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Abstract— Extremum-seeking control is a useful tool for the output measurements. An extremum-seeking controller is
steady-state performance optimization of plants for whichthe  aple to exploit these measured plant outputs irrespegtivel
dynamics and disturbance situation can be unknown. The case of the availability of plant and disturbance knowledge, and

when the steady-state plant outputs are constant received a
lot of attention, however, in many applications time-varying subsequently uses the measured outputs to steer the tunable

outputs characterize plant performance. As a result, no stic ~ Plant parameters to their performance optimal valuesetiyer
parameter-to-steady-state performance map can be obtaime achieving optimal steady-state performance.

In this work, an extremum-seeking control method is proposd In most of the work on extremum-seeking control, the
that uses a so-called dynamic cost function to cope with general requirement for the plant to be optimized is the

these time-varying outputs. We show that, under appropriae ist f K tati ter-to-steade-stat
conditions and given arbitrarily large sets of initial conditions, existence of a (unknown) static parameter-to-steadg-sta

the solutions of the extremum-seeking control scheme are Performance map, i.e., datic input-to-output map, referred
uniformly ultimately bounded in view of bounded and time- to as the objective function, whose extremum corresponds to
varying external disturbances, and the region of convergere  the optimal steady-state plant performance [2], [7], [3ing
towards the optimal tunable plant parameters can be made neagyred outputs of the plant, gradient-based extremum-
arbitrarily small. Moreover, its working principle is illu strated . .
by means of the performance optimal tuning of a variable-gai seeking f:ontrol approaphe_s can be, employed that estimate
controller for a motion control application. the gradient of the objective function and steer the plant
parameters to their optimal values in real-time by means of
I. INTRODUCTION a gradient-based update law. In many applications, such a
Extremum-seeking control, categorized as being an adagtatic input-to-output map, where steady-state perfoomén
tive control approach, is a data-driven and, in essenceharacterized by an equilibrium solution, does not exist be
model-free control technique for optimizing the steadtest cause performance is relatedtime-varying plant behavior.
performance of a stable or stabilized plant in real-timeThis time-varying plant behavior can originate for example
by automated adaptation of tunable plant parameters [¥fom reference tracking or disturbance attenuation proble
[2], [3]. Due to its model-free character, extremum-segkinwhich are encountered, for example, in industrial motion
control is a particularly useful tool in applications wheresystems, such as, e.g., wafer scanning systems [13], [14],
only little knowledge of the plant dynamics is available andpick-and-place systems, electron microscopes, and pginti
as such, has been applied in many different engineerirgpplications [15].
domains such as internal combustion engines [4], antilock In [9], an extremum-seeking controller is developed for
bracking systems [5], control of sawtooth instabilities ingeneral dynamical plants that do not exhibit equilibrium
fusion tokamak plasmas [6], and many more, see, e.g., [dolutions but instead have limit cycle behavior, which can
[2], and references therein. Practical applications avallys only be reduced in size by some tunable plant parameter
subject to external disturbances which are in general nbut cannot be eliminated completely. The authors added a
known a priori, which further emphasizes the power ofletector that captures the amplitude of the limit cycle,alhi
extremum-seeking control as a model-free technique. Asis assumed to be sinusoidal. Considering the plant and the
result, and in addition the lack of plant knowledge, the {perdetector as one extended plant with the plant parameter
formance optimal) steady-state output of the plant is ofteas input and the amplitude of the limit cycle as output, a
not analytically known, and can only be assessed througlonstant steady-state relation between the input and butpu
, _ _ is obtained. The work in [9] was most suitable for sinusoidal
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output optimization of periodic Hamiltonian systems. Wedisturbances, antde R is time. In the context of extremum-
need to emphasize that the wide use of extremum-seekiageking control, the input. is a vector of tunable plant
control can be attributed to the feature of it being mode&fr parameters, the outpatis a vector of measured performance
while the methods in [10] and [8] use explicit knowledgevariables, andv are (time-varying) disturbances, for which
of the relation between the parameters and the steady-state adopt the following assumption.
output of the plant. Assumption 1: The disturbancesv(t) are piecewise con-
In [11], an extremum-seeking scheme is proposed fdmnuous, defined and bounded ene R. Moreover, there
the optimization of general nonlinear plants with periodiexists a constanp,, € R-o such thatw(t) € W for all
steady-state outputs. Knowing the period time of the pé&iodt € R, with W = {w € R™ : ||w| < pw}-
steady-state output, a cost function is designed that tinks Although the functionsf and g in (1) are considered
periodic output of the plant to a performance measure, sucimknown, we adopt the following assumption.
as, e.g., aL?-norm of the error response computed over the Assumption 2: The functionsf : R%= x R™ x R —
periodic time interval. Again, considering the plant and thR"= andg : R"= xR™+ xR™» — R™ are twice continuously
cost function as one extended plant with the plant parametgifferentiable inz and w and continuous inw. Moreover,
as input and theCP-norm as output, a constant steadythere exist constant6 ¢, L fu, Lga, Lgu € R>o such that
state relation between the input and output is obtained. In

[18], this method was experimentally demonstrated for the Hﬁ(%u,w)H < Lya, Hﬁ(%u,w)u < Lyu,
adaptive design of variable-gain controllers for a motion gz gs @)
control application. Ha_a:(w’u’w)H S Lge, Ha_u("”’“’“")u < Lou,

In many (industrial) applications, the steady-state raspo
characterizing system performance is time-varying, and pefor all z € R"=, allu € i, and allw € W, wherel/ C R™
odicity of the steady-state response is not evident dueeto t# & compact set. _ _
fact that responses can be induced by complex time-varyitg addition to Assumptions 1 and 2, we adopt the following
disturbances and reference signals. In such generic case@Ssumption on the plait,.
static input-to-output performance map may not be readily Assumption 3: The plantX, in (1) is globally exponen-
defined as in the periodic cases in [18], [9], and [11]. tially convergent for all constant inputs: € U.

The main contribution of this work is as follows. Remark 1: Assumption 3 guarantees that, for any constant
First, we propose an extremum-seeking control method € U and anyw(t) € W, there exists a unique globally ex-
for steady-state performance optimization of general nofonentially stable (time-varying) steady-state solutidhis
linear plants with time-varying steady-state outputs. Thassumption is the equivalent of the common assumption in
proposed extremum-seeking control method includes a sextremum-seeking literature on the plant exhibiting glyba
called dynamic cost function in terms of the time-varying asymptotically stable equilibria. In many (nonlinear) ttoh
output response. The dynamic cost function allows for theroblems, for example tracking, synchronization, observe
characterization of a static input-to-output performamzgp ~ design and output regulation problems, the convergent sys-
for general nonlinear plants with time-varying steadytesta tem property that all solutions of a closed-loop system
outputs. Second, under appropriate conditions and givé®nverges to some steady-state solution and thus "forget”
arbitrarily large sets of initial conditions, we prove thattheir initial condition plays an important role. Moreovtis
the solutions of the closed-loop extremum-seeking contr@roperty is immediate for asymptotically stable linearéim
scheme are uniformly ultimately bounded in view of boundedvariant systems with inputs.
and time-varying disturbances. Moreover, we show that tHe'om Assumptions 1-3, it follows that for all constant input
region of convergence towards the optimal tunable plant € U and all disturbancesv(t) € W there exists a
parameters can be made arbitrarily small. Third, an iltustr unique steady-state solution of the plant which is defined
tive simulation example is presented in which performancend bounded ort € R and globally exponentially stable
is optimized of a variable-gain controlled motion system{GES). The steady-state solution is denotedahy(t, u),
exhibiting generically time-varying outputs. emphasizing the dependency on time-varying disturbances

The paper is organized as follows. Section Il presents th&(t) and constant inputa, and satisfies

roblem formulation. Section Il gives the extremum-seeki N _

Eontroller. In Section IV the stat?ility result is stated;daire;J Zw(t,u) = F(@w(t u),u, w(D)). @)
Section V an illustrative example is provided. For the steady-state solutian, (¢, u) we adopt the following

assumption.
[I. EXTREMUM-SEEKING CONTROL PROBLEM : _ . o
FOR TIME-VARYING OUTPUTS Assumption 4: The steady-state solutiag, (¢, u) is twice

continuously differentiable ine and satisfies
Consider the following multi-input-multi-output nonliae
plant; _ H&E_w(t )
5, { 20 = F@0,uld, w) W ou "
"L e(t) = gla(t),ult), w(t)),
wherex € R™= s the state of the planty € R™~ is the input
of the plant,e € R"e is the output of the planty € R"~ are 1For definitions of convergent systems the reader is refeogd9].

H < La, @)

forall t € R, all u € U, and some constart, € R-g.



Furthermore, it follows from Assumption 3 that, for condtan - -~~~ |
inputsu € U and (time-varying) disturbancas(t) € W, - e Y 1

there exists a unique steady-state output of the pgnin ﬁi‘—- z i |
(1), denoted bye,, (¢, u), which is given by R R
ew(t,u) = g(Zw(t,u),u, w(t)). (5) Fig. 1. Series connection of the nonlinear play, the user-defined cost

function Z, and the to-be-designed filtér ;.
It is the task of the designer to define a bounded cost
function, denoted byZ, that quantifies the performance of
interest for the plant under study. Then, the correspondirfgr all z € R"=, and ally € R.
measured plant performance is given by The series connection of the cost functignin (6) and the
y(t) = Z(e(t), u(t)), ) filter £ in (9), we call thedynamic cost function. We adopt
. _ the following assumption on the dynamic cost function.
wherey € R. For the functionZ, we adopt the following  Assumption 7: The dynamic cost function consisting of
assumption, which can be satisfied by design. the cascade of and;, given by (6) and (9), respectively,
Assumption 5: The functionZ : R x R™* — R is twice s exponentially input-to-state convergeéror all constant
continuously differentiable with respect to both argursentinputsw € ¢/ and alla, € Rxo.
Moreover, there exist constantse, Lzu € R>o such that  The series connection of the nonlinear plaht in (1), the
927 927 user-defined cost functio# in (6), and the to-be-designed
‘ Jedel (e, “)H < Lze and H—aeauT (67U)H < Lz, (7) filter X3¢ in (9) is referred to as the extended plantand
for all e € R, and allu € U. is schematically depicted in Fig. 1. The dynamics of the

Remark 2: For example in the context of motion controlextended plant is given by
systems, typically the measured performance variabls { z(t) = f(x(t),u(t),w(t))
t

the tracking error. To quantify performance of motion cohtr  x3: ¢ () = a.h(z(t), Z(g(x(
systems based on the tracking error, a useful cost function 1t) = k(z(t)).

Z can be theL2-norm, i.e.,Z(e,u) = |le||? € Rxo. . _ .
For all constant inputsu € # and all (time-varying) By similar arguments as in the proo!c of Property 2.27 in
disturbancesau(t) € W, the steady-state plant performancd19]: We can conclude from Assumptions 3 and 7 that the

), u(t), w(t)), u(t))) (11)

Ju(t,u) is given by extended plant in (11) is globally exponentially convergent
v N B for all constant inputsu € U and disturbancesv(t) €
Yo (t,w) = Z(g(Bw (1, u), u, w(t)), w). (8)  W. As such, there exists a unique steady-state solution of

Our aim is to find the constant input valuesthat minimize >/ induced by the extended plant, which is defined and

the measured steady-state plant performangeielding the bounded ont € R and GES. Th|_s_steady—state solution is

optimization of the steady-state plant performance vigiabdenoted byz., (¢, u, ), emphasizing the dependency on

€. In the context of extremum-seeking control, ideally thdime-varying disturbances(t), constant inputs:, and the

measured plant performangand the measured steady-statdUnable parametes, and satisfies

plant performancey,, are constant for constant inpuis B (t,u, az) = azh(Zuw(t,u, 0z), Ju (t, 0)). (12)

this forms one of the basic assumptions in the extremum-

seeking control literature [2], [7]. However, due to thegim For the steady-state solution of the extended ptante

varying nature of the disturbances(t) in (1), in general, adopt the following assumption.

the measured p|ant performangeand Steady_state p|a_nt ASSUmptlon 8: There exists a twice COﬂtinUOUSly differen-

performance;w are time-varying in nature. tiable fUnCtionqw : R"» — R™=, referred to as the constant
To deal with time-varying plant outputs, consider the seriePerformance cost, such that

connection of the plant, as in (1), the cost functio® as

. . . . hm Zw(t7u7az) = Qw(u)7 (13)
in (6), and additionally a filter, denoted By, which reads az—0

2(t) = azh(z(t),y(t)) for all t € R and allu € U and disturbancew(t) € W.

Xf: { 1) = k(=(1) (9  Moreover, there exists a positive constapte R, related

, ) ] to the disturbancesv(t) € W and the extended plark,
wherea, € R is a tuning parameteg € R"= is the state  g,ch that

of the filter, and! € R is the output of the filter, see Fig. 1. 2w (£, u, az) — gy (w)]| < Qz6u, (14)
We adopt the following assumption on the filtgr;, which
can be satisfied by design. forallt € R,allw € Y and all0 < a, < e, for some

Assumption 6: The functionsh : R”= x R — R"= and €z € R>o. In addition, there exists a constaht € R,
k : R"™= — R are twice continuously differentiable with such that

respect to all arguments. Moreover, there exist constagys 0Zw dq
A <
Lhy, Li, € Rsg such that ‘ u (b o=) — (U)H < azls, (15)
oh Ok forallteR,allu el and all0 < a, < e,.

a(z,y)H < Lhaz, H%(LWH < Lhy,

B (Z)H < L,
z
(10) 2For definitions of convergent systems the reader is refewdd9].



Remark 3: To illustrate Assumption 8, consider, e.g.,thatthe vector of tunable plant parameterill converge to
T (t,u) = ((u —u*)sin(t))? + v with v € R, u € U with  optimal inputu* for any initial valueu(0) € U if we are able
U={ueR:|ju—u < L,} andX, being a linear to design a controller that drives the tunable plant pararset
low-pass filterz(t) = a.(y(t) — 2(t)), I(t) = z(¢). The in opposite direction of the gradient of the objective fuoit
steady-state solutiob,, (¢, u, a,) then reads in (16). However, since the steady-state solutions of thatpl
w2 . in (1) and the filter in (9) and the objective functidn,
(= w)” (1 — a0 cos(2t) + QSIH(Qt)). are unknown, we typically cannot design a such a gradient-

Ew(t,u,ozz) = fy+

2
2 oz +4 descent controller. Information of the objective functizam
The functiong,, then yields only be obtained through measured outgut$ the extended
(u—u*)? plant in (11). The measured output of the extended plant

lim Zw(t,u,az) = qw(u) =5+

a,—0 2

) differs from the objective function,, in three ways; i)
o ) ] ] ] due to the dynamics of the plant in (1) and the filter in
which is md_eed twice continuously differentiable. As 3(9) not being in steady-state, ii) due to the presence of
result, the difference between, (¢, u,a.) and ¢, can be (ime-varying) disturbances(t), and iii) due to the design
bounded as follows: parametera, which is typically designed to be small, but
still non-zero and positive. Nevertheless, we aim to steer t
inputsw to their performance optimizing values by using

the measured extended plant outp(t) as feedback to an

such that (14) is satisfied with,, = LTi In Assumption Ki ller that is introduced in th
8, (14) can be understood as a bound on the difference ggktremum-seeking controller that is introduced in the next

tween the time-varying steady-state solution of the ex¢énd section.
plant > and the constant performance cost of the extended
plant, which is bounded and tunable by. For constant IIl. EXTREMUM-SEEKING CONTROLLER
disturbancesaw, this difference will be zero (i.ed,, = 0) The controller design proposed here is inspired by the one
for any value of the tuning parameteg, as the steady-state in [12, Ch. 2]. In Section IlI-A, a dither signal design is
solution will be independent of time. In cadg, > 0, the presented, in Section IlI-B, a model of the input-to-output
tuning parametet, should be tuned small in order to have abehavior of the plant is presented to be used as a basis
sufficiently close approximation of the constant perforoen for gradient estimation, in Section 1lI-C, a least-squares
cost g, (u). observer to estimate the state of that model (and therewith
Hence, by Assumption 8, steady-state conditions of thetplathe gradient) and a normalized optimizer to steer the plant
¥, the cost functior?Z, the filter>, the limita, — 0, and parametersu to the minimizeru* are presented, and, in
for constant inputa: € U, we have that the parameter-to-Section 1lI-D, tuning guidelines are provided for the cldse
steady-state performance cost of the plant can be characteop system composed of the extended planh (11) and

ized by the static input-to-output map the extremum-seeking controller.

Fy(u) :=k(q,(uw), Yuel. (16)

1
2wt az) = qu(w)l < Fa-L%,

A. Dither signal

We refer to the magF,, as the objective function. To min-  To estimate the gradient of the objective function and

imize the steady-state plant performancewe aim to find yse this estimated gradient to drive towardsu* by an
the plant parameter values for which the objective functiogptimizer, we define the following input signal:

in (16) is minimal. We further assume that the dynamic cost
function is designed such that there exists a unique minimum u(t) = a(t) + aww(t), (19)
of the objective functiont,, on the compact sédif for any
(time-varying) disturbances(t) € W satisfying Assumption
1, where the minimum of the map,, corresponds to the
optimal plant performance. This assumption is formulate
as follows.

Assumption 9: The objective functionFy, : R*» — R _ sin (%tnot), if i is odd
in (16) is twice continuously differentiable and exhibits a wit) = { cos (inwt),  if iis even
unigue minimum in the compact g¢t Let the corresponding

optimal inputw* be defined as fori={1,2,...,n4.}, Wherenw_ € R?O isgtuning plaramet-e_r.
. _ The purpose of the perturbation signal is to provide sufficie
' = argmin Fu(u). (17)  excitation to accurately estimate the gradient of the dbjec
) function. The nominal plant parametefiscan be regarded
Furthermore, there exists a constdnt; € R such that 55 an estimate of the minimizer-.

de * *
W(“) (u—u") > Lia|u - u|? (18) B, Mode of input-to-output behavior of the extended plant

for all w € U. To obtain an estimate of the gradient of the objective
From Assumption 9, it follows thaf,(u*) is the unique function, we model the input-to-output behavior of the ex-
minimum of the objective function. In addition, it follows tended plant in (11), that is, from the nominal inputo the

wherea,,w is a vector of perturbation signals with amplitude
aw € Ry, andu is referred to as the nominal input to be
8enerated by the extremum-seeking controller. The vegtor
IS defined byw(t) = [wi(t), wa(t), ..., wn, (t)]*, with

(20)



measured output of the extended planin a general form.
Let the state of the model be given by

Fu(a(t))
m(t) aw%('d(t)) } . (21)

The measured output of the extended plamt (11) can be
written as

I(t) = k(2(t) — k(Zw(t,u, az)) + Fu(u(t)) +d(t), (22)
with the signald(t) defined as
d(t) = k(Zw(t w, az)) — k(g (u(t))). (23)

From Taylor's Theorem and (19, (u(t)) can be written
as

dFy , .
W(u(t))w(t)
d*F,,

1

2 T

t 1-—

+aZe() [ (1-o)

Fu(u(t)) = Fuw(a(t)) + aw
(24)
(a(t) + soww(t))dow(t).

The dynamics of the state in (21) is governed by

m(t) = A(t)m(t) + a2 Bs(t)
1(t) = Ct)m(t) + asv(t) + r(t) + d(t),
with the matricesA, B and C defined as

(25)

(1)
A(t)z[g % ] 32{2]7 cy=[1 &"(t) ],
(26)
and the signals, v, r defined as
(1) 1= A2 () LY,
o(t) == W (#) /0 (1-0) diZ“T (@(t) + oaww(t))dow(t),
r(t) == k(z(t)) — k(Zw(t, v, az)).
(27)

Extremum-secking controller

Fig. 2. The closed-loop system, composed of the extendet plathe
observery,, the optimizerX,, and the dither signak,,,w.

The observer, denoted by, is given by

m(t) = (A(t) — 7morQ(t) DT D) m(t) + a2 B3(t)
‘ +1m Q)T (t)(U(t) — C(t)m(t) — aZo(t))
Q) = MmQ(t) + AN)Q(t) + Q(t) AT (1)

—mQ(t)(CT(H)C(t) + 0 DT D)Q(1),
(28)

with initial conditions 72(0) = 1y and Q(0) = Q,
where Q, is symmetric and positive definite, and where
D = [0 I, 3m, or € Ry tuning parameters related
to the observer, referred to as a forgetting factor and a
regularization constant, respectively, and signalsaind ¢
being approximations of the signalsandwv in (27), defined

as

Yo

- H(ﬁ(t))i;(t), b= LT H@)w), (29
with a user-defined functioff : R+ — R"*" gatisfying
|H(@)|| < Ly forallastucl, (30)

The optimizer, denoted by, is given by
S A(t) = —Ag—eDm() (31)

"N+ A [ DI ()]

The signalss, v,  and d can be interpreted as unknownyith \,,, ne € Rso being tuning parameters related to
disturbances to the model. The influencesspb, » andd  the optimizer, and an initial estimate of the optimal nom-
on the state and output of the model in (25) are small if iina| inputs denoted byi(0) = @,. Normalization of the
@ is slowly time varying, if i) cw, is small, if iii) the states zgaptation gain in (31) is done to prevent solutions of the
x of the plant in (1) and the statesof the filter in (9) are ¢losed-loop system of the extended plant and the extremum-
close to their steady-state values, and if dy) is small. seeking controller from having a finite escape time if théesta
The statem in (21) contains an estimate of the gradient okstimateri is inaccurate [12, Ch. 2]. The closed-loop system,
the objective function, scaled by the perturbation ampétu composed of the extended plagtin (11), the observeE,

a,. Hence, an estimate of the gradient of the objectivg, (28), and the optimizeE, in (31), is depicted in Fig. 2.
function can be obtained from an estimate of the state

Based on this gradient estimate, an optimizer can steer tRe Tuning guidelines
plant parametera to the minimizeru*. In the next section,  For the closed-loop system to operate properly, we adopt
a least-squares observer and an optimizer for this purpoge following design guidelines that guarantee time-scale
are proposed. separation:

1) The convergence of the solutions of the plant dynamics

C. Controller design in (1) to its steady-state operation is assumed ttakte

We introduce an extremum-seeking controller that is com- 2)
posed of a dither signal as in (19), an observer to estimate
the statem of the model in (25), and an optimizer that uses
the estimate of the state of the observer, denoted b, to
steer the nominal plant inputsto their performance optimal
valuesu*.

The tuning parameter, of the filter in (9) is chosen
small such that the difference between the time-varying
steady-state solution of the extended planand the
performance cost is small (see Assumption 8), however
sufficiently large such that convergence of solutions of
the filter dynamics is on anedium-to-fast time scale,



3) The dither frequencies parameterizedyare chosen solution zZ converges but may still be away from a
slower than the filter dynamics to provide sufficient neighborhood of the origin, while the solutions and
excitation, admitting anedium time-scale, @ may drift, but remain bounded.

4) The observer should use a sufficiently long time history « for ¢; < ¢ < t,, the solutionsz and Q have already
of the perturbation signals and measurement signal to converged to a neighborhood of the origin, the solution
be able to accurately extract the state of the model [12, Z converges to a neighborhood of the origin, while the
Ch. 2]; the observer dynamics and its design parameter solutionsm and« may drift, but remain bounded.
nm Should be associated with reedium-to-slow time o for t > to, the solutionsm and @ also converge to a
scale compared to the dither signal, neighborhood of the origin.

5) The nominal plant parameteds induced by the opti- \we first derive bounds on each of the variables in (33)
mizer, should be slowly time varying with respect tocorresponding to these three temporal stages of convezgenc
the observer by proper design of the design parametegsturns out that the dynamics ok and /i can be seen
Aw andn,,, admitting aslow (optimizer) time-scale. a5 feedback-interconnected subsystems. To verify that the

IV. STABILITY ANALYSIS interconnected system exhibits uniformly bounded sohsjo

In this section, we will provide a stability result for the cyclic-small-gain criterion in [22] is employed, which
completes the proof.

the closed-loop system dynamics described in the previous k 4: Tuning guidelines. Under the conditions of

sections. Due to the perturbation of the tunable parametﬂeheorem 1, it follows that, if we are dealing with constant (o

U .the optimizer statea will n general converge to a no) disturbances(t), we have that,, = 0 (see Assumption
region of the performance-optimal valug. The next result o N o

- ) . , and the optimizer statie converges to an arbitrarily small
states conditions on the tuning parameters under which the' . : . .

. region of the performance-optimal value® if the tuning
extremum-seeking scheme guarantees thabnverge to an . .
o : parametersy,, andr,, related to the dither signal are chosen

arbitrarily small set around the optimumi-. - : .

. X . . sufficiently small for an arbitrary bounded.. Choosing

Theorem 1: Under Assumptions 1-9, there exist (suffi- .
a, large in general allows faster convergence towards the

ciently small) constants, ..., g € R+, ande, € R+, such . . i o
. rformance-optimal valua*. If we are dealing with time-
that the solutions of the closed-loop system of the extend ; :
varying disturbancesv(t), we have thav,, # 0. To make

plant in (11) (i.e., the series connection of the nonline . O T
plant £, in (1), the cost functionZ in (6), and the filter Ghe region to whicha converges arbitrarily s_mall, see (32),
we subsequently tune,, small to make the first term in the

¥+ in (9)) and the extremum-seeking controller (consisting. : o

4 . i . ight-hand side of (32) arbitrarily small, tune, small to
of the (_Jl|tt_1er S|gn_al in (19), the _observéro in (28), and make the fourth term in the right-hand side of (32) arbityari
the optimizerx., in (31)) are uniformly bounded for all small, and finally tunen,, sufficiently small to make the

x(0) € Xp, all symmetric and positive-definit®(0) € Qo, } : . , .
all @(0) € Uy, all 2(0) € Zy, and all h(0) € Mo, zrencsrd and third term in the right-hand side of (32) arhlyrar

where Xy C R™, Uy C R™, Qp C RrutlXnutl z, —
R™=, My C R™*! are arbitrarily large compact sets, all V. ILLUSTRATIVE EXAMPLE
Ozy O, Ny Aws Ty T € R0 @nd allo, € R that satisfy
oy < €1y Nw < Az€2, Nm < TNwe€3s, O‘wAu < TIm€4, Tu <
QwNmes, or < ¢, anda, < €,. Moreover, the solutions
u(t) satisfy

To illustrate the extremum-seeking control approach pro-
posed in Section Il, we consider an industrial case study
of steady-state performance optimization of a closed-loop
variable-gain controlled (VGC) motion stage as also sulidie
lim sup ||&(¢)|| < max {awcl7au7]waz627 Mw ... 20w 64}7 in [20]. Herein, a VGC strategy is employed to overcome
oo Az Y 32) inherent performance limitations such as the waterbedteffe
for some constants;, ..., ¢ € Roo, with @(t) = a(t) — u* [21]. In Section V-A, the VGC motion stage subject to

Sketch of proof: The proof of Theorem 1 is inspired by'thetime—varying disturbances is introduced, and in Section V-
one in [12, Ch. 2], and the full proof can be found in [23]_8 the proposed extremum-seeking controller is employed

To prove Theorem 1, we introduce the following coordinat&® OPtimize the steady-state performance of the VGC mo-
tion stage, illustrating the effectiveness of the proposed

transformation: >
2(t) = o(t) — Dot ult)) extremum-seeking control approach.
Q(t) =Q! t) - =7 - Imn(1), A. Variable-gain controlled motion stage
;Eg i 22)__2;’1((%“(15)’%)’ (33) The variable-gain controller structure is shown in Fig. 3.
at) B alt) — u’ ’ The scheme consists of a plaff representing the dynamics

of a short-stroke wafer stage of a wafer scannerzin
wheren(t) and = are defined in [12, Ch. 2]. The analysisdirection, and a nominal linear controll€l, having transfer
of the stability properties of the closed-loop system can binctions P(s) and C(s), respectively, withs € C being
divided into three temporal stages, where we defined songige Laplacian variable, a (time-varying) force disturbanc
finite time instance#; andts: 3 f(t), a nonlinear control elemeni(-), and a shaping filter
o for 0 < t < t; the solutionsz and Q converge to F'(s). Furthermoree denotes the tracking erroy, denotes
a neighborhood of the origin and remain there, théhe output of the plant, and-« denotes the output of the



x1071°
|

IS

perf. costl [m?]

—F,0)
—esc

Fig. 3. The closed-loop variable-gain control scheme.
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o

Fig. 5. Objective function’”,, and minimization of the performance cost
by tuning of§ through extremum-seeking control, wigf0) = 1-10~7 m.

errore [m]

motion system discussed above is exponentially convergent
2075 23 2055 209 20.95 2 The dead-zone length turns out to be a stability invariant
time £ [s] tunable system parameter, however, the choicesfaloes
Fig. 4. A typical steady-state tracking error for the norhiow-gain linear ~ affect significantly the achievable tracking performannd a
control loop. is typically chosen in a heuristic manner. Moreover, as the
disturbances are time-varying, an initially good choicetfe
) . ) ) . value of § may become sub-optimal after some time when
shaping filter /. The nonlinearityp(e), representing the tne disturbance signature drifts. As such, we propose te tun
variable-gain element wit as input, is given by a dead- the dead-zone lengthin real-time by the extremum-seeking
zone characteristic control scheme presented in Sections Il and Il to optimize

ale4+9) if e <=4, tracking performance.
ple)=<¢ 0 if le|] <4, (34)
ale—90) if e >, B. Performance optimization using extremum-seeking con-

where « and § denotes the additional gain and the dead®

zone length, respectively. The short-stroke wafer stage in For the extremum-seeking control scheme as presented
z-direction is modelled as &'"-order mass-spring-damper-in Sections Il and Section Ill, we choose the cost function
mass system, admitting the following transfer function-repZ(e(t)) = |le(¢)||*. The filter X is designed as a second-

resentation order low-pass filter admitting the following state-space
mis? +bs+k formulation
P(s) = — 3 ., (35) 5 .
s (muimas® + b(m1 +mo)s + k(ma +ma)) a(t) = azan(t)
where the following numerical values are useg; = 5 kg, Xy Z2l(t) = o (y(t) — 2Bz22(t) — 21(1)) (36)
my = 17.5kg, k = 7.5-107 N/m, b = 90 Ns/m. The nominal, () = z(b),

and stabilizing linear controller consists of a PID-cotilo  which is of the form in (9). Furthermore, fotv,, 53, €
Cpria, @ second-order low-pass filt€r;,, and a notch filter R, Assumption 7 is satisfied. The objective function is
Ch,1.e.C(s) = Cpia(s)Cip(s)Cr(s). Thefilters are given by depicted in Fig. 5. The parameters of the extremum-seeking
Cpia(s) = (kp(s* + (wi +wa)s +wiwa))/(was), Wherek, =  controller are chosen a8. = 1v2, a. = 3, n, = 2,
6.9-10% N/m, wy = 3.8-102 rad/s, andv; = 3.14-102 rad/s; «, = 0.1-1078, 5,, = 0.05, o, = 1-1078, A, = 1- 1019,
Cip(s) = wi,/(8* + 2Bipwips +wi,), wherew, = 3.04-10° 5, = 1, and H = 0.55. The initial conditions are chosen
rad/s, ands, = 0.08; C,.(s) = (2 + 2B.w.s + w?)/(s> + aszf = [3-10715 0], g = [3-1071° 0.5 10717,
2B,wps + w2), wherew, = 4.39-10° rad/s,w, =5.03-10°  Q, = [; Hgm ] anddy = 1-10~". The extremum-seeking
rad/s, 3. = 2.7- 1073, and 3, = 0.88. The shaping filter controller is ‘enabled at = 10 seconds. Fig. 6 shows
F(s) is given by F(s) = (s® + 28, pw, s + <,a§,},ﬂ)/(.s2 + the dead-zone length and the measured performance cost
20Bp, Fwp,FS + w;F), with w, p = wy p = 2.0-10% rad/s, [(t) as a function of time, respectively. In here, results are
B2,r = 0.6, and 5, r = 4.8. shown for three cases; cases 1 and 2 in which two constant
The disturbancef(¢) consists of a low-frequency force values fors are used, namely = 2-10~7 andé = 0,
disturbance contribution induced by setpoint accelenatio associated with a low-gain and high-gain linear controller
in the z- and y-direction of the short-stroke wafer stage,respectively, and case 3 in whiéhs tuned by an extremum-
and a high-frequency force disturbance, which is modelleskeking controller. It can be seen that the plant paraneter
as a signal containing multiple sinusoidal components witand the corresponding performance cbsbnverges to the
random frequencies betwe00-500 Hz and random phases. performance optimal region, which is also illustrated ig.Fi
Fig. 4 shows a certain time interval of the time-varyings. Fig. 7 shows the measured tracking error for the low-gain,
steady-state tracking error of the nominal linear low-gaimigh-gain, and optimally tuned variable-gain controller.
control loop, induced by this disturbangét). Remark 5: In Assumption 2, it is assumed that the dy-
From Theorem 1 in [20], which is based on circle criteriomamics of the plant (1) are twice continuously differenigab
type arguments, it can be concluded that if the additionalith respect to the vector of tunable plant parameters. The
gain is chosen as < 4.34, then the variable-gain controlled use of a dead-zone nonlinearity as presented in (34) agtuall
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Fig. 6. Convergence of the tunable parameietowards§* and the
associated performance cdstand the performance cost in case of two [9]
constant values of, associated with a low-gain and a high-gain controller.
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Fig. 7. Measured tracking error for the low-gain, high-gaind optimized

variable-gain controller.
[14]

violates this assumption. Although it is possible to defingis)
a sufficiently smooth nonlinearity(-) arbitrarily close to
dead-zone nonlinearity, for ease of implementation and the
fact that the conclusions with respect to convergence arss]
similar, we use the non-smooth nonlinearity as in (34).

VI. CONCLUSIONS

In this work, we have introduced an extremum-seeking
control method for steady-state performance optimization
of general nonlinear plants with time-varying steadyestat[
outputs. The proposed extremum-seeking controller iresud
a so-called dynamic cost function which allows for the
characterization of a static input-to-output performamag, (19]
despite the presence of time-varying disturbances which
induces time-varying steady-state plant outputs. We ha#l
shown that, under appropriate conditions, the extremum-
seeking control scheme are uniformly ultimately bounded,
and the region of convergence towards the optimal tunabll]
plant parameters can be made arbitrarily small. An illustra
tive example is provided that shows the steady-state perfge2]
mance optimization of a closed-loop variable-gain cotecbl
motion system subject to a time-varying force disturbance iy,
means of the proposed extremum-seeking control method.

[17]
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