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SAMMENDRAG

Vi viser at den preprojektive algebraen Pk(Q) til et kogger Q er isomorf med
tensor algebraen TkQ(θ), hvor θ = Ext1

kQ(D(kQkQ), kQ). I tillegg konstruerer
vi en kvasi-isomorfi mellom Πn(A) og Vn(Πn(A)), hvor Πn(A) er n-Calabi-Yau
fullføringen av en homologisk glatt algebra A og Vn er det n’te skiftet av den
induserte predualitets funktoren p̊a kategorien av bimoduler over Πn(A). Til
slutt viser vi at 2-Calabi-Yau fullføringen Π2(kQ) av veialgebraen kQ er kvasi-
isomorf til den preprojektive algebraen Pk(Q).



ABSTRACT

We show that the preprojective algebra Pk(Q) of a quiver Q is isomorphic to
the tensor algebra TkQ(θ), where θ = Ext1

kQ(D(kQkQ), kQ). We also construct
a quasi-isomorphism between Πn(A) and Vn((Πn(A)), where Πn(A) is the n-
Calabi-Yau completion of a homologically smooth algebra A and Vn is the nth
shift of the induced preduality functor on the category of bimodules over Πn(A).
Finally we show that the 2-Calabi-Yau completion Π2(kQ) of the path algebra
kQ is quasi-isomorphic to the preprojective algebra Pk(Q).
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1. INTRODUCTION

1.1 Purpose and motivation

There are two main objects of study in this thesis, the preprojective algebra of
a quiver, and the n-Calabi-Yau completion of a homologically smooth algebra.
The preprojective algebra of a quiver Q is given by

Pk(Q) = kQ̄/(ρ)

where Q̄ is the quiver obtained by adding an arrow α∗ : y → x for each arrow
α : x→ y in Q, and where

ρ =
∑
α∈Q1

[α, α∗] =
∑
α∈Q1

(αα∗ − α∗α)

The preprojective algebra appears in diverse situation, for example by Kron-
heimer in [12] for studying problems in differential geometry, and in Lusztig’s
perverse sheaf approach to quantum groups (see [13], [14], [15]). There is a well
known isomorphism

Pk(Q) ∼= TkQ(θ)

where TkQ(θ) is the tensor algebra of the module θ = Ext1
kQ(D(kQkQ), kQ). We

will give a more detailed version of the proof in [3] for this. It is also well known
that Pk(Q) is the sum of the preprojective modules of kQ. We will give a proof
of this in subsection 2.4 using the isomorphism above. This will in particular
imply that Pk(Q) is finite dimensional if and only if Q is Dynkin.
Let A be a finite dimensional algebra over the field k. We say that A is homo-
logically smooth if it has finite global dimension. In the second part of the thesis
we will consider the n-Calabi-Yau completion Πn(A) of a finite dimensional ho-
mologically smooth algebra A. This is the differential graded algebra

Πn(A) = TA(θA) = A⊕ θA ⊕ θA ⊗A θA ⊕ ...

where θA = ΘA[n − 1] and ΘA is the inverse dualizing complex of A given by
taking a homotopically projective resolution of the chain complex

RHomAe(A,Ae)

where Ae = A⊗kAop. This is a special case of what Keller studies in section 4 of
[7]. Let A = EndC(T ) where C is the derived category of quasi-coherent sheaves
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on a smooth algebraic variety X of dimension n − 1 and T is a tilting object
in C. Then the derived category of quasi-coherent sheaves on the total space
of the canonical bundle of X is triangle equivalent to the derived category of
Πn(A) (see [19]). Also the n-Calabi-Yau completion corresponds to Ed Segal’s
cyclic composition under Koszul diality (see [18]). Furthermore in [6] Keller
claims that the preprojective algebra Pk(Q) of a non-Dynkin quiver Q is quasi-
isomorphic to Π2(kQ), the 2-Calabi-Yau completion of the path algebra kQ,
which gives an equivalence of the derived categories D(Π2(kQ)) and D(Pk(Q)).
We will show this in subsection 5.3.

Calabi-Yau categories (see [6] for the definition) plays an important in homo-
logical mirror symmetry and in categorification of cluster algebras. The category
of modules over the preprojective algebra has a 2-Calabi-Yau property which
Geiss-Leclerc-Schrer uses (see [4]). Also Kontsevich-Soibelman interpretation
of cluster transformations for studying Donaldson-Thomas invariants and sta-
bility structures uses the Calabi-Yau property (see [11]). In subsection 4.8 of
[7] Keller proves that Db(Πn(A)) is n-Calabi-Yau by showing the existence of a
quasi-isomorphism

f : B → RHomBe(B,Be)[n]

where B = Πn(A). We will give a proof of this result based on Keller’s proof,
but with more details. Unfortunately, due to time limits there is one detail of
the proof which we won’t verify is true.

1.2 Contents

The main object of study in section 2 is Pk(Q), the preprojective algebra of
a quiver. We show the well known result that Pk(Q) is isomorphic to TkQ(θ)
(Theorem 2.13) where θ = Ext1

kQ(D(kQkQ), kQ). Our proof is a more detailed
version of the one given in [3]1. In order to do this we need introduce the concept
of derivations. As a necessary tool we also show that any module over the path
algebra kQ has a canonical projective resolution. Finally in subsection 2.4 we
use Theorem 2.13 to show that the preprojective algebra is finite dimensional if
and only if Q is Dynkin.

In section 3 we introduce differential graded algebras and modules. We de-
fine the shift M [n] of a dg module, the tensor product M ⊗A N of two dg
modules, and the chain complex HomA(M,N) of graded maps between M and
N . We also investigate how these operations interact. We define differential
graded categories in 3.6, and we show that we have a dg category Cdg(A) with
morphism sets HomA(M,N) in 3.7. We describe the homotopy category and
the derived category of a dg algebra in 3.9 and 3.10. All of this material is well
known and can also be found in [8], [9] and [10].

1 For a different proof see [17]
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In section 4 we investigate preduality functors. We show in proposition 4.2
that a dg algebra A equipped with an involution τ : A → Aop gives us a pred-
uality functor on Cdg(A). We also prove that the shift of a preduality functor
is still a preduality functor (proposition 4.3). Finally in 4.4 we investigate how
the preduality functors relate when we have a morphism of dg algebras which
commute with the involution. Most of this material is taken from [7]

We define the n-Calabi-Yau completion B of a homologically smooth algebra
A in section 5. Our main theorem is 5.1, which has as a consequence that the
derived category of B is n-Calabi-Yau. Except for one detail we give a complete
proof of Theorem 5.1 in subsection 5.2. It is based on the proof given for
Theorem 4.8 in [7]. In subsection 5.3 we show that the preprojective algebra of
a non-Dynkin quiver is quasi-isomorphic to the 2-Calabi-Yau completion of the
the path algebra.

1.3 Notation and terminology

Throughout this thesis k will always be a commutative ring. In section 2, 4 and
5 k will be a field.

A k-algebra is a ring A together with a ring morphism

f : k → A

such that Im f ⊂ Z(A) where Z(A) is the center of A. We let ModA (modA)
denote the category of (finitely generated) modules over the k-algebra A. When
k is a field we have the duality functor D = Homk(−, k) : modA→ mod(Aop).

A graded k-algebra A is a graded k-module

A =
⊕
i∈Z

Ai

with an algebra structure such that if a ∈ Ai and b ∈ Aj , then a · b ∈ Ai+j .
An A-algebra is a ring B together with a ring morphism f : A → B. If B1

and B2 are A-algebras with morphisms f1 : A → B1 and f2 : A → B2 then a
A-algebra morphism φ : B1 → B2 is a ring morphism satisfying φ ◦ f1 = f2.

If M is an A-bimodule satisfying r ·m = m · r for all r ∈ k, m ∈M we have
the tensor algebra

TA(M) =

∞⊕
n=0

Mn

where Mn = M ⊗AM ⊗A ... ⊗AM is the tensor product taken n times. This
is a graded k-algebra with multiplication given by

m · n = m⊗ n ∈Mm ⊗AMn = Mm+n
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for m ∈ Mm and n ∈ Mn. Since TA(M) contains A as a subalgebra it will be
an A-algebra. The ideal

∞⊕
n=1

Mn

of TA(M) is called the augmentation ideal. If B is an A-algebra and f : M → B
is a morphism of A-bimodules we get an induced morphism F : TA(M)→ B of
A-algebras given by

F (m1 ⊗m2 ⊗ ...⊗mn) = f(m1) · f(m2) · ... · f(mn)

A chain complex M over a ring A is a graded A module

M =

∞⊕
i=−∞

M i

with a differential d : M →M of degree 1 satisfying d ◦ d = 0. We denote by

dn : Mn →Mn+1

the restriction of d to Mn. We set Zn(M) = Ker dn and Bn+1(M) = Im dn.
Since d2 = 0 we have that Bn(M) ⊂ Zn(M). The nth homology of M is

Hn(M) = Zn(M)/Bn(M)

A chain map f : M → N is a k module morphism satisfying f ◦ d = d ◦ f . A
quasi-isomorphism is a chain map that induces an isomorphism in homology.

If we have two chain complexes M and N we can form the chain comples
M ⊗k N with

(M ⊗k N)n =
⊕
i+j=n

M i ⊗k N j

and where the differential is given by

d(m⊗ n) = dm⊗ n+ (−1)|m| ·m⊗ dn

There is a natural isomorphism of chain complexes

τ : M ⊗k N → N ⊗kM

defined by

τ(m⊗ n) = (−1)|m|·|n| · (n⊗m) (1.1)



2. THE PREPROJECTIVE ALGEBRA OF A QUIVER

In this section all modules will be left modules unless stated otherwise.
Let Q = (Q0, Q1) be a finite quiver without cycles, where Q0 are the set of

vertices and Q1 are the set of arrows. Let k be a field. We have a quiver Q̄
obtained from Q by adding an arrow α∗ : j → i for each arrow α : i → j in Q.
The preprojective algebra of the quiver Q is defined as

Pk(Q) = kQ̄/(ρ)

where

ρ =
∑
α∈Q1

[α, α∗] =
∑
α∈Q1

(αα∗ − α∗α)

(see [17]). Note that kQ can be identified as a subalgebra of Pk(Q). Consider
the kQ-bimodule Ext1

kQ(D(kQkQ), kQ) It has a natural kQ bimodule structure,
where the left module structure is inherited from the right kQ module structure
of D(kQkQ), and the right structure is inherited from the right module structure
of kQ. The main goal in this section is to show that there exists an isomorphism

Pk(Q) ∼= TkQ(θ)

which acts as identity on kQ, and which maps the arrows in Q∗1 onto the aug-
mentation ideal of TkQ(θ), where θ = Ext1

kQ(D(kQkQ), kQ) The subsections
2.1, 2.2 and 2.3 will be devoted to developing the necessary tools, and proving
this result. It is an expanded version of the proof of Theorem 3.1 in [3]. In
subsection 2.4 we will show that the preprojective algebra is finite dimensional
if and only if Q is a Dynkin quiver.

2.1 Derivations

Here A will be a k-algebra, where k is a field. The A bimodule Ae = A⊗k Aop

will have a natural ring structure given by

(a⊗ b) · (c⊗ d) = ac⊗ bd

for a, c ∈ A, b, d ∈ Aop. A bi-A-module M will be left Ae-module via

(a⊗ b) ·m = a ·m · b

Conversly any left Ae-module will also be a bi-A-module in the natural way.
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Definition 2.1. Let M be an A bimodule. A k-derivation

D : A→M

is a k-linear map such that

D(a · b) = D(a) · b+ a · D(b)

The collection of all k-derivations from A to M will be denoted by Der(A,M).

We want to construct a k-derivation satisfying a universal property. Consider
the A-bimodule

A⊗k A

with module structure given by

a1(a⊗ b)a2 = a1a⊗ ba2

for a, a1, a2, b ∈ A. The multiplication map

m : A⊗k A→ A with m(a⊗ b) = a · b

will then be an A-bimodule morphism. Therefore the kernel

Ω1A = ker(m)

will be an A bimodule. There is also a natural k derivation

d : A→ Ω1A

given by

d(a) = a⊗ 1− 1⊗ a

Proposition 2.2. Let D : A→M be a k-derivation. Then there exists a unique
Ae morphism

ΘD : Ω1A→M

such that the diagram

A M

Ω1A

D

d
ΘD

commutes.
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This results implies that there is a natural isomorphism

HomAe(Ω1A,M) ∼= Der(A,M)

given by sending f ∈ HomAe(Ω1A,M) to f ◦ d ∈ Der(A,M).

Proof. Assume D is a derivation from A to M . This induces a left A-module
morphism

D̄ : A⊗k A→M

given by

D̄(a⊗ b) = a · D(b)

for a, b ∈ A. Composing this with the inclusion of Ω1A into A ⊗k A we get a
left A morphism

ΘD : Ω1A→M

We show that this will also be a right A module morphism. So assume

n∑
i=1

ai ⊗ bi ∈ Ω1A so

n∑
i=1

ai · bi = 0

and let b ∈ A. The right action is given by

n∑
i=1

(ai ⊗ bi) · b =

n∑
i=1

ai ⊗ (bi · b)

Now we get that

ΘD(

n∑
i=1

ai ⊗ (bi · b)) =

n∑
i=1

ai · D(bi · b) =

n∑
i=1

ai · D(bi) · b+

n∑
i=1

ai · bi · D(b)

and since

n∑
i=1

ai · bi · D(b) = 0 and

n∑
i=1

ai · D(bi) · b = ΘD(

n∑
i=1

ai ⊗ bi) · b

it follows that

ΘD(

n∑
i=1

ai ⊗ (bi · b)) = ΘD((

n∑
i=1

ai ⊗ bi)) · b

so ΘD is a right A module morphism. Now a simple calculation also gives us
that

ΘD ◦ d = D

and hence we have shown the existence part of the theorem. Uniqueness comes
from the fact that the image of d generates Ω1A as an A-bimodule.
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Now let M = A ⊗k A. Then Der(A,A ⊗k A) has a A-bimodule structure.
Let ∆ ∈ Der(A,A⊗k A) be the derivation given by

∆(a) = a⊗ 1− 1⊗ a

The sub A-bimodule of Der(A,A⊗kA) generated by ∆ will be denoted by A∆A.
We want to show that there is an A-bimodule isomorphism

Der(A,A⊗k A)/A∆A ∼= Ext1
A(D(A), A)

In order to do this we need some preliminary results.

Lemma 2.3. Let X be a left A module and Y a finite dimensional right A
module. Then there exists A-bimodule isomorphisms

X ⊗k Y
η−→ HomA(A⊗k DY,X)

given by

η(x⊗ y)(a⊗ f) = f(y)a · x

with x ∈ X, y ∈ Y , a ∈ A and f ∈ DY , and where the left A module structure
of A ⊗k DY comes from the left A module structure of A, the left A module
structure of HomA(A⊗kDY,X) comes from the right A module structure of A,
and the right A module structure of HomA(A⊗k DY,X) comes from the left A
module structure of DY .

Proof. It is easy to see that η is an A bimodule morphism, so we only need to
show that η is bijective. We note first that Y and DY have the same dimension
over k, which we will call n. We choose a basis e1, e2, ... en for Y , which gives
us a dual basis e∗1, e∗2, ... e∗n for DY . This induces an isomorphism

A⊗k DY ∼=
n⊕
i=1

A

given by sending a ⊗ e∗i to (0, 0, ..., 0, a, 0, ..., 0) where a is in component i of
n⊕
i=1

A. As k-vector spaces we therefore have isomorphisms

HomA(A⊗k DY,X) ∼= HomA(

n⊕
i=1

A,X) ∼=
n⊕
i=1

HomA(A,X) ∼=
n⊕
i=1

X

We also have a k-isomorphism

n⊕
i=1

X ∼= X ⊗k Y
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given by sending (x1, x2, ..., xn) to x1 ⊗ e1 + x2 ⊗ e2 + ...+ xn ⊗ en. We denote
the composition of these maps by δ, so

δ : HomA(A⊗k DY,X)→ X ⊗k Y

Now a simple calculation shows that η ◦ δ = 1 and δ ◦ η = 1, so η is bijective.
Since η is also an A bimodule morphism we get the result.

Lemma 2.4. Let X be a left A module and Y a finite dimensional right A
module. There is a natural isomorphism

σ : X ⊗k Y → Homk(DY,X)

of A bimodules, given by

σ(x⊗ y)(f) = f(y) · x

Proof. As before we choose a basis for Y , giving a dual basis for DY . Then the
inverse for σ is given by the composition of the induced k isomorphisms

Homk(DY,X) ∼=
n⊕
i=1

X

and
n⊕
i=1

X ∼= X ⊗k Y

so σ is bijective and the result follows.

We will let ModA denote the category of right A-modules and Mod (Aop)
denote the category of left A-modules (not necessarily finite dimensional).

Lemma 2.5. Let X be a left A module and Y a finite dimensional right A
module. There is a natural isomorphism

HomA(Ω1A⊗A DY,X) ∼= HomAe(Ω1A,X ⊗k Y )

Proof. Consider the tensor functor

−⊗A DY : ModAe → ModA

This functor will be left adjoint to the Hom functor

Homk(DY,−) : ModA→ ModAe

Hence there exists a natural isomorphism

HomA(Ω1A⊗A DY,X) ∼= HomAe(Ω1A,Homk(DY,X))

Now from lemma 2.4 we get an isomorphism

HomAe(Ω1A,Homk(DY,X)) ∼= HomAe(Ω1A,X ⊗k Y )

and the result follows.
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Lemma 2.6. Let X be a left A module and Y a finite dimensional right A
module. There is a natural isomorphism

HomA(Ω1A⊗A DY,X) ∼= Der(A,X ⊗k Y )

Proof. This follows from proposition 2.2 and lemma 2.6

Finally we get the promised result

Proposition 2.7. There is an isomorphism of A bimodules

Der(A,A⊗k A)/A∆A ∼= Ext1
A(D(A), A)

Proof. Consider the exact sequence

0→ Ω1A
i−→ A⊗k A

m−→ A→ 0

where i is the inclusion and m is the multiplication map. Since A is a projective
A module we have that

Tor1
A(A,DA) = 0

So if we tensor the exact sequence above on the right with DA, we get an exact
sequence

0→ Ω1A⊗A DA
i⊗1−−→ (A⊗k A)⊗A DA

m⊗1−−−→ A⊗A DA→ 0

Simplifying, we get

0→ Ω1A⊗A DA→ A⊗k DA→ DA→ 0

Now observe that A ⊗k DA is isomorphic as a left A module to n copies of
A, where n is the dimension of A as a k vector space. In particular A ⊗k DA
will be projective as a left A module. Therefore when we apply the functor
HomA(−, A) to the exact sequence above we get the exact sequence

0→ HomA(DA,A)→ HomA(A⊗k DA,A)→ HomA(Ω1A⊗A DA,A)→ Ext1
A(DA,A)→ 0

Now we have that

HomA(A⊗k DA,A) ∼= A⊗k A and HomA(Ω1A⊗A DA,A) ∼= Der(A,A⊗k A)

from lemma 2.3 and 2.6. Since the induced map

A⊗k A→ Der(A,A⊗k A)

will take 1⊗ 1 to the derivation ∆, the result follows.

We will also need the following lemma
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Lemma 2.8. Let M be a A-bimodule, and N a sub-bimodule of M . We have a
natural isomorphism

TA(M/N) ∼= TA(M)/(TA(M) ·N · TA(M))

where TA(M)·N ·TA(M) denotes the TA(M) bimodule generated by N ⊂ TA(M).

Proof. The projection map

p : M →M/N

composed with the inclusion map M/N ⊂ TA(M/N) induces a surjective A-
algebra morphism

P : TA(M)→ TA(M/N)

We want to show that the kernel of P is contained in TA(M) ·N ·TA(M). Since
P (m1⊗m2⊗ ...⊗mn) = p(m1)⊗ p(m2)⊗ ...⊗ p(mn) is a graded map of degree
0 it is enough to show this for elements of M ⊗AM ⊗A ...⊗AM . Observe first
that

M ⊗A ...⊗AM ⊗A N ⊗AM ⊗A ...⊗AM ⊂ TA(M) ·N · TA(M)

. Now let x ∈M ⊗AM ⊗A ...⊗AM . Also let pi be the natural projection

pi : M ⊗AM ⊗A ...⊗AM →M/N ⊗A ...⊗AM/N ⊗AM ⊗A ...⊗AM

where there are n− i terms of M/N and i terms of M . Since ⊗A is right exact
we have the exact sequence

(M/N ⊗A ...⊗AM/N)⊗A N → (M/N ⊗A ...⊗AM/N)⊗AM
→ (M/N ⊗A ...⊗AM/N)⊗AM/N → 0

Since P (x) = 0 we can find an element y1 ∈ (M/N ⊗A ...⊗AM/N)⊗A N with
image equal to p1(x). Also since

M ⊗A ...⊗AM ⊗A N →M/N ⊗A ...⊗AM/N ⊗A N

is surjective we can find

x1 ∈M ⊗A ...⊗AM ⊗A N ⊂ (M ⊗A ...⊗AM) ∩ (TA(M) ·N · TA(M))

such that p1(x− x1) = 0. Now consider the exact sequence

(M/N ⊗A ...⊗AM/N)⊗A N ⊗AM → (M/N ⊗A ...⊗AM/N)⊗AM ⊗AM
→ (M/N ⊗A ...⊗AM/N)⊗AM/N ⊗AM → 0

By a similar argument as before since p1(x − x1) = 0 we can find element
x2 ∈ (M ⊗A ... ⊗A M) ∩ (TA(M) · N · TA(M)) such that p2(x − x1 − x2) = 0.



2. The preprojective algebra of a quiver 17

Repeating this argument we get a sequence of elements x1...,xn−1 such that
xi ∈ (M ⊗A ...⊗AM)∩ (TA(M) ·N ·TA(M)) and pn−1(x−x1− ...−xn−1) = 0.
Since we have an exact sequence

N ⊗AM ⊗A ...⊗AM →M ⊗A ...⊗AM
pn−1−−−→M/N ⊗AM ⊗A ...⊗AM → 0

we get that x−x1−...−xn−1 ∈ TA(M)·N ·TA(M) and therefore x ∈ TA(M)·N ·
TA(M). It follows that the kernel of P is contained in TA(M) ·N ·TA(M). Since
P in an algebra morphism which takes N to 0 we get that TA(M) ·N · TA(M)
is also contained in the kernel of P . Hence P induces an isomorphism

P : TA(M)/(N)→ TA(M/N)

and we are done

We have the following corollary

Corollary 2.9. There is a natural isomorphism of rings

TA(Ext1
A(D(A), A)) ∼= TA(Der(A,A⊗k A))/(∆)

where (∆) is the ideal in TA(Der(A,A⊗k A)) generated by ∆

Proof. From proposition 2.7 we have an isomorphism

TA(Ext1
A(D(A), A)) ∼= TA(Der(A,A⊗k A)/A∆A)

Also lemma 2.8 gives us an isomorphism

TA(Der(A,A⊗k A)/A∆A) ∼= TA(Der(A,A⊗k A))/(∆)

so the result follows.

2.2 Standard projective resolutions

We will now restrict to the ring A = kQ, where Q is a finite quiver without
cycles. Assume M is a left kQ module. Let i be a vertex of Q, and let ei
denote the idempotent in kQ corresponding to i. Consider the left kQ module
kQei⊗k eiM , where eiM are all the elements m ∈M satisfying ei ·m = m, and
where kQei is left ideal in kQ generated by ei. Observe that kQei ⊗k eiM is
isomorphic to the sum of n copies of kQei, where n is the dimension of eiM . It
is therefore a projective left kQ module. We also have a left kQ-morphism

ζi : kQei ⊗k eiM →M

given by
ζi(ρ⊗m) = ρ ·m
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Taking the sum for all i we get a projective module
⊕
i∈Q0

kQei⊗k eiM and a left

kQ-morphism

ζ :
⊕
i∈Q0

kQei ⊗k eiM →M

equal to ζi on component i. This map is obviously an epimorphism. Now let
α be an arrow in Q1, and let sα and tα denote the scource and target vertex
of α. Consider the module kQetα ⊗k esαM . As before this will be a projective
kQ-module. We have maps

∂α : kQetα ⊗k esαM → kQesα ⊗k esαM

and
εα : kQetα ⊗k esαM → kQetα ⊗k etαM

given by
∂α(ρ⊗m) = ρ · α⊗m

and
εα(ρ⊗m) = ρ⊗ α ·m

Taking the sum over all α we get a projective module
⊕
α∈Q1

kQetα⊗k esαM and

left kQ-morphisms

∂ :
⊕
α∈Q1

kQetα ⊗k esαM →
⊕
i∈Q0

kQei ⊗k eiM

equal to ∂α on component α, and

ε :
⊕
α∈Q1

kQetα ⊗k esαM →
⊕
i∈Q0

kQei ⊗k eiM

equal to εα on component α.

Lemma 2.10. We have a projective resolution

0→
⊕
α∈Q1

kQetα ⊗k esαM
∂−ε−−→

⊕
i∈Q0

kQei ⊗k eiM
ζ−→M → 0

Proof. We will show that the sequence is a split short exact sequence of k vector
spaces, which will be sufficient. Note that

M =
⊕
i∈Q0

eiM

as a vector space. We have a map

s : M →
⊕
i∈Q0

kQei ⊗k eiM
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defined by

s(m) =
∑
i∈Q0

ei ⊗ ei ·m

for m ∈M . This satisfies 1M = ζ ◦ s. We also have a map

t :
⊕
i∈Q0

kQei ⊗k eiM →
⊕
α∈Q1

kQetα ⊗k esαM

defined by

t(ρ⊗m) =

n∑
k=1

ρk ⊗ ρ′k−1 ·m

where ρ = αnαn−1 · · ·α1 is a path inQ, ρk = αnαn−1 · · ·αk+1, ρ′k = αkαk−1 · · ·α1

and the term ρk ⊗ ρ′k−1 ·m lies in the component corresponding to αk. Note
that ρn = esαk+1

and ρ′0 = esα1 . Now by a simple calculation we get that

s ◦ ζ(ρ⊗m) = ei ⊗ (ρ ·m)

where ρ is a path ending in vertex i, and

(∂ − ε) ◦ t(ρ⊗m) = ρ⊗m− ei ⊗ (ρ ·m)

and so
1 = (∂ − ε) ◦ t+ s ◦ ζ

Also by a simple calculation t ◦ (∂ − ε) = 1, so the results follows.

2.3 The main result

Now consider the module

M =
⊕
α∈Q1

kQesα ⊗k etαkQ⊕
⊕
i6=j

i,j∈Q0

kQei ⊗k ejkQ

Also let Q be the quiver we obtain from Q̄ by adding an arrow βij : j → i for
each pair of vertices i and j in Q̄ with i 6= j.

Lemma 2.11. There is a natural isomorphism

TkQM ∼= kQ

of k algebras

Proof. Note that kQ sits inside kQ as a sub-k algebra, making kQ into a bi-kQ
module. Now we have kQ bimodule morphisms

Ψα : kQesα ⊗k etαkQ→ kQ
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given by

Ψα(ρ0 ⊗ ρ1) = ρ0α
∗ρ1

Similarly we have a kQ bimodule morphism

Ψi,j : kQei ⊗ ejkQ→ kQ

given by

Ψi,j(ρ0 ⊗ ρ1) = ρ0βijρ1

Taking the sum over all vertices i 6= j and all arrows α ∈ Q1 we get kQ bimodule
morphism

Ψ : M → kQ

By the universal property of the tensor algebra this induces a k-algebra mor-
phism

Ψ : TkQM → kQ

which we will also write as Ψ. Note that Ψ must be surjective since its image is a
k-algebra containing all the arrows of Q. Now consider the k-module morphism

Φ : kQ → TkQM

defined as follows. Let p be a path in kQ. Then p = p0 · q0 · p1 · q1· · · qn−1 · pn
for some n, where pi is a path in Q, and qj is an arrow βrs or an arrow α∗. We
then set

Φ(p) = (p0 ⊗k p1)⊗kQ (esq2 ⊗k p2)⊗kQ (esq3 ⊗k p3)· · · ⊗kQ (esqn ⊗k pn)

where esqi ⊗k pi (resp p0 ⊗k p1) lies in the component of M corresponding to
α if qi = α∗ (resp q0 = α∗), and lies in the component of M corresponding to
(i, j) if qi = βi,j (resp q0 = βi,j) . Now a simple calculation gives that

Φ ◦Ψ = 1

so Ψ is bijective and therefore an isomorphism of rings.

We will need one more technical results

Lemma 2.12. Let Q be a finite quiver without cycles, and let i and j be vertices
of Q. Assume M is a kQ bimodule. Then there exists a natural isomorphism

HomkQe(kQei ⊗k ejkQ,M) ∼= eiMej

where eiMej are the elemets in M satisfying = ei ·m = m = m · ej.
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Proof. We define a k morphism

φ : HomkQe(kQei ⊗k ejkQ,M)→ eiMej

by

φ(f) = f(ei ⊗ ej)

Note that the map is well defined since

ei · f(ei ⊗ ej) = f((ei · ei)⊗ ej) = f(ei ⊗ ej)

and

f(ei ⊗ ej) · ej = f(ei ⊗ ej · ej) = f(ei ⊗ ej)

We also have a map

ψ : eiMej → HomkQe(kQei ⊗k ejkQ,M)

given by

ψ(m)(a⊗ b) = a ·m · b

where a ∈ kQei and b ∈ ejkQ. Now a simple calculation shows that φ ◦ ψ = 1
and ψ ◦ φ = 1, so the result follows.

We can now finally prove the main result for this section (see also [3] and
[17])

Theorem 2.13. Let Q be a finite quiver without cycles. Then there exists an
isomorphism

Pk(Q) ∼= TkQ(θ)

which acts as identity on kQ, and which maps the arrows in Q∗1 into the aug-
mentation ideal of TkQ(θ), where θ = Ext1

kQ(D(kQkQ), kQ)

Proof. We have an exact sequence

0→
⊕
α∈Q1

kQetα ⊗k esαkQ
∂−ε−−→

⊕
i∈Q0

kQei ⊗k eikQ
ζ−→ kQ→ 0

as in lemma 2.10 with M = kQ. We also have the exact sequence

0→
⊕
i 6=j

i,j∈Q0

kQei ⊗ ejkQ
1−→
⊕
i 6=j

i,j∈Q0

kQei ⊗ ejkQ→ 0
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Adding these two sequences together we get the exact sequence

0→
⊕
α∈Q1

kQetα ⊗k esαkQ⊕
⊕
i 6=j

i,j∈Q0

kQei ⊗ ejkQ

g−→
⊕
i∈Q0

kQei ⊗k eikQ⊕
⊕
i 6=j

i,j∈Q0

kQei ⊗ ejkQ
f−→ kQ→ 0

where g is the sum of ∂−ε and 1, and f acts as ζ on the module
⊕
i∈Q0

kQei⊗keikQ

and as 0 on
⊕
i 6=j

i,j∈Q0

kQei ⊗ ejkQ. This exact sequences can be rewritten as

0→
⊕
α∈Q1

kQetα ⊗k esαkQ⊕
⊕
i 6=j

i,j∈Q0

kQei ⊗ ejkQ
g−→ kQ⊗k kQ

m−→ kQ→ 0

where m is just the ordinary multiplication map. This implies in particular that

Ω1kQ ∼=
⊕
α∈Q1

kQetα ⊗k esαkQ⊕
⊕
i6=j

i,j∈Q0

kQei ⊗k ejkQ (2.1)

Now observe that

HomkQe(kQei ⊗k ejkQ, kQ⊗k kQ) ∼= eikQ⊗k kQej ∼= kQej ⊗k eikQ

from lemma 2.12 and the fact that tensor product commute up to isomorphism.
In fact the composition of these two isomorphisms will be an isomorphism of
kQe modules. Note also that

HomkQe(kQ, kQ⊗k kQ) ∼= Der(kQ, kQ⊗k kQ)

by proposition 2.2. Applying HomkQe(−, kQ⊗k kQ) to (2.1) we get

Der(kQ, kQ⊗k kQ) ∼=
⊕
α∈Q1

kQesα ⊗k etαkQ⊕
⊕
i 6=j

i,j∈Q0

kQei ⊗k ejkQ

Via the isomorphism in proposition 2.2 we see that ∆ ∈ Der(kQ, kQ ⊗k kQ)
correspond to the inclusion of Ω1kQ into kQ⊗kkQ in HomkQe(Ω1kQ, kQ⊗kkQ),
which is just g. By using the isomorphism φ in lemma 2.12 we see that g
corresponds to the element∑

α∈Q1

(esα ⊗ α− α⊗ etα) +
∑
i 6=j

i,j∈Q0

ei ⊗ ej
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Now from lemma 2.11 the tensor algebra of Der(kQ, kQ ⊗k kQ) is isomorphic
to the path algebra kQ. Under this isomorphism ∆ is sent to

δ =
∑
α∈Q1

(α∗α− αα∗) +
∑
i 6=j

i,j∈Q0

βij

in kQ, and we have

(TkQDer(kQ, kQ⊗k kQ))/(∆) ∼= kQ/(δ)

Now for i 6= j we get eiδej = βij . This implies that

kQ/(δ) ∼= Pk(Q)

and the result follows from Corollary 2.9

2.4 Applications

We will use Theorem 2.13 to show that the direct sum of all the indecomposable
preprojective kQ modules is isomorphic to Pk(Q) as a left kQ module. This is
a well known and important result. We will first mention some concepts used
in the representation theory of finite dimensional algebra (see also [1]).
Let Λ will be a finite dimensional k algebra, where k is a field. modΛ will denote
the finitely generated right Λ modules. Recall that we have a functor

HomΛ(−,Λ) : mod(Λ)op → (modΛ)op

which restricts to an equivalence

HomΛ(−,Λ) : proj(Λ)op → (projΛ)op

where projΛ denotes the finitely generated projective kQ modules. The com-
position ν = D ◦ HomΛ(−,Λ), where D is the duality functor, is called the
Nakayama functor. It’s inverse is given by ν−1 = HomΛop(−,Λ). The
Auslander-Reiten translation τM of a finitely generated module M is defined
as follows. First take a minimal projective presentation of M

P1
f−→ P0 →M → 0

Applying ν to it we get an exact sequence

νP1
νf−→ νP0 → νM → 0

We define τM = Ker(νf). Dually we can take a minimal injective presentation

0→M → I0
g−→ I1
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and define τ−M = coker(ν−g). We see that τP = 0 if and only if P is projective
and τ−I = 0 if and only if I is injective. Furthermore it is not hard to see
that if M is indecomposable non-projective then τ−(τM) ∼= M and if M is
indecomposable non-injective then τ(τ−M) ∼= M . We say that a module M is
preprojective if τnM = 0 for some n > 0, and we say that M is preinjective if
τ−nM = 0 for some n > 0
Now let Λ = kQ. Since kQ is hereditary, τ and τ− extends to well defined
functors on modkQ. We have the following lemma

Lemma 2.14. There are natural isomorphism of functors

1. τ− ∼= Ext1kQ(D(kQ),−)

2. τ ∼= TorkQ1 (−, D(kQ))

Proof. We will prove (1), which is the only part we will need. Observe that
ν− = HomkQop(D(−), kQ) ∼= HomkQ(D(kQ),−) since D is contravariant and
fully faithful. Also since kQ is hereditary, a minimal injective presentation of M
will be an injective resolution of M . Hence applying ν− to this resolution and
taking the cokernel is the same as calculating Ext1

kQ(D(kQ),−), so the result
follows.

We want to give another description of τ−, but in order to do that we will
need the following homological result. The proof can be found in most books
on homological algebra.

Theorem 2.15. Let R and S be rings, and let F : modR → modS be a right
exact functor which preserve sums. Then

F ∼= F (R)⊗R −

Now let θ = Ext1
kQ(D(kQ), kQ) as before. We then have

Corollary 2.16. There is a natural isomorphism

τ− ∼= θ ⊗kQ −

Proof. We know that τ− ∼= Ext1
kQ(D(kQ),−). Also Ext1

kQ(D(kQ),−) preserve

sums, and since kQ is hereditary Ext1
kQ(D(kQ),−) is also right exact. The

result follows from Theorem 2.15

Note that this imples that τ−n(kQ) ∼= θ⊗kQ θ⊗kQ ...⊗kQ θ, where the tensor
product is taken n times. This gives us the following result

Corollary 2.17. We have an isomorphism

Pk(Q) ∼=
∞⊕
n=0

τ−n(kQ)

as left kQ modules. In particular Pk(Q) is the direct sum of all the indecom-
posable preprojective modules.
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Corollary 2.18. Pk(Q) is finite dimensional if and only if the underlying graph
of Q is of Dynkin type

Proof. This follows from the well known result that there are finitely many
indecomposable preprojective modules if and only if the underlying graph of Q
is of Dynkin type.



3. DG ALGEBRAS AND TRIANGULATED CATEGORIES

In this section we introduce differential graded algebras and differential graded
modules (see also [10]). Dg modules over a dg algebra is a generalization of
a chain complex over a ring. A lot of the same constructions and results will
also work in this case. We can for example define the tensor product of two dg
modules. We also have a well defined homotopy category and derived category
of a dg algebra. These will be triangulated in a similar way as for a ring.

We also consider differential graded categories , i.e categories enriched over
chain complexes (see [8] and [9]). These are generalizations of differential graded
algebras. In fact a dg algebra is precisely a dg category with one object. If A
is a dg algebra we have the dg category Cdg(A) with objects being dg modules
over A and with morphisms being graded maps. This will turn out to be a very
important category for studying the dg modules over A

In this section k is a commutative ring.

3.1 Definitions and examples

A differential graded k algebra A is a chain complex which is also a graded k
algebra such that the multiplication map

mult : A⊗k A→ A

is a morphism of chain complexes. It is not hard to see that this is equivalent
to

d(a · b) = da · b+ (−1)ia · db

for all a ∈ Ai and b ∈ Aj and for all i, j. A morphism of dg algebras A and B
is a chain map

f : A→ B

satisfying

f(a1 · a2) = f(a1) · f(a2)

for all a1, a2 ∈ A.

Example 3.1. If A is an ordinary k algebra, then A can be considered as a dg
algebra concentrated in degree 0.
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Example 3.2. Let M be a chain complex over k. Let Homk(M,M)n be the
module consisting of all k linear maps f : M → M of degree n, i.e f(M i) ⊂
M i+n. Note that f doesn’t necessarily commute with the differential of M .
Combining these modules gives us a chain complex

Homk(M,M)

with degree n component equal to HomA(M,M)n and with differential given
by

d(f) = dM ◦ f − (−1)nf ◦ dM

for f ∈ Homk(M,M)n. Now Homk(M,M) also has a natural ring structure
where multiplication is given by composition. Since

d(f ◦ g) = dM ◦ f ◦ g − (−1)m+nf ◦ g ◦ dM

and

d(f) ◦ g + (−1)mf ◦ d(g)

= dM ◦ f ◦ g − (−1)mf ◦ dM ◦ g + (−1)mf ◦ dM ◦ g − (−1)m+nf ◦ g ◦ dM
= dM ◦ f ◦ g − (−1)m+nf ◦ g ◦ dM

we see that Homk(M,M) is a dg k algebra.

Example 3.3. This example requires some knowledge of differential geometry.
Let Ωp(U) denote the R-vector space of all alternating smooth p forms on U ,
where U is an open subset of Rn. So for x ∈ U , and ω ∈ Ωp(U) we have a linear
alternating map

ω(x) : V × V × ...× V → R

where we take the product p times with V = Rn. Now ω(x) is alternating means
that

ω(x)(vσ(1), ...vσ(p)) = sign(σ) · ω(x)(v1, ...vp)

for σ ∈ Sp, where Sp is the group of permutations of {1, 2, ...p}, and we write
w(x) ∈ Altp(Rn). Collecting all these Ωp(U) together we get a chain complex
Ω(U) with differential

d : Ωp(U)→ Ωp+1(U)

given by

dω(x)(v1, ...vp+1) =

p+1∑
i=1

(−1)i−1Dxω(vi)(v1, ..., vi−1, vi+1, ..., vp+1)
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where Dxω is the induced map between the tangent spaces at x, i.e

Dxω : Rn → Altp(Rn)

Now Ω(U) also comes equipped with a multiplicative structure

∧ : ωp(U)× ωq(U)→ ωp+q(U)

defined by

ω1 ∧ ω2(x)(v1, ..., vp+q)

=
1

p!q!

∑
σ∈S(p+q)

sign(σ)ω1(vσ(1), ...vσ(p))ω2(vσ(p+1), ...vσ(p+q))

and together with the differential d this makes Ω(U) into a differential graded
algebra over R. In fact this example can be generalized to any manifold. Details
of this construction is provided in chapter 9 of [16]

Let A be a dg algebra. We want to construct the opposite dg algebra Aop

which has the same elements asA and with opposite multiplication toA. Naively
defining

a ∗ b = b · a

won’t work, since then

∗ : A⊗k A→ A

will not be a morphism of chain complexes. Instead we define ∗ = m ◦ τ , i.e as
the composition

A⊗k A
τ−→ A⊗A m−→ A

where τ was defined (1.1) and m is the multiplication map in A. We immediately
get that ∗ is a morphism of chain complexes, and hence Aop is a dg algebra.
Explicitely ∗ is defined by

a ∗ b = (−1)|a|·|b| · b · a

Observe that

d(a ∗ b) = (−1)|a|·|b| · d(ba)

= (−1)|a|·|b| · d(b) · a+ (−1)|a|·|b|+|b| · b · d(a)

and

d(a) ∗ b+ (−1)|a| · a ∗ d(b) = (−1)(|a|+1)·|b| · b · d(a) + (−1)|a|·|b| · d(b) · a

and hence

d(a ∗ b) = d(a) ∗ b+ (−1)|a| · a ∗ d(b)

which was expected since Aop is a dg algebra.
The idea of composing with τ in order to get a dg algebra structure or a dg
module structure (defined below) will be used frequently in this thesis, but it
might not always be stated explicitely.
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3.2 Dg modules

Let A be a differential graded algebra. A right differential graded module over
A is a chain complex M over k with a right A module structure such that the
map

mult : M ⊗k A→M

given by

mult(m⊗ a) = m · a

is a morphism of chain complexes. It is not hard to see that this is equivalent
to

m · a ∈M i+j

if a ∈ Ai and m ∈M j , and

d(m · a) = d(m) · a+ (−1)|m| ·m · d(a)

A left differential graded module over A is a chain complex M over k with a left
A module structure such that the map

mult : A⊗kM →M

given by

mult(a⊗m) = a ·m

is a morphism of chain complexes. This is equivalent to

a ·m ∈M i+j

if a ∈ Ai and m ∈M j , and

d(a ·m) = d(a) ·m+ (−1)|a| · a · d(m)

Note that M is a right dg A module iff it is a left dg Aop module. These module
structures are related via

a ◦m = (−1)|a|·|m|m · a

where · comes from the right action of A and ◦ comes from the left action of
Aop.
A morphism of right (resp left) dg A modules M and N is a chain map

f : M → N

satisfying f(m · a) = f(m) · a (resp f(a ·m) = a · f(m)). We will denote the
category of right dg A modules for C(A). The set of morphisms is denoted by
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HomC(A)(M,N).
A degree −1 graded map

s : M → N

is a k-linear map satisfying s(M i) ⊆ N i+1. Furthermore we have

s(a ·m) = (−1)|a| · a · s(m)

if M and N are left modules and

s(m · a) = s(m) · a

if M and N are right modules. It does not necessarily commute with the
differential. We will say more about such maps in section 3.4.
Two morphisms f : M → N and g : M → N are said to be homotopic, written

f ∼ g

if there exists a degree −1 graded map

s : M → N

satisfying

f − g = dN ◦ s+ s ◦ dM

A morphism f is said to be nullhomotopic if f ∼ 0. Also we say that M is
homotopic to N and write M ∼ N if there exists morphisms f : M → N and
g : N →M of dg A modules satisfying

g ◦ f ∼ 1M and f ◦ g ∼ 1N

The homotopoy category H(A) has the same objects as C(A) and its morphisms
HomH(A)(M,N) are homotopy classes of morphisms in C(A). Note that two
modules are homotopic if and only if they are isomorphic in H(A).

3.3 Shifts and cones

Let M be a right (resp left) dg A module. The nth shift of M , denoted by M [n],
is the dg A module with components

M [n]k = Mk+n

and differential dkM [n] = (−1)n · dk+n
M . The right (resp left) action ∗ of A on

M [n] is given by m ∗ a = m · a (resp a ∗m = (−1)n·|a| · a ·m). If f : M → N is
a morphism we let

f [n] : M [n]→ N [n]
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be the morphism which is defined componentwise by f [n]k = fk+n. Then [n]
induces a automorphism

[n] : C(A)→ C(A)

Note that [n] ◦ [m] = [n+m].

Now let M and N be two right (resp left) dg modules over the dg algebra
A, and let u : M → N be a morphism of dg modules. The cone of u, denoted
by Cone(u), is the dg A module with components

Cone(u)
i

= N i ⊕M i+1

and differential

dCone(u) =

(
dN u
0 dM [1]

)
Hence dCone(u)(n,m) = (dN (n) +u(m), dM [1](m)). The right (resp left) A mod-
ule structure on Cone(u) is given by (n,m) · a = (n · a,m · a) (resp a · (n,m) =
((−1)|a| · a · n, a ·m)). Let (n,m) ∈ N i ⊕M i+1. The calculation

dCone(u)((n,m) · a) = dCone(u)(n · a,m · a)

= (d(n · a) + u(m · a),−d(m · a))

= (d(n) · a+ (−1)i · n · d(a) + u(m) · a,−d(m) · a− (−1)i+1 ·m · d(a))

= (d(n) · a+ u(m) · a,−d(m) · a) + ((−1)in · d(a),−(−1)i+1m · d(a))

= (d(n) + u(m),−d(m)) · a+ (−1)i(n,m) · d(a)

= dCone(u)(n,m) · a+ (−1)i(n,m) · d(a)

shows that Cone(u) is a right dg module when M and N are right dg modules.
A similar argument works when M and N are left dg modules. Observe that
we have maps

v : N → Cone(u)

and

w : Cone(u)→M [1]

given by v(n) = (n, 0) and w(n,m) = m. It is easy to see that these are
morphisms of dg modules. We say that

M
u−→ N

v−→ Cone(u)
w−→M [1]

is a strict triangle and denote it by (u, v, w). Note that we have an isomorphism

Cone(u) ∼= N ⊕M [1]

as graded modules (not as chain complexes).
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Lemma 3.4. Assume we have a commutative diagram

M1 N1

M2 N2

u1

u2

f g

Let (u1, v1, w1) and (u2, v2, w2) be the strict triangles corresponding to u1 and
u2. Then the map h : Cone(u1)→ Cone(u2) given by

h =

(
g 0
0 f [1]

)
is a morphism of dg modules.

Proof. Note that(
g 0
0 f [1]

)
◦
(
dN1 u
0 dM1[1]

)
=

(
g ◦ dN1 g ◦ u

0 f [1] ◦ dM1[1]

)
and (

dN2 u
0 dM2[1]

)
◦
(
g 0
0 f [1]

)
=

(
dN2 ◦ g u ◦ f [1]

0 dM2[1] ◦ f [1]

)
are equal since f and g are chain maps satisfying g ◦ u = u ◦ f . Hence h is a
chain map and the result follows.

3.4 Hom of dg modules

Let M and N be two right (resp left) dg A-modules. Let HomA(M,N)n be the
k module consisting of all morphisms f : M → N of degree n satisfying

f(m · a) = f(m) · a
(resp f(a ·m) = (−1)n·|a|a · f(m))

Observe that the degree −1 graded map in section 3.2 is just an element of
HomA(M,N)−1. Combining the k modules HomA(M,N)n gives us a chain
complex

HomA(M,N)

with degree n component equal to HomA(M,N)n and with differential given by

d(f) = dN ◦ f − (−1)|f | · f ◦ dM
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This construction is similar to the one in example 3.1. Not that f is a mor-
phism if and only if f ∈ Z0(HomA(M,N)) and f ∼ 0 if and only if f ∈
B0(HomA(M,N)). In particular we have that

HomHA(M,N) = H0(HomA(M,N))

Now assume M and N are right dg A-modules. If M also has a left dg B module
structure then HomA(M,N) gets a right B module structure via

f · b = f ◦ (b · −)

for f ∈ HomA(M,N) and b ∈ B, where b · − : M →M is left multiplication by
b. Since

d(f · b) = d(f ◦ (b · −)) = d ◦ f ◦ (b · −)− (−1)|f |+|b| · f ◦ (b · −) ◦ d

and

d(f) · b+ (−1)|f | · f · db
= d ◦ f ◦ (b · −)− (−1)|f | · f ◦ d ◦ (b · −) + (−1)|f | · f ◦ (db · −)

and

(−1)|f | · f ◦ d ◦ (b · −) = (−1)|f | · f ◦ (db · −) + (−1)|f |+|b| · f ◦ (b · −) ◦ d

we get that

d(f · b) = d(f) · b+ (−1)|f | · f · db

and hence HomA(M,N) is a right dg B module. On the other hand if N has
a left dg B module structure then HomA(M,N) gets a left B module structure
via the action

b · f = (b · −) ◦ f

Since

d(b · f) = d ◦ (b · −) ◦ f − (−1)|b|+|f | · (b · −) ◦ f ◦ d

and

d ◦ (b · −) ◦ f = (db · −) ◦ f + (−1)|b| · (b · −) ◦ d ◦ f

and

d(b) · f + (−1)|b| · b · d(f)

= (db · −) ◦ f + (−1)|b| · (b · −) ◦ d ◦ f − (−1)|b|+|f | · (b · −) ◦ f ◦ d

we get that

d(b · f) = d(b) · f + (−1)|b| · b · d(f)
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so HomA(M,N) will be a left dg B module.
We can do a similar construction when M and N are left dg A-modules. If M
has a right dg B module structure then HomA(M,N) gets a left dg B module
structure given by

b · f = (−1)|b|·|f | · f ◦ (b ∗ −)

where b ∗ − : M →M comes from the left action of Bop on M . Hence

(b · f)(m) = (−1)|b|·|f |+|b|·|m| · f(m · b)

Similarly if N has a right dg B module structure then HomA(M,N) will be a
right dg B module via

f · b = (−1)|f |·|b| · (b ∗ −) ◦ f

where b ∗ − : N → N comes from the left action of Bop on N . So

(f · b)(m) = (−1)|b|·|m| · f(m) · b

Now consider the shift M [n] of M . There is a graded map

ΣnM : M →M [n]

acting as identity on the underlying modules. Note that

dM [n] = (−1)n · ΣnM ◦ dM ◦ Σ−nM [n]

and hence

d(ΣnM ) = dM [n] ◦ ΣnM − (−1)n · ΣnM ◦ dM
= (−1)n · ΣnM ◦ dM − (−1)n · ΣnM ◦ dM = 0

This implies that ΣnM ∈ Z−nHomA(M,M [n]).

Lemma 3.5. Let M and N both be left or right dg A-modules.

1. There is a natural isomorphism of chain complexes

HomA(M,N [n]) ∼= HomA(M,N)[n]

sending ΣnN ◦ f to ΣnHomA(M,N)(f)

2. There is a natural isomorphism of chain complexes

HomA(M [n], N) ∼= HomA(M,N)[−n]

sending f ◦ Σ−nM [n] to (−1)n·(|f |+n) · Σ−nHomA(M,N)(f)
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Proof. We will only show the second part. The argument for the first part is
similar. Let

φn : HomA(M [n], N)→ HomA(M,N)[−n]

denote the map. Observe that

φn(dHomA(M [n],N)(f ◦ Σ−nM [n])) = φn(dHomA(M,N)(f) ◦ Σ−nM [n])

= (−1)n·(|f |+1+n) · Σ−nHomA(M,N)(dHomA(M,N)(f))

since d(Σ−nM [n]) = 0. Also

dHomA(M,N)[−n](φ
n(f ◦ Σ−nM [n])) = (−1)n·(|f |+n) · dHomA(M,N)[−n](Σ

−n
HomA(M,N)(f))

= (−1)n·(|f |+1+n) · Σ−nHomA(M,N)(dHomA(M,N)(f))

This implies that φn is a morphism of chain complexes, so the result follows.

We use the same notation as in the proof, i.e the isomorphism in part 2 of
the lemma is given by

φn : HomA(M [n], N) ∼= HomA(M,N)[−n]

Now consider the diagram

HomA(M [n+m], N) HomA(M,N)[−m− n]

HomA(M [n], N)[−m] HomA(M,N)[−m− n]

φn+m

[−m](φn)

φm =

A simple calculation gives us that

φn+m(f ◦ Σ−n−mM [n+m]) = (−1)(n+m)·(|f |+n+m) · Σ−n−mHomA(M,N)(f)

and

[−m](φn) ◦ φm(f ◦ Σ−n−mM [n+m]) = (−1)n·(|f |+n)+m·(|f |+n+m) · Σ−n−mHomA(M,N)(f)

Observe that the diagram doesn’t commute because of an exstra sign (−1)n·m.
We rectify this by defining a new isomorphism

(−1)n(n+1)/2 · φn : HomA(M [n], N) ∼= HomA(M,N)[−n]

This gives us the following result.
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Lemma 3.6. There is a natural isomorphism of chain complexes

HomA(M [n], N) ∼= HomA(M,N)[−n]

sending f ◦Σ−nM [n] to (−1)n(n−1)/2+n·(|f |+n) ·Σ−nHomA(M,N)(f). This isomorphism

makes the diagram

HomA(M [n+m], N) HomA(M,N)[−m− n]

HomA(M [n], N)[−m] HomA(M,N)[−m− n]

∼=

∼=

∼= =

commute.

3.5 Tensor product of dg modules

Let M be a right dg A-module, and N a left dg A-module. Since they are both
chain complexes over k, we can construct the chain complex M ⊗kN . Consider
the k submodule P of M ⊗k N generated by elements of the form

m · a⊗ n−m⊗ a · n

Note that P is a graded submodule of M ⊗k N . Since

d(m · a⊗ n−m⊗ a · n) = d(m · a⊗ n)− d(m⊗ a · n)

= d(m) · a⊗ n+ (−1)|m| ·m · d(a)⊗ n+ (−1)|m|+|a| ·m · a⊗ d(n)

− d(m)⊗ a · n− (−1)|m| ·m⊗ d(a) · n− (−1)|m|+|a| ·m⊗ a · d(n)

= (d(m) · a⊗ n− d(m)⊗ a · n) + (−1)|m| · (m · d(a)⊗ n−m⊗ d(a)⊗ n)

+ (−1)|m|+|a| · (m · a⊗ d(n)−m⊗ a · d(n))

we get that P must be a chain complex. If we let

M ⊗A N

denote the quotient of M ⊗k N by P , we get that M ⊗A N is a chain complex
over k with differential inherited from M ⊗k N . In particular we have that

m · a⊗ n = m⊗ a · n

and

d(m⊗ n) = d(m)⊗ n+ (−1)im⊗ d(n)

holds in M ⊗A N . If M also has a left dg B module structure, then M ⊗A N
has a left B module structure given by

b · (m⊗ n) = (b ·m)⊗ n
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Since

d(b · (m⊗ n)) = d((b ·m)⊗ n)

d(b ·m)⊗ n+ (−1)|b|+|m| · (b ·m)⊗ d(n)

= (d(b) ·m)⊗ n+ (−1)|b| · (b · d(m))⊗ n+ (−1)|b|+|m| · (b ·m)⊗ d(n)

= (d(b) ·m)⊗ n+ (−1)|b| · b · (d(m)⊗ n+ (−1)|m| ·m⊗ d(n))

= d(b) · (m⊗ n) + (−1)|m| · b · d(m⊗ n)

we get that M ⊗A N is a left dg B module. If M instead has a right dg B
module structure then M ⊗A N has a right dg B module structure given by

(m⊗ n) · b = (−1)|b|·|n| · (m · b)⊗ n

This can be shown in a similar way as above.
We have similiar constructions for N . If N has a left dg B module structure
then M ⊗A N has a left dg B module structure given by

b · (m⊗ n) = (−1)|b|·|m| ·m⊗ (b · n)

and if N has a right dg B module structure then M ⊗A N has a right dg B
module structure given by

(m⊗ n) · b = m⊗ (n · b)

We have the following result relating the shift functor and the tensor product.

Lemma 3.7. Let M be a right dg A-module and N a left dg A-module.

1. There is a natural isomorphism of chain complexes

M [k]⊗A N ∼= (M ⊗A N)[k]

sending ΣkM (m)⊗ n to ΣkM⊗N (m⊗ n)

2. There is a natural isomorphism of chain complexes

M ⊗A N [k] ∼= (M ⊗A N)[k]

sending m⊗ ΣkN (n) to (−1)k·|m| · ΣkM⊗N (m⊗ n)

Proof. We will only prove part 2. The proof of part 1 is similar. Let

φ : M ⊗A N [k]→ (M ⊗A N)[k]

denote the map. We first need to show that φ is well defined. This holds since

φ(m⊗ a · ΣkN (n)) = (−1)k·|a| · φ(m⊗ ΣkN (a · n))

= (−1)k·(|a|+|m|) · ΣkM⊗N (m⊗ a · n)



3. Dg algebras and triangulated categories 38

and

φ(m · a⊗ ΣkN (n)) = (−1)k·(|a|+|m|) · ΣkM⊗N (m · a⊗ n)

= (−1)k·(|a|+|m|) · ΣkM⊗N (m⊗ a · n)

We also have that

φ(d(m⊗ ΣkN (n))) = φ(dM (m)⊗ ΣkN (n)) + (−1)|m| · φ(m⊗ dN [k](Σ
k
N (n)))

= φ(dM (m)⊗ ΣkN (n)) + (−1)|m|+k · φ(m⊗ ΣkN (dN (n)))

= (−1)k·(m+1) · ΣkM⊗N (dM (m)⊗ n) + (−1)|m|+k+|m|·k · ΣkM⊗N (m⊗ dN (n))

and

d(φ(m⊗ ΣkN (n))) = (−1)k·|m| · d(ΣkM⊗N (m⊗ n))

= (−1)k·(|m|+1) · ΣkM⊗N (d(m⊗ n))

= (−1)k·(|m|+1) · ΣkM⊗N (dM (m)⊗ n) + (−1)|m|+k+|m|·k · ΣkM⊗N (m⊗ dN (n))

hence they are equal and φ is an isomorphism of chain complexes.

3.6 Differential graded categories

A differential graded category C is a category enriched over chain complexes.
This means that the morphism spaces C(X,Y ) are chain complexes over k and
the composition

◦ : C(Y, Z)⊗k C(X,Y )→ C(X,Z)

is a morphism of chain complexes. Note that there are categories Z0(C) and
H0(C) associated to C. They have the same objects as C, and their morphism
spaces are Z0(C(X,Y )) and H0(C(X,Y )) respectively. Note also that a dif-
ferential graded category with one object is just a differential graded algebra.
Now let Cop be the category with same objects as C and morphism spaces
Cop(X,Y ) = C(Y,X). The composition

∗ : Cop(Y, Z)⊗k Cop(X,Y )→ Cop(X,Z)

is given by f ∗ g = (−1)|f |·|g| · g ◦ f . This makes Cop into a dg category.
Now assume that C andD are differential graded categories. A differential graded functor

F : C → D

from C to D is a mapping that

• Associate to each object X in C an object F (X) in D.

• Associate to each morphism f : X → Y in C a morphism F (f) : F (X)→
F (Y ) in D such that
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– F (1X) = 1F (X) for all objects X in C.
– F (f ◦ g) = F (f) ◦ F (g) for all morphisms f , g in C such that the

composition f ◦ g makes sense

– The map

F (X,Y ) : C(X,Y )→ D(FX,FY )

is a morphism of chain complexes.

Let F : C → D and G : C → D be dg functors. We have a complex

Hom(F,G)

with nth component Hom(F,G)n consisting of families of morphisms

φX ∈ D(FX,GX)n

satisfying φY ◦ Ff = (−1)n·|f | ·Gf ◦ φX . These are natural transformations in
the context of dg categories. The differential on Hom(F,G) is defined compo-
nentwise, i.e

dHom(F,G)(φ)X = dD(FX,GX)(φX)

It is also not hard to see that if φ ∈ Hom(F,G) and ψ ∈ Hom(G,H) then
ψ ◦ φ ∈ Hom(F,H) where

(ψ ◦ φ)X = ψX ◦ φX

This gives a well defined morphism of chain complexes

◦ : Hom(G,H)⊗k Hom(F,G)→ Hom(F,H)

3.7 The dg category of dg modules

We want to show that the collection of right dg A-modules together with com-
plexes of morphisms HomA(M,N) gives us a dg category. In order to do that
we need to show that composition

◦ : HomA(N,K)⊗k HomA(M,N)→ HomA(M,K)

sending f ⊗ g to f ◦ g is a morphism of chain complexes. This follows from

d(f ◦ g) = dK ◦ f ◦ g − (−1)|f |+|g|f ◦ g ◦ dM

and

d(f) ◦ g + (−1)|f | · f ◦ d(g)

= dK ◦ f ◦ g − (−1)|f | · f ◦ dN ◦ g + (−1)|f | · (f ◦ dN ◦ g − (−1)|g| · f ◦ g ◦ dM )

= dK ◦ f ◦ g − (−1)|f |+|g| · f ◦ g ◦ dM
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We will denote this dg catgory by Cdg(A). It is easy to see that

Z0(Cdg(A)) = C(A)

and

H0(Cdg(A)) = H(A)

We say that a map f : X → Y in Cdg(A) is closed if

f ∈ Z0(HomA(X,Y )) = HomC(A)(X,Y )

We can also extend the shift functor [n] : C(A) → C(A) to Cdg(A). It will act
the same on objects, and send a mmap f ∈ HomA(M,N) to

[n](f) = (−1)n·|f | · ΣnN ◦ f ◦ Σ−nM [n]

It is easy to see that this makes

[n] : Cdg(A)→ Cdg(A)

into a dg functor. Note that [n] ◦ [m] = [n + m] in Cdg(A). Note also that (cf
section 3.6))

Σn ∈ Z−n(Hom(1Cdg(A), [n]))

Now consider a componentwise split exact sequence in Cdg(A), i.e an exact
sequence in Z0(Cdg(A)) = C(A)

K
f−→M

g−→ N

together with maps s ∈ HomA(N,M)0 and t ∈ HomA(M,K)0 satisfying

t ◦ s = 0

and

g ◦ s = 1N

and

t ◦ f = 1K

We say that M is an extension of K and N . We then get a natural map
h ∈ HomA(N [−1],K)0 given by

h = t ◦ d(s) ◦ Σ1
N [−1] = −d(t) ◦ s ◦ Σ1

N [−1] = t ◦ dY ◦ s ◦ Σ1
N [−1]
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Lemma 3.8. We use the same notation as above. Then

h ∈ HomC(A)(N [−1],M)

and we have an isomorphism

Cone(h) ∼= Y

making the diagram

N [−1] K Cone(h) N

Z

h v w

∼=
f g

commute, where v and w are the maps defined in section 3.3.

Proof. Similar as for chain complexes over a ring

Hence we get a one to one corresondence between componentwise split exact
sequences in Cdg(A) and the cone of some morphism in C(A).

Definition 3.9. Let strictperf(A) be the smallest full subcategory of Cdg(A)
closed under shifts, extensions, and direct summands. A dg module M is called
strictly perfect if it is an object of strictperf(A).

If A is an ordinary algebra then a bounded complex of finitely generated
projectives is strictly perfect. Also if

F : Cdg(A)→ Cdg(B)

is a dg functor (covariant or contravariant) and if F (A) is strictly perfect, then
F takes strictly perfect modules to strictly perfect modules. This follows since
F preserves extensions and commutes with the shift (which we will show below).

Now let M be a right dg A module and a left dg B module such that

(b ·m) · a = b · (m · a)

for a ∈ A, b ∈ B and m ∈M .

Lemma 3.10. We have a well defined dg functor

HomA(−,M) : Cdg(A)→ Cdg(Bop)op

sending N to

HomA(N,M)
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and a map f ∈ HomA(N1, N2) to

HomA(f,M) : HomA(N2,M)→ HomA(N1,M)

given by

HomA(f,M)(g) = (−1)|f |·|g| · g ◦ f

Proof. If N is a right dg A-module then HomA(N,M) has a left dg B-module
structure given by

(b · f)(x) = b · f(x)

(cf section 3.4). Let N1 and N2 be dg A-modules and let f ∈ HomA(N1, N2)n.
It is not hard to see that

HomA(f,M) ∈ HomBop(HomA(N2,M),HomA(N1,M))n

We also have that

d(HomA(f,M))(g)

= dHomA(N1,M) ◦ HomA(f,M)(g)− (−1)|f | · HomA(f,M) ◦ dHomA(N2,M)(g)

= (−1)|f |·|g| · dHomA(N1,M)(g ◦ f)− (−1)|f |·|g| · dHomA(N2,M)(g) ◦ f
= (−1)|f |·|g|+|g| · g ◦ dHomA(N1,N2)(f)

= HomA(dHomA(N1,N2)(f),M)(g)

and hence HomA(−,M) is a dg functor.

Lemma 3.11. We have a well defined dg functor

−⊗B M : Cdg(B)→ Cdg(A)

sending a right dg B-module N to

N ⊗B M

and a map f ∈ HomA(N1, N2) to

f ⊗ 1 : N1 ⊗B M → N2 ⊗B M

given by

(f ⊗ 1)(n1 ⊗m) = f(n1)⊗m

Proof. This is a straightforward verification
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We now assume we have a dg functor

F : Cdg(A)→ Cdg(B)op

where A and B are dg algebras. Consider the dg natural transformations

Σ−n[n]◦F ∈ Z
n(Hom([n] ◦ F, F ))

and

F (Σn[−n]) ∈ Z
−n(Hom(F, F ◦ [−n])

Let

αn = (−1)n(n+1)/2 · F (Σn[−n]) ◦ Σ−n[n]◦F ∈ Z
0(Hom([n] ◦ F, F ◦ [−n]))

Note that αn are natural isomorphisms in C(A) and that α0 = 1F . Also observe
that

[n](α−n[−n]) = (αn)−1 = (−1)n(n−1)/2 · ΣnF ◦ F (Σ−n)

(cf lemma 3.6). The next result tells us that the order of composition of the αk

doesn’t matter.

Proposition 3.12. Let αn be as defined above. We have a commutative diagram

[n] ◦ [m] ◦ F [n+m] ◦ F

[n] ◦ F ◦ [−m] F ◦ [−n] ◦ [−m] F ◦ [−n−m]

=

αn[−m] =

[n]αm αn+m

(3.1)

Proof. We have that

αn+m = (−1)(n+m)(n+m+1)/2 · F (Σn+m
[−n−m]) ◦ Σ−n−m[n+m]◦F

[n]αm = (−1)m(m+1)/2 · ΣnF◦[−m] ◦ F (Σm[−m]) ◦ Σ−m[m]◦F ◦ Σ−n[n]◦[m]◦F

αn[−m] = (−1)n(n+1)/2 · F (Σn[−n]◦[−m]) ◦ Σ−n[n]◦F◦[−m]

Hence we get

αn[−m] ◦ [n]αm

= (−1)n(n+1)/2+m(m+1)/2 · F (Σn[−n]◦[−m]) ◦ F (Σm[−m]) ◦ Σ−m[m]◦F ◦ Σ−n[n]◦[m]◦F

= (−1)n(n+1)/2+m(m+1)/2+m·n · F (Σm[−m] ◦ Σn[−n]◦[−m]) ◦ Σ−n−m[n+m]◦F

= (−1)(n+m)(n+m+1)/2 · F (Σn+m
[−n−m]) ◦ Σ−n−m[n+m]◦F

= αn+m

and the result follows.
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We also have the following result relating the cone and F .

Lemma 3.13. Consider the sequence

X
u−→ Y

v−→ Cone(u)
w−→ X[1]

with v and w the inclusion and projection respctively. We have extensions

F (X[1])
F (w)−−−→ F (Cone(u))

F (v)−−−→ FY

and

F (X[1])[1]
F (w)[1]−−−−−→ F (Cone(u))[1]

F (v)[1]−−−−→ FY [1]

Hence we can write

F (Cone(u)) = F (X[1])⊕ FY

and

F (Cone(u))[1] = F (X[1])[1]⊕ FY [1]

as graded modules. With this identification we get the following results

• We have an isomorphism f : F (Cone(u)) ∼= Cone(−F (u[1])) given by

f =

(
1 0
0 (α−1

Y )[1]

)
Hence the diagram

F (X[1]) F (Cone(u)) FY

F (X[1]) Cone(−F (u[1])) F (Y [1])[1]

F (w) F (v)

v1 w1

= f (α−1
Y )[1]

commutes, where v1 and w1 are the inclusion and projection respectively.

• We have an isomorphism g : Cone(−Fu) ∼= F (Cone(u))[1] given by

g =

(
(α−1
X )[1] 0
0 1

)
Hence the diagram

F (X) Cone(−F (u)) (FY )[1]

F (X[1])[1] F (Cone(u))[1] (FY )[1]

v2 w2

F (w)[1] F (v)[1]

(α−1
X )[1] g =

commute, where v2 and w2 are the inclusion and projection respectively.
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Proof. Let s : X[1] → Cone(u) be the inclusion and t : Cone(u) → Y the
projection. We know from lemma 3.8 that u = t ◦ d(s) ◦ Σ1

X . Therefore

−u[1] = −Σ1
Y ◦ t ◦ d(s)

and hence

−F (u[1]) = d(F (s)) ◦ Ft ◦ F (Σ1
Y )

Applying F to the extension

Y
v−→ Cone(u)

w−→ X[1]

gives us an extension

F (X[1])
Fw−−→ F (Cone(u))

Fv−−→ FY

with splitting Ft : FY → F (Cone(u)) and Fs : F (Cone(u))→ F (X[1]). Using
the isomorphism

α−1
Y = F (Σ−1

Y [1]) ◦ Σ1
F (Y )[−1] : F (Y )[−1]

∼=−→ F (Y [1])

we get a commutative diagram

F (Y )[−1] F (X[1])

F (Y [1]) F (X[1])

−d(F (s)) ◦ Ft ◦ Σ1
F (Y )[−1]

−F (u[1])

α−1
Y

=

and lemma 3.4 and 3.8 gives us an isomorphism F (Cone(u)) ∼= Cone(−F (u[1]))
with the necessary properties.
For the second part we first observe that given a morphism f : X1 → X2 we
have an isomorphism

Cone(f [−1]) ∼= Cone(f)[−1]

such that

X2[−1] Cone(f [−1]) X1[−1]

X2[−1] Cone(f)[−1] X1[−1]

incl proj

i[−1] j[−1]

= ∼= =

commute, where X2
i−→ Cone(f)

j−→ X1 is the extension corresponding to the
cone of f . Using this and our previous result we get an isomorphism

Cone(−Fu) ∼= F (Cone(u[−1])) ∼= F (Cone(u)[−1]) ∼= F (Cone(u))[1]
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This gives us a commutative diagram of extensions

F (X) Cone(−F (u)) (FY )[1]

F (X) F (Cone(u[−1])) F (Y [−1])

F (X) F (Cone(u)[−1]) F (Y [−1])

F (X[1])[1] F (Cone(u))[1] (FY )[1]

v2 w2

F (w3) F (v3)

F (w[−1]) F (v[−1])

F (w)[1] F (v)[1]

=

=

(α−1
X )[1]

∼=

∼=

(α−1
Cone(u))[1]

((α−1
Y )[1])−1

=

(α−1
Y )[1]

where Y [−1]
v3−→ Cone(u[−1])

w3−−→ X denote the extension corresponding to the
cone of u[−1]. The result follows.

We have the following result which tells us that a natural transformation
between contravariant dg functor commute with the αn.

Lemma 3.14. Let F : Cdg(A) → Cdg(B)op and G : Cdg(A) → Cdg(B)op be dg
functors. Also let ψ ∈ Z0(Hom(F,G)) be a natural transformation. Then the
diagram

[n] ◦ F [n] ◦G

F ◦ [−n] G ◦ [−n]

[n]ψ

ψ[−n]

αn αn

commute.

Proof. This is a straightforward calculation

3.8 Triangulated categories

We start with a definition of a triangulated category. This version is taken from
chapter 4 in [5] .
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Definition 3.15. Let C be an additive category. We say that C is a triangulated
category if it comes equipped with an additive automorphism

T : C → C

called the translation functor, and a class of distinguished triangles

X
u−→ Y

v−→ Z
w−→ TX

also denoted (X,Y, Z, u, v, w), satisfying the following axioms

1. a) X
1X−−→ X

0−→ 0
0−→ TX is a triangle

b) Any triangle isomorphic to a distinguished triangle is distinguished

c) Any morphism X
u−→ Y can be extended to a distinguished triangle

X
u−→ Y

v−→ Z
w−→ TX

2. A triangle

X
u−→ Y

v−→ Z
w−→ TX

is distinguished if and only if

Y
v−→ Z

w−→ TX
−Tu−−−→ TY

is distinguished.

3. Given a diagram

X Y Z TX

X ′ Y ′ Z ′ TX ′

f g Tfh

where the top and bottom row are distinguished triangles, and the mor-
phisms f and g makes the right square commute, then there exists a mor-
phism h : Z → Z ′ such that the middle and the right square commutes.

4.

X Y Z ′ TX

X Z Y ′ TX

X ′ X ′ TY

TY TZ ′

u v w

v ◦ u j k

1X′ i

Tv

1X v

h

i Tv ◦ i

1TX

Tu

r

s
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Given distinguished triangles X
u−→ Y

v−→ Z ′
w−→ TX, Y

v−→ Z
h−→ X ′

i−→
TY , X

v◦u−−→ Z
j−→ Y ′

k−→ TX, there exists morphisms r : Z ′ → Y ′,
s : Y ′ → X ′ such that the four squares in diagram commutes and

Z ′
r−→ Y ′

s−→ X ′
Tv◦i−−−→ TZ ′

is a distinguished triangle

Since T is an automorphism it has an inverse which we will denote by T−.
We have the following lemma for a triangulated category

Lemma 3.16. Let

X
u−→ Y

v−→ Z
w−→ TX

be a distinguished triangle. Then v ◦ u = 0.

Proof. Consider the diagram

X Y Z TX

0 Z Z 0

u v w

0 1Z 0

v 1Z0 0

Note that the lower and the upper sequence are distinguished triangles. By
shifting the triangles using axiom 2 and then applying axiom 3 we get that
there must exists a morphism X → 0 which makes the squares commutes. This
morphism must necessarily be 0, so by considering the first square we get that
v ◦ u = 0

By shifting triangles one easily sees that this implies that the composition
of any two consecutive morphisms in a triangle is 0.

Lemma 3.17. Let

X
u−→ Y

v−→ Z
w−→ TX

be a distinguished triangle and K an object of C. We have long exact sequences

...
T−2w◦−−−−−−−→ HomC(K,T

−X)
T−u◦−−−−−−→ HomC(K,T

−Y )
T−v◦−−−−−−→ HomC(K,T

−Z)

T−w◦−−−−−−→ HomC(K,X)
u◦−−−−→ HomC(K,Y )

v◦−−−→ HomC(K,Z)

w◦−−−−→ HomC(K,TX)
Tu◦−−−−−→ HomC(K,TY )

Tv◦−−−−−→ HomC(K,TZ)
Tw◦−−−−−→ ...

and

...
−◦Tw−−−−→ HomC(TZ,K)

−◦Tv−−−−→ HomC(TY,K)
−◦Tu−−−−→ HomC(TX,K)

−◦w−−−→ HomC(Z,K)
−◦v−−→ HomC(Y,K)

−◦u−−−→ HomC(X,K)

−◦T−w−−−−−→ HomC(T
−Z,K)

−◦T−v−−−−−→ HomC(T
−Y,K)

−◦T−u−−−−−→ HomC(T
−X,K)

T−2w−−−−→ ...
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Proof. By the symmetry property of distinguished triangles we only need to
check that

HomC(K,X)
u◦−−−−→ HomC(K,Y )

v◦−−−→ HomC(K,Z) (3.2)

and

HomC(Z,K)
−◦v−−→ HomC(Y,K)

−◦u−−−→ HomC(X,K) (3.3)

are exact. We observe by lemma 3.16 that the composition of the two maps
are 0 in both sequences. For the exactness of (3.2) consider h ∈ HomC(K,Y )
satisfying v ◦ h = 0. We then have the diagram

X Y Z TX

K K 0 K

u v w

1K 0 0

h 0k Tk

where the lower and upper sequence are distinguished triangles and the middle
square commutes and the left square commutes. By axiom 3 we have that there
exists a morphism k : K → X satisfying u ◦ k = h, so (3.2) is exact. For (3.3)
assume l ∈ HomC(Y,K) satisfies l ◦ u = 0. We then have a digram

X Y Z TX

0 K K 0

u v w

0 1K 0

0 l 0m

where the upper and lower sequence are distinguished triangles. By axiom 3 we
have that there exists m : Z → K satisfying m ◦ v = l, and hence the sequence
(3.3) is also exact

This gives us the following corollary

Corollary 3.18. Consider the commutative diagram

X1 Y1 Z1 TX1

X2 Y2 Z2 TX2

u1 v1 w1

u2 v2 w2

f g h Tf

where the upper and lower rows are distinguished triangles. If two out of f , g
and h are isomorphisms, then the third one also is.
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Proof. By axiom 2 we see that it is enough to show that h is an isomorphism
when f and g are isomorphisms. Applying Hom(Z2,−) we get a commutative
diagram

Hom(Z2, X1) Hom(Z2, Y1) Hom(Z2, Z1) Hom(Z2, TX1) Hom(Z2, TY1)

Hom(Z2, X2) Hom(Z2, Y2) Hom(Z2, Z2) Hom(Z2, TX2) Hom(Z2, TY2)

∼= ∼= h ◦ − ∼= ∼=

where the upper and lower rows are exact sequences. By the five lemma we get
that

h ◦ − : Hom(Z2, Z1)→ Hom(Z2, Z2)

is an isomorphism, and hence h has a left inverse. Similarly by applying
Hom(−, Z1) to the diagram we can show that h has a right inverse.

We also need to say what a functor between triangulated categories should
be

Definition 3.19. Let C and D be triangulated categories. An additive functor

F : C → D

is called a triangle functor if there exists a natural isomorphism

F ◦ T η−→ T ◦ F

and if

X
u−→ Y

v−→ Z
w−→ TX

is a distinguished triangle in C, then

F (X)
F (u)−−−→ F (Y )

F (v)−−−→ F (Z)
ηX◦F (w)−−−−−−→ TF (X)

is a distinguished triangle in D.

3.9 Homotopy categories

Let A be a dg algebra. Recall that we have the homotopy category H(A) defined
in section 3.2. The objects in H(A) are the same as the objects in C(A), and
the morphisms are morphisms in C(A) modulo nullhomotopic maps. The shift
functor [1] : Cdg(A)→ Cdg(A) is a dg functor and therefore induces a well defined
additive automorphism

[1] : H(A)→ H(A)
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taking an object M to M [1] and a morphism f to [1](f) = f [1]. We call a
sequence of map in H(A) of the form

X
u−→ Y

v−→ Z
w−→ X[1]

for a triangle, and denoted it by (u, v, w). A morphism of two triangles (u1, v1, w1)
and (u2, v2, w2) is a commutative diagram of the form

X1 Y1 Z1 X1[1]

X2 Y2 Z2 X2[1]

u1 v1 w1

u2 v2 w2

f g h f [1]

A triangle of the form

X
u−→ Y

v−→ Cone(u)
w−→ X[1]

is called a strict triangle. We say that a triangle is exact if it is isomorphic to a
strict triangle. The proof of the following theorem is similar to the case when
A is a ring

Theorem 3.20. Let A be a dg algebra. The category H(A) is triangulated with

[1] : H(A)→ H(A)

as translation functor, and where the distinguished triangles are the exact tri-
angles.

Let K be a dg A-module. We say that K is homotopically projective if for
any acyclic dg A-module N we have that

HomH(A)(K,N) = 0

We say that K is homotopically injective if for any acyclic dg A-module N we
have that

HomH(A)(N,K) = 0

The homotopically projective modules plays a similar role in H(A) as bounded
above chain complexes with projective components does in H−(B) when B is a
ring. Let Hp(A) (resp Hi(A)) denote the full subcategory of H(A) with object
homotopically projective (homotopically injective) dg A-modules.

Lemma 3.21. The category Hp(A) (resp Hi(A)) is triangulated and closed
under infinite direct sums and direct summands.
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Proof. Let N be an acyclic dg A-modules. We first show that Hp(A) is closed
under direct sums and direct summands. Let (Ki)i∈I be a collection of dg
A-modules. Then

HomH(A)(
⊕
i∈I

Ki, N) ∼=
∏
i∈I

HomH(A)(Ki, N)

and hence HomH(A)(
⊕
i∈I

Ki, N) = 0 iff HomH(A)(Ki, N) = 0 for all i. Therefore⊕
i∈I

Ki is homotopically projective iff Ki is homotopically projective for all i.

Now assume K is a homotopically projective module. We have an isomorphism

HomA(K[1], N) ∼= HomA(K,N [−1])

by lemma 3.5. Taking homology in degree 0 we get that

HomH(A)(K[1], N) ∼= HomH(A)(K,N [−1]) ∼= 0

since acyclic modules are closed under the shift functor. This implies that K[1]
is also homotopically projective. It remains to show that if

X → K → Y → X[1]

is a strict triangle with X and Y homotopically projective, then K must be
homotopically projective. Since H(A) is triangulated we have an exact sequence

HomH(A)(Y,N)→ HomH(A)(K,N)→ HomH(A)(X,N)

by lemma 3.17. Since HomH(A)(Z,N) = 0 and HomH(A)(X,N) = 0 we get that
HomH(A)(K,N) = 0 and hence K is homotopically projective.

Recall that we defined strictly perfect modules in 3.9

Lemma 3.22. Let M be a strictly perfect dg A-module. Then M is homotopi-
cally projective.

Proof. This follows from Hp(A) being triangulated, containing A, and closed
under direct summands

A proof of the next theorem can be found in the appendix of [10].

Theorem 3.23. Let M be a dg A-module

• There exists a quasi-isomorphism

pX → X

with pX homotopically projective. This assignment induces a triangle
functor

p : H(A)→ H(A)

which makes the quasi-isomorphisms pX → X into a natural transforma-
tion between p and the identity functor.
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• There exists a quasi-isomorphism

X → iX

with iX homotopically injective. This assignment induces a triangle func-
tor

i : H(A)→ Hi(A)

which makes the quasi-isomorphism X → iX into a natural transforma-
tion between the identity functor and i.

3.10 Derived categories

Let A be a dg algebra, and consider the collection S of all quasi-isomorphism
in H(A). If we localise the category H(A) with respect to S we get the the
derived categories of A, denoted by D(A). It shares a lot of the same properties
as the derived category of an ordinary algebra. In particular a morphism X → Y
in D(A) can be represented as

X
s←− Z f−→ Y

and as

X
f ′−→ Z ′

s′←− Y

where f , f ′ are morphisms and s,s′ are quasi isomorphisms in H(A). The shift
functor [1] : H(A) → H(A) preserves quasi-isomorphism and therefore induces
a well defined functor

[1] : D(A)→ D(A)

which sends a morphism

X
s←− Z f−→ Y

to

X[1]
s[1]←−− Z[1]

f [1]−−→ Y [1]

We have the following theorem

Theorem 3.24. Let A be a dg algebra. The category D(A) is triangulated with

[1] : D(A)→ D(A)

as the translation functor. The distinguished triangles are the ones which are
isomorphic in D(A) to an exact triangle.
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Recall that we have a functor p : H(A) → Hp(A) from section 3.9. These
are very useful when studying the derived category.

Theorem 3.25. Let A be a dg algebra.

• The functor p : H(A)→ H(A) induces a triangle functor

p : D(A)→ H(A)

which is fully faithful and left adjoint to the projection functor
H(A)→ D(A).

• The functor i : H(A)→ H(A) induces a triangle functor

i : D(A)→ H(A)

which is fully faithful and right adjoint to the projection functor
H(A)→ D(A).

Below we define some subcategories of D(A) which we will need later.

Definition 3.26. Let perf(A) be the smallest full triangulated subcategory of
D(A) closed under direct summands. A dg A-module M is called perfect if it is
an object of perf(A).

Note that a chain complex over an ordinary algebra is perfect if and only if
it is quasi-isomorphic to a bounded complex with projective components.

Definition 3.27. Let k be a field and A a dg k-algebra. We then have a full
triangulated subcategory of D(A) formed by dg A-modules M such that∑

dimkH
p(M)

is finite dimensional. We will denote this by Dfd(A).

If A is a finite dimensional algebra then Dfd(A) = Db(modA).



4. PREDUALITY FUNCTORS

In this chapter we will consider dg algebras B equipped with an involution

τ : B → Bop

which is a morphism of dg algebras satisfying τ2 = 1B .

Definition 4.1. A preduality functor on a category C is a functor F : C → Cop

equipped with a natural transformation

φ : 1C → V V

satisfying V φ ◦ φV = 1V .

We will show that a dg algebra B with an involution has a dg preduality
functor

V : Cdg(B)→ Cdg(B)op

We will also show that [n]◦V is a preduality functor if V is a preduality functor,
where [n] is the shift functor. This will be necessary for the definition of the
deformed n-Calabi-Yau completion of a homologically smooth algebra in the
next section. We will also investigate the situation where

F : A→ B

is a morphism of dg algebras satisfying F ◦ τA = τB ◦ F where τA and τB are
involutions on A and B.

4.1 Extending involutions to preduality functors

Let A be a dg algebra with an involution τ . Assume that M is a left dg A-
module. We then have a right dg A-module M with module structure given
by

m ∗ a = (−1)|m|·|a|τ(a) ·m

This induces a dg functor

τ ′ : Cdg(A
op)→ Cdg(A)
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Now let N be a right dg A-module. We have a dg functor ∗ sending N to
N∗ = HomA(N,A) and a morphism f : N1 → N2 to

f∗ = HomA(f,A) : HomA(N2, A)→ HomA(N1, A)

given by f∗(g) = (−1)|f |·|g|g ◦ f . We let

V = τ ′◦∗ (4.1)

be the composition, so V is a functor

V : Cdg(A)→ Cdg(A)op

It takes a right module N to HomA(N,A). We also have a natural maps

φN : N → V V (N)

given by φN (n)(f) = (−1)|f |·|n|τ(f(n)).

Proposition 4.2. We use the same notation as above.

1. V is a differential graded functor

2. φN ∈ Z0(HomA(N,V V N)) = HomA(N,V V N)

3. V is a preduality functor

Proof. For the first part observe that V is the composition of the dg functors
τ ′ and HomA(−, A), and is therefore a dg functor.
Let M be a right dg A-module. Since

φN (n · a)(f) = (−1)|f |·(|n|+|a|) · τ(f(n · a)) = (−1)|f |·(|n|+|a|) · τ(f(n) · a)

= (−1)|f |·|n|+|a|·|n| · τ(a) · τ(f(n)) = (−1)|a|·|n| · τ(a) · (φN (n)(f))

= (φN (n) ∗ a)(f)

we get that

φN (n · a) = φN (n) ∗ a

It therefore only remain to show that φN commutes with the differential in order
to prove the second part. This follows since

φN (d(n))(f) = (−1)|n|·|f |+|f | · f(d(n))

and

d(φN (n))(f) = d ◦ φN (n)(f)− (−1)|n| · φN (n) ◦ d(f)

= (−1)|n|·|f | · d(f(n))− (−1)|n|·|f | · d(f)(n)

= (−1)|n|·|f | · d(f(n))− (−1)|n|·|f | · d(f(n)) + (−1)|n|·|f |+|f | · f(d(n))

= (−1)|n|·|f |+|f | · f(d(n))
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For the last part we want to show

VM
φV M−−−→ V V VM

V φM−−−→ VM

is equal to 1VM . So let f ∈ VM = HomA(M,A) and m ∈M . Then

V φM (φVM (f))(m) = φVM (f)(φM (m)) = (−1)|m|·|f |τ(φM (m)(f))

= τ(τ(f(m))) = f(m)

and the result follows.

4.2 Properties of dg preduality functors

Let F be a functor satisfying proposition 4.2, i.e F is a dg functor

F : Cdg(A)→ Cdg(A)op

and we have morphisms φM : M → FFM natural in M which satisfy

F (φM ) ◦ φFM = 1FM

Let Fn denote the composition [n] ◦ F . We then have a natural transformation

1
φ−→ FF

=−→ F [−n][n]F
(αn

[n]F )−1

−−−−−−→ [n]F [n]F = Fn ◦ Fn (4.2)

which we will denote by φn.

Proposition 4.3. Fn = [n] ◦ F together with φn is a preduality dg functor
satisfying proposition 4.2

Proof. It is obvious that Fn satisfy property 1 and 2 of proposition 4.2. We
therefore only need to show that

Fn
φn
Fn−−→ FnFnFn

Fn(φn)−−−−−→ Fn

is the identity. This composition is the same as

[n]F
φ[n]F−−−→ FF [n]F

=−→ F [−n][n]F [n]F
(αn

[n]F [n]F )−1

−−−−−−−−−→ [n]F [n]F [n]F

[n]F ((αn
[n]F )−1)

−−−−−−−−−−→ [n]FF [−n][n]F
=−→ [n]FFF

[n]F (φ)−−−−−→ [n]F

We will denote this composition by Φ. We first need to show that

[n]F FF [n]F

F [−n]FF

[n]FFF

φ[n]F

[n](φF )

F (α−nF )

(αn)−1
FF

(4.3)
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commutes. Note that

F (α−nF ) = (−1)n(n+1)/2 · F (Σn[−n]FF ) ◦ FF (Σ−n[n]F )

and

(αn)−1
FF = (−1)n(n−1)/2 · ΣnFFF ◦ F (Σ−nFF )

so

(αn)−1
FF ◦ F (α−nF ) = ΣnFFF ◦ FF (Σ−n[n]F )

Also note that the square

[n]F FF [n]F

F FFF

φ[n]F

φF

Σ−n[n]F FF (Σ−n[n]F )

commutes by naturality of φ. Hence

(αn)−1
FF ◦ F (α−nF ) ◦ φ[n]F = ΣnFFF ◦ FF (Σ−n[n]F ) ◦ φ[n]F

= ΣnFFF ◦ φF ◦ Σ−n[n]F

= [n](φF )

and 4.3 commutes. Therefore Φ can be written as

[n]F (φ) ◦ β ◦ [n](φF )

Where β : [n]FFF → [n]FFF is given by

β = [n]F ((αn[n]F )−1) ◦ (αn[n]F [n]F )−1 ◦ F (α−nF )−1 ◦ αnFF

We also have that

[n]F (φ) ◦ [n](φF ) = [n](F (φ) ◦ φF ) = 1[n]F

since F is a preduality functor. We therefore only need to show that β = 1.



4. Preduality functors 59

Consider the diagram

[n]FFF [n]FF [−n][n]F [n]F [n]F [n]F

[n]F [n][−n]FF

F [−n]FF F [−n][n][−n]FF

FF [n]F F [−n][n]F [n]F [n]F [n]F [n]F

= ∼=

=

= ∼=

∼=

∼=

∼=

∼=

=

= ∼=

where the maps are the natural ones. Note that we get β if we follow the iso-
morphisms on the boundary of the square counterclockwise around the diagram
starting in the upper left corner. Also note that the two left diagrams and
the right diagram commutes since the maps are natural isomorphisms, while
the upper diagram commutes because of the commutativity of diagram (3.1) in
proposition 3.12. The commutativity of the small diagrams implies that the big
diagram commutes, and hence β = 1. Therefore Fn is a preduality functor.

Let f : X → FX be a closed morphism. We say that f is (F, φ)-symmetric
if

f = F (f) ◦ φX

and (F, φ)-antisymmetric if

f = −F (f) ◦ φX

Proposition 4.4. (2.5 in [7]) Let f : X → FX be a closed morphism.

• If f is an (F, φ)-antisymmetric morphism then the cone of f has a
([1] ◦ F, φ1)-symmetric morphism

g : Cone(f)→ [1]FCone(f)

Furthermore, if φX is a quasi-isomorphism then g is a quasi-isomorphism

• If f is an (F, φ)-symmetric morphism then the cone of f has a
([1] ◦ F, φ1)-antisymmetric morphism

h : Cone(f)→ [1]FCone(f)

Furthermore, if φX is a quasi-isomorphism then g is a quasi-isomorphism
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Proof. We will only show the second part. The first part is similar. So assume we
have a symmetric closed morphism f : X → FX. We then have a commutative
square

X FX

FFX FX

f

−F (f)

φX −1

From lemma 3.4 we get a closed morphism(
−1 0
0 φX [1]

)
: Cone(f)→ Cone(−F (f))

with the identification Cone(f) = FX ⊕ X[1] and Cone(−F (f)) = FX ⊕
(FFX)[1] as graded modules. Also by lemma 3.13 we have an isomorphism(

(α−1
X )[1] 0
0 1

)
: Cone(−F (f))→ F1(Cone(f))

where F1(Cone(f)) = F1(X[1])[1]⊕ F1FX as a graded module. We let

g =

(
−(α−1

X )[1] 0
0 φX [1]

)
: Cone(f)→ F1(Cone(f))

denote the composition of these maps. Then g gives us a commutative diagram

FX Cone(f) X[1]

F1(X[1]) F1Cone(f) F1FX

v1 w1

F1(w1) F1(v1)

−(α−1
X )[1] g φX [1]

(4.4)

Here v1, w1 are the inclusion and projection induced by the cone. We also have
isomorphisms

((α−1
X )[1])−1 : F1(X[1])→ FX

and

F1((α−1
X )[1])−1 : F1FX → F1F1(X[1])

So we can write Cone(f) = F1(X[1]) ⊕ X[1] and F1Cone(f) = F1(X[1]) ⊕
F1F1(X[1]). With this identification we get

g =

(
−1 0
0 F1((α−1

X )[1])−1 ◦ φX [1]

)
: Cone(f)→ F1(Cone(f))
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Also it is not hard to see that

φ1
X[1] = F1((α−1

X )[1])−1 ◦ φX [1]

Thus

g =

(
−1 0
0 φ1

X[1]

)
: Cone(f)→ F1(Cone(f))

and we have a commutative diagram

F1(X[1]) Cone(f) X[1]

F1(X[1]) F1Cone(f) F1F1(X[1])

v w

F1(w) F1(v)

−1 g φ1
X[1]

(4.5)

where v = v1 ◦ ((α−1
X )[1])−1 and w = w1. Note that

φ1
Cone(f) =

(
φ1
F1(X[1]) 0

0 φ1
X[1]

)
: Cone(f)→ F1F1Cone(f)

and

F1(g) =

(
F1(φ1

X[1]) 0

0 −1

)
: F1F1Cone(f)→ F1Cone(f)

where F1F1Cone(f) = F1F1F1(X[1])⊕F1F1(X[1]) as a graded module. There-
fore

g = −F1(g) ◦ φ1
Cone(f)

Now assume φX is a quasi-isomorphism. Consider the commutative diagram
(4.5). We have that the lower and upper sequence is contained in a distinguished
triangle by lemma 3.8. Hence g is a quasi-iso by corollary 3.18.

We will also need the following result for later

Lemma 4.5. Assume

φA : A→ FFA

is an isomorphism. If X is a strictly perfect dg A-module then

φX : X → FFX

is an isomorphism.
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Proof. Let C denote the full subcategory of Cdg(A) with objects X such that
φX is an isomorphism. First observe that A is an object of C. Also since the
diagram

[1](X) FF [1](X)

(FFX)

φ[1](X)

φX [1] ∼=

commutes we get that if X[1] ∈ C if X ∈ C. Now assume that

0→ X1 → X2 → X3 → 0

is an extension and X1 ∈ C and X3 ∈ C. We then have a commutative diagram

0 X1 X2 X3 0

0 FFX1 FFX2 FFX3 0

φX1 φX2 φX2

where the upper and lower row are exact in C(A). By the five-lemma we get
that φX2 is an isomorphism, and hence X2 ∈ C. Therefore C is closed under
extensions. By naturality of φ it is easy to see that if X ∈ C and Y is a direct
summand of X then Y ∈ C. Hence C contains strictperf(A), and the result
follows.

4.3 Derived preduality functors

Let A be a dg algebra with an involution τA. Let V denote the extension of the
preduality functor given in (4.1), and let Vn = [n]◦V . Since Vn is a dg functor it
induces a well defined triangle functor on the homotopy categories also denoted
by

Vn : H(A)→ H(A)op

We define the total derived functor of Vn to be

DVn = π ◦ Vn ◦ p

where p : D(A) → H(A) is the homotopically projective resolution functor in
Theorem 3.25 and π : H(A)→ D(A) is the projection functor. Note that

DVn : D(A)→ D(A)op
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is a triangle functor. Consider the natural morphism

φn : 1→ Vn ◦ Vn

We want to define a corresponding natural transformation φ′n in D(A) for the
derived functors DVn. If we let

q : p→ 1

denote the quasi-isomorphism in Theorem 3.23, then φ′n is the composition

1
q−1

−−→ p
φn
p−−→ Vn ◦ Vn ◦ p

Vn(qVn◦p)−−−−−−→ Vn ◦ p ◦ Vn ◦ p = DVn ◦DVn

Lemma 4.6. If f : M → N is a morphism between homotopically projective dg
A-modules. Then

DVn(f) = Vn(f)

Also if X, Vn(X) are homotopically projective then

φ′nX = φnX

Proof. This follows from the fact that p acts as the identity functor on homo-
topically projective modules.

4.4 Relations with hom and tensor product

Let A and B be dg algebras with involutions τA and τB . Furthermore let
G : A→ B be a morphism of dg algebras satisfying

G ◦ τA = τB ◦G

We want to investigate how the preduality functors on Cdg(A) and Cdg(B) relate.

Lemma 4.7. Let M and N be right dg A modules. We then have a natural
morphism of chain complexes

N ⊗A HomA(M,A)
ψ−→ HomA(M,N)

given by

ψ(n⊗ f)(m) = n · f(m)

Proof. We have a natural isomorphism

N ∼= HomA(A,N)

given by sending n ∈ N to gn ∈ HomA(A,N) defined by

gn(a) = n · a

With this identification we see that ψ is just the composition map, and hence
the result follows.
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We will denote by ∗ the induced module structure on M when M is a dg
module.

Lemma 4.8. Let M be a right dg A modules and N a left dg A module. There
is a natural isomorphism

M ⊗A N ∼= N ⊗AM

given by sending m⊗ n to (−1)|m|·|n| · n⊗m.
Furthermore, if M has a left dg B-module structure (resp N has a right dg
B-module structure) then the map above induces an isomorphism

M ⊗A N ∼= N ⊗AM

of right B-modules (resp left B-modules).

Proof. Let the map be denoted by η. We want to check that η is well defined.
We have that

η(m · a⊗ n) = (−1)(|m|+|a|)·|n| · n⊗ (m · a) = (−1)(|m|+|a|)·|n|+|a|·|m| · n⊗ τ(a) ∗m

and

η(m⊗ a · n) = (−1)(|n|+|a|)·|m| · (a · n)⊗m = (−1)(|n|+|a|)·|m|+|a|·|n| · n ∗ τ(a)⊗m

and hence is well defined. It is easy to see that η is a chain map and an
isomorphism in both cases, so the result follows

Note that the morphism G : A→ B makes B into a dg A-module.

Lemma 4.9. Let M and N be right dg A modules. We have a natural isomor-
phism

HomA(M,N) ∼= HomB(M ⊗A B,N)

given by sending f ∈ HomA(M,N) to the map

m⊗ b→ f(m) · b

Proof. This is a straightforward calculation

The relation G ◦ τA = τB ◦G gives us the following result

Lemma 4.10. There is an isomorphism of bi A-modules

B ∼= B

given by sending b to τB(b).
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Proof. We denote both the A-module structure of B and the multiplication in
B by ·, so

a1 · b · a2 = G(a1) · b ·G(a2).

where a1 ∈ A, a2 ∈ A and b ∈ B. We have that

τB(a1 ∗ b ∗ a2) = (−1)|a1|·|b|+|a1|·|a2|+|b|·|a2| · τB(G(τA(a2)) · b ·G(τA(a1)))

= (−1)|a1|·|b|+|a1|·|a2|+|b|·|a2| · τB(τB(G(a2)) · b · τB(G(a1)))

= G(a1) · τB(b) ·G(a2) = a1 · τB(b) · a2

and hence τB is a morphism of A-modules. Since it is obviously an isomorphism
we are done.

Now consider the tensor product

V (M)⊗A B = HomA(M,A)⊗A B

where M is a right dg A-module. From the above lemmas we get a sequence of
maps

HomA(M,A)⊗A B ∼= B ⊗A HomA(M,A)→ HomA(M,B)

∼= HomA(M,B) ∼= HomB(M ⊗A B,B)

This gives us the following result

Lemma 4.11. (2.8 in [7]) We have a natural morphism of right dg B-modules

V (M)⊗A B → V (M ⊗A B)

given by sending f ⊗ b1 to the map

m⊗ b2 → (−1)|b1|·|f | · τB(b1) · f(m) · b2

Furthermore, if M is strictly perfect then the map is an isomorphism.

Proof. Denote the map by νM . The first part follows from our discussion above.
For the second part let C denote the full subcategory of Cdg(A) consisting of
objects M such that νM is an isomorphism. We want to show that C contains
strictperf(A). Observe first that ν is a morphism between contraviariant dg
functors, i.e

ν ∈ Z0(Hom((−⊗A B) ◦ V, V ◦ (−⊗A B)))

By lemma 3.14 we see that C is closed under shifts. Also by a similar argument
as in lemma 4.5 we see that C is closed under extensions and direct summands.
Since C contains A the result follows.
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Recall that we use the notation M∗ = HomA(M,A). Consider the module

V (M)⊗A B ⊗AM∗

The composition

V (M)⊗A B ⊗AM∗ → HomA(M,V (M)⊗A B)
∼= HomB(M ⊗A B, V (M)⊗A B)→ HomB(M ⊗A B, V (M ⊗A B))

gives us a morphism

ψ : V (M)⊗A B ⊗AM∗ → HomB(M ⊗A B, V (M ⊗A B))

Let f ⊗ b1 ⊗ g ∈ V (M)⊗A B ⊗AM∗. We see that

ψ(f ⊗ b1 ⊗ g)(m1 ⊗ b2) = ν(f ⊗ (b1 · g(m1) · b2))

where ν : V (M)⊗A B → V (M ⊗A B) in the map defined in lemma 4.11. This
implies that

ψ(f ⊗ b1 ⊗ g)(m1 ⊗ b2)(m2 ⊗ b3)

= (−1)(|b1|+|g|+|m1|+|b2|)·|f | · τB(b1 · g(m1) · b2) · f(m2) · b3 (4.6)

Now consider the composition

V (M)⊗A B ⊗AM∗
1⊗τB⊗1−−−−−→ V (M)⊗A B ⊗AM∗

∼= M∗ ⊗A B ⊗A V (M)

= V (M)⊗A B ⊗AM∗

We denote this map by

χ1 : V (M)⊗A B ⊗AM∗ → V (M)⊗A B ⊗AM∗

Hence

χ1(f ⊗ b⊗ g) = (−1)|f |·|b|+|f |·|g|+|b|·|g| · g ⊗ τB(b)⊗ f

We also have a map

χ2 : HomB(M ⊗A B, V (M ⊗A B))→ HomB(M ⊗A B, V (M ⊗A B))

given by

χ2(f) = V (f) ◦ φM⊗AB

Note that χ2
1 = 1 and χ2

2 = 1.

Lemma 4.12. (2.10 in [7]) The morphism ψ commute with χi, i.e

ψ ◦ χ1 = χ2 ◦ ψ
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Proof. We first consider the composition ψ ◦ χ1. Observe that

ψ ◦ χ1(f ⊗ b1 ⊗ g) = (−1)|f |·|b|+|f |·|g|+|b|·|g| · ψ(g ⊗ τB(b)⊗ f)

Applying equation (4.6) we get

ψ ◦ χ1(f ⊗ b1 ⊗ g)(m1 ⊗ b2)(m2 ⊗ b3)

= (−1)|f |·|b1|+|g|·|m1|+|g|·|b2| · τB(τB(b1) · f(m1) · b2) · g(m2) · b3
= (−1)t · τB(b2) · τB(f(m1)) · b1 · g(m2) · b3

where

t = |g| · |m1|+ |g| · |b2|+ |b1| · |b2|+ |b1| · |m1|+ |f | · |b2|+ |m1| · |b2|

Now consider χ2 ◦ ψ. We have that

χ2 ◦ ψ(f ⊗ b1 ⊗ g) = V (ψ(f ⊗ b1 ⊗ g)) ◦ φM⊗AB

Hence

χ2 ◦ ψ(f ⊗ b1 ⊗ g)(m1 ⊗ b2)(m2 ⊗ b3)

= V (ψ(f ⊗ b1 ⊗ g))(φM⊗AB(m1 ⊗ b2))(m2 ⊗ b3)

= (−1)s1φM⊗AB(m1 ⊗ b2)(ψ(f ⊗ b1 ⊗ g)(m2 ⊗ b3))

where s1 = |m1| · |f | + |m1| · |b1| + |m1| · |g| + |b2| · |f | + |b2| · |b1| + |b2| · |g|.
Furthermore

(−1)s1 · φM⊗AB(m1 ⊗ b2)(ψ(f ⊗ b1 ⊗ g)(m2 ⊗ b3))

= (−1)s2 · τB(ψ(f ⊗ b1 ⊗ g)(m2 ⊗ b3)(m1 ⊗ b2))

where s2 = |m1| · |m2|+ |m1| · |b3|+ |b2| · |m2|+ |b2| · |b3|. Also

(−1)s2 · τB(ψ(f ⊗ b1 ⊗ g)(m2 ⊗ b3)(m1 ⊗ b2))

= (−1)s3 · τB(τB(b1 · g(m2) · b3) · f(m1) · b2)

where s3 = s2 + |f | · |b1|+ |f | · |g|+ |f | · |m2|+ |f | · |b3|. Finally

= (−1)s3 · τB(τB(b1 · g(m2) · b3) · f(m1) · b2)

= (−1)t · τB(b2) · τB(f(m1)) · b1 · g(m2) · b3

and the result follows.

In proposition 4.3 we showed that Vk = [k] ◦ V is a preduality functor. We
want to find a version of lemma 4.12 with V replaced by Vk. First observe that
we have a morphism

Vk(M)⊗A B ⊗AM∗ ∼= (V (M)⊗A B ⊗AM∗)[k]

ψ[k]−−→ HomB(M ⊗A B, V (M ⊗A B))[k] ∼= HomB(M ⊗A B, Vk(M ⊗A B))
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which we denote by ψk. We also have a map

χk2 : HomB(M ⊗A B, Vk(M ⊗A B))→ HomB(M ⊗A B, Vk(M ⊗A B))

given by

χk2(ΣkV (M⊗AB) ◦ f) = Vk(ΣkV (M⊗AB) ◦ f) ◦ φkM⊗AB

We want to find a map χk1 on Vk(M)⊗A B ⊗AM∗ such that lemma 4.12 holds
for ψk, χk2 and χk1 . A natural candidate is the composition

Vk(M)⊗A B ⊗AM∗ ∼= (V (M)⊗A B ⊗AM∗)[k]

χ1[k]−−−→ (V (M)⊗A B ⊗AM∗)[k] ∼= Vk(M)⊗A B ⊗AM∗

We denote this by χ′k1 . Explicitely it is given by

χ′k1 (Σk(f)⊗ b⊗ g) = (−1)|f |·|b|+|f |·|g|+|b|·|g| · Σk(g)⊗ τB(b)⊗ f

By lemma 4.12 we have that

ψk ◦ χ′k1 = χ′k2 ◦ ψk

where χ′k2 is the composition

HomB(M ⊗A B, Vk(M ⊗A B)) ∼= HomB(M ⊗A B, V (M ⊗A B))[k]

χ2[k]−−−→ HomB(M ⊗A B, V (M ⊗A B))[k] ∼= HomB(M ⊗A B, Vk(M ⊗A B))

Explicitely χ′k2 is given by

χ′k2 (ΣkV (M⊗AB) ◦ f) = ΣkV (M⊗AB) ◦ V (f) ◦ φM⊗AB

We compare this to χk2(ΣkV (M⊗AB) ◦ f) = Vk(ΣkV (M⊗AB) ◦ f) ◦ φkM⊗AB
. Recall

that φkM⊗AB
is the composition

M ⊗A B
φM⊗AB−−−−−→ V V (M ⊗A B)

(αk
V (M⊗AB)[k])

−1

−−−−−−−−−−−→ Vk ◦ Vk(M ⊗A B)

(see 4.2), where

(αkV (M⊗AB)[k])
−1 = (−1)k(k−1)/2 · ΣkV (V (M⊗AB)[k]) ◦ V (Σ−kV (M⊗AB)[k])

We also have that

Vk(ΣkV (M⊗AB) ◦ f) = (−1)k·(|f |+k) · ΣkV (M⊗AB) ◦ V (ΣkV (M⊗AB) ◦ f) ◦ Σ−kVkVk(M⊗AB)

= (−1)k · ΣkV (M⊗AB) ◦ V (f) ◦ V (ΣkV (M⊗AB)) ◦ Σ−kVkVk(M⊗AB)
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This implies that

χk2(ΣkV (M⊗AB) ◦ f)

= Vk(ΣkV (M⊗AB) ◦ f) ◦ φkM⊗AB

= (−1)k(k+1)/2 · ΣkV (M⊗AB) ◦ V (f) ◦ V (ΣkV (M⊗AB)) ◦ V (Σ−kV (M⊗AB)[k]) ◦ φM⊗AB

= (−1)k(k−1)/2 · ΣkV (M⊗AB) ◦ V (f) ◦ φM⊗AB

= (−1)k(k−1)/2 · χ′k2 (ΣkV (M⊗AB) ◦ f)

We therefore define χk1 = (−1)k(k−1)/2 · χ′k1 , so

χk1(Σk(f)⊗ b⊗ g) = (−1)|f |·|b|+|f |·|g|+|b|·|g|+k(k−1)/2 · Σk(g)⊗ τB(b)⊗ f

This gives us the following result

Proposition 4.13. Let ψk be the composition

Vk(M)⊗A B ⊗AM∗ ∼= (V (M)⊗A B ⊗AM∗)[k]

ψ[k]−−→ HomB(M ⊗A B, V (M ⊗A B))[k] ∼= HomB(M ⊗A B, Vk(M ⊗A B))

where ψ is given in (4.6). Also let

χk1 : Vk(M)⊗A B ⊗AM∗ → Vk(M)⊗A B ⊗AM∗

and

χk2 : HomB(M ⊗A B, Vk(M ⊗A B))→ HomB(M ⊗A B, Vk(M ⊗A B))

be given by

χk1(Σk(f)⊗ b⊗ g) = (−1)|f |·|b|+|f |·|g|+|b|·|g|+k(k−1)/2 · Σk(g)⊗ τB(b)⊗ f

and

χk2(ΣkV (M⊗AB) ◦ f) = Vk(ΣkV (M⊗AB) ◦ f) ◦ φkM⊗AB

Then ψk commutes with χki , i.e

ψk ◦ χk1 = χk2 ◦ ψk



5. THE N-CALABI-YAU COMPLETION

Consider the dg algebra

Ae = A⊗k Aop

where A is a dg algebra. The multiplicative structure on Ae is given by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|a2|·b1| · (a1 · a2)⊗ (b1 ∗ b2)

where ∗ is multiplication in Aop. The chain map

τ : A⊗k Aop → Aop ⊗k A

given by

τ(a⊗ b) = (−1)|a|·|b| · b⊗ a

will be an involution on Ae. Note that A is a right dg Ae-module via the action

a · (a1 ⊗ a2) = (−1)|a2|·|a1|+|a2|·|a| · a2 · a · a1

We say that A is homologically smooth if it is a perfect dg Ae module. If A is
an ordinary algebra then A is homologically smooth if and only if A has finite
projective dimension as an Ae-module.

In this chapter we will define the n-Calabi-Yau-completion B of a homologi-
cally smooth finite dimensional algebra. We will show that B is a homologically
smooth dg algebra and that B is quasi-isomorphic to DVn(B), where Vn = [n]◦V
and V is the preduality functor on Be induces from the involution. This will
imply that the full subcategory Dfd(B

e) of D(Be) is n-Calabi-Yau. In the last
subsection we show that the preprojective algebra Pk(Q) is quasi-isomorphic to
the 2-Calabi-Yau completion of the path algebra kQ.

5.1 Statement of the main result

Let A be a homologically smooth dg algebra over the field k. Let

V : Cdg(Ae)→ Cdg(Ae)op

be the preduality functor induces from the involution on Ae. We define the
inverse dualizing complex of A to be

ΘA = p ◦DV (A)
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where DV is the derived functor of V and p is the homotopically projective
resolution functor in Theorem 3.25. Note that ΘA is well defined up to homotopy
equivalence. Now let n be an integer and

θA = ΘA[n− 1]

The n-Calabi-Yau completion of A is the tensor dg algebra

B = TA(θA) = A⊕ θA ⊕ (θA ⊗A θA)⊕ ...

with differential acting componentwise on B. Note that B is well defined up
to homotopy equivalence. We can consider A as a dg algebra concentrated in
degree 0. With this identification we get a natural morphism of dg algebras

F : A→ B

Recall that

φ′n : 1→ DVn ◦DVn

denote the induced natural transformation on D(Be) defined in subsection 4.3.

Theorem 5.1. (Theorem 4.8 in [7]) Let A be a homologically smooth finite di-
mensional algebra, and let B be the n-Calabi-Yau completion of A. Then B is
homologically smooth and we have an isomorphism in D(Be)

f : B → DVn(B)

satisfying

f = DVn(f) ◦ φ′nB

Recall that Dfd(B) is the subcategory of D(B) consisting of modules with
finite dimension in homology. One of the main reasons why Theorem 5.1 is
important is due to the following result.

Theorem 5.2. (Lemma 3.4 in [7]) Assume B is a homologically smooth dg
algebra over the field k. For any dg module L and any dg module M in Dfd(B),
there is a canonical isomorphism

HomD(B)(L⊗B ΘB ,M)
∼=−→ Homk(HomD(B)(M,L), k)

In particular if ΘB is isomorphic to B[−n] in D(Be), then Dfd(B) is n-Calabi-
Yau as a triangulated category.

Note that ΘB = DVn(B)[−n]. Hence if B is the n-Calabi-Yau completion
of some finite dimensional homologically smooth algebra A, then Dfd(B) is
n-Calabi-Yau.
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5.2 Proof of the main result

In this section we want to give a proof of Theorem 5.1. But first we need some
preparation.

Lemma 5.3. Let C be a dg A-bimodule. Let

TA(C) = A⊕ C ⊕ (C ⊗A C)⊕

be the tensor algebra. Then TA(C) is a dg algebra and we have an exact sequence
of right dg TA(C)e modules

0→ TA(C)⊗A C ⊗A TA(C)
α−→ TA(C)⊗A TA(C)

m−→ TA(C)→ 0

where α(b⊗ x⊗ c) = b⊗ (x · c)− (b · x)⊗ c and m(b⊗ c) = b · c are morphism
of dg TA(C)e-modules.

Proof. It is obvious that TA(C) is a dg algebra and that α and m are morphism
of dg Ae-modules. For exactness observe that we have a map

s : TA(C)→ TA(C)⊗A TA(C)

given by

s(b) = b⊗ 1

Note that s is a right inverse for m, i.e

m ◦ s = 1

We also have a map

t : TA(C)⊗A TA(C)→ TA(C)⊗A C ⊗A TA(C)

given by

t((b1 ⊗ ...⊗ bk)⊗ (c1 ⊗ ...⊗ cl))
= (b1 ⊗ ...⊗ bk)⊗ c1 ⊗ (c2 ⊗ ...⊗ cl) + (b1 ⊗ ...⊗ bk ⊗ c1)⊗ c2 ⊗ (c3 ⊗ ...⊗ cl)
+ ...+ ((b1 ⊗ ...⊗ bk ⊗ c1 ⊗ ...⊗ cl−1)⊗ cl ⊗ 1

It is easy to see that

t ◦ α = 1

and

α ◦ t+ s ◦m = 1

Hence the result follows.
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We will now assume A is a finite dimensional homologically smooth algebra.

Lemma 5.4. We have a projective resolution of A

0→ Pk → ...→ P0 → A→ 0

of finite dimensional Ae-bimodules such that P0 = Ae.

Proof. We have an Ae-bimodule epimorphism

Ae
m−→ A

given by m(a1⊗a2) = a1 ·a2. Observe that Ker(m) has finite projective dimen-
sion since A has finite projective dimension. Picking a projective resolution of
Ker(m) and append Ae to the end gives us the required projective resolution
for A.

Now pick a projective resolution P = Pk → ... → P0 of A as in lemma 5.4.
Consider the dg Ae-module

DV (A) = HomAe(P,Ae) = HomAe(P0, Ae)→ ...→ HomAe(Pk, Ae)

Since HomAe(Pi, Ae) is projective for i = 0, ..., k we get that HomAe(P,Ae) is
homotopically projective. Hence

ΘA = p ◦DV (A) = HomAe(P,Ae)

This implies that

θA = ΘA[n− 1] = HomAe(P0, Ae)→ ...→ HomAe(Pk, Ae)

concentrated in degrees −n + 1, −n + 2,..,−n + 1 + k. Note that θA is strictly
perfect since it is a bounded complex of finite dimensional projectives. Let
B = TA(θA) be the n-Calabi-Yau completion of A. Lemma 5.3 tells us that we
have an exact sequence

0→ B ⊗A θA ⊗A B
α−→ B ⊗A B

m−→ B → 0 (5.1)

We want to show that B is homologically smooth, but first we need some prepa-
ration. Note that the dg algebra morphism F : A → B gives us a dg algebra
morphism

F e : Ae → Be

given by

F e(a1 ⊗ a2) = F (a1)⊗ F (a2)

In this way we can consider Be as a dg Ae-module.
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Lemma 5.5. Let M be a right dg Ae module. We have a natural isomorphism
of dg modules

M ⊗Ae Be
∼=−→ B ⊗AM ⊗A B

sending m⊗ (b1 ⊗ b2) to (−1)|b2|·|b1|+|b2·|m| · b2 ⊗m⊗ b1.

Proof. This is a straightforward calculation

Lemma 5.5 tells us that

B ⊗A θA ⊗A B ∼= θA ⊗Ae Be

and

B ⊗A B ∼= A⊗Ae Be

With this identification we see that the morphism α is given by

α(x⊗ (b1 ⊗ b2)) = (x · b1)⊗ b2 − (−1)(|b1|+|b2|)·|x| · b1 ⊗ (b2 · x)

Lemma 5.6. Let M and N be respectively projective left and right A-modules.
Then M ⊗k N is a projective Ae-module.

Proof. There exists positive integers m1 and m2 such that M is a direct sum-
mand of Am1 and N is a direct summand of Am2 . Hence M ⊗k N is a direct
summand of

Am1 ⊗k Am2 ∼= (Ae)m1·m2

Therefore M ⊗k N is a projective Ae-module.

Lemma 5.7. Let M and N be (ordinary) Ae-modules. Assume that M and N
are projective as left and as right A-modules. Then

M ⊗A N

is projective as a left and as a right A-module.

Proof. Let X and Y be right A-modules, and let f : M ⊗AN → Y and g : X →
Y be morphisms of right A-modules. Furthermore assume that g is surjective.
We want to show that f factors through g. Let

ηX : HomA(M ⊗A N,X)
∼=−→ HomA(M,HomA(N,X))

and

ηY : HomA(M ⊗A N,Y )
∼=−→ HomA(M,HomA(N,Y ))
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denote the hom-tensor adjunctions, where the elements in the hom sets are
morphisms of right modules. Consider the diagram

HomA(N,X)

M HomA(N,Y )
ηY (f)

g ◦ −h

Since N is projective the map

g ◦ − : HomA(N,X)→ HomA(N,Y )

is surjective. Therefore since M is projective there exists a morphism h making
the diagram commute. This implies that the diagram

X

M ⊗A N Y
f

g
η−1
X (h)

commutes, and hence M ⊗A N is a projective right A-module. A similar argu-
ment shows that M ⊗A N is a projective left A-module.

Lemma 5.8. Let M be a projective Ae-module. Then M is a projective right
A-module and a projective left A-module.

Proof. There exists a positive integer m such that M is a direct summand of
(Ae)m. Furthermore there exists bijections

r : Ae
∼=−→ Ad

and

l : Ae
∼=−→ Ad

given by

r((k1 · e1 + ...+ kd · ed)⊗ b) = (k1 · b, k2 · b, ..., kd · b)

and

l(a⊗ (k1 · e1 + ...+ kd · ed)) = (k1 · a, k2 · a, ..., kd · a)

where d is the dimension of A, ki ∈ k for i = 1, ..., d, and a, b ∈ A. Using these
bijections we see that M is a direct summand of Ad·m as a right module and as
a left module. The result follows.
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Lemma 5.9. Be is a homotopically projective Ae-module.

Proof. From lemma 5.8 we know that θA is a bounded complex of projective
right and projective left A-modules. Hence

θA ⊗A ...⊗A θA

is a bounded complex of projective right and projective left A-modules by lemma
5.7. Lemma 5.6 implies that

(θA ⊗A ...⊗A θA)⊗k (θA ⊗A ...⊗A θA)

is a bounded complex of projective Ae-modules, and is therefore homotopically
projective. Since Be is a sum of such terms we get that it is homotopically
projective.

Lemma 5.10. θA ⊗Ae Be is a strictly perfect dg module and A ⊗Ae Be is a
perfect dg module.

Proof. Since θA is a strictly perfect dg Ae-module and −⊗Ae Be is a dg functor
taking Ae to Be we get that θA⊗Ae Be is a strictly perfect Be-module (see 3.9).

For the the second part note that A is a perfect dg Ae-modules. Hence it
is enough to show that the functor − ⊗Ae Be takes perfect modules to perfect
modules. First observe that Be is homotopically projective, so −⊗AeBe induces
a well defined triangle functor

−⊗Ae Be : D(Ae)→ D(Be)

Consider the full subcategory C of D(Ae) consisting of objects M such that
M ⊗Ae Be is perfect. This is a triangulated category since − ⊗Ae Be is a
triangle functor. It is also obviously closed under direct summands and contains
the object Ae since Ae ⊗Ae Be = Be is perfect. Hence C contains perf(A), and
we are done.

Corollary 5.11. B is a homologically smooth dg algebra

Proof. We need to show that B is a perfect Be-module. The exact sequence
given in 5.1 implies that we have a quasi-isomorphism

Cone(α) ' B

Since α is a morphism between perfect modules we have that Cone(α) is perfect.
Therefore B is a perfect, and we are done.

Now consider the dg module Vn−1(θA). This is given by

Vn−1(θA) = HomAe(HomAe(Pk, Ae), Ae)→ ...→ HomAe(HomAe(P0, Ae), Ae)
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concentrated in degrees −k,...,0. Since Pi is projective we have an isomorphism
of Ae-modules

Pi ∼= HomAe(HomAe(Pi, Ae), Ae)

This induces an isomorphism

Vn−1(θA) ∼= P

where

P = Pk → ...→ P0

Since P is a projective resolution of A we get a quasi-isomorphism

p : Vn−1(θA)→ A (5.2)

This induces a quasi-isomorphism

Vn−1(θA)⊗Ae Be
p⊗1−−→ A⊗Ae Be

where we use the fact that Be is homotopically projective. Furthermore the
map

V (θA)⊗Ae Be → V (θA ⊗Ae Be)

in lemma 4.11 is an isomorphism since θA is strictly perfect. We therefore have
an isomorphism

νn−1 : Vn−1(θA)⊗Ae Be
∼=−→ Vn−1(θA ⊗Ae Be)

Hence we have a diagram

θA ⊗Ae Be A⊗Ae Be

Vn−1(θA)⊗Ae Be

θA ⊗Ae Be Vn−1(θA ⊗Ae Be)

α

=

p⊗ 1

νn−1

α′

(5.3)

Note that φθA⊗AeBe is an isomorphism since θA ⊗Ae Be is strictly perfect. The
idea for the remaining part of the proof is the following. We want to find a
morphism α′ which is antisymmetric and makes (5.3) commute in D(Be). From
proposition 4.4 we will then get a Vn symmetric quasi-isomorphism Cone(α′)→
Vn(Cone(α′)). Using the commutativity of (5.3) and the fact that Cone(α′) is
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quasi-isomorphic to B we then finally construct the morphism f in Theorem
5.1.

In order to construct the morphism α′ we consider the commutative diagram

HomBe(θA ⊗Ae Be, Vn−1(θA ⊗Ae Be))

Vn−1(θA)⊗Ae Be ⊗Ae θ∗A HomBe(θA ⊗Ae Be, Vn−1(θA)⊗Ae Be)

HomBe(θA ⊗Ae Be, A⊗Ae Be)

ψn−1

Ψn−1

νn−1 ◦ −

(p⊗ 1) ◦ −

(5.4)
The horisontal morphism is the composition of the maps given in lemma 4.7
and lemma 4.9. The vertical morphisms are induced from the morphisms

νn−1 : Vn−1(θA)⊗Ae Be → Vn−1(θA ⊗Ae Be)

and

p⊗ 1 : Vn−1(θA)⊗Ae Be → A⊗Ae Be

The diagonal morphisms are the composition of the horisontal and the vertical
morphisms.

Recall from proposition 4.13 that we can talk about antisymmetric elements
in Vn−1(θA)⊗Ae Be ⊗Ae θ∗A (i.e elements x satisfying χn−1

1 (x) = −x), and that
the morphism

Vn−1(θA)⊗Ae Be ⊗Ae θ∗A
ψn−1

−−−→ HomBe(θA ⊗Ae Be, Vn−1(θA ⊗Ae Be))

takes antisymmetric elements to antisymmetric morphisms. Hence it is enough
to find a antisymmetric element that maps to α under the morphism

Vn−1(θA)⊗Ae Be ⊗Ae θ∗A
Ψn−1

−−−→ HomBe(θA ⊗Ae Be, A⊗Ae Be)

in diagram 5.4.
At the end of 4.8 in [7] Keller claims that the element id ⊗ c maps to the

morphism

x→ x⊗ 1

and its transpose conjugate χn−1
1 (id⊗ c) maps to the morphism

x→ 1⊗ x
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under Ψn−1, where c ∈ θA ⊗Ae θ∗A is the Casimir element (i.e the preimage of
1 ∈ HomAe(θA, θA) under the morphism in lemma 4.7), and where we use the
identification

HomBe(θA ⊗Ae Be, A⊗Ae Be) ∼= HomBe(θA, A⊗Ae Be)

It is then easy to see that the antisymmetric element id⊗ c−χn−1
1 (id⊗ c) maps

to α′. Unfortunately, due to time limits we haven’t been able to verify that this
is true.

Now assuming the existence of such a morphism α′, we get a Vn-symmetric
quasi-isomorphism

f : Cone(α′)→ Vn(Cone(α′))

from proposition 4.4. Note that Vn−1(θA ⊗Ae Be) is strictly perfect since
θA ⊗Ae Be is strictly perfect. Hence Cone(α′) is strictly perfect, and there-
fore Vn(Cone(α′)) is also strictly perfect. Since strictly perfect modules are
homotopically projective (lemma 3.22), f must be a quasi-isomorphism

f : Cone(α′)→ DVn(Cone(α′))

satisfying

f = DVn(f) ◦ φ′nCone(α′)

by lemma 4.6. Theorem 5.1 follows from the quasi-isomorphism

B ' Cone(α′)

5.3 Relation to the preprojective algebra of a quiver

Let Q be a finite quiver without cycles. Let kQ have a right kQe = kQ⊗k kQop

module structure given by

x · (y ⊗ z) = z · x · y

We want to consider the 2-Calabi-Yau completion Π2(kQ) of kQ. In order for the
results in the previous section to hold we need to show that kQ is homologically
smooth. For this we will use the exact sequence in lemma 2.10 with M = kQ

Lemma 5.12. We have a projective resolution of right kQe = kQ ⊗k kQop

modules

0→
⊕
α∈Q1

kQetα ⊗k esαkQ
∂−ε−−→

⊕
i∈Q0

kQei ⊗k eikQ
ζ−→ kQ→ 0

where ∂,ε and ζ is the same as in lemma 2.10. In particular, kQ is homologically
smooth.
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Proof. We have already shown that the sequence is exact. Also kQei ⊗ ejkQ
has a canonical right kQe module structure given by

(m⊗ n)(x⊗ y) = y ·m⊗ n · x

for x ⊗ y ∈ kQe and m ⊗ n ∈ kQei ⊗ ejkQ. With this structure it is easy to
see that ζ and ∂ − ε are morphisms of kQe modules. It therefore only remain
to show that ⊕

α∈Q1

kQetα ⊗k esαk

and ⊕
i∈Q0

kQei ⊗k eikQ

are projective kQe modules, and for this it is sufficient to show that kQei⊗ejkQ
is a projective kQe module for i, j ∈ Q0. Now we have an epimorphism

p : kQe → kQei ⊗k ejkQ

given by p(x⊗ y) = y · ei ⊗ ej · x. We also have a natural inclusion map

i : kQei ⊗k ejkQ→ kQ⊗k kQop = kQe

given by

i(x⊗ y) = (y ⊗ x)

and the composition p◦i is the identity map on kQei⊗kejkQ. Hence kQei⊗ejkQ
is a direct summand of kQe, and is therefore projective.

Recall that we have an isomorphism

Pk(Q) ∼= TkQ(θ)

where θ = Ext1
kQ(D(kQ), kQ) and Pk(Q) is the preprojective algebra. We now

assume that the underlying graph of Q is not Dynkin. Our main goal is to show
that we have a quasi-isomorphism of dg algebras

Pk(Q)→ Π2(kQ)

where we consider Pk(Q) as a dg algebra concentrated in degree 0.
Consider the projective resolution of D(kQ) in lemma 2.10 given by

0→
⊕
α∈Q1

kQetα ⊗k esαD(kQ)
∂−ε−−→

⊕
i∈Q0

kQei ⊗k eiD(kQ)
ζ−→ D(kQ)→ 0
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Since D(kQ) is a kQ-bimodule we get that⊕
α∈Q1

kQetα ⊗k esαD(kQ)

and ⊕
i∈Q0

kQei ⊗k eiD(kQ)

are kQ-bimodules, and therefore also left kQe-modules. It is easy to see that ζ
and ∂ − ε will be morphisms of left kQe modules. Applying HomkQ(−, kQ) we
get the complex

HomkQ(
⊕
i∈Q0

kQei ⊗k eiD(kQ), kQ)
−◦(∂−ε)−−−−−→ HomkQ(

⊕
α∈Q1

kQetα ⊗k esαD(kQ), kQ)

of right kQe-modules. We denote this complex by C ′. Note that

H0(C ′) = HomkQ(D(kQ), kQ) = 0

since there are no morphisms from injectives to projectives when Q is non-
Dynkin. Also note that

H1(C ′) = Ext1
kQ(D(kQkQ), kQ)

Hence we get a quasi isomorphism

s : C → Ext1
kQ(D(kQkQ), kQ)

where C = C ′[1]. We want to show that this lifts to a quasi-isomorphism of dg
algebras

s : TkQ(C)→ TkQ(Ext1
kQ(D(kQkQ), kQ))

Lemma 5.13. Let X and Y be a finite dimensional left kQ modules. We then
have a natural map

η : HomkQ(X, kQ)⊗kQ Y → HomkQ(X,Y )

given by η(f ⊗ y)(x) = f(x) · y. If X is projective then η is an isomorphism.

Proof. It is easy to see that η is well defined and natural. Also if X = kQ then
η is just the identity map on Y . Naturality of η makes it into an isomorphism
when X is a sum of direct summands of kQ, and hence η is an isomorphism
when X is projective.

Lemma 5.14. Let θ = Ext1
kQ(D(kQkQ), kQ) and let n a positive integer. Then

the map

s⊗ s⊗ s⊗ ...⊗ s : C ⊗kQ C ⊗kQ ...⊗kQ C → θ ⊗kQ θ ⊗kQ ....⊗kQ θ

is a quasi isomorphism, where the tensor product is taken n times.



5. The n-Calabi-Yau completion 82

Proof. We show this by induction on n. The result is obviously true for n = 1,
so we assume that it holds for n− 1. Note that we have the identity

s⊗ s⊗ s⊗ ...⊗ s = (s⊗ 1⊗ 1⊗ ...⊗ 1) ◦ (1⊗ s⊗ s⊗ ...⊗ s)

Also, C is homotopically projective since it is a bounded complex with projec-
tive components. So tensoring with C preserves quasi isomorphisms, and in
particular we have that

1⊗ s⊗ s⊗ ...⊗ s : C ⊗kQ C ⊗kQ ...⊗kQ C → C ⊗kQ θ ⊗kQ ....⊗kQ θ

is a quasi isomorphism by the induction step. Hence it only remains to show
that

s⊗ 1M : C ⊗kQM → θ ⊗kQM

is a quasi isomorphism, where M = θ⊗kQ ....⊗kQθ. The chain complex C⊗kQM
is given by

...→ 0→ HomkQ(P0, kQ)⊗kQM
(−◦f)⊗1−−−−−−→ HomkQ(P1, kQ)⊗kQM → 0...

concentrated in degree −1 and 0, where

P0 =
⊕
i∈Q0

kQei ⊗k eiD(kQ)

and

P1 =
⊕
α∈Q1

kQetα ⊗k esαD(kQ)

and f = ∂ − ε. Since tensor product is right exact we get that

coker((− ◦ f)⊗ 1) = θ ⊗kQM

so s⊗1M is still an isomorphism in homology in degree 0. Hence it only remains
to show that the map (− ◦ f) ⊗ 1 is mono. Note that we have the following
commutative diagram

HomkQ(P0, kQ)⊗kQM HomkQ(P1, kQ)⊗kQM

HomkQ(P0,M) HomkQ(P1,M)

(− ◦ f)⊗ 1

− ◦ f
∼= ∼=

where the vertical maps are the isomorphisms in lemma 5.13. Note also that
the kernel of the map

− ◦ f : HomkQ(P0,M)→ HomkQ(P1,M)

is HomkQ(D(kQ),M). Now we have that HomkQ(D(kQ),M) = 0 since M =
θ⊗kQ ....⊗kQ θ is preprojective, Q is non-Dynkin, and D(kQ) is injective. Hence
− ◦ f is mono, and the result follows.
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Lemma 5.14 implies that we have a natural quasi isomorphism

s : TkQ(C)→ Pk(Q)

of dg algebras. Consider the resolution of kQ

0→
⊕
α∈Q1

kQetα ⊗k esαkQ
∂−ε−−→

⊕
i∈Q0

kQei ⊗k eikQ
ζ−→ kQ→ 0

of projective right kQe modules given in lemma 5.12. Applying HomkQe(−, kQe)
to it we get a complex of left kQe modules Θ′ given by

HomkQe(
⊕
i∈Q0

kQei ⊗k eikQ, kQe)
−◦(∂−ε)−−−−−→ HomkQe(

⊕
α∈Q1

kQetα ⊗k esαkQ, kQe)

in degree 0 and 1, and with 0 in all other components. Now let Θ = Θ′[1] (see
4.1). Since Θ is homotopically projective we have that

Π2(kQ) = TkQ(Θ)

Hence it only remains to show that Θ is isomorphic to C

Lemma 5.15. There is an isomorphism C ∼= Θ of right kQe chain complexes

Proof. Let ei and ej be two idempotents of kQ correspond to vertex i and j.
We have a natural isomorphism

HomkQe(kQei ⊗k ejkQ, kQ⊗k kQ) ∼= HomkQe(kQei ⊗k ejkQ,Homk(D(kQ), kQ))

by lemma 2.4. Now the hom-tensor adjunction gives us an isomorphism

HomkQe(kQei ⊗k ejkQ,Homk(D(kQ), kQ)) ∼= HomkQ(kQei ⊗k ejkQ⊗kQ D(kQ), kQ)

We also have that

kQei ⊗k ejkQ⊗kQ D(kQ) ∼= kQei ⊗k ejD(kQ)

Putting all these isomorphisms together we get

HomkQe(kQei ⊗k ejkQ, kQ⊗k kQ) ∼= HomkQ(kQei ⊗k ejD(kQ), kQ)

This induces isomorphisms

HomkQe(
⊕
α∈Q1

kQetα ⊗k esαkQ, kQe) ∼= HomkQ(
⊕
α∈Q1

kQetα ⊗k esαD(kQ), kQ)

and

HomkQe(
⊕
i∈Q0

kQei ⊗k eikQ, kQe) ∼= HomkQ(
⊕
i∈Q0

kQei ⊗k eiD(kQ), kQ)

This gives us a isomorphism of C and Θ as graded modules. It is also not hard
to see that this map commutes with the differential, and hence C and Θ are
isomorphic as chain complexes.
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Putting all this together gives us the following result.

Theorem 5.16. We have a quasi-isomorphism

Π2(kQ)→ Pk(Q)

of dg algebras

There is a well-known result (see 3.10 in [9]) stating that a quasi-isomorphism

f : A→ B

of dg algebras A and B induces an equivalence

LF : D(A)→ D(B)

where LF is the left derived functor of the induction functor

F = −⊗A B : HA→ HB

This means that LF = F ◦ p, where p is the homotopically projective resolution
functor in Theorem 3.25. If we apply this to the case A = Π2(kQ), B = Pk(Q)
and f is the quasi-isomorphism in Theorem 5.16, we get the following result

Theorem 5.17. We have an equivalence of categories

D(Π2(kQ)) ∼= D(Pk(Q))

This restricts to an equivalence

Dfd(Π2(kQ)) ∼= Dfd(Pk(Q))

In particular the category Dfd(Pk(Q)) is 2-Calabi-Yau.
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