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Abstract— Extremum-seeking control is a useful tool for the
steady-state performance optimization of plants for whichthe
dynamics and disturbance situation can be unknown. The case
when the steady-state plant outputs are constant received a
lot of attention, however, in many applications time-varying
outputs characterize plant performance. As a result, no static
parameter-to-steady-state performance map can be obtained.
In this work, an extremum-seeking control method is proposed
that uses a so-called dynamic cost function to cope with
these time-varying outputs. We show that, under appropriate
conditions and given arbitrarily large sets of initial conditions,
the solutions of the extremum-seeking control scheme are
uniformly ultimately bounded in view of bounded and time-
varying external disturbances, and the region of convergence
towards the optimal tunable plant parameters can be made
arbitrarily small. Moreover, its working principle is illu strated
by means of the performance optimal tuning of a variable-gain
controller for a motion control application.

I. INTRODUCTION

Extremum-seeking control, categorized as being an adap-
tive control approach, is a data-driven and, in essence,
model-free control technique for optimizing the steady-state
performance of a stable or stabilized plant in real-time,
by automated adaptation of tunable plant parameters [1],
[2], [3]. Due to its model-free character, extremum-seeking
control is a particularly useful tool in applications where
only little knowledge of the plant dynamics is available and,
as such, has been applied in many different engineering
domains such as internal combustion engines [4], antilock
bracking systems [5], control of sawtooth instabilities in
fusion tokamak plasmas [6], and many more, see, e.g., [1],
[2], and references therein. Practical applications are usually
subject to external disturbances which are in general not
known a priori, which further emphasizes the power of
extremum-seeking control as a model-free technique. As a
result, and in addition the lack of plant knowledge, the (per-
formance optimal) steady-state output of the plant is often
not analytically known, and can only be assessed through
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output measurements. An extremum-seeking controller is
able to exploit these measured plant outputs irrespectively
of the availability of plant and disturbance knowledge, and
subsequently uses the measured outputs to steer the tunable
plant parameters to their performance optimal values, thereby
achieving optimal steady-state performance.

In most of the work on extremum-seeking control, the
general requirement for the plant to be optimized is the
existence of a (unknown) static parameter-to-steady-state
performance map, i.e., astatic input-to-output map, referred
to as the objective function, whose extremum corresponds to
the optimal steady-state plant performance [2], [7], [3]. Using
measured outputs of the plant, gradient-based extremum-
seeking control approaches can be employed that estimate
the gradient of the objective function and steer the plant
parameters to their optimal values in real-time by means of
a gradient-based update law. In many applications, such a
static input-to-output map, where steady-state performance is
characterized by an equilibrium solution, does not exist be-
cause performance is related totime-varying plant behavior.
This time-varying plant behavior can originate for example
from reference tracking or disturbance attenuation problems,
which are encountered, for example, in industrial motion
systems, such as, e.g., wafer scanning systems [13], [14],
pick-and-place systems, electron microscopes, and printing
applications [15].

In [9], an extremum-seeking controller is developed for
general dynamical plants that do not exhibit equilibrium
solutions but instead have limit cycle behavior, which can
only be reduced in size by some tunable plant parameter
but cannot be eliminated completely. The authors added a
detector that captures the amplitude of the limit cycle, which
is assumed to be sinusoidal. Considering the plant and the
detector as one extended plant with the plant parameter
as input and the amplitude of the limit cycle as output, a
constant steady-state relation between the input and output
is obtained. The work in [9] was most suitable for sinusoidal
outputs, and has been applied, e.g., in the suppression of
subsonic cavity flow resonances [16], and automatic mode
matching in vibrating gyroscopes [17].

In [10], an extremum-seeking control scheme is designed
for steady-state output optimization of a class of differ-
entially flat periodic nonlinear systems. Using the flatness
property of the dynamics, a period of the periodic steady-
state output of the plant is computed. Extremum-seeking
control is then used to optimize the computed steady-state
output in real-time, based on a user-defined cost functional
evaluated over that periodic steady-state output. In [8], a
similar approach as in [10] is pursued for the steady-state



output optimization of periodic Hamiltonian systems. We
need to emphasize that the wide use of extremum-seeking
control can be attributed to the feature of it being model-free,
while the methods in [10] and [8] use explicit knowledge
of the relation between the parameters and the steady-state
output of the plant.

In [11], an extremum-seeking scheme is proposed for
the optimization of general nonlinear plants with periodic
steady-state outputs. Knowing the period time of the periodic
steady-state output, a cost function is designed that linksthe
periodic output of the plant to a performance measure, such
as, e.g., anLp-norm of the error response computed over the
periodic time interval. Again, considering the plant and the
cost function as one extended plant with the plant parameter
as input and theLp-norm as output, a constant steady-
state relation between the input and output is obtained. In
[18], this method was experimentally demonstrated for the
adaptive design of variable-gain controllers for a motion
control application.

In many (industrial) applications, the steady-state response
characterizing system performance is time-varying, and peri-
odicity of the steady-state response is not evident due to the
fact that responses can be induced by complex time-varying
disturbances and reference signals. In such generic cases,a
static input-to-output performance map may not be readily
defined as in the periodic cases in [18], [9], and [11].

The main contribution of this work is as follows.
First, we propose an extremum-seeking control method
for steady-state performance optimization of general non-
linear plants with time-varying steady-state outputs. The
proposed extremum-seeking control method includes a so-
called dynamic cost function in terms of the time-varying
output response. The dynamic cost function allows for the
characterization of a static input-to-output performancemap
for general nonlinear plants with time-varying steady-state
outputs. Second, under appropriate conditions and given
arbitrarily large sets of initial conditions, we prove that
the solutions of the closed-loop extremum-seeking control
scheme are uniformly ultimately bounded in view of bounded
and time-varying disturbances. Moreover, we show that the
region of convergence towards the optimal tunable plant
parameters can be made arbitrarily small. Third, an illustra-
tive simulation example is presented in which performance
is optimized of a variable-gain controlled motion system
exhibiting generically time-varying outputs.

The paper is organized as follows. Section II presents the
problem formulation. Section III gives the extremum-seeking
controller. In Section IV the stability result is stated, and in
Section V an illustrative example is provided.

II. EXTREMUM-SEEKING CONTROL PROBLEM
FOR TIME-VARYING OUTPUTS

Consider the following multi-input-multi-output nonlinear
plant:

Σp :
{

ẋ(t) = f (x(t),u(t),w(t))

e(t) = g(x(t),u(t),w(t)),
(1)

wherex ∈ Rnx is the state of the plant,u ∈ Rnu is the input
of the plant,e ∈ Rne is the output of the plant,w ∈ Rnw are

disturbances, andt ∈ R is time. In the context of extremum-
seeking control, the inputu is a vector of tunable plant
parameters, the outpute is a vector of measured performance
variables, andw are (time-varying) disturbances, for which
we adopt the following assumption.

Assumption 1: The disturbancesw(t) are piecewise con-
tinuous, defined and bounded ont ∈ R. Moreover, there
exists a constantρw ∈ R>0 such thatw(t) ∈ W for all
t ∈ R, with W = {w ∈ Rnw : ‖w‖ ≤ ρw}.
Although the functionsf and g in (1) are considered
unknown, we adopt the following assumption.

Assumption 2: The functionsf : Rnx × Rnu × Rnw →
Rnx andg : Rnx×Rnu×Rnw → Rne are twice continuously
differentiable inx andu and continuous inw. Moreover,
there exist constantsLfx, Lfu, Lgx, Lgu ∈ R>0 such that

∥

∥

∥

∂f

∂x
(x,u,w)

∥

∥

∥
≤ Lfx,

∥

∥

∥

∂f

∂u
(x,u,w)

∥

∥

∥
≤ Lfu,

∥

∥

∥

∂g

∂x
(x,u,w)

∥

∥

∥
≤ Lgx,

∥

∥

∥

∂g

∂u
(x,u,w)

∥

∥

∥
≤ Lgu,

(2)

for all x ∈ Rnx , all u ∈ U , and allw ∈ W , whereU ⊂ Rnu

is a compact set.
In addition to Assumptions 1 and 2, we adopt the following
assumption on the plantΣp.

Assumption 3: The plantΣp in (1) is globally exponen-
tially convergent1 for all constant inputsu ∈ U .

Remark 1: Assumption 3 guarantees that, for any constant
u ∈ U and anyw(t) ∈ W , there exists a unique globally ex-
ponentially stable (time-varying) steady-state solution. This
assumption is the equivalent of the common assumption in
extremum-seeking literature on the plant exhibiting globally
asymptotically stable equilibria. In many (nonlinear) control
problems, for example tracking, synchronization, observer
design and output regulation problems, the convergent sys-
tem property that all solutions of a closed-loop system
converges to some steady-state solution and thus ”forget”
their initial condition plays an important role. Moreover,this
property is immediate for asymptotically stable linear time-
invariant systems with inputs.
From Assumptions 1-3, it follows that for all constant inputs
u ∈ U and all disturbancesw(t) ∈ W there exists a
unique steady-state solution of the plantΣp, which is defined
and bounded ont ∈ R and globally exponentially stable
(GES). The steady-state solution is denoted byx̄w(t,u),
emphasizing the dependency on time-varying disturbances
w(t) and constant inputsu, and satisfies

˙̄xw(t,u) = f (x̄w(t,u),u,w(t)). (3)

For the steady-state solution̄xw(t,u) we adopt the following
assumption.

Assumption 4: The steady-state solution̄xw(t,u) is twice
continuously differentiable inu and satisfies

∥

∥

∥

∥

∂x̄w

∂u
(t,u)

∥

∥

∥

∥

≤ Lx, (4)

for all t ∈ R, all u ∈ U , and some constantLx ∈ R>0.

1For definitions of convergent systems the reader is referredto [19].



Furthermore, it follows from Assumption 3 that, for constant
inputsu ∈ U and (time-varying) disturbancesw(t) ∈ W ,
there exists a unique steady-state output of the plantΣp in
(1), denoted bȳew(t,u), which is given by

ēw(t,u) = g(x̄w(t,u),u,w(t)). (5)

It is the task of the designer to define a bounded cost
function, denoted byZ, that quantifies the performance of
interest for the plant under study. Then, the corresponding
measured plant performance is given by

y(t) = Z(e(t),u(t)), (6)

wherey ∈ R. For the functionZ, we adopt the following
assumption, which can be satisfied by design.

Assumption 5: The functionZ : Rne ×R
nu → R is twice

continuously differentiable with respect to both arguments.
Moreover, there exist constantsLZe, LZu ∈ R>0 such that
∥

∥

∥

∂2Z

∂e∂eT
(e,u)

∥

∥

∥
≤ LZe and

∥

∥

∥

∂2Z

∂e∂uT
(e,u)

∥

∥

∥
≤ LZu, (7)

for all e ∈ Rne , and allu ∈ U .
Remark 2: For example in the context of motion control

systems, typically the measured performance variablee is
the tracking error. To quantify performance of motion control
systems based on the tracking error, a useful cost function
Z can be theL2-norm, i.e.,Z(e,u) = ‖e‖2 ∈ R≥0.
For all constant inputsu ∈ U and all (time-varying)
disturbancesw(t) ∈ W , the steady-state plant performance
ȳw(t,u) is given by

ȳw(t,u) = Z(g(x̄w(t,u),u,w(t)),u). (8)

Our aim is to find the constant input valuesu that minimize
the measured steady-state plant performanceȳw, yielding the
optimization of the steady-state plant performance variable
ēw. In the context of extremum-seeking control, ideally the
measured plant performancey and the measured steady-state
plant performancēyw are constant for constant inputsu;
this forms one of the basic assumptions in the extremum-
seeking control literature [2], [7]. However, due to the time-
varying nature of the disturbancesw(t) in (1), in general,
the measured plant performancey and steady-state plant
performancēyw are time-varying in nature.

To deal with time-varying plant outputs, consider the series
connection of the plantΣp as in (1), the cost functionZ as
in (6), and additionally a filter, denoted byΣf , which reads

Σf :
{

ż(t) = αzh(z(t), y(t))

l(t) = k(z(t)),
(9)

whereαz ∈ R>0 is a tuning parameter,z ∈ Rnz is the state
of the filter, andl ∈ R is the output of the filter, see Fig. 1.
We adopt the following assumption on the filterΣf , which
can be satisfied by design.

Assumption 6: The functionsh : Rnz × R → Rnz and
k : R

nz → R are twice continuously differentiable with
respect to all arguments. Moreover, there exist constantsLhz,
Lhy, Lk ∈ R>0 such that

∥

∥

∥

∂h

∂z
(z, y)

∥

∥

∥
≤ Lhz,

∥

∥

∥

∂h

∂y
(z, y)

∥

∥

∥
≤ Lhy,

∥

∥

∥

∂k

∂z
(z)

∥

∥

∥
≤ Lk,

(10)
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Σ

Fig. 1. Series connection of the nonlinear plantΣp, the user-defined cost
function Z, and the to-be-designed filterΣf .

for all z ∈ Rnz , and ally ∈ R.
The series connection of the cost functionZ in (6) and the
filter Σf in (9), we call thedynamic cost function. We adopt
the following assumption on the dynamic cost function.

Assumption 7: The dynamic cost function consisting of
the cascade ofZ andΣf , given by (6) and (9), respectively,
is exponentially input-to-state convergent2 for all constant
inputsu ∈ U and allαz ∈ R>0.
The series connection of the nonlinear plantΣp in (1), the
user-defined cost functionZ in (6), and the to-be-designed
filter Σf in (9) is referred to as the extended plantΣ and
is schematically depicted in Fig. 1. The dynamics of the
extended plant is given by

Σ :

{ ẋ(t) = f(x(t),u(t),w(t))

ż(t) = αzh(z(t), Z(g(x(t),u(t),w(t)),u(t)))

l(t) = k(z(t)).

(11)

By similar arguments as in the proof of Property 2.27 in
[19], we can conclude from Assumptions 3 and 7 that the
extended plantΣ in (11) is globally exponentially convergent
for all constant inputsu ∈ U and disturbancesw(t) ∈
W . As such, there exists a unique steady-state solution of
Σf , induced by the extended plant, which is defined and
bounded ont ∈ R and GES. This steady-state solution is
denoted byz̄w(t,u, αz), emphasizing the dependency on
time-varying disturbancesw(t), constant inputsu, and the
tunable parameterαz , and satisfies

˙̄zw(t,u, αz) = αzh(z̄w(t,u, αz), ȳw(t,u)). (12)

For the steady-state solution of the extended plantΣ, we
adopt the following assumption.

Assumption 8: There exists a twice continuously differen-
tiable functionqw : Rnu → Rnz , referred to as the constant
performance cost, such that

lim
αz→0

z̄w(t,u, αz) = qw(u), (13)

for all t ∈ R and allu ∈ U and disturbancesw(t) ∈ W .
Moreover, there exists a positive constantδw ∈ R>0, related
to the disturbancesw(t) ∈ W and the extended plantΣ,
such that

‖z̄w(t,u, αz)− qw(u)‖ ≤ αzδw, (14)

for all t ∈ R, all u ∈ U and all 0 < αz ≤ ǫz for some
ǫz ∈ R>0. In addition, there exists a constantLz ∈ R>0

such that
∥

∥

∥

∂z̄w

∂u
(t,u, αz)−

dqw

du
(u)

∥

∥

∥
≤ αzLz, (15)

for all t ∈ R, all u ∈ U and all0 < αz ≤ ǫz.

2For definitions of convergent systems the reader is referredto [19].



Remark 3: To illustrate Assumption 8, consider, e.g.,
ȳw(t, u) = ((u − u∗) sin(t))2 + γ with γ ∈ R, u ∈ U with
U = {u ∈ R : |u − u∗| ≤ Lu}, and Σf being a linear
low-pass filter ż(t) = αz(y(t) − z(t)), l(t) = z(t). The
steady-state solution̄zw(t, u, αz) then reads

z̄w(t, u, αz) = γ +
(u− u∗)2

2

(

1− αz
αz cos(2t) + 2 sin(2t)

α2
z + 4

)

.

The functionqw then yields

lim
αz→0

z̄w(t, u, αz) = qw(u) = γ +
(u− u∗)2

2
,

which is indeed twice continuously differentiable. As a
result, the difference between̄zw(t, u, αz) and qw can be
bounded as follows:

‖z̄w(t, u, αz)− qw(u)‖ ≤
1

2
αzL

2
u,

such that (14) is satisfied withδw =
L2

u

2
. In Assumption

8, (14) can be understood as a bound on the difference be-
tween the time-varying steady-state solution of the extended
plant Σ and the constant performance cost of the extended
plant, which is bounded and tunable byαz. For constant
disturbancesw, this difference will be zero (i.e.,δw = 0)
for any value of the tuning parameterαz, as the steady-state
solution will be independent of time. In caseδw > 0, the
tuning parameterαz should be tuned small in order to have a
sufficiently close approximation of the constant performance
costqw(u).
Hence, by Assumption 8, steady-state conditions of the plant
Σp, the cost functionZ, the filterΣf , the limit αz → 0, and
for constant inputsu ∈ U , we have that the parameter-to-
steady-state performance cost of the plant can be character-
ized by the static input-to-output map

Fw(u) := k(qw(u)), ∀ u ∈ U . (16)

We refer to the mapFw as the objective function. To min-
imize the steady-state plant performancey, we aim to find
the plant parameter values for which the objective function
in (16) is minimal. We further assume that the dynamic cost
function is designed such that there exists a unique minimum
of the objective functionFw on the compact setU for any
(time-varying) disturbancew(t) ∈ W satisfying Assumption
1, where the minimum of the mapFw corresponds to the
optimal plant performance. This assumption is formulated
as follows.

Assumption 9: The objective functionFw : Rnu → R

in (16) is twice continuously differentiable and exhibits a
unique minimum in the compact setU . Let the corresponding
optimal inputu∗ be defined as

u
∗ = argmin

u∈U

Fw(u). (17)

Furthermore, there exists a constantLF1 ∈ R>0 such that

dFw

du
(u)(u− u

∗) ≥ LF1‖u− u
∗‖2 (18)

for all u ∈ U .
From Assumption 9, it follows thatFw(u∗) is the unique
minimum of the objective function. In addition, it follows

that the vector of tunable plant parametersu will converge to
optimal inputu∗ for any initial valueu(0) ∈ U if we are able
to design a controller that drives the tunable plant parameters
in opposite direction of the gradient of the objective function
in (16). However, since the steady-state solutions of the plant
in (1) and the filter in (9) and the objective functionFw

are unknown, we typically cannot design a such a gradient-
descent controller. Information of the objective functioncan
only be obtained through measured outputsl of the extended
plant in (11). The measured output of the extended plant
differs from the objective functionFw in three ways; i)
due to the dynamics of the plant in (1) and the filter in
(9) not being in steady-state, ii) due to the presence of
(time-varying) disturbancew(t), and iii) due to the design
parameterαz which is typically designed to be small, but
still non-zero and positive. Nevertheless, we aim to steer the
inputsu to their performance optimizing valuesu∗ by using
the measured extended plant outputl(t) as feedback to an
extremum-seeking controller that is introduced in the next
section.

III. EXTREMUM-SEEKING CONTROLLER

The controller design proposed here is inspired by the one
in [12, Ch. 2]. In Section III-A, a dither signal design is
presented, in Section III-B, a model of the input-to-output
behavior of the plant is presented to be used as a basis
for gradient estimation, in Section III-C, a least-squares
observer to estimate the state of that model (and therewith
the gradient) and a normalized optimizer to steer the plant
parametersu to the minimizeru∗ are presented, and, in
Section III-D, tuning guidelines are provided for the closed-
loop system composed of the extended plantΣ in (11) and
the extremum-seeking controller.

A. Dither signal

To estimate the gradient of the objective function and
use this estimated gradient to driveu towardsu∗ by an
optimizer, we define the following input signal:

u(t) = û(t) + αωω(t), (19)

whereαωω is a vector of perturbation signals with amplitude
αω ∈ R>0, and û is referred to as the nominal input to be
generated by the extremum-seeking controller. The vectorω

is defined byω(t) = [ω1(t), ω2(t), ..., ωnu
(t)]T , with

ωi(t) =

{

sin
(

i+1
2

ηωt
)

, if i is odd,
cos

(

i
2
ηωt

)

, if i is even,
(20)

for i = {1, 2, ..., nu}, whereηω ∈ R>0 is a tuning parameter.
The purpose of the perturbation signal is to provide sufficient
excitation to accurately estimate the gradient of the objective
function. The nominal plant parametersû can be regarded
as an estimate of the minimizeru∗.

B. Model of input-to-output behavior of the extended plant

To obtain an estimate of the gradient of the objective
function, we model the input-to-output behavior of the ex-
tended plant in (11), that is, from the nominal inputû to the



measured output of the extended plantl, in a general form.
Let the state of the model be given by

m(t) =

[

Fw(û(t))

αω
dFw

duT
(û(t))

]

. (21)

The measured output of the extended plantl in (11) can be
written as

l(t) = k(z(t))− k(z̄w(t,u, αz)) + Fw(u(t)) + d(t), (22)

with the signald(t) defined as

d(t) := k(z̄w(t,u, αz))− k(qw(u(t))). (23)

From Taylor’s Theorem and (19),Fw(u(t)) can be written
as

Fw(u(t)) = Fw(û(t)) +αω
dFw

du
(û(t))ω(t)

+α
2

ωω
T (t)

∫ 1

0

(1− σ)
d2Fw

duduT
(û(t) + σαωω(t))dσω(t).

(24)

The dynamics of the state in (21) is governed by

ṁ(t) = A(t)m(t) + α
2
ωBs(t)

l(t) = C(t)m(t) + α
2
ωv(t) + r(t) + d(t),

(25)

with the matricesA, B andC defined as

A(t) =

[

0
˙̂uT (t)
αω

0 0

]

, B =

[

0
I

]

, C(t) =
[

1 ωT (t)
]

,

(26)
and the signalss, v, r defined as

s(t) :=
d2Fw

duduT
(û(t))

˙̂u(t)

αω

,

v(t) := ω
T (t)

∫ 1

0

(1− σ)
d2Fw

duduT
(û(t) + σαωω(t))dσω(t),

r(t) := k(z(t))− k(z̄w(t,u, αz)).
(27)

The signalss, v, r and d can be interpreted as unknown
disturbances to the model. The influences ofs, v, r and d
on the state and output of the model in (25) are small if i)
û is slowly time varying, if ii)αω is small, if iii) the states
x of the plant in (1) and the statesz of the filter in (9) are
close to their steady-state values, and if iv)αz is small.

The statem in (21) contains an estimate of the gradient of
the objective function, scaled by the perturbation amplitude
αω. Hence, an estimate of the gradient of the objective
function can be obtained from an estimate of the statem.
Based on this gradient estimate, an optimizer can steer the
plant parametersu to the minimizeru∗. In the next section,
a least-squares observer and an optimizer for this purpose
are proposed.

C. Controller design

We introduce an extremum-seeking controller that is com-
posed of a dither signal as in (19), an observer to estimate
the statem of the model in (25), and an optimizer that uses
the estimate of the statem of the observer, denoted bŷm, to
steer the nominal plant inputŝu to their performance optimal
valuesu∗.

Σp Z Σf

w

u

e y

l

Σ

ΣoΣr

_̂
u

û

α!!

m̂

Extremum-seeking controller

Fig. 2. The closed-loop system, composed of the extended plant Σ, the
observerΣo, the optimizerΣr, and the dither signalαωω.

The observer, denoted byΣo, is given by

Σo :



















˙̂m(t) =
(

A(t)− ηmσrQ(t)DTD
)

m̂(t) + α2
ωBŝ(t)

+ηmQ(t)CT (t)(l(t)−C(t)m̂(t)− α2
ω v̂(t))

Q̇(t) = ηmQ(t) +A(t)Q(t) +Q(t)AT (t)

−ηmQ(t)(CT (t)C(t) + σrD
TD)Q(t),

(28)
with initial conditions m̂(0) = m̂0 and Q(0) = Q0

where Q0 is symmetric and positive definite, and where
D = [0 I], ηm, σr ∈ R>0 tuning parameters related
to the observer, referred to as a forgetting factor and a
regularization constant, respectively, and signalsŝ and v̂
being approximations of the signalss andv in (27), defined
as

ŝ := H(û(t))
˙̂u(t)

αω

, v̂ :=
1

2
ω

T (t)H(û(t))ω(t), (29)

with a user-defined functionH : Rnu → Rnu×nu satisfying

‖H(û)‖ ≤ LH for all û s.t.u ∈ U , (30)

with LH ∈ R>0.
The optimizer, denoted byΣr, is given by

Σr : ˙̂u(t) = −λu
ηuDm̂(t)

ηu + λu ‖Dm̂(t)‖
, (31)

with λu, ηu ∈ R>0 being tuning parameters related to
the optimizer, and an initial estimate of the optimal nom-
inal inputs denoted bŷu(0) = û0. Normalization of the
adaptation gain in (31) is done to prevent solutions of the
closed-loop system of the extended plant and the extremum-
seeking controller from having a finite escape time if the state
estimatem̂ is inaccurate [12, Ch. 2]. The closed-loop system,
composed of the extended plantΣ in (11), the observerΣo

in (28), and the optimizerΣr in (31), is depicted in Fig. 2.

D. Tuning guidelines

For the closed-loop system to operate properly, we adopt
the following design guidelines that guarantee time-scale
separation:

1) The convergence of the solutions of the plant dynamics
in (1) to its steady-state operation is assumed to befast,

2) The tuning parameterαz of the filter in (9) is chosen
small such that the difference between the time-varying
steady-state solution of the extended plantΣ and the
performance cost is small (see Assumption 8), however
sufficiently large such that convergence of solutions of
the filter dynamics is on amedium-to-fast time scale,



3) The dither frequencies parameterized byηω are chosen
slower than the filter dynamics to provide sufficient
excitation, admitting amedium time-scale,

4) The observer should use a sufficiently long time history
of the perturbation signals and measurement signal to
be able to accurately extract the state of the model [12,
Ch. 2]; the observer dynamics and its design parameter
ηm should be associated with amedium-to-slow time
scale compared to the dither signal,

5) The nominal plant parameterŝu, induced by the opti-
mizer, should be slowly time varying with respect to
the observer by proper design of the design parameters
λu andηu, admitting aslow (optimizer) time-scale.

IV. STABILITY ANALYSIS

In this section, we will provide a stability result for
the closed-loop system dynamics described in the previous
sections. Due to the perturbation of the tunable parameter
u, the optimizer stateû will in general converge to a
region of the performance-optimal valueu∗. The next result
states conditions on the tuning parameters under which the
extremum-seeking scheme guarantees thatû converge to an
arbitrarily small set around the optimumu∗.

Theorem 1: Under Assumptions 1-9, there exist (suffi-
ciently small) constantsǫ1, ..., ǫ6 ∈ R>0, andǫz ∈ R>0 such
that the solutions of the closed-loop system of the extended
plant in (11) (i.e., the series connection of the nonlinear
plant Σp in (1), the cost functionZ in (6), and the filter
Σf in (9)) and the extremum-seeking controller (consisting
of the dither signal in (19), the observerΣo in (28), and
the optimizerΣr in (31)) are uniformly bounded for all
x(0) ∈ X0, all symmetric and positive-definiteQ(0) ∈ Q0,
all û(0) ∈ U0, all z(0) ∈ Z0, and all m̂(0) ∈ M0,
whereX0 ⊂ Rnx , U0 ⊂ Rnu , Q0 ⊂ Rnu+1×nu+1, Z0 ⊂
Rnz , M0 ⊂ Rnu+1 are arbitrarily large compact sets, all
αz, αω, ηu, λu, ηm, ηω ∈ R>0 and allσr ∈ R≥0 that satisfy
αz ≤ ǫ1, ηω ≤ αzǫ2, ηm ≤ ηωǫ3, αωλu ≤ ηmǫ4, ηu ≤
αωηmǫ5, σr ≤ ǫ6, andαz ≤ ǫz. Moreover, the solutions
û(t) satisfy

lim sup
t→∞

‖ũ(t)‖ ≤ max
{

αωc1, αωηwαzc2,
ηw

αz

c3,
αzδw

αω

c4

}

,

(32)
for some constantsc1, ..., c4 ∈ R>0, with ũ(t) = û(t)−u∗.

Sketch of proof: The proof of Theorem 1 is inspired by the
one in [12, Ch. 2], and the full proof can be found in [23].
To prove Theorem 1, we introduce the following coordinate
transformation:

x̃(t) = x(t)− x̄w(t,u(t)),

Q̃(t) = Q−1(t)− Ξ−1 − ηm
ηω

n(t),

z̃(t) = z(t)− z̄w(t,u(t), αz),

m̃(t) = m̂(t)−m(t),

ũ(t) = û(t)− u∗,

(33)

wheren(t) andΞ are defined in [12, Ch. 2]. The analysis
of the stability properties of the closed-loop system can be
divided into three temporal stages, where we defined some
finite time instancest1 and t2:

• for 0 ≤ t < t1 the solutionsx̃ and Q̃ converge to
a neighborhood of the origin and remain there, the

solution z̃ converges but may still be away from a
neighborhood of the origin, while the solutions̃m and
ũ may drift, but remain bounded.

• for t1 ≤ t ≤ t2, the solutionsx̃ and Q̃ have already
converged to a neighborhood of the origin, the solution
z̃ converges to a neighborhood of the origin, while the
solutionsm̃ and ũ may drift, but remain bounded.

• for t ≥ t2, the solutionsm̃ and ũ also converge to a
neighborhood of the origin.

We first derive bounds on each of the variables in (33)
corresponding to these three temporal stages of convergence.
It turns out that the dynamics of̃u and m̃ can be seen
as feedback-interconnected subsystems. To verify that the
interconnected system exhibits uniformly bounded solutions,
the cyclic-small-gain criterion in [22] is employed, which
completes the proof.

Remark 4: Tuning guidelines. Under the conditions of
Theorem 1, it follows that, if we are dealing with constant (or
no) disturbancesw(t), we have thatδw = 0 (see Assumption
8), and the optimizer statêu converges to an arbitrarily small
region of the performance-optimal valueu∗ if the tuning
parametersαω andηω related to the dither signal are chosen
sufficiently small for an arbitrary boundedαz. Choosing
αz large in general allows faster convergence towards the
performance-optimal valueu∗. If we are dealing with time-
varying disturbancesw(t), we have thatδw 6= 0. To make
the region to whicĥu converges arbitrarily small, see (32),
we subsequently tuneαω small to make the first term in the
right-hand side of (32) arbitrarily small, tuneαz small to
make the fourth term in the right-hand side of (32) arbitrarily
small, and finally tuneηω sufficiently small to make the
second and third term in the right-hand side of (32) arbitrarily
small.

V. ILLUSTRATIVE EXAMPLE

To illustrate the extremum-seeking control approach pro-
posed in Section II, we consider an industrial case study
of steady-state performance optimization of a closed-loop
variable-gain controlled (VGC) motion stage as also studied
in [20]. Herein, a VGC strategy is employed to overcome
inherent performance limitations such as the waterbed effect
[21]. In Section V-A, the VGC motion stage subject to
time-varying disturbances is introduced, and in Section V-
B the proposed extremum-seeking controller is employed
to optimize the steady-state performance of the VGC mo-
tion stage, illustrating the effectiveness of the proposed
extremum-seeking control approach.

A. Variable-gain controlled motion stage

The variable-gain controller structure is shown in Fig. 3.
The scheme consists of a plantP , representing the dynamics
of a short-stroke wafer stage of a wafer scanner inz-
direction, and a nominal linear controllerC, having transfer
functionsP (s) and C(s), respectively, withs ∈ C being
the Laplacian variable, a (time-varying) force disturbance
f(t), a nonlinear control elementϕ(·), and a shaping filter
F (s). Furthermore,e denotes the tracking error,yp denotes
the output of the plant, and−u denotes the output of the
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Fig. 3. The closed-loop variable-gain control scheme.
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Fig. 4. A typical steady-state tracking error for the nominal low-gain linear
control loop.

shaping filterF . The nonlinearityϕ(e), representing the
variable-gain element withe as input, is given by a dead-
zone characteristic

ϕ(e) =

{

α(e+ δ) if e < −δ,
0 if |e| ≤ δ,
α(e− δ) if e > δ,

(34)

whereα and δ denotes the additional gain and the dead-
zone length, respectively. The short-stroke wafer stage in
z-direction is modelled as a4th-order mass-spring-damper-
mass system, admitting the following transfer function rep-
resentation

P (s) =
m1s

2 + bs+ k

s2 (m1m2s2 + b(m1 +m2)s+ k(m1 +m2))
, (35)

where the following numerical values are used:m1 = 5 kg,
m2 = 17.5 kg,k = 7.5·107 N/m, b = 90 Ns/m. The nominal,
and stabilizing linear controller consists of a PID-controller
Cpid, a second-order low-pass filterClp and a notch filter
Cn, i.e.C(s) = Cpid(s)Clp(s)Cn(s). The filters are given by
Cpid(s) = (kp(s

2+(ωi+ωd)s+ωiωd))/(ωds), wherekp =
6.9 ·106 N/m, ωd = 3.8 ·102 rad/s, andωi = 3.14 ·102 rad/s;
Clp(s) = ω2

lp/(s
2 +2βlpωlps+ω2

lp), whereωlp = 3.04 · 103
rad/s, andβp = 0.08; Cn(s) = (s2 + 2βzωzs + ω2

z)/(s
2 +

2βpωps+ω2
p), whereωz = 4.39 · 103 rad/s,ωp = 5.03 · 103

rad/s,βz = 2.7 · 10−3, and βp = 0.88. The shaping filter
F (s) is given byF (s) = (s2 + 2βz,Fωz,F s + ω2

z,F )/(s
2 +

2βp,Fωp,F s + ω2
p,F ), with ωz,F = ωp,F = 2.0 · 103 rad/s,

βz,F = 0.6, andβp,F = 4.8.
The disturbancef(t) consists of a low-frequency force

disturbance contribution induced by setpoint accelerations
in the x- and y-direction of the short-stroke wafer stage,
and a high-frequency force disturbance, which is modelled
as a signal containing multiple sinusoidal components with
random frequencies between200-500 Hz and random phases.
Fig. 4 shows a certain time interval of the time-varying
steady-state tracking error of the nominal linear low-gain
control loop, induced by this disturbancef(t).

From Theorem 1 in [20], which is based on circle criterion
type arguments, it can be concluded that if the additional
gain is chosen asα < 4.34, then the variable-gain controlled
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Fig. 5. Objective functionFw and minimization of the performance cost
by tuning ofδ through extremum-seeking control, witĥδ(0) = 1 ·10−7 m.

motion system discussed above is exponentially convergent.
The dead-zone lengthδ turns out to be a stability invariant
tunable system parameter, however, the choice forδ does
affect significantly the achievable tracking performance and
is typically chosen in a heuristic manner. Moreover, as the
disturbances are time-varying, an initially good choice for the
value of δ may become sub-optimal after some time when
the disturbance signature drifts. As such, we propose to tune
the dead-zone lengthδ in real-time by the extremum-seeking
control scheme presented in Sections II and III to optimize
tracking performance.

B. Performance optimization using extremum-seeking con-
trol

For the extremum-seeking control scheme as presented
in Sections II and Section III, we choose the cost function
Z(e(t)) = ‖e(t)‖2. The filter Σf is designed as a second-
order low-pass filter admitting the following state-space
formulation

Σf :







ż1(t) = αzz2(t)

ż2(t) = αz (y(t)− 2βzz2(t)− z1(t))

l(t) = z1(t),

(36)

which is of the form in (9). Furthermore, forαz, βz ∈
R>0, Assumption 7 is satisfied. The objective function is
depicted in Fig. 5. The parameters of the extremum-seeking
controller are chosen asβz = 1

2

√
2, αz = 3, ηω = 2,

αω = 0.1 · 10−8, ηm = 0.05, σr = 1 · 10−8, λu = 1 · 1010,
ηu = 1, andH = 0.55. The initial conditions are chosen
as zT

0 = [3 · 10−15 0], m̂T
0 = [3 · 10−15 0.5 · 10−17],

Q0 =
[ 1 0

0 2
1+2σr

]

and δ̂0 = 1 · 10−7. The extremum-seeking
controller is enabled att = 10 seconds. Fig. 6 shows
the dead-zone lengthδ and the measured performance cost
l(t) as a function of time, respectively. In here, results are
shown for three cases; cases 1 and 2 in which two constant
values for δ are used, namelyδ = 2 · 10−7 and δ = 0,
associated with a low-gain and high-gain linear controller,
respectively, and case 3 in whichδ is tuned by an extremum-
seeking controller. It can be seen that the plant parameterδ
and the corresponding performance costl converges to the
performance optimal region, which is also illustrated in Fig.
5. Fig. 7 shows the measured tracking error for the low-gain,
high-gain, and optimally tuned variable-gain controller.

Remark 5: In Assumption 2, it is assumed that the dy-
namics of the plant (1) are twice continuously differentiable
with respect to the vector of tunable plant parameters. The
use of a dead-zone nonlinearity as presented in (34) actually
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Fig. 7. Measured tracking error for the low-gain, high-gain, and optimized
variable-gain controller.

violates this assumption. Although it is possible to define
a sufficiently smooth nonlinearityϕ(·) arbitrarily close to
dead-zone nonlinearity, for ease of implementation and the
fact that the conclusions with respect to convergence are
similar, we use the non-smooth nonlinearity as in (34).

VI. CONCLUSIONS

In this work, we have introduced an extremum-seeking
control method for steady-state performance optimization
of general nonlinear plants with time-varying steady-state
outputs. The proposed extremum-seeking controller includes
a so-called dynamic cost function which allows for the
characterization of a static input-to-output performancemap,
despite the presence of time-varying disturbances which
induces time-varying steady-state plant outputs. We have
shown that, under appropriate conditions, the extremum-
seeking control scheme are uniformly ultimately bounded,
and the region of convergence towards the optimal tunable
plant parameters can be made arbitrarily small. An illustra-
tive example is provided that shows the steady-state perfor-
mance optimization of a closed-loop variable-gain controlled
motion system subject to a time-varying force disturbance by
means of the proposed extremum-seeking control method.
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[1] Ariyur, K.B. and Krstić, M., Real-time optimization byextremum-
seeking control. Wiley-Interscience, John Wiley & Sons, Inc, 2003.
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[9] Wang, H-H. and Krstić, M., Extremum seeking for limit cycle min-
imization, IEEE Transactions on Automatic control, vol 45,no. 12,
2000.

[10] Guay, M. and Dochain, D. and Perrier, M. and Hudon, N., Flatness-
based extremum-seeking control over periodic orbits, IEEETransac-
tions on Automatic Control, Vol. 52, no. 10, pp. 2005–2012, 2007.

[11] Haring, M.A.M. and van de Wouw, N. and Nešić, D., Extremum-
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