image fidelity assessment. There has been few at-
tempts at exploiting it in order to reduce computational bur-
den in computer graphics and virtual reality environments
[7, 8] or for image compression [9]. However, the complex-
ity of the change blindness phenomenon and the paucity of
reliable reference data measured with natural stimuli do not
permit solid conclusions.

Change blindness can also be viewed as a type of visual
masking, which means it can reduce or suppress the visibility
of a ”target” stimulus such as a compression artefact, by the
presence of another stimulus called a ”mask”, such as a com-
plex texture. There is a rich literature in image quality assess-
ment that looks at visual masking (see e.g. [10, 11]), yet no
one seems to have explicitly studied change blindness. Low-
level masking effects such as luminance or contrast masking
are well researched but they do not have a direct effect on
change blindness. In this paper, we demonstrate that change
blindness can influence image fidelity assessment to a signifi-
cant extent. Consequently, we advocate the need for a reliable
model of change blindness and visual awareness to achieve
better predictions of subjective judgments.



First, we propose the following definitions of low- and
high-level visual masking1 for clarity.

• Low-level masking prevents perception of differences
between stimuli even if we know where they are. It
includes mainly luminance, contrast, texture and struc-
ture masking [12, 10, 11]. It is typically associated
with early vision mechanisms like luminance adapta-
tion, contrast sensitivity, visual ensembles, etc. Crowd-
ing [13] can also be considered as low-level masking
but, because it occurs in the peripheral vision, only if
the eyes are immobile.

• High-level masking prevents perception of differences
unless we know where they are. In the case of im-
age pairs, high-level masking is effectively a synonym
of change blindness. Other perceptual effects such as
inattentional blindness [14] also pertain to high-level
visual masking, but they are induced by different types
of stimuli. Note that texture masking can also be of the
high-level kind [9].

The main difference between the two types of masking is
the fact that the former is permanent while the latter is only
temporary. Incidentally, the notions of ”visibility threshold”
and ”just noticeable distortion”, often used in the image qual-
ity literature [15], have different meanings in the two cases.
For low-level masking, the visibility threshold is invariant
over time whereas for high-level masking, the threshold is
changed once artefacts are noticed. In the latter case, it would
be more natural to define the ”threshold” as the time needed
to initially detect the artefact.

In this paper, we advocate the importance to consider low-
and high-level masking two fundamentally different percep-
tual failures in image fidelity assessment. We propose an ex-
perimental design based on visual priming to isolate the in-
fluence of high-level masking. Priming is a technique which
consists of influencing a person’s response to a stimulus via
prior exposure to another stimulus. It can effectively elim-
inate high-level masking [16]. We report that the effect of
high-level masking alone was significant for 12 out of 24 par-
ticipants, with a magnitude on averge 3.5 times larger than
intra-observer variability.

2. USER STUDY

2.1. Participants

A total of 24 people participated in the study (17 in NZ, 7
in Norway). They all passed a Ishihara test in order to en-
sure that they had colour-normal vision. Those who needed
glasses or contact lenses were asked to wear them. Ages
ranged between 21 and 56, 80% were male and various cul-
tural backgrounds were represented. None of them was given

1Induced by side-by-side image comparison.

any indications as to the goals of the experiment prior to it.
A standard screening [17] revealed that all participants were
valid.

2.2. Stimuli

Stimuli were selected from the CID:IQ database [18] and were
displayed in pairs. Each pair was made of A) one of 21 differ-
ent pristine images and B) one of three JPEG-distorted ver-
sions of the same image at different compression levels. We
will refer to these levels as low, medium and high2, with high
compression level corresponding to the lowest quality.

2.3. Methodology

Participants were asked to ”evaluate the difference between
each pair of stimuli displayed on the screen, in terms of qual-
ity”. A standard 5-level scale was provided (”Not percep-
tible”, ”Perceptible, but not annoying”, ”Slightly annoying”,
”Annoying” and ”Very Annoying”. All participants were shown
two examples of image pairs prior to the experiment, in an ef-
fort to reduce the effect of training during the first session.
Examples were the same for all participants and included one
pair with nearly no perceptible differences and one with, on
the contrary, large artefacts. The whole study lasted about 25
minutes on average per participant.

Session 1 (Figure 1) was a side-by-side pair comparison
(original/reproduction). The order and left/right positions of
stimuli were systematically randomised. Only the ’low’ and
medium’ compression levels were used in this session.

Fig. 1. Stimuli presentation in Sessions 1 & 3.

Session 2 (Figure 2) was dedicated to visual priming. We
used the flicker paradigm to make the differences between
original and reproduced scenes readily accessible to conscious
perception [19]. Participants could alternate between the two
scenes as many times as they wanted and they were instructed

2These levels respectively correspond to levels 3, 4 and 5 in CID:IQ.



to ”thoroughly examine” the difference between them. Note
that instructions for this session were given only after Session
1 to avoid bias. Via priming, this session implicitly trained the
participants to pay attention to image regions potentially sen-
sitive to compression artefacts, that they might have missed
in Session 1.

Fig. 2. Stimuli presentation in Session 2. By pressing the
”Toggle” button, participants were able to alternate between
the two stimuli without disruption.

Session 3 was a repetition of Session 1, with a different
sequence randomisation.

In order to estimate intra-observer variability and do a
more robust significance analysis on the results, we displayed
50% of the test image pairs twice in Sessions 1 and 3.

Based on our definitions of low- and high-level masking
priming can theoretically affect only on the latter [16]. How-
ever, priming can also induce an undesirable memory bias:
any subsequent exposure to the same stimuli is likely to result
in the participant recognising the scene and basing their qual-
ity assessment on their memory of the priming rather than on
the stimuli that are displayed. In order to avoid this effect, we
used different a higher compression level (lower quality) for
priming. In Sessions 1 and 3, we used the low and medium
levels (in random order) while in Session 2, we used the high
level. Additionally, we used a large number of different pris-
tine images (21 in total) to reduce the chance of people be-
coming too familiar with the benchmark.

If quality assessments made with and without priming are
significantly different, the only cause is the disappearance of
high-level masking. Therefore, by comparing results from
Sessions 1 and 3, we can then effectively estimate the mag-
nitude of high-level masking in our image fidelity assessment
benchmark.

2.4. Viewing Conditions

We used Eizo ColorEdge displays (CG2420 in New Zealand
and CG246W in Norway), both 61cm/24.1” and calibrated

with an X-Rite Eye One spectrophotometer for a colour tem-
perature of 6500K, a gamma of 2.2 and a luminous inten-
sity of 80cd/m2. Both experiments were carried out in a dark
room. The distance to the screen was set to approximately
50cm (without chin rest).

3. RESULTS

3.1. Intra-observer variability

The maximum variability over all participants was estimated
at about 6.7% of the assessment scale in both sessions, while
the overall average was 2.9% (±2.2%) in Session 1 and 2.6%
(±1.9%) in Session 3. This indicates no significant difference
of intra-observer variability between before and after priming:
participants were fairly consistent with their judgment over
the course of the whole experiment.

3.2. Did priming influence quality assessments?

A sign test at the 95% confidence level revealed that 12 out
of 24 observers had their assessments significantly influenced
by priming and for all of them, priming led to more severe
ratings over the whole benchmark. Considering each of these
12 observers individually, the effect of priming (the differ-
ence of assessment between Sessions 1 and 3) was 3.5 times
larger than intra-observer variability, and 13% of the assess-
ment scale on average. Interestingly, all five female partici-
pants were in this group.

Ratings from Sessions 1 & 3 have a Spearman rank order
correlation coefficient of 0.54 on average over all observers
(standard deviation: 0.18) and never larger than 0.80. This
clearly demonstrate that priming does not affect all scenes and
distortion levels equally. Among the 21 pristine scenes, 10
were significantly affected by priming for all observers (see
Figures 3 and 4). The most striking difference between those
two subsets of images is in terms of their visual complexity.
Scenes with more objects, less overall symmetry and unifor-
mity are naturally more likely to induce change blindness. On
the other hand, it is noteworthy that scenes with some of the
finest textures (e.g. the grass in the hedgehogs scene or the
peacock’s feathers, Figure 4) were not significantly affected
by priming, which suggests that these textures did not induce
high-level masking.

All observers rated the difference between image pairs as
”Not perceptible” less often after priming. On average, 24%
of the stimuli led to a ”Not perceptible” rating in Session 1,
but only 10% in Session 3.

From these results, we deduce that change blindness can
have a significant effect on our assessment with a magnitude
of 10% of the assessment scale.



Fig. 3. Example of scenes that were assessed differently before and after priming.

Fig. 4. Example of scenes that were NOT assessed differently before and after priming.

3.3. Can current visual masking models predict change
blindness?

In order to further demonstrate the lack of existing models
to predict high-level visual masking in image fidelity assess-
ment, we tested the ability of several near- and supra-threshold
predictive models (so-called ”image quality metrics”) to pre-
dict results from the two sessions. Results are reported in
Table 1.

Table 1. Spearman rank order correlation coefficients be-
tween objective and subjective scores for each metric and ses-
sion. (*) indicates that the results from both sessions are sig-
nificantly different according to a z-test at the 95% confidence
level. Top three metrics are supra-threshold while the others
are near-threshold.

Session 1 Session 2

Supra.
FSIMc [20] 0.799 0.806

MS-iCID [21] 0.384 0.443
VIF [22] 0.542 0.579

Near.
MAD* [12] 0.805 0.891

PSNR-HA [23] 0.352 0.377
HDR-VDP2.2 [24] 0.113 0.079

A metric that accounts for change blindness should achieve
a better correlation with results from Session 1, which is not
the case for any metric tested here. Both supra- and near-
threshold models yielded a correlation with primed results
that is at least as high a correlation as without priming, and

even significantly larger for the Most Apparent Distortion met-
ric (MAD). Incidentally, the latter also achieves the best pre-
dictions overall. These results indicate that state-of the art
metrics perform poorly at predicting high-level masking and
that further efforts are necessary in order to achieve higher
prediction accuracy.

4. CONCLUSIONS

Despite recent advances in subjective image quality research,
that topic is still the source of many fundamental questions.
We looked at one particular limitation of our visual system
that originates in that channel: high-level visual masking,
which is probably best illustrated by the change blindness
paradigm. We carried out a user study designed specifically to
measure its influence and separate it from that of other types
of visual masking and subjective biases. Results suggest a
significant influence of high-level masking in image fidelity
assessment at the 95% confidence level for half of the partici-
pants, with a magnitude over three times that of intra-observer
variations.

These results are particularly important for future research
in visual quality assessment, be it for images, video or com-
puter graphics.
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