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Abstract: High power consumption has become one of the critical problems restricting the development of high-performance 

computers. Recently, there are numerous studies on optimizing the execution performance while satisfying the power constraint in 

recent years. However, these methods mainly focus on homogeneous systems without considering the power or speed difference of 

heterogeneous processors, so it is difficult to apply these methods in the heterogeneous systems with an accelerator. In this paper, by 

abstracting the current execution model of a heterogeneous system, we propose a new framework for managing the system power 

consumption with a three-level power control mechanism. The three levels from top to bottom are: system-level power controller 

(SPC), group-level power controller (GPC) and unit-level power controller (UPC). The study establishes a power management method 

for software prefetch in UPC to scale frequency and voltage of programs, select the optimal prefetch distance and guide optimization 

process to satisfy the constraint boundary according to power constraints. The strategy for dividing power based on key threads is put 

forward in GPC to preferentially allocate power to threads in key paths. In SPC, a method for evaluating the performance of 

heterogeneous processing engines is designed for dividing power in order to improve the overall execution performance of the system 

while sustaining the fairness between concurrent applications. Finally, the proposed framework is verified on a central processing unit 

(CPU)-graphics processing unit (GPU) heterogeneous system. 
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1. Introduction 

Nowadays, green computing has become one of the hottest 

topics in high performance computing fields. It is an essential way 

of lowering the system power consumption and improving system 

energy efficiency to scale up supercomputers [1-4]. Heterogeneous 

parallel systems have become one important trend for high 

performance computing systems (HPCS). 

As heterogeneous parallel system integrates several different 

types of processors, the power technologies are different from those 

for homogeneous systems. The research on low power 

optimization of heterogeneous system is still in its infancy. Due to 

the great differences in architecture, general microprocessors and 

accelerators have different execution characteristics under 

different system configurations and problem scales, it is the 

research focus of heterogeneous system power optimization to 

effectively combine the efficiency advantages of different 

computing resources and fully employ the heterogeneous parallel 

processing capability [5-6]. 

The research on the energy-consumption optimization problem 

can be categorized in two approaches: the first one is to focus on 

the average energy consumed by the system, that is, system 

designers try to minimize the cost of the average amount of energy 

consumed while satisfying the constraints placed for application 

performance. The second approach is to focus on the upper limit of 

the energy consumption, that is, system designers try to maximize 

the system execution performance without exceeding the given 

energy consumption limit. Energy-consumption optimization 

traditionally follows the first approach. As the scale of these HPCS 

has continued to grow, energy consumption has gradually become 

one of the most important constraints affecting their design, 

operation, and management [7-8]. 
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Recently, more studies follow the second approach, i.e., 

optimizing the system performance within a given power budget, 

called peak power management. However, most existing solutions 

are designed for homogeneous system without considering the 

differences in power consumption and processing speed between 

heterogeneous processors, therefore they could not be adapted for 

accelerator-based heterogeneous parallel system effectively. 

 In order to address these challenges, we made the following 

contributions in this paper: 

(1) A hierarchical power management strategy is proposed. By 

abstracting current execution model of a heterogeneous system, 

we propose a management framework for system power 

combining a three-level power control mechanism. 

(2)  In unit-level power control (UPC) for HPCSs, a power 

control method for software prefetch is proposed. First,  with the 

source program analyzed, the method makes the prefetch 

according to the optimal prefetch distance to optimize the 

performance. Then the frequency and voltage of optimized 

programs are scaled based on the constraint condition of the 

optimization objective while the prefetch distance is adjusted 

accordingly. The process is repeated until the optimization 

objective reaches to the boundary of the constraint condition. 

Under the constraint condition, simulation sampling is conducted 

to retrieve the performances and power consumption of all 

sampling sites.  Based on this information, the change curves of 

performances and power are fitted to obtain the prefetch distance 

and the coefficients of frequency and voltage scaling under optimal 

performance.  

(3) In group-level power control (GPC) for HPCSs, a strategy for 

allocating power based on key threads is proposed to preferentially 

apportion power to threads in key paths.  

(4) In system-level power control (SPC), a method for evaluating 

the performance of a heterogeneous processing group (HPG) is  

proposed. Applying it as the basis for power distribution, we 

attempt to improve the overall execution performance of a system 

while sustaining the fairness of concurrent applications. 

Section 2 presents a review of existing works; Section 3 

introduces the hierarchical power management framework for 

HPCSs; Sections 4, 5, and 6 respectively present the methods for 

unit-, group- and system-level power controls for software prefetch 

in HPCSs; Section 7 describes the experiments and analyzes the 

results; Section 8 concludes the paper.  

2. Related work 

Constantly scaling-up HPCSs are consuming dramatically 

more power, which presents great challenges to the power supply 

and cooling systems. Therefore, power consumption is not only an 

important goal of system optimization but also has become one of  

the critical constraints  on system design [9-10].  

In recent years, there have been numerous  studies focusing on 

how to optimize the execution performance of a system while 

satisfying the maximum power constraint. Wang and Chen [11] 

proposed a cluster-level feedback power control method which 

distributes the total power according to the utilization ratios of 

processors in different servers with a power consumption upper 

limit. Raghaverdra et al. [12] designed a power management 

framework for data centers combining multi-level power 

management technologies. Additionally, the maximum power 

management method at microprocessor level was also 

investigated. A MaxBIPS (billions of instructions per second) 

strategy based on prediction was proposed in [13]. By searching 

the frequency levels supported by different processors, the whole 

throughput is maximized while satisfying the power constraints of 

chips. Meng et al. [14] established a hierarchical management 

method for maximum power. The power is preferentially allocated 

to the processor cores with a large ratio of performance gain to 

power cost by using the optimal promotion strategy. The 

aforementioned two methods assume that the application 

programs runing in different processor cores are mutually 

independent, and therefore they are not applicable to multi-thread 

parallel application environments. Ma et al. [15] proposed a 

hierarchical management method based on control theory which 

focuses on the influence of load imbalance on different threads 

within an application on power distribution apart from 

considering the power distributions between concurrent 

applications.  These exiting methods for managing power mostly 

focus on homogeneous parallel systems without considering the 

speed or power difference between different computation units. 

Consequently, it is difficult to apply these methods to 

heterogeneous systems.  

The aforementioned studies on performance optimization 

under energy constraints mainly consider energy consumptions of 

processors [16-19] but not the energy problem of off-chip memories.  

It has been indicated that it is necessary to take off-chip memories 

into consideration in energy optimization [20]. There is a large 

performance difference between the processors and off-chip 

memories. With constant growth of dominant frequency of a 

processor, the difference is still significant in spite that the 

memory access latency is also steadily reducing. The “memory 

wall” is always a crucial factor restricting the performance 

improvement of programs [21]. To alleviate the memory wall 

problem, numerous optimization methods for reducing or hiding 

the memory access latency are proposed [22-23]. Software prefetch 

is an effective method for hiding memory access latency [23]. The 

software prefetch optimization overlaps operations of the 

processor computation and memory access and partly hides the 

memory access latency by fetching data to Cache in advance. This 

method significantly improves performances, it however rapidly 

increases the power consumption [24]. On one hand, adding 

prefetched instructions increases the amount of codes. On the 

other hand, the great overlap between processor computation and 

memory access significantly improves the utilization rate of 

functional units within unit time so that the energy consumption 

within unit time greatly increases. In this context, it is of 

importance to improve the software prefetch performance 

effectively without increasing power.  

To address the overall system performance problem under the 

energy consumption constraints, this paper proposes a 

management framework for system power combining a three-

level power control mechanism by abstracting current execution 

model of a heterogeneous system. Respectively at the unit-level, 

group-level, and system-level power control, a power control 

method for software prefetch, a strategy for allocating power based 

on key threads, and a method for evaluating the performance of a 

heterogeneous processing group are proposed. In this paper, we 

aim to explore the advantages of the heterogeneous parallel 



processing within the constrained power budget, and optimize the 

system performance.   

3. The hierarchical power management framework  

A heterogeneous parallel system includes multiple computation 

resources involving central processing units (CPUs), graphics 

processing units (GPUs), field programmable gate arrays (FPGAs) 

and monolithic integrated circuits (MICs). Generally, accelerators 

are only used to execute specific computing tasks, so they are not 

equipped with complete task management and scheduling 

mechanism. Thus, the accelerators work under the control of a 

general microprocessor. The computation module consisting of a 

host processor and its corresponding accelerator is called a 

heterogeneous processing unit (HPU). In general, all threads of 

multi-thread parallel programs are mapped to the host processor 

which loads the specific computation processes within threads to 

the accelerator for execution. Therefore, different threads within 

the multi-thread parallel programs are mapped to multiple HPUs. 

A heterogeneous processing group (HPG) consists of multiple 

HPUs running the same application program, multiple of which 

make up a heterogeneous processing system (HPS). The 

architecture of a typical HPS is shown in Figure 1.  
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Fig.1. The architecture of a typical HPS 

Power consumption of a processor is mainly composed of 

dynamic and static power consumptions. Dynamic power 

consumption is related to the operating frequency of a processor, 

which can be reduced by using dynamic voltage and frequency 

scaling (DVFS) technology. The static power of a processor is 

associated with the operating voltage and temperature of chips 

and always accompanies the operation of a processor. Therefore, 

the distributable power range is the difference between power 

constraints and static power of a system.  

For SPC, according to contributions of different application 

programs to the whole performance of a system, the power 

distributed to the i𝑡ℎ  SPC is denoted as P𝑆𝑃𝐶𝑖
 considering the 

power of a horizontal division system of concurrent applications. 

SPC does not consider the specific execution process of an 

application program but executes the power control process in a 

fixed period using the transparent application control mode.  

A GPC is in charge of distributing the power P𝑆𝑃𝐶𝑖
 to multiple 

parallel processing groups (P𝐺𝑃𝐶𝑖
). Different from a SPC, a GPC 

can select a more effective control strategy according to the 

different characteristics of programs. In general, OpenMP-like 

parallel programs mainly consist of multiple serial or parallel 

computing segments, so the entry of computing segments is taken 

as the calling point of the GPC. The key to power control of a HPG 

is to observe the loads of different HPUs or differences of execution 

time during parallel execution, so as to effectively distribute power.  

UPC takes charge of distributing the group power P𝐺𝑃𝐶𝑖
 to 

heterogeneous computing units P𝐶𝑃𝐶𝑖
 in a group. Because the 

heterogeneous processors in a HPU exhibits different execution 

rates and power consumptions, how to optimize the overall 

performance of a HPU while meeting the power constraint is the 

key problem. This paper proposes an optimization method based 

on software prefetch to reduce the execution time of programs 

while satisfying power constraints. The overall idea is as follows: 

the performance improves by using optimization method based on 

software prefetch while the dynamic power increases. In this 

context, the frequency of processor reduces according to the 

constraint conditions to achieve the optimal performance under 

the power constraint.  
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Fig.2. Hierarchical power management framework for heterogeneous systems 

4. The UPC of a SPC based on software prefetch 

Software prefetch refers to that programmers or compliers 

insert prefetched instructions in proper locations of codes to fetch 

data into cache or register in advance to avoid the pause of 

computation due to waiting for memory access. Software prefetch 

is characterized by flexibility, high performance and pertinency 

while it also causes software overhead and power consumption. 

Controlling consumptions of software prefetch mainly depends on 

the proper determination of the prefetch distance [25-26], (namely, 

to determine the distance from the prefetched instructions to true 

access), which is generally called prefetch scheduling. For the 

cyclic structure of parallel programs, prefetch distance refers to the 

cyclic iterations between prefetched instructions and true accesses. 



To perfectly hide the memory access latency of prefetching, the 

prefetch scheduling should ensure that the time completing 

prefetched instructions is just at the moment of true access as far 

as possible. Therefore, the prefetch distance PD is determined by 

iteration and memory access latencies: 

PD = ⌈
𝐴𝐿

𝑆
⌉                                    (1) 

Where AL refers to the average latency of memory access while 

S represents the possible shortest operating time of each cyclic 

iteration. The purpose of rounding up is to guarantee to complete 

prefetch operation before conducting data access.  

A circuit cannot normally work unless its voltage and frequency 

are synchronously adjusted. Dynamic power consumption  P𝑑 is 

directly proportional to the cube of the frequency 𝑓 of a processor, 

namely, 𝑃𝑑 ∝ 𝑓3, while the execution time T of a program is 

approximately inversely proportional to the frequency f, namely, 

T ∝ 𝑓−1 . Therefore, the dynamic power consumption satisfies 

𝐸𝑑 = 𝑃𝑑𝑇 ∝ 𝑓2. 

By simulating a single thread block, the relationship of the 

performances and power of programs with optimization based on 

software prefetch is explored here. To simulate true execution 

environment, the simulation on the single thread block does not 

mean that only a thread block operates on a Stream 

multiprocessor (SM). Multiple thread blocks synchronously 

operate on the same SM so that multiple thread blocks compete 

for resources on a SM. The quantity of synchronously operating 

thread blocks on a SM is denoted as M. Additionally, the thread 

blocks synchronously operating on diverse SMs also compete for 

global resource including Internet-on-a-chip and global cache. The 

quantity of SMs is denoted as N. Therefore, it is necessary to 

guarantee that there are MN thread blocks at least in a system 

while simulating the operation of a single thread block. In order to 

avoid that certain SMs fulfill works in advance and are free due to 

the load imbalance of SMs in test process, 2MN thread blocks are 

employed in simulation.  

The method for optimizing performances of programs based on 

software prefetch under power constraints mainly consists of the 

following five steps.  

Step 1: the source program is simulated to obtain the quantity 

of thread blocks simultaneously operating on the SM, expressed 

as M. 

Step 2: the thread space of the source program is modified to 

assign 2MN thread blocks, execute and record the dynamic power 

consumption P𝐶𝑃𝐶0
 and the average execution time T0 of the first 

thread block on various SMs.  

Step 3: according to current frequency, the proper prefetch 

distance is chosen. Formula (1) is for calculating the prefetch 

distance. If the upper and lower dimensions of the fraction are 

defined as wall-clock time but not clock cycles, Formula (1) can be 

rewritten as follows:  

PD = ⌈
𝐴𝐿

𝜔/𝑓
⌉                                (2) 

Where, 𝜔  refers to the clock cycles of a single iteration. 

Generally, adjusting the operating frequency of a processor does 

not change the absolute latency of memory access. Namely, 𝐴𝐿 is 

unchanged after decreasing the frequency while the clock cycles of 

a single iteration do not change with the frequency, but the latency 

of each clock cycle increases. Thus, there is an approximate 

proportional relationship between the prefetch distance and the 

clock frequency, which can be expressed as 𝑃𝐷′ = 𝛼 ∙ 𝑃𝐷. Where, 

𝑃𝐷′  and 𝛼  represent the adjusted prefetch distance and the 

adjustment factor of frequencies. During simulation, the range of 

prefetch distance is roughly determined according to the 

adjustment factor of frequencies first while determining proper 

prefetch distances according to the frequency. Afterwards, the 

proper prefetch distance is rapidly found by conducting fine 

adjustment. After selecting a proper prefetch distance, the source 

program is optimized based on software prefetch and the dynamic 

power consumption P𝐶𝑃𝐶1
 is simulated and recorded by using the 

same thread space setting as Step 2. 

Step 4: The frequency of a processor is adjusted by using the 

factor  α = (
P𝐶𝑃𝐶0

P𝐶𝑃𝐶1

)−1/3. Step 3 is repeated until P𝐶𝑃𝐶1
≈ P𝐶𝑃𝐶0

. In 

this context, the average execution time of the first thread block is 

denoted as T1 and the operating frequency of the processor is 

denoted as 𝑓1, and α′ = 𝑓1/𝑓0. 

Step 5: If 𝑇1 < 𝑇0 , the performance is optimized through 

software prefetch combining the frequency adjustment with a 

factor of α′. Otherwise, the source program and frequency 𝑓0 are 

employed, which indicates that it is not applicable to carry out the 

optimization based on software prefetch for the program under 

power constraints.  

5. The GPC of a SPC 

In OpenMP-like programs, a computing segment is mainly 

composed of serial segments and parallel segments guiding 

statement identifications. Only a single thread operates in the 

serial segment and therefore all of the power P𝐻𝑃𝐺𝑖
 should be 

allocated to GPCs operated in the serial segment, namely, P𝐶𝑃𝐶𝑖
=

P𝐺𝑃𝐶𝑖
. Where, P𝐺𝑃𝐶𝑖

 represents the power allocated to the ith GPC 

in a group. During the operation in a parallel segment, the local 

computing tasks are completed by multiple GPCs in parallel. 

Generally, there is a barrier synchronous statement at the exit of 

the parallel segment to guarantee that the subsequent operations 

are executed after all threads complete current parallel tasks. 

Therefore, the execution time of parallel programs depends on the 

execution unit with longest execution time, i.e., the execution unit 

in key paths. The power needs to be differentially distributed 

according to the execution time of different computing units under 

power constraints to optimize the performance of parallel 

executions.  

The threads of key paths can be determined by inserting 

timestamps in compiling process to record the starting time of 

different threads ( 𝑇𝑠𝑡𝑎𝑟𝑡 ) and time of entering and leaving 

synchronous statements (𝑇𝑒𝑛𝑡𝑒𝑟 , 𝑇𝑙𝑒𝑎𝑣𝑒 ) [27-28]. 𝑇𝑒𝑛𝑡𝑒𝑟 − 𝑇𝑠𝑡𝑎𝑟𝑡 

and 𝑇𝑙𝑒𝑎𝑣𝑒 − 𝑇𝑒𝑛𝑡𝑒𝑟 refer to effective computing time and waiting 

time of threads, respectively. In terms of a parallel execution 

process, the effective computing rate of a processor can be defined 



as the ratio of effective computing time to the total execution time, 

namely,  

S =
𝑇𝑒𝑛𝑡𝑒𝑟 − 𝑇𝑠𝑡𝑎𝑟𝑡

𝑇𝑙𝑒𝑎𝑣𝑒 − 𝑇𝑒𝑛𝑡𝑒𝑟
                              (3) 

It can be clearly seen that the effective computing rate of key 

threads is 1 while the execution frequency of other processors can 

be declined to 100S% of the previous ones on the premise of not 

influencing the parallel execution time. On this basis, the 

influence of power constraint on performances can be minimized 

on condition that the effective computing rate ratio of various 

processors does not change under power constraints. Multiple 

HPUs exhibit isomorphic relations within a HPG. Therefore, the 

power in a group is divided by taking the effective computing rate 

of processors as the criterion: the power distributed to the ith UPC 

is 

𝑃𝐶𝑃𝐶𝑖
=

𝑆𝑖

∑ 𝑆𝑘
𝑛𝐶𝑃𝐶𝑖−1
𝑘=0

𝑃𝐺𝑃𝐶𝑖
                  (4) 

Where, 𝑛𝐶𝑃𝐶𝑖 refers to the quantity of UPCs in the ith GPC. It 

can be seen from Formula (4) that when the loads on various UPCs 

are balanced, the power 𝑃𝐺𝑃𝐺𝑖
 should be uniformly allocated to all 

GPCs in the group, namely, 𝑃𝐶𝑃𝐶𝑖
= 𝑃𝐺𝑃𝐺𝑖

/𝑛𝐶𝑃𝐶𝑖. 

6. The SPC 

The SPC aims to improve the overall execution performance of 

a system and maintain the fairness between concurrent 

applications as much as possible while satisfying the power 

constraint. The concurrently executed multiple programs show 

different program characteristics and execution traces and 

therefore the execution rate of GPCs is described by using billions 

of instructions per second (BIPS). Due to different types of 

processors have different instruction set architectures, it is unfair 

to directly compare the BIPS of different types of processors. 

Therefore, the operating speed of accelerated processing units 

(APUs) is normalized as that of the main processor to measure the 

execution performance of GPCs at the same standard. The BIPS 

of each CPU in a GPC is denoted as 𝐵𝐼𝑃0, which can be obtained 

by employing a hardware counter. The execution speed of a 

processor is described by using the iteration times per unit time 

and therefore those of the main processor and APUs under current 

operating frequency can be obtained, expressed as 𝑣0  and 𝑣𝑘 , 

respectively. It can be acquired that equivalent BIPS of the APU 

is 𝐵𝐼𝑃𝑘 = 𝐵𝐼𝑃0 ×
𝑣𝑘

𝑣0
 and the execution speed of a single UPC can 

be calculated with the following formula:  

𝑣𝐶𝑃𝐶 = 𝐵𝐼𝑃0 × ∑
𝑣𝑘

𝑣0

𝑁𝐶𝑃𝐶

𝑘=0

                        (5) 

Where, 𝑁𝐶𝑃𝐶  refers to the quantity of processor units contained 

in a GPC. Due to the characteristics of applications, different 

application programs exhibit diverse BIPSs. Therefore, directly 

distributing power of a system according to absolute BIPS can 

artificially prolong the execution time of some application 

programs with low BIPSs, thus threatening the fairness of 

concurrent tasks. By using the evaluation method in [29], the 

executive characteristics of programs are described by employing 

the relative execution speed, which refers to the ratio of BIPS at 

current frequency to BIPS at the highest frequency, namely,  

B =
𝐵𝐼𝑃𝑆

𝐵𝐼𝑃𝑆 ′
                                 (6) 

Where, 𝐵𝐼𝑃𝑆 ′ represents the BIPS value of a GPC when all 

processors operate at the highest frequency. The power of the UPC 

at the frequency is denoted as 𝑃𝐶𝑃𝐶, and then the performance is 

defined as the ratio of the relative execution speed to power 

consumption, namely,  

𝑒𝐶𝑃𝐶 =
𝐵

𝑃𝐶𝑃𝐶
                              (7) 

Because GPC consists of multiple UPCs, the weighted sum of 

performances of various UPCs is taken as the performance of a 

GPC, namely,  

𝑒𝐺𝑃𝐶𝑖
= ∑ 𝑒𝐶𝑃𝐶𝑗

× 𝜔𝑗

𝑛𝐶𝑃𝐶𝑖−1

𝑗=0

                       (8) 

Where, 𝑒𝐶𝑃𝐶𝑗
 and 𝑛𝐶𝑃𝐶𝑖 refer to the execution performance of 

the 𝑗𝑡ℎ UPC in a GPC and the quantity of UPCs contained in the 

i 𝑡ℎ  GPC, respectively. 𝜔𝑗(0 ≤ 𝜔𝑗 ≤ 1)  denotes the task load 

allocated to the 𝑗𝑡ℎ UPC that satisfies ∑ 𝜔𝑗
𝑛𝐶𝑃𝐶𝑖−1
𝑗=0 = 1 . After 

acquiring the performances of various GPCs, the total power 𝑃𝑆𝑃𝐶 

is allocated to multiple GPCs according to the performance ratios 

of different programs. The total power allocated to the i𝑡ℎ GPC is 

shown as follows: 

𝑃𝐺𝑃𝐶𝑖
=

𝑒𝐺𝑃𝐶𝑖

∑ 𝑒𝐺𝑃𝐶𝑘

𝑛𝐺𝑃𝐶−1
𝑘=0

𝑃𝑆𝑃𝐶               (9) 

Where, 𝑛𝐺𝑃𝐶 refers to the quantity of concurrently executed 

programs in a system. According to the aforementioned power 

distribution strategy, the SPC executes the power control process 

in a fixed period T. Therefore, according to the operating 

performances 𝑒𝐺𝑃𝐶𝑖
 of various application programs in the prior 

control period, the power constraints of various programs in the 

next control period are formulated considering the current power 

constraint P of the system and transferred to the power controllers 

at the subordinated level.  

7. Experimental evaluation and analysis 

7.1 Experimental platform 
The heterogeneous system consisting of an Intel Core I7 920 

Quad-Core CPU and an AMD 4870 GPU was taken as the 

experimental platform. As shown in Table 1, in the heterogeneous 

system, the CPU and the GPU have their individual memory 

spaces and data communications are achieved through connection 

of PCI-E bus.  



Table 1 Parameters of the test platform 

Processor  Intel Core I7 920 CPU AMD 4870 GPU-H/GPU-L 

Frequency of processor (GHZ) 2.67,2.4,2.0.1.6 0.75,0.65,0.55 

Frequency of memory (GHZ) 1.33 (DDR3) 0.9/0.7/0.5(GDDR5) 

Cache 
L1 I32KB, D32KB, L2 256KB, 

L3 8MB 
- 

Memory 8GB 1GB 

Table 2 Test cases 

Applications Description  Problem scale Kernel program 

HopSpot Thermal Simulation 

Tool 

2048*2048 data 

points 

Hotspot 

Kmeans Clustering Algorithm 819200 points 34 

features 

Cluster 

MGRID Poisson Equation 

Solver 

256*256*256 data 

points 

RESID, PSINV, 

RPRJ3, INTERP 

SWIM Shallow Water 

Modeling Solver 

2048*2048 data 

points 

CALC1, CALC2, 

CALC3 

7.2 Test cases 
Four applications are chosen as test cases. As shown in Table 2, 

MGRID and SWIM are both taken from the SPECOMP2001 

benchmark test set and used as Poisson Equation Solver and 

shallow water modeling solver (SWMS), respectively. HotSpot and 

Kmeans are both collected from the Rodinia program set which is 

mainly applied for evaluating HPSs. HotSpot application is 

employed for simulating the chip temperature model while 

Kmeans is applied as a clustering algorithm frequently used in 

data mining field. These applications exhibit the following 

characteristics: having cyclic processes in Kernel function, 

containing the applications accessing global memory space in the 

cyclic processes and satisfying the basic conditions for conducting 

optimization based on software prefetch.  

7.3 Experimental evaluation 
7.3.1 Evaluation on the UPC based on software prefetch in a 

HPS 

The UPC based on software prefetch is first evaluated. In the 

experiment, only a single application program operates each time 

and OpenMP parallel loop is subjected to parallel execution after 

being partitioned in the multi-core processor and the GPU 

acceleration unit by using manual modifying method. A specific 

processor core is in charge of controlling the execution of the GPU 

while the other three processor cores are responsible for the 

computation of the rest cyclic iterations. Figure 3 displays the 

actual power consumption of the system under different power 

constraints, where X- and Y-coordinates denote the given power 

constraint and actual power consumption, respectively. For the 

sake of simplicity, the figure merely shows the execution condition 

of a kernel in each application program. It can be seen from the 

figure that the power consumption of the system can accurately 

approach to but not exceed the given power constraint by using the 

proposed power control method based on software prefetch. Only 

the actual power consumption of CALC1 program has a large 

difference with the power constraint in the aforementioned four 

Kernel programs. This is mainly because the physical processor 

only supports limited dispersed operating frequencies and shows 

lower and upper bounds. The given power constraint cannot be 

used when the power constraints are 80% and 90%, thus resulting 

in power waste. 

 
Fig. 3. Power consumption control precisions of single tasks 

Figure 4 reveals the performance speedups of programs under 

power constraints. Overall performances increase by 17% and 11% 

respectively by using the register and the shared memory as the 

software prefetch buffers in the optimization. It can be seen from 

the figure that performances of Cluster and RESID do not improve 

while using shared memory as prefetch buffer while CALC3 does 

not acquire performance speedup with the two strategies. These 

programs which do not obtain performance speedups show the 

common characteristic: the frequency adjustment factor at power 

boundary is larger than that in optimal performance under power 

constraint. It means that the programs after prefetch optimization 

reach to the boundary of performance constraint at first while 
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reducing frequencies. In this context, the power is still higher than 

the original level, so it is necessary continuously decrease the 

frequencies to reduce the power to the initial level while the 

execution time is higher than the initial value. Thus, it is improper 

to optimize these programs based on software prefetch from the 

perspectives of either time or power constraints.  

 
Fig. 4. Performance speedups after being optimized under power 

constraints 

7.3.2 Evaluation on the SPC 

The test platform contains two GPUs. HPGs are formed 

individually by using a CPU core and a GPU. Two individual 

programs are separately mapped on the two HPGs to successively 

evaluate the control precision of power consumption and average 

performance losses. Under the power constraint, the smaller the 

difference between the actual and the scheduled power 

consumptions is, the higher the control precision. Figure 5 displays 

the actual power consumption of various application combinations 

when the power constraint decreases to 80% of the maximum 

power consumption. The symbol x-y in the legend refers to the 

combination of programs x and y. It can be seen from the figure 

that the power consumption of the system favorable approach to 

the given constraint for different program combinations, showing 

an average difference of 4.8% with the constraint. Because the 

system power is distributed merely according to the latest 

execution condition of the system and not historical information, 

SPCs exhibit different power division to concurrent applications in 

different control periods. Consequently, the total power 

consumption of the system fluctuates.  

Figure 6 illustrates performance changes of various program 

combinations when the power constraint of the system reduces to 

80% of previously maximum power. The legend First and Second 

denote respectively the first and second program in a program 

combination while Total refers to the program combination. As 

shown in the figure, concurrent applications in most application 

combinations exhibit similar performance losses, showing an 

average performance loss of 5.4%. The applications in 

combinations H-M and K-M have great differences in performance 

loss. It is found through analysis that HotSpot and Kmeans both 

belong to high computationally-intensive applications and 

therefore their execution performances are significantly larger 

than that of MGRID. Thus, the two applications share larger 

power and exhibit higher execution speed while combining with 

MGRID. 

 
Fig. 5. Power control under the concurrent execution of multiple programs 

 

Fig. 6. Performance changes of various program combinations when the 

power constraint of the system reduces to the 80% of the maximum power 

consumption 

8. Conclusions and future work 

Aiming at multiple programs executed in a heterogeneous 

parallel system, this study established a management framework 

for system power combining a three-level power control technology 

including the UPC, GPC and SPC. We proposed a method for 

controlling power based on software prefetch in the UPC: The 

performance of source programs is optimized by conducting 

prefetch according to the optimal prefetch distance. Afterwards, 

the frequency and voltage reduction is carried out on the optimized 

program according to the power constraint conditions, followed by 

adjustment of the prefetch distance to guide the optimization 

objective to satisfy the boundary of constraint conditions. Through 

application test of typical scientific computation, the power 

consumption of the system can accurately approach to but not 

exceed the given power constraint by using the proposed power 

control method based on software prefetch. Furthermore, 

performances improve by 17% and 11% by applying register and 
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shared memory as software prefetch buffers in the optimization, 

respectively. In HPG power control, GPCs takes charge of 

partitioning the power allocated to specific application programs 

to multiple heterogeneous processing engines under concurrent 

executions. Power is uniformly allocated to multiple engines under 

load balance while it is preferentially allocated to those in key 

paths under load imbalance to improve the overall concurrent 

execution performance. In SPC, the system power is apportioned 

to diverse concurrently executed application programs. The ratio 

of relative execution speed to power consumption is considered as 

the execution performance to distribute system power for the sake 

of guaranteeing the fairness of concurrent applications. The 

experimental results indicate that the SPC can successfully 

approach to the given power constraint, with an average difference 

of 4.8% with the power constraint. On the other hand, the fairness 

is favorably guaranteed: the average performance loss between 

concurrent applications is only 5.4%.  

In this paper, our research mainly focuses on dynamic energy 

consumption, so it is assumed that the static energy consumption 

remains unchanged during in the system running process. 

However, as the microprocessors design technology advances to 

the deep nanometer era, the proportion of static energy 

consumption is increasing, the focus of energy consumption 

optimization will gradually shift from dynamic energy to dynamic 

energy and static energy regarded both as equally important. In 

future work, we will consider both the static energy and dynamic 

energy and comprehensively utilize a variety of optimized 

technologies to improve the execution performance of large-scale 

heterogeneous parallel system.  
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