
 Three-level performance optimization for

heterogeneous systems based on software prefetching

under power constraints

Zhuowei Wang,1 Wuqing Zhao, 2 Hao Wang, 3, * Lianglun Cheng,1

1 School of Computer, Guangdong University of Technology, Guangzhou 510006, China
2Dingxin Information Technology Co.,Ltd, Guangzhou,510006, China

3Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Norway

*Corresponding author: hawa@ntnu.no

Abstract: High power consumption has become one of the critical problems restricting the development of high-performance

computers. Recently, there are numerous studies on optimizing the execution performance while satisfying the power constraint in

recent years. However, these methods mainly focus on homogeneous systems without considering the power or speed difference of

heterogeneous processors, so it is difficult to apply these methods in the heterogeneous systems with an accelerator. In this paper, by

abstracting the current execution model of a heterogeneous system, we propose a new framework for managing the system power

consumption with a three-level power control mechanism. The three levels from top to bottom are: system-level power controller

(SPC), group-level power controller (GPC) and unit-level power controller (UPC). The study establishes a power management method

for software prefetch in UPC to scale frequency and voltage of programs, select the optimal prefetch distance and guide optimization

process to satisfy the constraint boundary according to power constraints. The strategy for dividing power based on key threads is put

forward in GPC to preferentially allocate power to threads in key paths. In SPC, a method for evaluating the performance of

heterogeneous processing engines is designed for dividing power in order to improve the overall execution performance of the system

while sustaining the fairness between concurrent applications. Finally, the proposed framework is verified on a central processing unit

(CPU)-graphics processing unit (GPU) heterogeneous system.

Keywords: High-performance Computing Systems; Heterogeneous system; Performance optimization; Software prefetch; Energy constraints

1. Introduction

Nowadays, green computing has become one of the hottest

topics in high performance computing fields. It is an essential way

of lowering the system power consumption and improving system

energy efficiency to scale up supercomputers [1-4]. Heterogeneous

parallel systems have become one important trend for high

performance computing systems (HPCS).

As heterogeneous parallel system integrates several different

types of processors, the power technologies are different from those

for homogeneous systems. The research on low power

optimization of heterogeneous system is still in its infancy. Due to

the great differences in architecture, general microprocessors and

accelerators have different execution characteristics under

different system configurations and problem scales, it is the

research focus of heterogeneous system power optimization to

effectively combine the efficiency advantages of different

computing resources and fully employ the heterogeneous parallel

processing capability [5-6].

The research on the energy-consumption optimization problem

can be categorized in two approaches: the first one is to focus on

the average energy consumed by the system, that is, system

designers try to minimize the cost of the average amount of energy

consumed while satisfying the constraints placed for application

performance. The second approach is to focus on the upper limit of

the energy consumption, that is, system designers try to maximize

the system execution performance without exceeding the given

energy consumption limit. Energy-consumption optimization

traditionally follows the first approach. As the scale of these HPCS

has continued to grow, energy consumption has gradually become

one of the most important constraints affecting their design,

operation, and management [7-8].

mailto:hawa@ntnu.no

Recently, more studies follow the second approach, i.e.,

optimizing the system performance within a given power budget,

called peak power management. However, most existing solutions

are designed for homogeneous system without considering the

differences in power consumption and processing speed between

heterogeneous processors, therefore they could not be adapted for

accelerator-based heterogeneous parallel system effectively.

 In order to address these challenges, we made the following

contributions in this paper:

(1) A hierarchical power management strategy is proposed. By

abstracting current execution model of a heterogeneous system,

we propose a management framework for system power

combining a three-level power control mechanism.

(2) In unit-level power control (UPC) for HPCSs, a power

control method for software prefetch is proposed. First, with the

source program analyzed, the method makes the prefetch

according to the optimal prefetch distance to optimize the

performance. Then the frequency and voltage of optimized

programs are scaled based on the constraint condition of the

optimization objective while the prefetch distance is adjusted

accordingly. The process is repeated until the optimization

objective reaches to the boundary of the constraint condition.

Under the constraint condition, simulation sampling is conducted

to retrieve the performances and power consumption of all

sampling sites. Based on this information, the change curves of

performances and power are fitted to obtain the prefetch distance

and the coefficients of frequency and voltage scaling under optimal

performance.

(3) In group-level power control (GPC) for HPCSs, a strategy for

allocating power based on key threads is proposed to preferentially

apportion power to threads in key paths.

(4) In system-level power control (SPC), a method for evaluating

the performance of a heterogeneous processing group (HPG) is

proposed. Applying it as the basis for power distribution, we

attempt to improve the overall execution performance of a system

while sustaining the fairness of concurrent applications.

Section 2 presents a review of existing works; Section 3

introduces the hierarchical power management framework for

HPCSs; Sections 4, 5, and 6 respectively present the methods for

unit-, group- and system-level power controls for software prefetch

in HPCSs; Section 7 describes the experiments and analyzes the

results; Section 8 concludes the paper.

2. Related work

Constantly scaling-up HPCSs are consuming dramatically

more power, which presents great challenges to the power supply

and cooling systems. Therefore, power consumption is not only an

important goal of system optimization but also has become one of

the critical constraints on system design [9-10].

In recent years, there have been numerous studies focusing on

how to optimize the execution performance of a system while

satisfying the maximum power constraint. Wang and Chen [11]

proposed a cluster-level feedback power control method which

distributes the total power according to the utilization ratios of

processors in different servers with a power consumption upper

limit. Raghaverdra et al. [12] designed a power management

framework for data centers combining multi-level power

management technologies. Additionally, the maximum power

management method at microprocessor level was also

investigated. A MaxBIPS (billions of instructions per second)

strategy based on prediction was proposed in [13]. By searching

the frequency levels supported by different processors, the whole

throughput is maximized while satisfying the power constraints of

chips. Meng et al. [14] established a hierarchical management

method for maximum power. The power is preferentially allocated

to the processor cores with a large ratio of performance gain to

power cost by using the optimal promotion strategy. The

aforementioned two methods assume that the application

programs runing in different processor cores are mutually

independent, and therefore they are not applicable to multi-thread

parallel application environments. Ma et al. [15] proposed a

hierarchical management method based on control theory which

focuses on the influence of load imbalance on different threads

within an application on power distribution apart from

considering the power distributions between concurrent

applications. These exiting methods for managing power mostly

focus on homogeneous parallel systems without considering the

speed or power difference between different computation units.

Consequently, it is difficult to apply these methods to

heterogeneous systems.

The aforementioned studies on performance optimization

under energy constraints mainly consider energy consumptions of

processors [16-19] but not the energy problem of off-chip memories.

It has been indicated that it is necessary to take off-chip memories

into consideration in energy optimization [20]. There is a large

performance difference between the processors and off-chip

memories. With constant growth of dominant frequency of a

processor, the difference is still significant in spite that the

memory access latency is also steadily reducing. The “memory

wall” is always a crucial factor restricting the performance

improvement of programs [21]. To alleviate the memory wall

problem, numerous optimization methods for reducing or hiding

the memory access latency are proposed [22-23]. Software prefetch

is an effective method for hiding memory access latency [23]. The

software prefetch optimization overlaps operations of the

processor computation and memory access and partly hides the

memory access latency by fetching data to Cache in advance. This

method significantly improves performances, it however rapidly

increases the power consumption [24]. On one hand, adding

prefetched instructions increases the amount of codes. On the

other hand, the great overlap between processor computation and

memory access significantly improves the utilization rate of

functional units within unit time so that the energy consumption

within unit time greatly increases. In this context, it is of

importance to improve the software prefetch performance

effectively without increasing power.

To address the overall system performance problem under the

energy consumption constraints, this paper proposes a

management framework for system power combining a three-

level power control mechanism by abstracting current execution

model of a heterogeneous system. Respectively at the unit-level,

group-level, and system-level power control, a power control

method for software prefetch, a strategy for allocating power based

on key threads, and a method for evaluating the performance of a

heterogeneous processing group are proposed. In this paper, we

aim to explore the advantages of the heterogeneous parallel

processing within the constrained power budget, and optimize the

system performance.

3. The hierarchical power management framework

A heterogeneous parallel system includes multiple computation

resources involving central processing units (CPUs), graphics

processing units (GPUs), field programmable gate arrays (FPGAs)

and monolithic integrated circuits (MICs). Generally, accelerators

are only used to execute specific computing tasks, so they are not

equipped with complete task management and scheduling

mechanism. Thus, the accelerators work under the control of a

general microprocessor. The computation module consisting of a

host processor and its corresponding accelerator is called a

heterogeneous processing unit (HPU). In general, all threads of

multi-thread parallel programs are mapped to the host processor

which loads the specific computation processes within threads to

the accelerator for execution. Therefore, different threads within

the multi-thread parallel programs are mapped to multiple HPUs.

A heterogeneous processing group (HPG) consists of multiple

HPUs running the same application program, multiple of which

make up a heterogeneous processing system (HPS). The

architecture of a typical HPS is shown in Figure 1.

CPU

GPU MIC FPGA

CPU

GPU MIC FPGA

HPU 1 HPU 2

CPU

GPU MIC FPGA

HPU 3

HPG 1 HPG 2

HPS
Fig.1. The architecture of a typical HPS

Power consumption of a processor is mainly composed of

dynamic and static power consumptions. Dynamic power

consumption is related to the operating frequency of a processor,

which can be reduced by using dynamic voltage and frequency

scaling (DVFS) technology. The static power of a processor is

associated with the operating voltage and temperature of chips

and always accompanies the operation of a processor. Therefore,

the distributable power range is the difference between power

constraints and static power of a system.

For SPC, according to contributions of different application

programs to the whole performance of a system, the power

distributed to the i𝑡ℎ SPC is denoted as P𝑆𝑃𝐶𝑖
 considering the

power of a horizontal division system of concurrent applications.

SPC does not consider the specific execution process of an

application program but executes the power control process in a

fixed period using the transparent application control mode.

A GPC is in charge of distributing the power P𝑆𝑃𝐶𝑖
 to multiple

parallel processing groups (P𝐺𝑃𝐶𝑖
). Different from a SPC, a GPC

can select a more effective control strategy according to the

different characteristics of programs. In general, OpenMP-like

parallel programs mainly consist of multiple serial or parallel

computing segments, so the entry of computing segments is taken

as the calling point of the GPC. The key to power control of a HPG

is to observe the loads of different HPUs or differences of execution

time during parallel execution, so as to effectively distribute power.

UPC takes charge of distributing the group power P𝐺𝑃𝐶𝑖
 to

heterogeneous computing units P𝐶𝑃𝐶𝑖
 in a group. Because the

heterogeneous processors in a HPU exhibits different execution

rates and power consumptions, how to optimize the overall

performance of a HPU while meeting the power constraint is the

key problem. This paper proposes an optimization method based

on software prefetch to reduce the execution time of programs

while satisfying power constraints. The overall idea is as follows:

the performance improves by using optimization method based on

software prefetch while the dynamic power increases. In this

context, the frequency of processor reduces according to the

constraint conditions to achieve the optimal performance under

the power constraint.

CPU

CPU MIC FPGA

HPU1 HPU2 HPUn

Unit level power controller
(UPC)

HPG1 HPG2 HPGn

Group level power controller
(GPC)

HPS

System level power controller
(SPC)

Power budget

Power
monitor

ISP
counter

Software
prefetch

DVFS

Fig.2. Hierarchical power management framework for heterogeneous systems

4. The UPC of a SPC based on software prefetch

Software prefetch refers to that programmers or compliers

insert prefetched instructions in proper locations of codes to fetch

data into cache or register in advance to avoid the pause of

computation due to waiting for memory access. Software prefetch

is characterized by flexibility, high performance and pertinency

while it also causes software overhead and power consumption.

Controlling consumptions of software prefetch mainly depends on

the proper determination of the prefetch distance [25-26], (namely,

to determine the distance from the prefetched instructions to true

access), which is generally called prefetch scheduling. For the

cyclic structure of parallel programs, prefetch distance refers to the

cyclic iterations between prefetched instructions and true accesses.

To perfectly hide the memory access latency of prefetching, the

prefetch scheduling should ensure that the time completing

prefetched instructions is just at the moment of true access as far

as possible. Therefore, the prefetch distance PD is determined by

iteration and memory access latencies:

PD = ⌈
𝐴𝐿

𝑆
⌉ (1)

Where AL refers to the average latency of memory access while

S represents the possible shortest operating time of each cyclic

iteration. The purpose of rounding up is to guarantee to complete

prefetch operation before conducting data access.

A circuit cannot normally work unless its voltage and frequency

are synchronously adjusted. Dynamic power consumption P𝑑 is

directly proportional to the cube of the frequency 𝑓 of a processor,

namely, 𝑃𝑑 ∝ 𝑓3, while the execution time T of a program is

approximately inversely proportional to the frequency f, namely,

T ∝ 𝑓−1 . Therefore, the dynamic power consumption satisfies

𝐸𝑑 = 𝑃𝑑𝑇 ∝ 𝑓2.

By simulating a single thread block, the relationship of the

performances and power of programs with optimization based on

software prefetch is explored here. To simulate true execution

environment, the simulation on the single thread block does not

mean that only a thread block operates on a Stream

multiprocessor (SM). Multiple thread blocks synchronously

operate on the same SM so that multiple thread blocks compete

for resources on a SM. The quantity of synchronously operating

thread blocks on a SM is denoted as M. Additionally, the thread

blocks synchronously operating on diverse SMs also compete for

global resource including Internet-on-a-chip and global cache. The

quantity of SMs is denoted as N. Therefore, it is necessary to

guarantee that there are MN thread blocks at least in a system

while simulating the operation of a single thread block. In order to

avoid that certain SMs fulfill works in advance and are free due to

the load imbalance of SMs in test process, 2MN thread blocks are

employed in simulation.

The method for optimizing performances of programs based on

software prefetch under power constraints mainly consists of the

following five steps.

Step 1: the source program is simulated to obtain the quantity

of thread blocks simultaneously operating on the SM, expressed

as M.

Step 2: the thread space of the source program is modified to

assign 2MN thread blocks, execute and record the dynamic power

consumption P𝐶𝑃𝐶0
 and the average execution time T0 of the first

thread block on various SMs.

Step 3: according to current frequency, the proper prefetch

distance is chosen. Formula (1) is for calculating the prefetch

distance. If the upper and lower dimensions of the fraction are

defined as wall-clock time but not clock cycles, Formula (1) can be

rewritten as follows:

PD = ⌈
𝐴𝐿

𝜔/𝑓
⌉ (2)

Where, 𝜔 refers to the clock cycles of a single iteration.

Generally, adjusting the operating frequency of a processor does

not change the absolute latency of memory access. Namely, 𝐴𝐿 is

unchanged after decreasing the frequency while the clock cycles of

a single iteration do not change with the frequency, but the latency

of each clock cycle increases. Thus, there is an approximate

proportional relationship between the prefetch distance and the

clock frequency, which can be expressed as 𝑃𝐷′ = 𝛼 ∙ 𝑃𝐷. Where,

𝑃𝐷′ and 𝛼 represent the adjusted prefetch distance and the

adjustment factor of frequencies. During simulation, the range of

prefetch distance is roughly determined according to the

adjustment factor of frequencies first while determining proper

prefetch distances according to the frequency. Afterwards, the

proper prefetch distance is rapidly found by conducting fine

adjustment. After selecting a proper prefetch distance, the source

program is optimized based on software prefetch and the dynamic

power consumption P𝐶𝑃𝐶1
 is simulated and recorded by using the

same thread space setting as Step 2.

Step 4: The frequency of a processor is adjusted by using the

factor α = (
P𝐶𝑃𝐶0

P𝐶𝑃𝐶1

)−1/3. Step 3 is repeated until P𝐶𝑃𝐶1
≈ P𝐶𝑃𝐶0

. In

this context, the average execution time of the first thread block is

denoted as T1 and the operating frequency of the processor is

denoted as 𝑓1, and α′ = 𝑓1/𝑓0.

Step 5: If 𝑇1 < 𝑇0 , the performance is optimized through

software prefetch combining the frequency adjustment with a

factor of α′. Otherwise, the source program and frequency 𝑓0 are

employed, which indicates that it is not applicable to carry out the

optimization based on software prefetch for the program under

power constraints.

5. The GPC of a SPC

In OpenMP-like programs, a computing segment is mainly

composed of serial segments and parallel segments guiding

statement identifications. Only a single thread operates in the

serial segment and therefore all of the power P𝐻𝑃𝐺𝑖
 should be

allocated to GPCs operated in the serial segment, namely, P𝐶𝑃𝐶𝑖
=

P𝐺𝑃𝐶𝑖
. Where, P𝐺𝑃𝐶𝑖

 represents the power allocated to the ith GPC

in a group. During the operation in a parallel segment, the local

computing tasks are completed by multiple GPCs in parallel.

Generally, there is a barrier synchronous statement at the exit of

the parallel segment to guarantee that the subsequent operations

are executed after all threads complete current parallel tasks.

Therefore, the execution time of parallel programs depends on the

execution unit with longest execution time, i.e., the execution unit

in key paths. The power needs to be differentially distributed

according to the execution time of different computing units under

power constraints to optimize the performance of parallel

executions.

The threads of key paths can be determined by inserting

timestamps in compiling process to record the starting time of

different threads (𝑇𝑠𝑡𝑎𝑟𝑡) and time of entering and leaving

synchronous statements (𝑇𝑒𝑛𝑡𝑒𝑟 , 𝑇𝑙𝑒𝑎𝑣𝑒) [27-28]. 𝑇𝑒𝑛𝑡𝑒𝑟 − 𝑇𝑠𝑡𝑎𝑟𝑡

and 𝑇𝑙𝑒𝑎𝑣𝑒 − 𝑇𝑒𝑛𝑡𝑒𝑟 refer to effective computing time and waiting

time of threads, respectively. In terms of a parallel execution

process, the effective computing rate of a processor can be defined

as the ratio of effective computing time to the total execution time,

namely,

S =
𝑇𝑒𝑛𝑡𝑒𝑟 − 𝑇𝑠𝑡𝑎𝑟𝑡

𝑇𝑙𝑒𝑎𝑣𝑒 − 𝑇𝑒𝑛𝑡𝑒𝑟
 (3)

It can be clearly seen that the effective computing rate of key

threads is 1 while the execution frequency of other processors can

be declined to 100S% of the previous ones on the premise of not

influencing the parallel execution time. On this basis, the

influence of power constraint on performances can be minimized

on condition that the effective computing rate ratio of various

processors does not change under power constraints. Multiple

HPUs exhibit isomorphic relations within a HPG. Therefore, the

power in a group is divided by taking the effective computing rate

of processors as the criterion: the power distributed to the ith UPC

is

𝑃𝐶𝑃𝐶𝑖
=

𝑆𝑖

∑ 𝑆𝑘
𝑛𝐶𝑃𝐶𝑖−1
𝑘=0

𝑃𝐺𝑃𝐶𝑖
 (4)

Where, 𝑛𝐶𝑃𝐶𝑖 refers to the quantity of UPCs in the ith GPC. It

can be seen from Formula (4) that when the loads on various UPCs

are balanced, the power 𝑃𝐺𝑃𝐺𝑖
 should be uniformly allocated to all

GPCs in the group, namely, 𝑃𝐶𝑃𝐶𝑖
= 𝑃𝐺𝑃𝐺𝑖

/𝑛𝐶𝑃𝐶𝑖.

6. The SPC

The SPC aims to improve the overall execution performance of

a system and maintain the fairness between concurrent

applications as much as possible while satisfying the power

constraint. The concurrently executed multiple programs show

different program characteristics and execution traces and

therefore the execution rate of GPCs is described by using billions

of instructions per second (BIPS). Due to different types of

processors have different instruction set architectures, it is unfair

to directly compare the BIPS of different types of processors.

Therefore, the operating speed of accelerated processing units

(APUs) is normalized as that of the main processor to measure the

execution performance of GPCs at the same standard. The BIPS

of each CPU in a GPC is denoted as 𝐵𝐼𝑃0, which can be obtained

by employing a hardware counter. The execution speed of a

processor is described by using the iteration times per unit time

and therefore those of the main processor and APUs under current

operating frequency can be obtained, expressed as 𝑣0 and 𝑣𝑘 ,

respectively. It can be acquired that equivalent BIPS of the APU

is 𝐵𝐼𝑃𝑘 = 𝐵𝐼𝑃0 ×
𝑣𝑘

𝑣0
 and the execution speed of a single UPC can

be calculated with the following formula:

𝑣𝐶𝑃𝐶 = 𝐵𝐼𝑃0 × ∑
𝑣𝑘

𝑣0

𝑁𝐶𝑃𝐶

𝑘=0

 (5)

Where, 𝑁𝐶𝑃𝐶 refers to the quantity of processor units contained

in a GPC. Due to the characteristics of applications, different

application programs exhibit diverse BIPSs. Therefore, directly

distributing power of a system according to absolute BIPS can

artificially prolong the execution time of some application

programs with low BIPSs, thus threatening the fairness of

concurrent tasks. By using the evaluation method in [29], the

executive characteristics of programs are described by employing

the relative execution speed, which refers to the ratio of BIPS at

current frequency to BIPS at the highest frequency, namely,

B =
𝐵𝐼𝑃𝑆

𝐵𝐼𝑃𝑆 ′
 (6)

Where, 𝐵𝐼𝑃𝑆 ′ represents the BIPS value of a GPC when all

processors operate at the highest frequency. The power of the UPC

at the frequency is denoted as 𝑃𝐶𝑃𝐶, and then the performance is

defined as the ratio of the relative execution speed to power

consumption, namely,

𝑒𝐶𝑃𝐶 =
𝐵

𝑃𝐶𝑃𝐶
 (7)

Because GPC consists of multiple UPCs, the weighted sum of

performances of various UPCs is taken as the performance of a

GPC, namely,

𝑒𝐺𝑃𝐶𝑖
= ∑ 𝑒𝐶𝑃𝐶𝑗

× 𝜔𝑗

𝑛𝐶𝑃𝐶𝑖−1

𝑗=0

 (8)

Where, 𝑒𝐶𝑃𝐶𝑗
 and 𝑛𝐶𝑃𝐶𝑖 refer to the execution performance of

the 𝑗𝑡ℎ UPC in a GPC and the quantity of UPCs contained in the

i 𝑡ℎ GPC, respectively. 𝜔𝑗(0 ≤ 𝜔𝑗 ≤ 1) denotes the task load

allocated to the 𝑗𝑡ℎ UPC that satisfies ∑ 𝜔𝑗
𝑛𝐶𝑃𝐶𝑖−1
𝑗=0 = 1 . After

acquiring the performances of various GPCs, the total power 𝑃𝑆𝑃𝐶

is allocated to multiple GPCs according to the performance ratios

of different programs. The total power allocated to the i𝑡ℎ GPC is

shown as follows:

𝑃𝐺𝑃𝐶𝑖
=

𝑒𝐺𝑃𝐶𝑖

∑ 𝑒𝐺𝑃𝐶𝑘

𝑛𝐺𝑃𝐶−1
𝑘=0

𝑃𝑆𝑃𝐶 (9)

Where, 𝑛𝐺𝑃𝐶 refers to the quantity of concurrently executed

programs in a system. According to the aforementioned power

distribution strategy, the SPC executes the power control process

in a fixed period T. Therefore, according to the operating

performances 𝑒𝐺𝑃𝐶𝑖
 of various application programs in the prior

control period, the power constraints of various programs in the

next control period are formulated considering the current power

constraint P of the system and transferred to the power controllers

at the subordinated level.

7. Experimental evaluation and analysis

7.1 Experimental platform
The heterogeneous system consisting of an Intel Core I7 920

Quad-Core CPU and an AMD 4870 GPU was taken as the

experimental platform. As shown in Table 1, in the heterogeneous

system, the CPU and the GPU have their individual memory

spaces and data communications are achieved through connection

of PCI-E bus.

Table 1 Parameters of the test platform

Processor Intel Core I7 920 CPU AMD 4870 GPU-H/GPU-L

Frequency of processor (GHZ) 2.67,2.4,2.0.1.6 0.75,0.65,0.55

Frequency of memory (GHZ) 1.33 (DDR3) 0.9/0.7/0.5(GDDR5)

Cache
L1 I32KB, D32KB, L2 256KB,

L3 8MB
-

Memory 8GB 1GB

Table 2 Test cases

Applications Description Problem scale Kernel program

HopSpot Thermal Simulation

Tool

2048*2048 data

points

Hotspot

Kmeans Clustering Algorithm 819200 points 34

features

Cluster

MGRID Poisson Equation

Solver

256*256*256 data

points

RESID, PSINV,

RPRJ3, INTERP

SWIM Shallow Water

Modeling Solver

2048*2048 data

points

CALC1, CALC2,

CALC3

7.2 Test cases
Four applications are chosen as test cases. As shown in Table 2,

MGRID and SWIM are both taken from the SPECOMP2001

benchmark test set and used as Poisson Equation Solver and

shallow water modeling solver (SWMS), respectively. HotSpot and

Kmeans are both collected from the Rodinia program set which is

mainly applied for evaluating HPSs. HotSpot application is

employed for simulating the chip temperature model while

Kmeans is applied as a clustering algorithm frequently used in

data mining field. These applications exhibit the following

characteristics: having cyclic processes in Kernel function,

containing the applications accessing global memory space in the

cyclic processes and satisfying the basic conditions for conducting

optimization based on software prefetch.

7.3 Experimental evaluation
7.3.1 Evaluation on the UPC based on software prefetch in a

HPS

The UPC based on software prefetch is first evaluated. In the

experiment, only a single application program operates each time

and OpenMP parallel loop is subjected to parallel execution after

being partitioned in the multi-core processor and the GPU

acceleration unit by using manual modifying method. A specific

processor core is in charge of controlling the execution of the GPU

while the other three processor cores are responsible for the

computation of the rest cyclic iterations. Figure 3 displays the

actual power consumption of the system under different power

constraints, where X- and Y-coordinates denote the given power

constraint and actual power consumption, respectively. For the

sake of simplicity, the figure merely shows the execution condition

of a kernel in each application program. It can be seen from the

figure that the power consumption of the system can accurately

approach to but not exceed the given power constraint by using the

proposed power control method based on software prefetch. Only

the actual power consumption of CALC1 program has a large

difference with the power constraint in the aforementioned four

Kernel programs. This is mainly because the physical processor

only supports limited dispersed operating frequencies and shows

lower and upper bounds. The given power constraint cannot be

used when the power constraints are 80% and 90%, thus resulting

in power waste.

Fig. 3. Power consumption control precisions of single tasks

Figure 4 reveals the performance speedups of programs under

power constraints. Overall performances increase by 17% and 11%

respectively by using the register and the shared memory as the

software prefetch buffers in the optimization. It can be seen from

the figure that performances of Cluster and RESID do not improve

while using shared memory as prefetch buffer while CALC3 does

not acquire performance speedup with the two strategies. These

programs which do not obtain performance speedups show the

common characteristic: the frequency adjustment factor at power

boundary is larger than that in optimal performance under power

constraint. It means that the programs after prefetch optimization

reach to the boundary of performance constraint at first while

60% 70% 80% 90% 100%

50%

60%

70%

80%

90%

100%

110%

A
c
tu

a
l
p
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

Power constraints

 Hotspot

 Cluster

 RESID

 CALC1

reducing frequencies. In this context, the power is still higher than

the original level, so it is necessary continuously decrease the

frequencies to reduce the power to the initial level while the

execution time is higher than the initial value. Thus, it is improper

to optimize these programs based on software prefetch from the

perspectives of either time or power constraints.

Fig. 4. Performance speedups after being optimized under power

constraints

7.3.2 Evaluation on the SPC

The test platform contains two GPUs. HPGs are formed

individually by using a CPU core and a GPU. Two individual

programs are separately mapped on the two HPGs to successively

evaluate the control precision of power consumption and average

performance losses. Under the power constraint, the smaller the

difference between the actual and the scheduled power

consumptions is, the higher the control precision. Figure 5 displays

the actual power consumption of various application combinations

when the power constraint decreases to 80% of the maximum

power consumption. The symbol x-y in the legend refers to the

combination of programs x and y. It can be seen from the figure

that the power consumption of the system favorable approach to

the given constraint for different program combinations, showing

an average difference of 4.8% with the constraint. Because the

system power is distributed merely according to the latest

execution condition of the system and not historical information,

SPCs exhibit different power division to concurrent applications in

different control periods. Consequently, the total power

consumption of the system fluctuates.

Figure 6 illustrates performance changes of various program

combinations when the power constraint of the system reduces to

80% of previously maximum power. The legend First and Second

denote respectively the first and second program in a program

combination while Total refers to the program combination. As

shown in the figure, concurrent applications in most application

combinations exhibit similar performance losses, showing an

average performance loss of 5.4%. The applications in

combinations H-M and K-M have great differences in performance

loss. It is found through analysis that HotSpot and Kmeans both

belong to high computationally-intensive applications and

therefore their execution performances are significantly larger

than that of MGRID. Thus, the two applications share larger

power and exhibit higher execution speed while combining with

MGRID.

Fig. 5. Power control under the concurrent execution of multiple programs

Fig. 6. Performance changes of various program combinations when the

power constraint of the system reduces to the 80% of the maximum power

consumption

8. Conclusions and future work

Aiming at multiple programs executed in a heterogeneous

parallel system, this study established a management framework

for system power combining a three-level power control technology

including the UPC, GPC and SPC. We proposed a method for

controlling power based on software prefetch in the UPC: The

performance of source programs is optimized by conducting

prefetch according to the optimal prefetch distance. Afterwards,

the frequency and voltage reduction is carried out on the optimized

program according to the power constraint conditions, followed by

adjustment of the prefetch distance to guide the optimization

objective to satisfy the boundary of constraint conditions. Through

application test of typical scientific computation, the power

consumption of the system can accurately approach to but not

exceed the given power constraint by using the proposed power

control method based on software prefetch. Furthermore,

performances improve by 17% and 11% by applying register and

Hotspot Cluster RESID PSINV RPRJ3INTERPCALC1 CALC2 CALC3

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

P
e
rf

o
rm

a
n
c
e
 s

p
e
e
d
u
p

Kernel

 Register

 Shared memory

0 2 4 6 8 10

70%

72%

74%

76%

78%

80%

82%

M
a
x
 p

o
w

e
r

Time(second)

 H-K

 H-M

 H-S

 K-M

 K-S

 M-S

H-K H-M H-S K-M K-S M-S

80%

84%

88%

92%

96%

100%

E
x
e
c
u
ti
o
n
 p

e
rf

o
rm

a
n
c
e

Program combination

 First

 Second

 Total

shared memory as software prefetch buffers in the optimization,

respectively. In HPG power control, GPCs takes charge of

partitioning the power allocated to specific application programs

to multiple heterogeneous processing engines under concurrent

executions. Power is uniformly allocated to multiple engines under

load balance while it is preferentially allocated to those in key

paths under load imbalance to improve the overall concurrent

execution performance. In SPC, the system power is apportioned

to diverse concurrently executed application programs. The ratio

of relative execution speed to power consumption is considered as

the execution performance to distribute system power for the sake

of guaranteeing the fairness of concurrent applications. The

experimental results indicate that the SPC can successfully

approach to the given power constraint, with an average difference

of 4.8% with the power constraint. On the other hand, the fairness

is favorably guaranteed: the average performance loss between

concurrent applications is only 5.4%.

In this paper, our research mainly focuses on dynamic energy

consumption, so it is assumed that the static energy consumption

remains unchanged during in the system running process.

However, as the microprocessors design technology advances to

the deep nanometer era, the proportion of static energy

consumption is increasing, the focus of energy consumption

optimization will gradually shift from dynamic energy to dynamic

energy and static energy regarded both as equally important. In

future work, we will consider both the static energy and dynamic

energy and comprehensively utilize a variety of optimized

technologies to improve the execution performance of large-scale

heterogeneous parallel system.

Acknowledgments

This work was sponsored by National Natural Science

Foundation of China (grant number 61300029, 61672168，

61672172，61772143)， Guangzhou Major Science and Technology

Projects (201604010096)

References and links

1. Gu, C., Fan, L., Wu, W., Huang, H., & Jia, X. Greening

cloud data centers in an economical way by energy

trading with power grid. Future Generation Computer

Systems. 2018,78(1):89-101

2. Baker T, Al-Dawsari B, Tawfik H, et al. GreeDi: An

energy efficient routing algorithm for big data on cloud.

Ad Hoc Networks, 2015, 35:83-96.

3. Baker T, Asim M, Tawfik H, et al. An energy-aware

service composition algorithm for multiple cloud-based

IoT applications. Journal of Network & Computer

Applications, 2017, 89(C):96-108.

4. Makaratzis A T, Giannoutakis K M, Tzovaras D.

Energy modeling in cloud simulation frameworks.

Future Generation Computer Systems, 2018,79(2):715-

725.

5. Wang B, Yang Q, Deng X. Energy management for cost

minimization in green heterogeneous networks. Future

Generation Computer Systems, 2017

6. Hu Y, Liu C, Li K, Chen X, Li K. Slack allocation

algorithm for energy minimization in cluster systems.

Future Generation Computer Systems, 2017(74):119-

131.

7. Horvath T, Skadron K. Multi-mode energy

management for multi-tier server clusters.

International Conference on Parallel Architectures and

Compilation Techniques. IEEE, 2017:270-279.

8. Baker T, Ngoko Y, Tolosanacalasanz R, et al. Energy

Efficient Cloud Computing Environment via Autonomic

Meta-director Framework. Sixth International

Conference on Developments in Esystems Engineering.

IEEE, 2015:198-203.

9. Liu Y, Yuen C, Yu R, et al. Queuing-Based Energy

Consumption Management for Heterogeneous

Residential Demands in Smart Grid. IEEE

Transactions on Smart Grid, 2017, 7(3):1650-1659.

10. Aldawsari B, Baker T , England D. Trusted Energy-

Efficient Cloud-Based Services Brokerage Platform .

International Journal of Intelligent Computing

Research, 2015, 6(4):630-639.

11. Wang X, Chen M. Cluster-level feedback power control

for performance optimization. In 17th International

Conference on High-Performance Computer

Architecture. 2008:101-110

12. Raghaverdra R, Ranganathan P, Talwar V, et al. No

“power” struggles: coordinated multi-level power

management for data center. In Proceedings of the 13th

international conference on architectural support for

programming languages and operating systems. New

York, NY, USA, 2008:48-59.

13. Isci C, Buyuktosunoglu A, Cher C-Y, et al. An Analysis

of Efficient Multi-Core Global Power Management

Policies: Maximizing Performance for a Given Power

Budget. In Proceeding of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture

Washington, DC, USA, 2006:347-358.

14. Meng K, Joseph R, Dich R P, et al. Multi-Optimization

Power Management for Chip Multiprocessors. In

PACT’08: Proceedings of the 15th international

conference on parallel architectures and compilation

techniques. New York, NY, USA, 2008:177-186.

15. Ma K, Li X, Chen M, et al. Scalable power control for

many-core architectures running multi-threaded

applications. In Proceeding of the 38th annual

international symposium on Computer architecture.

New York, NY, USA, 2011:449-460.

16. Yang H ， Gao G R. Power-aware Compilation

Techniques for High Performance Processors. Doctor

dissertation. University of Delaware. Winter 2004.

17. Hsu C H, Kremer U. Single Region vs. Multiple Regions:

A Comparison of Different Compiler-Directed Dynamic

Voltage Scheduling Approaches. Lecture Notes in

Computer Science, 2002, 2325:43-48.

18. Saputra H, Kandemir M, Vijaykrishnan N, et al.

Energy-conscious compilation based on voltage scaling.

Acm Sigplan Notices, 2002, 37(7):2-11.

19. Xie F, Martonosi M, Malik S. Compile-time dynamic

voltage scaling settings: opportunities and limits. ACM

SIGPLAN Notices, 2003, 38(5):49-62.

20. Fan X, Ellis C S, Lebeck A R. The synergy between

power-aware memory systems and processor voltage

https://www.sciencedirect.com/science/article/pii/S0167739X16302941
https://www.sciencedirect.com/science/article/pii/S0167739X16302941
http://xueshu.baidu.com/s?wd=author%3A%28Bandar%20Aldawsari%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Thar%20Baker%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28David%20England%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28David%20England%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28David%20England%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

scaling. International Conference on Power - Aware

Computer Systems. Springer-Verlag, 2003:164-179.

21. Wulf W A, McKee S A. Hitting the Memory Wall:

Implications of the Obvious. Computer Architecture

News. 1995,23(1):20-24.

22. Mowry T C. Tolerating latency through software-

controlled data prefetching. Ph.D. thesis. Stanford

University, 1995.

23. Chen S, Gibbons P B, Mowry T C. Improving index

performance through prefetching[. Acm Sigmod Record,

2000, 30(2):235-246.

24. Juan C. Study of Low-Power Software Optimization

Technology. Ph.D. thesis. National University of

Defense, Technology.2007.

25. Klaiber A C , Levy H M. An architecture for software-

controlled data prefetching. In Proceedings of the 18th

annual international symposium on Computer

architecture. New York, NY, USA, 1991:43-53.

26. Mowry T C, Lam M S, Gupta A. Design and evaluation

of a compiler algorithm for prefetching. In Proceedings

of the fifth international conference on Architectural

support for programming languages and operating

systems. New York, NY, USA, 1992:62-73.

27. Cai Q, Rakvic R, Magklis G, et al. Meeting points:using

thread criticality to adapt multicore hardware to

parallel regions// International Conference on Parallel

Architectures and Compilation Techniques. IEEE,

2017:240-249.

28. Bhattacharjee A, Martonosi M. Thread criticality

predictors for dynamic performance, power, and

resource management in chip multiprocessors//

International Symposium on Computer Architecture.

ACM, 2009:290-301.

29. Ma K, Li X, Chen M, et al. Scalable power control for

many-core architectures running multi-threaded

applications // International Symposium on Computer

Architecture. ACM, 2011:449-460.

