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Abstract/Sammendrag
This paper shows how to create a simulationtool for traffic flow in a network
using the Lighthill–Witham–Richards model and the Godunov scheme. First
some basic rules about conservation laws are described and how to solve them
using the method characteristics. This leads to the notion of weak solutions
which can be solved by shock- and rarefractions-solutions. This is then used
to describe how traffic behaves on a single road by using the LWR-model. The
behavior of traffic at junctions is discussed, more specifically how to find the
maximum flux through a junction when we deal with different amount of in-
coming and outgoing roads. The paper gives different examples of numerical
solution methods to conservation laws, which gives motivation for the Godunov
scheme. A numerical scheme using the LWR-model and the Godunov scheme is
tested on different traffic models. The main test is a simplified model of Trond-
heim, Norway. The results are presented in videos, as well as graphs and tables
that show the duration of the driving time through different routes of the model.

Denne artikkelen viser hvordan man kan bruke Lighthill–Witham–Richards mod-
ellen og Godunovs metode til å lage et simuleringsverktøy som simulerer trafikkfly-
ten i et nettverk av veier. Først diskuteres konservasjonslover, og hvordan
man kan løse disse med karakteristikker. Dette motiverer diskusjonen for svake
løsninger. Svake løsninger kan løses ved hjelp av sjokk- og vifte-løsninger. Dette
brukes til å beskrive trafikkflyten p̊a en rett vei ved hjelp av LWR-modellen.
Deretter gis teori om trafikk i et veikryss, og hvordan man kan finne mak-
simal fluks gjennom krysset. Forskjellige m̊ater å løse konservasjonslover nu-
merisk blir gitt, og dette gir motivasjon for bruken av Godunovs metode. Ulike
typer av trafikkmodeller testes ved hjelp av et program som er basert p̊a LWR-
modellen og Godunovs metode. Hovedtesten er en forenklet verson av Trond-
heim. Trafikkens oppførsel beskrevet av denne modellen blir presentert i korte
filmer. Det gis ogs̊a tabeller og grafer som viser kjøretiden gjennom forskjellige
kjøreruter i modellen.
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Preface
This thesis is written to fulfill the requirements of the Master of Science degree
in Mathematics at Norwegian University of Science and Technology. The assign-
ment was given and supervised by Helge Holden. My paper has been written in
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made solely by the me, but most of the works has been done by the research of
others, and I have done my best to provide references to these sources. With an
exception of example 2.3.1 (from [1]), all examples and coding have been done
by the me.

One of the harder tasks was to transform how to use the maximizing functions,
from the analytical part, into my code. During the process I feel that my pro-
gramming skills have been improved and that I have got a better understanding
of conservation laws and differential equations.
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1 Introduction
The goal of this paper is to create a computer program that simulates road
traffic on a network of roads and junctions. This program can be used to look
at how traffic will develop after some time in different situations, like a nar-
rowing of a road, traffic lights and roundabouts. The aims of this analysis are
principally represented by the maximization of car flow, and the minimization
of traffic congestion.

In mathmatics and civil enginering there has been a lot of studies of traffic
flow. With different approaches. One possibilty is to model the cars one by one,
which is called a microscopic model. Another way is the mesoscopic or kinetic
model, where you define a function which expresses the probability of having a
vehicle at time t in position x that drives in a given velocty. The last main way
to look at the problem is the macroscopic model, which is the one used in the
paper. The macroscopic model uses systems of partial differential equations,
just like in fluied dynamics.

The model used in this thesis is the one presented by Lighthill, Whitham and
Richards in the 1950’s. The idea of the model is to describe traffic just like
water flow, which can be described in terms of conservation laws:

ρt +
[
vmaxρ(1− ρ

ρmax
)
]
x

= 0, x ∈ R, t > 0.

A numerical method to solve equations along a road is represented by the Go-
dunov scheme, suggested by S. K. Godunov in 1959. The Godunov scheme is
based on exact solutions of the Riemann problem and approximations of piece-
wise constant functions. All coding has been done in Matlab R2013b.

Chapters 3 and 4 gives the mathematical background on how to solve the traf-
ficking problem with the LWR-model on a single road. First by discussing basic
rules about conservation laws, then showing how this can be used to describe
traffic flow. Then in chapters 4 and 5 we look at networks of roads and junc-
tions, and how to maximize the fluxes through junctions with different amount
of outgoing and incoming roads. In chapters 6 we first give some motivation of
why to use the Godunov Scheme, then we explain how the scheme is created.
Chapter 7 consists of examples using the LWR-model and the Godunov scheme
and the results we get. Then in chapter 8 I give some comments about the
results, my models, the code and future work.
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2 Conservation Laws
The model for traffic flow in this paper is based on systems of conservation
laws, which are a system of partial differential equations, where the variables are
conserved quantities, i.e. quantities which can neither be created nor destroyed.
In this chapter I give some basic preliminaries about systems of conservation
laws.

2.1 Basic Definitions and Assumptions
A system of conservations laws in one space dimension can be written in the form

ut + f(u)x = 0 (2.1.1)

where u : [0,+∞) × R → Rn is the ”conserved quantity” and f : Rn → Rn is
the flux. If we integrate (2.1.1) on an arbitrary interval [x1, x2] we get

d

dt

∫ x2

x1

u(t, x)dx = −
∫ x2

x1

f(u(t, x))xdx = f(u(t, x1))− f(u(t, x2)),

and so the amount of u in [x1, x2] varies according to the quantity of u entering
at x = x1 and exiting at x = x2.
We always assume f to be smooth. If u is a smooth solution, then (2.1.1) can
be written in the quasi linear form

ut +A(u)ux = 0,

where A(u) is the Jacobian matrix of f at u. If n = 1, so u takes values in R
and f : R → R then (2.1.1) is a single equation. We then say that (2.1.1) is a
scalar equation. In this paper we only deal with the scalar case.

2.2 Mathematical theory for scalar conservation laws
The problem

ut + f(u)x = 0 x ∈ R, t > 0,
u(0, x) = u0(x) x ∈ R, (2.2.1)

for some function f : R→ R is called a Cauchy problem. This problem can be
solved by the method of characteristics. Or as we will see, altleast locally.

Definition 2.2.1. Let u : R× [0, T )→ R be a classical solution of (2.2.1). The
solution χ of the inital-value problem

χ′(t) = f ′(u(χ(t), t)), t > 0 χ(0) = x0

are called the characteristics of (2.2.1).

2



The main property of the characteristics is that u is constant along:

d

dt
u(χ(t), t)) = ut(χ(t), t) + ux(χ(t), t)χ′(t) = 0 t > 0

and hence u(χ(t), t)) = const for t > 0. We illustrate this with an example.

Example 2.2.1. Let f(x) = u2/2. The characteristics of (2.2.1) is then given
by the solutions of

χ′(t) = u(χ(t), t), t > 0 χ(0) = x0.

Since u(χ(t), t)) = const for t > 0, χ is a straight line in the (x,t)-plane through
x0 with slope 1/u0(χ(t)) = 1/u0(x0). Characteristics allow to illustrate solu-
tions of (2.2.1) in a compact form.
To show how a solution might look like, let the initial values be:

u0(x) =

 1 : x < 0
1− x : 0 ≤ x < 1

0 : x ≥ 1
(2.2.2)

The characteristics in this case is drawn in Figure 2.2.1.

As we can see in Figure 2.2.1, the characteristics collide at t = 1. In other words

Figure 2.2.1: Example 2.2.1. Characteristics of (2.2.1) with (2.2.2) as initial
value.

the solutions of (2.2.1) might develop discontinuities in finite time. Therefore
we need a solution method including discontinuous functions. Let u be a classi-
cal solution to (2.2.1); we multiply this solution by φ ∈ C1

o (R2) and integrating
over R2. This gives :

0 =
∫ ∞

0

∫
R
(ut+f(u)x)φdxdt = −

∫ ∞
0

∫
R

(uφt+f(u)φx)dxdt−
∫
R
u(x, 0)φ(x, 0)dx

To define the two last integrals we only need a integrable function u. We get
the following definition.

3



Definition 2.2.2. The function u : R× (0, T )→ R is calleda weak solution of
(2.2.1) if for all φ ∈ C1

0 (R2)∫ ∞
0

∫
R

(uφt + f(u)φx)dxdt = −
∫
R
u(x)0φ(x, 0)dx.

So we need u and f(u) to be integrable, but there are other requirements on u
we need for this condition to hold, but we do not specify them. It is possible
to check that every classical solution is a weak solution, but not every weak
solution needs to be a classical solution.

Now we look at conservation laws with some different types of discontinuous
initial values.

Definition 2.2.3. The problem (2.2.1) with initial values

u0(x) =
{

ul : x < 0
ur : x ≤ 0 (2.2.3)

and ul, ur ∈ R is called a Riemann problem.

We want to solve the Riemann problem (2.2.1), (2.2.3). We observe that both
u(x, t) and u(αx, αt) is a solution of (2.2.1),(2.2.3) for any α > 0. So u only
depends on ξ = x/t, i.e. u = u(ξ). We have

0 = ut + f(u)x = − x
t2
u′(ξ) + f ′(u(ξ))u′(ξ)1

t
= 1
t
u′(ξ)(f ′(ξ)− ξ)

There are several possibilities of what might occur:
•u′(ξ) = 0 ⇒ u(ξ) = const
•f ′(u(ξ)) = ξ ⇒ u(ξ) = (f ′)−1(ξ) = const (if the inverse of f ′
exists; sufficient condition is f ′′ < 0 or f ′′ > 0 in R )
• u is discontinuous along ξ = x

t i.e. u′(ξ) does not exist.
This motivates us to look at three different cases.

-Case 1: f ′(ul) = f ′(ur). This gives the solution u(x, t) = ul = ur for all
x ∈ R and t > 0.
-Case 2: f ′(u1) > f ′(u2) As the flow direction is from the left to the right, we
expect a shock line, i.e. a discontinuity curve x = ψ(t). We claim that the
discountinuous function

u(x, t) =
{

ul : x < st
ur : x ≤ st (2.2.4)

is a weak solution to (2.2.1),(2.2.3). Then the discontinuity line is given by
x = ψ(t) = st and s = ψ′(t) is the shock speed which has to be determined. To
prove our claim let φ ∈ C1

0 (R). Since u = const except on x = st,
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∫ ∞
0

∫
R
uφtdxdt =

∫ ∞
0

( ∫ st

−∞
uφtdx+

∫ ∞
st

uφtdx)dt

=
∫ ∞

0
(∂t
∫ st

−∞
uφdx− s · u(st− 0, t)φ(st, t)

+ ∂t

∫ ∞
st

uφdx+ s · u(st+ 0, t)φ(st, t)
)
dt

= −
∫
R
u(x, 0)φ(x, 0)dx− s · (ul − ur)

∫ ∞
0

φ(st, t)dt

and, by integration by parts,

∫ ∞
0

∫
R
f(u)φxdxdt =

∫ ∞
0

(
−
∫ st

−∞
f(u)xφdx+ f(u(st− 0, t))φ(st, t)t

−
∫ ∞
st

f(u)xφdx− f(u(st+ 0, t))φ(st, t)
)
dt

= (f(ul)− f(ur))
∫ ∞

0
φ(st, t)dt.

We conclude ∫ ∞
0

∫
R

(uφt + f(u)φx)dxdt = −
∫
R
u0φ(x, 0)dx

− [s · (ul − ur)− (f(ul)− f(ur))]
∫
R
φ(st, t)dt.

Thus
s = f(ul)− f(ur)

ul − ur
. (2.2.5)

The choice (2.2.5) is called the Rankine-Hugoniot condition. The discontinuity
curve is always a straight curve for a Riemann problem, i.e., s is always constant.
This may not be true for general initial data. In this situation, the Rankine-
Hugoniot condition generalizes to

s(t) = ψ′(t) = f(ul(t))− f(ur(t))
ul(t)− ur(t)

. (2.2.6)

where
ul(t) = lim

x↗ψ(t)
u(x, t), ur(t) = lim

x↘ψ(t)
u(x, t). (2.2.7)

It can be shown that (2.2.4) is the unique weak solution of (2.2.1), see Theorem
2.3.2.

5



Figure 2.2.2: Example 2.2.2. Characteristics of (2.2.1) f(u) = u(1− u), with
ur = 1/2 and ul = 0. The dotted line is the shock speed s = t/2.

Example 2.2.2. Let f(u) = u(1 − u) and ul = 0, ur = 1/2. Then the shock
speed is s = 1 − ul − ur = 1

2 . The solution of (2.2.1),(2.2.3) is illustrated in
Figure 2.2.2.

-Case 3 : f(ul) < f(ur). One solution is given by (2.2.4),

u1(x, t) =
{

ul : x < st
ur : x ≤ st (2.2.8)

It is also possible to show that

u2(x, t) =

 ul : x < f ′(ul)t
(f ′)−1(xt ) : f ′(ul)t ≤ x ≤ f ′(ur)t

ur : x > f ′(ur)t
(2.2.9)

is a weak solution. In fact, it is possible to show that the problem (2.2.1), (2.2.3)
possesses infinitely many weak solutions! What is the physically meaningful
solution?
We are going to show that u2, which is called a rarefraction wave, is the physi-
cally correct solution. This leads to the notion of entropy condition.

6



Figure 2.2.3: Characteristics of (2.2.1) and (2.2.3) with f(u) = u2/2 and ul = 0
and ur = 1, corresponding to u1 (left) and u2 (right)

.

2.3 Entropy solutions
For f(u) = u(1− u), the condition ul > ur in traffic flow interpretation means
that there are more cars in {x < 0} than in {x > 0}. The solution of u1 would
mean that all cars to the left of the shock drives with the same velocity, and
all cars to the right of the shock drives with the same velocity. Additionally
the drivers to the left of the shock drives with a lower velocity. It would be
more realistic if the drivers to the left of the shock tried to drive with the same
velocity as the drivers to the right of the shock. So the rarefraction solution u2
would seem like a more physically relevant solution.

Definition 2.3.1. A weak solution u : R × (0, T ) → R of (2.2.1), (2.2.3)
satisfies the entropy condition of Oleinik if and only if along each discontinuity
curve x = ψ(x),

f(ul(t))− f(v)
ul(t)− v

≤ ψ′(t) ≤ f(ur(t))− f(v)
ur(t)− v

(2.3.1)

for all t ∈ (0, T ) and ul(t) < v < ur(t), where ul(t) and ur(t) are defined in
(2.2.8).

Does u1 satisfy the entropy condition (2.3.1)? Since

ψ′(t) = s(t) = f(ur)− f(ul)
ur − ul

and f assumed to be strictly concave, we obtain for any ul < v < ur

f(ul)− f(v)
ul − v

<
f(ul)− f(ur)

ul − ur
= s <

f(ur)− f(v)
ur − v

,

which contradicts (2.3.1). Thus u1 does not satisfy the entropy condition (2.3.1).
The function u of Case 2, defined in (2.2.4), however, satisfies (2.3.1) (if f is con-
cave). As the function u2 is continuous, we do not need to check (2.3.1) for this

7



function.

A different approach is to use the notion of entropy. We call a function η ∈
C2(R) an entropy and ψ ∈ C1(R) an entropy flux if and only if η is strictly
convex and if for any classical solution u of (2.2.1):

η(u)t + ψ(u)x = 0, x ∈ R, t > 0 (2.3.2)

The idea of this approach is to consider the conservation law as an idealization
of a diffusion problem given by the equation

ut + f(u)x = εuxx x ∈ R, t > 0 (2.3.3)

where ε > 0 is the diffusion coefficient. This equation, together with an initial
condition has a unique smooth solution uε and we assume

uε → u pointwise in R× (0, T ) for ε→ 0,

‖η′(uε,x)‖L1(R×(0,T )) ≤ c, (2.3.4)
where c > 0 is independent of ε. The Limit ε → 0 is called the vanishing
viscosity limit. It can be shown that u is a solution to (2.2.1), and we say that
u is the physically relevant solution.
We mulitply (2.3.2) by η′(uε) and choose ψ′ = f ′ · η′:

η(uε)t + ψ(uε)x = εη′(uε)uε,xx = ε(η′(uε)uε,x)x − εη′′(uε)u2
ε,x.

Multiplying this equation by φ ∈ C1
0 (R × R), φ ≤ 0, and integrating over R ×

(0,∞) gives:∫ ∞
0

∫
R
(η(uε)t + ψ(uε)x)φdxdt =

∫ ∞
0

(
∂t

∫ st

−∞
u2

1φdx− su2
l φ(st, t)

+ ∂t

∫ ∞
st

u2
1φdx+ su2

rφ(st, t)
)

− ε
∫ ∞

0

∫
R
η′(uε)uε,xφxdxdt

− ε
∫ ∞

0

∫
R
η′′(uε)u2

ε,xφdxdt

≤ ε‖η′(uε)uε,x‖L1(R×(0,∞))‖φx‖L∞(R×(0,∞))

→ 0 (as ε→ 0),

since η′′(uε) > 0 and (2.3.4). As φ is arbitrary, we deduce the entropy inequality

η(u)t + ψ(u)x ≤ 0. (2.3.5)

This inequality only holds for smooth solutions. From the definition of weak
solutions it follows that we can write the entropy inequality for weak solutions
as∫ ∞

0

∫
R

(η(u)φt +ψ(u)φx)dxdt ≤ −
∫
R
η(u0(x))φ(x, 0)dx ∀φ ∈ C1

0 (R2). (2.3.6)
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Definition 2.3.2. Let u : R × (0, T ) → R be a weak solution of (2.2.1). Then
u is called an entropy solution if and only if for all convex entropies η and
corresponding entropy flux ψ, the inequality (2.3.6) holds.

The function u2 satisfies the entropy equation (2.3.6) almost everywhere since
u2 is continuous and we can define the derivatives in a weak sense (it is also
possible to prove that (2.3.2) is in the weak form similarly to (2.3.6)). So u2 is
an entropy solution. Does this hold for u1? We show with an example that it
does not.

Example 2.3.1. Let f(u) = u2/2, η(u) = u2 so ψ(u) = 2
3u

3, and let φ ∈
C1

0 (R2). φ ≤ 0. Then, since s = 1
2 (ul + ur),

∫ ∞
0

∫
R

(u2
1φt + 2

3u
3
1φx)dxdt =

∫ ∞
0

(
∂t

∫ st

−∞
u2

1φdx− su2
l φ(st, t) + ∂t

∫ ∞
st

u2
1φdx

+ su2
rφ(st, t) + 2

3u
3
l φ(st, t)− 2

3u
3
rφ(st, t)

)
dt

= −
∫
R
u0(x)2φ(x, 0)dx

− 1
2(ul + ur)(u2

l − u2
r)
∫ ∞

0
φ(st, t)dt

+ 2
3(u3

l − u3
r)
∫ ∞

0
φ(st, t)dt

= −
∫
R
u0(x)2φ(x, 0)dx+ 1

6(ul − ur)3
∫ ∞

0
φ(st, t)dt

≥ −
∫
R
η(u0(x))φ(x, 0)dx

if and only if ul ≥ ur. Hence, u1 is not an entropy solution.

Example 2.3.1 shows that the two equations

ut +
(
u2

2

)
x

= 0 and (u2)t + 2
3(u3)x = 0

are only equivalent for classical solutions.
The above calculations motivates that only the rarefraction wave is the relevant
solutions for the Riemann problem if f ′(ul) > f ′(ur). For f ′(ul) < f ′(ur) we
have to expect discontinuous solutions with shocks. We summarize the above
results in a theorem.

For strictly concave functions we have:

Theorem 2.3.1. Let f in C2(R) with f ′′ < 0 in R.

9



(1) Let ul < ur and set s = f(ul)− f(ur)
ul − ur

. Then

u(x, t) =
{

ul : x < st
ur : x > st

is a weak solution to (2.2.1),(2.2.3) satisfying the entropy condition of Oleinik.

(2) Let ul > ur. Then

u(x, t) =

 ul : x < f ′(ul)t
(f ′)−1(xt ) : f ′(ul)t ≤ x ≤ f ′(ur)t

ur : x > f ′(ur)t

is a weak solution of (2.2.1),(2.2.3).

Notice that for strictly convex functions (f ′′ > 0) ul < ur gives a shock solution
and ul > ur gives a rarefraction solution.
We have written that the problem (2.2.1),(2.2.3) (f ′′ < 0) with ul < ur has
infinitely many solutions and that the solution u1 does not satisfy the entropy
condition of Oleinik nor is an entropy solution. However, is u2 the only solution
satisfying the entropy condition of Oleinik and condition (2.3.6)? The answer
is yes, but not so easy to prove. We only state the result. (see [1]):

Theorem 2.3.2. Let f ∈ C∞(R) and u0 ∈ L∞(R). Then there exist at most
one entropy solution of (2.2.1) satisfying the entropy condition (2.3.6) holds.
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3 Traffic flow models
Consider the traffic flow on a road with one lane. We want to look at the cars
as a density ρ(x, t), say vehicles per kilometer in x ∈ R and time t ≥ 0. The
number of the cars on the interval (x1, x2) at time t is∫ x2

x1

ρ(x, t)dx.

Let v(x, t) denote the velocity of the cars at time t. The number of cars which
pass through x at time t (in unit length) is ρ(x, t)v(x, t). We need an equation
which shows the evolution of the car density. The number of cars in the interval
(x1, x2) changes according to the number of cars that exits or drives into the
interval.

d

dt

∫ x2

x1

ρ(x, t)dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t).

Integrating this equation with respect to time and assuming that ρ and v are
regular functions yields∫ t2

t1

∫ x2

x1

∂tρ(x, t)dxdt =
∫ t2

t1

(ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t))dxdt

= −
∫ t2

t1

∫ x2

x1

∂x(ρ(x, t)v(x, t))dxdt.

Since x1, x2 ∈ R, t1, t2 > 0 are arbitrary, we can conclude

ρt + (ρv)x = 0, x ∈ R, t > 0. (3.0.7)

This equation has the same form as the conservation laws described in the
previous chapter. We have to add some initial conditions

ρ(x, 0) = ρ0(x), x ∈ R.

We now need an equation for the velocity v. A simple assumption is to assume
that the speed of the cars only depends on the density of the cars. If the road
is empty, ρ = 0, we will drive with maximal velocity v = vmax. In heavy traffic
we will have to slow down and stop (v = 0) in a traffic jam, and the cars will
be bumper to bumper (ρ = ρmax). The simplest model is the linear relation

v(ρ) = vmax

(
1− ρ

ρmax

)
, 0 ≤ ρ ≤ ρmax.

Equation (3.0.7) then becomes

ρt +
[
vmaxρ(1− ρ

ρmax
)
]
x

= 0, x ∈ R, t > 0

11



This equation is a conservation law since it expresses the conservation of the
number of cars. Integrating the equation over x ∈ R gives

d

dt

∫
R
ρ(x, t)dx = −

∫
R

∂

∂x

[
vmax(x, t)

(
1− ρ(x, t)

ρmax

)]
dx = 0

and we see that the number of cars in R is constant for all t ≤ 0.
We will now look at some different traffic models. The first one is the one we
just presented.

(1) Lighthill–Whitham–Richards model:

ρt = (ρv(ρ)))x = 0, v(ρ) = vmax

(
1− ρ

ρmax

)
, 0 ≤ ρ ≤ ρmax.

If we set vmax = 1 and ρmax = 1 the equation reduces to

ρt = (ρ(1− ρ))x = 0.

For this model f = ρv is a C2 function, f is strictly concave (f ′′ = −2) and
f(0) = f(1) = 0.
This method of modeling traffic flow originated under the assumption that traffic
streams as a whole are comparable to fluid streams. The major first step in
macroscopic modeling was taken by Lightill and Whitham in 1955, when they
compared ’traffic flow on long crowded roads’ with ’flood movement in long
rivers’. A year later, Richard complemented the idea with the introduction of
’shock waves on the highway’, completing the so-called LWR model.

(2) Greenberg Model:

In this model it is assumed that the velocity of the vehicles can be very large
for low densities:

ρt + (ρv(ρ))x, v(ρ) = vmax ln
(
ρmax

ρ

)
, 0 < ρ ≤ ρmax.

In this case v(ρmax) = 0, while v is unbounded when ρ→ 0+.

(3) Payne-Whitham model:

ρt + (vρ)x = 0, (ρv)t + (ρv2 + p(ρ))x = 0.

This model mimics the flow of gas particles. The above equations are known as
the Euler equations of gas dynamics with pressure p(ρ) = aργ , a > 0, γ ≤ 1.
The disadvantage of this model is that there may be solutions for which the
velocity v is negative.

12



(4) Aw-Rascale model:

ρt + (ρv)x = 0, (ρv + ρp(ρ))t + ρvp(ρ))x = 0.

This model has been proposed as an improvement of the Payne-Witham model
and has been derived from microscopic models. p = p(ρ) is the ”pressure”, an
increasing function of the density.

13



4 Networks
Now we know how to describe traffic flow on a single road. The next goal is
to look at what happens when roads meet at a junction. In this chapter we
will show how we can represent a traffic network as a direct graph. A directed
graph is a collection of direct edges, connected together with some vertices.
Each vertex is given by a finite number of incoming and outgoing edges, just as
each junction is given by a finite number of incoming and outgoing roads. We
will first describe a network of directed graphs, by determining the behavior at
vertices. Then we will translate this information to roads and junctions.

Figure 4.0.1: Example of a network

4.1 Basic Definitions and Assumptions
We begin to state what it means for a function to be of bounded variation, and
then we give the definition of a network. For an interval I ∈ R and a function
g : I → R. The total variation of g is defined by

Tot.V ar.g = sup{
N∑
j=1
|g(xj)− g(xj−1)|},

for N ≥ 1, all the ponits xj , j ∈ {1, ..., N} belongs to the interval I and are
such that x0 < x1 < · · · < xN .

Definition 4.1.1. A function g : I → R has bounded total variation if Tot.V ar.g <
+∞.

A function with bounded variation has at most countably many points of discon-
tinuity and these functions does not occilate vigorously. (See [4, pp. 281-284]).

Now we can start to talk about networks.
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Definition 4.1.2. A network is a couple (I,J ) where
I is a finite collection of edges, which are intervals in R, Ii = [ai, bi] ⊆ R,
i=1,...,N;
J is a finite collection of vertices. Each vertex J is a union of two nonempty
subsets Inc(J) and Out(J) of {1,...,N}.

We assume the following:

1. For every J 6= J ′ ∈ J we have Inc(J)∩Inc(J ′) = ∅ and Out(J)∩Out(J ′) = ∅.
2. If i /∈ ∪J∈J Inc(J) then bi = +∞ and if i /∈ ∪J∈JOut(J) then ai = −∞.
Moreover, the two cases are not mutually exclusive.

This is just saying that the network is a graph. Each vertex can be numbered,
and represented as a n + m-tuple (i1, ..., in, in+1, ..., in+m). The n is number
of incoming edges and m is the number of outgoing edges. The first condition
states that each edge can be incoming of at just one vertex, and outgoing for
just one vertex, and that they are connected to at least one vertex. See Figure
4.0.1.

4.2 Riemann Solvers
In this section we assume that the traffic on each edge is represented by an
hyperbolic system of conservation laws:

(ui)t + (fi(ui))x = 0 ui ∈ Rp, (4.2.1)

the goal is to define and solve Riemann problems at vertices. Given network
(I,J ) and a vertex J ∈ J and assume that Inc(J) = {1, ..., n} and Out(J) =
{n+ 1, ..., n+m}.

Definition 4.2.1. A Riemann problem at J is a Cauchy problem corresponding
to an initial value which is constant on each edge.

Since by the definition of the Riemann problem for J , we have constant initial
value on each edge, we need only to look for centered solutions. In other words,
for a Riemann problem shocks, rarefractions or contact discontinuities will be
formed at every edge.

Definition 4.2.2. A Riemann solver for the vertex J is a function

RS : (Rp)n+m → (Rp)n+m

that associates to every Riemann data u0 = (u1,0, ..., un+m,0) at J a vector
û = (û1, ...ûn+m) so that the following holds.
On each edge Ii, i = 1, ..., n + m, the solution is given by the solution to the
initial-boundary value problem with initial value ui,0 and the boundary data ûi.
We require the consistency condition

(CC) RS(RS(u0)) = RS(u0).
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Now we can define admissible solutions at J .

Definition 4.2.3. Assume a Riemann Solver RS is assigned at a junction J .
Let u = (u1, ..., un+m), ui : [0,+∞)× Ii → Rp be such that ui(t, ·) is of bounded
variation for every t ≥ 0. Then u is an admissible weak solution to (4.2.1)
related to RS at the vertex J if and only if the following properties hold:

(i) ui is a weak solution to (4.2.1) on the edge;
(ii) for almost every t > 0, setting

uJ(t) = (u1(·, b1−), ..., un(·, bn−), un+1(·, an+1+), ..., un+m(·, an+m+)),

we have
RS(uJ(t)) = uJ(t).

in traffic modeling cars can not disappear or be created at a junction. So for
traffic the quantity u must be conserved at the vertex J . In other words the
total flux in to the junction must be the same as the total flux out of the junc-
tion. Therefore, necessary condition is to ask equality of incoming and outgoing
fluxes for the obtained solution of û. But this is not enough, because the initial-
boundary value problem on each edge may produce a solution which does not
attain the boundary value pointwise. To ensure conservation of u, we need that
the solutions to the initial boundary value problem have negative characteristic
velocities on incoming edges and positive characteristic velocities on outgoing
ones. This adds up to ask the Riemann problem on the real line with initial
data (ui,0, ûi), i = 1, ..., n+m, to only produces waves with positive velocities.
Conservation of u at the vertex J is the same as to ask:

Cons.1 if û = RS(u0), then for incoming edges the solution to the Riemann
problem (ui,0, ûi) admits waves with strictly negative speed, i = 1, ..., n, while
for outgoing edges the solution to the Riemann problem (ûj , uj,0) admits all
waves with positive speed, j = n+ 1, ..., n+m.
Cons.2 if û = RS(u0), then the incoming flux is equal to the outgoing one,
i.e.:

n∑
i=1

fi(ûi) =
n+m∑
j=n+1

fj(ûj).

These to conditions gives that the sum of traces of fluxes over incoming edges
is equal to the sum of traces of fluxes over the outgoing edges.

In order to find out how much traffic that can flow though a junction, i.e.
images of which region the Riemann solver belongs to, we need some prelimi-
nary results:
(F) f : [0, 1]→ R is a smooth, strictly concave and satisfies f(0) = f(1) = 0. f
a unique maximum σ ∈ (0, 1) such that f ′(σ) = 0, i.e σ is a strict maximum.
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Definition 4.2.4. Let τ : [0, 1]→ [0, 1] be a map such that:
1. f(τ(u)) = f(u) for every u ∈ [0, 1];
2. τ(u) 6= u for every u ∈ [0, 1]\{σ}.
Proposition 4.2.1. The function τ is well defined and continuoues. Moreover
it satisfies

0 ≤ u ≤ σ ⇐⇒ σ ≤ τ(u) ≤ 1, σ ≤ u ≤ 1 ⇐⇒ 0 ≤ τ(u) ≤ σ.

Proof. Fix u ∈ [0, 1]. If u = σ, then τ(u) = u, since there is just one point of
maximum for f . If u 6= σ, then by 1., τ(u) can assume at most two values. One
is u itself, while the other belongs to (σ, 1] if u < σ or it belongs to [0, σ) if
u > σ. Since we want that τ(u) 6= u if u 6= σ, then τ is clearly well defined and
the equation is satisfied.
The continuity of τ follows from the regularity of the flux f .

Now we have what we need to construct all regions for which the images of all
possible Riemann solvers exists. This is described by the next proposition.
Proposition 4.2.2. Fix a vertex J , an initial value (u1,0, ..., un+m,0) and a
Riemann solver RS satisfying Cons.1 and Cons.2. Define

(û1, ..., ûn+m) = RS(u1,0, ..., un+m,0).

For an incoming edge Ii the following possibilities hold :
1. if the initial value ui,0 ∈ [0, σ], then

ûi ∈ {ui,0} ∪ (τ(ui,0), 1];

2. if the initial value ui,0 ∈ [σ, 1], then

ûi ∈ [σ, 1].

For an outgoing edge Ij the following possibilities hold:
1. if the initial value uj,0 ∈ [0, σ], then

ûj ∈ [0, σ];

2. if the initial value uj,0 ∈ [σ, 1], then

ûj ∈ {uj,0} ∪ [0, τ(uj,0)).

The proof of this proposition can be found in [2, pp. 101-102]. The proposition
allows us to introduce the following functions. For each incoming edge Ii, define

γmax
i (ui,0) =

{
f(ui,0), if ui,0 ∈ [0, σ]
f(σ) if ui,0 ∈ (σ, 1] (4.2.2)

while for each outgoing edge Ij , define

γmax
j (uj,0) =

{
f(σ), if uj,0 ∈ [0, σ]
f(uj,0) if uj,0 ∈ (σ, 1] (4.2.3)

The quantities γmax
i (ui,0) and γmax

j (uj,0) represent the maximum flux that can
be obtained by a single wave solution on each road.
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5 Lighthill–Witham–Richards Model on Networks
The LWR-model will be used on each road and at each junction. We look at
Riemann solvers that satisfy the conservation of cars (Con1 and Con2) and the
following rules:

(A) In some way drivers choose where to drive, that is the traffic from in-
coming roads is distributed on outgoing roads according to fixed coefficients;
(B) Respecting (A), the drivers choose to maximize fluxes.

When there are more incoming roads than outgoing we need a right of way
parameter that describes how many cars that can drive through the junction
from the incoming roads.

5.1 Basic Defintions and Assumptions
Definition 5.1.1. A road network is a network. The edges is represented by
undirectional roads and the vertices by junctions.
Given a road network (I,J ). On each road we have the equation

ρt + f(ρ)x = 0, (5.1.1)

where ρ = ρ(x, t) ∈ [0, ρmax], (t, x) ∈ R+ × R, is the density of cars, v is the
average speed and f(ρ) = vρ is the flux. We assume the following:
(A1) ρmax = 1;
(A2) the speed v depends only on the density ρ;
(A3) the flux f is a strictly concave C2 function;
(A4) f(0) = f(1) = 0.

(A3) and (A4) gives that f has a unique point of maximum σ ∈ (0, 1).

To distribute the traffic at each junction, we give each junction J a traffic-
distribution matrix, i.e a matrix describing the percentage of cars from outgoing
to incoming roads.
Definition 5.1.2. Given a junction J with n incoming roads, say I1, .., In, and
m outgoing roads, say In+1, ..., In+m. Then, the traffic distribution matrix A is
given by

A =

αn+1,1 · · · αn+1,n
...

...
...

αn+m,1 · · · αm+n,n

 (5.1.2)

where 0 ≤ αi,j ≤ 1 for all i ∈ {1, ..., n} and all j ∈ {n+ 1, ..., n+m} and
n+m∑
j=n+1

αi,j = 1 (5.1.3)

for every i ∈ {1, ..., n}.
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Given a junction J and an incoming road Ii, the i-th column of A describes
how the traffic from Ii distributes in percentages to the outgoing roads. So if
C is the quantity of traffic coming from road Ii then αi,jC traffic moves toward
roads Ij .
We introduce a technical condition on the matrix A. We say that the matrix A
satisfies hypothesis (C) if the following holds.

(C) Let {e1, ..., en} be the canonical basis of Rn and for every subset V ⊂ Rn
indicated by V ⊥ its orthogonal. Define for every i = 1, .., n, Hi = {ei}⊥, i.e the
coordinate hyperplane orthogonal to ei and, for every j = n + 1, ..., n + m let,
αj = (αj1, ..., αjn) ∈ Rn and define Hj = {αj}⊥. Let K be the set of indices
k = (k1, ..., kl), 1 ≤ l ≤ n − 1, such that 0 ≤ k1 < k2 < · · · < kl ≤ n + m and
for every k ∈ K set Hk =

⋂l
h=1Hkh

. Letting 1 = (1, ..., 1) ∈ Rn, then for every
k ∈ K,

1 /∈ H⊥k (5.1.4)
Condition (C) is a technical condition, which is important to isolate the unique
solution to Riemann problems at a junction. From (C) we see that m ≥ n. If
that is not the case, then by the definiton 1 =

∑n+m
j=n+1 αj , we get 1 ∈ H⊥k ,

where
Hk = ∪n+m

j=n+1Hj .

The case where m = n we can check that condition (C) is generic in the space
of n × n matrices, which means that the set of matrices satisfying (C) is open
and dense.
If n ≥ 2, then (C) gives that, for every j ∈ {n + 1, ..., n + m} and for every
distinct elements i, i′ ∈ {1, ..., n}, αj,i 6= αj,i′ holds. Otherwise, without loss of
generality, we may suppose that αn+1,1 = αn+1,2. Since

H = (∩2<j≤nHj) ∩Hn+1,

then, by condition (C), there exists an element (x1, x2, 0, ..., 0) ∈ H such that
x1 + x2 6= 0 and αn+1,1(x1 + x2) = 0
In the case of a simple junction J with 2 incoming roads and 2 outgoing roads,
then (C) is equivalent to that, for all j ∈ 3, 4, αj,1 6= αj,2.
From here on we will assume that each traffic-distribution matrix satisfies hy-
pothesis (C).

We write ρi : [0,+∞) × Ii → [0, 1] for the density of cars in the road Ii of the
network. We want ρi to be a weak entropic solution on Ii, i.e. for every smooth
function ϕ : [0,+∞)× Ii → R with compact support on (0,+∞)× (ai, bi),∫ +∞

0

∫ bi

ai

(
ρi
∂ϕ

∂t
+ f(ρi)

∂ϕ

∂x

)
dxdt = 0, (5.1.5)

and for every k ∈ R and every smooth ϕ̃ : [0,+∞) × Ii → R, positive with
compact support on (0,+∞)× (ai, bi),∫ +∞

0

∫ bi

ai

(
|ρi − k|

∂ϕ̃

∂t
+ sgn(ρi − k)(f(ρi − f(k))∂ϕ̃

∂x

)
dxdt ≥ 0. (5.1.6)
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Definition 5.1.3. Let J be a junction with incoming roads, say I1, ..., In, and
outgoing roads, say In+1, ..., In+m. A weak solution at J is a collection of func-
tions ρl : [0,+∞)× Il → R, l = 1, .., n+m, such that

n+m∑
l=1

(∫ +∞

0

∫ bl

al

(
ρl
∂ϕl
∂t

+ f(ρl)
∂ϕl
∂x

)
dxdt

)
= 0, (5.1.7)

for every smooth ϕ, l = 1, ..., n+m, having compact support in the set (0,∞)×
(al, bl] for l = 1, .., n ( incoming roads) and in (0,∞) × [al, bl) for l = n +
1, ..., n+m (outgoing roads), that are also smooth across the junction, i.e.

ϕi(·, bi) = ϕj(·, aj)
∂ϕi
∂x

(·, bi) = ∂ϕj
∂x

(·, aj)

where i ∈ {1, .., n} and j ∈ {n+ 1, .., n+m}.

Lemma 5.1.1. Let ρ = (ρ1, ..., ρn+m) be a weak solution at the junction such
that each x → ρi(t, x) has bounded variation. Then ρ satisfies the Rankine-
Hugonit Condition at the Junction J , namely

n∑
i=1

f(ρi(t, bi−)) =
n+m∑
j=n+1

f(ρj(t, aj+)), (5.1.8)

for almost every t > 0.

Proof. Suppose for simplicity that, for every l ∈ {1, ..., n + m}, ρl is constant
on Il. Then (5.1.7) implies that

n+m∑
l=1

∫ +∞

0

∫ bl

al

div(ρlϕl, f(ρl)ϕl)dxdt = 0.

By the divergence theorem to the last expression and by using the hypothesis
on the function ϕl we get∫ +∞

0

 n∑
l=1

f(ρl(t, bl))−
n+m∑
j=n+1

f(ρl(t, al))

ϕ1(t, bl)dt = 0

and so
n∑
l=1

f(ρl(t, bl)) =
n+m∑
l=n+1

f(ρl(t, al))

by the arbitrariness of the function ϕ1.

Definition 5.1.4. Let ρ = (ρ1, ..., ρn+m) be such that ρi(t, ·) is of bounded vari-
ation for every t ≥ 0. Then ρ is an admissible weak solution of (5.1.1) related
to matrix A at the junction J if and only if the following properties hold:

(i) ρ is a weak solution at the junction J ;
(ii) f(ρj(·, aj+)) =

∑n
i=1 αj,if(ρi(·, bi−)), for each j = n+ 1, ..., n+m;

(iii)
∑n
i=1 f(ρi(·, bi)) is maximum subject to (i) and (ii).
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(i) is equivalent the conservation of cars at junctions. (ii) and (iii) describes the
rules (A) and (B), the preferences of drivers and the maximization procedure.

Definition 5.1.5. Given ρ̄i : Ii → R, i = 1, ..., N , L∞ functions, a collection
of functions ρ = (ρ1, ..., ρN ), with ρi : [0,+∞)×Ii → R continous function from
[0,+∞) into L1

loc, is an admissible solution if ρi is a weak entropic solution to
(5.1.1) on Ii, ρi(0, x) = ρ̄i(x) a.e., at each junction ρ is a weak solution and is
an admissible weak solution in the case of bounded variation.

For all the roads Ii = [ai, bi] of a network. If ai > −∞, we assume, by definition
4.1.2 that it is an incoming road of a junction. Likewise, if bi < +∞ it is an
outgoing road of a junction. Then a solution for every time is determined just
by initial value on the network.
In the real world we have no infinite roads. So if a road has ai finite but is not
outgoing we have to assign boundary data. Likwise if bi finite, but not incoming
for any junction.

5.2 The Riemann Problem at Junctions
The next step is to construct a Riemann solver at junctions, satisfying rules (A)
and (B). We will look at the case of a junction where there are more incoming
roads than outgoing, and the case where there are less incoming than outgoing.
We go in special detail in the case where there are one incoming road and two
outgoing.

For a junction J with n incoming roads and m outgoing roads (Figure 5.2.1)
and a distribution matrix A. We indicate by

(t, x) ∈ R+ × Ii → ρi(t, x) ∈ [0, 1], i = 1, ..., n (5.2.1)

the densities of cars on the roads with incoming traffic and

(t, x) ∈ R+ × Ij → ρj(t, x) ∈ [0, 1], j = n+ 1, ..., n+m (5.2.2)

those roads with outgoing traffic. The initial densities are (ρ1,0, ..., ρn+m,0) in
each road of the junction J . In this section, we use the function τ of Definition
4.2.4.

The case n ≤ m

For a junction J , we have more outgoing roads or the same amount as the
number of incoming roads.

Theorem 5.2.1. Consider a junction J , assume (A1)-(A4) and that the matrix
A satisfies the condition (C). For every ρ1,0, ..., ρn+m,0 ∈ [0, 1], there exists a
unique admissible centered weak solution ρ = (ρ1, ..., ρn+m) to (5.1.1) at the
junction J , in the sense of Definition 5.1.1, such that

ρ1(0, ·) ≡ ρ1,0, ..., ρn+m(0, ·) ≡ ρn+m,0.
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Figure 5.2.1: A junction with n incoming roads and m outgoing roads.

Then there exists a unique n+m-tuple (ρ̂1, ..., ρ̂n+m) ∈ [0, 1]n+m such that

ρ̂i ∈
{
{ρi,0} ∪ (τ(ρi), 1], if 0 ≤ ρi,0 ≤ σ

(σ, 1], if σ ≤ ρi,0 ≤ 1 i = 1, ..., n (5.2.3)

and

ρ̂j ∈
{

[0, σ], if 0 ≤ ρj,0 ≤ σ
{ρi,0} ∪ [0, τ(ρj)), if σ ≤ ρi,0 ≤ 1 j = n+ 1, ..., n+m (5.2.4)

and for i ∈ {1, ..., n} the solution is given by the wave (ρi,0, ρ̂i), while for j ∈
{n+ 1, ..., n+m} the solution is given by the wave (ρ̂j , ρj,0).

The above theorem produces the unique Riemann solver RS that gives us an
admissible weak solution to the Riemann problem at a junction that satisfies
rules (A) and (B).
The theorem leads to the following corrolary.

Corollary 5.2.1. Consider a junction J , assume (A1)-(A4) and that the ma-
trix A satisfies (C). Then there exist a unique Riemann solver compatible with
Definition 5.1.4. Moreover, for every ρ1,0, ..., ρn+m,0 ∈ [0, 1], the n + m-tuple
(ρ̂1, ..., ρ̂n+m) = RS(ρ1,0, ..., ρn+m,0) satisfies (5.2.3) and (5.2.4).

Proof of Theorem 5.2.1. Define the map

E : (γ1, ..., γn) ∈ R→
n∑
i=1

γi (5.2.5)

and the sets

Ωi := [0, γmax
i (ρi,0)], i = 1, ..., n

Ωj := [0, γmax
j (ρj,0)], j = n+ 1, ..., n+m

(5.2.6)

Ω := {(γ1, ..., γn) ∈ γ1 × · · · × γn|A · (γ1, ..., γn)T ∈ γn+1 × · · · × γn+m}

where the functions γmax
i and γmax

j are respectively defined in (4.2.2) and in
(4.2.3).
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Figure 5.2.2: The set Ω for a simple junction J with 2 incoming and 2 outgoing
roads.

By Proposition 4.2.2, the sets Ωi and Ωj contain all the possible fluxes for the
solution of the Riemann problem at J . The set Ω is closed, convex and not-
empty (Figure 5.2.2).

By (C), ∇E = 1 and is not orthogonal to any nontrivial subspace contained
in a supporting hyperplane of Ω, which means that there exists a unique vector
(γ̂1, ..., γ̂n) ∈ Ω such that

E(γ̂1, ..., γ̂n) = max
(γ1,...,γn)∈Ω

E(γ1, ..., γn).

For every i ∈ {1, ..., n}, we choose ρ̂i ∈ [0, 1] such that

f(ρ̂i) = γi, ρ̂i ∈
{
{ρi,0} ∪ (τ(ρi,0), 1], if 0 ≤ ρi,0 ≤ σ,

(σ, 1], if σ ≤ ρi,0 ≤ 1.

By (A3) and (A4), a such ρ̂i exists and is unique. Let

γ̂j=̇
n∑
i=1

αjiγ̂i, j = n+ 1, ..., n+m

and ρ̂j ∈ [0, 1] be such that

f(ρ̂j) = γj , ρ̂j ∈
{

[0, σ], if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)), if σ ≤ ρj,0 ≤ 1.

Since (γ̂1, ..., γ̂n) ∈ Ω, ρ̂j exists and is unique for every j ∈ {n + 1, ..., n + m}.
Solving the Riemann problem on each road, and the proof follows.
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The case of n ≥ 2 Incomming Roads and m = 1 Outgoing Road

If there are a junction with n incoming roads and one outgoing road then the
condition (C) on matrix A do not hold. If all cars can not drive through the
junction, there is a yielding rule that describes the percentage of cars crossing
the junction, which comes from a particular road.
We first look at the case n = 2. In situations like this we need to fix a right of
way parameter q ∈ (0, 1) and the rule:

(P) Assume that not all cars can enter the outgoing road and let C be the
amount that can. Then qC cars come from the first incoming road and (1−q)C
cars from the second.

Take a junction with two incoming roads [ai, bi], i = 1, 2, and one outgoing
road [a3, b3] and assume that a right of way parameter q ∈ (0, 1) is given. Then
the solution of the Riemann problem (ρ1,0, ρ2,0, ρ3,0) is formed by a single wave
on each road connecting the initial states to (ρ̂1, ρ̂2, ρ̂3) determined in the fol-
lowing way.
We want to maximize the flux so we set:

γ̂3 = min{γmax
1 (ρ1,0) + γmax

2 (ρ2,0), γmax
3 (ρ3,0)} (5.2.7)

where the functions γmax
i are from (4.2.2) og (4.2.3). Consider the space (γ1, γ2)

and the line:
γ2 = 1− q

q
γ1. (5.2.8)

The line is the locus of points satisfying rule (P). The point of intersection
between the line (5.2.8) and the line γ1 + γ2 = γ̂3 we denote by P . Remember
that the final fluxes should belong to the region

Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i (ρi,0), 0 ≤ γ1 + γ2 ≤ γ̂3}.

We look at the two cases:

(a) P belongs to Ω,
(b) P is outside Ω.

For the first case we set (γ̂1, γ̂2) = P , in the second case we set (γ̂1, γ̂2) = Q,
where the point Q is the point of segment Q ∩ {(γ1, γ2) : γ1 + γ2 = γ̂3} closest
to the line (5.2.8). Figure 5.2.3 shows the two cases.

For case (b) it is impossible to follow rule (P) in an exact way if we want
to maximize the flux. So the point Q is the point that best follows the rule (P)
in the set of points that maximize the sum of fluxes.
Once we have determined γ̂1, γ̂2 and γ̂3 we can determine ρi in a unique way
(i ∈ {1, 2, 3}). From this we can deduce the following theorem:
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Figure 5.2.3: The case (a) and (b)

Theorem 5.2.2. Consider a junction J with n = 2 incoming roads and m = 1
outgoing road, assume (A1)-(A4) and fix a right of way parameter q ∈ (0, 1).
For every ρ0,1, ρ0,2, ρ0,3 ∈ [0, 1], there exists a unique admissible centered weak
solution ρ = (ρ1, ρ2, ρ3) to (5.1.1) at the junction J , in the sense of Definition
5.1.4, satisfying rule (P) (possibly in a approximate way) such that

ρ0,1(0, ·) ≡ ρ1,0, ρ0,2(0, ·) ≡ ρ2,0, ρ0,3(0, ·) ≡ ρ3,0.

Moreover, there exists a unique 3-tuple (γ̂1, γ̂2, γ̂3) ∈ [0, 1]3 such that

ρ̂i ∈
{
{ρi,0} ∪ (τ(ρi,0), 1], if 0 ≤ ρi,0 ≤ σ,

[σ, 1], if σ ≤ ρi,0 ≤ 1. i = 1, 2, (5.2.9)

and
ρ̂3 ∈

{
[0, σ], if 0 ≤ ρ3,0 ≤ σ,

{ρ3,0} ∪ [0, τ(ρ3,0)), if σ ≤ ρ3,0 ≤ 1. (5.2.10)

and for i ∈ {1, 2}. The solution is given by the wave (ρi,0, ρ̂i), while for the
outgoing road the solution is given by the wave (ρ̂, ρ3,0).

Corollary 5.2.2. Consider a junction J with n = 2 incoming roads and m = 1
outgoing road, assume (A1)-(A4) and fix a right of way parameter q ∈ (0, 1).
Then there exists a unique Riemann solver RS, compitable with Definition 5.1.4
and rule (P). And for every ρ1,0, ρ2,0, ρ3,0 ∈ [0, 1], the 3-tuple (ρ̂1, ρ̂2, ρ̂3) =
RS(ρ1,0, ρ2,0, ρ3,0) satisfies (5.2.9) and (5.2.10).

We describe the case of a junction J with n > 2 incoming roads and m = 1
outgoing road briefly. Fix n − 1 positive parameters q1, ..., qn−1 and consider
the line r in Rn, given by 

γn = q1γ1
...

...
γn = qn−1γn−1.

(5.2.11)
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Here the solution to the Riemann problem with initial conditions given by
(ρ1,0, ..., ρn,0, ρn+1,0) is formed by waves connecting the initial states to (ρ̂1, ..., ρ̂n, ρ̂n+1),
determined in the following way. Define

γ̂n+1 = min{γmax
1 (ρ1,0) + · · ·+ γmax

n (ρn,0), γmax
n+1(ρn+1,0)}

where the functions γmax
i are defined in (5.2.2)+(5.2.3). Define the closed and

convex set K in Rn

{(γ1, ..., γn) : γ1 + γ2 + · · · γn = γ̂n+1, 0 ≤ γi ≤ γ̂max
i (ρi,0), i = 1, ..., n}

Consider the unique point (γ̂1, ..., γ̂n) ∈ K which minimizes the distance from
the point P ∈ r, where P is the intersection between the line r and the hyper-
plane

γ1 + · · ·+ γn = γ̂n+1.

Finally imposing f(ρ̂l) = γ̂l (l = 1, ..., n, n + 1), we obtain the trace of the
solution to the Riemann problem at the junction.
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6 Numerical approximations for conservation laws
We first compare the Upwind scheme and the Lax-Friedrichs scheme, which will
give motivation for the Godunov method, and illustrate with some examples.
All the schemes can be found and is discussed in [6].
We discretize the (x, t)-plane by the mesh (xi, tn) with

xi = ih (i ∈ Z) tn = nk (n ∈ N0)

and k,h > 0. For simplicity we use a uniform mesh with k and h constant,
but the discussed methods can be extended to non-uniform meshes. We want a
finite difference approximations uni to the solution u(xi, tn) at the discrete grid
points. i = 1, ..., N .

6.1 Approximations for linear equations
Before we study numerical methods for nonlinear scalar equations we start with
a very simple linear equation

ut + aux = 0, x ∈ R, t > 0, (6.1.1)

u(x, 0) = u0(x), x ∈ R, (6.1.2)

where a > 0. This problem has the explicit solution u(x, t) = u0(x− at) which
is a weak solution (if u0 is smooth enough).
This equation can be written by Taylor expansion as

u(xi, tn+1)− u(xi, tt)
k

+O(k) = −au(xi+1)− u(xi−1)
2h +O(h2),

which motivates the following numerical scheme:

Central scheme
un+1
i = uni −

ak

2h (uni+1 − uni−1). (6.1.3)

As we compute un+1
i from the data uni , this is an explicit scheme. Since for

time-dependent hyperbolic equations, implicit schemes are rarely used, we con-
sider in the following only explicit schemes. The scheme can be improved by
using an arithmetic average in the approximation of the time derivative. This
leads to the following scheme.

Lax-Friedrichs scheme In this scheme the time derivative is approximated
by

1
k

(
u(x, t+ k)− 1

2(u(x+ h, t) + u(x− h, t))
)
,

i.e

un+1
i = 1

2(uni+1 + uni−1)− ak

2h (uni+1 − uni−1), i = 1, ..., N − 1. (6.1.4)
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The spatial derivative at xi uses the information at xi+1 where the wave will go
in the next time step. It would be more reasonable to use the information at
xi−1 where the wave comes from. This is done in the following scheme.

Upwind scheme The scheme reads as follows

un+1
i = uni −

ak

h
(uni − ui−1), i = 1, ..., N. (6.1.5)

This scheme gives the correct solution, no oscillations, but with artificial diffu-
sion.
In Figure 6.1.1 we illustrate the behavior of the 3 suggested methods using
discontinuous data

u0(x) =
{

1 : 0 ≤ x < 1/2
0 : 1/2 ≤ x ≤ 1 (6.1.6)

with the parameter a = 1, t = 0.25, k = 0.001. We restrict the computational
domain to [0, 1] and the boundary data un+1

0 = un0 and un+1
N = unN . In the traffic

flow interpretation, the traffic is heavy in [0, 1/2] and light in [1/2, 1]. So, at
x = 0, at x = 1 they are exiting.

Observe that the central scheme is oscillating with damped oscillations for
small k (Figure 6.1.1 (first row, left); h = 0.01); the Lax-Fredrichs scheme is
less diffusive but not oscillatory (Figure 6.1.1(first row, right)); and the up-
wind scheme is less diffusive than the Lax-Friedrichs scheme (Figure 6.1.1(last
row,left)). Choosing mesh size h = k = 0.01, both schemes produce a solution
which is very close to the exact solution (Figure 6.1.1(last row,right)). All the
schemes are able to compute the correct shock speed.

6.2 Approximations for nonlinear equations
The traffic flow model is nonlinear, so we want to study what happens when we
discretize nonlinear equatios. We discretize the LWR-Model.

ut + (u− u2)x = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R

and we choose the initial values

u0(x) =
{

1/4 : x < 0
1/2 : x > 0 (6.2.1)

and the boundary data un+1
0 = un0 and un+1

N = unN . We present and compare
two different numerical approximations.

Upwind Scheme

un+1
i = uni −

k

h
(1− 2uni−1)(uni − uni−1) (6.2.2)
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Figure 6.1.1: Various numerical schemes for (6.1.1) with a = 1 and discontinous
data 6.1.6. First row, left : central: first row, right: Lax-Friedrich; last row,
left: upwind; last row, right:Lax-Friedrichs (broke line) and upwind (solid line)
for h = 0.001, k = 0.001.

Lax-Friedrichs Scheme

un+1
i = 1

2(uni+1 + uni−1)− k

2h ((uni+1 − (uni+1)2)− (uni−1 − (uni−1)2)), (6.2.3)

The exact solution of the problem is

u(x, t) =
{

1/4 : x < 1
4 t

1/2 : x > 1
4 t

so at at t = 2 the discontinuity should be at x = 1
2 . Thus the numerical solution

of the Upwind scheme propagates with the wrong speed. A better behavior
is given by the Lax-Friedrichs scheme. From the Figure 6.2.1 we see that the
Lax-Friedrichs the scheme is non-oscillatory and the shock speed is correct.
What is the reason for the different shock speeds? The upwind scheme (6.2.1)
is a discretization of the quasilinear equation

ut + (1− 2u)ux = 0,
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Figure 6.2.1: Exact and numerical solutions for the inviscid Burger equation us-
ing the upwind scheme(6.2.2)(left) and the Lax-Friedrichs scheme(6.2.3)(right).
k = 0.001.

whereas the scheme (6.2.3) is an approxiation of the eqtuation in conservation
form

ut + (u− u2)x = 0.

For smooth solutions both equations are the same, but we know from section 2
that is may not be true for weak solutions.
In the following we consider only numerical methods in conservation form, mean-
ing that the scheme is of the form

un+1
i = uni −

k

h
[F (uni−p, ..., uni+p)− F (uni−1−p, ..., u

n
i−1+q)]

for some function F of p + q + 1 arguments. We call F the numerical flux
function. The simplest case is for p = 0 and q = 1, where

un+1
i = uni −

k

h
[F (uni , uni+1)− F (uni−1, u

n
i )]. (6.2.4)

This expression can be interpreted as a cell average. We will see that the weak
solution of

ut + f(u)x = 0, x ∈ R, t > 0,

satisfies the integral form

1
h

∫ xi+1/2

xi−1/2

u(x, tn+1)dx = 1
h

∫ xi+1/2

xi−1/2

u(x, tn)dx

− k

h

[
1
k

∫ tn+1

tn

f(u(xi+1/2, t))dt−
1
k

∫ tn+1

tn

f(u(xi−1/2, t))dt
]
,

(6.2.5)
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where xi±1/2 = (i±1/2)h is the middle point between xi and xi±1. Interpreting
uni as an approximation of this middle point,

uni ∼
1
h

∫ xi+1/2

xi−1/2

u(x, tn)dx,

and F (uni , uni+1) as approximations of the average flux through xi+1/2 over the
time interval (tn, tn+1),

F (uni , uni+1) ∼ 1
h

∫ tn+1

tn

f(u(xi+1/2, t))dt,

we obtain the approximation (6.2.4) from (6.2.5).
The Lax-Friedrichs scheme is written in conservative form by setting:

F (uni , ui+1) = h

2k (uni + uni+1) + 1
2(f(uni + f(uni+1)).

The conservative form of the upwind scheme is shown in the next section. A
conservative scheme is called consistent if F (u, ..., u) = f(u).

6.3 The Godunov Method
Now we have seen some of the advantages and disadvantages of both the Lax-
Friedrich scheme and upwind scheme, both for linear and nonlinear equations.
We want a scheme that has Lax-Friedrichs shock speed, and that is as little
dissipative as the upwind scheme. A natural generalization for the upwind
scheme is

un+1
i = uni −

k

h
[F (uni , uni+1)− F (uni−1, u

n
i )] (6.3.1)

F (v, w) =
{

f(v) : (f(v)− f(w))/(v − w) ≥ 0
f(w) : (f(v)− f(w))/(v − w) < 0.

For linear equations, F (v, w) = f(v), and (6.3.1) reduses to the upwind scheme.
However, there is a problem with the above approximation. Take f(u) = u(1−u)
and choose the initial values:

u0
i =

{
0 : i ≤ 0
1 : i > 0.

Since F (u0
i , u

0
i+1) and F (u0

i−1, u
0
i ) are either equal to f(0) or f(1) and since

f(0) = f(1), we obtain that u1
i = u0

i for all i and hence uni = u0
i for all i. which

is not correct.
This leads to the Godunov Scheme, a conservative and consistent generalization
of the upwind scheme. Let f be a concave C2 function. The idea of this method
is to approximate the solution u(x, tn) of the conservation law ( scalar or system)

ut + f(u)x = 0, x ∈ R, t > 0,
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by i piecewise constant fuction ũn(x, tn) by solving the Riemann problem in the
interval t ∈ [tn, tn+1]. After obtaining this solution, we define the approximate
solution un+1

i at time tn+1 by averaging at the time tn+1:

un+1
i = 1

h

∫ xi+1/2

xi−1/2

ũn(x, tn+1)dx, (6.3.2)

where xi±1/2 = (i±1/2)h. These values are then used to define the new piecewise
constant data ũn+1(x, tn+1) by:

ũn+1(x, tn+1) = un+1
i if xi−1/2 ≤ x < xi+1/2

and the process repeats.
We can considerably simplify this algorithm since the above integral can be
computed explicitly. Since ũn is assumed to be the exact weak solution, it
satisfies a weak solution proposed in [1], but we present it without the technical
proof:
Let u be a classical solution of (2.2.1). Integrating (2.2.1) over (x1, x2) × (s, t)
for any (x1, x2) ∈ R and s, t > 0 gives∫ x2

x1

u(x, t)dx−
∫ x2

x1

u(x, s)dx = −
∫ t

s

f(u(u(x2, τ)))dτ +
∫ t

s

f(u(x1, τ))dτ.

Inserting ũn and divided by h we get:
1
h

∫ xi+1/2
xi−1/2

ũn(x, tn+1)dx = 1
h

∫ xi+1/2
xi−1/2

ũn(x, tn)dx

− kh
[

1
k

∫ tn+1
tn

f(ũn(xi+1/2, t))dt− 1
k

∫ tn+1
tn

f(ũn(xi−1/2, t))dt
]

From (6.3.2) it follows that

un+1
i = uni −

k

h
[F (uni , uni+1)− F (uni−1, u

n
i )],

where the numerical flux function F is given by

F (uni , uni+1) = 1
k

∫ tn+1

tn

f(ũn(xi+1/2, t))dt.

So the Godunov scheme is conservative. The function ũ is constant on the
line x = xi+1/2, tn ≤ t ≤ tn+1, see Figure 6.3.1. We denote this value by
u∗(uni , uni+1).

The flux then reduces to

F (uni , uni+1) = f(u∗(uni , uni+1))

and the Godunov scheme becomes

un+1
i = uni −

k

h
[f(u∗(uni , uni+1))− f(u∗(uni−1, u

n
i ))].
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Figure 6.3.1: Illustration for the Godunov scheme. There is a shock through
xi−1/2 and a rarefraction wave starting at xi+1/2.

The scheme is consistent since F (uni , uni ) = f(uni ) and f is assumed to be
smooth.
For large t− tn, the solution may not remain constant at xi+1/2 because of the
effects of waves arising from neighbouring Riemann problems. How large can we
choose k = tn+1 − tn? Assume the situation of Figure 6.3.1, i.e let ψ(t) be the
shock line through xi−1/2 and let ω(t) be the left end of the rarefraction wave
starting at xi+1/2. The time tn+1 is determined by the requirement ψ(tn+1) ≤
ω(tt+1). Since

ψ(t) = xi−1/2 + s(t− tn) with s =
f(uni+1)− f(uni )

uni+1 − uni

and
ω(t) = xi+1/2 + f ′(uni )(t− tn),

this means that

h = xi+1/2 − xi−1/2 ≥ (s− f ′(uni ))(tn+1 − tn) = (s− f ′(uni ))k. (6.3.3)

As f is assumed to be concave, s lies between f ′(uni ) and f ′(uni+1), i.e

|s| ≤ max{|f ′(uni )|, |f ′(uni+1)|}.

we get
s− f ′(uni+1) ≤ |s|+ |f ′(uni )| ≤ 2sup

i,n
|f ′(uni )| ≤ h

k

so (6.3.3) is satisfied. This condition ensures that the shock and the rarefrac-
tion wave do not interact in the mesh cell [xi−1/2, xi+1/2]× [tn, tn+1). We obtain
the same condition if there is a rarefraction wave at xi−1/2 and a shock at
xi+1/2 or if there are two shocks at xi±1/2 since the wave speed are bounded by
sup |f ′(uni )|.
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We can allow the waves to interact during the time step, provided the inter-
action is entirely contained within a mesh cell. This leads to the condition
2 sup |f ′(uni )| ≤ 2h/k or

ν = sup
i,n

∣∣∣∣f ′(uni )k
h

∣∣∣∣ ≤ 1,

This condition can be interpreted as a generalization of the CFL condition for
linear conservation laws.
Our next question is how can we determine u∗ from uni , uni+1? We need to solve
the Riemann problem. For scalar conservation laws, we can determine u∗ easily
from the signs of f ′(uni ) and f ′(uni+1). We have to consider the four cases:

(a) f ′(uni ) ≥ 0 and f ′(uni+1) ≥ 0 : In this case there is a rarefraction wave
starting at xi+1/2 and from Figure 6.3.2 (a) we see that u∗ = uni .

(b) f ′(uni ) < 0 and f ′(uni+1) < 0 : Again there is a rarefraction wave start-
ing at xi+1/2 but now u∗ = uni+1.( Figure 6.3.2 (b).)

(c) f ′(uni ) ≥ 0 and f ′(uni+1) < 0 : There is a shock through xi+1/2 and (Figure
6.3.2 (c))

u∗ =
{

uni : s ≥ 0
uni+1 : s < 0.

(d) f ′(uni ) < 0 and f ′(uni+1) ≥ 0 : There is a rarefracton wave starting at xi+1/2
and u∗ is the unique solution of f ′(u∗) = 0 ( since f is concave). ( Figure 6.3.2
(d)).
The resulting flux function can be written in the simplified form:

F (uni , uni+1) =


min

un
i
≤u≤un

i+1

f(u) : uni ≤ uni+1

min
un

i+1≤u≤u
n
i

f(u) : uni > uni+1.

This expression holds for general conservation laws, even non-concave ones, and
gives the correct Godunov flux corresponding to the weak solution satisfying
the entropy condition (2.3.1) of Oleinik.

Example 6.3.1. For f(u) = au(a > 0) the flux function becomes

F (uni , uni+1) = auni ,

hence the Godunov scheme is equal to the upwind scheme for linear equations.

un+1
i = uni −

ak

h
(uni − uni−1)

In this way, we can say that the Godunov method is a generalization of the
upwind scheme to nonlinear equations.

More information about the Godunov Scheme can be found in [1], [7] and [9].
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Figure 6.3.2: How to compute u∗.

6.4 Boundary Conditions and Conditions at Junctions
To set up a Godunov scheme we need to impose some boundary conditions and
some conditions at the junctions.

Boundary conditions

Suppose we assign a condition at the incoming boundary x = 0:

u(0, t) = ρ1(t), t > 0

and study the equation only for x > 0. We are considering the initial-boundary
value problem

ut + f(u)x = 0,
u(x, 0) = u0(x), x ≥ 0,
u(0, t) = ub(t), t ≥ 0,

In general the boundary data cannot be assumed, so it is not easy to find a
function u that satisfies the boundary value u(0, t) = ub(t) in a classical sense.
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We need to look for a condition that is effective only in the inflow part of the
boundary. Following [2], the way to assign the boundary condition is

max
k∈I(u(0,t),ρ1(t))

{sign(u(0, t)− ρ1(t))[F (u(0, t))− F (k)]} = 0 (6.4.1)

We inserti a ghost cell and define

un+1
0 = un0 −

k

h
[F (un0 , un1 )− F (vn1 , un0 )]

where
vn1 (t) = 1

k

∫ tn+1

tn

ρ1dt (6.4.2)

takes the place of un−1. An outgoing boundary can be treated analogously. Let
x < L = xN . Then the discretization reads:

un+1
N = uN0 −

k

h
[F (unN , vn2 )− F (unN−1, u

n
N )], (6.4.3)

where
v2(t) = 1

k

∫ tn+1

tn

ρ2dt

takes the place of unN+1, the ghost cell value. (See [2],[9])

Conditions at a junction

For roads connected to a junction at the right endpoint we set

un+1
N = uN0 −

k

h
[γ̂i − F (unN−1, u

n
N )]

while for roads connected to a junction at the left endpoint we have

un+1
0 = un0 −

k

h
[F (un0 , un1 )− γ̂j ]

where γ̂i,γ̂j are the maximized fluxes.
For the Godunov‘s scheme there is no need to invert the flux f to put it into
the scheme, as the Godunov‘s flux coincides with the Riemann‘s flux. In this
case it suffices to insert the computed maximized fluxes directly in the scheme.

Motion of the cars
We now have a matrix with different densities for all times tn = nk and all
positions xi = ih where n = 1, .., T, and i = 1, ..., N . We want to know how
a car starting at some (xi, tn) moves as time passes. We do it in the following
way: assuming that at (xi, tn) the cars has the speed v(ρ(xi, tn)) and it will
have that speed until it reaches xi+1. We then check how long time it takes,
and gives the car the new speed at that point. Say it takes t = 3k, then the
new speed is v(ρ(xi+1, tn+3)), and it keeps this speed until xi+2 and the process
continues.
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7 Numerical Exampels using the Godunov Method
In this chapter we start by solving the Riemann problem on a straight road.
Then we look at a narrowing, i.e. a road that connects with a road with a smaller
flux function. The final test is a system with multiple roads and junctions.

7.1 Riemann problem

Figure 7.1.1: Godunov Scheme for a shock solution at T = 2 (left) and Rar-
efraction at T = 1 (right). k = 0.001.

Figure 7.1.2: Godunov and Lax-friedrich for a Rarefraction solution h =
0.001(left) and h = 0.01(right). k = 0.001 and T = 1.

In this section we will look at the Riemann problem, a simple road with two
densities. Consider the case where a road of length 2 is paramterized on the
interval [−1, 1]. On the left side of zero the road has density ρ1 and on the right
side of zero it has the density ρ2. We use the LWR-model

ρt + f(ρ)x = 0,
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where f(ρ) = ρ(1− ρ).

Rarefraction wave ρ1 > ρ2. Consider the initial values

ρ(x, 0) =
{ 3

4 , x < 0
1
4 , x > 0

Then the solutions for t > 0 becomes

ρ(x, t) =


3
4 , x < − 1

2 t1
2
(
1− x

t

)
, − 1

2 t ≤ x ≤
1
2 t1

4 , x > 1
2 t

Shock Solution ρ1 < ρ2. Consider the initial values

ρ(x, 0) =
{ 1

4 , x < 0
1
2 , x > 0

Then the shock speed is s = 1/4 and the solutions for t > 0 becomes

ρ(x, 0) =
{ 1

4 , x < 1
4 t1

2 , x > 1
4 t.

We can se from the Figure 7.1.2 that the Godunov scheme is more precise than
the Lax-Friedrich for smaller values of h when we deal with the rarefraction
solutions, and it also gives better approximations for h = 0.001 even though
its hard to see from the picture. If we compare Figure 7.1.1 with Figure 6.2.1
it is more precise than both Lax-Friedrich and the upwind scheme for shock
solutions.

7.2 Narrowing
The simplest example with a junction is two roads, one incoming and one out-
going, where the outgoing has a smaller flux than the incoming one. We can
look at this as a road being narrowed. We set the flux in the first road to be
equal to

f1(ρ) = ρ(1− ρ), ρ ∈ [0, 1] (7.2.1)

and the flux in the second road to be

f2 = ρ(1− 2ρ), ρ ∈ [0, 1
2 ] (7.2.2)

The maximum fluxes is unique:

f1(σ1) = max
[0,1]

f1(ρ) = 1
4 , with σ1 = 1

2 (7.2.3)

f2(σ2) = max
[0,1/2]

f2(ρ) = 1
8 , with σ2 = 1

4 (7.2.4)
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Figure 7.2.1: The flux functions f1(ρ) and f2(ρ).

We call the point of separation between the two roads S. We indicate by ρl the
density on the left side of S (the widest part of the street) and by ρr the density
of the right side of S.
The maximal fluxes f1 and f2 are computed:

fmax
1 (ρ) =

{
f1(ρl) if ρl ≤ σ1,
f1(σ1) if ρl ≥ σ1,

fmax
2 (ρ) =

{
f2(σ2) if ρr ≤ σ2,
f2(ρr) if ρr ≥ σ2

and the maximal flux at the intersection point between the two intervals is
obtained by taking the minimum

γ = min{fmax
1 , fmax

2 }. (7.2.5)

The creation of queues occurs when the density of the first road verifies

ρ(1− ρ) = 1
8 ⇐⇒ ρ̄ =

1−
√

1
2

2 ≈ 0.15. (7.2.6)

If the car density entering the largest road, say ρ1,b, is such that ρ1,b < ρ̄ there
is no formation of shocks propagating backwards. If ρ1,b > ρ̄ there will be a
traffic jam.

We now present an example. We consider a road of length 2 parameterized
by the interval [0, 2] and set s to be at x = 1. Consider the following initial
values:

ρl = 0, ρr = 0 ρ1,b = 1
2 . (7.2.7)
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This can interpreted a red light turning green in at x = 0, and that the road
goes from two lanes to one in x = 1. Since ρ1, b > ρ̄ we get a jam. Se Figure
7.2.2.

We estimate the L1 error in the following way:

er =
N∑
j=1
|uMj (h)− uM2j (h2 )|, r = 1, ..., R.

uMm (h) is the numerical solution with space step discretization equal to h, in xm
at the final time tM = T . R denotes the number of roads. Then

TOTerror =
R∑
r=1

er.

Figure 7.2.2: Godunov Scheme for the narrowing problem at T = 0.5 (top left).
T = 2 (top right). T = 4 (bottom left). T = 8 (bottom right). k = h = 1

160 .
The anlytical solution is plotted with a strippeled line.
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L1 Error L1 Error L1 Error L1 Error
h↓ T→ 1/2 2 4 8
0.1 2.0390e− 002 3.1164e− 002 2.6270e− 002 1.2223e− 003
0.05 2.1203e− 002 1.4799e− 002 9.2414e− 003 7.8577e− 004
0.025 1.8090e− 002 1.0529e− 002 7.1166e− 003 4.8417e− 004
0.0125 1.3398e− 002 3.3735e− 003 2.7080e− 003 2.8410e− 004
0.00625 9.0833e− 003 2.4058e− 003 1.5887e− 003 1.6137e− 004
0.003125 5.8004e− 003 1.7093e− 003 1.1270e− 003 8.8344e− 005

Table 1: L1-error approximated numerically for the Narrowing problem, with
different times and values of h. k = h.

Figure 7.3.1: The center of Trondheim.

7.3 Trondheim
Now we present a simplified model of downtown Trondheim (Figure 7.3.1).

We use the roads from Figure 7.3.2. The red roads are the main roads, while
the pink roads are smaller side roads. We will model this in three different
ways, and give two examples for each model. They will be discussed in some
detail, but watching the videos[11] will give the best impression of how the
density evolves in the different models. All videos last until T = 35. For each
test there will be a tables and graphs showing how long time it takes to drive
different routes. Notice that the routes can be of different lengths. The red
roads will be numbered 1, .., n for some n, depending on the model, and s1− s4
are the numbers for the pink roads. We choose the functions f1 and f2 from
the previous example (7.2.1)-(7.2.2), where f1 is used on the red roads 1 − n
and f2 is used on the pink roads s1− s4. To simplify all roads are of length 1,
and is discretisized on the intervall [0, 1] with h = k = 0.025. Let the initial car
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Figure 7.3.2: The roads that are to be used.

density the roads be

ρ0 = (ρ1(0, x), ..., ρn(0, x), ρs1(0, x), ..., ρs4(0, x)).

Model A

Model A is based on Figure 7.3.3. This model consists of ten junctions, where
five of them have one incoming and two outgoing roads, the other five have two
incoming and one outgoing road. So 17 roads in total, 13 main roads and 4
side roads. In this model we look at the traffic going south. When a big roads
divides into one small and one big, we set the distribution matrix to be

A =
(

0.7
0.3

)
.

Hence 70 percent of the drivers choose the big road, while 30 percent choose the
small road. If it divides into two roads with the same size the traffic is divided
evenly. When two roads of different size meet and become one, we set the right
of way parameter to be q = 0.70, in favour of the bigger roads since they are
more trafficated. If they are the same size we set q = 0.5.

Test A1. Let us assume that the roads are initially empty and take the follow-
ing initial and boundary data:

ρ0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ρ3,b(t, 0) = 0.5 ρ7,b(t, 0) = 0.5
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Figure 7.3.3: Model A of Trondheim. Southbound traffic.

Comments about the video: Rarefraction waves start at the incoming roads
3 and 7, and spread through the system. Just before T = 6 the wave has gone
through roads s3 and s4, causing the incoming fluxes on road 4 and 8 to reach
their maximum. This results in shocks moving backwards on road 3 and 7.
Right after T = 8 road 12 reaches its incoming max, and we see a shock on
road 11. More and more roads are being filled up with cars, and shocks move
backwards. At T = 22 the shock from road 9 goes straight through road 8
causing a second shock on road 7. Furthermore, a slow shock goes through 10,
reaching road 6. More cars from road 6 choose the side road s2. The shock on
road 6 will slowly fill up roads 4 and 3, so that road 2 reaches ρ = 0.25 and road
1 reaches ρ = 0.175.

Test A2. Assume that the main roads are heavy trafficated, and that the side
roads have some traffic on them. And we assume that there are little incoming
traffic to Trondheim. We choose the following initial and boundary data:

ρ0 = (0.4, 0.5, 0.5, 0.7, 0.60, 0.7, 0.5, 0.5, 0.5, 0.8, 0.7, 0.7, 0.4, 0.1, 0.15, 0.2, 0.1)

ρ3,b(t, 0) = 0.15 ρ7,b(t, 0) = 0.15
Comments about the video: At first, shock- and rarefraction waves start
at almost all endpoints of the roads. At around T = 2 the shocks have met.
Most main roads give shocks backwards, filling up the roads one by one. Roads
1,2,3 and 4 are having shocks backwards. At T = 20 road 4 starts feeding road
5 with less cars and a shock is moving forward, emptying the road. As the
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density increases on road s2, a shock goes through road 6 and hits the one on
road 5. The new shock will empty the remaining roads one by one, but it moves
so slowly that it is 1/4 into road 6 at T = 150.

Motion of cars: We check the driving duration through each route starting at
different times(T) for both tests. The routes we use are

Route 1 : 3→ 4→ 2→ s1→ 6→ s2→ 8→ s4→ 12→ 13
Route 2 : 3→ 4→ 5→ 6→ 10→ 11→ 12→ 13
Route 3 : 3→ 4→ 5→ 6→ s2→ 8→ s4→ 12→ 13

A1 T=0 T=5 T=10 A2 T=0 T=5 T = 10
Route 1 15.33 18.08 20.18 Route 1 32.18 32.19 33.18
Route 2 11.00 16.36 20.22 Route 2 36.31 35.01 34.37
Route 3 13.16 16.58 18.29 Route 3 34.56 35.06 35.21

Table 2: Route through model A. Initial values from test A1 and A2. T =0, 5
and 10.

Model B

Figure 7.3.4: Model B of Trondheim. Northbound traffic.

Model B is based on Figure 7.3.4. It is the same model as Model A, except that
roads 3, 4, 5, 6, 10, 11 and 12 have changed direction. We will use the same rules
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at junctions as Model A for the distribution of traffic.

Test B1. Let us assume that the roads are initially empty and take the follow-
ing initial and boundary data:

ρ0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ρ13,b(t, 0) = 0.5 ρ7,b(t, 0) = 0.5
Comments about the video: The cars spread out from road 7 and road
13. The first cars enter the outgoing roads 3 and 1 at around T = 7. The
only backward shock we get in this test is in road 7 just before T = 6. As the
time increases roads 10,11 and 12 reach ρ = 0.5, while other main roads have
a slightly lower ρ. So driving through traffic in this model is pretty smooth, as
long as you avoid road 7 until T = 7.

Test B2. Let us assume that the roads are initially empty and take the follow-
ing initial and boundary data:

ρ0 = (0.45, 0.5, 0.45, 0.5, 0.5, 0.7, 0.55, 0.3, 0.5, 0.5, 1, 0.5, .45, 0.25, 0, 0, 0.25)

ρ13,b(t, 0) = 0.15 ρ7,b(t, 0) = 0.25
Comments about the video: Just like model A2 this model starts with many
different shocks and rarefractions. From T = 1.8 to T = 2.5 notice that road s1
has a shock going straight up. Just as in model B1, a queue is formed at road
7. Then most roads get less and less dense. Road 8 is being filled up until it
reaches ρ = 0.5. Road 10 has ρ = 0.5 during the whole simulation. Hence roads
7, 8 and 10 are the most trafficated.

Motion of cars: We check the driving duration through each route starting at
different times(T) for both tests. For model B we use the following routes:

Route 1 : 7→ 8→ s4→ 11→ 10→ 6→ 5→ 2→ 1
Route 2 : 7→ 8→ 9→ 10→ 6→ 2→ 1

B1 T=0 T=5 T=10 B2 T=0 T=5 T = 10
Route 1 12.68 16.34 18.56 Route 1 22.66 20.44 18.06
Route 2 8.53 12.93 14.09 Route 2 15.44 15.05 14.55

Table 3: Route through model B. Initial values from test B1 and B2. T=0, 5
and 10.

Model C

Model C is based on Figure 7.3.5. In this model the red roads go both ways.
This model has ten junctions: two junctions with 3 incoming and 3 outgoing
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Figure 7.3.5: Model C of Trondheim. Red roads have two directions.

roads, four junctions with 2 incoming and 1 outgoing, and four junctions with 1
incoming and 2 outgoing. For the eight junctions with 3 roads we use the same
rules as in Model A and Model B. But for the junctions with 6 roads we choose
the following distribution matrix:

A =

α3,1 α3,6 α3,8
α7,1 α7,6 α7,8
α4,1 α4,6 α4,8

 =

 α8,10 α8,14 α8,16
α15,10 α15,14 α15,16
α12,10 α12,14 α12,16

 =

0.1 0.5 0.4
0.5 0.4 0.1
0.4 0.1 0.5

 .

This distribution matrix, which respects condition (C), makes sure that only
a small amount of cars choose the same way they came from, and that most
traffic is directed through town. It also prevents a lot of traffic getting stuck in
the loop created by road 8 and 9.

Test C1. Let us assume that the roads is initially empty and take the fol-
lowing initial and boundary data:

ρ0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ρ1,b(t, 0) = 0.5 ρ5,b(t, 0) = 0.5 ρ13,b(t, 0) = 0.5 ρ18,b(t, 0) = 0.5
Comments about the video: There is not much to comment on this video.
We get the first shock on road 7 just after T = 6. This shock continues through
road 1, as this has the least right of way. As most roads end up at ρ = 0.5 or
just under, roads 1,3 and 7 will have some heavier traffic. Roads 3 and 7 ends
up at ρ = 0.7738.

Test C2. Let us assume that the main roads are crowded and take the ini-
tial values where there are few cars entering the system:

ρ0 = (0.35, 0.35, 0.2, 0.4, 0.35, 0.4, 0.7, 0.7, 0.6, 0.5, 0.25, 0.5, 0.25, 0.5, 0.4, 0.7, 0.45,
0.35, 0.1, 0.3, 0.4, 0)

ρ1,b(t, 0) = 0 ρ5,b(t, 0) = 0.45 ρ13,b(t, 0) = 0.15 ρ18,b(t, 0) = 0.25
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Comments about the video: There is a lot going on in the beginning of
model C2. The amount of cars flowing into the model is low, and there are a
lot of cars in the system. We notice that cars a leaving roads 1 and 13, and
that 2 and 11 has more incoming that outgoing. Other roads start with a shock
on both endpoints. When the shocks meet, a new shock is created, where the
”bigger” shock wins. At T = 13, only roads 2 and 11 have max incoming flux,
and there is a small queue at road 5. Roads 3,9 and 12 have forwards shocks.
The rest of the roads, except s3, are stable at a low densitis. Road s3 is almost
full, but this changes when the shock from road 9 reaches it. After this we only
see forward shocks for some of the roads, while other stay stable. The whole
system stabilizes at T = 27.

Motion of cars: We check the driving duration through each route starting at
different times(T) for both tests. Routes for model C:

Route 1 : 5→ s1→ 9→ s3→ 11
Route 2 : 5→ 6→ 7→ 9→ 10→ 12→ 11
Route 3 : 18→ 16→ 8→ 7→ 9→ s3→ 11
Route 4 : 18→ 16→ 8→ 7→ 9→ 10→ 12→ 11

C1 T=0 T=5 T=10 T=25 C2 T=0 T=5 T = 10 T = 25
Route 1 6.50 9.35 9.58 9.75 Route 1 14.01 14.13 13.08 8.50
Route 2 10.00 14.17 15.23 16.75 Route 2 18.24 15.38 13.40 11.75
Route 3 10.25 14.25 15.38 16.50 Route 3 19.99 16.68 14.84 11.00
Route 4 11.75 16.39 17.38 18.50 Route 3 19.62 16.15 14.15 12.50

Table 4: Routes through model C. With initial values from test C1 and C2.
T=0,5,10 and 25.

Figures

Plotting time vs. positions of the different routes of the models of Trondheim.
Initial values from all the tests (pp. 60-62).
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8 Comments and future work
On the web page [10], I have put my matlab codes. It is possible to change all
the fluxes and right of way parameters if you want look at how traffic evolves in
other situations. The code used for creating the videoes are also in the folder. I
have tried my best to provide enough comments in the codes so that it will be
understandable.

We know from [2] that there are better ways to model a traffic network than the
Godunov method. A three velocity kinetic approximation of second order(3V K2)
have been presented and tested on a model of a traffic circle. The 3V K2-model
has a smaller error than the Godunov scheme, but it is harder to implement.
In my code I have managed to conserve the flux in all of the different types of
junctions. Thus it can be a useful tool in analysing the behavior of traffic in
larger networks.

As for the testing of the different routes, I would in hindsight have inserted
an extra road or two so that the comparison between two routes would be
more interesting. I.e. more routes starting from the same junction, ending
at the same, and see for what situations it would be better to choose one over
an other. For my tests the same route is always the fastest for all starting times.

One natural step for future work can be to modify the program to take in
roads of different lengths, and with different velocity functions. It would not be
to hard, but I decided to use roads of equal length as this simplifies the code
and makes it easier for the reader to understand. The same goes for different
velocity functions. For bigger cities it would seem more realistic to have time
based traffic lights at junctions, instead of a right of way parameters. This can
be done by setting the boundary condition at junctions with red lights to zero,
while using the max flux function for roads with green lights. Traffic lights have
been discussed in [1], [2] and [5].
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9 Pseudocode for the Godunov Scheme

u0
i = 1

h

∫ xi+1/2

xi−1/2

u0(x)dx.

For all i,n:

f ′(uni ) ≥ 0 and f ′(uni+1) ≥ 0 then u∗i = uni ;
f ′(uni ) < 0 and f ′(uni+1) < 0 then u∗i = uni+1,
f ′(uni ) ≥ 0 and f ′(uni+1) < 0 then u∗i = uni if (s ≥ 0) or u∗i = uni+1 (if s < 0)
f ′(uni ) < 0 and f ′(uni+1) ≥ 0 then u∗i is the unique solution of f

′(u∗i ) = 0.

un+1
i = uni −

k

h
[f(u∗i )− f(u∗i−1)].
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10 Appendix A: Matlab codes

Because of the size of the codes only the code for model C is included in
the paper. As mentioned the other codes can be found in [11].

Model C

1 % - - - From the f i g u r e Model C o f Trondheim .
2 % - - - E v e r y t h i n g above l i n e 38 a r e i n i t i a l v a l u e s and can be changed .
3 c l e a r ;
4 h = 0 . 0 2 5 ; % Step i x - d i r e c t i o n
5 T = 3 5 ; % Time s t e p s
6 q = . 7 0 ; % Right o f way parameter f o r r o a d s j u n c t i o n s with 2

incomming and 1 o u t g o i n g r o a d s .
7 alpha1 = . 7 0 ; % P r o c e n t a g e o f c a r s from b i g r o a d s to b i g r o a d s i n

j u n c t i o n s with 1 incomming and 2 o u t g o i n g .
8 alpha2 = . 3 0 ; % P r o c e n t a g e o f c a r s from b i g r o a d s to s m a l l r o a d s i n

j u n c t i o n s with 1 incomming and 2 o u t g i n g .
9 % - - - - - - - - I n i t i a l v a l u e s o f the 22 r o a d s

10 u1 = . 3 5 ;
11 u2 = . 3 5 ;
12 u3 = . 2 ;
13 u4 = . 4 ;
14 u5 = . 3 5 ;
15 u6 = . 4 ;
16 u7 = . 7 ;
17 u8 = . 7 ;
18 u9 = . 6 ;
19 u10 = . 5 ;
20 u11 = . 2 5 ;
21 u12 = . 5 ;
22 u13 = . 2 5 ;
23 u14 = . 5 ;
24 u15 = . 4 ;
25 u16 = . 7 ;
26 u17 = . 4 5 ;
27 u18 = . 3 5 ;
28 % - - ” s i d e r o a d s ” - -
29 us1 = . 1 ;
30 us2 = . 3 ;
31 us3 = . 4 ;
32 us4 = 0 ;
33 % - - - - Flux on the 4 incomming r o a d s .
34 u1b = 0 ;
35 u5b = . 4 5 ;
36 u13b = . 1 5 ;
37 u18b = . 2 5 ;
38 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
39 A = [ . 1 . 5 . 4 ; . . . % D i s t r i b u t i o n matrix f o r the j u n c t i o n s with 3 incomming

and 3 o u t g o i n g r o a d s .
40 . 5 . 4 . 1 ; . . .
41 . 4 . 1 . 5 ] ;
42 k = h ;
43 x = 0 : h : 1 ; % P o i n t s o f the r o a d s
44 Nx = l e n g t h ( x ) ; % number o f s t e p s i n x - d i r e c t i o n
45 t = f l o o r (T/k ) ; % number o f s t e p s i n t - d i r e c t i o n
46 %S t a r t i n g f l u x on the r o a d s ( F1 i s road 1 e t c . )
47 F1 ( 1 , 1 : Nx) = u1 ;
48 F2 ( 1 , 1 : Nx) = u2 ;
49 F3 ( 1 , 1 : Nx) = u3 ;
50 F4 ( 1 , 1 : Nx) = u4 ;
51 F5 ( 1 , 1 : Nx) = u5 ;
52 F6 ( 1 , 1 : Nx) = u6 ;
53 F7 ( 1 , 1 : Nx) = u7 ;
54 F8 ( 1 , 1 : Nx) = u8 ;
55 F9 ( 1 , 1 : Nx) = u9 ;
56 F10 ( 1 , 1 : Nx) = u10 ;
57 F11 ( 1 , 1 : Nx) = u11 ;
58 F12 ( 1 , 1 : Nx) = u12 ;
59 F13 ( 1 , 1 : Nx) = u13 ;
60 F14 ( 1 , 1 : Nx) = u14 ;
61 F15 ( 1 , 1 : Nx) = u15 ;
62 F16 ( 1 , 1 : Nx) = u16 ;
63 F17 ( 1 , 1 : Nx) = u17 ;
64 F18 ( 1 , 1 : Nx) = u18 ;
65 Fs1 ( 1 , 1 : Nx) = us1 ;
66 Fs2 ( 1 , 1 : Nx) = us2 ;
67 Fs3 ( 1 , 1 : Nx) = us3 ;
68 Fs4 ( 1 , 1 : Nx) = us4 ;
69
70 f o r i = 1 : t
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71 v = [ 0 ; 0 ; 0 ] ;
72 v2 = [ 0 ; 0 ; 0 ] ;
73 % - - - - - f i n d u∗ = U( i , 1 ) f o r the 4 incoming roads - - - - -
74 a = 1 -2∗ u1b ;
75 b = 1 -2∗ F1 ( i , 1 ) ;
76 s = 1 - u1b - F1 ( i , 1 ) ;
77 i f a >= 0 && b >= 0
78 U01 = u1b ;
79 e l s e i f a <0 && b <0
80 U1 = F1 ( i , 1 ) ;
81 e l s e i f a >= 0 && b < 0 && s >= 0
82 U01 = u1b ;
83 e l s e i f a >= 0 && b <0 && s < 0
84 U01= F1 ( i , 1 ) ;
85 e l s e i f a <0 && b >= 0
86 U01 = . 5 ;
87 end
88 a = 1 -2∗ u5b ;
89 b = 1 -2∗ F5 ( i , 1 ) ;
90 s = 1 - u5b - F5 ( i , 1 ) ;
91 i f a >= 0 && b >= 0
92 U05 = u5b ;
93 e l s e i f a <0 && b <0
94 U05 = F5 ( i , 1 ) ;
95 e l s e i f a >= 0 && b < 0 && s >= 0
96 U05 = u5b ;
97 e l s e i f a >= 0 && b <0 && s < 0
98 U05= F5 ( i , 1 ) ;
99 e l s e i f a <0 && b >= 0

100 U05 = . 5 ;
101 end
102
103 a = 1 -2∗ u13b ;
104 b = 1 -2∗ F13 ( i , 1 ) ;
105 s = 1 - u13b - F13 ( i , 1 ) ;
106 i f a >= 0 && b >= 0
107 U013 = u13b ;
108 e l s e i f a <0 && b <0
109 U013 = F13 ( i , 1 ) ;
110 e l s e i f a >= 0 && b < 0 && s >= 0
111 U013 = u13b ;
112 e l s e i f a >= 0 && b <0 && s < 0
113 U013= F13 ( i , 1 ) ;
114 e l s e i f a <0 && b >= 0
115 U013 = . 5 ;
116 end
117 a = 1 -2∗ u18b ;
118 b = 1 -2∗ F18 ( i , 1 ) ;
119 s = 1 - u18b - F18 ( i , 1 ) ;
120 i f a >= 0 && b >= 0
121 U018 = u18b ;
122 e l s e i f a <0 && b <0
123 U018 = F18 ( i , 1 ) ;
124 e l s e i f a >= 0 && b < 0 && s >= 0
125 U018 = u18b ;
126 e l s e i f a >= 0 && b <0 && s < 0
127 U018= F18 ( i , 1 ) ;
128 e l s e i f a <0 && b >= 0
129 U018 = . 5 ;
130 end
131
132 %- - Find u∗ F1 :
133 f o r n = 1 : Nx- 1
134 a = 1 -2∗ F1 ( i , n ) ; % f ' ( u ( i , n ) )
135 b = 1 -2∗ F1 ( i , n+1) ; % f ' ( u ( i , n+1) )
136 s = 1 - F1 ( i , n+1) - F1 ( i , n ) ; % Rankine - Hugoniot c o n d i t i o n
137
138 i f a >= 0 && b >= 0
139 U1( i , n ) = F1 ( i , n ) ;
140 e l s e i f a <0 && b <0
141 U1( i , n ) = F1 ( i , n+1) ;
142 e l s e i f a >= 0 && b < 0 && s >= 0
143 U1( i , n ) = F1 ( i , n ) ;
144 e l s e i f a >= 0 && b <0 && s < 0
145 U1( i , n )= F1 ( i , n+1) ;
146 e l s e i f a <0 && b >= 0
147 U1( i , n ) = . 5 ;
148 end
149 end
150 %- - Find u∗ F2 :
151 f o r n = 1 : Nx- 1
152 a = 1 -2∗ F2 ( i , n ) ;
153 b = 1 -2∗ F2 ( i , n+1) ;
154 s = 1 - F2 ( i , n+1) - F2 ( i , n ) ;
155
156 i f a >= 0 && b >= 0
157 U2( i , n ) = F2 ( i , n ) ;
158 e l s e i f a <0 && b <0
159 U2( i , n ) = F2 ( i , n+1) ;
160 e l s e i f a >= 0 && b < 0 && s >= 0
161 U2( i , n ) = F2 ( i , n ) ;
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162 e l s e i f a >= 0 && b <0 && s < 0
163 U2( i , n )= F2 ( i , n+1) ;
164 e l s e i f a <0 && b >= 0
165 U2( i , n ) = . 5 ;
166 end
167 end
168 %- - Find u∗ F3 :
169 f o r n = 1 : Nx- 1
170 a = 1 -2∗ F3 ( i , n ) ;
171 b = 1 -2∗ F3 ( i , n+1) ;
172 s = 1 - F3 ( i , n+1) - F3 ( i , n ) ;
173
174 i f a >= 0 && b >= 0
175 U3( i , n ) = F3 ( i , n ) ;
176 e l s e i f a <0 && b <0
177 U3( i , n ) = F3 ( i , n+1) ;
178 e l s e i f a >= 0 && b < 0 && s >= 0
179 U3( i , n ) = F3 ( i , n ) ;
180 e l s e i f a >= 0 && b <0 && s < 0
181 U3( i , n )= F3 ( i , n+1) ;
182 e l s e i f a <0 && b >= 0
183 U3( i , n ) = . 5 ;
184 end
185 end
186 %- - Find u∗ F4 :
187 f o r n = 1 : Nx- 1
188 a = 1 -2∗ F4 ( i , n ) ;
189 b = 1 -2∗ F4 ( i , n+1) ;
190 s = 1 - F4 ( i , n+1) - F4 ( i , n ) ;
191
192 i f a >= 0 && b >= 0
193 U4( i , n ) = F4 ( i , n ) ;
194 e l s e i f a <0 && b <0
195 U4( i , n ) = F4 ( i , n+1) ;
196 e l s e i f a >= 0 && b < 0 && s >= 0
197 U4( i , n ) = F4 ( i , n ) ;
198 e l s e i f a >= 0 && b <0 && s < 0
199 U4( i , n )= F4 ( i , n+1) ;
200 e l s e i f a <0 && b >= 0
201 U4( i , n ) = . 5 ;
202 end
203 end
204 %- - Find u∗ F5 :
205 f o r n = 1 : Nx- 1
206 a = 1 -2∗ F5 ( i , n ) ;
207 b = 1 -2∗ F5 ( i , n+1) ;
208 s = 1 - F5 ( i , n+1) - F5 ( i , n ) ;
209
210 i f a >= 0 && b >= 0
211 U5( i , n ) = F5 ( i , n ) ;
212 e l s e i f a <0 && b <0
213 U5( i , n ) = F5 ( i , n+1) ;
214 e l s e i f a >= 0 && b < 0 && s >= 0
215 U5( i , n ) = F5 ( i , n ) ;
216 e l s e i f a >= 0 && b <0 && s < 0
217 U5( i , n )= F5 ( i , n+1) ;
218 e l s e i f a <0 && b >= 0
219 U5( i , n ) = . 5 ;
220 end
221 end
222 %- - Find u∗ F6 :
223 f o r n = 1 : Nx- 1
224 a = 1 -2∗ F6 ( i , n ) ;
225 b = 1 -2∗ F6 ( i , n+1) ;
226 s = 1 - F6 ( i , n+1) - F6 ( i , n ) ;
227
228 i f a >= 0 && b >= 0
229 U6( i , n ) = F6 ( i , n ) ;
230 e l s e i f a <0 && b <0
231 U6( i , n ) = F6 ( i , n+1) ;
232 e l s e i f a >= 0 && b < 0 && s >= 0
233 U6( i , n ) = F6 ( i , n ) ;
234 e l s e i f a >= 0 && b <0 && s < 0
235 U6( i , n )= F6 ( i , n+1) ;
236 e l s e i f a <0 && b >= 0
237 U6( i , n ) = . 5 ;
238 end
239 end
240 %- - Find u∗ F7 :
241 f o r n = 1 : Nx- 1
242 a = 1 -2∗ F7 ( i , n ) ;
243 b = 1 -2∗ F7 ( i , n+1) ;
244 s = 1 - F7 ( i , n+1) - F7 ( i , n ) ;
245
246 i f a >= 0 && b >= 0
247 U7( i , n ) = F7 ( i , n ) ;
248 e l s e i f a <0 && b <0
249 U7( i , n ) = F7 ( i , n+1) ;
250 e l s e i f a >= 0 && b < 0 && s >= 0
251 U7( i , n ) = F7 ( i , n ) ;
252 e l s e i f a >= 0 && b <0 && s < 0
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253 U7( i , n )= F7 ( i , n+1) ;
254 e l s e i f a <0 && b >= 0
255 U7( i , n ) = . 5 ;
256 end
257 end
258 %- - Find u∗ F8 :
259 f o r n = 1 : Nx- 1
260 a = 1 -2∗ F8 ( i , n ) ;
261 b = 1 -2∗ F8 ( i , n+1) ;
262 s = 1 - F8 ( i , n+1) - F8 ( i , n ) ;
263
264 i f a >= 0 && b >= 0
265 U8( i , n ) = F8 ( i , n ) ;
266 e l s e i f a <0 && b <0
267 U8( i , n ) = F8 ( i , n+1) ;
268 e l s e i f a >= 0 && b < 0 && s >= 0
269 U8( i , n ) = F8 ( i , n ) ;
270 e l s e i f a >= 0 && b <0 && s < 0
271 U8( i , n )= F8 ( i , n+1) ;
272 e l s e i f a <0 && b >= 0
273 U8( i , n ) = . 5 ;
274 end
275 end
276 %- - Find u∗ F9 :
277 f o r n = 1 : Nx- 1
278 a = 1 -2∗ F9 ( i , n ) ;
279 b = 1 -2∗ F9 ( i , n+1) ;
280 s = 1 - F9 ( i , n+1) - F9 ( i , n ) ;
281
282 i f a >= 0 && b >= 0
283 U9( i , n ) = F9 ( i , n ) ;
284 e l s e i f a <0 && b <0
285 U9( i , n ) = F9 ( i , n+1) ;
286 e l s e i f a >= 0 && b < 0 && s >= 0
287 U9( i , n ) = F9 ( i , n ) ;
288 e l s e i f a >= 0 && b <0 && s < 0
289 U9( i , n )= F9 ( i , n+1) ;
290 e l s e i f a <0 && b >= 0
291 U9( i , n ) = . 5 ;
292 end
293 end
294 %- - Find u∗ F10 :
295 f o r n = 1 : Nx- 1
296 a = 1 -2∗ F10 ( i , n ) ;
297 b = 1 -2∗ F10 ( i , n+1) ;
298 s = 1 - F10 ( i , n+1) - F10 ( i , n ) ;
299
300 i f a >= 0 && b >= 0
301 U10 ( i , n ) = F10 ( i , n ) ;
302 e l s e i f a <0 && b <0
303 U10 ( i , n ) = F10 ( i , n+1) ;
304 e l s e i f a >= 0 && b < 0 && s >= 0
305 U10 ( i , n ) = F10 ( i , n ) ;
306 e l s e i f a >= 0 && b <0 && s < 0
307 U10 ( i , n )= F10 ( i , n+1) ;
308 e l s e i f a <0 && b >= 0
309 U10 ( i , n ) = . 5 ;
310 end
311 end
312 %- - Find u∗ F11 :
313 f o r n = 1 : Nx- 1
314 a = 1 -2∗ F11 ( i , n ) ;
315 b = 1 -2∗ F11 ( i , n+1) ;
316 s = 1 - F11 ( i , n+1) - F11 ( i , n ) ;
317
318 i f a >= 0 && b >= 0
319 U11 ( i , n ) = F11 ( i , n ) ;
320 e l s e i f a <0 && b <0
321 U11 ( i , n ) = F11 ( i , n+1) ;
322 e l s e i f a >= 0 && b < 0 && s >= 0
323 U11 ( i , n ) = F11 ( i , n ) ;
324 e l s e i f a >= 0 && b <0 && s < 0
325 U11 ( i , n )= F11 ( i , n+1) ;
326 e l s e i f a <0 && b >= 0
327 U11 ( i , n ) = . 5 ;
328 end
329 end
330 %- - Find u∗ F12 :
331 f o r n = 1 : Nx- 1
332 a = 1 -2∗ F12 ( i , n ) ;
333 b = 1 -2∗ F12 ( i , n+1) ;
334 s = 1 - F12 ( i , n+1) - F12 ( i , n ) ;
335
336 i f a >= 0 && b >= 0
337 U12 ( i , n ) = F12 ( i , n ) ;
338 e l s e i f a <0 && b <0
339 U12 ( i , n ) = F12 ( i , n+1) ;
340 e l s e i f a >= 0 && b < 0 && s >= 0
341 U12 ( i , n ) = F12 ( i , n ) ;
342 e l s e i f a >= 0 && b <0 && s < 0
343 U12 ( i , n )= F12 ( i , n+1) ;
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344 e l s e i f a <0 && b >= 0
345 U12 ( i , n ) = . 5 ;
346 end
347 end
348 %- - Find u∗ F13 :
349 f o r n = 1 : Nx- 1
350 a = 1 -2∗ F13 ( i , n ) ;
351 b = 1 -2∗ F13 ( i , n+1) ;
352 s = 1 - F13 ( i , n+1) - F13 ( i , n ) ;
353
354 i f a >= 0 && b >= 0
355 U13 ( i , n ) = F13 ( i , n ) ;
356 e l s e i f a <0 && b <0
357 U13 ( i , n ) = F13 ( i , n+1) ;
358 e l s e i f a >= 0 && b < 0 && s >= 0
359 U13 ( i , n ) = F13 ( i , n ) ;
360 e l s e i f a >= 0 && b <0 && s < 0
361 U13 ( i , n )= F13 ( i , n+1) ;
362 e l s e i f a <0 && b >= 0
363 U13 ( i , n ) = . 5 ;
364 end
365 end
366 %- - Find u∗ F14 :
367 f o r n = 1 : Nx- 1
368 a = 1 -2∗ F14 ( i , n ) ;
369 b = 1 -2∗ F14 ( i , n+1) ;
370 s = 1 - F14 ( i , n+1) - F14 ( i , n ) ;
371
372 i f a >= 0 && b >= 0
373 U14 ( i , n ) = F14 ( i , n ) ;
374 e l s e i f a <0 && b <0
375 U14 ( i , n ) = F14 ( i , n+1) ;
376 e l s e i f a >= 0 && b < 0 && s >= 0
377 U14 ( i , n ) = F14 ( i , n ) ;
378 e l s e i f a >= 0 && b <0 && s < 0
379 U14 ( i , n )= F14 ( i , n+1) ;
380 e l s e i f a <0 && b >= 0
381 U14 ( i , n ) = . 5 ;
382 end
383 end
384 %- - Find u∗ F15 :
385 f o r n = 1 : Nx- 1
386 a = 1 -2∗ F15 ( i , n ) ;
387 b = 1 -2∗ F15 ( i , n+1) ;
388 s = 1 - F15 ( i , n+1) - F15 ( i , n ) ;
389
390 i f a >= 0 && b >= 0
391 U15 ( i , n ) = F15 ( i , n ) ;
392 e l s e i f a <0 && b <0
393 U15 ( i , n ) = F15 ( i , n+1) ;
394 e l s e i f a >= 0 && b < 0 && s >= 0
395 U15 ( i , n ) = F15 ( i , n ) ;
396 e l s e i f a >= 0 && b <0 && s < 0
397 U15 ( i , n )= F15 ( i , n+1) ;
398 e l s e i f a <0 && b >= 0
399 U15 ( i , n ) = . 5 ;
400 end
401 end
402 %- - Find u∗ F16 :
403 f o r n = 1 : Nx- 1
404 a = 1 -2∗ F16 ( i , n ) ;
405 b = 1 -2∗ F16 ( i , n+1) ;
406 s = 1 - F16 ( i , n+1) - F16 ( i , n ) ;
407
408 i f a >= 0 && b >= 0
409 U16 ( i , n ) = F16 ( i , n ) ;
410 e l s e i f a <0 && b <0
411 U16 ( i , n ) = F16 ( i , n+1) ;
412 e l s e i f a >= 0 && b < 0 && s >= 0
413 U16 ( i , n ) = F16 ( i , n ) ;
414 e l s e i f a >= 0 && b <0 && s < 0
415 U16 ( i , n )= F16 ( i , n+1) ;
416 e l s e i f a <0 && b >= 0
417 U16 ( i , n ) = . 5 ;
418 end
419 end
420 %- - Find u∗ F17 :
421 f o r n = 1 : Nx- 1
422 a = 1 -2∗ F17 ( i , n ) ;
423 b = 1 -2∗ F17 ( i , n+1) ;
424 s = 1 - F17 ( i , n+1) - F17 ( i , n ) ;
425
426 i f a >= 0 && b >= 0
427 U17 ( i , n ) = F17 ( i , n ) ;
428 e l s e i f a <0 && b <0
429 U17 ( i , n ) = F17 ( i , n+1) ;
430 e l s e i f a >= 0 && b < 0 && s >= 0
431 U17 ( i , n ) = F17 ( i , n ) ;
432 e l s e i f a >= 0 && b <0 && s < 0
433 U17 ( i , n )= F17 ( i , n+1) ;
434 e l s e i f a <0 && b >= 0
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435 U17 ( i , n ) = . 5 ;
436 end
437 end
438 %- - Find u∗ F18 :
439 f o r n = 1 : Nx- 1
440 a = 1 -2∗ F18 ( i , n ) ;
441 b = 1 -2∗ F18 ( i , n+1) ;
442 s = 1 - F18 ( i , n+1) - F18 ( i , n ) ;
443
444 i f a >= 0 && b >= 0
445 U18 ( i , n ) = F18 ( i , n ) ;
446 e l s e i f a <0 && b <0
447 U18 ( i , n ) = F18 ( i , n+1) ;
448 e l s e i f a >= 0 && b < 0 && s >= 0
449 U18 ( i , n ) = F18 ( i , n ) ;
450 e l s e i f a >= 0 && b <0 && s < 0
451 U18 ( i , n )= F18 ( i , n+1) ;
452 e l s e i f a <0 && b >= 0
453 U18 ( i , n ) = . 5 ;
454 end
455 end
456 %- - Find u∗ Fs1 :
457 f o r n = 1 : Nx- 1
458 a = 1 -4∗ Fs1 ( i , n ) ;
459 b = 1 -4∗ Fs1 ( i , n+1) ;
460 s = 1 - 2∗ Fs1 ( i , n+1) - 2∗ Fs1 ( i , n ) ;
461
462 i f a >= 0 && b >= 0
463 Us1 ( i , n ) = Fs1 ( i , n ) ;
464 e l s e i f a <0 && b <0
465 Us1 ( i , n ) = Fs1 ( i , n+1) ;
466 e l s e i f a >= 0 && b < 0 && s >= 0
467 Us1 ( i , n ) = Fs1 ( i , n ) ;
468 e l s e i f a >= 0 && b <0 && s < 0
469 Us1 ( i , n )= Fs1 ( i , n+1) ;
470 e l s e i f a <0 && b >= 0
471 Us1 ( i , n ) = 1 / 4 ;
472 end
473 end
474 %- - Find u∗ Fs2 :
475 f o r n = 1 : Nx- 1
476 a = 1 -4∗ Fs2 ( i , n ) ;
477 b = 1 -4∗ Fs2 ( i , n+1) ;
478 s = 1 - 2∗ Fs2 ( i , n+1) - 2∗ Fs2 ( i , n ) ;
479
480 i f a >= 0 && b >= 0
481 Us2 ( i , n ) = Fs2 ( i , n ) ;
482 e l s e i f a <0 && b <0
483 Us2 ( i , n ) = Fs2 ( i , n+1) ;
484 e l s e i f a >= 0 && b < 0 && s >= 0
485 Us2 ( i , n ) = Fs2 ( i , n ) ;
486 e l s e i f a >= 0 && b <0 && s < 0
487 Us2 ( i , n )= Fs2 ( i , n+1) ;
488 e l s e i f a <0 && b >= 0
489 Us2 ( i , n ) = 1 / 4 ;
490 end
491 end
492 %- - Find u∗ Fs3 :
493 f o r n = 1 : Nx- 1
494 a = 1 -4∗ Fs3 ( i , n ) ;
495 b = 1 -4∗ Fs3 ( i , n+1) ;
496 s = 1 - 2∗ Fs3 ( i , n+1) - 2∗ Fs3 ( i , n ) ;
497
498 i f a >= 0 && b >= 0
499 Us3 ( i , n ) = Fs3 ( i , n ) ;
500 e l s e i f a <0 && b <0
501 Us3 ( i , n ) = Fs3 ( i , n+1) ;
502 e l s e i f a >= 0 && b < 0 && s >= 0
503 Us3 ( i , n ) = Fs3 ( i , n ) ;
504 e l s e i f a >= 0 && b <0 && s < 0
505 Us3 ( i , n )= Fs3 ( i , n+1) ;
506 e l s e i f a <0 && b >= 0
507 Us3 ( i , n ) = 1 / 4 ;
508 end
509 end
510 %- - Find u∗ Fs4 :
511 f o r n = 1 : Nx- 1
512 a = 1 -4∗ Fs4 ( i , n ) ;
513 b = 1 -4∗ Fs4 ( i , n+1) ;
514 s = 1 - 2∗ Fs4 ( i , n+1) - 2∗ Fs4 ( i , n ) ;
515
516 i f a >= 0 && b >= 0
517 Us4 ( i , n ) = Fs4 ( i , n ) ;
518 e l s e i f a <0 && b <0
519 Us4 ( i , n ) = Fs4 ( i , n+1) ;
520 e l s e i f a >= 0 && b < 0 && s >= 0
521 Us4 ( i , n ) = Fs4 ( i , n ) ;
522 e l s e i f a >= 0 && b <0 && s < 0
523 Us4 ( i , n )= Fs4 ( i , n+1) ;
524 e l s e i f a <0 && b >= 0
525 Us4 ( i , n ) = 1 / 4 ;
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526 end
527 end
528 %Find the f l u x f o r the next t i m e s t e p f o r 2 : Nx- 1
529 f o r n = 2 : Nx- 1
530 F1 ( i +1,n ) = F1 ( i , n ) - ( k/h ) ∗ ( ( U1( i , n ) -U1( i , n ) ˆ2) - ( U1( i , n - 1 ) -U1( i , n - 1 ) ˆ2) ) ;
531 F2 ( i +1,n ) = F2 ( i , n ) - ( k/h ) ∗ ( ( U2( i , n ) -U2( i , n ) ˆ2) - ( U2( i , n - 1 ) -U2( i , n - 1 ) ˆ2) ) ;
532 F3 ( i +1,n ) = F3 ( i , n ) - ( k/h ) ∗ ( ( U3( i , n ) -U3( i , n ) ˆ2) - ( U3( i , n - 1 ) -U3( i , n - 1 ) ˆ2) ) ;
533 F4 ( i +1,n ) = F4 ( i , n ) - ( k/h ) ∗ ( ( U4( i , n ) -U4( i , n ) ˆ2) - ( U4( i , n - 1 ) -U4( i , n - 1 ) ˆ2) ) ;
534 F5 ( i +1,n ) = F5 ( i , n ) - ( k/h ) ∗ ( ( U5( i , n ) -U5( i , n ) ˆ2) - ( U5( i , n - 1 ) -U5( i , n - 1 ) ˆ2) ) ;
535 F6 ( i +1,n ) = F6 ( i , n ) - ( k/h ) ∗ ( ( U6( i , n ) -U6( i , n ) ˆ2) - ( U6( i , n - 1 ) -U6( i , n - 1 ) ˆ2) ) ;
536 F7 ( i +1,n ) = F7 ( i , n ) - ( k/h ) ∗ ( ( U7( i , n ) -U7( i , n ) ˆ2) - ( U7( i , n - 1 ) -U7( i , n - 1 ) ˆ2) ) ;
537 F8 ( i +1,n ) = F8 ( i , n ) - ( k/h ) ∗ ( ( U8( i , n ) -U8( i , n ) ˆ2) - ( U8( i , n - 1 ) -U8( i , n - 1 ) ˆ2) ) ;
538 F9 ( i +1,n ) = F9 ( i , n ) - ( k/h ) ∗ ( ( U9( i , n ) -U9( i , n ) ˆ2) - ( U9( i , n - 1 ) -U9( i , n - 1 ) ˆ2) ) ;
539 F10 ( i +1,n )= F10 ( i , n ) - ( k/h ) ∗ ( ( U10 ( i , n ) - U10 ( i , n ) ˆ2) - ( U10 ( i , n - 1 ) - U10 ( i , n - 1 ) ˆ2) ) ;
540 F11 ( i +1,n )= F11 ( i , n ) - ( k/h ) ∗ ( ( U11 ( i , n ) - U11 ( i , n ) ˆ2) - ( U11 ( i , n - 1 ) - U11 ( i , n - 1 ) ˆ2) ) ;
541 F12 ( i +1,n )= F12 ( i , n ) - ( k/h ) ∗ ( ( U12 ( i , n ) - U12 ( i , n ) ˆ2) - ( U12 ( i , n - 1 ) - U12 ( i , n - 1 ) ˆ2) ) ;
542 F13 ( i +1,n )= F13 ( i , n ) - ( k/h ) ∗ ( ( U13 ( i , n ) - U13 ( i , n ) ˆ2) - ( U13 ( i , n - 1 ) - U13 ( i , n - 1 ) ˆ2) ) ;
543 F14 ( i +1,n )= F14 ( i , n ) - ( k/h ) ∗ ( ( U14 ( i , n ) - U14 ( i , n ) ˆ2) - ( U14 ( i , n - 1 ) - U14 ( i , n - 1 ) ˆ2) ) ;
544 F15 ( i +1,n )= F15 ( i , n ) - ( k/h ) ∗ ( ( U15 ( i , n ) - U15 ( i , n ) ˆ2) - ( U15 ( i , n - 1 ) - U15 ( i , n - 1 ) ˆ2) ) ;
545 F16 ( i +1,n )= F16 ( i , n ) - ( k/h ) ∗ ( ( U16 ( i , n ) - U16 ( i , n ) ˆ2) - ( U16 ( i , n - 1 ) - U16 ( i , n - 1 ) ˆ2) ) ;
546 F17 ( i +1,n )= F17 ( i , n ) - ( k/h ) ∗ ( ( U17 ( i , n ) - U17 ( i , n ) ˆ2) - ( U17 ( i , n - 1 ) - U17 ( i , n - 1 ) ˆ2) ) ;
547 F18 ( i +1,n )= F18 ( i , n ) - ( k/h ) ∗ ( ( U18 ( i , n ) - U18 ( i , n ) ˆ2) - ( U18 ( i , n - 1 ) - U18 ( i , n - 1 ) ˆ2) ) ;
548 Fs1 ( i +1,n )= Fs1 ( i , n ) - ( k/h ) ∗ ( ( Us1 ( i , n ) -2∗ Us1 ( i , n ) ˆ2) . . .
549 - ( Us1 ( i , n - 1 ) -2∗ Us1 ( i , n - 1 ) ˆ2) ) ;
550 Fs2 ( i +1,n )= Fs2 ( i , n ) - ( k/h ) ∗ ( ( Us2 ( i , n ) -2∗ Us2 ( i , n ) ˆ2) . . .
551 - ( Us2 ( i , n - 1 ) -2∗ Us2 ( i , n - 1 ) ˆ2) ) ;
552 Fs3 ( i +1,n )= Fs3 ( i , n ) - ( k/h ) ∗ ( ( Us3 ( i , n ) -2∗ Us3 ( i , n ) ˆ2) . . .
553 - ( Us3 ( i , n - 1 ) -2∗ Us3 ( i , n - 1 ) ˆ2) ) ;
554 Fs4 ( i +1,n )= Fs4 ( i , n ) - ( k/h ) ∗ ( ( Us4 ( i , n ) -2∗ Us4 ( i , n ) ˆ2) . . .
555 - ( Us4 ( i , n - 1 ) -2∗ Us4 ( i , n - 1 ) ˆ2) ) ;
556 end
557 bout ( 1 : 2 2 ) = [ F1 ( i , Nx) F2 ( i , Nx) F3 ( i , Nx) F4 ( i , Nx) F5 ( i , Nx) F6 ( i , Nx) F7 ( i , Nx)

F8 ( i , Nx) F9 ( i , Nx) F10 ( i , Nx) F11 ( i , Nx) F12 ( i , Nx) F13 ( i , Nx) F14 ( i , Nx) F15 (
i , Nx) F16 ( i , Nx) F17 ( i , Nx) F18 ( i , Nx) Fs1 ( i , Nx) Fs2 ( i , Nx) Fs3 ( i , Nx) Fs4 ( i ,
Nx) ] ;

558 %- - Find the maxfluxes out . ( 4 . 2 . 3 )
559 f o r l = 1 : 1 8
560 i f bout ( l ) <= . 5
561 b ( l ) = bout ( l ) - bout ( l ) ˆ 2 ;
562 e l s e
563 b ( l ) = 1 / 4 ;
564 end
565 end
566 %- - Find the maxfluxes out s i d e r o a d s . ( 4 . 2 . 3 )
567 f o r l = 1 9 : 2 2
568 i f bout ( l ) <= 1/4
569 b ( l ) = bout ( l ) -2∗ bout ( l ) ˆ 2 ;
570 e l s e
571 b ( l ) = 1 / 8 ;
572 end
573 end
574 bin ( 1 : 2 2 ) = [ F1 ( i , 1 ) F2 ( i , 1 ) F3 ( i , 1 ) F4 ( i , 1 ) F5 ( i , 1 ) F6 ( i , 1 ) F7 ( i , 1 ) F8 ( i , 1 )

F9 ( i , 1 ) F10 ( i , 1 ) F11 ( i , 1 ) F12 ( i , 1 ) F13 ( i , 1 ) F14 ( i , 1 ) F15 ( i , 1 ) F16 ( i , 1 )
F17 ( i , 1 ) F18 ( i , 1 ) Fs1 ( i , 1 ) Fs2 ( i , 1 ) Fs3 ( i , 1 ) Fs4 ( i , 1 ) ] ;

575 %- - Find the maxfluxes i n ( 4 . 2 . 2 )
576 f o r L = 1 : 1 8
577 i f bin (L) <= . 5
578 a (L) = 1 / 4 ;
579 e l s e
580 a (L) = bin (L) - bin (L) ˆ 2 ;
581 end
582 end
583 %- - Find the maxfluxes i n s i d e r o a d s . ( 4 . 2 . 2 )
584 f o r L = 1 9 : 2 2
585 i f bin (L) <= 1/4
586 a (L) = 1 / 8 ;
587 e l s e
588 a (L) = bin (L) -2∗ bin (L) ˆ 2 ;
589 end
590 end
591 %- - Find the f l u x e s i n and out f o r each j u n c t i o n . - -
592 %J u n c t i o n s with 2 insomming , 1 o u t g o i n g (4 j u n c t i o n s )
593 %J u n c t i o n ( 3 , s2 -> 2)
594 In2 = min ( b ( 3 )+ b ( 2 0 ) , a ( 2 ) ) ;
595 Out3 = b ( 3 ) ;
596 Outs2 = b ( 2 0 ) ;
597 i f b ( 3 ) + b ( 2 0 ) > a ( 2 ) % Amount o f c a r s e x c e e d s C
598 Out3 = q∗ In2 ;
599 Outs2 =(1 - q ) ∗ In2 ;
600 i f Out3 > b ( 3 ) % i f p i s o u t s i d e omega
601 Out3 = b ( 3 ) ;
602 Outs2 = In2 - b ( 3 ) ;
603 e l s e i f Outs2 > b ( 2 0 ) % i f p i s o u t s i d e omega ( o t h e r s i d e )
604 Outs2 = b ( 2 0 ) ;
605 Out3 = In2 - b ( 2 0 ) ;
606 end
607 end
608 %J u n c t i o n ( 7 , s1 -> 9) 2 out , 1 i n
609 In9 = min ( b ( 7 )+ b ( 1 9 ) , a ( 9 ) ) ;
610 Out7 = b ( 7 ) ;
611 Outs1= b ( 1 9 ) ;
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612 i f b ( 7 ) + b ( 1 9 ) > a ( 1 9 ) %( Amount o f c a r s e x c e e d s C)
613 Out7 = q∗ In9 ;
614 Outs1 =(1 - q ) ∗ In9 ;
615 i f Out7 > b ( 7 ) % i f p l i e s o u t s i d e omega .
616 Out7 = b ( 7 ) ;
617 Outs1 = In9 - b ( 7 ) ;
618 e l s e i f Outs1 > b ( 1 9 ) % i f p l i e s o u t s i d e omega . ( o t h e r s i d e )
619 Outs1 = b ( 1 9 ) ;
620 Out7 = In9 - b ( 1 9 ) ;
621 end
622 end
623 %J u n c t i o n ( 1 2 , s3 -> 11)
624 In11 = min ( b ( 1 2 )+ b ( 2 1 ) , a ( 1 1 ) ) ;
625 Out12 = b ( 1 2 ) ;
626 Outs3 = b ( 2 1 ) ;
627 i f b ( 1 2 )+b ( 2 1 ) > a ( 1 1 ) %Amount o f c a r s e x c e e d s C.
628 Out12 = q∗ In11 ;
629 Outs3 =(1 - q ) ∗ In11 ;
630 i f Out12 > b ( 1 2 ) % i f p l i e s o u t s i d e omega .
631 Out12 = b ( 1 2 ) ;
632 Outs3 = In11 - b ( 1 2 ) ;
633 e l s e i f Outs3 > b ( 2 1 ) % i f p l i e s o u t s i d e omega ( o t h e r s i d e ) .
634 Outs3 = b ( 2 1 ) ;
635 Out12 = In11 - b ( 2 1 ) ;
636 end
637 end
638 %J u n c t i o n ( 1 5 , s4 -> 17)
639 In17 = min ( b ( 1 5 )+ b ( 2 2 ) , a ( 1 7 ) ) ;
640 Out15 = b ( 1 5 ) ;
641 Outs4 = b ( 2 2 ) ;
642 i f b ( 1 5 ) + b ( 2 2 ) > a ( 1 7 )%( Amount o f c a r s e x c e e d s C)
643 Out15 = q∗ In17 ;
644 Outs4 =(1 - q ) ∗ In17 ;
645 i f Out15 > b ( 1 5 ) % i f p l i e s o u t s i d e gamma .
646 Out15 = b ( 1 5 ) ;
647 Outs4 = In17 - b ( 1 5 ) ;
648 e l s e i f Outs4 > b ( 2 2 ) % i f p l i e s o u t s i d e gamma ( o t h e r s i d e )
649 Outs4 = b ( 2 2 ) ;
650 Out15 = In17 - b ( 2 2 ) ;
651 end
652 end
653 % J u n c t i o n with 1 incomming and 2 o u t g o i n g (4 j u n c t i o n s ) .
654 %J u n c t i o n (5 -> s1 , 6 )
655 In6 = min ( alpha1 ∗b ( 5 ) , a ( 6 ) ) ;
656 I n s 1 = min ( alpha2 ∗b ( 5 ) , a ( 1 9 ) ) ;
657 Out5 = In6 + I n s 1 ;
658 %J u n c t i o n (9 -> s3 , 1 0 )
659 In10 = min ( alpha1 ∗b ( 9 ) , a ( 1 0 ) ) ;
660 I n s 3 = min ( alpha2 ∗b ( 9 ) , a ( 2 1 ) ) ;
661 Out9 = In10 + I n s 3 ;
662 %J u n c t i o n (13 -> s4 , 1 4 )
663 In14 = min ( alpha1 ∗b ( 1 3 ) , a ( 1 4 ) ) ;
664 I n s 4 = min ( alpha2 ∗b ( 1 3 ) , a ( 2 2 ) ) ;
665 Out13 = In14 + I n s 4 ;
666 %J u n c t i o n (18 -> s2 , 1 6 )
667 In16 = min ( alpha1 ∗b ( 1 8 ) , a ( 1 6 ) ) ;
668 I n s 2 = min ( alpha2 ∗b ( 1 8 ) , a ( 2 0 ) ) ;
669 Out18 = In16 + I n s 2 ;
670 % - - - - - - - - - - - - - - J u n c t i o n with 6 r o a d s (2 j u n c t i o n s ) - - - - - - - - - - -
671 %J u n c t i o n ( 1 , 6 , 8 --> 3 , 4 , 7 )
672 f l u x 1= A∗ [ b ( 1 ) ; b ( 6 ) ; b ( 8 ) ] ;
673 In3 = min ( f l u x 1 ( 1 ) , a ( 3 ) ) ;
674 In7 = min ( f l u x 1 ( 2 ) , a ( 7 ) ) ;
675 In4 = min ( f l u x 1 ( 3 ) , a ( 4 ) ) ;
676 i f f l u x 1 ( 1 ) > a ( 3 )
677 v ( 1 , 1 ) = f l u x 1 ( 1 ) - a ( 3 ) ;
678 end
679 i f f l u x 1 ( 2 ) > a ( 7 )
680 v ( 2 , 1 ) = f l u x 1 ( 2 ) - a ( 7 ) ;
681 end
682 i f f l u x 1 ( 3 ) > a ( 4 )
683 v ( 3 , 1 ) = f l u x 1 ( 3 ) - a ( 4 ) ;
684 end
685 %Right o f way p a r a m e t e r s ( Using matrix A)
686 Out1 = b ( 1 ) -A( 1 , : ) ∗v ;
687 Out6 = b ( 6 ) -A( 2 , : ) ∗v ;
688 Out8 = b ( 8 ) -A( 3 , : ) ∗v ;
689 %J u n c t i o n ( 1 0 , 1 4 , 1 6 --> 8 , 1 2 , 1 5 )
690 f l u x 2 = A∗ [ b ( 1 0 ) ; b ( 1 4 ) ; b ( 1 6 ) ] ;
691 In8 = min ( f l u x 2 ( 1 ) , a ( 8 ) ) ;
692 In15 = min ( f l u x 2 ( 2 ) , a ( 1 5 ) ) ;
693 In12 = min ( f l u x 2 ( 3 ) , a ( 1 2 ) ) ;
694 i f f l u x 2 ( 1 ) > a ( 8 )
695 v2 ( 1 , 1 ) = f l u x 2 ( 1 ) - a ( 8 ) ;
696 end
697 i f f l u x 2 ( 2 ) > a ( 1 5 )
698 v2 ( 2 , 1 ) = f l u x 2 ( 2 ) - a ( 1 5 ) ;
699 end
700 i f f l u x 2 ( 3 ) > a ( 1 2 )
701 v2 ( 3 , 1 ) = f l u x 2 ( 3 ) - a ( 1 2 ) ;
702 end
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703 %Right o f way p a r a m e t e r s ( Using matrix A)
704 Out10 = b ( 1 0 ) -A( 1 , : ) ∗ v2 ;
705 Out14 = b ( 1 4 ) -A( 2 , : ) ∗ v2 ;
706 Out16 = b ( 1 6 ) -A( 3 , : ) ∗ v2 ;
707 %- - Boundaries - -
708 %Incomming r o a d s [ F1 , F5 , F13 , F18 ]
709 F1 ( i +1 ,1) = F1 ( i , 1 ) - ( k/h ) ∗ ( ( U1( i , 1 ) -U1( i , 1 ) ˆ2) - ( U01 - ( U01 ) ˆ2) ) ;
710 F5 ( i +1 ,1) = F5 ( i , 1 ) - ( k/h ) ∗ ( ( U5( i , 1 ) -U5( i , 1 ) ˆ2) - ( U05 - ( U05 ) ˆ2) ) ;
711 F13 ( i +1 ,1) = F13 ( i , 1 ) - ( k/h ) ∗ ( ( U13 ( i , 1 ) - U13 ( i , 1 ) ˆ2) - ( U013 - ( U013 ) ˆ2) ) ;
712 F18 ( i +1 ,1) = F18 ( i , 1 ) - ( k/h ) ∗ ( ( U18 ( i , 1 ) - U18 ( i , 1 ) ˆ2) - ( U018 - ( U018 ) ˆ2) ) ;
713 %Roads with o u t g o i n g f l u x e s [ A l l e x c e p t : F2 , F4 , F11 , F17 ]
714 F1 ( i +1,Nx) = F1 ( i , Nx) - ( k/h ) ∗( Out1 - ( U1( i , Nx - 1 ) -U1( i , Nx - 1 ) ˆ2) ) ;
715 F3 ( i +1,Nx) = F3 ( i , Nx) - ( k/h ) ∗( Out3 - ( U3( i , Nx - 1 ) -U3( i , Nx - 1 ) ˆ2) ) ;
716 F5 ( i +1,Nx) = F5 ( i , Nx) - ( k/h ) ∗( Out5 - ( U5( i , Nx - 1 ) -U5( i , Nx - 1 ) ˆ2) ) ;
717 F6 ( i +1,Nx) = F6 ( i , Nx) - ( k/h ) ∗( Out6 - ( U6( i , Nx - 1 ) -U6( i , Nx - 1 ) ˆ2) ) ;
718 F7 ( i +1,Nx) = F7 ( i , Nx) - ( k/h ) ∗( Out7 - ( U7( i , Nx - 1 ) -U7( i , Nx - 1 ) ˆ2) ) ;
719 F8 ( i +1,Nx) = F8 ( i , Nx) - ( k/h ) ∗( Out8 - ( U8( i , Nx - 1 ) -U8( i , Nx - 1 ) ˆ2) ) ;
720 F9 ( i +1,Nx) = F9 ( i , Nx) - ( k/h ) ∗( Out9 - ( U9( i , Nx - 1 ) -U9( i , Nx - 1 ) ˆ2) ) ;
721 F10 ( i +1,Nx) = F10 ( i , Nx) - ( k/h ) ∗( Out10 - ( U10 ( i , Nx - 1 ) - U10 ( i , Nx - 1 ) ˆ2) ) ;
722 F12 ( i +1,Nx) = F12 ( i , Nx) - ( k/h ) ∗( Out12 - ( U12 ( i , Nx - 1 ) - U12 ( i , Nx - 1 ) ˆ2) ) ;
723 F13 ( i +1,Nx) = F13 ( i , Nx) - ( k/h ) ∗( Out13 - ( U13 ( i , Nx - 1 ) - U13 ( i , Nx - 1 ) ˆ2) ) ;
724 F14 ( i +1,Nx) = F14 ( i , Nx) - ( k/h ) ∗( Out14 - ( U14 ( i , Nx - 1 ) - U14 ( i , Nx - 1 ) ˆ2) ) ;
725 F15 ( i +1,Nx) = F15 ( i , Nx) - ( k/h ) ∗( Out15 - ( U15 ( i , Nx - 1 ) - U15 ( i , Nx - 1 ) ˆ2) ) ;
726 F16 ( i +1,Nx) = F16 ( i , Nx) - ( k/h ) ∗( Out16 - ( U16 ( i , Nx - 1 ) - U16 ( i , Nx - 1 ) ˆ2) ) ;
727 F18 ( i +1,Nx) = F18 ( i , Nx) - ( k/h ) ∗( Out18 - ( U18 ( i , Nx - 1 ) - U18 ( i , Nx - 1 ) ˆ2) ) ;
728 Fs1 ( i +1,Nx) = Fs1 ( i , Nx) - ( k/h ) ∗( Outs1 - ( Us1 ( i , Nx - 1 ) -2∗ Us1 ( i , Nx - 1 ) ˆ2) ) ;
729 Fs2 ( i +1,Nx) = Fs2 ( i , Nx) - ( k/h ) ∗( Outs2 - ( Us2 ( i , Nx - 1 ) -2∗ Us2 ( i , Nx - 1 ) ˆ2) ) ;
730 Fs3 ( i +1,Nx) = Fs3 ( i , Nx) - ( k/h ) ∗( Outs3 - ( Us3 ( i , Nx - 1 ) -2∗ Us3 ( i , Nx - 1 ) ˆ2) ) ;
731 Fs4 ( i +1,Nx) = Fs4 ( i , Nx) - ( k/h ) ∗( Outs4 - ( Us4 ( i , Nx - 1 ) -2∗ Us4 ( i , Nx - 1 ) ˆ2) ) ;
732 %Roads with incomming f l u x e s [ A l l e x c e p t 1 , 5 , 1 3 , 1 8 ]
733 F2 ( i +1 ,1) = F2 ( i , 1 ) - ( k/h ) ∗ ( ( U2( i , 1 ) -U2( i , 1 ) ˆ2) - In2 ) ;
734 F3 ( i +1 ,1) = F3 ( i , 1 ) - ( k/h ) ∗ ( ( U3( i , 1 ) -U3( i , 1 ) ˆ2) - In3 ) ;
735 F4 ( i +1 ,1) = F4 ( i , 1 ) - ( k/h ) ∗ ( ( U4( i , 1 ) -U4( i , 1 ) ˆ2) - In4 ) ;
736 F6 ( i +1 ,1) = F6 ( i , 1 ) - ( k/h ) ∗ ( ( U6( i , 1 ) -U6( i , 1 ) ˆ2) - In6 ) ;
737 F7 ( i +1 ,1) = F7 ( i , 1 ) - ( k/h ) ∗ ( ( U7( i , 1 ) -U7( i , 1 ) ˆ2) - In7 ) ;
738 F8 ( i +1 ,1) = F8 ( i , 1 ) - ( k/h ) ∗ ( ( U8( i , 1 ) -U8( i , 1 ) ˆ2) - In8 ) ;
739 F9 ( i +1 ,1) = F9 ( i , 1 ) - ( k/h ) ∗ ( ( U9( i , 1 ) -U9( i , 1 ) ˆ2) - In9 ) ;
740 F10 ( i +1 ,1) = F10 ( i , 1 ) - ( k/h ) ∗ ( ( U10 ( i , 1 ) - U10 ( i , 1 ) ˆ2) - In10 ) ;
741 F11 ( i +1 ,1) = F11 ( i , 1 ) - ( k/h ) ∗ ( ( U11 ( i , 1 ) - U11 ( i , 1 ) ˆ2) - In11 ) ;
742 F12 ( i +1 ,1) = F12 ( i , 1 ) - ( k/h ) ∗ ( ( U12 ( i , 1 ) - U12 ( i , 1 ) ˆ2) - In12 ) ;
743 F14 ( i +1 ,1) = F14 ( i , 1 ) - ( k/h ) ∗ ( ( U14 ( i , 1 ) - U14 ( i , 1 ) ˆ2) - In14 ) ;
744 F15 ( i +1 ,1) = F15 ( i , 1 ) - ( k/h ) ∗ ( ( U15 ( i , 1 ) - U15 ( i , 1 ) ˆ2) - In15 ) ;
745 F16 ( i +1 ,1) = F16 ( i , 1 ) - ( k/h ) ∗ ( ( U16 ( i , 1 ) - U16 ( i , 1 ) ˆ2) - In16 ) ;
746 F17 ( i +1 ,1) = F17 ( i , 1 ) - ( k/h ) ∗ ( ( U17 ( i , 1 ) - U17 ( i , 1 ) ˆ2) - In17 ) ;
747 Fs1 ( i +1 ,1) = Fs1 ( i , 1 ) - ( k/h ) ∗ ( ( Us1 ( i , 1 ) -2∗ Us1 ( i , 1 ) ˆ2) - I n s 1 ) ;
748 Fs2 ( i +1 ,1) = Fs2 ( i , 1 ) - ( k/h ) ∗ ( ( Us2 ( i , 1 ) -2∗ Us2 ( i , 1 ) ˆ2) - I n s 2 ) ;
749 Fs3 ( i +1 ,1) = Fs3 ( i , 1 ) - ( k/h ) ∗ ( ( Us3 ( i , 1 ) -2∗ Us3 ( i , 1 ) ˆ2) - I n s 3 ) ;
750 Fs4 ( i +1 ,1) = Fs4 ( i , 1 ) - ( k/h ) ∗ ( ( Us4 ( i , 1 ) -2∗ Us4 ( i , 1 ) ˆ2) - I n s 4 ) ;
751 %Outgoing Roads [ F2 , F4 , F11 , F17 ]
752 F2 ( i +1,Nx) = F2 ( i +1,Nx - 1 ) ;
753 F4 ( i +1,Nx) = F4 ( i +1,Nx - 1 ) ;
754 F11 ( i +1,Nx) = F11 ( i +1,Nx - 1 ) ;
755 F17 ( i +1,Nx) = F17 ( i +1,Nx - 1 ) ;
756 end
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Figure 7.3.6: Plotting time vs position of the different routes. Initial values
from test A1.

Figure 7.3.7: Plotting time vs position of the different routes. Initial values
from test A2.
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Figure 7.3.8: Plotting time vs position of the different routes. Initial values
from test B1.

Figure 7.3.9: Plotting time vs position of the different routes. Initial values
from test B2.
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Figure 7.3.10: Plotting time vs position of the different routes. Initial values
from test C1.

Figure 7.3.11: Plotting time vs position of the different routes. Initial values
from test C2.
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