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Relationship between Finite Set Statistics and the
Multiple Hypothesis Tracker

Edmund Brekke, Member, IEEE, and Mandar Chitre, Senior Member, IEEE

Abstract—The multiple hypothesis tracker (MHT) and finite
set statistics (FISST) are two approaches to multitarget tracking
which both have been heralded as optimal. In this paper we
show that the multitarget Bayes filter with basis in FISST
can be expressed in terms the MHT formalism, consisting
of association hypotheses with corresponding probabilities and
hypothesis-conditional densities of the targets. Furthermore, we
show that the resulting MHT-like method under appropriate
assumptions (Poisson clutter and birth models, no target-death,
linear-Gaussian Markov target kinematics) only differs from
Reid’s MHT with regard to the birth process.

Index Terms—Multitarget tracking, Data association, MHT,
FISST, Random Finite Sets

I. INTRODUCTION

THe standard multitarget tracking problem can be decom-
posed into the two subproblems of filtering and data

association. Filtering concerns the estimation of a target’s
kinematic state from a time series of measurements. Data
association concerns how one determines which measurements
originate from which targets, and which measurements are to
be considered useless clutter. Many of the tasks carried out in
a surveillance system are most appropriately understood in the
context of data association. For example, establishing tracks
on new targets is fundamentally a data association problem,
since a decision to establish a new track amounts to a decision
regarding the origin of a sequence of measurements.

A Bayesian formalism is natural in target tracking since
prior knowledge about target kinematics is easily quantified
by a prior distribution. For filtering without measurement
origin uncertainty one can evaluate the posterior probability
density function (pdf) of the state given the sequence of
measurements so far observed. If the filtering problem is
Gaussian as well as linear, then the posterior is a Gaussian,
whose sufficient statistics are found by the Kalman filter (KF)
[1]. For non-linear and non-Gaussian problems, no closed-
form representation of the posterior can be found in general,
but the posterior can still be approximated by techniques such
as sequential Monte-Carlo methods (SMC) [2].

When data association is involved things get more com-
plicated, and it is not immediately clear that a well-defined
posterior exists. Consequently, the concept of optimality be-
comes problematic for data association problems. Truly Bayes-
optimal solutions, i.e., solutions which minimize a posteriori
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expected loss, can only be achieved if the posterior is available.
From an intuitive perspective, it seems fairly obvious that
Bayes-optimal solutions to the standard multitarget tracking
problem must, in one way or another, consider all feasible
data association hypotheses.

A milestone was reached in 1979 when Donald Reid
proposed the multiple hypothesis tracker (MHT) [3], which
evaluates posterior probabilities of all feasible data association
hypotheses. Several variants of the MHT exist. In this paper
we are solely concerned with Reid’s original algorithm. In
contrast to many of the later developments, it has two attributes
which are very important here. First, Reid’s MHT is a recursive
method, which updates hypothesis probabilities according to a
recursive formula. Second, although one typically would want
to find the hypothesis with the highest posterior probability,
maximum a posteriori (MAP) estimation is never mentioned
in [3]. The output of Reid’s MHT as described in [3] is
simply a collection of possible hypotheses, with corresponding
probabilities. In practice, implementations of MHT-methods
rely on pruning, simplifications and sliding window techniques
to mitigate its exponential complexity. While a practical MHT
therefore will be suboptimal, it is commonly believed that
the ideal MHT without approximations is optimal in some
unspecified sense.

A different approach known as finite set statistics (FISST)
was developed by Ronald Mahler [4, 5, 6] in the 2000’s. FISST
is a reformulation of point process theory tailored to multi-
target tracking [7]. In FISST, both targets and measurements
are generally treated as random finite sets, i.e., as set-valued
random variables. This allows one to express a Bayes-optimal
solution to the full tracking problem using a single prediction
equation and a single update equation. This optimal recursion,
commonly known as the multitarget Bayes filter, is just as
intractable as the MHT, but Mahler and coworkers have devel-
oped several approximative solutions such as the probability
hypothesis density (PHD) filter, the cardinalized probability
hypothesis density (CPHD) filter and the multitarget multi-
Bernoulli (MeMBer) filter [6, 8].

The relationship between FISST and previously established
tracking methods is a controversial topic which has been
explored in several papers, although never fully resolved. The
integrated probabilistic data association (IPDA) and the joint
IPDA (JIPDA) have been linked to the FISST formalism in [9]
and [10]. The Set JPDA employs concepts based on FISST
to improve the JPDAF [11]. It was shown in [12] that the
CPHD filter is equivalent to MHT when maximally one target
is present. Several classical tracking methods were discussed
from the perspective of point process theory in [13]. The
relationship between MHT and FISST has been explored in
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depth by some authors, most notably Jason Williams and
Shozo Mori. In [10], Williams argued that data structures
similar to those used in the TO-MHT are implicitly present in
the multitarget Bayes filter. Similar ideas were earlier proposed
by Mori et al. in [14]. In a more recent paper [15], Mori and
coauthors showed that MHT hypothesis probabilities can be
derived with basis in random finite sets, although they did
not explicitly establish Reid’s recursive formulation of MHT.
On the other hand, important references in the literature on
FISST have criticized the MHT, and argued that association-
based approaches such as the MHT may not be consistent with
the Bayesian paradigm [6 pp. 340-341, 16 pp. 8-9, 17 p. 14].

A central issue is the treatment of new targets. Reid assumed
that a “density of new (i.e., unknown) targets” was given,
and could be used to calculate the probabilities of hypotheses
assigning measurements to new targets. On the one hand,
several papers on MHT (e.g., [18]) refer to Reid’s new
target density as a birth model, which is a prior entity. This
interpretation is quite convenient for a couple of reasons,
especially since a birth model is part of the standard model
of multitarget tracking that has emerged together with FISST.
On the other hand, Reid’s choice of words indicates that his
new target density should be similar to the unknown target
density discussed in papers such as [10], which is a posterior
entity. In this context it is interesting to notice that some recent
papers have elaborated the unknown target concept further.
For instance, in [19] a distinction is made between unnoticed
targets (which eventually are detected at a later time) and ghost
targets (which never are detected).

In a recent conference paper [20] we have shown that Reid’s
MHT indeed can be derived from the multitarget Bayes filter,
as parameterized in [10]. This result hinges on the validity of
Reid’s assumptions (including Gaussian-linear kinematics and
no target death), as well as the interpretation of Reid’s new
target density as the same as the unknown target density in
[10].

In this paper we will approach the relationship between
FISST and Reid’s MHT from a different perspective in two
ways. First, we will interpret Reid’s new target density as
a birth density. We parameterize the resulting multitarget
filter entirely as a mixture over association hypotheses. These
hypotheses generalize Reid’s association hypotheses by also
including undiscovered targets. We show that this filter has
much of the same structure as Reid’s MHT, and involves
a hypothesis probability formula which is equal to Reid’s
formula multiplied by a factor that accounts for undiscovered
targets. Second, while the analysis conducted in [20] relied
on the transform-domain concept of probability generating
functionals (p.g.fl.’s), all the developments of this paper are
formulated purely in terms of multiobject densities.

The paper is organized as follows. In Section II we define
and explain some key concepts underlying this paper. A very
brief introduction to FISST is given in Section III. Assump-
tions underlying our development of the FISST-MHT are
presented in Section IV. The FISST-MHT is then developed
in Section V. The special case of Gaussian-linear dynamics is
extensively studied in Section VI. Some illustrative examples
are provided in Section VII, before a conclusion is given

in Section VIII. Mathematical derivations are left for the
Appendix. This paper was largely motivated by our work on
multihypothesis data association for simultaneous localization
and mapping (SLAM), which has previously been reported in
[21], [22] and [23].

For the reader’s reference, a list of notation used can be
found in Table I. Random finite sets are generally denoted by
uppercase Greek letters, while their realizations are denoted by
uppercase Latin letters. Association hypotheses are denoted
by lowercase Greek letters. Sets of association hypotheses
are denoted by uppercase calligraphic Latin letters. Some
dependencies are omitted for improved readability: In most
cases we do not spell out how cardinality numbers (e.g.,
the number δk of detected targets) depend on the association
hypotheses. Detailed explanations of notation concerning as-
sociation hypotheses are given in the next section.

II. KEY CONCEPTS: ASSOCIATION VARIABLES AND
ASSOCIATION HYPOTHESES

Reid’s seminal paper [3] developed the concept of asso-
ciation hypotheses through 3 successive refinements of the
outcome space, referred to as Number, Configuration and
Assignment. The Number event concerns how many measure-
ments are associated with existing targets, newborn targets and
with clutter. The Configuration event concerns how the set of
measurements is partitioned into subsets associated with each
of these three sources. The Assignment event concerns “the
specific source of each measurement which has been assigned
to be from some previously known target”.

In [14], a distinction was made between data-to-data hy-
potheses and target-to-data hypotheses. Data-to-data hypothe-
ses concern how measurements at one time step are associated
to measurements at other time steps. Target-to-data hypotheses
concern how measurements are generated by specific targets.
We argue in Remark 4 that Reid’s Assignment events are sim-
ilar to data-to-data hypotheses, while target-to-data hypotheses
provide a fourth refinement of the outcome space that plays
no role in Reid’s MHT.

In this paper we use a novel definition of association
hypotheses, which is similar, but not identical, to the data-
to-data hypotheses of [14], and which extends Reid’s As-
signment events. The data-to-data hypotheses concern only
associations between measurements, while our association
hypotheses also concern the numbers of existing targets. The
reason why this is needed is that we are going to write
the multiobject posterior entirely as a sum over association
hypotheses. For the fourth refinement, we use the terminology
association variables instead of target-to-data hypotheses, in
order to emphasize that this refinement is something else
than conventional data association hypotheses. In this section
we propose precise definitions of both association variables
and association hypotheses, before we summarize motivations,
interpretations and consequences of these definitions in the
following remarks. In the following the symbols 0 and ø
should be interpreted as misdetection and non-existing target,
respectively.
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TABLE I: Notations

Symbol Description

aωk(i) Score contribution from target i under ωk
A(θk−1, nk) Set of predicted association variables
b(·) Kinematic newborn target pdf
B(ωk) Set of currently and previously detected targets

C, C̃ Normalization constants
c(·) Kinematic clutter pdf
χS(·) Indicator function
dk Number of targets detected for the first time at k
δk Number of detected targets at time k
E(nk,mk) Set of all feasible ξ’s given nk and mk
f(·) Generic density (multiobject density or pdf)
F Kinematic transition matrix

gπ
1:k−1
k

(i)(xik) Predicted density of target i
Gnk Set of association hypotheses for nk = n

Gk Set of all association hypotheses at time k
γ Association variable of the transition density
hωk(i)(xik) Posterior pdf of target i
H Measurement model matrix
H∗ Complementary measurement model matrix
I(θk−1, nk,mk) Set of posterior children hypotheses of θk−1

Im+(θk) Non-zero range of ωk ∈ Per(θk)

k Current time step
λ Poisson clutter rate
mk Cardinality of Zk
µ Poisson rate of newborn targets
µv Expected velocity of newborn targets
nk Cardinality of Xk
N0 Natural numbers including zero
N (· ; · , ·) Gaussian pdf
ωk Posterior association variable at time k
P(θk−1, nk,mk) Product set of posterior association variables
PD Detection probability
Pv Covariance of newborn target velocity
Per(θk) Permutations of association hypothesis θk
Pr(·) Generic probability
πk Predicted association variable
ϕk Number of false alarms at time k
P State covariance
PD Detection probability
qθk Score of association hypothesis θk
Q Process noise matrix
rt(θk) Multiplicity of track t in association hypothesis θk
R Measurement noise matrix
S Surveillance region or innovation covariance
Σk Measurement set at time k
t Track
θk Posterior association hypothesis at time k
uk(θk) Number of undiscovered targets at time k
Uk(nk) Set of posterior association hypotheses
V Volume of surveillance region
xtk Kinematic state of target t at time k
Xk Realization of Ξk
ξ Association variable of the measurement model
Ξk Target set at time k

zjk Measurement j at time k
Zk Realization of Σk
#(πk|θk−1) Number of feasible πk’s given θk−1

ø Non-existing target

DEFINITION 1 (association variable). An association variable
is a mapping ω : {1, . . . , nk} → ({ø}⋃N0)k such that
• ωl(s) = ωl(t) /∈ {ø, 0} ⇒ s = t for any l ∈ {1, . . . , k},
• for all i ∈ {1, . . . , nk} there exists at least one l ∈
{1, . . . , k} for which ωl(i) 6= ø.

• if ωl(i) 6= ø and l′ > l, then ωl
′
(i) 6= ø.

The superscript l is the lth coordinate of the mapping ω, or
equivalently the lth time step between 0 and the current time
step k. Furthermore, the image of ω is denoted Im(ω), while
Im+(ω) denotes non-zero image of ω, i.e., the collection of
all vectors in Im(ω) which contain any entries different from
0 or ø.

DEFINITION 2 (association hypothesis). Let ω be an associa-
tion variable. The association hypothesis θ corresponding to ω
is then defined as the equivalence class consisting of all associ-
ation variables ω̃ for which there exists a permutation mapping
σ : {1, . . . , nk} → {1, . . . , nk} such that ωl(σ(i)) = ω̃l(i) for
all l ∈ {1, . . . , k}. We signify the relation of permutation-
equivalence by the symbol “∼”. That is, if such a permutation
mapping σ exists for ω and ω̃, then ω ∼ ω̃.

REMARK 1. The multitarget Bayes filter is naturally ex-
pressed in terms of association variables, and such entities are
therefore frequently encountered in [6]. The association vari-
ables discussed in [6] are always of the form ω : {1, . . . , n} →
{0, . . . ,m}, where n is the number of targets, and m can be
either the number of measurements, or the number of targets
at a different time. The association variables γ and ξ defined
in (5) and (6) are of this form. Extending the concept to k
dimensions instead of only one dimension allows one to assign
measurement histories, and not only single measurements, to
each target. Such historical association variables are typically
of the form ωk : {1, . . . , n} → {ø, 0, . . . ,m1} × . . . ×
{ø, 0, . . . ,mk}. Here k is the time index of the last data scan,
and ml is the number of measurements in scan number l. By
ωlk(i) = j we understand that target i is believed to have
given rise to measurement number j in scan number l, while
ωlk(i) = 0 indicates that the target was not detected at time l
and ωlk(i) = ø indicates that the target did not exist at time l.
The notation ωl:l

′

k (i) represents the sequence of measurements
associated to target i under ωk at time steps l, l + 1, . . . , l′.

REMARK 2. Mappings between sets of integers are not the
only possible representation of association variables. Any
association variable can also be represented in terms of a
k×n-matrix, whose l’th row contains elements from {ø}⋃N0

such that no element except possibly 0 or ø is repeated. Any
column vector ω(i) of a historical association variable of the
form ω : {1, . . . , n} → {ø, 0, . . . ,m1} × . . .× {ø, 0, . . . ,mk}
constitutes a track.

REMARK 3. It is readily apparent that association hypothe-
ses as defined in this paper correspond to multisets, i.e.,
as sets with possibly repeated elements. The elements of
such a multiset are tracks, i.e., the column vectors of any
(matrix-valued) association variable in the equivalence class
that constitutes the association hypothesis. Be aware that the
target states themselves do not constitute a multiset, since
the probability of drawing identical states from a continuous
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measure is zero. While association hypotheses previously have
been defined as sets of tracks [14], the extension to multisets
arise when we allow the association hypotheses to also include
unknown targets, since there can exist several simultaneously
born unobserved targets, which generate identical track-vectors
consisting solely of ø’s and 0’s. Because of this ambiguity
(equivalence class versus multiset), the notation x ∈ θ may
be confusing. We reserve this notation to be used for tracks
in the multiset of θ, while membership in the equivalence
class of θ will be represented by the notation ω ∈ Per(θ).
That is, Per(θ) is the set of all unique permutations of the
tracks in θ. The cardinality of Per(θ) will later be given in
(17), followed by an example which illustrates the relationship
between association variables and and association hypotheses.
The set of all unique t ∈ θ is denoted Im(θ), and is equal
to Im(ω) for any ω ∈ Per(θ). The multiplicity of any t ∈ θ
is denoted rt(θ). For any track on a target which has been
detected at some time, we have rt(θ) = 1.
REMARK 4. It is commonly believed that Reid’s MHT assigns
measurements to targets. This is not the case, because Reid’s
Assignment event only appends measurements from the last
scan to existing measurement histories. Careful inspection of
(13) in [3] furthermore reveals that the Assignment events
do not distinguish between different permutations of newborn
targets. In other words, the newborn targets are treated as a
set, and not a list/vector, and their identities are never invoked.
Therefore, the Assignment events correspond to the unordered
association hypotheses, and not to the ordered association
variables.

III. A VERY BRIEF REVIEW OF FINITE SET STATISTICS

FISST can be developed with basis in belief-mass functions.
The belief mass function of a random finite set Ξ is the
probability

βΞ(S) = Pr(Ξ ⊆ S). (1)

Here S is a subset of the base space, i.e., if x ∈ Ξ and x ∈ Rn,
then S ⊆ Rn. A multiobject density fΞ(X) is a function which
produces a non-negative real number from any realization X of
Ξ. For a set-function to be a multiobject density it is required
that it normalizes to one under the set integral∫

fΞ(X)δX =

∞∑
n=0

1

n!

∫
f({x1, . . . , xn})dx1 . . . dxn = 1.

Here n is the cardinality of X , and f({x1, . . . , xn}) = fΞ(X)
under the constraint that |X| = n. Furthermore, fΞ(X) is
related to the belief mass function according to

βΞ(S) =

∫
S

fΞ(X)δX.

Of this general machinery, we will only be concerned with
multiobject densities and the set integral in this paper.

IV. ASSUMPTIONS

In this section we summarize the assumptions used in the
main developments of this paper (Section V), while additional
Gaussian-linear assumptions are introduced in Section VI-A.

We emphasize that no Gaussian-linear assumptions are relied
upon before Section VI.

Many variations of the MHT are reported in the literature.
These variations differ both with regard to solution methodol-
ogy and with regard to underlying assumptions. In this paper,
the aim is to re-derive Equation (16) in [3] with basis in FISST.
Consequently we employ assumptions similar to those of [3].
In particular, we assume that new targets can be born while
we exclude the possibility that already existing targets can die.

During estimation cycle number k we assume that all nk−1

targets with states xik−1, i = 1, . . . , nk−1 remain from the
previous cycle. At time k each of these targets have densities

f(xik) =

∫
f(xik|xik−1)f(xik−1)dxik−1

where f(xik|xik−1) is the kinematic transition pdf and f(xik−1)
is the posterior pdf at time k−1. In addition to these, βk new
targets appear at time k. The number βk is Poisson distributed

Pr(βk) =
µβke−µ

βk!
(2)

while the newborn targets have kinematic pdf b(xik).
At time k we receive mk measurements z1

k, . . . , z
mk

k . Given
that measurement zjk is generated by target xik, its kinematic
likelihood is given by f(zjk|xik). Any target generates a
measurement with constant probability PD, otherwise it is
unobserved. An unknown number of the mk measurements
are clutter measurements with spatial pdf c(zjk). The number
ϕk of clutter measurements is also Poisson distributed

Pr(ϕk) =
λϕke−λ

ϕk!

Standard independence assumptions (see. e.g. [3], [6] or [24])
apply.

In the framework of FISST, these assumptions can be re-
phrased in terms of multiobject densities. We leave this for the
next section, together with specification of the general form
of the multiobject prior used in this paper.

V. THE MULTITARGET BAYES FILTER

The multi-target Bayes recursion from step k − 1 to time
step k involves the random sets Ξk−1 (previous target set, with
realization Xk−1), Ξk (current target set, with realization Xk)
and Σk (current measurement set, with realization Zk). Using
Bayes’ rule, the entire recursion can be written in terms of the
prediction equation

fk|k−1(Xk|Z1:k−1) =

∫
fΞk|Ξk−1

(Xk|Xk−1)

fk−1|k−1(Xk−1|Z1:k−1)δXk−1 (3)

and the update equation

fk|k(Xk|Z1:k) =
1

C̃
fΣk|Ξk

(Zk|Xk)fk|k−1(Xk|Z1:k−1). (4)

Here fk|k−1(Xk|Z1:k−1) is the multiobject predicted density
at time step k and fk|k(Xk|Z1:k) is the multiobject posterior
density at time step k. The measurement model is encapsu-
lated in the likelihood fΣk|Ξk

(Zk|Xk), while the transition
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density fΞk|Ξk−1
(Xk|Xk−1) encapsulates the time evolution

(Markov model) of the target set. The constant C̃ is equal to∫
fΣk|Ξk

(Zk|Xk)fk|k−1(Xk|Z1:k−1)δXk.

A. Building blocks: The transition density and the likelihood
Let Xk = {x1

k, . . . , x
nk

k } and let Zk = {z1
k, . . . , z

mk

k }.
From (13.42) in [6] it is reasonably straightforward to show
that the assumptions of Section IV lead to the following
multitarget transition density:

fΞk|Ξk−1
(Xk|Xk−1)

=
∑
γ

eµµnk−nk−1

∏
i:γ(i)>0

f(xik|xγ(i)
k−1)

∏
i:γ(i)=0

b(xik). (5)

The association variable γ ranges over all functions γ :
{1, . . . , nk} → {0, . . . , nk−1} such that γ(i) = γ(j) 6= 0 ⇒
i = j, and such that {1, . . . , nk−1} ⊆ Im(γ). In other words,
γ is surjective when restricted to the complement of the pre-
image of 0.

Similarly, minor manipulations of (12.139) in [6] lead to
the following multiobject likelihood:

fΣk|Ξk
(Zk|Xk) =

∑
ξ

λϕkP δkD (1− PD)nk−δk

∏
j /∈Im+(ξ)

c(zjk)
∏

i:ξ(i)>0

f(z
ξ(i)
k |xik). (6)

The association variable ξ ranges over all functions ξ :
{1, . . . , nk} → {0, . . . ,mk} such that ξ(i) = ξ(j) 6= 0⇒ i =
j. For future reference we denote this set of ξ’s by E(nk,mk).
We emphasize that γ and ξ are association variables, and not
association hypotheses, according to the definitions in Section
II.

B. The prior density
In this section we introduce a general form for the prior

multiobject density fk−1|k−1(Xk−1|Z1:k−1) such that the pos-
terior multiobject density fk|k(Xk|Z1:k) remains of the same
form after the estimation cycle.

Before introducing this prior, let us discuss the components
involved. In order to follow [3] as closely as possible, the prior
should be a mixture over all possible association hypotheses
θk−1. For any target set cardinality nk−1 = |Xk−1|, we
denote the set of possible association hypotheses by Gnk−1

k−1 .
The total set of all association hypotheses is denoted Gk−1 =⋃∞
nk−1=0 G

nk−1

k−1 . The probability of an association hypothesis
θk−1 is represented by a non-negative number qθk−1 .

For the proposed prior to be a set-function it must not only
be a mixture over all association hypotheses θk−1, but also
over all association variables ωk−1 ∈ Per(θk−1). For each
track ωk−1(i) we assume that an instantaneous track density
fωk−1(i)(xik−1) exists.

Based on all this, we assume the multiobject prior to be of
the form

fk−1|k−1(Xk−1|Z1:k−1)

=
∑

θk−1∈G
nk−1
k−1

qθk−1

∑
ωk−1∈Per(θk−1)

nk−1∏
i=1

fωk−1(i)(xik−1) (7)

with the constraint that
∞∑

nk−1=0

∑
θk−1∈G

nk−1
k−1

qθk−1∏
t∈Im(θk−1) rt(θk−1)!

= 1. (8)

In addition to being a set-function, fk−1|k−1(Xk−1|Z1:k−1)
must also normalize to one under the set integral in order to
be a multiobject density. One can show that the constraint
(8) indeed ensures the correct normalization by counting the
number of association variables ωk−1 in each Per(θk−1). This
number is nk−1!/

∏
t∈Im(θk−1) rt(θk−1)!. For brevity, further

details of the normalization are omitted.
From this it follows that the prior probability mass con-

tributed by the association hypothesis θk−1 is

Pr(θk−1|Z1:k−1) =
qθk−1∏

t∈Im(θk−1) rt(θk−1)!
. (9)

In other words, the hypothesis θk−1 has a probability equal
to the total probability mass contributed by ωk−1’s within
Per(θk−1).

The form of (7) is very general and encapsulates several
plausible prior densities. First, we note that the empty mul-
tiobject density, representing the situation that no targets are
present, results when

qθk−1 =

{
1 for θk−1 ∈ G0

k−1

0 for all other θk−1.

Second, the Poisson multiobject density

fΞk−1
(Xk−1) =e−µµnk−1

nk−1∏
i=1

f(xik−1)

results for example when the following criteria are satisfied:
1) There is a single density f(·) such that fωk−1(i)(xi) =

f(xik−1) for all association variables ωk−1(i) and all
targets i.

2) One and only one θk−1 is present in each Gnk−1

k−1 , and
this association hypothesis constitutes a multiset with a
single track repeated nk−1 times.

3) qθk−1 = e−µµnk−1 .

C. The predicted density

The predicted multiobject density fk|k−1(Xk|Z1:k−1) is
found by inserting the transition density (5) and the prior
(7) into the prediction equation (3). In a manner similar to
the prior density, the predicted density can also be written as
a linear mixture over association hypotheses and association
variables. Under the no-death assumption of [3], any predicted
association hypotheses is entirely given by its parent hypoth-
esis and its current cardinality, i.e., of the form (θk−1, nk).
Conditional on any such association hypothesis, the predicted
density is a linear mixture over association variables in a
set A(θk−1, nk) which consists of all πk : {1, . . . , nk} →
({ø} ∪ N0)k−1 × {0} such that the following two criteria are
satisfied

1) Any vector πk(i) is of one of the two forms
a) πk(i) = [ø, . . . , ø, 0]T

b) πk(i) = [tT, 0]T for some track t ∈ θk−1.
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2) For all unique tracks t ∈ θk−1 there are exactly rt(θk−1)
targets i ∈ {1, . . . , nk} such that πk(i) = [tT, 0]T.

The k’th row of any πk is filled with zeros because the
measurements in Zk have not yet been associated to targets.

As shown in Appendix A, we can with this machinery
express the predicted density as

fk|k−1(Xk|Z1:k−1) = e−µ
∑

θk−1∈Gk−1

qθk−1

µnk−nk−1

∑
πk∈A(θk−1,nk)

nk∏
i=1

gπ
1:k−1
k (i)(xik) (10)

where the pdf gπ
1:k−1
k (i)(xik) is given by

gπ
1:k−1
k (i)(xik) ={ ∫

f(xik|x)fπ
1:k−1
k (i)(x)dx if πk−1

k (i) 6= ø

b(xik) if πk−1
k (i) = ø.

(11)

Due to the no-death assumption, the sum over A(θk−1, nk)
will be empty if nk < |θk−1|, and in such a case its value is
zero by convention.

We may wish to verify that fk|k−1(Xk|Z1:k−1) truly is
a multiobject density. It is clearly a set-function, since for
any πk in A(θk−1, nk), all the permutations of πk are also
in A(θk−1, nk). Regarding normalization, let us first notice
that the number of association variables in any A(θk−1, nk)
is given by the multinomial coefficient

|A(θk−1, nk)| = nk!

(nk − nk−1)!
∏
t∈Im(θk−1) rt(θk−1)!

.

By recognizing this, and by exploiting the properties of
the Poisson distribution, we can reduce the set integral∫
fk|k−1(Xk|Z1:k−1)δXk to the expression in the prior con-

straint (8), which by definition equals one. Again, the details
are omitted for brevity.

From this it follows that the probability mass contributed
by the predicted hypothesis (θk−1, nk) is

Pr(θk−1, nk|Z1:k−1) =
qθk−1e−µµnk−nk−1

(nk − nk−1)!
∏
t∈Im(θk−1) rt(θk−1)!

for all (θk−1, nk) such that nk−1 ≤ nk.

D. The posterior density

According to Bayes’ rule for multiobject densities, the
posterior density fk|k(Xk|Z1:k) is proportional to the product
of the likelihood (6) and the predicted density (10). Condi-
tional on any choice of θk−1, nk and mk, the posterior is
therefore a linear mixture over elements in the product set
A(θk−1, nk)×E(nk,mk). This product set is isomorphic to a
set P(θk−1, nk,mk) which consists of all association variables
ωk : {1, . . . , nk} → ({ø} ∪ N0)k−1 × {0, . . . ,mk} which
satisfy the two criteria

1) ωkk(i) = ωkk(j) 6= 0⇒ i = j.
2) There exists an association variable πk ∈ A(θk−1, nk)

such that ωlk(i) = πlk(i) for all previous time steps l ∈
{1, . . . , k − 1} and for all targets i ∈ {1, . . . , nk}.

The set P(θk−1, nk,mk) inherits the permutation-symmetry
of A(θk−1, nk) and E(nk,mk). Thus, if ωk is in
P(θk−1, nk,mk), then all permutations of ωk are also in
P(θk−1, nk,mk). From this it follows that we can parti-
tion P(θk−1, nk,mk) into permutation-symmetric equivalence
classes. Each such equivalence class constitutes a posterior as-
sociation hypothesis θk. Formally, we find the set of posterior
association hypotheses θk (conditional on θk−1, nk and mk)
as the quotient set

I(θk−1, nk,mk) = P(θk−1, nk,mk))/ ∼ (12)

where “∼” signifies the equivalence relation introduced in
Definition 2. Furthermore, we define Gnk

k as the set of all
posterior association hypotheses given that |Xk| = nk. This
set is found as the union

Gnk

k =
⋃
θk−1

I(θk−1, nk,mk). (13)

The sets I(θk−1, nk,mk) are mutually disjoint under the
assumptions employed in this paper.

Having thus established the association hypotheses involved,
we can, as shown in Appendix B, write the posterior multiob-
ject density as

fk|k(Xk|Z1:k) =
∑

θk∈G
nk
k

qθk
∑

ωk∈Per(θk)

nk∏
i=1

hωk(i)(xik) (14)

where the following quantities are involved

qθk =
1

C
qθk−1λϕkP δkD (1− PD)nk−δk

µnk−nk−1

∏
j /∈Im+(ωk

k)

c(zjk)
∏

i :ωk
k(i)>0

aωk(i) (15)

aωk(i) =

∫
f(z

ωk
k(i)

k |xik) gω
1:k−1
k (i)(xik) dxik (16)

hωk(i)(xik) =


f(z

ωk
k(i)

k | xi
k)gω

1:k−1
k

(i)(xi
k)

aωk(i) if ωkk(i) > 0

gω
1:k−1
k (i)(xik) if ωkk(i) = 0.

The scalar qθk represents the score of the hypothesis θk, while
the scalar aωk(i) represents the contribution from target num-
ber i to this score. The pdf hωk(i)(xik) contains the posterior
kinematic information of target number i. Furthermore, θk−1 is
the parent hypothesis of θk, and c is a normalization constant.
REMARK 5 (The hypothesis score is well-defined). The prod-
ucts in (15) are defined in terms of any association variable
ωk within the equivalence class Per(θk). For the first product
in (15), the ordering of ωk is clearly irrelevant since the target
index i does not appear. For the second product, we notice
that aωk(i) depends on ωk(i), but not on i itself, since xik is
being integrated out in (16). Therefore, the ordering of ωk is
also irrelevant for the second product, and qθk is well-defined.
REMARK 6 (Equivalence of association variables). Any ωk ∈
Per(θk) gives rise to the same collection of posterior track
densities hωk(i)(·). Two association variables ω(1)

k and ω
(2)
k

which both are in Per(θk) may differ in the sense that
hω

(1)
k (i)(xik) 6= hω

(2)
k (i)(xik), but one can always find a per-

mutation mapping σ : {1, . . . , nk} → {1, . . . , nk} such that
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hω
(1)
k (i)(xik) = hω

(2)
k (σ(i))(xik) for all i ∈ {1, . . . , nk}. Insofar

as one is interested in identities, one is probably not so
interested in target identities, but rather in track identities,
as represented by histories of measurements or histories of
state estimates. All ωk ∈ Per(θk) are equivalent from such
a practical perspective, and all the kinematic attributes of the
association hypothesis θk can be expressed in terms of any
association variable ωk ∈ Per(θk). This means that FISST
does not need any track labels beyond what is implicitly coded
in the measurement histories to provide tracks.

REMARK 7 (The role of track labels). The idea that track
labels are required for continuity of tracks is prevalent. This
premise underlies tracking methods based on labeled random
finite sets [25, 26]. However, the discussion in Remark 6 shows
that labels are not needed for track continuity, insofar as one
accepts the definition of track used in this paper. One could
nevertheless argue that this reasoning hinges on the availability
of metadata which are not present in fk|k(Xk|Z1:k) itself, i.e.,
the hypothesis structures. If this is considered a problem, a
solution may be to extend random finite sets to a theory of
random finite sets of trajectories [27]. Nevertheless, explicit
track labels are not needed in this formulation either. It was
shown in [28] that track labels have no impact on the tracking
results in the standard multitarget Bayes filter. We refer the
reader to Sections III-D and VI-D in [20] for further discussion
on this topic.

REMARK 8 (Maintenance of structure). The posterior (14) is
of the same form as the prior (7). The maintenance of this form
validates that (7) indeed is a reasonable “induction hypothe-
sis”. Furthermore, we conclude that association hypotheses are
an integral part of the multiobject posterior insofar as the prior
can be written on this form for any previous time step.

REMARK 9 (Hypotheses are not state variables). In [6] pp.
340-341, it was claimed that the MHT treats association
hypotheses as state variables, and that this leads to some
conceptual problems. However, the mixture expression (14),
and similar expressions in, e.g., [10, 20, 26], demonstrate
that FISST allows association hypotheses to be present in
the multiobject posterior without actually entering the state
itself (which is the random set Ξk with realization Xk).
Furthermore, assigning probabilities to the association hy-
potheses do not change this. Such probabilities merely express
a partitioning of the outcome space into a countable set of
well-defined events.

In order to calculate the posterior association probabilities
inherent in (14), it is necessary to determine the number
of association variables ωk contained in Per(θk) for any
posterior association hypothesis θk. This number is given by
the multinomial coefficient

#(ωk | θk) = |Per(θk)| = nk!∏
t∈Im(θk) rt(θk)!

. (17)

EXAMPLE 1 (Enumeration of association variables). A pos-
sible association hypothesis could be

θk =

{
1 ø ø
0 0 0

}

where curly braces are used to emphasize its multiset nature.
According to this hypothesis, the following has happened:
• At time k = 1 a single target existed and gave rise to

measurement number 1.
• At time k = 2 this target was not observed. Furthermore,

two new targets were born, but also not observed.
For this association hypothesis, we have three possible asso-
ciation variables, cf. Definition 2 and Remark 3. These are[

1 ø ø
0 0 0

]
,

[
ø 1 ø
0 0 0

]
and

[
ø ø 1
0 0 0

]
.

Let us then investigate the validity of (17). For the numerator
we have that nk! = 3! = 6. For the denominator we have
two unique tracks in Im(θk). For the first of these, [1, 0]T, we
have rt(θk)! = 1!. For the second of these, [ø, 0]T, we have
rt(θk)! = 2!, and thus the demoninator is 2. Consequently, (17)
tells us that the number of association variables corresponding
to θk is 6/2 = 3.

We can partition the total probability mass into contributions
from each parent hypothesis θk−1, which are further parti-
tioned into contributions from each child hypothesis θk. This
is done by means of the set integral:

1 =

∫
fk|k(Xk |Z1:k)δXk

=
1

C

∑
θk−1∈Gk−1

∞∑
nk=nk−1

1

nk!∑
θk∈I(θk−1,nk,mk)

qθk−1
nk!∏

t∈Im(θk) rt(θk)!
P δkD (1− PD)nk−δk

λϕkµnk−nk−1

∏
j /∈Im+(ωk

k)

c(zjk)
∏

i :ωk
k(i)>0

aωk(i)

=
∑

θk−1∈Gk−1

∞∑
nk=nk−1

∑
θk∈I(θk−1,nk,mk)

qθk
1∏

t∈Im(θk) rt(θk)!
.

Let uk(θk) denote the number of unknown newborn targets
hypothesized by the association hypothesis θk. We can then
express the the posterior probability of θk as

Pr(θk |Z1:k) = qθk
1∏

t∈Im(θk) rt(θk)!

=
1

C
λϕkP δkD (1− PD)nk−δkµnk−nk−1

∏
t∈Im(θk−1) rt(θk−1)!∏
t∈Im(θk) rt(θk)! ∏

j /∈Im+(ωk
k)

c(zjk)
∏

i :ωk
k(i)>0

aωk(i)

Pr(θk−1|Z1:k−1).

=
1

C
λϕkP δkD (1− PD)nk−δkµnk−nk−1

1

uk(θk)! ∏
j /∈Im+(ωk

k)

c(zjk)
∏

i :ωk
k(i)>0

aωk(i)

Pr(θk−1 |Z1:k−1).

(18)

Equations (14) and (18) may be viewed as the key results of
this paper.
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VI. COMPARISON WITH THE STANDARD MHT UNDER
GAUSSIAN-LINEAR ASSUMPTIONS

Reid’s MHT [3] was derived under standard Gaussian-linear
assumptions. In this section we show that the FISST-MHT that
was developed in the previous section becomes very similar
to Reid’s MHT in the Gaussian-linear case.

A. Gaussian-linear assumptions

For the special case of a Gaussian-linear tracking problem
we make the following standard assumptions

f(xk|xk−1) =N (xk ; Fxk−1, Q) (19)

f(zjk|xik) =N (zjk ; Hxik, R) if zjk is gen. by xik (20)

c(zjk) =
1

V
if zjk is clutter (21)

in addition to the assumptions already listed in Section IV.
Furthermore, we assume that the state vector and observation
matrix are as in Section VII of [3]

xk = [ρx,k, ρy,k, vx,k, vy,k]
T

H =

[
1 0 0 0
0 1 0 0

]
(22)

where ρ denotes position and v denotes velocity.
It makes sense to define the birth density b(xik) as uniform

over the surveillance region with constant value 1/V , as was
done in [3]. Notice, though, that this only specifies the birth
density over position components of the state vector, and not
over velocity components. In order to address this we define
another matrix

H∗ =

[
0 0 1 0
0 0 0 1

]
(23)

such that H∗xk = [vx,k, vy,k]T. Let us also assume that the
velocity of a newborn target is a Gaussian random vector with
mean µv and covariance Pv . The birth density is then defined
as

b(xik) =
1

V
χS(Hxik)N (H∗xik ; µv, Pv). (24)

where S is the surveillance region (whose volume is V ), and
χS(·) denotes the indicator function of S.

We also make the assumption that R, Q, µv and the off-
diagonal elements of F are small relative to the size of the
surveillance region.

B. Reid’s MHT

The key development of [3] was equation (16) in that paper,
which specified the posterior probability of an association
hypothesis. Using the notation of this paper, we can rewrite
this formula as

Pr(θk|Z1:k) =
1

C
P δkD (1− PD)nk−δk

(
λ

V

)ϕk ( µ
V

)nk−nk−1

×

 ∏
i∈B(ωk)

N (z
ωk

k(i)
k ; z

ω1:k−1
k (i)

k|k−1 , S
ω1:k−1

k (i)

k|k−1 )


× Pr(θk−1|Z1:k−1) (25)

where the set

B(ωk) =
{
i such that ωkk(i) > 0 and if ωk−1

k (i) = 0

then ωlk(i) > 0 for some l > k − 1
}

contains the indices of targets which are currently as well as
previously detected, where

z
ω1:k−1

k (i)

k|k−1 =HFx
ω1:k−1

k (i)

k−1|k−1

S
ω1:k−1

k (i)

k|k−1 =H(FP
ω1:k−1

k (i)

k−1|k−1 F
T +Q)HT +R (26)

and where θk−1 is the parent hypothesis of θk. Recalling
Remark 5, we emphasize that the product in (25) attains the
same value for any ωk ∈ Per(θk).

Reid assumed Gaussian-linear kinematics in [3], and hence
used standard KF formulas to evaluate the posterior kinematic
pdf of the target states when conditioned on a particular data
association hypothesis. The exact formulas used in [3] are
not repeated here. Instead, we show how the FISST-MHT
lends itself to Gaussian-linear kinematics in Sections VI-C
and VI-D.

C. Kinematics of the Gaussian-linear FISST-MHT

In this and the next subsection we develop a Gaussian-linear
FISST-MHT based on the general FISST-MHT of Section
V. This subsection is devoted to the state estimation of the
Gaussian-linear FISST-MHT, while data association is treated
in the next subsection.

State estimation for the Gaussian-linear FISST-MHT entails
specification of the posterior target densities hωk(i)(xik) under
Gaussian-linear assumptions. Unfortunately, the presence of
the non-Gaussian birth density b(xik) means that the posterior
target densities will never be truly Gaussian. Nevertheless,
under reasonable assumptions, the deviations from Gaussianity
will not be large, and KF-based formulas can safely be used.
In order to show this we need to treat hωk(i)(xik) differently
depending on whether xik is a newborn target, whether it is
currently observed, and whether it is previously observed. This
leads to 6 different cases as shown in Figure 1.

It should be noted that only cases 2, 5 and 6 were considered
in [3]. If we interpret the new target density in [3] as a
birth density akin to (2), then the omission of the other cases
must be viewed as a flaw in Reid’s MHT, whose impact
will be studied in the remainder of this paper. If it instead
is interpreted as the density of undiscovered targets [20],
as Reid arguably intended, then the additional cases are not
needed. However, if one wants to be faithful to the standard
model, including its target birth model, and at the same time
choose the latter interpretation, then a procedure to estimate
the unknown target density such as the Poisson-component of
[10] must accompany Reid’s MHT.

1) Newborn undetected target: Case 1 results when
ωkk(i) = 0 and ωk−1

k (i) = ø. In this case it is readily apparent
that hωk(i)(xik) = b(xik).

2) Newborn detected target: Case 2 results when ωkk(i) > 0
and ωk−1

k (i) = ø. In this case the density hωk(i)(xik) will
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Fig. 1: Schematic overview of the 6 different cases for the
form of the kinematic posterior hωk(i)(xik). Only cases 2, 5
and 6 were considered in Reid’s paper [3].

be approximately Gaussian insofar as the measurement noise
matrix R is sufficiently small. We find that

hωk(i)(xik) = gω
1:k−1
k (i)(xik) b(xik)

= N (z
ωk

k(i)
k ; Hxik, R) b(xik)

≈ N (xik ; x
ωk(i)
k|k , P

ωk(i)
k|k )

where

x
ωk(i)
k|k =

[
z
ωk

k(i)
k

µv

]
and Pωk(i)

k|k =

[
R 0
0 Pv

]
. (27)

3) Already existing and so far undetected target: Case 3
results when ωlk(i) = 0 for all l > l′ and ωlk(i) = ø for all
l ≤ l′ for some l′ ∈ {1, . . . , k − 2}. In this case, hωk(i)(xik)
is a k − l′ times convolution between the transition density
N (xk ; Fxk−1, Q) and the original birth density. Insofar as
the plant noise covariance Q as well as µv and the off-diagonal
elements of F are small enough, this can be approximated by
the birth density itself:

hωk(i)(xik) =

∫
N (xik ; Fxk−1, Q)

∫
N (xk−1 ; Fxk−2, Q)

. . .N (xl′+1 ; Fxl′ , Q)b(xl′)dxl′ . . . dxk−2dxk−1

≈ b(xik).

4) Already existing target detected for the first time: Case
4 results when ωkk(i) > 0, ωk−1

k (i) = 0 and ωlk(i) ∈ {0, ø}
for all l < k. For this case, the no-death assumption implies
that there exists some l < k − 1 such that ωl

′

k (i) = ø for all
l′ ≤ l, and such that that ωl

′

k (i) = 0 for all l′ ∈ {l, . . . , k−1}.
Since Case 4 is always preceded by Case 3, we can assume
that the predicted target density is approximately equal to the
birth density, i.e., that gω

1:k−1
k (i)(xik) ≈ b(xik). It follows from

this that Case 4 is equivalent to Case 2, so that

hωk(i)(xik) ≈ N (xik ; x
ωk(i)
k|k , P

ωk(i)
k|k )

where xωk(i)
k|k and Pωk(i)

k|k are as defined in (27).

5) Previously detected target currently undetected: Case 5
results when ωkk(i) = 0 and ωlk(i) > 0 for some l < k. In this
case we find that

hωk(i)(xik) = N (xik ; Fx
ω1:k−1

k (i)

k−1|k−1 , FP
ω1:k−1

k (i)

k−1|k−1 F
T +Q).

6) Previously detected target currently detected: Case 6
results when ωkk(i) > 0 and ωlk(i) > 0 for some l < k. In
this case the standard KF-formulas yield

hωk(i)(xik) = N (xik ; x
ωk(i)
k|k , P

ωk(i)
k|k )

where

x
ωk(i)
k|k =Fx

ω1:k−1
k (i)

k−1|k−1 +Kk(z
ωk

k(i)
k −HFxω

1:k−1
k (i)

k−1|k−1 )

P
ωk(i)
k|k =(I −KkH)P

ω1:k−1
k (i)

k|k−1

P
ω1:k−1

k (i)

k|k−1 =FP
ω1:k−1

k (i)

k−1|k−1 F
T +Q

Kk =P
ω1:k−1

k (i)

k|k−1 HT(HP
ω1:k−1

k (i)

k|k−1 HT +R)−1.

The formulas of this last case correspond to the KF-based
formulas on page 845 of [3]. Other cases were not explicitly
treated in [3], but only dealt with through a somewhat vague
discussion on page 848 of [3]. Our Cases 2 and 5 can both be
viewed as special cases of this general discussion. Cases 1, 3
and 4 were not considered possible at all in [3]. Finally, we
emphasize the implications of Remark 6: In order to specify
the kinematic attributes of an association hypothesis θk, we
only need to specify the kinematic attributes of any association
variable ωk ∈ Per(θk), since since all ωk ∈ Per(θk) are
permutations of each other.

D. Probabilities of the Gaussian-linear FISST-MHT

In order to compare our hypothesis probability formula (18)
with Reid’s hypothesis probability formula (25) we need to
substitute expressions for the target contribution scalar aωk(i)

under the Gaussian-linear assumptions (19) - (24). With regard
to the cases listed in Figure 1 we notice that aωk(i) is only
defined for cases 2, 4 and 6, since aωk(i) is only evaluated for
ωkk(i) > 0.

For cases 2 and 4, i.e., for previously unobserved targets,
we find that

aωk(i) =
1

V

∫
S

N (z
ωk

k(i)
k ; ρ,R)dρ

∫
R2

N (v ; µv, Pv)dv

≈ 1

V
(28)

where the first equality only holds approximately for Case 4.
The approximation on the second line of (28) holds insofar as
R is small enough and zω

k
k(i)

k is not too close to the edge of
the surveillance region.

For Case 6, i.e., for targets which are both previously and
currently detected, it is straightforward to show that

aωk(i) =N (z
ωk

k(i)
k ; z

ω1:k−1
k (i)

k|k−1 , S
ω1:k−1

k (i)

k|k−1 ) (29)

with zω
1:k−1
k (i)

k|k−1 and Sω
1:k−1
k (i)

k|k−1 defined as in (26).
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By inserting (21), (28) and (29) into (18) we obtain the
Gaussian-linear hypothesis probability formula

Pr(θk|Z1:k) ≈ 1

C

(
λ

V

)ϕk

P δkD (1− PD)nk−δk

× 1

uk(θk)!
µnk−nk−1−dk

( µ
V

)dk
×

 ∏
i∈B(ωk)

N (z
ωk

k(i)
k ; z

ω1:k−1
k (i)

k|k−1 , S
ω1:k−1

k (i)

k|k−1 )


× Pr(θk−1|Z1:k−1). (30)

By dk we denote the number of targets which are detected for
the first time at time step k under the hypothesis θk.

E. Relationship between the Gaussian-linear FISST-MHT and
Reid’s MHT

We make four observations about how the Gaussian-linear
FISST-MHT relates to Reid’s MHT:

First, we can rest assured that all association hypotheses that
are present Reid’s MHT are also present in the FISST-MHT.
Any such association hypothesis can be interpreted as a set of
tracks, i.e., as a set of measurement histories.

Second, any association hypothesis that is present in the
FISST-MHT and not in Reid’s MHT must include a track on
a target that at some point in time existed without having been
observed. Such an association hypothesis may possibly, but
not necessarily, correspond to a multiset with several repeated
tracks. For the Poisson birth model, the FISST-MHT yields an
infinitude of such hypotheses while Reid’s MHT yields only
a finite number of hypotheses.

Third, the expressions for hypothesis probabilities are iden-
tical except from two terms which arise from the treatment of
unobserved newborn targets. That is, except from the factors
µnk−nk−1−dk and 1/uk(π)!, the expression in (30) is identical
to the expression in (25).

Fourth, the deviation between the two approaches depends
on the birth rate µ. As µ→ 0, most hypotheses not present in
Reid’s MHT will get very small posterior probabilities in the
FISST-MHT, and the two approaches become indistinguish-
able.

VII. ILLUSTRATIVE EXAMPLE

In this section we study a simple example in order to
illustrate how the Gaussian-linear FISST-MHT works with
hypotheses, and how it differs from Reid’s MHT. In this
example we are given four consecutive sets of measurements

Z1 ={z1
1}, Z2 = {z1

2 , z
2
2}, Z3 = {z1

3}, Z4 = {z1
4 , z

2
4}

where z1
1 = [1, 1]T, z1

2 = [2, 2]T, z2
2 = [2, 4]T, z1

3 = [3, 3]T,
z1

4 = [4, 2]T and z2
4 = [4, 4]T as illustrated in Figure 2. The

following kinematic matrices are used:

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , Q =


0.01

3 0 0.01
2 0

0 0.01
3 0 0.01

2
0.01

2 0 0.01 0
0 0.01

2 0 0.01


H =

[
1 0 0 0
0 1 0 0

]
, R =

[
0.01 0

0 0.01

]
.

ρx

ρy

z1
1

z1
2

z2
2

z1
3

z2
4

z1
4

1 2 3 4 5

1

2

3

4

5

Fig. 2: Simulated scenario.

Furthermore, we use the tuning constants λ = 0.25, V = 25
and PD = 0.7.

It seems fairly likely that at least one target is present,
moving from (1, 1) at k = 1 to (4, 4) at k = 4. It also
seems plausible that a second target is moving from (2, 4)
at k = 2 to (4, 2) at k = 4. The measurement z1

3 could have
been generated by both these targets. These possibilities can
be represented by three association hypotheses:

θ
(1)
4 =


1
1
1
2

 , θ
(2)
4 =


1 ø
1 2
1 0
2 1

 , θ
(3)
4 =


1 ø
1 2
0 1
2 1

 .

We write association hypotheses using braces in order to em-
phasize their multiset nature, cf. Remark 3. More concretely,
the notation of these expressions should be understood as
follows:

According to the hypothesis θ
(1)
4 there exists one target

during time steps 1-4. This target has given rise to the
measurements z1

1 , z1
2 , z1

3 and z2
4 at time steps 1, 2, 3 and

4, respectively.
According to the hypothesis θ

(2)
4 there exist two targets

during time steps 2-4, of which one existed also at time step 1.
The target which existed already at time step 1 has given rise
to the same measurements as the target hypothesized by the
hypothesis θ(1)

4 . The other target that is hypothesized by the
hypothesis θ(2)

4 has give rise to measurement z2
2 at time step

2 and measurement z1
4 at time step 4, while being undetected

at time step 3.
Let us first investigate the case of a moderate birth rate

µ = 0.25 in some detail. Reid’s MHT generates 602 hy-
potheses for the simulated scenario, while the FISST-MHT
generates an infinite number of hypotheses in the absence
of pruning. By pruning all hypotheses which contain more
than 3 simultaneously newborn targets, and all hypotheses
whose probabilities fall below 0.001, we reduce the numbers
of hypotheses to 27 for Reid’s MHT and to 300 for the FISST-
MHT.
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The top 7 hypotheses generated by Reid’s MHT are
1
1
1
2

∣∣∣∣∣∣∣∣
1 ø
1 ø
1 ø
2 1

∣∣∣∣∣∣∣∣
1 ø
1 2
1 0
2 1

∣∣∣∣∣∣∣∣
1 ø
1 2
0 1
2 1

∣∣∣∣∣∣∣∣
1 ø
1 2
1 0
2 0

∣∣∣∣∣∣∣∣
1 ø ø
1 2 ø
1 0 ø
2 0 1

∣∣∣∣∣∣∣∣
ø
2
1
1


with corresponding posterior probabilities{

0.499 0.349 0.044 0.044 0.031 0.022 0.002
}
.

The top 7 hypotheses generated by the FISST-MHT are
1
1
1
2

∣∣∣∣∣∣∣∣
1 ø
1 ø
1 ø
2 1

∣∣∣∣∣∣∣∣
1 ø
1 ø
1 0
2 1

∣∣∣∣∣∣∣∣
1 ø
1 2
1 0
2 1

∣∣∣∣∣∣∣∣
1 ø
1 2
0 1
2 1

∣∣∣∣∣∣∣∣
1 ø
1 ø
1 ø
2 0

∣∣∣∣∣∣∣∣
1 ø
1 2
1 0
2 0


with corresponding posterior probabilities{

0.373 0.261 0.078 0.033 0.033 0.028 0.024
}
.

That is, the top hypothesis of both approaches is θ(1)
4 , with

posterior probability 0.499 and 0.373 under Reid’s MHT and
the FISST-MHT, respectively. The hypothesis θ(2)

4 comes as
number 3 and 4 under the two MHT’s, while the hypothesis
θ

(3)
4 comes as number 4 and 5. Hypothesis number 6 of the

FISST-MHT contains an unobserved target, while hypothesis
number 3 of the FISST-MHT contains a target which is born
before it is observed. Neither is allowed in Reid’s MHT.
Except for these two hypotheses, the top 5 hypotheses are
identical for both approaches.

The top hypotheses of the FISST-MHT naturally score lower
probabilities than the top hypotheses in Reid’s MHT, since the
FISST-MHT must distribute the probability mass over more
hypotheses. Therefore, a direct comparison between the two
collections of posterior probabilities is not entirely meaningful.
Instead, we should for each Reid-hypothesis θ sum together
the probabilities of all FISST-MHT hypotheses which agree
with θ insofar as non-Reid elements are ignored. For example,
both the first and the sixth FISST-MHT hypotheses above
agree with the first Reid-hypothesis in this sense. Merging
FISST-MHT hypotheses in this manner yields the following
list of aggregate posterior probabilities for the FISST-MHT
hypotheses corresponding to the top 7 Reid-hypotheses:{

0.414 0.410 0.048 0.047 0.034 0.043 0.002
}
.

Finally, for this particular case, we find that only 0.001 of the
FISST-MHT’s probability mass is assigned to hypotheses not
agreeing with any Reid-hypotheses.

Let us then look at how the hypothesis probabilities behave
as functions of the birth rate µ. In Figure 3 we have displayed
the probability of the generally most plausible hypothesis
θ

(1)
4 for various µ under both Reid’s MHT and the FISST-

MHT. Furthermore, the the dashed line also displays the
aggregate probability of FISST-MHT hypotheses which agree
with θ1

4 . This figure illustrates how the two approaches become
identical as µ → 0. The discrepancy between the aggregate
probabilities and the probabilities in Reid’s MHT for higher
values of µ can be understood from the following perspective:
Reid’s MHT treats newly discovered targets as newborn, while

Birth rate μ

P
r(
π
(1

)
4

|Z
1
:4
)

Reid
Aggr. FISST-MHT

FISST-MHT

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1

Fig. 3: Posterior probability of the particular hypothesis θ(1)
4

as a function of the target birth rate µ.

the FISST-MHT also allows for newly discovered targets to
have been born at earlier time steps. Thus, the FISST-MHT
gets a higher effective birth rate, which amounts to shifting
the red curve rightwards, where its values are lower.

A. Details of hypothesis enumeration

As a final example, let us study in greater detail how
association hypotheses and association variables are generated
from a parent hypothesis. Assume that we somehow know that

θ∗2 =

{
1 ø
1 2

}
is the one and only true hypothesis at time step 2. That is,
we know that one target originated at k = 1 and caused the
measurements z1

1 and z1
2 , and that another target originated at

k = 2 and caused the measurement z2
2 .

Conditional on this hypothesis, the set A(θ∗2 , n3) of pre-
dicted association variables contains 0 elements for n3 = 0
and n3 = 1. It contains 2 elements for n3 = 2 and 6 elements
for n3 = 3. It contains 12 elements for n3 = 4, and so
on. Looking more closely at the case n3 = 4, we find that
A(θ∗2 , n3) contains the following association variables:

 ø ø 1 ø
ø ø 1 2
0 0 0 0

 ,
 ø ø ø 1

ø ø 2 1
0 0 0 0

 ,
 ø 1 ø ø

ø 1 ø 2
0 0 0 0

 ,
 ø 1 ø ø

ø 1 2 ø
0 0 0 0

 ,
 ø ø ø 1

ø 2 ø 1
0 0 0 0

 ,
 ø ø 1 ø

ø 2 1 ø
0 0 0 0

 ,
 1 ø ø ø

1 ø ø 2
0 0 0 0

 ,
 1 ø ø ø

1 ø 2 ø
0 0 0 0

 ,
 1 ø ø ø

1 2 ø ø
0 0 0 0

 ,
 ø ø ø 1

2 ø ø 1
0 0 0 0

 ,
 ø ø 1 ø

2 ø 1 ø
0 0 0 0

 ,
 ø 1 ø ø

2 1 ø ø
0 0 0 0

 .

The product set P(θ∗2 , n3,m3) contains 60 posterior associa-
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tion variables for n3 = 4 and m3 = 1 1:
 ø ø 1 ø

ø ø 1 2
0 0 0 0

 ,
 ø ø 1 ø

ø ø 1 2
0 0 0 1

 ,
 ø ø 1 ø

ø ø 1 2
0 0 1 0

 ,
 ø ø 1 ø

ø ø 1 2
0 1 0 0

 , . . .
. . . ,

 ø 1 ø ø
2 1 ø ø
0 0 0 1

 ,
 ø 1 ø ø

2 1 ø ø
0 0 1 0

 ,
 ø 1 ø ø

2 1 ø ø
0 1 0 0

 ,
 ø 1 ø ø

2 1 ø ø
1 0 0 0

 .

On the other hand, the quotient set I(θ∗2 , n3,m3) contains only
4 different association hypotheses for n3 = 4 and m3 = 1:
 ø ø 1 ø

ø ø 1 2
0 0 0 0

 ,

 ø ø 1 ø
ø ø 1 2
0 0 0 1

 ,

 ø ø 1 ø
ø ø 1 2
0 0 1 0

 ,

 ø ø 1 ø
ø ø 1 2
0 1 0 0


 .

Notice that only the last hypothesis in I(θ∗2 , n3,m3) can be
interpreted as a set, while the other hypotheses are more
appropriately interpreted as multisets due to repeated tracks.

VIII. CONCLUSION

In [17], Mahler argues against several misconceptions about
FISST. Misconception number 10 reads “The right model
of the multitarget state is that used in the multihypothesis
tracking (MHT) paradigm, not the RFS paradigm”. In this
paper we have, in contrast, shown that there is no conflict
between the two paradigms to begin with. Reid’s MHT is
an approximation of the multitarget Bayes filter, obtained by
ignoring target death and ignoring the existence of unobserved
targets. In the special case with no target births and no
target deaths, and Gaussian-linear kinematics, Reid’s MHT is
identical to the multitarget Bayes filter if all hypotheses are
retained. Also, if all hypotheses involving unknown targets are
discarded from the multitarget Bayes filter, then Reid’s MHT
results. In a related conference paper [20] we have also shown
that Reid’s MHT follows exactly if it is provided with the
unknown target density from the factorization of the multiob-
ject posterior that was proposed in [10]. A key observation
underlying these conclusions is that Reid’s MHT does not
assign measurements to targets, but only to tracks, which here
are defined as temporal sequences of measurements. Based on
this, a case can be made that practical MHT methods are just
as principled approximations of the multitarget Bayes filter as
the PHD, CPHD and MeMBer filters. The approximations are
of a very different nature, and the suitability of the different
approximations may depend on the application.

Both the MHT formulations proposed in [20] and in this
paper may be used as a starting point for research on practical
MHT methods. Further inspiration from FISST, or gener-
alizations of FISST such as [27], together with techniques
for hypothesis aggregation, as studied in, e.g., [19], will be
interesting research topics for the near future.
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APPENDIX A
DERIVATION OF THE PREDICTED DENSITY

In this first appendix we show that the predicted density
fk|k−1(Xk |Z1:k−1) is as given by (10) in Section V-C.

To begin with, we evaluate the prediction integral in the
Bayes recursion (3) by inserting the multitarget Markov model
(5) and the prior (7) into (3). This leads to a quadruple sum
over prior target cardinalities nk−1, association variables γ of
the multiobject transition density, prior association hypotheses
θk−1 and prior association variables ωk−1:

fk|k−1(Xk |Z1:k−1)

=

∫
fΞk|Ξk−1

(Xk |Xk−1)fk−1|k−1(Xk−1 |Zk−1)δXk−1

= e−µ
∞∑

nk−1=0

1

nk−1!

∑
γ

µnk−nk−1

∑
θk−1∈G

nk−1
k−1

qθk−1

∑
ωk−1∈Per(θk−1)

∏
i : γ(i)=0

b(xik)∫ ∏
i : γ(i)>0

f(xik |xγ(i)
k−1)

nk−1∏
s=1

fωk−1(s)(xsk−1)dx1
k−1 · · · dx

nk−1

k−1 . (31)

It is possible to simplify this expression a great deal. By
exploiting the function gπ

1:k−1
k (i)(·) defined in (11) we can

write the kinematic integral in (31) more compactly:

I =

∫ ∏
i : γ(i)>0

f(xik |xγ(i)
k−1)

nk−1∏
s=1

fωk−1(s)(xsk−1) dx1
k−1 · · · dx

nk−1

k−1

=

∫ ∏
i : γ(i)>0

f(xik |xγ(i)
k−1)

∏
i : γ(i)>0

fωk−1(γ(i))(x
γ(i)
k−1) dx1

k−1 · · · dx
nk−1

k−1

=
∏

i : γ(i)>0

∫
f(xik |xγ(i)

k−1)fωk−1(γ(i))(x
γ(i)
k−1) dxik−1

=
∏

i : γ(i)>0

gωk−1(γ(i))(xik). (32)

The second equality of (32) follows because
nk−1∏
s=1

fωk−1(s)(xsk−1) =
∏

i : γ(i)>0

fωk−1(γ(i))(x
γ(i)
k−1). (33)

The third equality follows because the multiple integral over
all xik−1 can be factorized into single integrals over each
xik−1, and the fourth equality is simply due to the definition
of gπ

1:k−1
k (i)(·).
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In order to bring (31) onto the same form as our proposed
expression (10) for the predicted density, we need to reduce the
double sum over γ and ωk−1 to a single sum over predicted
association variables πk. For this, we provide an alternative
definition of πk, uniquely given by γ and ωk−1, as follows:

πk(i) =

{
[ωk−1(γ(i))T, 0]T if γ(i) > 0

[ø, . . . , ø, 0]
T if γ(i) = 0.

(34)

In order to show that the set of πk’s defined according to (34)
is identical to the set A(θk−1, nk), we show that these πk’s
satisfy the requirements in the definition of A(θk−1, nk), and
that all elements in A(θk−1, nk) must satisfy (34).

Regarding the first requirement in the definition of
A(θk−1, nk), it is clear that for any πk as defined in (34),
all its tracks πk(i) must be on one of the two allowed forms.

Regarding the second requirement, the restricted surjectivity
of γ ensures that there is some i ∈ {1, . . . , nk} such that
γ(i) = s for all s ∈ {1, . . . , nk−1}. Consequently, there is
one i ∈ {1, . . . , nk} such that π1:k−1

k (i) = ωk−1(s) for all
tracks ωk−1(s) in any chosen ordering of θk−1. This applies
also for repeated tracks. Therefore, there are exactly rt(θk−1)
targets i such that π1:k−1

k (i) = t for any distinct track t ∈ θk−1

as required. Conversely, for any element πk ∈ A(θk−1, nk) we
can find a function π∗k given by (34) such that πk = π∗k.

We have thus shown that the sum over γ and ωk−1 can be
written as a sum over πk ∈ A(θk−1, nk). However, there is
not a one-to-one correspondence between terms in this double
sum and elements in A(θk−1, nk), since several combinations
of γ and ωk−1 will lead to the same πk. We find this number
as

#(ωk−1, γ |πk, θk−1) = #(ωk−1|θk−1)#(γ|ωk−1, πk).

We recall that

#(ωk−1|θk−1) =
nk−1!∏

t∈Im(θk−1) rt(θk−1)!
.

All of these ωk−1’s are compatible with the given πk if a
suitable γ is chosen. Without the possibility of repeated tracks,
γ would be given uniquely by the combination of ωk−1 and πk.
However, the presence of repeated tracks means that several
γ’s may be compatible, and the number of compatible γ’s is
given by

#(γ|ωk−1, πk) =
∏

t∈Im(θk−1)

rt(θk−1)! (35)

This is illustrated in Example 2. It follows from this that

#(ωk−1, γ |πk, θk−1) =nk−1!. (36)

We can now return to the summations in (31), where (36)
enables us to cancel the nk−1! from the denominator of the
set integral:

1

nk−1!

∑
γ

∑
ωk−1∈Per(θk−1)

µnk−nk−1

∏
i : γ(i)=0

b(xik)
∏

i : γ(i)>0

gωk−1(γ(i))(xik)

=
∑

πk∈A(θk−1,nk)

µnk−nk−1

nk∏
i=1

gπ
1:k−1
k (i)(xik)

Thus we arrive at the desired expression

fk|k−1(Xk |Z1:k−1) = e−µ
∑

θk−1∈Gk−1

qθk−1

µnk−nk−1

∑
πk∈A(θk−1,nk)

nk∏
i=1

gπ
1:k−1
k (i)(xik).

EXAMPLE 2 (The number of possible permutation mappings).
Here we provide an illustratory example of how the formula
#(γ|ωk−1, πk) =

∏
t∈Im(θk−1) rt(θk−1)! works. Let the pre-

dicted association variable be

πk =

[
1 0 0 ø ø
0 0 0 0 0

]
and let the prior association variable be

ωk−1 =
[
0 0 1

]
.

These are compatible if and only if the permutation mapping
γ is one of the following:[

3 1 2 0 0
]

or
[
3 2 1 0 0

]
.

We see that the number of compatible permutation mappings
is 2! as claimed by the formula.

APPENDIX B
DERIVATION OF THE POSTERIOR DENSITY

In this second appendix we show that the posterior density is
given by (14) in Section V-D. Inserting the likelihood (6) and
the predicted density (10) into Bayes rule yields a triple sum
over prior association hypotheses θk−1, predicted association
variables πk and association variables ξ of the likelihood:

fk|k(Xk |Z1:k) =
1

C̃
fΣk|Ξk

(Zk |Xk)fΞk|Σk−1
(Xk |Z1:k−1)

=
1

C

[ ∑
ξ∈E(nk,mk)

λϕkP δkD (1− PD)nk−δk

∏
j /∈Im+(ξ)

c(zjk)
∏

i:ξ(i)>0

f(z
ξ(i)
k |xik)

]
[ ∑
θ∈Gk−1

qθk−1

∑
πk∈A(θk−1,nk)

µnk−nk−1

nk∏
s=1

gπ
1:k−1
k (s)(xsk)

]
=

1

C

∑
θ∈Gk−1

qθk−1

∑
πk∈A(θk−1,nk)

∑
ξ∈E(nk,mk)

λϕkµnk−nk−1

P δkD (1− PD)nk−δk
∏

j /∈Im+(ξ)

c(zjk)

∏
i:ξ(i)>0

f(z
ξ(i)
k |xik)

nk∏
s=1

gπ
1:k−1
k (s)(xsk). (37)

The last two sums in (37) can be replaced by a sin-
gle sum over elements in the product set of A(θk−1, nk)
and E(nk,mk). This product set is isomorphic to the set
P(θk−1, nk,mk) that was introduced in Section V-D. To see
this, let us define the association variable ωk according to

ωk(i) = [π1:k−1
k (i)T, ξ(i)]T (38)
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Any such ωk satisfies the two criteria for membership
in P(θk−1, nk,mk), and all elements P(θk−1, nk,mk)
can be constructed in this manner. For any element in
P(θk−1, nk,mk) the corresponding πk and ξ are given
uniquely. This allows us to write the posterior density as

fk|k(Xk |Z1:k) =
1

C

∑
θk−1∈Gk−1

qθk−1

∑
ωk∈P(θk−1,nk,mk)

λϕk

µnk−nk−1P δkD (1− PD)nk−δk
∏

j /∈Im+(ωk
k)

c(zjk)

∏
i :ωk

k(i)>0

f(z
ωk

k(i)
k |xik)

nk∏
s=1

gω
1:k−1
k (s)(xsk). (39)

According to the definition of the posterior hypothesis col-
lection I(θk−1, nk,mk), the second sum in (39) can also be
written in terms of a double sum over the sets I(θk−1, nk,mk)
and Per(θk). Furthermore, since the sets I(θk−1, nk,mk) are
mutually disjoint over θk−1, we can replace the sums over
Gk−1 and I(θk−1, nk,mk) by a single sum over Gnk

k as
defined in (13). From these manipulations, (39) becomes a
double sum of the same form as (14).

The last two products in (39) can be rewritten as two
products over i ∈ {1, . . . , nk} such that ωkk(i) = 0 and
ωkk(i) > 0, respectively. This is done by writing the products
in terms of the posterior track density hωk(i)(xik) and the score
contribution aωk(i):∏

i :ωk
k(i)>0

f(z
ωk

k(i)
k |xik)

nk∏
s=1

gω
1:k−1
k (s)(xsk)

=
∏

i :ωk
k(i)=0

hωk(i)(xik)
∏

i :ωk
k(i)>0

aωk(i)hωk(i)(xik).

Thus, the posterior becomes

fk|k(Xk|Z1:k)

=
1

C

∑
θk∈G

nk
k

qθk−1

∑
ωk∈Per(θk)

λϕkµnk−nk−1

P δkD (1− PD)nk−δk
∏

j /∈Im+(ωk
k)

c(zjk)

∏
i :ωk

k(i)=0

hωk(i)(xik)
∏

i :ωk
k(i)>0

aωk(i)hωk(i)(xik). (40)

The final expression (14) follows from (40) when all the non-
pdf terms in (40) are collected into the scalar qθk as defined
in (15).
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