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Abstract. We discuss stochastic differential equations with a stiff linear part and
their approximation by stochastic exponential Runge–Kutta integrators. Represent-
ing the exact and approximate solutions using B-series and rooted trees, we derive
the order conditions for stochastic exponential Runge–Kutta integrators. The re-
sulting general order theory covers both Itô and Stratonovich integration.

1 Introduction

The idea of expressing the exact and numerical solutions of different blends
of differential equations in terms of B-series and rooted trees has been an
indispensable tool ever since John Butcher introduced the idea in 1963 [4].
Naturally then, such series have also been derived for stochastic differential
equations (SDEs) by several authors, see e.g. [6] for an overview.

In this paper, the focus is on d-dimensional SDEs of the form

dX(t) =

(
AX(t)+g0

(
X(t)

))
dt+

M∑
m=1

gm(X(t))?dWm(t), X(0) = x0, (1)

or in integral form

X(t) = etAx0 +

∫ t

0

e(t−s)Ag0(X(s))ds+

M∑
m=1

∫ t

0

e(t−s)Agm(X(s)) ? dWm(s),

(2)
in which case the linear term AX(t), A ∈ Rd×d constant will be treated
with particular care by the use of exponential Runge–Kutta integrators, see
e.g. [1,5,10] and references therein. The integrals w. r. t. the components of
the M -dimensional Wiener process W (t) can be interpreted e. g. as an Itô
or a Stratonovich integral. The coefficients gm : Rd → Rd are assumed
to be sufficiently differentiable and to satisfy a Lipschitz and a linear growth
condition. For Stratonovich SDEs, we require in addition that the coefficients
gm are differentiable and that also the g′mgm satisfy a Lipschitz and a linear
growth condition. In the following, we will denote dt = dW0(t).
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For the numerical solution of (1) we consider a general class of ν-stage
stochastic exponential Runge–Kutta integrators:

Hi = ecihAYn +

M∑
m=0

ν∑
j=1

Z
(m)
ij (A) · gm(Hj), i = 1, . . . , ν, (3a)

Yn+1 = ehAYn +

M∑
m=0

ν∑
i=1

z
(m)
i (A) · gm(Hi), (3b)

where typically the coefficients Z
(m)
ij and z

(m)
i are random variables depend-

ing on the stepsize h, the matrix A and the Wiener processes, and ci are real
coefficients, i = 1, . . . , ν. For vanishing A the method (3) reduces to a stan-
dard stochastic Runge–Kutta method. For an example of a 2-stage stochastic
exponential Runge–Kutta method, see Example 11 below.

Although convergence and order results of specific stochastic exponential
methods proposed in the literature are given, see for instance [1,5,10], there
is to our knowledge up to now no general order and convergence theory for
stochastic exponential Runge–Kutta methods. In this paper, such a theory
is provided. The theory is derived based on a combination of the ideas of
stochastic B-series and rooted trees developed in [6], and the similar ideas
for deterministic exponential Runge–Kutta methods, as derived in [2,8].

2 Some notation, definitions and preliminary results
on stochastic B-series

In Section 3 we will develop B-series for the exact solution of the stochastic
differential equation (1) and stochastic exponential Runge–Kutta integrators
of the form (3). For this, we will use the following definitions of the trees
associated to (1), their corresponding elementary differentials and associated
B-series.

Definition 1 (trees). The set of M + 2-colored, rooted trees

T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ TM ∪ TA

is recursively defined as follows:

1. The graph •m = [∅]m with only one vertex of color m belongs to Tm, and
•A = [∅]A with only one vertex of color A belongs to TA,

2. Let τ = [τ1, τ2, . . . , τκ]m be the tree formed by joining the subtrees
τ1, τ2, . . . , τκ each by a single branch to a common root of color m and
τ = [τ1]A be the tree formed by joining the subtree τ1 to a root of color A.
If τ1, τ2, . . . , τκ ∈ T \{∅}, then τ = [τ1, τ2, . . . , τκ]m ∈ Tm and [τ1]A ∈ TA,

for m = 0, . . . ,M .
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Definition 2 (elementary differential). For a tree τ ∈ T the elementary
differential is a mapping F (τ) : Rd → Rd defined recursively by

1. F (∅)(x0) = x0,
2. F (•m)(x0) = gm(x0), F (•A)(x0) = Ax0,
3. If τ1, τ2, . . . , τκ ∈ T \ {∅}, then F ([τ1]A)(x0) = AF (τ1)(x0) and

F ([τ1, τ2, . . . , τκ]m)(x0) = g(κ)m (x0)(F (τ1)(x0), . . . , F (τκ)(x0))

for m = 0, . . . ,M .

Now we give the definition of B-series.

Definition 3 (B-series). A (stochastic) B-series is a formal series of the
form

B(φ, x0;h) =
∑
τ∈T

α(τ) · φ(τ)(h) · F (τ)(x0),

where φ(τ)(h) is a random variable satisfying φ(∅) ≡ 1 and φ(τ)(0) = 0 for
all τ ∈ T \ {∅}, and α : T → Q is given by

α(∅) = 1, α(•m) = 1, α(•A) = 1,

α([τ1, . . . , τκ]m) =
1

r1!r2! · · · rl!

κ∏
k=1

α(τk), α([τ1]A) = α(τ1),

where r1, r2, . . . , rl count equal trees among τ1, τ2, . . . , τκ, and m = 0, . . . ,M .

Next we give an important lemma to derive B-series for the exact and nu-
merical solutions. It states that if Y (h) can be expressed as a B-series, then
f(Y (h)) can also be expressed as a B-series where the sum is taken over trees
with a root of color f and subtrees in T .

Lemma 4. If Y (h) = B(φ, x0;h) is some B-series and f ∈ C∞(Rd,Rd̂),
then f(Y (h)) can be written as a formal series of the form

f(Y (h)) =
∑
u∈Uf

β(u) · ψφ(u)(h) ·G(u)(x0) (4)

where Uf is a set of trees derived from T , by

(i) [∅]f ∈ U , and u = [τ1, τ2, . . . , τκ]f ∈ Uf ,
(ii) G([∅]f )(x0) = f(x0) and

G([τ1, τ2, . . . , τκ]f )(x0) = f (κ)(x0)(F (τ1)(x0), . . . , F (τκ)(x0)),

(iii) β([∅]f ) = 1 and β([τ1, . . . , τκ]f ) = 1
r1!r2!···rl!

∏κ
k=1 α(τk), with r1, r2, . . . ,

rl counting equal trees among τ1, τ2, . . . , τκ,
(iv) ψφ([∅]f ) ≡ 1 and ψφ([τ1, τ2, . . . , τκ]f )(h) =

∏κ
k=1 φ(τk)(h),
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for all τ1, τ2, . . . , τκ ∈ T \ {∅} and κ = 1, 2, . . . .

Proof. The proof of this lemma is given in [6]. ut

Applying Lemma 4 to the functions gm on the right hand side of (1) gives

gm(B(φ, x0;h)) =
∑
τ∈Tm

α(τ) · φ′m(τ)(h) · F (τ)(x0), (5)

where

φ′m(τ)(h) =

{
1 if τ = •m,∏κ
k=1 φ(τk)(h) if τ = [τ1, . . . , τκ]m ∈ Tm.

(6)

To discuss the order of the numerical method, we need the following def-
inition.

Definition 5 (order). The order ρ(τ) of a tree τ ∈ T is defined by

ρ(∅) = 0, ρ([τ1]A) = ρ(τ1) + 1

and

ρ([τ1, . . . , τκ]m) =

κ∑
k=1

ρ(τk) +

{
1 if m = 0,
1
2 otherwise,

for m = 0, 1, . . . ,M .

Assuming we have derived B-series representations for the exact solution of
the stochastic differential equation (1) and stochastic exponential Runge–
Kutta integrators of the form (3), we can now apply the following B-series
criterion for the convergence of one–step methods, see [9,3,6], to determine
the order of convergence of a given one-step approximation:

Theorem 6. Assume that the exact solution of (1) has B-series representa-
tion X(h) = B(ϕ, x0;h) and a numerical approximation of it by a one-step
method has B-series representation Yn+1 = B(Φ, Yn;h). Then the method has
mean square global order p if

Φ(τ)(h) = ϕ(τ)(h) +O(hp+
1
2 ) for all τ ∈ T with ρ(τ) ≤ p, (7a)

EΦ(τ)(h) = Eϕ(τ)(h) +O(hp+1) for all τ ∈ T with ρ(τ) ≤ p+
1

2
. (7b)

Here, the O(·)-notation refers to h → 0 and, especially in (7a), to the L2-
norm.
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3 Main results

In this section we will develop B-series for the exact solution of the stochas-
tic differential equation (1) and of the stochastic exponential Runge–Kutta
integrators of the form (3) such that Theorem (6) can be applied.

Theorem 7. The solution X(h) of the SDE (1) can be written as a B-series
B(ϕ, x0;h) with ϕ(∅)(h) = 1, ϕ([∅]qA)(h) = hq

q! ,

ϕ([[τ1, . . . , τκ]m]qA)(h) =

∫ h

0

(h− s)q

q!

κ∏
k=1

ϕ(τk)(s) ? dWm(s),

for τ1, . . . , τκ ∈ T , κ = 1, 2, . . ., q = 0, 1, . . . and m = 0, . . . ,M , where τi 6= ∅

for i = 1, . . . , κ if κ > 1 and [τ̂ ]qA = [. . . [[τ̂

q-times︷ ︸︸ ︷
]A]A . . .]A for τ̂ ∈ T \ TA.

Proof. Write the exact solution X(h) of (1) at t = h as a B-series B(ϕ, x0;h).
Substituting X(h) = B(ϕ, x0;h) in (2) and using (5) gives

B(ϕ, x0;h) = ehAx0+

M∑
m=0

∫ h

0

e(h−s)A
∑
τ̂∈Tm

α(τ̂)·ϕ′m(τ̂)(s)·F (τ̂)(x0)?dWm(s).

Inserting the series representation ehAx0 =
∑∞
q=0

hqAq

q! x0 yields

B(ϕ, x0;h) = x0 +

∞∑
q=1

hq

q!
Aqx0

+

M∑
m=0

∑
τ̂∈Tm

α(τ̂)

∞∑
q=0

(∫ h

0

(h− s)q

q!
ϕ′m(τ̂)(s) ? dWm(s) ·AqF (τ̂)(x0)

)
. (8)

Note that any tree τ ∈ T can be rewritten as τ = [τ̂ ]qA for q = 0, 1, . . ., with
τ̂ ∈ T \ TA, that means τ̂ = ∅ or τ̂ = [τ1, . . . , τκ]m for an m ∈ {1, . . . ,M}.
It holds that F ([τ̂ ]qA) = AqF (τ̂) and α([τ̂ ]qA) = α(τ̂). Especially, for τ = [∅]qA
it holds that α(τ) = 1 and F (τ)(x0) = AqF (∅) = Aqx0. Using (6) and the
linear independence of the elementary differentials finishes the proof. ut

Example 8. Let τ = , where the colors black, white and red correspond to
the deterministic function g0, the stochastic function g1 and an application of
the matrixA, respectively. Then α(τ) = 1, F (τ)(x0) = g′′0 (g1, g

′′
1 (Ax0, g0))(x0)

and ϕ(τ)(h) =
∫ h
0

(
W1(s)

∫ s
0
s21 ? dW1(s1)

)
ds. Note also that e.g. τ = /∈ T

since it is impossible for node to have more than one branch.

Next we derive the B-series representation for one step of the stochastic
exponential Runge–Kutta integrator (3).
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Theorem 9. Assume that the coefficients Z
(m)
ij (A) and z

(m)
i (A) can be ex-

pressed as power series of the form

Z
(m)
ij (A) =

∞∑
q=0

Z
(m,q)
ij Aq and z

(m)
i (A) =

∞∑
q=0

z
(m,q)
i Aq, (9)

for i, j = 1, . . . , ν, and m = 0, . . . ,M . Then the stage values Hi and the
numerical solution Yn+1 defined by (3) can be written as B-series Hi =
B(Φi, Yn;h), i = 1, . . . , ν, and Yn+1 = B(Φ, Yn;h) with the following re-
currence relations for the functions Φi(τ)(h) and Φ(τ)(h),

Φi(∅) = Φ(∅) ≡ 1, Φi([∅]qA)(h) =
(cih)q

q!
, Φ([∅]qA)(h) =

hq

q!
,

Φi([[τ1, . . . , τκ]m]qA)(h) =

ν∑
j=1

Z
(m,q)
ij

κ∏
k=1

Φj(τk)(h),

Φ([[τ1, . . . , τκ]m]qA)(h) =

ν∑
i=1

z
(m,q)
i

κ∏
k=1

Φi(τk)(h),

for τ1, . . . , τκ ∈ T , κ = 1, 2, . . ., q = 0, 1, . . . and m = 0, . . . ,M , where τj 6= ∅
for j = 1, . . . , κ if κ > 1.

Proof. Write the stage values Hi and the approximation Yn+1 to the exact
solution as B-series:

Hi = B(Φi, Yn;h), i = 1, . . . , ν and Yn+1 = B(Φ, Yn;h). (10)

Substituting (5) into (3) and using (9) we get

Hi =

∞∑
q=0

(cih)q

q!
AqYn +

M∑
m=0

ν∑
j=1

Z
(m)
ij (A)

∑
τ∈Tm

α(τ) · Φ′j(τ)(h) · F (τ)(Yn)

=

∞∑
q=0

(cih)q

q!
AqYn +

M∑
m=0

ν∑
j=1

∑
τ∈Tm

α(τ)

∞∑
q=0

Z
(m,q)
ij Φ′j(τ)(h) ·AqF (τ)(Yn),

and similarly

Yn+1 =

∞∑
q=0

hq

q!
AqYn +

M∑
m=0

ν∑
i=1

∑
τ∈Tm

α(τ)

∞∑
q=0

z
(m,q)
i Φ′i(τ)(h) ·AqF (τ)(Yn).

Now using (10) and the linear independence of the elementary differentials
yields the assertion. ut

Remark 10. When A vanishes, all elementary differentials corresponding to
trees in TA are zero, and the above B-series theory agrees with the B-series
theory developed in [6]. In the deterministic case, with gm = 0 for m ≥ 1,
the elementary differentials corresponding to trees in Tm, m ≥ 1, vanish, and
our results agree with those given in [2,8].
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We conclude this article with an example on how to apply the theorems of
this section to decide the order of a given stochastic exponential integrator.

Example 11. We will apply Theorems 6, 7 and 9 to the 2-stage stochastic
exponential time-differencing Runge–Kutta (SETDRK) method for M = 1
given by

H1 = Yn, H2 = Yn +
√
hg1(H1),

Yn+1 = ehAYn +

∫ tn+1

tn

e(tn+1−s)Ads · g0(H1)

+

∫ tn+1

tn

e(tn+1−s)A ? dW1(s) · g1(H1)

+
1√
h

∫ tn+1

tn

e(tn+1−s)A W1(s) ? dW1(s) · (−g1(H1) + g1(H2)) ,

where tn+1 = tn+h. Using the expansion (for the manipulation of stochastic
integrals, see e. g. [7])∫ h

0

e(h−s)A ? dW1(s) =

∫ h

0

1 ? dW1(s)A0 +

∫ h

0

(h− s) ? dW1(s)A1

+

∫ h

0

(h− s)2

2
? dW1(s)A2 + . . .

= I∗(1)A
0 + I∗(10)A

1 + I∗(100)A
2 + . . .

where I∗(m1...mn)
=
∫ h
0

∫ s1
0
· · ·
∫ sn−1

0
?dWm1

(sn) · · ·?dWmn
(s1), and the similar

expansion
∫ h
0

e(h−s)AW1(s) ? dW1(s) = I∗(11)A
0 + I∗(110)A

1 + . . . we obtain

z
(0)
1 =

∫ h

0

e(h−s)Ads = hA0 +
h2

2
A1 +

h3

6
A2 + . . . ,

z
(1)
1 =

∫ h

0

e(h−s)A(1− W1(s)√
h

) ? dW1(s)

= (I∗1 −
I∗(11)√
h

)A0 + (I∗(10) −
I∗(110)√
h

)A1 + . . . ,

z
(1)
2 =

∫ h

0

e(h−s)A
W1(s)√

h
? dW1(s) =

I∗(11)√
h
A0 +

I∗(110)√
h
A1 + . . . .

We also have (with colors as in Example 8) z
(0)
2 = 0, Φ1( ) = Φ2( ) = Φ1( ) =

Φ2( ) = Φ1( ) = Φ1( ) = Φ2( ) = 0 and Φ2( ) =
√
h, resulting in the weight

functions given in Table ??. While the weight functions for the exact solution
and the numerical approximation of the order 1.5 trees do not coincide, their
expectation values coincide in case of Itô integrals but not for Stratonovich
integrals (when τ = ). Thus, by Theorem 7 the above method has mean
square order 1 in the Itô case but only 0.5 in the Stratonovich case.
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τ ρ(τ) ϕ(τ)(h) Φ(τ)(h)

0.5 I∗(1) z
(1,0)
1 + z

(1,0)
2 = I∗(1)

1 h z
(0,0)
1 + z

(0,0)
2 = h

h h

I∗(11) z
(1,0)
1 Φ1( ) + z

(1,0)
2 Φ2( ) = I∗(11)

1.5 I∗(10) z
(0,0)
1 Φ1( ) + z

(0,0)
2 Φ2( ) = 0

hI∗(1) − I∗(01) z
(1,1)
1 Φ1(∅) + z

(1,1)
2 Φ2(∅) = I∗(10)

I∗(01) z
(1,0)
1 Φ1( ) + z

(1,0)
2 Φ2( ) = 0

I∗(01) z
(1,0)
1 Φ1( ) + z

(1,0)
2 Φ2( ) = 0∫ h

0
W 2

1 (s) ? dW1(s) z
(1,0)
1 Φ2

1( ) + z
(1,0)
2 Φ2

2( ) =
√
hI∗(11)

I∗(111) z
(1,0)
1 Φ1( ) + z

(1,0)
2 Φ2( ) = 0

Table 1. Trees, corresponding order and weight functions for Example 11.
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