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Abstract/Sammendrag

This paper shows how to create a simulationtool for traffic flow in a network
using the Lighthill-Witham—Richards model and the Godunov scheme. First
some basic rules about conservation laws are described and how to solve them
using the method characteristics. This leads to the notion of weak solutions
which can be solved by shock- and rarefractions-solutions. This is then used
to describe how traffic behaves on a single road by using the LWR-model. The
behavior of traffic at junctions is discussed, more specifically how to find the
maximum flux through a junction when we deal with different amount of in-
coming and outgoing roads. The paper gives different examples of numerical
solution methods to conservation laws, which gives motivation for the Godunov
scheme. A numerical scheme using the LWR-model and the Godunov scheme is
tested on different traffic models. The main test is a simplified model of Trond-
heim, Norway. The results are presented in videos, as well as graphs and tables
that show the duration of the driving time through different routes of the model.

Denne artikkelen viser hvordan man kan bruke Lighthill-Witham—-Richards mod-
ellen og Godunovs metode til a lage et simuleringsverktgy som simulerer trafikkfly-
ten i et nettverk av veier. Fgrst diskuteres konservasjonslover, og hvordan
man kan lgse disse med karakteristikker. Dette motiverer diskusjonen for svake
lgsninger. Svake lgsninger kan lgses ved hjelp av sjokk- og vifte-lgsninger. Dette
brukes til & beskrive trafikkflyten pa en rett vei ved hjelp av LWR-modellen.
Deretter gis teori om trafikk i et veikryss, og hvordan man kan finne mak-
simal fluks gjennom krysset. Forskjellige mater & lgse konservasjonslover nu-
merisk blir gitt, og dette gir motivasjon for bruken av Godunovs metode. Ulike
typer av trafikkmodeller testes ved hjelp av et program som er basert pa LWR-
modellen og Godunovs metode. Hovedtesten er en forenklet verson av Trond-
heim. Trafikkens oppfersel beskrevet av denne modellen blir presentert i korte
filmer. Det gis ogsé tabeller og grafer som viser kjgretiden gjennom forskjellige
kjgreruter i modellen.
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This thesis is written to fulfill the requirements of the Master of Science degree
in Mathematics at Norwegian University of Science and Technology. The assign-
ment was given and supervised by Helge Holden. My paper has been written in
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by the me.

One of the harder tasks was to transform how to use the maximizing functions,
from the analytical part, into my code. During the process I feel that my pro-
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of conservation laws and differential equations.
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1 Introduction

The goal of this paper is to create a computer program that simulates road
traffic on a network of roads and junctions. This program can be used to look
at how traffic will develop after some time in different situations, like a nar-
rowing of a road, traffic lights and roundabouts. The aims of this analysis are
principally represented by the maximization of car flow, and the minimization
of traffic congestion.

In mathmatics and civil enginering there has been a lot of studies of traffic
flow. With different approaches. One possibilty is to model the cars one by one,
which is called a microscopic model. Another way is the mesoscopic or kinetic
model, where you define a function which expresses the probability of having a
vehicle at time ¢ in position = that drives in a given velocty. The last main way
to look at the problem is the macroscopic model, which is the one used in the
paper. The macroscopic model uses systems of partial differential equations,
just like in fluied dynamics.

The model used in this thesis is the one presented by Lighthill, Whitham and
Richards in the 1950’s. The idea of the model is to describe traffic just like
water flow, which can be described in terms of conservation laws:

P

Pmax |,

Pt + | Vmaxp(l — =0, z€eR, t>0.

A numerical method to solve equations along a road is represented by the Go-
dunov scheme, suggested by S. K. Godunov in 1959. The Godunov scheme is
based on exact solutions of the Riemann problem and approximations of piece-
wise constant functions. All coding has been done in Matlab R2013b.

Chapters 3 and 4 gives the mathematical background on how to solve the traf-
ficking problem with the LWR-model on a single road. First by discussing basic
rules about conservation laws, then showing how this can be used to describe
traffic flow. Then in chapters 4 and 5 we look at networks of roads and junc-
tions, and how to maximize the fluxes through junctions with different amount
of outgoing and incoming roads. In chapters 6 we first give some motivation of
why to use the Godunov Scheme, then we explain how the scheme is created.
Chapter 7 consists of examples using the LWR-model and the Godunov scheme
and the results we get. Then in chapter 8 I give some comments about the
results, my models, the code and future work.



2 Conservation Laws

The model for traffic flow in this paper is based on systems of conservation
laws, which are a system of partial differential equations, where the variables are
conserved quantities, i.e. quantities which can neither be created nor destroyed.
In this chapter I give some basic preliminaries about systems of conservation
laws.

2.1 Basic Definitions and Assumptions

A system of conservations laws in one space dimension can be written in the form

us + f(u)y =0 (2.1.1)

where u : [0,400) x R — R™ is the ”conserved quantity” and f : R” — R" is
the flux. If we integrate (2.1.1) on an arbitrary interval [z, z2] we get

%/gﬁ u(t,z)dr = — /:2 flu(t,z))pdr = f(u(t,z1)) — f(u(t, x2)),

Z1

and so the amount of w in [z1, x5] varies according to the quantity of u entering
at r = x; and exiting at * = zo.

We always assume f to be smooth. If u is a smooth solution, then (2.1.1) can
be written in the quasi linear form

us + A(u)u, =0,

where A(u) is the Jacobian matrix of f at u. If n = 1, so u takes values in R
and f : R — R then (2.1.1) is a single equation. We then say that (2.1.1) is a
scalar equation. In this paper we only deal with the scalar case.

2.2 Mathematical theory for scalar conservation laws

The problem
ur+ f(u)y,=0 zeR, t>0,

u(0,2) = up(x) z€R, (2.2.1)

for some function f : R — R is called a Cauchy problem. This problem can be
solved by the method of characteristics. Or as we will see, altleast locally.

Definition 2.2.1. Let u: R x [0,T) — R be a classical solution of (2.2.1). The
solution x of the inital-value problem

X' () = f'(u(x(t),1)), t>0 x(0) = zo

are called the characteristics of (2.2.1).



The main property of the characteristics is that « is constant along:

Doax(0).) = w00 + (OO =0 10

and hence u(x(t),t)) = const for t > 0. We illustrate this with an example.

Example 2.2.1. Let f(x) = u?/2. The characteristics of (2.2.1) is then given
by the solutions of

X/(t) = U(X(t)>t)7 t>0 X(O) = Zo.

Since u(x(t),t)) = const for t > 0, x is a straight line in the (x,t)-plane through
xo with slope 1/ug(x(t)) = 1/ug(zo). Characteristics allow to illustrate solu-
tions of (2.2.1) in a compact form.

To show how a solution might look like, let the initial values be:

1 : z<0
up(z)=<¢ 11—z : 0<z<1 (2.2.2)
0 : z>1

The characteristics in this case is drawn in Figure 2.2.1.

As we can see in Figure 2.2.1, the characteristics collide at ¢ = 1. In other words

05 4

Figure 2.2.1: Example 2.2.1. Characteristics of (2.2.1) with (2.2.2) as initial
value.

the solutions of (2.2.1) might develop discontinuities in finite time. Therefore
we need a solution method including discontinuous functions. Let u be a classi-
cal solution to (2.2.1); we multiply this solution by ¢ € C}(R?) and integrating
over R2. This gives :

0= /O b /]R (£ (u)e)dwdt = — /0 h /R (uditf () s )dwdt— /R u(z, 0)6(x, 0)d

To define the two last integrals we only need a integrable function u. We get
the following definition.



Definition 2.2.2. The function v : R x (0,T) — R is calleda weak solution of
(2.2.1) if for all ¢ € C}(R?)

/0°° /R(W’t + f(u)gs)dwdt = —/RU(x)oqb(x,O)dx.

So we need u and f(u) to be integrable, but there are other requirements on u
we need for this condition to hold, but we do not specify them. It is possible
to check that every classical solution is a weak solution, but not every weak
solution needs to be a classical solution.

Now we look at conservation laws with some different types of discontinuous
initial values.

Definition 2.2.3. The problem (2.2.1) with initial values

w <0
uo(x):{ u: 20 (2.2.3)

and ug,u, € R is called a Riemann problem.

We want to solve the Riemann problem (2.2.1), (2.2.3). We observe that both
u(z,t) and u(ax,at) is a solution of (2.2.1),(2.2.3) for any a > 0. So u only
depends on & = z/t, i.e. u=u(§). We have

0= e+ (e = — 50/ () + F'@WOW(€)] = 1w/ (O)(F(€) ~ )

There are several possibilities of what might occur:

/() =0 = u(§) = const

of (u(g)) = ¢ = w(€) = (f)71(€) = const (if the inverse of f’
exists; sufficient condition is f” < 0or f/ >0in R )

e u is discontinuous along § = ¥ i.e. u/(§) does not exist.

This motivates us to look at three different cases.

-Case 1: f'(w) = f'(u,). This gives the solution u(x,t) = w; = u, for all
r€Randt>0.
-Case 2: f'(u1) > f'(uz) As the flow direction is from the left to the right, we
expect a shock line, i.e. a discontinuity curve x = ¥(t). We claim that the
discountinuous function
o ouw s <t

u(zx,t) —{ w o< st (2.2.4)

is a weak solution to (2.2.1),(2.2.3). Then the discontinuity line is given by

x =1(t) = st and s = ¢’ (¢) is the shock speed which has to be determined. To
prove our claim let ¢ € C§(R). Since u = const except on = = st,



/ / upydrdt = / (/_S:O upsdr + /OO ugdz)dt
/ 8t/ updr — s - u(st — 0,t)p(st, t)

+ 0 / updr + s - u(st + 0,t)o(st, t))dt
st

= —/Ru(x, 0)op(x,0)dr — s - (u, — ur)/o o(st, t)dt

and, by integration by parts,

/ /f )oddt = /'(—/“ﬂ>¢m+ﬂmm—mmwﬁwt

/ flu WMfm@t+wawnw)ﬁ

=Uw0—ﬂw»A o(st, )t
/ /u¢t+f )bz )dadt = /uo¢>(x,0)dx

s (= ) — (Flr) — f(ur) /¢at

We conclude

Thus
_ fm) = flw)

Uy — Up

(2.2.5)

The choice (2.2.5) is called the Rankine-Hugoniot condition. The discontinuity
curve is always a straight curve for a Riemann problem, i.e., s is always constant.
This may not be true for general initial data. In this situation, the Rankine-
Hugoniot condition generalizes to

_ flu(t)) = fur(t))
s(t) = ¢'(t) () = u (D) (2.2.6)
where
w(t) = x}fpn(t)u(x 1), up(t) = $£fpn(t) u(z,t). (2.2.7)

It can be shown that (2.2.4) is the unique weak solution of (2.2.1), see Theorem
2.3.2.



Figure 2.2.2: Example 2.2.2. Characteristics of (2.2.1) f(u) = u(1 — u), with
u, = 1/2 and u; = 0. The dotted line is the shock speed s = t/2.

Example 2.2.2. Let f(u) = u(l —u) and u; = 0,u, = 1/2. Then the shock
speed is s = 1 —w — u, = 5. The solution of (2.2.1),(2.2.3) is illustrated in
Figure 2.2.2.

-Case 3: f(u;) < f(uy). One solution is given by (2.2.4),

u . ox < st
ui(z,t) = { w oz < st (2.2.8)

It is also possible to show that

u ox < f(w)t
ug(x,t) = ¢ (f)7NE) ¢ flu)t <o < fup)t (2.2.9)
up x> f(u)t

is a weak solution. In fact, it is possible to show that the problem (2.2.1), (2.2.3)
possesses infinitely many weak solutions! What is the physically meaningful
solution?

We are going to show that us, which is called a rarefraction wave, is the physi-
cally correct solution. This leads to the notion of entropy condition.



0 0

Figure 2.2.3: Characteristics of (2.2.1) and (2.2.3) with f(u) = u?/2 and u; = 0
and u, = 1, corresponding to wu; (left) and wus (right)

2.3 Entropy solutions

For f(u) = u(1l — u), the condition u; > u, in traffic flow interpretation means
that there are more cars in {z < 0} than in { > 0}. The solution of u; would
mean that all cars to the left of the shock drives with the same velocity, and
all cars to the right of the shock drives with the same velocity. Additionally
the drivers to the left of the shock drives with a lower velocity. It would be
more realistic if the drivers to the left of the shock tried to drive with the same
velocity as the drivers to the right of the shock. So the rarefraction solution us
would seem like a more physically relevant solution.

Definition 2.3.1. A weak solution u : R x (0,T) — R of (2.2.1), (2.2.3)
satisfies the entropy condition of Oleinik if and only if along each discontinuity
curve x = ¢ (x),
flu(t) — fv)
w(t) —
for all ¢ € (0,T) and w(t) < v < u,(t), where
(2.2.8).

” <9Y'(t) < "

(2.3.1)

t) and u,(t) are defined in

Does u; satisfy the entropy condition (2.3.1)7 Since
f(ur> B f(ul)

Upr — U

P(t) = s(t) =
and f assumed to be strictly concave, we obtain for any u; < v < u,

flu) = fv) _ flu) = flun) _ o flur) = F(v)

U — v U — Uy Up — V

?

which contradicts (2.3.1). Thus u; does not satisfy the entropy condition (2.3.1).
The function u of Case 2, defined in (2.2.4), however, satisfies (2.3.1) (if f is con-
cave). As the function ug is continuous, we do not need to check (2.3.1) for this



function.

A different approach is to use the notion of entropy. We call a function n €
C?(R) an entropy and ¢ € C(R) an entropy fluz if and only if 7 is strictly
convex and if for any classical solution u of (2.2.1):

n(w)e +¥(u)z =0, zeR, t>0 (2.3.2)

The idea of this approach is to consider the conservation law as an idealization
of a diffusion problem given by the equation

ur + f(u)y = €ugy zeR, t>0 (2.3.3)

where € > 0 is the diffusion coefficient. This equation, together with an initial
condition has a unique smooth solution u. and we assume

ue — u pointwise in R x (0,T) for e — 0,

7" (ue,e) L1 (x0,1)) < € (2.3.4)
where ¢ > 0 is independent of e. The Limit ¢ — 0 is called the wvanishing
viscosity limit. It can be shown that u is a solution to (2.2.1), and we say that
u is the physically relevant solution.

We mulitply (2.3.2) by n’(uc) and choose ¢’ = f' - 7'

n(ue)t + Y (ue)z = En/(UE)ue,m = E(n/(ue)ue’m)m - 677"(%)“3@.

Multiplying this equation by ¢ € C}(R x R), ¢ < 0, and integrating over R x
(0, 00) gives:

/0 ) /R (n(ue)e + P (ue)q)pdadt = /O h (at / : ulpdr — sul¢(st,t)

— 00

+ O / uipdr + su?p(st, t))

st

—e/ /n’(ue)us,wgbxdzdt

o Jr

—e/ /n"(ue)uiwtbdxdt
o Jr

< 6||77/(ue)ue,z||L1(]R><(O,oo))||¢9L’||L°°(]R><(O,o<>))
-0 (as € = 0),

since "’ (u.) > 0 and (2.3.4). As ¢ is arbitrary, we deduce the entropy inequality
n(uw)e + ¥(u)z < 0. (2.3.5)

This inequality only holds for smooth solutions. From the definition of weak
solutions it follows that we can write the entropy inequality for weak solutions

/0 N / (n(u)br + () dadt < — / n(uo(x))é(x, 0)dz Vo € CA(RE). (2:3.6)

R



Definition 2.3.2. Let u: R x (0,T) — R be a weak solution of (2.2.1). Then
u is called an entropy solution if and only if for all convex entropies n and
corresponding entropy fluzx 1, the inequality (2.3.6) holds.

The function uy satisfies the entropy equation (2.3.6) almost everywhere since
ug is continuous and we can define the derivatives in a weak sense (it is also
possible to prove that (2.3.2) is in the weak form similarly to (2.3.6)). So ug is
an entropy solution. Does this hold for u;? We show with an example that it
does not.

Example 2.3.1. Let f(u) = u?/2, n(u) = u? so ¢¥(u) = 2u®, and let ¢ €
CY(R?). ¢ < 0. Then, since s = 3(u; +uy),

e} o0 st 0
/ /(uf(;ﬁt + %ui’qﬁz)d:ﬂdt = / (&/ ulpdr — suip(st,t) + at/ uipd
o Jr 0

—00 st

+ sul¢(st,t) + gu?qﬁ(st, t) — guﬁgé(st, t))dt

= —/uo(m)Q(b(x,O)dx
R

1

_ 5(ul + ur)(ul2 — u?) /000 @(st, t)dt

2 o0
ot —ud) [ ottty
3 0
1 oo
_ 7/ wol)?9(, 0)dz + < ( fur)3/ S(st, t)dt
R 0
>~ [ nuo(@)o(,0)ds
R
if and only if u; > u,.. Hence, uy is not an entropy solution.
Example 2.3.1 shows that the two equations

2
up + (1;) =0 and (u?); + = (u), =0

are only equivalent for classical solutions.

The above calculations motivates that only the rarefraction wave is the relevant
solutions for the Riemann problem if f'(u;) > f'(u,). For f'(w;) < f'(u,) we
have to expect discontinuous solutions with shocks. We summarize the above
results in a theorem.

For strictly concave functions we have:

Theorem 2.3.1. Let f in C?*(R) with " <0 inR.



(1) Let u; < u, and set s = M Then

Uy — Uy
w(z,t) = u . ox<st
Ol w, ;o ox > st

is a weak solution to (2.2.1),(2.2.3) satisfying the entropy condition of Oleinik.

(2) Let u; > w,.. Then

is a weak solution of (2.2.1),(2.2.3).

Notice that for strictly convex functions (f” > 0) u; < u, gives a shock solution
and u; > u, gives a rarefraction solution.

We have written that the problem (2.2.1),(2.2.3) (f” < 0) with u; < w, has
infinitely many solutions and that the solution u; does not satisfy the entropy
condition of Oleinik nor is an entropy solution. However, is us the only solution
satisfying the entropy condition of Oleinik and condition (2.3.6)7 The answer
is yes, but not so easy to prove. We only state the result. (see [1]):

Theorem 2.3.2. Let f € C*(R) and ug € L>®(R). Then there exist at most
one entropy solution of (2.2.1) satisfying the entropy condition (2.5.6) holds.

10



3 Traffic flow models

Consider the traffic flow on a road with one lane. We want to look at the cars
as a density p(x,t), say vehicles per kilometer in € R and time ¢ > 0. The
number of the cars on the interval (z1,z3) at time ¢ is

T2
/ plx, t)dz.
T1

Let v(z,t) denote the velocity of the cars at time ¢. The number of cars which
pass through z at time ¢ (in unit length) is p(z, t)v(x,t). We need an equation
which shows the evolution of the car density. The number of cars in the interval
(z1,22) changes according to the number of cars that exits or drives into the
interval.

d [**

% p(a:,t)dm = p($1,t)v($1, t) - p($27t)v(l'2, t)

Integrating this equation with respect to time and assuming that p and v are
regular functions yields

/tz /m Op(x, t)dadt = / Z(P(wht)v(xl,t) — p(aa, )o(x2, t))dadt

ty
to X9
__ / / Du(p(w, t)0(w, 1)) dadt.
ty x1

Since x1,x2 € R, t1,t> > 0 are arbitrary, we can conclude
o+ (pv)e =0, z€R, t>0. (3.0.7)

This equation has the same form as the conservation laws described in the
previous chapter. We have to add some initial conditions

p(z,0) = po(z), x=eR.

We now need an equation for the velocity v. A simple assumption is to assume
that the speed of the cars only depends on the density of the cars. If the road
is empty, p = 0, we will drive with maximal velocity v = vpax. In heavy traffic
we will have to slow down and stop (v = 0) in a traffic jam, and the cars will
be bumper to bumper (p = pmax). The simplest model is the linear relation

U(p)zvmax (1_ P )7 0 < p < Prmax-

Pmax

Equation (3.0.7) then becomes

p

Pmax

pt—i-[vmaxp(l— )] =0, zeR, t>0

11



This equation is a conservation law since it expresses the conservation of the
number of cars. Integrating the equation over z € R gives

a I _ plat) _
o Rp(w,t)dx = /R(9$ l:Umax(l‘,t) (1 . )} dx =0

and we see that the number of cars in R is constant for all ¢ < 0.
We will now look at some different traffic models. The first one is the one we
just presented.

(1) Lighthill-Whitham—Richards model:
p

pmax

pr = (po(0)))e = 0, 0(p) = Vum (1— ) 0< 9 < P

If we set vpmax = 1 and ppax = 1 the equation reduces to

pt = (p(1=p))s =0.

For this model f = pv is a C? function, f is strictly concave (f” = —2) and
7(0) = £(1) = 0.

This method of modeling traffic flow originated under the assumption that traffic
streams as a whole are comparable to fluid streams. The major first step in
macroscopic modeling was taken by Lightill and Whitham in 1955, when they
compared ’traffic flow on long crowded roads’ with flood movement in long
rivers’. A year later, Richard complemented the idea with the introduction of
’shock waves on the highway’, completing the so-called LWR model.

(2) Greenberg Model:

In this model it is assumed that the velocity of the vehicles can be very large
for low densities:

pmax
pt + (pv(p))zs v(p) = Vmax In ( P ) y 0<p < pmax.

In this case v(pmax) = 0, while v is unbounded when p — 0F.

(3) Payne-Whitham model:
pe+ (vp)z =0, (pv): + (pv* + p(p))z = 0.

This model mimics the flow of gas particles. The above equations are known as
the Euler equations of gas dynamics with pressure p(p) = ap?, a > 0, v < 1.
The disadvantage of this model is that there may be solutions for which the
velocity v is negative.

12



(4) Aw-Rascale model:
pr+ (pv)e =0,  (pv+ pp(p))i + pup(p))e = 0.

This model has been proposed as an improvement of the Payne-Witham model
and has been derived from microscopic models. p = p(p) is the "pressure”, an
increasing function of the density.

13



4 Networks

Now we know how to describe traffic flow on a single road. The next goal is
to look at what happens when roads meet at a junction. In this chapter we
will show how we can represent a traffic network as a direct graph. A directed
graph is a collection of direct edges, connected together with some vertices.
Each vertex is given by a finite number of incoming and outgoing edges, just as
each junction is given by a finite number of incoming and outgoing roads. We
will first describe a network of directed graphs, by determining the behavior at
vertices. Then we will translate this information to roads and junctions.

Figure 4.0.1: Example of a network

4.1 Basic Definitions and Assumptions

We begin to state what it means for a function to be of bounded variation, and
then we give the definition of a network. For an interval I € R and a function
g : I — R. The total variation of ¢ is defined by

N
Tot.Var.g = sup{z lg(z;) — g(xj—1)|},

j=1

for N > 1, all the ponits z;, j € {1,..., N} belongs to the interval I and are
such that zog < 21 < --- < xp.

Definition 4.1.1. A function g : I — R has bounded total variation if Tot.Var.g <
+00.

A function with bounded variation has at most countably many points of discon-
tinuity and these functions does not occilate vigorously. (See [4, pp. 281-284]).

Now we can start to talk about networks.

14



Definition 4.1.2. A network is a couple (Z,J) where

T is a finite collection of edges, which are intervals in R, I; = [a;,b;] C R,
i=1,...,N;

J is a finite collection of vertices. Each vertex J is a union of two nonempty

subsets Inc(J) and Out(J) of {1,...,N}.
We assume the following:

1. For every J # J' € J we have Inc(J)NInc(J') = 0 and Out(J)N Out(J') = 0.
2. If i ¢ UjegInc(J) then b; = 400 and if i ¢ Ujeg Out(J) then a; = —oo.
Moreover, the two cases are not mutually exclusive.

This is just saying that the network is a graph. Each vertex can be numbered,
and represented as a n + m-tuple (i1, ...,%n, nt1, -, intm). LThe n is number
of incoming edges and m is the number of outgoing edges. The first condition
states that each edge can be incoming of at just one vertex, and outgoing for
just one vertex, and that they are connected to at least one vertex. See Figure
4.0.1.

4.2 Riemann Solvers

In this section we assume that the traffic on each edge is represented by an
hyperbolic system of conservation laws:

(wi)e + (fi(ui))z =0 u; € RP, (4.2.1)

the goal is to define and solve Riemann problems at vertices. Given network
(Z,J) and a vertex J € J and assume that Inc(J) = {1,...,n} and Out(J) =
{n+1,...,n+m}.

Definition 4.2.1. A Riemann problem at J is a Cauchy problem corresponding
to an initial value which is constant on each edge.

Since by the definition of the Riemann problem for J, we have constant initial
value on each edge, we need only to look for centered solutions. In other words,
for a Riemann problem shocks, rarefractions or contact discontinuities will be
formed at every edge.

Definition 4.2.2. A Riemann solver for the vertex J is a function
RS : (RP)™™ 5 (RP)™ ™

that associates to every Riemann data ug = (u170,...,un+m70) at J a vector
@ = (l1, ...0n+m) so that the following holds.

On each edge I;;i = 1,....,n + m, the solution is given by the solution to the
initial-boundary value problem with initial value u; o and the boundary data 4;.
We require the consistency condition

(CC) RS(RS(u)) = RS(ug).

15



Now we can define admissible solutions at J.

Definition 4.2.3. Assume a Riemann Solver RS is assigned at a junction J.
Let uw = (U1, ooy Unpm), U 2 [0, +00) X I; = RP be such that u;(t,-) is of bounded
variation for every t > 0. Then w is an admissible weak solution to (4.2.1)
related to RS at the vertex J if and only if the following properties hold:

(i) w; is a weak solution to (4.2.1) on the edge;
(ii) for almost every t > 0, setting

uJ(t) = (ul('a bl_)v "'7un('a bn_)vun+1('v an+1+)v ""un+m('v an+m+))»

we have

RS(uy(t)) = us(t).

in traffic modeling cars can not disappear or be created at a junction. So for
traffic the quantity « must be conserved at the vertex J. In other words the
total flux in to the junction must be the same as the total flux out of the junc-
tion. Therefore, necessary condition is to ask equality of incoming and outgoing
fluxes for the obtained solution of 4. But this is not enough, because the initial-
boundary value problem on each edge may produce a solution which does not
attain the boundary value pointwise. To ensure conservation of u, we need that
the solutions to the initial boundary value problem have negative characteristic
velocities on incoming edges and positive characteristic velocities on outgoing
ones. This adds up to ask the Riemann problem on the real line with initial
data (u;0,%;), ¢ = 1,...,n +m, to only produces waves with positive velocities.
Conservation of u at the vertex J is the same as to ask:

Cons.1 if & = RS(ug), then for incoming edges the solution to the Riemann
problem (u;,%;) admits waves with strictly negative speed, i = 1, ...,n, while
for outgoing edges the solution to the Riemann problem (@;,u; o) admits all
waves with positive speed, j =n+1,...,n + m.

Cons.2 if & = RS(up), then the incoming flux is equal to the outgoing one,
ie.:

n n+m
D ofi@) = > flay).
i=1 j=n+1

These to conditions gives that the sum of traces of fluxes over incoming edges
is equal to the sum of traces of fluxes over the outgoing edges.

In order to find out how much traffic that can flow though a junction, i.e.
images of which region the Riemann solver belongs to, we need some prelimi-
nary results:

(F) f:]0,1] — R is a smooth, strictly concave and satisfies f(0) = f(1) =0. f
a unique maximum o € (0, 1) such that f'(¢) =0, i.e o is a strict maximum.
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Definition 4.2.4. Let 7:[0,1] — [0,1] be a map such that:

1. f(r(w) = f(u) for every u € [0,1];
2. 7(u) # u for every u € [0,1\{o}.

Proposition 4.2.1. The function T is well defined and continuoues. Moreover
it satisfies

0<u<o <= o<7(u)<1l, c<u<l <= 0<7(u) <o

Proof. Fix u € [0,1]. If u = o, then 7(u) = u, since there is just one point of
maximum for f. If u # o, then by 1., 7(u) can assume at most two values. One
is w itself, while the other belongs to (o,1] if u < o or it belongs to [0,0) if
u > 0. Since we want that 7(u) # wu if u # o, then 7 is clearly well defined and
the equation is satisfied.

The continuity of 7 follows from the regularity of the flux f. O

Now we have what we need to construct all regions for which the images of all
possible Riemann solvers exists. This is described by the next proposition.

Proposition 4.2.2. Fiz a vertex J, an initial value (u1,0, ..., Untm,0) and a
Riemann solver RS satisfying Cons.1 and Cons.2. Define

(711, ) ﬁn+m) = RS(UL(), ceey uner’o).

For an incoming edge I; the following possibilities hold :
1. if the initial value u; o € [0, 0], then

@i € {uio} U (7(uio), 1];
2. if the initial value u; o € [0, 1], then
u; € [0’, 1]

For an outgoing edge I; the following possibilities hold:
1. if the initial value ujo € [0, 0], then

a; € [0,0];
2. if the initial value ujq € [0, 1], then
;€ {uj0} U[0,7(uj0)).

The proof of this proposition can be found in [2, pp. 101-102]. The proposition
allows us to introduce the following functions. For each incoming edge I;, define

o ={ G5 el 22

while for each outgoing edge I;, define

max _ f(o—), if Uy, E[0,0’]
V5 (uj,0) { Flugo) i ujg € (1] (4.2.3)

The quantities 7;"**(u;,0) and 7;***(u;0) represent the maximum flux that can

be obtained by a single wave solution on each road.

max
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5 Lighthill-Witham—Richards Model on Networks

The LWR-model will be used on each road and at each junction. We look at
Riemann solvers that satisfy the conservation of cars (Conl and Con2) and the
following rules:

(A) In some way drivers choose where to drive, that is the traffic from in-
coming roads is distributed on outgoing roads according to fixed coefficients;
(B) Respecting (A), the drivers choose to maximize fluxes.

When there are more incoming roads than outgoing we need a right of way
parameter that describes how many cars that can drive through the junction
from the incoming roads.

5.1 Basic Defintions and Assumptions

Definition 5.1.1. A road network is a network. The edges is represented by
undirectional roads and the vertices by junctions.

Given a road network (Z, J). On each road we have the equation

pt + f(p)e =0, (5.1.1)

where p = p(z,t) € [0, pmax), (t,2) € Ry x R, is the density of cars, v is the
average speed and f(p) = vp is the flux. We assume the following:

(A1) pmax =1;

(A2) the speed v depends only on the density p;
(A3) the flux f is a strictly concave C? function;
(A4)

f(0) = f(1) =0.
(A3) and (A4) gives that f has a unique point of maximum o € (0, 1).

To distribute the traffic at each junction, we give each junction J a traffic-
distribution matrix, i.e a matrix describing the percentage of cars from outgoing
to incoming roads.

Definition 5.1.2. Given a junction J with n incoming roads, say I, .., I,, and
m outgoing roads, say Ini1,..., Intm. Then, the traffic distribution matriz A is
given by
Ant11 0 Ongln
A= : : : (5.1.2)
Cnimi Qminm
where 0 < a; ; <1 foralli e {1,...,n} and all j € {n+1,...,n+m} and

> iy =1 (5.1.3)

for every i € {1,...,n}.

18



Given a junction J and an incoming road I;, the i-th column of A describes
how the traffic from I; distributes in percentages to the outgoing roads. So if
C is the quantity of traffic coming from road I; then o ;C traffic moves toward
roads ;.

We introduce a technical condition on the matrix A. We say that the matrix A
satisfies hypothesis (C) if the following holds.

(C) Let {ey,...,en} be the canonical basis of R™ and for every subset V C R"
indicated by V* its orthogonal. Define for every i = 1,..,n, H; = {e;}*, i.e the
coordinate hyperplane orthogonal to e; and, for every j = n + 1,...,n + m let,
aj = (Qj1,...,a;n) € R" and define H; = {a;}+. Let K be the set of indices
k= (ki,...k), 1 <1 <n—1,suchthat 0 <k < ky <--- <k <n+mand
for every k € K set Hy = ﬂlh:l Hy,, . Letting 1 = (1,...,1) € R™, then for every
ke K,

1¢ Hif (5.1.4)
Condition (C) is a technical condition, which is important to isolate the unique
solution to Riemann problems at a junction. From (C) we see that m > n. If
that is not the case, then by the definiton 1 = Z;Li_’:fi-l aj, we get 1 € Hi,
where

Hy = ]Jrn L Hj.

The case where m = n we can check that condition (C) is generic in the space
of n X n matrices, which means that the set of matrices satisfying (C) is open
and dense.
If n > 2, then (C) gives that, for every j € {n+1,...,n + m} and for every
distinct elements i,7" € {1,...,n}, oj; # o holds. Otherwise, without loss of
generality, we may suppose that o, 1,1 = an41,2. Since

H = (Na<j<nH;) N Hyyq,

then, by condition (C), there exists an element (z1,2,0,...,0) € H such that
1+ 22 # 0 and apt11(z1 +22) =0

In the case of a simple junction J with 2 incoming roads and 2 outgoing roads,
then (C) is equivalent to that, for all j € 3,4, a1 # ;2.

From here on we will assume that each traffic-distribution matrix satisfies hy-
pothesis (C).

We write p; : [0,400) x I; = [0, 1] for the density of cars in the road I; of the

network. We want ,0Z to be a weak entropic solution on I;, i.e. for every smooth
function ¢ : [0, +00) x I; = R with compact support on (0, +00) x (a4, b;),

/+°°/ (Pz Jrf(m)8 )dxdt—o (5.1.5)

and for every k£ € R and every smooth ¢ : [0,+00) x I; — R, positive with
compact support on (0, +00) X (a;, b;),

/*“/ ('pl ’“|*+sgn( —k)(f(pi = f(k ))Z¢> dedt > 0. (5.1.6)
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Definition 5.1.3. Let J be a junction with incoming roads, say I, ..., I, and
outgoing roads, say Ini1, ..., Intm. A weak solution at J is a collection of func-
tions p; : |0,+00) x I; = R, Il =1,..,n+ m, such that

ntm oo pby P 5
9% 91 _
; (/0 /al (pz 5 /(o) ax)dxdt> 0, (5.1.7)

for every smooth ¢, I = 1,...,n+m, having compact support in the set (0,00) X
(ar,bi] for 1 = 1,..,n ( incoming roads) and in (0,00) X [az,b;) for | = n +
1,...,n+m (outgoing roads), that are also smooth across the junction, i.e.

dy; dyp;

where i € {1,..,n} and j € {n+1,..,n+m}.

Lemma 5.1.1. Let p = (p1, ..., pn+m) be a weak solution at the junction such
that each © — p;(t,x) has bounded variation. Then p satisfies the Rankine-
Hugonit Condition at the Junction J, namely

n n+m
S Hpiltbim) = Y flptsa+)), (5.1.8)
i=1 j=n+1

for almost every t > 0.

Proof. Suppose for simplicity that, for every [ € {1,...,n + m}, p; is constant
on I;. Then (5.1.7) implies that

ntm oo b
Z / / div(pier, f(p1)er)dedt = 0.
1=1 70 @

By the divergence theorem to the last expression and by using the hypothesis
on the function ¢; we get

+o00 n n+m
AR D SECI B SN P ) T
=1

j=n+1
and so
n n+m
D et b)) = D floult,ar))
=1 l=n+1
by the arbitrariness of the function ¢;. O

Definition 5.1.4. Let p = (p1, ..., pntm) be such that p;(t,-) is of bounded vari-
ation for every t > 0. Then p is an admissible weak solution of (5.1.1) related
to matriz A at the junction J if and only if the following properties hold:

(i) p is a weak solution at the junction J;

(ii) f(p;(-a;4)) = 2oy @i f (pi( i), for each j =n+1,...n+m;
(iii) Yy f(pi(+,b:)) is mazimum subject to (i) and (ii).
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(i) is equivalent the conservation of cars at junctions. (ii) and (iii) describes the
rules (A) and (B), the preferences of drivers and the maximization procedure.

Definition 5.1.5. Given p; : I; - R, i = 1,..., N, L functions, a collection
of functions p = (p1, ..., pn), with p; : [0,400) x I; = R continous function from
[0, 4+00) into L}, is an admissible solution if p; is a weak entropic solution to
(5.1.1) on I;, p;(0,x) = p;i(x) a.e., at each junction p is a weak solution and is

an admissible weak solution in the case of bounded variation.

For all the roads I; = [a;, b;] of a network. If a; > —oo, we assume, by definition
4.1.2 that it is an incoming road of a junction. Likewise, if b; < 400 it is an
outgoing road of a junction. Then a solution for every time is determined just
by initial value on the network.

In the real world we have no infinite roads. So if a road has a; finite but is not
outgoing we have to assign boundary data. Likwise if b; finite, but not incoming
for any junction.

5.2 The Riemann Problem at Junctions

The next step is to construct a Riemann solver at junctions, satisfying rules (A)
and (B). We will look at the case of a junction where there are more incoming
roads than outgoing, and the case where there are less incoming than outgoing.
We go in special detail in the case where there are one incoming road and two
outgoing.

For a junction J with n incoming roads and m outgoing roads (Figure 5.2.1)
and a distribution matrix A. We indicate by
(t,x) e Ry x I; = p;i(t,z) €10,1], i=1,...,n (5.2.1)
the densities of cars on the roads with incoming traffic and
(t,z) e Ry x I; = pi(t,x) €[0,1], j=n+1,..,n+m (5.2.2)

those roads with outgoing traffic. The initial densities are (p1,0,-..; Prntm,0) i
each road of the junction J. In this section, we use the function 7 of Definition
4.2.4.

The case n <m

For a junction J, we have more outgoing roads or the same amount as the
number of incoming roads.

Theorem 5.2.1. Consider a junction J, assume (A1)-(A4) and that the matriz
A satisfies the condition (C). For every pi1,0, ..., Pntm,0 € [0,1], there exists a
unique admissible centered weak solution p = (p1, ..., pnem) to (5.1.1) at the
Junction J, in the sense of Definition 5.1.1, such that

p1(0,-) = p1,0s e Prgm(0,) = Prm,0-
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Figure 5.2.1: A junction with n incoming roads and m outgoing roads.

Then there exists a unique n + m-tuple (p1, ..., Pntm) € [0,1]"T™ such that

ﬁie{{ﬂi,O}U(T(Pm}] f 0<po<o . _,

(0,1, if o<pio<1 yeen T (5.2.3)

and

[070-]7 Zf 0 S Pj,O S g

pje{ (pio} UL0,7(0)))s if 0 <pio<1 j=n+1,..,n+m (5.24)

and for i € {1,...,n} the solution is given by the wave (p; o, p;), while for j €
{n+1,...,n+m} the solution is given by the wave (f;, p;0)-

The above theorem produces the unique Riemann solver RS that gives us an
admissible weak solution to the Riemann problem at a junction that satisfies
rules (A) and (B).

The theorem leads to the following corrolary.

Corollary 5.2.1. Consider a junction J, assume (A1)-(A4) and that the ma-
triz A satisfies (C). Then there exist a unique Riemann solver compatible with
Definition 5.1.4. Moreover, for every p1 o, ..., Pn+m,0 € [0,1], the n + m-tuple

(ﬁla ] ﬁn—i—m) = RS(pl,Oa ) pn—i—m,O) Satisﬁes (523) and (524)
Proof of Theorem 5.2.1. Define the map

n
E:(,0tm) ER= D (5.2.5)

i=1
and the sets

;= [077max(pi 0)]a i=1..,n

' ’ . 5.2.6
Qj = [O,Vylax(pjp)]’ J=n-+ 17"'7n+m ( )
Q:={(71, ) €1 X+ X Yl|A- (11, ---a'Yn)T € Vnt1 X " X Yngm}

where the functions ~Mm*

(4.2.3). '

max

and " are respectively defined in (4.2.2) and in
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Figure 5.2.2: The set Q) for a simple junction J with 2 incoming and
roads.

.'5.[:-‘]

2 outgoing

By Proposition 4.2.2, the sets €2; and €2; contain all the possible fluxes for the
solution of the Riemann problem at J. The set €2 is closed, convex and not-

empty (Figure 5.2.2).

By (C), VE = 1 and is not orthogonal to any nontrivial subspace contained
in a supporting hyperplane of 2, which means that there exists a unique vector

(A1, ooy ) € Q such that

E(A1,y e An) = max  E(v1, ..., Yn)-
(V150,70 ) EQ

For every ¢ € {1, ...,n}, we choose p; € [0,1] such that

{ {pi70} U (T(Pi,o 71}7 lf 0 S pi,O S ag,
1

f(pi) =i, pi€ ], if o<pio<Ll

By (A3) and (A4), a such p; exists and is unique. Let

n
’%‘izaﬁ’%» J=n+l..,n+m
i=1

and p; € [0,1] be such that

[07 J]a it 0 S pj,O S a,

H.) = » 0: € .
f(pi) =i, ;i {{pjvo}u[o”]'(pjy())), if o<pjo<l.

Since (41, ...,9n) € , p; exists and is unique for every j € {n + 1,
Solving the Riemann problem on each road, and the proof follows.
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The case of n > 2 Incomming Roads and m = 1 Outgoing Road

If there are a junction with n incoming roads and one outgoing road then the
condition (C) on matrix A do not hold. If all cars can not drive through the
junction, there is a yielding rule that describes the percentage of cars crossing
the junction, which comes from a particular road.

We first look at the case n = 2. In situations like this we need to fix a right of
way parameter ¢ € (0,1) and the rule:

(P) Assume that not all cars can enter the outgoing road and let C' be the
amount that can. Then ¢C cars come from the first incoming road and (1 —q)C
cars from the second.

Take a junction with two incoming roads [a;, b;], ¢ = 1,2, and one outgoing
road [as, b3] and assume that a right of way parameter ¢ € (0, 1) is given. Then
the solution of the Riemann problem (p1 0, p2,0, £3,0) is formed by a single wave
on each road connecting the initial states to (p1, 2, p3) determined in the fol-
lowing way.

We want to maximize the flux so we set:

max

A3 = min{y1"*(p1,0) + 12 (p2,0), 73 (p3,0)} (5.2.7)

where the functions ~"**

maxX are from (4.2.2) og (4.2.3). Consider the space (71, 72)
and the line:

l—gq
q
The line is the locus of points satisfying rule (P). The point of intersection

between the line (5.2.8) and the line 1 4+ 72 = 43 we denote by P. Remember
that the final fluxes should belong to the region

Y2 = M- (5.2.8)

Q={(71,72) : 0 <5 <"*(pi0),0 <1 +v2 < A3}

We look at the two cases:

(a) P belongs to Q,
(b) P is outside .

For the first case we set (91,92) = P, in the second case we set (§1,%2) = @,
where the point @ is the point of segment Q N {(71,72) : 71 + Y2 = 43} closest
to the line (5.2.8). Figure 5.2.3 shows the two cases.

For case (b) it is impossible to follow rule (P) in an exact way if we want
to maximize the flux. So the point @ is the point that best follows the rule (P)
in the set of points that maximize the sum of fluxes.

Once we have determined 41, 42 and 43 we can determine p; in a unique way
(i € {1,2,3}). From this we can deduce the following theorem:
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Figure 5.2.3: The case (a) and (b)

Theorem 5.2.2. Consider a junction J with n = 2 incoming roads and m =1
outgoing road, assume (A1)-(A4) and fiz a right of way parameter q € (0,1).
For every po.1, po.2, pos € [0,1], there exists a unique admissible centered weak
solution p = (p1, p2,p3) to (5.1.1) at the junction J, in the sense of Definition
5.1.4, satisfying rule (P) (possibly in a approximate way) such that

0,1(0,) = p10, p0.2(0,-) = pao, po3(0,-) = pao-
Moreover, there exists a unique 3-tuple (31,%2,43) € [0,1]% such that
N {piot U (T(pio). 1], if 0<pio<o, .
pi € { il if o<eel i=12 (5.2.9)

and
~ [07 U]u Zf 0 S 3,0 S g,
Ps € { {p3,0}U0,7(p3,0)), if o< p3o<1.
and for i € {1,2}. The solution is given by the wave (p; o, pi), while for the
outgoing road the solution is given by the wave (p, ps,o).

(5.2.10)

Corollary 5.2.2. Consider a junction J with n = 2 incoming roads and m = 1
outgoing road, assume (A1)-(A4) and fix a right of way parameter q € (0,1).
Then there exists a unique Riemann solver RS, compitable with Definition 5.1.4
and rule (P). And for every pio,p20,p30 € [0,1], the 3-tuple (p1,p2,p3) =
RS(p1,0,p2,0, p3,0) satisfies (5.2.9) and (5.2.10).

We describe the case of a junction J with n > 2 incoming roads and m = 1
outgoing road briefly. Fix n — 1 positive parameters qi, ..., q,—1 and consider
the line r in R™, given by

Tn = 1M1
D (5.2.11)
TYn = dn—1Yn—1-
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Here the solution to the Riemann problem with initial conditions given by
(p1,o, w5 P05 pnﬂ)o) is formed by waves connecting the initial states to (p1, ..., Prs Prt1),s
determined in the following way. Define

A1 = min{ 1" (p1,0) + -+ Y0 (Pn,0), Y1 (Pnt1,0)}

where the functions ¥"®* are defined in (5.2.2)+(5.2.3). Define the closed and
convex set K in R"

{15 emm) s+ 72+ = g1, 0 < v <A (pio), i =1,...,n}

Consider the unique point (41, ...,4,) € K which minimizes the distance from
the point P € r, where P is the intersection between the line r and the hyper-
plane

Y1+ e :'%LJrL

Finally imposing f(p;)) = % (I = 1,...,n,n 4+ 1), we obtain the trace of the
solution to the Riemann problem at the junction.
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6 Numerical approximations for conservation laws

We first compare the Upwind scheme and the Lax-Friedrichs scheme, which will
give motivation for the Godunov method, and illustrate with some examples.
All the schemes can be found and is discussed in [6].

We discretize the (x,t)-plane by the mesh (x;,t,) with

x; =1ih (1 €Z) t, =nk (neNp)

and k,h > 0. For simplicity we use a uniform mesh with k and h constant,
but the discussed methods can be extended to non-uniform meshes. We want a
finite difference approximations u}* to the solution u(x;,t,) at the discrete grid
points. 1 =1,..., N.

6.1 Approximations for linear equations

Before we study numerical methods for nonlinear scalar equations we start with
a very simple linear equation

ug+au, =0, z€R, £>0, (6.1.1)

u(z,0) = uo(x), = €R, (6.1.2)

where @ > 0. This problem has the explicit solution u(z,t) = ug(z — at) which
is a weak solution (if ug is smooth enough).
This equation can be written by Taylor expansion as

w(Zi, tnp1) — w(@s, ty)

_ u(Tit1) — u(wi—1) 2
B +O0(k)=—a o7 + O(h?),
which motivates the following numerical scheme:
Central scheme L
n n a n n
ultt = — %(ui-&-l —aul ). (6.1.3)

As we compute ’U,ZH_l from the data v, this is an explicit scheme. Since for

time-dependent hyperbolic equations, implicit schemes are rarely used, we con-
sider in the following only explicit schemes. The scheme can be improved by
using an arithmetic average in the approximation of the time derivative. This
leads to the following scheme.

Lax-Friedrichs scheme In this scheme the time derivative is approximated
by

% (u(a:,t+ k) — %(u(w +ht) + ule — b, t))) ,

i.e
1 k
wp = S (Ul + i) - ;—h(uggl —uy), i=1,.,N—1  (6.1.4)

27



The spatial derivative at x; uses the information at z;; where the wave will go
in the next time step. It would be more reasonable to use the information at
x;—1 where the wave comes from. This is done in the following scheme.

Upwind scheme The scheme reads as follows

k

ultt =y — %(uf —wi_q), i=1,..,N. (6.1.5)
This scheme gives the correct solution, no oscillations, but with artificial diffu-
sion.
In Figure 6.1.1 we illustrate the behavior of the 3 suggested methods using

discontinuous data /
1 : 0<2z<1)/2
uo(x) = { 0 : 12<z<1 (6.1.6)
with the parameter a = 1, ¢t = 0.25, £ = 0.001. We restrict the computational
domain to [0, 1] and the boundary data uf ™ = uf and w5 = u%. In the traffic
flow interpretation, the traffic is heavy in [0,1/2] and light in [1/2,1]. So, at
x =0, at x = 1 they are exiting.

Observe that the central scheme is oscillating with damped oscillations for
small k (Figure 6.1.1 (first row, left); h = 0.01); the Lax-Fredrichs scheme is
less diffusive but not oscillatory (Figure 6.1.1(first row, right)); and the up-
wind scheme is less diffusive than the Lax-Friedrichs scheme (Figure 6.1.1(last
row,left)). Choosing mesh size h = k = 0.01, both schemes produce a solution
which is very close to the exact solution (Figure 6.1.1(last row,right)). All the
schemes are able to compute the correct shock speed.

6.2 Approximations for nonlinear equations
The traffic flow model is nonlinear, so we want to study what happens when we
discretize nonlinear equatios. We discretize the LWR-Model.
ut+(u—u2)x:0, rER, t>0
u(z,0) =up(x), ze€R

and we choose the initial values

1/4 : <0
and the boundary data ug™ = uf and uy"' = ul,. We present and compare

two different numerical approximations.

Upwind Scheme

k
uptt =l — ﬁ(l = 2u’ ) (ui' —ui'y) (6.2.2)
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Central Lax=Friedrichs

15
1 e
0.5
Of [--- k=0.001 or [--- h=0.01
— k = 0.00005 h = 0.002
-05 05
0 02 0.4 0.6 08 1 0 02 04 06 0.8 1
Upwind Lax-Friedrichs/Upwind
15 15
1 . 1
0.5 0.5
Of [T~ h=0D1 OF [T-~ Lax-Friedrichs
— h=0002 — Upwind
0% 02 04 06 08 1 0% 02 0.4 06 08 1

Figure 6.1.1: Various numerical schemes for (6.1.1) with a = 1 and discontinous
data 6.1.6. First row, left : central: first row, right: Lax-Friedrich; last row,
left: upwind; last row, right:Lax-Friedrichs (broke line) and upwind (solid line)
for h = 0.001, k& = 0.001.

Lax-Friedrichs Scheme

Uy = §(U¢+1 +ui ) — %((Uiﬂ - (Ui+1)2) —(uiq = (%‘4)2))7 (6.2.3)

The exact solution of the problem is

/4 : x< it

“(m’t):{ 1/2 : o>t

so at at ¢t = 2 the discontinuity should be at z = % Thus the numerical solution
of the Upwind scheme propagates with the wrong speed. A better behavior
is given by the Lax-Friedrichs scheme. From the Figure 6.2.1 we see that the
Lax-Friedrichs the scheme is non-oscillatory and the shock speed is correct.

What is the reason for the different shock speeds? The upwind scheme (6.2.1)

is a discretization of the quasilinear equation

NN

ug + (1 — 2u)u, =0,

29



Upwind Lax-Friedrichs

0s

05

Exact
———h=001
———h=0001

Exact
—==h=001
04 ———h=0001

04

03 1 03

02 1 02

R} 1 0.1

Figure 6.2.1: Exact and numerical solutions for the inviscid Burger equation us-
ing the upwind scheme(6.2.2)(left) and the Lax-Friedrichs scheme(6.2.3)(right).
k = 0.001.

whereas the scheme (6.2.3) is an approxiation of the eqtuation in conservation
form
ug + (u—u?), =0.

For smooth solutions both equations are the same, but we know from section 2
that is may not be true for weak solutions.

In the following we consider only numerical methods in conservation form, mean-
ing that the scheme is of the form

s L (LI By J ()

for some function F' of p + ¢ + 1 arguments. We call F' the numerical flux
function. The simplest case is for p = 0 and ¢ = 1, where

n k n n n n
U?H =u; — E[F(Uz suiy) — Fufq, ui)]. (6.2.4)

This expression can be interpreted as a cell average. We will see that the weak
solution of
u + f(u), =0, zeR, t>0,

satisfies the integral form

1 Tiy1/2 1 Tit1/2
E/ u(x, tyr1)dr = ﬁ/ u(, t,)dz
T T

i—1/2 i—1/2

k 1 tnt1 1 tnt1
- = */ Ju(xipq/o,t))dt — */ flu(z;_1/9,t))dt]| ,
hlk )/, k J

(6.2.5)

n
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where ;41 /o = (i£1/2)h is the middle point between z; and z;+1. Interpreting
uy as an approximation of this middle point,

1 Tit1/2
up ~ f/ u(z, ty)dx,
x

i—1/2

and F'(u,uf, ) as approximations of the average flux through x; /5 over the
time interval (¢, tn41),

1 tnt1
P~ g [ s )t
t

n

we obtain the approximation (6.2.4) from (6.2.5).
The Lax-Friedrichs scheme is written in conservative form by setting:

F(ui,uiy1) = %(Uz +uiy) + i(f(uz + fuiq))-
The conservative form of the upwind scheme is shown in the next section. A
conservative scheme is called consistent if F'(u,...,u) = f(u).

6.3 The Godunov Method

Now we have seen some of the advantages and disadvantages of both the Lax-
Friedrich scheme and upwind scheme, both for linear and nonlinear equations.
We want a scheme that has Lax-Friedrichs shock speed, and that is as little
dissipative as the upwind scheme. A natural generalization for the upwind
scheme is

W = = PG, ) — Py o) (6:3.1)
o F) () — )/ —w) >0
Flo,w) = { few)  (F(v) = Fw))/(w—w) <.

For linear equations, F'(v,w) = f(v), and (6.3.1) reduses to the upwind scheme.
However, there is a problem with the above approximation. Take f(u) = u(1—u)
and choose the initial values:

0 0 : <0
1 : 7>0.

i—1) Ug
f(0) = f(1), we obtain that u} = u? for all i and hence u? = u{ for all i. which
is not correct.
This leads to the Godunov Scheme, a conservative and consistent generalization
of the upwind scheme. Let f be a concave C? function. The idea of this method
is to approximate the solution u(z, t,,) of the conservation law ( scalar or system)

Since F(u?,ul,,) and F(u)_,u)) are either equal to f(0) or f(1) and since

ug+ fu), =0, z€R, t>0,
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by i piecewise constant fuction @™ (z,t,) by solving the Riemann problem in the
interval t € [t,,, t,t1]. After obtaining this solution, we define the approximate

solution u?“ at time ¢,,41 by averaging at the time ¢,1:
1 Tit1/2
ul Tt = f/ 0" (xz, tyyr)de, (6.3.2)
h Ti—1/2

where ;41,9 = (i£1/2)h. These values are then used to define the new piecewise
constant data 4" (z,t,.1) by:

n+1

a1 .
@ (@, b)) = uj if Tici2 < <Tigi)o

and the process repeats.

We can considerably simplify this algorithm since the above integral can be
computed explicitly. Since 4" is assumed to be the exact weak solution, it
satisfies a weak solution proposed in [1], but we present it without the technical
proof:

Let u be a classical solution of (2.2.1). Integrating (2.2.1) over (x1,x2) X (s,t)
for any (z1,2z2) € R and s,t > 0 gives

/:2 u(x,t)dx — /:2 u(z, s)dr = — /: Flu(u(zs, 7)))dr + /: Flu(zr, 7))dr.

1 1

Inserting @™ and divided by h we get:
1 [Tit1/2 ~ 1 [Tiv1/2 ~
n Ti_1) un(;y,tn+1)dx =n Tie1/2 u”(x,tn)d.%'

k [% S (i g ) dE — £ [T f(0 (oo, 1)) dt

From (6.3.2) it follows that

n k T

where the numerical flux function F' is given by

1 e
P = 3 [ e )t
t

n

So the Godunov scheme is conservative. The function @ is constant on the
line z = @iy1/2,tn < t < lny1, see Figure 6.3.1. We denote this value by
w* (ug, uty ).

The flux then reduces to

Fluiuiyy) = fu”(uff, uilyy)

and the Godunov scheme becomes

uf = — [t () = ft (g, ).



i1 X

Figure 6.3.1: Illustration for the Godunov scheme. There is a shock through
T;_1/2 and a rarefraction wave starting at ;1 /o.

The scheme is consistent since F(ul,u?) = f(ul') and f is assumed to be
smooth.

For large t — ¢,,, the solution may not remain constant at x; /o because of the
effects of waves arising from neighbouring Riemann problems. How large can we
choose k = t,+1 — t,?7 Assume the situation of Figure 6.3.1, i.e let ¥ (t) be the
shock line through 2;_;/, and let w(t) be the left end of the rarefraction wave
starting at ;41/2. The time ¢, is determined by the requirement t(t, 1) <
w(ts41). Since

fluiy) — )

Y(t) = Ti—1/2 + s(t —tn) with s= = ~
upy, — uj

and
w(t) = Tig1/2 + f(ui)(t —tn),
this means that

h=xip172 = wic12 > (s = f/(u))(tngr — tn) = (s = f'(ui))k.  (6.3.3)

As f is assumed to be concave, s lies between f’(uj') and f'(uj, ), i.e

|s] < max{[f"(u?)], |f (ui 1)}

we get

>

S = 1) < Il 17| < 2s0pl ()] <

i,n
so (6.3.3) is satisfied. This condition ensures that the shock and the rarefrac-
tion wave do not interact in the mesh cell [x;_1 /2, %;41/2] X [tn, tns1). We obtain
the same condition if there is a rarefraction wave at x;_,,, and a shock at
Tit1/2 or if there are two shocks at x;1 /5 since the wave speed are bounded by

sup | f*(u;')].
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We can allow the waves to interact during the time step, provided the inter-

action is entirely contained within a mesh cell. This leads to the condition
2sup |f'(ul)| < 2h/k or

vV = sup

i,n

Py <1,

This condition can be interpreted as a generalization of the CFL condition for
linear conservation laws.

Our next question is how can we determine v* from v}, u}, ;7 We need to solve
the Riemann problem. For scalar conservation laws, we can determine u* easily

from the signs of f'(uj) and f’(uj, ;). We have to consider the four cases:

(a) f'(uy) > 0 and f'(up,,) > 0 : In this case there is a rarefraction wave
starting at ;1 /o and from Figure 6.3.2 (a) we see that u* = uj.

(b) f'(uj') < 0 and f'(u,;) < 0 : Again there is a rarefraction wave start-

K3

ing at z;4.1/2 but now u* = u},,.( Figure 6.3.2 (b).)

(c) f'(uj) > 0and f'(uf,,) <0: There is a shock through z; /2 and (Figure
6.3.2 (c))
« uy : s>0
ut = "
{ up g 2os<0.

(d) f'(uj) <0and f'(uj,;) > 0: There is a rarefracton wave starting at ;1 /2
and u* is the unique solution of f’(u*) =0 ( since f is concave). ( Figure 6.3.2
(d))-

The resulting flux function can be written in the simplified form:

i : no< yn
F(u™. u® _ ufgrglg%hlf(u) U = uZJrl
(Ui 7ui+1) - min_f(u) : u@ > (P
? [

n n
Ui Susuj

This expression holds for general conservation laws, even non-concave ones, and
gives the correct Godunov flux corresponding to the weak solution satisfying
the entropy condition (2.3.1) of Oleinik.

Example 6.3.1. For f(u) = au(a > 0) the flux function becomes
F(u?7u?+1) = au??
hence the Godunov scheme is equal to the upwind scheme for linear equations.

n+l _ . n ak n n
Uy = Uy W(Uz —uq)

In this way, we can say that the Godunov method is a generalization of the
upwind scheme to nonlinear equations.

More information about the Godunov Scheme can be found in [1], [7] and [9].
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Figure 6.3.2: How to compute u*.

6.4 Boundary Conditions and Conditions at Junctions
To set up a Godunov scheme we need to impose some boundary conditions and
some conditions at the junctions.
Boundary conditions
Suppose we assign a condition at the incoming boundary xz = 0:

u(0,t) = p1(t), t>0

and study the equation only for = > 0. We are considering the initial-boundary
value problem

Ut + f(u)r = 07
u(x,O) = UO(x)a z >0,
u(0,t) = up(t), t >0,

In general the boundary data cannot be assumed, so it is not easy to find a
function u that satisfies the boundary value u(0,t) = u(t) in a classical sense.
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We need to look for a condition that is effective only in the inflow part of the
boundary. Following [2], the way to assign the boundary condition is

kEI(ur(%%c,pl(t)){sign(u(O, t) — p1(t)[F(u(0,t)) — F(k)]} =0 (6.4.1)

We inserti a ghost cell and define
n n k n n n n
“0+1 =Ug — E[F(Uoﬂh) — F(of, ug)]

where
1 tn+1
ol (t) = E/ prdt (6.4.2)
t

takes the place of u™;. An outgoing boundary can be treated analogously. Let
x < L = xzn. Then the discretization reads:

n k n n n n
UNJr1 = uév = ~[F(uf,vy) — F(uf_1,un)]; (6.4.3)

where
1 trnt1
’Ug(t) = E/ pzdt
tn

takes the place of u% ,, the ghost cell value. (See [2],[9])

Conditions at a junction

For roads connected to a junction at the right endpoint we set

n k,‘ ~ n n
uN+1 _ ’U,(])V _ E[/yz — F(’U,N,puN)]

while for roads connected to a junction at the left endpoint we have

k

1 N

ugt = g — S, ) — 4

where 4;,7; are the maximized fluxes.

For the Godunov‘s scheme there is no need to invert the flux f to put it into
the scheme, as the Godunov‘s flux coincides with the Riemann‘s flux. In this
case it suffices to insert the computed maximized fluxes directly in the scheme.

Motion of the cars

We now have a matrix with different densities for all times ¢,, = nk and all
positions x; = th where n = 1,..,7, and ¢ = 1,..., N. We want to know how
a car starting at some (z;,t,) moves as time passes. We do it in the following
way: assuming that at (x;,¢,) the cars has the speed v(p(x;,t,)) and it will
have that speed until it reaches x;;;. We then check how long time it takes,
and gives the car the new speed at that point. Say it takes ¢ = 3k, then the
new speed is v(p(zit+1,tn+3)), and it keeps this speed until z;;2 and the process
continues.
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7 Numerical Exampels using the Godunov Method
In this chapter we start by solving the Riemann problem on a straight road.

Then we look at a narrowing, i.e. a road that connects with a road with a smaller
flux function. The final test is a system with multiple roads and junctions.

7.1 Riemann problem

Gudonov Scheme Gudonov Scheme
1
Exact
0g9r ———h=001 []
0s ———h=0001
Exact n q
———h=00 |
———h=0001
04
03
!
02
01
(IR
0 0 .
0.5 0 05 1 -1 08 06 0.4 0.2 o 02 0.4 0B 08 1

Figure 7.1.1: Godunov Scheme for a shock solution at T' = 2 (left) and Rar-
efraction at T'= 1 (right). & = 0.001.

Lax-Friedrich and Gudonov
1 1
Exact

Lax-Friedrich and Gudonov

Exact
08 ———Lax-Friedrich || 09 ———Lax-Friedrich [
05 ——— Gudonow | ——— Gudonoy

o7

06

05

04

03

02

01 p 01l

il L L L L L L L L L L L L L L L L L L
-1 08 06 04 02 o 02 04 0B 08 1 - @08 06 04 02 i} 02 04 06 08 1
h=0.001 h=0.01

Figure 7.1.2: Godunov and Lax-friedrich for a Rarefraction solution h =
0.001(left) and h = 0.01(right). £ = 0.001 and T = 1.

In this section we will look at the Riemann problem, a simple road with two
densities. Consider the case where a road of length 2 is paramterized on the
interval [—1, 1]. On the left side of zero the road has density p; and on the right
side of zero it has the density p2. We use the LWR-model

pt + f(p)z =0,
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where f(p) = p(1 - p).

Rarefraction wave p; > po. Consider the initial values

3
2, <0
p(x70)_{ %’ I>O
Then the solutions for ¢ > 0 becomes
§, T < —%t
(2,t) = i(1—2) —lt<e< it
PATs 2 t)o 2t =% =2
1’ T > §t

Shock Solution p; < pa. Consider the initial values

p(x,()):{%’ <0

5 x>0
Then the shock speed is s = 1/4 and the solutions for ¢t > 0 becomes

x < it

1
o ={ 1 T3

We can se from the Figure 7.1.2 that the Godunov scheme is more precise than
the Lax-Friedrich for smaller values of h when we deal with the rarefraction
solutions, and it also gives better approximations for h = 0.001 even though
its hard to see from the picture. If we compare Figure 7.1.1 with Figure 6.2.1
it is more precise than both Lax-Friedrich and the upwind scheme for shock
solutions.

7.2 Narrowing

The simplest example with a junction is two roads, one incoming and one out-
going, where the outgoing has a smaller flux than the incoming one. We can
look at this as a road being narrowed. We set the flux in the first road to be
equal to

fi(p) = p(1 =p), pe0,1] (7.2.1)

and the flux in the second road to be

1
The maximum fluxes is unique:
fi(o) = maxfi(p) = 7. with oy = (7.2.3)
101—%511?(1/)—4,102 01—2 e
folos) = max folp) = 5. with o3 = + (7.2.4)
2002 —[g’ll/);]gp—S,’LUZ 02—4 W

38



144 ¢

Figure 7.2.1: The flux functions f;(p) and fa(p).

We call the point of separation between the two roads S. We indicate by p; the
density on the left side of S (the widest part of the street) and by p, the density
of the right side of S.

The maximal fluxes f; and f; are computed:

if Pl < 01,

max _ fl(Pl)
! (p)—{ filor) i pp >0,

max _ f2(02) if Pr S g2,
(p) B { fQ(pr)

2 if p.>o09

and the maximal flux at the intersection point between the two intervals is
obtained by taking the minimum

~v = min{ f{"*, f3"**}. (7.2.5)

The creation of queues occurs when the density of the first road verifies

1 1-4/3

2
l—p)== <= p=
p(1—p) 3 p 5

~ 0.15. (7.2.6)

If the car density entering the largest road, say p1p, is such that p;, < p there
is no formation of shocks propagating backwards. If p;; > p there will be a
traffic jam.

We now present an example. We consider a road of length 2 parameterized
by the interval [0,2] and set s to be at = 1. Consider the following initial
values:

1
pr=0, pr=0 pp= 3 (7.2.7)
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This can interpreted a red light turning green in at x = 0, and that the road
goes from two lanes to one in = 1. Since pl,b > p we get a jam. Se Figure
7.2.2.

We estimate the L' error in the following way:

N
h
M M
e’ :Z‘“j (h)_u2j(§)‘> r=1,..,R.
j=1
uM (h) is the numerical solution with space step discretization equal to h, in ,,

at the final time t3; = T. R denotes the number of roads. Then

R
TOTerror = Z e’
r=1

Marrowing. T=1/2 Marrowing. T=2

———Exact — — —Exact
Gudanoy

Gudonoy

0 1 2 0g y >
® ®
Marrowing. T=4 Marrawing. T=8
1 1
—— —Exact — ——Exact
Gudanoy Gudonoy
a 12 o 12
]

o

0 ! 2 1] 1 2

Figure 7.2.2: Godunov Scheme for the narrowing problem at 7' = 0.5 (top left).
T = 2 (top right). T = 4 (bottom left). T = 8 (bottom right). k = h = 155.
The anlytical solution is plotted with a strippeled line.
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L' Error L' Error L' Error L' Error

h] T— 1/2 2 4 8

0.1 2.0390e — 002 | 3.1164e — 002 | 2.6270e — 002 | 1.2223¢ — 003
0.05 2.1203e — 002 | 1.4799¢ — 002 | 9.2414e — 003 | 7.8577¢ — 004
0.025 1.8090e — 002 | 1.0529¢ — 002 | 7.1166e — 003 | 4.8417¢ — 004
0.0125 1.3398e¢ — 002 | 3.3735¢ — 003 | 2.7080e — 003 | 2.8410e — 004
0.00625 9.0833¢ — 003 | 2.4058¢ — 003 | 1.5887¢ — 003 | 1.6137e — 004
0.003125 | 5.8004e — 003 | 1.7093e — 003 | 1.1270e — 003 | 8.8344e — 005

Table 1: L'-error approximated numerically for the Narrowing problem, with
different times and values of h. k = h.

1)

Fug12 FvB12
o @

5 ey,

Figure 7.3.1: The center of Trondheim.

7.3 Trondheim

Now we present a simplified model of downtown Trondheim (Figure 7.3.1).

We use the roads from Figure 7.3.2. The red roads are the main roads, while
the pink roads are smaller side roads. We will model this in three different
ways, and give two examples for each model. They will be discussed in some
detail, but watching the videos[11] will give the best impression of how the
density evolves in the different models. All videos last until 7" = 35. For each
test there will be a tables and graphs showing how long time it takes to drive
different routes. Notice that the routes can be of different lengths. The red
roads will be numbered 1, ..,n for some n, depending on the model, and s1 — s4
are the numbers for the pink roads. We choose the functions f; and fo from
the previous example (7.2.1)-(7.2.2), where f; is used on the red roads 1 — n
and f5 is used on the pink roads s1 — s4. To simplify all roads are of length 1,
and is discretisized on the intervall [0, 1] with 2 = k = 0.025. Let the initial car
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Figure 7.3.2: The roads that are to be used.

density the roads be
Po = (P1(07 'T)7 ey pn(07 {L'), p81(07 .’L'), ey ps4(07 (E))

Model A

Model A is based on Figure 7.3.3. This model consists of ten junctions, where
five of them have one incoming and two outgoing roads, the other five have two
incoming and one outgoing road. So 17 roads in total, 13 main roads and 4
side roads. In this model we look at the traffic going south. When a big roads
divides into one small and one big, we set the distribution matrix to be

0.7
A= (53)
Hence 70 percent of the drivers choose the big road, while 30 percent choose the
small road. If it divides into two roads with the same size the traffic is divided
evenly. When two roads of different size meet and become one, we set the right

of way parameter to be ¢ = 0.70, in favour of the bigger roads since they are
more trafficated. If they are the same size we set ¢ = 0.5.

Test Al. Let us assume that the roads are initially empty and take the follow-
ing initial and boundary data:

po = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

pap(t,0) = 0.5 pr(t,0) = 0.5
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Figure 7.3.3: Model A of Trondheim. Southbound traffic.

Comments about the video: Rarefraction waves start at the incoming roads
3 and 7, and spread through the system. Just before T'= 6 the wave has gone
through roads s3 and s4, causing the incoming fluxes on road 4 and 8 to reach
their maximum. This results in shocks moving backwards on road 3 and 7.
Right after T = 8 road 12 reaches its incoming max, and we see a shock on
road 11. More and more roads are being filled up with cars, and shocks move
backwards. At T = 22 the shock from road 9 goes straight through road 8
causing a second shock on road 7. Furthermore, a slow shock goes through 10,
reaching road 6. More cars from road 6 choose the side road s2. The shock on
road 6 will slowly fill up roads 4 and 3, so that road 2 reaches p = 0.25 and road
1 reaches p = 0.175.

Test A2. Assume that the main roads are heavy trafficated, and that the side
roads have some traffic on them. And we assume that there are little incoming
traffic to Trondheim. We choose the following initial and boundary data:

po = (0.4,0.5,0.5,0.7,0.60,0.7,0.5,0.5,0.5,0.8,0.7,0.7,0.4,0.1,0.15,0.2,0.1)
p3s(t.0) =015 pry(t,0) =0.15

Comments about the video: At first, shock- and rarefraction waves start
at almost all endpoints of the roads. At around T' = 2 the shocks have met.
Most main roads give shocks backwards, filling up the roads one by one. Roads
1,2,3 and 4 are having shocks backwards. At T = 20 road 4 starts feeding road
5 with less cars and a shock is moving forward, emptying the road. As the
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density increases on road s2, a shock goes through road 6 and hits the one on
road 5. The new shock will empty the remaining roads one by one, but it moves
so slowly that it is 1/4 into road 6 at T = 150.

Motion of cars: We check the driving duration through each route starting at
different times(T) for both tests. The routes we use are

Routel : 3—+4—2—>s1—6—>52—8—>s4—12—13
Route2 : 3—+4—-5—-6—>10—11—12 - 13

Routed : 3—44—-5—-6—>82—>8—>s4—12—>13

Al T=0 T=5 T=10 A2 T=0 T=5 T =10

Route 1 15.33 18.08 20.18 Route 1 3218 32.19  33.18
Route 2 11.00 16.36 20.22 Route 2 36.31 35.01  34.37
Route 3 13.16 16.58 18.29 Route 3 34.56 35.06 35.21

Table 2: Route through model A. Initial values from test Al and A2. T =0, 5
and 10.

Model B

s2

13

Figure 7.3.4: Model B of Trondheim. Northbound traffic.

Model B is based on Figure 7.3.4. It is the same model as Model A, except that
roads 3,4,5,6,10,11 and 12 have changed direction. We will use the same rules
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at junctions as Model A for the distribution of traffic.

Test B1. Let us assume that the roads are initially empty and take the follow-
ing initial and boundary data:

po = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

p136(t,0) = 0.5 pr(t,0) =0.5

Comments about the video: The cars spread out from road 7 and road
13. The first cars enter the outgoing roads 3 and 1 at around T = 7. The
only backward shock we get in this test is in road 7 just before T' = 6. As the
time increases roads 10,11 and 12 reach p = 0.5, while other main roads have
a slightly lower p. So driving through traffic in this model is pretty smooth, as
long as you avoid road 7 until 7' = 7.

Test B2. Let us assume that the roads are initially empty and take the follow-
ing initial and boundary data:

po = (0.45,0.5,0.45,0.5,0.5,0.7,0.55,0.3,0.5,0.5, 1, 0.5, .45,0.25, 0,0, 0.25)

PlS,b(t, 0) =0.15 p7,b(t7 0) =0.25

Comments about the video: Just like model A2 this model starts with many
different shocks and rarefractions. From T = 1.8 to T' = 2.5 notice that road sl
has a shock going straight up. Just as in model B1, a queue is formed at road
7. Then most roads get less and less dense. Road 8 is being filled up until it
reaches p = 0.5. Road 10 has p = 0.5 during the whole simulation. Hence roads
7, 8 and 10 are the most trafficated.

Motion of cars: We check the driving duration through each route starting at
different times(T) for both tests. For model B we use the following routes:

Routel : 7T—48—>s4—11—-10—-6—-5—>2—1
Route2 : 7T—48—>9—->10—-6—2—1
B1 T=0 T=5 T=10 B2 T=0 T=5 T =10

Route 1 12.68 16.34 18.56 Route 1 22.66 20.44 18.06
Route 2 853 12,93 14.09 Route 2 15.44 15.05 14.55

Table 3: Route through model B. Initial values from test B1 and B2. T=0, 5
and 10.

Model C

Model C is based on Figure 7.3.5. In this model the red roads go both ways.
This model has ten junctions: two junctions with 3 incoming and 3 outgoing
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Figure 7.3.5: Model C of Trondheim. Red roads have two directions.

roads, four junctions with 2 incoming and 1 outgoing, and four junctions with 1
incoming and 2 outgoing. For the eight junctions with 3 roads we use the same
rules as in Model A and Model B. But for the junctions with 6 roads we choose
the following distribution matrix:

Q31 Q36 Q338 Qg 10 Qg 14 ag 16 0.1 0.5 0.4
A=|or1 are arg| = |50 os14 oas16 | =05 04 0.1
Q41 Qyq6 Q48 Q1210 Q12,14 (12,16 04 01 05

This distribution matrix, which respects condition (C), makes sure that only
a small amount of cars choose the same way they came from, and that most
traffic is directed through town. It also prevents a lot of traffic getting stuck in
the loop created by road 8 and 9.

Test C1. Let us assume that the roads is initially empty and take the fol-
lowing initial and boundary data:

pO = (O’0707070’07070707O’070707070’070707070’050)

pl,b(t7 O) =0.5 p5’b(t, O) =0.5 p13’b(t, 0) =0.5 plg’b(t, 0) =0.5

Comments about the video: There is not much to comment on this video.
We get the first shock on road 7 just after 7= 6. This shock continues through
road 1, as this has the least right of way. As most roads end up at p = 0.5 or
just under, roads 1,3 and 7 will have some heavier traffic. Roads 3 and 7 ends
up at p = 0.7738.

Test C2. Let us assume that the main roads are crowded and take the ini-
tial values where there are few cars entering the system:

po = (0.35,0.35,0.2,0.4,0.35,0.4,0.7,0.7,0.6,0.5,0.25,0.5,0.25,0.5, 0.4, 0.7, 0.45,
0.35,0.1,0.3,0.4,0)

p1,6(t,0) =0 psb(t,0) = 0.45 p13.6(t,0) = 0.15 p1sp(t,0) = 0.25

46



Comments about the video: There is a lot going on in the beginning of
model C2. The amount of cars flowing into the model is low, and there are a
lot of cars in the system. We notice that cars a leaving roads 1 and 13, and
that 2 and 11 has more incoming that outgoing. Other roads start with a shock
on both endpoints. When the shocks meet, a new shock is created, where the
"bigger” shock wins. At T' = 13, only roads 2 and 11 have max incoming flux,
and there is a small queue at road 5. Roads 3,9 and 12 have forwards shocks.
The rest of the roads, except s3, are stable at a low densitis. Road s3 is almost
full, but this changes when the shock from road 9 reaches it. After this we only
see forward shocks for some of the roads, while other stay stable. The whole
system stabilizes at T' = 27.

Motion of cars: We check the driving duration through each route starting at
different times(T) for both tests. Routes for model C:

Routel : 5—5s1—9—s3—11

Route2 : 5—-6—>7—->9—10—12—11
Route3 : 18 —>16—-8—>7—9—>s3—11
Route4 : 1821628 —=7—-9—-10—>12—11

C1 T=0 T=5 T=10 T=25 C2 T=0 T=5 T=10 T =25

Route 1  6.50  9.35 9.58 9.75 Route 1 14.01 14.13  13.08 8.50
Route 2 10.00 14.17 15.23 16.75 Route 2 18.24 15.38  13.40 11.75
Route 3 10.25 14.25 15.38 16.50 Route 3 19.99 16.68 14.84 11.00
Route 4 11.75 16.39 17.38 18.50 Route 3 19.62 16.15  14.15 12.50

Table 4: Routes through model C. With initial values from test C1 and C2.
T=0,5,10 and 25.

Figures

Plotting time vs. positions of the different routes of the models of Trondheim.
Initial values from all the tests (pp. 60-62).
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8 Comments and future work

On the web page [10], I have put my matlab codes. It is possible to change all
the fluxes and right of way parameters if you want look at how traffic evolves in
other situations. The code used for creating the videoes are also in the folder. I
have tried my best to provide enough comments in the codes so that it will be
understandable.

We know from [2] that there are better ways to model a traffic network than the
Godunov method. A three velocity kinetic approximation of second order(3V K5)
have been presented and tested on a model of a traffic circle. The 3V Ks-model
has a smaller error than the Godunov scheme, but it is harder to implement.
In my code I have managed to conserve the flux in all of the different types of
junctions. Thus it can be a useful tool in analysing the behavior of traffic in
larger networks.

As for the testing of the different routes, I would in hindsight have inserted
an extra road or two so that the comparison between two routes would be
more interesting. l.e. more routes starting from the same junction, ending
at the same, and see for what situations it would be better to choose one over
an other. For my tests the same route is always the fastest for all starting times.

One natural step for future work can be to modify the program to take in
roads of different lengths, and with different velocity functions. It would not be
to hard, but I decided to use roads of equal length as this simplifies the code
and makes it easier for the reader to understand. The same goes for different
velocity functions. For bigger cities it would seem more realistic to have time
based traffic lights at junctions, instead of a right of way parameters. This can
be done by setting the boundary condition at junctions with red lights to zero,
while using the max flux function for roads with green lights. Traffic lights have
been discussed in [1], [2] and [5].
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9 Pseudocode for the Godunov Scheme

1 Tit1/2
u) = f/ uo(z)dz.

Ti—1/2
For all i,n:

f(uf) >0 and f'(u ;) >0 then wuj=uj;
fl(u}) <0 and f'(ujy;) <O then wuj=uf,
f'(uy) >0 and f'(uj,;) <0 then wuj=u}if (s>0)oru;=uj, (if s<0)
fl(u) <0 and f'(uj ;) >0 then wuj isthe unique solution of f'(u;)=0.

n+l _ . n E, * *

= = Ep) - flui_y)]
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10 Appendix A: Matlab codes

Because of the size of the codes only the code for model C is included in

the paper. As mentioned the other codes can be found in [11].

Model C

dheim .

itial values and can be changed.

ction

parameter for roads junctions with 2
cars from big roads to big roads in
2 outgoing .

cars from big roads to small roads in
2 outging.

roads

matrix for the junctions with 3 incomming

ads

in x-direction
in t-direction
road 1 etc.)

1 %---From the figure Model C of Tron
2 %---Everything above line 38 are in
3 clear;
4 h = 0.025; % Step i x-dire
5 T 35; % Time steps
6 q =.70; % Right of way
incomming and 1 outgoing roads.
7 alphal =.70; % Procentage of
junctions with 1 incomming and
8 alpha2 =.30; % Procentage of
junctions with 1 incomming and
9 %- - Initial values of the 22
10 ul .35;
11 u2 .35;
12 u3 = .2;
13 ud = .4;
14 us5 = .35;
15 ué = .4;
16 w7 = .7;
7 u8 = .7;
18 u9 = .6;
19 ulo = .53
20 ull = .25;
P = .5
= .25;
= .5;
= .4;
= .7;
.45
ul8 = .35;
Y%--"sideroads ” - -
usl = .1;
us2 = .3;
us3 = .4;
us4d = 03
%---- Flux on the 4 incomming roads.
ulb = 0;
35 ubb = .45;
6 ul3b = .15;
37 ul8b = .25;
38 %-
39 A .5 .4y % D ribution
3 outgoing roads.
40 4 1.
41 4 .1 .5];
42 k = h;
x = 0:h:1; % Points of the ro
44 Nx = length(x); % number of steps
45 t = floor (T/k); % number of steps
46 %Starting flux on the roads (F1 is
47 F1(1,1:Nx) = ul;
F2(1,1:Nx) = u2;
F3(1,1:Nx) = u3;
F4(1,1:Nx) = ud;
F5(1,1:Nx) us;
F6(1,1:Nx) = u6;
F7(1,1:Nx) = uf7;
F8(1,1:Nx) = u8;
F9(1,1:Nx) = u9;
F10(1,1:Nx) = ul0;
F11(1,1:Nx) = ull;
F12(1,1:Nx) = ul2;
F13(1,1:Nx) = ul3;
F14(1,1:Nx) = ul4d;
F15(1,1:Nx) = ul5;
F16 (1,1:Nx) = ul6;
F17(1,1:Nx) = ul7;
F18(1,1:Nx) = ul8;
Fs1(1,1:Nx) = usl;
Fs2(1,1:Nx) = us2;
Fs3(1,1:Nx) = us3;
Fs4(1,1:Nx) = us4;
for i = 1:t
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v = [0;0;0];
v2 = [0;0;0];

F —— find ux = U(i,1) for the 4 incoming roads----
a 1-2xulb;
b 1-2%F1(i,1);

1-ulb-F1(i,1);
if a >= 0 && b >= 0
U01 = ulb;
elseif a <0 && b <0
Ul = F1(i,1);
elseif a >= 0 & b < 0 && s >= 0
U0l = ulb;
elseif a >= 0 && b <0 && s < 0
U0l= F1(i,1);
elseif a <0 && b >= 0
U0l = .5;

1-2xubb;

1-2%F5(i,1);
1-usb-F5(i,1);
f a >= 0

LI [ =

—“—tn TP 0

elseif a <0 && b <0
U05 = F5(i,1);

elseif a >= 0 & b < 0 && s >= 0
U05 = ubb;

elseif a >= 0 && b <0 && s < 0O
U05= F5(i,1);

elseif a <0 && b >= 0
Uo5 = .5;

end

1-2%xul3b;

1-2%F13(i,1);

1-ul3b-F13(i,1);

f a>> 0&& b >= 0
U013 = ul3b;

elseif a <0 && b <0
U013 = F13(i,1);

elseif a >= 0 && b < 0 && s >= 0
U013 = ullb;

elseif a >= 0 && b <0 && s < O
U013= F13(i,1);

elseif a <0 && b >= 0

)
([t

U013 = .5;
end
a = 1-2xul8b;
b = 1-2xF18(i,1);
s = 1-ul8b-F18(i,1);
if a>= 0 && b >=0

U018 = ul8b;

elseif a <0 && b <0
U018 = F18(i,1);

elseif a >= 0 & b < 0 && s >= 0
U018 = ul8b;

elseif a >= 0 && b <0 && s < 0
U018= F18(i ,1);

elseif a <0 && b >= 0
U018 = .5;

end

%-- Find u*x F1:

for n = 1:Nx-1
a = 1-2%F1(i,n); % f'(u(i,n))
b 1-2%F1(i,n+1); % £'(u(i,nt+1))

s = 1- F1(i,n41) - F1(i,n); % Rankine-Hugoniot

if a >= 0 && b >= 0
Ul(i,n) = F1(i,n);
elseif a <0 && b <0
Ul(i,n) = F1(i,n+1);
elseif a >= 0 && b < 0 && s >= 0
Ul(i,n) = F1(i,n);
elseif a >= 0 && b <0 && s < O
Ul(i,n)= F1(i,n+1);
elseif a <0 && b >= 0
Ul(i,n) = .5;
end
end
%-- Find ux F2:
for n = 1:Nx-1
1-2%F2(i,n);
1-2%F2(i,n+1);
1- F2(i,n+1) - F2(i,n);

a
b
s

if a>= 0 && b >= 0
U2(i,n) = F2(i,n);

elseif a <0 && b <0
U2(i,n) = F2(i,n+1);

elseif a >= 0 & b < 0 && s >= 0
U2(i,n) = F2(i,n);
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elseif a >= 0 && b <0 & s < O
U2(i,n)= F2(i,n+1);
lseif a <0 && b >= 0

U2(i,n) = .5;
end
end
%-- Find ux F3:
for n = 1:Nx-1
1-2%F3(i,n);
1-2%F3(i,n+1);
s = 1- F3(i,n+1) - F3(i,n);
if a >= 0 && b >= 0
U3(i,n) = F3(i,n);
elseif a <0 && b <0
U3(i,n) = F3(i,n+1);
elseif a >= 0 & b < 0 && s >=
U3(i,n) = F3(i,n);
elseif a >= 0 && b <0 && s < O
U3(i,n)= F3(i,n+1);
elseif a <0 && b >= 0
U3(i,n) = .5;
end
end
%-- Find ux F4:
for n = 1:Nx-1
a = 1-2xF4(i,n);
b = 1-2%F4(i,n+1);
s = 1-F4(i,n+1) - F4(i,n);
if a >= 0 && b >= 0
U4(i,n) = F4(i,n);
elseif a <0 && b <O
U4(i,n) = F4(i,n+1);
elseif a >= 0 && b < 0 && s >=
U4(i,n) = F4(i,n);
elseif a >= 0 && b <0 && s < 0
U4(i,n)= F4(i,n+1);
elseif a <0 && b >= 0
U4(i,n) = .5;
end
end
%-- Find usx F5:
for n = 1:Nx-1
a = 1-2xF5(i,n);
b = 1-2%F5(i,n41);
s = 1- F5(i,n+1) - F5(i,n);
if a >= 0 && b >= 0
U5(i,n) = F5(i,n);
elseif a <0 && b <0
U5(i,n) = F5(i,n+1);
elseif a >= 0 && b < 0 && s >=
U5(i,n) = F5(i,n);
elseif a >= 0 && b <0 && s < 0
U5(i,n)= F5(i,n+1);
elseif a <0 && b >= 0
U5(i,n) = .5;
end
end
%-- Find ux F6:
for n = 1:Nx-1
a = 1-2%xF6(i,n);
b = 1-2xF6(i,n+1);
s = 1- F6(i,n+1) - F6(i,n);

if a >= 0 && b >= 0
U6(i,n) = F6(i,n);

elseif a <0 && b <0
U6(i,n) = F6(i,n+1);

elseif a >= 0 & b < 0 && s >= 0
U6(i,n) = F6(i,n);

elseif a >= 0 && b <0 && s < O
U6(i,n)= F6(i,n+1);

lseif a <0 && b >= 0

U6(i,n) = .5;
end
end
%-- Find ux F7:
for n = 1:Nx-1

a 1-2%F7(i,n);
b 1-2%F7(i,n+1);

3 = )
4 s = 1- F7(i,n+1) - F7(i,n);
5
246 if a>= 0 && b >= 0
a7 U7(i,n) = F7(i,n);
248 elseif a <0 && b <0
249 U7(i,n) = F7(i,n+1);
250 elseif a >= 0 & b < 0 && s >= 0
251 U7(i,n) = F7(i,n);
252 elseif a >= 0 && b <0 && s < 0
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U7(i,n)= F7(i,n+1);
elseif a <0 && b >= 0
U7(i,n) = .5;
end
end
%-- Find ux F8:
for n = 1:Nx-1
1-2%F8(i,n);
1-2%F8(i,n+1);
1- F8(i,n+1) - F8(i,n);

a
b
s

if a>= 0 && b >= 0
U8(i,n) = F8(i,n);
Iseif a <0 && b <0
U8(i,n) = F8(i,n+1);
elseif a >= 0 & b < 0 && s >=
U8(i,n) = F8(i,n);
elseif a >= 0 && b <0 & s < 0O
U8(i,n)= F8(i,n+1);
elseif a <0 && b >= 0
U8(i,n) = .5;

%-- Find ux F9:
for n = 1:Nx-1
a = 1-2xF9(i,n);
b = 1-2%F9(i,n+1);
= 1- F9(i,n+1) - F9(i,n);

if a >= 0 && b >= 0
U9(i,n) = F9(i,n);
elseif a <0 && b <0
U9(i,n) = F9(i,n+1);
elseif a >= 0 && b < 0 && s >=
U9(i,n) = F9(i,n);
elseif a >= 0 && b <0 && s < 0
U9(i,n)= F9(i,n+1);
elseif a <0 && b >= 0
U9(i,n) = .5;

%-- Find ux F10:
for n = 1:Nx-1
a = 1-2%xF10(i,n);
b = 1-2%F10(i,n+1);
= 1- F10(i,n+1) - F10(i,n);

if a >= 0 && b >= 0
U10(i,n) = F10(i,n);
elseif a <0 && b <0
U10(i ,n) = F10(i,n+1);
elseif a >= 0 && b < 0 && s >=
U10(i,n) = F10(i,n);
elseif a >= 0 && b <0 & s < O
U10(i ,n)= F10(i,n+1);
elseif a <0 && b >= 0
U10(i,n) = .5;
end
end
%-- Find ux F11:
for n = 1:Nx-1
a 1-2%F11(i,n);
b 1-2%F11(i,n+1);
s 1- F11(i,n41) - F11(i,n);

if a>= 0 && b >= 0
Ull(i,n) = F11(i,n);
elseif a <0 && b <0
Ull(i,n) = F11(i,n+1);
elseif a >= 0 & b < 0 && s >=
Ull(i,n) = F11(i,n);
elseif a >= 0 && b <0 && s < 0
Ull(i,n)= F11(i,n+1);
elseif a <0 && b >= 0
Ull(i,n) = .5;
end
end
%-- Find ux F12:
for n = 1:Nx-1
a = 1-2xF12(i,n);
b 1-2%F12 (i ,n+1);
s = 1- F12(i,n+1) - F12(i,n);

if a>= 0 && b >= 0
U12(i,n) = F12(i,n);
elseif a <0 && b <0
U12(i,n) = F12(i,n+1);
elseif a >= 0 && b < 0 && s >=
Ul12(i,n) = F12(i,n);
elseif a >= 0 && b <0 && s < 0O
U12(i ,n)= F12(i,n+1);
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elseif a <0 && b >= 0

345 Ul2(i,n) = .5;
346 end
347 end
348 %-- Find ux F13:
349 for n = 1:Nx-1
350 a 1-2%F13(i,n);
351 b = 1-2xF13(i,n+1);
352 s = 1- F13(i,n+1) - F13(i,n);
353
354 if a>= 0 && b >= 0
355 U13(i,n) = F13(i,n);
356 elseif a <0 && b <O
357 U13(i,n) = F13(i,n+1);
358 elseif a >= 0 & b < 0 && s >=
U13(i,n) = F13(i,n);
elseif a >= 0 && b <0 && s < 0O
U13(i,n)= F13(i,n+1);
elseif a <0 && b >= 0
U13(i,n) = .5;
end
end
%-- Find ux F14:
for n = 1:Nx-1
a = 1-2%xF14(i,n);
b = 1-2%F14(i,n41);
s = 1- F14(i,n+1) - Fl14(i,n);
if a >= 0 && b >= 0
Ul4(i,n) = F14(i,n);
elseif a <0 && b <0
Ul4(i,n) = F14(i,n+1);
elseif a >= 0 & b < 0 & s >=
Ul4(i,n) = F14(i,n);
elseif a >= 0 && b <0 && s < 0
U14(i ,n)= F14(i,n+1);
elseif a <0 && b >= 0
Ul4(i,n) = .5;
end
end
%-- Find ux F15:
for n = 1:Nx-1
a = 1-2%xF15(i,n);
b = 1-2xF15(i,n+1);
s = 1- F15(i ,n+1) - F15(i,n);
if a >= 0 && b >= 0
U15(i,n) = F15(i,n);
elseif a <0 && b <0
U15(i,n) = F15(i,n+1);
elseif a >= 0 && b < 0 && s >=
U15(i,n) = F15(i,n);
elseif a >= 0 && b <0 && s < O
U15(i ,n)= F15(i,n+1);
elseif a <0 && b >= 0
Ul5(i,n) = .5;
end
end
%-- Find ux F16:
for n = 1:Nx-1
a = 1-2xF16(i,n);
b 1-2%F16(i,n+1);
s = 1- F16(i,n+1) - F16(i,n);
if a>= 0 && b >= 0
U16 (i ,n) = F16(i,n);
elseif a <0 && b <0
U16(i ,n) = F16(i,n+1);
elseif a >= 0 && b < 0 && s >=
U16(i,n) = F16(i,n);
elseif a >= 0 && b <0 && s < 0
U16(i ,n)= F16(i,n+1);
elseif a <0 && b >= 0
U1l6(i ,n) = .5;
end
end
%-- Find ux F17:
for n = 1:Nx-1
a = 1-2xF17(i,n);
b = 1-2%F17(i ,n41);
s = 1- F17(i ,n+1) - F17(i,n);
if a >= 0 && b >= 0
U17(i,n) = F17(i,n);
elseif a <0 && b <0
U17(i,n) = F17(i,n+1);
elseif a >= 0 && b < 0 && s >=
U17(i,n) = F17(i,n);

elseif a >= 0 && b <0 && s < 0
U17(i,n)= F17(i ,n+1);
elseif a <0 && b >= 0
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435 U17(i,n) = .5;

436 end

437 end

438 %-- Find ux F18:

439 for n = 1:Nx-1

440 1-2%F18 (i ,n);

441 1-2%F18 (i ,n+1);

142 s = 1- F18(i,n+1) - F18(i,n);
443

444 if a >= 0 && b >= 0

445 U18(i,n) = F18(i,n);

446 elseif a <0 && b <0

447 U18(i,n) = F18(i,n+1);
448 elseif a >= 0 & b < 0 && s >= 0
449 U18(i,n) = F18(i,n);

450 elseif a >= 0 && b <0 && s < O
451 U18(i,n)= F18(i,n+1);

452 elseif a <0 && b >= 0

453 U18(i,n) = .5;

154 end

155 end

456 %-- Find ux Fsl:

457 for n = 1:Nx-1

458 1-4%Fsl1(i,n);

a =
b = 1-4%Fsl(i,n+1);
= 1- 2xFsl(i,n41) - 2%Fsl(i,n);

if a >= 0 && b >= 0
Usl(i,n) = Fs1(i,n);
Iseif a <0 && b <O
Usl(i,n) = Fsl1(i,n+1);
elseif a >= 0 & b < 0 && s >= 0
Usl(i,n) = Fsl1(i,n);
elseif a >= 0 && b <0 && s < 0
Usl(i,n)= Fsl(i,n+1);
elseif a <0 && b >= 0

Usl(i,n) = 1/4;
end
end
Y%-- Find ux Fs2:
for n = 1:Nx-1
a = 1-4%xFs2(i,n);
b = 1-4%Fs2(i,n+1);
s = 1- 2xFs2(i,n+1) - 2xFs2(i,n);
if a>= 0 && b >= 0
Us2(i,n) = Fs2(i,n);
elseif a <0 && b <0
Us2(i,n) = Fs2(i,n+1);
elseif a >= 0 & b < 0 && s >= 0
Us2(i,n) = Fs2(i,n);
elseif a >= 0 && b <0 && s < O
Us2(i,n)= Fs2(i,n+1);
elseif a <0 && b >= 0
Us2(i,n) = 1/4;
end
end
%-- Find ux Fs3:
for n = 1:Nx-1
a = 1-4xFs3(i,n);
b = 1-4%Fs3(i,n+1);
s = 1- 2xFs3(i,n+1) - 2xFs3(i,n);
if a>= 0 && b >= 0
Us3(i,n) = Fs3(i,n);
elseif a <0 && b <0
Us3(i,n) = Fs3(i,n+1);
elseif a >= 0 & b < 0 && s >= 0
Us3(i,n) = Fs3(i,n);
elseif a >= 0 && b <0 && s < 0
Us3(i,n)= Fs3(i,n+1);
elseif a <0 && b >= 0
Us3(i,n) = 1/4;
end
end
%-- Find ux Fs4:
for n = 1:Nx-1
a 1-4%xFsd(i,n);
b = 1-4%xFs4(i,n+1);
s = 1- 2xFs4(i,n+1) - 2xFs4(i,n);

if a >= 0 && b >= 0
Us4(i,n) = Fsd(i,n);
elseif a <0 && b <O
Us4(i,n) = Fs4(i,n+1);
elseif a >= 0 & b < 0 && s >= 0
Us4(i,n) = Fs4(i,n);
elseif a >= 0 && b <0 && s < 0
Us4(i,n)= Fs4(i,n+1);
elseif a <0 && b >= 0
Us4(i,n) = 1/4;

96



for

end

F1(i+1,n)
F2(i+1,n)
F3(i+1,n)
F4(i+1,n)
F5(i+4+1,n)
F6(i+1,n)
F7(i4+1,n) =
F8(i+1,n) =
F9(i4+1,n) =

F16(i+1,n
F17(i+1,n
F18(i+1,n
Fsl(i+1,n)=

end

%Find th
n = 2:Nx-1

F10(i+4+1,n)

Fs2(i+1,n)=
Fs3(i+1,n)=

Fsd(i+1,n)=

bout (1:22) =

e flux for the next timestep for 2:Nx-1

F1(i,n) -(k/h)*((ULl(i,n)-Ul(i,n)" 2)-(Ul(i,n-1)-Ul(i,n-1)"2
F2(i,n) -(k/h)*((U2(i,n)-U2(i,n)" 2)-(U2(i,n-1)-U2(i,n-1)"2
F3(i,n) -(k/h)*((U3(i,n)-U3(i,n)" 2)-(U3(i,n-1)-U3(i,n-1)"2
F4(i,n) -(k/h)*((U4(i,n)-U4(i,n) 2)-(U4(i,n-1)-U4d(i,n-1)"2
F5(i,n) -(k/h)*((U5(i,n)-U5(i,n)" 2)-(U5(i,n-1)-U5(i,n-1)"2
F6(i,n) -(k/h)*((U6(i,n)-U6(i,n)" 2)-(U6(i,n-1)-U6(i,n-1)"2
F7(i,n) -(k/h)*((U7(i,n)-U7(i,n)" 2)-(U7(i,n-1)-U7(i,n-1)"2
F8(i,n) -(k/h)=*((U8(i,n)-U8(i,n)" 2)-(U8(i,n-1)-U8(i,n-1)"2
F9(i,n) -(k/h)*((U9(i,n)-U9(i,n)" 2)-(U9(i,n-1)-U9(i,n-1)"2
F10(i,n) -(k/h)*((U10(i,n)-U10(i,n) 2)-(U10(i,n-1)-U10(i ,n-
F11(i,n)-(k/h)*((U11(i,n)-Ull(i,n)" 2)-(U11(i,n-1)-Ul1(i,
F12(i,n)-(k/h)*((U12(i,n)-U12(i,n) " 2)-(U12(i,n-1)-U12(i,
F13(i,n)-(k/h)*((U13(i,n)-U13(i,n) " 2)-(U13(i,n-1)-U13(i,
F14(i,n)-(k/h)*((U14(i,n)-U14(i,n) " 2)-(U14(i,n-1)-Ul4(i,n-

F15(i,n)-(k/h)=((U15(i,n)-U15(i,n) 2)-(U15(i,n-1)-U15(i,n-1)"
F16(i,n)-(k/h)=((U16(i,n)-U16(i,n) 2)-(U16(i,n-1)-U16(i,n-1)"
F17(i,n)-(k/h)*((UL17(i,n)-U17(i,n) 2)-(U17(i,n-1)-UL7(i ,n-1)"

F18(i,n)-(k/h)*((U18(i,n)-U18(i,n)" 2)—(U18(1,n 1)-U18(i,n-1) "
Fs1(i,n)-(k/h)*((Usl(i,n)-2%Usl(i,n)"2).
-(Usl(i,n-1)-2%Usl(i,n-1)"2));
Fs2(i,n)-(k/h)*((Us2(i,n)-2%«Us2(i,n)"2)...
-(Us2(i,n-1)-2%Us2(i,n-1)"2));
Fs3(i,n)-(k/h)*((Us3(i,n)-2%Us3(i,n) 2)...
-(Us3(i,n-1)-2%Us3(i,n-1)"2));
Fs4(i,n)-(k/h)*((Us4(i,n)-2%Us4(i,n) " "2)...
-(Us4(i,n-1)-2%Us4(i,n-1)"2));

[F1(i,Nx) F2(i,Nx) F3(i,Nx) F4(i,Nx) F5(i,Nx) F6(i,Nx) F7(i,Nx)

F8(i,Nx) F9(i,Nx) F10(i,Nx) F11(i,Nx) F12(i,Nx) F13(i,Nx) F14(i,Nx) F15(
i,Nx) F16(i,Nx) F17(i,Nx) F18(i ,Nx) Fsl1(i,Nx) Fs2(i,Nx) Fs3(i,Nx) Fs4(i,
Nx) |
%--Find the maxfluxes out. (4.2.3)
for 1 = 1:18
if bout(l) <= .5
b(1) = bout(l) -bout(1l)"
else
b(l) = 1/4;
end
end
%--Find the maxfluxes out sideroads. (4.2.3)
for 1 = 19:22
if bout (1) <= 1/4
b(1) = bout(l) -2«bout(1)"
else
b(1) = 1/8;
end
end
bin (1:22) = [F1(i,1) F2(i,1) F3(i,1) F4(i,1) F5(i,1) F6(i,1) F7(i,1) F8(i,1)
F9(i,1) F10(i,1) F11(i,1) F12(i,1) F13(i,1) F14(i,1) F15(i,1) F16(i,1)
F17(i,1) F18(i, 1) Fsl(l,l) Fs2(1,1) Fs3(i,1) Fs4(i,1)];

%--F:nd the
for L = 1:1

maxfluxes in (4.2.2)
8

if bin(L) <= .5

a(L) =
else

a(L) =
end
end
%--Find the
for L = 19:

1/4;

bin (L) -bin (L) " 2;

maxfluxes in sideroads. (4.2.2)
22

if bin(L) <= 1/4

a(L) =
else

a(L) =
end
end
%--Find the
%Junctions

%Junction (3,

In2 = min(b

Out3 = b(3);

Outs2 = b(2
if b(3) + b
Out3 = gx*In
Outs2 =(1-q
if Out3 > b

elseif Outs
Outs2 = b(2
Out3 = In2
end

end

%Junc(lon(7
In9 = min(b
Out7 = b(7);
Outsl= b(19

1/8;

bin (L) -2%bin (L) "2

fluxes in and out for each junction.--
with 2 insomming, 1 outgoing (4 junctions)
82 -> 2)

(3)+ b(20),a(2));

0);

(20) > a(2) % Amount of cars exceeds C
2

)y*In2;

(3) % if p is outside omega

;

- b(3);

2 > b(20) % if p is outside omega (other side)
0);

-b(20);

-> 9) 2 out, 1 in
(7)+ b(19),a(9));

)
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if b(7) + b(19) > a(19) %(Amount of cars exceeds C)
Out7 = q*In9;

Outsl =(1-q)*In9;

if Out?7 > b(7) % if p lies outside omega.

Out7 = b(7);

Outsl = In9 - b(7);

elseif Outsl > b(19) % if p lies outside omega. (other side)
Outsl = b(19);

Out7 = In9 -b(19);

end

end

%Junction (12,s3 -> 11)

Inll = min(b(12)+ b(21),a(11));

Outl2 = b(12);

Outs3 = b(21);

if b(12)4b(21) > a(l1l) %Amount of cars exceeds C.
Outl2 = q*Inll;

Outs3 =(l-q)=Inll;

if Outl2 > b(12) % if p lies outside omega.

Out12 b(12);

Outs3 In11l - b(12);

elseif Outs3 > b(21) % if p lies outside omega (other side).

Outs3 = b(21);

Outl2 = Inll -b(21);
end

end

%Junction (15,84 -> 17)
Inl7 = min(b(15)4+ b(22),a(17));

Outls = b(15);

Outs4d = b(22);

if b(15) + b(22) > a(17)%(Amount of cars exceeds C)
Outls = q#Inl7;

Outs4 =(1-q)*Inl7;

if Outls > b(15) % if p lies outside gamma.
Outls = b(15):

Outsd = Inl7 - b(15);

elseif Outsd > b(22) % if p lies outside gamma (other side)
Outsd = b(22);

Outls = Inl7 -b(22);

end

end

% Junction with 1 incomming and 2 outgoing (4 junctions).
%Junction (5 -> s1,6)

In6 min(alphalxb(5),a(6));

Insl min (alpha2xb(5),a(19));

Out5 = In6 + Insl;

%Junction (9 -> s3,10)

In10 = min(alphal*b(9),a(10));

Ins3 min (alpha2+b(9) ,a(21));

Out9 = Inl0 4+ Ins3;

%Junction (13 -> s4,14)

Inl4 = min(alphal*b(13),a(14));
Ins4 = min(alpha2xb(13),a(22));
Outl3 = Inl4 4+ Ins4;
%Junction (18 -> s2,16)
Inl16 = min(alphalxb(18),a(16));
Ins2 = min(alpha2xb(18) ,a(20));
Outl8 = Inl6 + Ins2;
73, Junction with 6 roads (2 junctions) -----------
%Junction (1,6,8 --> 3,4,7)
fluxl= Ax[b(1) ; b(6) ; b(8)];
In3 = min(flux1 (1) ,a(3));
In7 = min(flux1 (2),a(7));
In4 = min(flux1(3),a(4));
if flux1 (1) > a(3)

v(1,1) = flux1(1)-a(3);
end
if flux1(2) > a(7)

v(2,1) = flux1(2)-a(7);
end
if flux1(3) > a(4)

v(3,1) = flux1(3)-a(4);
end

%Right of way parameters(Using matrix A)
Outl b(1)-A(1,:)=*v;
Out6 b(6)-A(2,:)*v;
Out8 = b(8)-A(3,:)x*v;
%Junction (10,14,16 --> 8,12,15)
flux2 = Ax[b(10) ; b(14) ; b(16)];
In8 = min(flux2(1),a(8));
Inl5 min (flux2 (2) ,a(15));
In12 = min(flux2(3),a(12));
if flux2 (1) > a(8)

v2(1,1) = flux2(1)-a(8);

end
if flux2(2) > a(l15)

v2(2,1) = flux2(2)-a(15);
end
if flux2(3) > a(12)

v2(3,1) = flux2(3)-a(12);
end

98



Fs1(i+1,Nx)
Fs2(i+1,Nx)
Fs3(i+1,Nx)
Fs4 (i+1,Nx)

Fs1(i,Nx) -(k/h)*(Outsl-(Usl(i,Nx-1)-2%Usl(i,Nx-1)

Fs2(i,Nx) -(k/h)*(Outs2-(Us2(i,Nx-1)-2%Us2(i,Nx-1) "
Fs3(i,Nx) -(k/h)*(Outs3-(Us3(i,Nx-1)-2%Us3(i,Nx-1)"
Fs4(i,Nx) -(k/h)*(Outsd-(Us4(i,Nx-1)-2%Us4(i,Nx-1)"

703 %Right of way parameters(Using matrix A)

704 Outl0 = b(10)-A(1,:)*v2;

705 Outld = b(14)-A(2,:)*v2;

706 Outl6 = b(16)-A(3,:)*v2;

707 %--Boundaries - -

708 %Incomming roads [F1, F5, F13, F18]

709 F1(i+1,1) = F1(i,1) -(k/h)*((UL(i,1)-Ul(i,1)"2)-(U01-(U0L)"2));

710 F5(i+1,1) = F5(i,1) -(k/h)*((U5(i,1)-U5(i,1)"2)-(U05-(U05)"2));

711 F13(i+1,1) = F13(i,1) -(k/h)*((U13(i,1)-U13(i,1)"2)-(U013-(U013)"2));

712 F18(i41,1) = F18(i,1) -(k/h)*((U18(i,1)-U18(i,1)"2)-(U018-(U018)"2));

713 %Roads with outgoing fluxes [All except: F2, F4, F11, F17]

714 F1(i+1,Nx) F1(i,Nx) -(k/h)#*(Outl-(UL1(i,Nx-1)-U1(i,Nx-1)"2));

715 F3(i+1,Nx) F3(i,Nx) -(k/h)*(Out3-(U3(i,Nx-1)-U3(i,Nx-1)"2));

1 F5(i+1,Nx) F5(i,Nx) -(k/h)*(Outs5-(U5(i,Nx-1)-U5(i,Nx-1)"2));
F6(i+1,Nx) F6(i,Nx) -(k/h)*(Out6-(U6(i,Nx-1)-U6(i,Nx-1)"2));
F7(i+1,Nx) F7(i,Nx) -(k/h)*(Out7-(U7(i,Nx-1)-U7(i,Nx-1)"2));
F8(i+1,Nx) F8(i,Nx) -(k/h)*(Out8-(U8(i,Nx-1)-U8(i,Nx-1)"2));
F9(i+1,Nx) F9(i,Nx) -(k/h)*(Out9-(U9(i,Nx-1)-U9(i,Nx-1)"2));
F10(i+41,Nx) F10(i,Nx) -(k/h)*(Outl0-(U10(i ,Nx-1)-U10(i,Nx-1)"2));
F12(i41,Nx) F12(i,Nx) -(k/h)*(Outl2-(U12(i ,Nx-1)-U12(i,Nx-1)"2));
F13(i+1,Nx) F13(i,Nx) -(k/h)*(Out13-(U13(i ,Nx-1)-U13(i,Nx-1)"2));
F14(i+1,Nx) F14(i,Nx) -(k/h)*(Outl4-(U14(i ,Nx-1)-U14(i,Nx-1)"2));
F15(i+1,Nx) F15(i ,Nx) -(k/h)*(Outl5-(U15(i ,Nx-1)-U15(i,Nx-1)"2));
F16(i41,Nx) F16 (i ,Nx) -(k/h)=(Outl6-(U16(i,Nx-1)-U16(i,Nx-1)"2));
F18(i+41,Nx) F18(i,Nx) -(k/h)=(Outl8-(U18(i,Nx-1)-U18(i,Nx-1)"2));

"2));
2));
2));
2));

732 %Roads with incomming fluxes [All except 1,5,13,18]
F2(i+1,1) F2(i,1) -(k/h)=((U2(i,1)-U2(i,1)"2)-In2);
F3(i+1,1) F3(i,1) -(k/h)=((U3(i,1)-U3(i,1)"2)-In3);
F4(i+1,1) F4(i,1) -(k/h)=((U4(i,1)-U4(i,1)"2)-In4);
F6(i+1,1) F6(i,1) -(k/h)=((U6(i,1)-U6(i,1)"2)-In6);
F7(i+1,1) F7(i,1) -(k/h)*((U7(i,1)-U7(i,1)"2)-In7);
F8(i+1,1) F8(i,1) -(k/h)*((U8(i,1)-U8(i,1)"2)-In8);
FO(i+1,1) F9(i,1) -(k/h)=((U9(i,1)-U9(i,1)" 2)-In9);

F10(i+1,1)
F11(i+1,1)
F12(i+1,1)
F14(i+1,1)
F15(i+1,1)
F16(i41,1)
F17(i41,1)
Fsl1(i41,1)
Fs2(i4+1,1)
Fs3(i41,1)
Fsd(i41,1)

F10(i,1) -(k/h)*((U10(i,1)-U10(i,1) 2)-Inl0);
F11(i,1) -(k/h)*((U11(i,1)-Ull(i,1) "2)-Inll);
F12(i,1) -(k/h)*((U12(i,1)-U12(i,1) " 2)-In12);
F14(i,1) -(k/h)*((U14(i,1)-U14(i,1)"2)-Inl4);
F15(i,1) -(k/h)*((U15(i,1)-U15(i,1)"2)-Inl15);
F16(i,1) -(k/h)*((U16(i,1)-U16(i,1)"2)-Inl6);
F17(i,1) -(k/h)*((U17(i,1)-U17(i,1)"2)-In17);
Fs1(i,1) -(k/h)*((Usl(i,1)-2%Usl(i,1)"2)-Insl);
Fs2(i,1) -(k/h)*((Us2(i,1)-2%Us2(i,1) 2)-Ins2);
Fs3(i,1) -(k/h)*((Us3(i,1)-2%Us3(i,1) 2)-Ins3);
Fs4(i,1) -(k/h)*((Us4(i,1)-2%Usd(i,1) 2)-Insd);

751 %Outgoing Roads [F2, F4, F11, F17]
752 F2(i4+1,Nx) = F2(i+1,Nx-1);

753 F4(i+1,Nx) = F4(i+1,Nx-1);

754 F11(i41,Nx) = F11(i+1,Nx-1);

755 F17(i+1,Nx) = F17(i+1,Nx-1);

756 end
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Figure 7.3.6: Plotting time vs position of the different routes. Initial values
from test Al.
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Figure 7.3.7: Plotting time vs position of the different routes. Initial values
from test A2.
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Figure 7.3.8: Plotting time vs position of the different routes. Initial values
from test B1.
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Figure 7.3.9: Plotting time vs position of the different routes. Initial values
from test B2.
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Figure 7.3.10:
from test C1.

Plotting time vs position of the different routes. Initial values
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Figure 7.3.11: Plotting time vs position of the different routes. Initial values

from test C2.



